1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
|
/* Common block and equivalence list handling
Copyright (C) 2000-2003 Free Software Foundation, Inc.
Contributed by Canqun Yang <canqun@nudt.edu.cn>
This file is part of GNU G95.
G95 is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
G95 is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with G95; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
/* The core algorithm is based on Andy Vaught's g95 tree. Also the
way to build UNION_TYPE is borrowed from Richard Henderson.
Transform common blocks. An integral part of this is processing
equvalence variables. Equivalenced variables that are not in a
common block end up in a private block of their own.
Each common block or local equivalence list is declared as a union.
Variables within the block are represented as a field within the
block with the proper offset.
So if two variables are equivalenced, they just point to a common
area in memory.
Mathematically, laying out an equivalence block is equivalent to
solving a linear system of equations. The matrix is usually a
sparse matrix in which each row contains all zero elements except
for a +1 and a -1, a sort of a generalized Vandermonde matrix. The
matrix is usually block diagonal. The system can be
overdetermined, underdetermined or have a unique solution. If the
system is inconsistent, the program is not standard conforming.
The solution vector is integral, since all of the pivots are +1 or -1.
How we lay out an equivalence block is a little less complicated.
In an equivalence list with n elements, there are n-1 conditions to
be satisfied. The conditions partition the variables into what we
will call segments. If A and B are equivalenced then A and B are
in the same segment. If B and C are equivalenced as well, then A,
B and C are in a segment and so on. Each segment is a block of
memory that has one or more variables equivalenced in some way. A
common block is made up of a series of segments that are joined one
after the other. In the linear system, a segment is a block
diagonal.
To lay out a segment we first start with some variable and
determine its length. The first variable is assumed to start at
offset one and extends to however long it is. We then traverse the
list of equivalences to find an unused condition that involves at
least one of the variables currently in the segment.
Each equivalence condition amounts to the condition B+b=C+c where B
and C are the offsets of the B and C variables, and b and c are
constants which are nonzero for array elements, substrings or
structure components. So for
EQUIVALENCE(B(2), C(3))
we have
B + 2*size of B's elements = C + 3*size of C's elements.
If B and C are known we check to see if the condition already
holds. If B is known we can solve for C. Since we know the length
of C, we can see if the minimum and maximum extents of the segment
are affected. Eventually, we make a full pass through the
equivalence list without finding any new conditions and the segment
is fully specified.
At this point, the segment is added to the current common block.
Since we know the minimum extent of the segment, everything in the
segment is translated to its position in the common block. The
usual case here is that there are no equivalence statements and the
common block is series of segments with one variable each, which is
a diagonal matrix in the matrix formulation.
Once all common blocks have been created, the list of equivalences
is examined for still-unused equivalence conditions. We create a
block for each merged equivalence list. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tree.h"
#include "toplev.h"
#include "tm.h"
#include "gfortran.h"
#include "trans.h"
#include "trans-types.h"
#include "trans-const.h"
typedef struct segment_info
{
gfc_symbol *sym;
int offset;
int length;
tree field;
struct segment_info *next;
} segment_info;
static segment_info *current_segment, *current_common;
static int current_length, current_offset;
static gfc_namespace *gfc_common_ns = NULL;
#define get_segment_info() gfc_getmem (sizeof (segment_info))
#define BLANK_COMMON_NAME "__BLNK__"
/* Construct mangled common block name from symbol name. */
static tree
gfc_sym_mangled_common_id (gfc_symbol *sym)
{
int has_underscore;
char name[GFC_MAX_MANGLED_SYMBOL_LEN + 1];
if (strcmp (sym->name, BLANK_COMMON_NAME) == 0)
