1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
|
/* RTL-based forward propagation pass for GNU compiler.
Copyright (C) 2005, 2006 Free Software Foundation, Inc.
Contributed by Paolo Bonzini and Steven Bosscher.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "toplev.h"
#include "timevar.h"
#include "rtl.h"
#include "tm_p.h"
#include "emit-rtl.h"
#include "insn-config.h"
#include "recog.h"
#include "flags.h"
#include "obstack.h"
#include "basic-block.h"
#include "output.h"
#include "df.h"
#include "target.h"
#include "cfgloop.h"
#include "tree-pass.h"
/* This pass does simple forward propagation and simplification when an
operand of an insn can only come from a single def. This pass uses
df.c, so it is global. However, we only do limited analysis of
available expressions.
1) The pass tries to propagate the source of the def into the use,
and checks if the result is independent of the substituted value.
For example, the high word of a (zero_extend:DI (reg:SI M)) is always
zero, independent of the source register.
In particular, we propagate constants into the use site. Sometimes
RTL expansion did not put the constant in the same insn on purpose,
to satisfy a predicate, and the result will fail to be recognized;
but this happens rarely and in this case we can still create a
REG_EQUAL note. For multi-word operations, this
(set (subreg:SI (reg:DI 120) 0) (const_int 0))
(set (subreg:SI (reg:DI 120) 4) (const_int -1))
(set (subreg:SI (reg:DI 122) 0)
(ior:SI (subreg:SI (reg:DI 119) 0) (subreg:SI (reg:DI 120) 0)))
(set (subreg:SI (reg:DI 122) 4)
(ior:SI (subreg:SI (reg:DI 119) 4) (subreg:SI (reg:DI 120) 4)))
can be simplified to the much simpler
(set (subreg:SI (reg:DI 122) 0) (subreg:SI (reg:DI 119)))
(set (subreg:SI (reg:DI 122) 4) (const_int -1))
This particular propagation is also effective at putting together
complex addressing modes. We are more aggressive inside MEMs, in
that all definitions are propagated if the use is in a MEM; if the
result is a valid memory address we check address_cost to decide
whether the substitution is worthwhile.
2) The pass propagates register copies. This is not as effective as
the copy propagation done by CSE's canon_reg, which works by walking
the instruction chain, it can help the other transformations.
We should consider removing this optimization, and instead reorder the
RTL passes, because GCSE does this transformation too. With some luck,
the CSE pass at the end of rest_of_handle_gcse could also go away.
3) The pass looks for paradoxical subregs that are actually unnecessary.
Things like this:
(set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
(set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
(set (reg:SI 122) (plus:SI (subreg:SI (reg:QI 120) 0)
(subreg:SI (reg:QI 121) 0)))
are very common on machines that can only do word-sized operations.
For each use of a paradoxical subreg (subreg:WIDER (reg:NARROW N) 0),
if it has a single def and it is (subreg:NARROW (reg:WIDE M) 0),
we can replace the paradoxical subreg with simply (reg:WIDE M). The
above will simplify this to
(set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
(set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
(set (reg:SI 122) (plus:SI (reg:SI 118) (reg:SI 119)))
where the first two insns are now dead. */
static struct df *df;
static int num_changes;
/* Do not try to replace constant addresses or addresses of local and
argument slots. These MEM expressions are made only once and inserted
in many instructions, as well as being used to control symbol table
output. It is not safe to clobber them.
There are some uncommon cases where the address is already in a register
for some reason, but we cannot take advantage of that because we have
no easy way to unshare the MEM. In addition, looking up all stack
addresses is costly. */
static bool
can_simplify_addr (rtx addr)
{
rtx reg;
if (CONSTANT_ADDRESS_P (addr))
return false;
if (GET_CODE (addr) == PLUS)
reg = XEXP (addr, 0);
else
reg = addr;
return (!REG_P (reg)
|| (REGNO (reg) != FRAME_POINTER_REGNUM
&& REGNO (reg) != HARD_FRAME_POINTER_REGNUM
&& REGNO (reg) != ARG_POINTER_REGNUM));
}
/* Returns a canonical version of X for the address, from the point of view,
that all multiplications are represented as MULT instead of the multiply
by a power of 2 being represented as ASHIFT.
Every ASHIFT we find has been made by simplify_gen_binary and was not
there before, so it is not shared. So we can do this in place. */
static void
canonicalize_address (rtx x)
{
for (;;)
switch (GET_CODE (x))
{
case ASHIFT:
if (GET_CODE (XEXP (x, 1)) == CONST_INT
&& INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (GET_MODE (x))
&& INTVAL (XEXP (x, 1)) >= 0)
{
HOST_WIDE_INT shift = INTVAL (XEXP (x, 1));
PUT_CODE (x, MULT);
XEXP (x, 1) = gen_int_mode ((HOST_WIDE_INT) 1 << shift,
GET_MODE (x));
}
x = XEXP (x, 0);
break;
case PLUS:
if (GET_CODE (XEXP (x, 0)) == PLUS
|| GET_CODE (XEXP (x, 0)) == ASHIFT
|| GET_CODE (XEXP (x, 0)) == CONST)
canonicalize_address (XEXP (x, 0));
x = XEXP (x, 1);
break;
case CONST:
x = XEXP (x, 0);
break;
default:
return;
}
}
/* OLD is a memory address. Return whether it is good to use NEW instead,
for a memory access in the given MODE. */
static bool
should_replace_address (rtx old, rtx new, enum machine_mode mode)
{
int gain;
if (rtx_equal_p (old, new) || !memory_address_p (mode, new))
return false;
/* Copy propagation is always ok. */
if (REG_P (old) && REG_P (new))
return true;
/* Prefer the new address if it is less expensive. */
gain = address_cost (old, mode) - address_cost (new, mode);
/* If the addresses have equivalent cost, prefer the new address
if it has the highest `rtx_cost'. That has the potential of
eliminating the most insns without additional costs, and it
is the same that cse.c used to do. */
if (gain == 0)
gain = rtx_cost (new, SET) - rtx_cost (old, SET);
return (gain > 0);
}
/* Replace all occurrences of OLD in *PX with NEW and try to simplify the
resulting expression. Replace *PX with a new RTL expression if an
occurrence of OLD was found.
If CAN_APPEAR is true, we always return true; if it is false, we
can return false if, for at least one occurrence OLD, we failed to
collapse the result to a constant. For example, (mult:M (reg:M A)
(minus:M (reg:M B) (reg:M A))) may collapse to zero if replacing
(reg:M B) with (reg:M A).
CAN_APPEAR is disregarded inside MEMs: in that case, we always return
true if the simplification is a cheaper and valid memory address.
This is only a wrapper around simplify-rtx.c: do not add any pattern
matching code here. (The sole exception is the handling of LO_SUM, but
that is because there is no simplify_gen_* function for LO_SUM). */
static bool
propagate_rtx_1 (rtx *px, rtx old, rtx new, bool can_appear)
{
rtx x = *px, tem = NULL_RTX, op0, op1, op2;
enum rtx_code code = GET_CODE (x);
enum machine_mode mode = GET_MODE (x);
enum machine_mode op_mode;
bool valid_ops = true;
/* If X is OLD_RTX, return NEW_RTX. Otherwise, if this is an expression,
try to build a new expression from recursive substitution. */
if (x == old)
{
*px = new;
return can_appear;
}
switch (GET_RTX_CLASS (code))
{
case RTX_UNARY:
op0 = XEXP (x, 0);
op_mode = GET_MODE (op0);
valid_ops &= propagate_rtx_1 (&op0, old, new, can_appear);
if (op0 == XEXP (x, 0))
return true;
tem = simplify_gen_unary (code, mode, op0, op_mode);
break;
case RTX_BIN_ARITH:
case RTX_COMM_ARITH:
op0 = XEXP (x, 0);
op1 = XEXP (x, 1);
valid_ops &= propagate_rtx_1 (&op0, old, new, can_appear);
valid_ops &= propagate_rtx_1 (&op1, old, new, can_appear);
if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
return true;
tem = simplify_gen_binary (code, mode, op0, op1);
break;
case RTX_COMPARE:
case RTX_COMM_COMPARE:
op0 = XEXP (x, 0);
op1 = XEXP (x, 1);
op_mode = GET_MODE (op0) != VOIDmode ? GET_MODE (op0) : GET_MODE (op1);
valid_ops &= propagate_rtx_1 (&op0, old, new, can_appear);
valid_ops &= propagate_rtx_1 (&op1, old, new, can_appear);
if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
return true;
tem = simplify_gen_relational (code, mode, op_mode, op0, op1);
break;
case RTX_TERNARY:
case RTX_BITFIELD_OPS:
op0 = XEXP (x, 0);
op1 = XEXP (x, 1);
op2 = XEXP (x, 2);
op_mode = GET_MODE (op0);
valid_ops &= propagate_rtx_1 (&op0, old, new, can_appear);
valid_ops &= propagate_rtx_1 (&op1, old, new, can_appear);
valid_ops &= propagate_rtx_1 (&op2, old, new, can_appear);
if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1) && op2 == XEXP (x, 2))
return true;
if (op_mode == VOIDmode)
op_mode = GET_MODE (op0);
tem = simplify_gen_ternary (code, mode, op_mode, op0, op1, op2);
break;
case RTX_EXTRA:
/* The only case we try to handle is a SUBREG. */
if (code == SUBREG)
{
op0 = XEXP (x, 0);
valid_ops &= propagate_rtx_1 (&op0, old, new, can_appear);
if (op0 == XEXP (x, 0))
return true;
tem = simplify_gen_subreg (mode, op0, GET_MODE (SUBREG_REG (x)),
SUBREG_BYTE (x));
}
break;
case RTX_OBJ:
if (code == MEM && x != new)
{
rtx new_op0;
op0 = XEXP (x, 0);
/* There are some addresses that we cannot work on. */
if (!can_simplify_addr (op0))
return true;
op0 = new_op0 = targetm.delegitimize_address (op0);
valid_ops &= propagate_rtx_1 (&new_op0, old, new, true);
/* Dismiss transformation that we do not want to carry on. */
if (!valid_ops
|| new_op0 == op0
|| GET_MODE (new_op0) != GET_MODE (op0))
return true;
canonicalize_address (new_op0);
/* Copy propagations are always ok. Otherwise check the costs. */
if (!(REG_P (old) && REG_P (new))
&& !should_replace_address (op0, new_op0, GET_MODE (x)))
return true;
tem = replace_equiv_address_nv (x, new_op0);
}
else if (code == LO_SUM)
{
op0 = XEXP (x, 0);
op1 = XEXP (x, 1);
/* The only simplification we do attempts to remove references to op0
or make it constant -- in both cases, op0's invalidity will not
make the result invalid. */
propagate_rtx_1 (&op0, old, new, true);
valid_ops &= propagate_rtx_1 (&op1, old, new, can_appear);
if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
return true;
/* (lo_sum (high x) x) -> x */
if (GET_CODE (op0) == HIGH && rtx_equal_p (XEXP (op0, 0), op1))
tem = op1;
else
tem = gen_rtx_LO_SUM (mode, op0, op1);
/* OP1 is likely not a legitimate address, otherwise there would have
been no LO_SUM. We want it to disappear if it is invalid, return
false in that case. */
return memory_address_p (mode, tem);
}
else if (code == REG)
{
if (rtx_equal_p (x, old))
{
*px = new;
return can_appear;
}
}
break;
default:
break;
}
/* No change, no trouble. */
if (tem == NULL_RTX)
return true;
*px = tem;
/* The replacement we made so far is valid, if all of the recursive
replacements were valid, or we could simplify everything to
a constant. */
return valid_ops || can_appear || CONSTANT_P (tem);
}
/* Replace all occurrences of OLD in X with NEW and try to simplify the
resulting expression (in mode MODE). Return a new expression if it is
a constant, otherwise X.
Simplifications where occurrences of NEW collapse to a constant are always
accepted. All simplifications are accepted if NEW is a pseudo too.
Otherwise, we accept simplifications that have a lower or equal cost. */
static rtx
propagate_rtx (rtx x, enum machine_mode mode, rtx old, rtx new)
{
rtx tem;
bool collapsed;
if (REG_P (new) && REGNO (new) < FIRST_PSEUDO_REGISTER)
return NULL_RTX;
new = copy_rtx (new);
tem = x;
collapsed = propagate_rtx_1 (&tem, old, new, REG_P (new) || CONSTANT_P (new));
if (tem == x || !collapsed)
return NULL_RTX;
/* gen_lowpart_common will not be able to process VOIDmode entities other
than CONST_INTs. */
if (GET_MODE (tem) == VOIDmode && GET_CODE (tem) != CONST_INT)
return NULL_RTX;
if (GET_MODE (tem) == VOIDmode)
tem = rtl_hooks.gen_lowpart_no_emit (mode, tem);
else
gcc_assert (GET_MODE (tem) == mode);
return tem;
}
/* Return true if the register from reference REF is killed
between FROM to (but not including) TO. */
static bool
local_ref_killed_between_p (struct df_ref * ref, rtx from, rtx to)
{
rtx insn;
struct df_ref *def;
for (insn = from; insn != to; insn = NEXT_INSN (insn))
{
if (!INSN_P (insn))
continue;
def = DF_INSN_DEFS (df, insn);
while (def)
{
if (DF_REF_REGNO (ref) == DF_REF_REGNO (def))
return true;
def = def->next_ref;
}
}
return false;
}
/* Check if the given DEF is available in INSN. This would require full
computation of available expressions; we check only restricted conditions:
- if DEF is the sole definition of its register, go ahead;
- in the same basic block, we check for no definitions killing the
definition of DEF_INSN;
- if USE's basic block has DEF's basic block as the sole predecessor,
we check if the definition is killed after DEF_INSN or before
TARGET_INSN insn, in their respective basic blocks. */
static bool
use_killed_between (struct df_ref *use, rtx def_insn, rtx target_insn)
{
basic_block def_bb = BLOCK_FOR_INSN (def_insn);
basic_block target_bb = BLOCK_FOR_INSN (target_insn);
int regno;
struct df_ref * def;
/* In some obscure situations we can have a def reaching a use
that is _before_ the def. In other words the def does not
dominate the use even though the use and def are in the same
basic block. This can happen when a register may be used
uninitialized in a loop. In such cases, we must assume that
DEF is not available. */
if (def_bb == target_bb
? DF_INSN_LUID (df, def_insn) >= DF_INSN_LUID (df, target_insn)
: !dominated_by_p (CDI_DOMINATORS, target_bb, def_bb))
return true;
/* Check if the reg in USE has only one definition. We already
know that this definition reaches use, or we wouldn't be here. */
regno = DF_REF_REGNO (use);
def = DF_REG_DEF_GET (df, regno)->reg_chain;
if (def && (def->next_reg == NULL))
return false;
/* Check locally if we are in the same basic block. */
if (def_bb == target_bb)
return local_ref_killed_between_p (use, def_insn, target_insn);
/* Finally, if DEF_BB is the sole predecessor of TARGET_BB. */
if (single_pred_p (target_bb)
&& single_pred (target_bb) == def_bb)
{
struct df_ref *x;
/* See if USE is killed between DEF_INSN and the last insn in the
basic block containing DEF_INSN. */
x = df_bb_regno_last_def_find (df, def_bb, regno);
if (x && DF_INSN_LUID (df, x->insn) >= DF_INSN_LUID (df, def_insn))
return true;
/* See if USE is killed between TARGET_INSN and the first insn in the
basic block containing TARGET_INSN. */
x = df_bb_regno_first_def_find (df, target_bb, regno);
if (x && DF_INSN_LUID (df, x->insn) < DF_INSN_LUID (df, target_insn))
return true;
return false;
}
/* Otherwise assume the worst case. */
return true;
}
/* for_each_rtx traversal function that returns 1 if BODY points to
a non-constant mem. */
static int
varying_mem_p (rtx *body, void *data ATTRIBUTE_UNUSED)
{
rtx x = *body;
return MEM_P (x) && !MEM_READONLY_P (x);
}
/* Check if all uses in DEF_INSN can be used in TARGET_INSN. This
would require full computation of available expressions;
we check only restricted conditions, see use_killed_between. */
static bool
all_uses_available_at (rtx def_insn, rtx target_insn)
{
struct df_ref * use;
rtx def_set = single_set (def_insn);
gcc_assert (def_set);
/* If target_insn comes right after def_insn, which is very common
for addresses, we can use a quicker test. */
if (NEXT_INSN (def_insn) == target_insn
&& REG_P (SET_DEST (def_set)))
{
rtx def_reg = SET_DEST (def_set);
/* If the insn uses the reg that it defines, the substitution is
invalid. */
for (use = DF_INSN_USES (df, def_insn); use; use = use->next_ref)
if (rtx_equal_p (use->reg, def_reg))
return false;
}
else
{
/* Look at all the uses of DEF_INSN, and see if they are not
killed between DEF_INSN and TARGET_INSN. */
for (use = DF_INSN_USES (df, def_insn); use; use = use->next_ref)
if (use_killed_between (use, def_insn, target_insn))
return false;
}
/* We don't do any analysis of memories or aliasing. Reject any
instruction that involves references to non-constant memory. */
return !for_each_rtx (&SET_SRC (def_set), varying_mem_p, NULL);
}
struct find_occurrence_data
{
rtx find;
rtx *retval;
};
/* Callback for for_each_rtx, used in find_occurrence.
See if PX is the rtx we have to find. Return 1 to stop for_each_rtx
if successful, or 0 to continue traversing otherwise. */
static int
find_occurrence_callback (rtx *px, void *data)
{
struct find_occurrence_data *fod = (struct find_occurrence_data *) data;
rtx x = *px;
rtx find = fod->find;
if (x == find)
{
fod->retval = px;
return 1;
}
return 0;
}
/* Return a pointer to one of the occurrences of register FIND in *PX. */
static rtx *
find_occurrence (rtx *px, rtx find)
{
struct find_occurrence_data data;
gcc_assert (REG_P (find)
|| (GET_CODE (find) == SUBREG
&& REG_P (SUBREG_REG (find))));
data.find = find;
data.retval = NULL;
for_each_rtx (px, find_occurrence_callback, &data);
return data.retval;
}
/* Inside INSN, the expression rooted at *LOC has been changed, moving some
uses from ORIG_USES. Find those that are present, and create new items
in the data flow object of the pass. Mark any new uses as having the
given TYPE. */
static void
update_df (rtx insn, rtx *loc, struct df_ref *orig_uses, enum df_ref_type type,
int new_flags)
{
struct df_ref *use;
/* Add a use for the registers that were propagated. */
for (use = orig_uses; use; use = use->next_ref)
{
struct df_ref *orig_use = use, *new_use;
rtx *new_loc = find_occurrence (loc, DF_REF_REG (orig_use));
if (!new_loc)
continue;
/* Add a new insn use. Use the original type, because it says if the
use was within a MEM. */
new_use = df_ref_create (df, DF_REF_REG (orig_use), new_loc,
insn, BLOCK_FOR_INSN (insn),
type, DF_REF_FLAGS (orig_use) | new_flags);
/* Set up the use-def chain. */
df_chain_copy (df->problems_by_index[DF_CHAIN],
new_use, DF_REF_CHAIN (orig_use));
}
}
/* Try substituting NEW into LOC, which originated from forward propagation
of USE's value from DEF_INSN. SET_REG_EQUAL says whether we are
substituting the whole SET_SRC, so we can set a REG_EQUAL note if the
new insn is not recognized. Return whether the substitution was
performed. */
static bool
try_fwprop_subst (struct df_ref *use, rtx *loc, rtx new, rtx def_insn, bool set_reg_equal)
{
rtx insn = DF_REF_INSN (use);
enum df_ref_type type = DF_REF_TYPE (use);
int flags = DF_REF_FLAGS (use);
if (dump_file)
{
fprintf (dump_file, "\nIn insn %d, replacing\n ", INSN_UID (insn));
print_inline_rtx (dump_file, *loc, 2);
fprintf (dump_file, "\n with ");
print_inline_rtx (dump_file, new, 2);
fprintf (dump_file, "\n");
}
if (validate_change (insn, loc, new, false))
{
num_changes++;
if (dump_file)
fprintf (dump_file, "Changed insn %d\n", INSN_UID (insn));
/* Unlink the use that we changed. */
df_ref_remove (df, use);
if (!CONSTANT_P (new))
update_df (insn, loc, DF_INSN_USES (df, def_insn), type, flags);
return true;
}
else
{
if (dump_file)
fprintf (dump_file, "Changes to insn %d not recognized\n",
INSN_UID (insn));
/* Can also record a simplified value in a REG_EQUAL note, making a
new one if one does not already exist. */
if (set_reg_equal)
{
if (dump_file)
fprintf (dump_file, " Setting REG_EQUAL note\n");
REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EQUAL, copy_rtx (new),
REG_NOTES (insn));
if (!CONSTANT_P (new))
update_df (insn, loc, DF_INSN_USES (df, def_insn),
type, DF_REF_IN_NOTE);
}
return false;
}
}
/* If USE is a paradoxical subreg, see if it can be replaced by a pseudo. */
static bool
forward_propagate_subreg (struct df_ref *use, rtx def_insn, rtx def_set)
{
rtx use_reg = DF_REF_REG (use);
rtx use_insn, src;
/* Only consider paradoxical subregs... */
enum machine_mode use_mode = GET_MODE (use_reg);
if (GET_CODE (use_reg) != SUBREG
|| !REG_P (SET_DEST (def_set))
|| GET_MODE_SIZE (use_mode)
<= GET_MODE_SIZE (GET_MODE (SUBREG_REG (use_reg))))
return false;
/* If this is a paradoxical SUBREG, we have no idea what value the
extra bits would have. However, if the operand is equivalent to
a SUBREG whose operand is the same as our mode, and all the modes
are within a word, we can just use the inner operand because
these SUBREGs just say how to treat the register. */
use_insn = DF_REF_INSN (use);
src = SET_SRC (def_set);
if (GET_CODE (src) == SUBREG
&& REG_P (SUBREG_REG (src))
&& GET_MODE (SUBREG_REG (src)) == use_mode
&& subreg_lowpart_p (src)
&& all_uses_available_at (def_insn, use_insn))
return try_fwprop_subst (use, DF_REF_LOC (use), SUBREG_REG (src),
def_insn, false);
else
return false;
}
/* Try to replace USE with SRC (defined in DEF_INSN) and simplify the
result. */
static bool
forward_propagate_and_simplify (struct df_ref *use, rtx def_insn, rtx def_set)
{
rtx use_insn = DF_REF_INSN (use);
rtx use_set = single_set (use_insn);
rtx src, reg, new, *loc;
bool set_reg_equal;
enum machine_mode mode;
if (!use_set)
return false;
/* Do not propagate into PC, CC0, etc. */
if (GET_MODE (SET_DEST (use_set)) == VOIDmode)
return false;
/* If def and use are subreg, check if they match. */
reg = DF_REF_REG (use);
if (GET_CODE (reg) == SUBREG
&& GET_CODE (SET_DEST (def_set)) == SUBREG
&& (SUBREG_BYTE (SET_DEST (def_set)) != SUBREG_BYTE (reg)
|| GET_MODE (SET_DEST (def_set)) != GET_MODE (reg)))
return false;
/* Check if the def had a subreg, but the use has the whole reg. */
if (REG_P (reg) && GET_CODE (SET_DEST (def_set)) == SUBREG)
return false;
/* Check if the use has a subreg, but the def had the whole reg. Unlike the
previous case, the optimization is possible and often useful indeed. */
if (GET_CODE (reg) == SUBREG && REG_P (SET_DEST (def_set)))
reg = SUBREG_REG (reg);
/* Check if the substitution is valid (last, because it's the most
expensive check!). */
src = SET_SRC (def_set);
if (!CONSTANT_P (src) && !all_uses_available_at (def_insn, use_insn))
return false;
/* Check if the def is loading something from the constant pool; in this
case we would undo optimization such as compress_float_constant.
Still, we can set a REG_EQUAL note. */
if (MEM_P (src) && MEM_READONLY_P (src))
{
rtx x = avoid_constant_pool_reference (src);
if (x != src)
{
rtx note = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
rtx old = note ? XEXP (note, 0) : SET_SRC (use_set);
rtx new = simplify_replace_rtx (old, src, x);
if (old != new)
set_unique_reg_note (use_insn, REG_EQUAL, copy_rtx (new));
}
return false;
}
/* Else try simplifying. */
if (DF_REF_TYPE (use) == DF_REF_REG_MEM_STORE)
{
loc = &SET_DEST (use_set);
set_reg_equal = false;
}
else
{
rtx note = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
if (DF_REF_FLAGS (use) & DF_REF_IN_NOTE)
loc = &XEXP (note, 0);
else
loc = &SET_SRC (use_set);
/* Do not replace an existing REG_EQUAL note if the insn is not
recognized. Either we're already replacing in the note, or
we'll separately try plugging the definition in the note and
simplifying. */
set_reg_equal = (note == NULL_RTX);
}
if (GET_MODE (*loc) == VOIDmode)
mode = GET_MODE (SET_DEST (use_set));
else
mode = GET_MODE (*loc);
new = propagate_rtx (*loc, mode, reg, src);
if (!new)
return false;
return try_fwprop_subst (use, loc, new, def_insn, set_reg_equal);
}
/* Given a use USE of an insn, if it has a single reaching
definition, try to forward propagate it into that insn. */
static void
forward_propagate_into (struct df_ref *use)
{
struct df_link *defs;
struct df_ref *def;
rtx def_insn, def_set, use_insn;
rtx parent;
if (DF_REF_FLAGS (use) & DF_REF_READ_WRITE)
return;
/* Only consider uses that have a single definition. */
defs = DF_REF_CHAIN (use);
if (!defs || defs->next)
return;
def = defs->ref;
if (DF_REF_FLAGS (def) & DF_REF_READ_WRITE)
return;
/* Do not propagate loop invariant definitions inside the loop if
we are going to unroll. */
if (current_loops
&& DF_REF_BB (def)->loop_father != DF_REF_BB (use)->loop_father)
return;
/* Check if the use is still present in the insn! */
use_insn = DF_REF_INSN (use);
if (DF_REF_FLAGS (use) & DF_REF_IN_NOTE)
parent = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
else
parent = PATTERN (use_insn);
if (!loc_mentioned_in_p (DF_REF_LOC (use), parent))
return;
def_insn = DF_REF_INSN (def);
def_set = single_set (def_insn);
if (!def_set)
return;
/* Only try one kind of propagation. If two are possible, we'll
do it on the following iterations. */
if (!forward_propagate_and_simplify (use, def_insn, def_set))
forward_propagate_subreg (use, def_insn, def_set);
}
static void
fwprop_init (void)
{
num_changes = 0;
calculate_dominance_info (CDI_DOMINATORS);
/* We do not always want to propagate into loops, so we have to find
loops and be careful about them. But we have to call flow_loops_find
before df_analyze, because flow_loops_find may introduce new jump
insns (sadly) if we are not working in cfglayout mode. */
if (flag_rerun_cse_after_loop && (flag_unroll_loops || flag_peel_loops))
loop_optimizer_init (0);
/* Now set up the dataflow problem (we only want use-def chains) and
put the dataflow solver to work. */
df = df_init (DF_SUBREGS | DF_EQUIV_NOTES);
df_chain_add_problem (df, DF_UD_CHAIN);
df_analyze (df);
df_dump (df, dump_file);
}
static void
fwprop_done (void)
{
df_finish (df);
if (flag_rerun_cse_after_loop && (flag_unroll_loops || flag_peel_loops))
loop_optimizer_finalize ();
free_dominance_info (CDI_DOMINATORS);
cleanup_cfg (0);
delete_trivially_dead_insns (get_insns (), max_reg_num ());
if (dump_file)
fprintf (dump_file,
"\nNumber of successful forward propagations: %d\n\n",
num_changes);
}
/* Main entry point. */
static bool
gate_fwprop (void)
{
return optimize > 0 && flag_forward_propagate;
}
static unsigned int
fwprop (void)
{
unsigned i;
fwprop_init ();
/* Go through all the uses. update_df will create new ones at the
end, and we'll go through them as well.
Do not forward propagate addresses into loops until after unrolling.
CSE did so because it was able to fix its own mess, but we are not. */
df_reorganize_refs (&df->use_info);
for (i = 0; i < DF_USES_SIZE (df); i++)
{
struct df_ref *use = DF_USES_GET (df, i);
if (use)
if (!current_loops
|| DF_REF_TYPE (use) == DF_REF_REG_USE
|| DF_REF_BB (use)->loop_father == NULL)
forward_propagate_into (use);
}
fwprop_done ();
return 0;
}
struct tree_opt_pass pass_rtl_fwprop =
{
"fwprop1", /* name */
gate_fwprop, /* gate */
fwprop, /* execute */
NULL, /* sub */
NULL, /* next */
0, /* static_pass_number */
TV_FWPROP, /* tv_id */
0, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_dump_func, /* todo_flags_finish */
0 /* letter */
};
static bool
gate_fwprop_addr (void)
{
return optimize > 0 && flag_forward_propagate && flag_rerun_cse_after_loop
&& (flag_unroll_loops || flag_peel_loops);
}
static unsigned int
fwprop_addr (void)
{
unsigned i;
fwprop_init ();
/* Go through all the uses. update_df will create new ones at the
end, and we'll go through them as well. */
df_reorganize_refs (&df->use_info);
for (i = 0; i < DF_USES_SIZE (df); i++)
{
struct df_ref *use = DF_USES_GET (df, i);
if (use)
if (DF_REF_TYPE (use) != DF_REF_REG_USE
&& DF_REF_BB (use)->loop_father != NULL)
forward_propagate_into (use);
}
fwprop_done ();
return 0;
}
struct tree_opt_pass pass_rtl_fwprop_addr =
{
"fwprop2", /* name */
gate_fwprop_addr, /* gate */
fwprop_addr, /* execute */
NULL, /* sub */
NULL, /* next */
0, /* static_pass_number */
TV_FWPROP, /* tv_id */
0, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_dump_func, /* todo_flags_finish */
0 /* letter */
};
|