return get_identifier (sym->name);
if (gfc_option.flag_underscoring)
{
has_underscore = strchr (sym->name, '_') != 0;
if (gfc_option.flag_second_underscore && has_underscore)
snprintf (name, sizeof name, "%s__", sym->name);
else
snprintf (name, sizeof name, "%s_", sym->name);
return get_identifier (name);
}
else
return get_identifier (sym->name);
}
/* Build a filed declaration for a common variable or a local equivalence
object. */
static tree
build_field (segment_info *h, tree union_type, record_layout_info rli)
{
tree type = gfc_sym_type (h->sym);
tree name = get_identifier (h->sym->name);
tree field = build_decl (FIELD_DECL, name, type);
HOST_WIDE_INT offset = h->offset;
unsigned int desired_align, known_align;
known_align = (offset & -offset) * BITS_PER_UNIT;
if (known_align == 0 || known_align > BIGGEST_ALIGNMENT)
known_align = BIGGEST_ALIGNMENT;
desired_align = update_alignment_for_field (rli, field, known_align);
if (desired_align > known_align)
DECL_PACKED (field) = 1;
DECL_FIELD_CONTEXT (field) = union_type;
DECL_FIELD_OFFSET (field) = size_int (offset);
DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
SET_DECL_OFFSET_ALIGN (field, known_align);
rli->offset = size_binop (MAX_EXPR, rli->offset,
size_binop (PLUS_EXPR,
DECL_FIELD_OFFSET (field),
DECL_SIZE_UNIT (field)));
return field;
}
/* Get storage for local equivalence. */
static tree
build_equiv_decl (tree union_type, bool is_init)
{
tree decl;
decl = build_decl (VAR_DECL, NULL, union_type);
DECL_ARTIFICIAL (decl) = 1;
if (is_init)
DECL_COMMON (decl) = 0;
else
DECL_COMMON (decl) = 1;
TREE_ADDRESSABLE (decl) = 1;
TREE_USED (decl) = 1;
gfc_add_decl_to_function (decl);
return decl;
}
/* Get storage for common block. */
static tree
build_common_decl (gfc_symbol *sym, tree union_type, bool is_init)
{
gfc_symbol *common_sym;
tree decl;
/* Create a namespace to store symbols for common blocks. */
if (gfc_common_ns == NULL)
gfc_common_ns = gfc_get_namespace (NULL);
gfc_get_symbol (sym->name, gfc_common_ns, &common_sym);
decl = common_sym->backend_decl;
/* Update the size of this common block as needed. */
if (decl != NULL_TREE)
{
tree size = build_int_2 (current_length, 0);
if (tree_int_cst_lt (DECL_SIZE_UNIT (decl), size))
{
/* Named common blocks of the same name shall be of the same size
in all scoping units of a program in which they appear, but
blank common blocks may be of different sizes. */
if (strcmp (sym->name, BLANK_COMMON_NAME))
gfc_warning ("named COMMON block '%s' at %L shall be of the "
"same size", sym->name, &sym->declared_at);
DECL_SIZE_UNIT (decl) = size;
}
}
/* If this common block has been declared in a previous program unit,
and either it is already initialized or there is no new initialization
for it, just return. */
if ((decl != NULL_TREE) && (!is_init || DECL_INITIAL (decl)))
return decl;
/* If there is no backend_decl for the common block, build it. */
if (decl == NULL_TREE)
{
decl = build_decl (VAR_DECL, get_identifier (sym->name), union_type);
SET_DECL_ASSEMBLER_NAME (decl, gfc_sym_mangled_common_id (sym));
TREE_PUBLIC (decl) = 1;
TREE_STATIC (decl) = 1;
DECL_ALIGN (decl) = BIGGEST_ALIGNMENT;
DECL_USER_ALIGN (decl) = 0;
}
/* Has no initial values. */
if (!is_init)
{
DECL_INITIAL (decl) = NULL_TREE;
DECL_COMMON (decl) = 1;
DECL_DEFER_OUTPUT (decl) = 1;
/* Place the back end declaration for this common block in
GLOBAL_BINDING_LEVEL. */
common_sym->backend_decl = pushdecl_top_level (decl);
}
else
{
DECL_INITIAL (decl) = error_mark_node;
DECL_COMMON (decl) = 0;
DECL_DEFER_OUTPUT (decl) = 0;
common_sym->backend_decl = decl;
}
return decl;
}
/* Declare memory for the common block or local equivalence, and create
backend declarations for all of the elements. */
static void
create_common (gfc_symbol *sym)
{
segment_info *h, *next_s;
tree union_type;
tree *field_link;
record_layout_info rli;
tree decl;
bool is_init = false;
/* Declare the variables inside the common block. */
union_type = make_node (UNION_TYPE);
rli = start_record_layout (union_type);
field_link = &TYPE_FIELDS (union_type);
for (h = current_common; h; h = next_s)
{
tree field;
field = build_field (h, union_type, rli);
/* Link the field into the type. */
*field_link = field;
field_link = &TREE_CHAIN (field);
h->field = field;
/* Has initial value. */
if (h->sym->value)
is_init = true;
next_s = h->next;
}
finish_record_layout (rli, true);
if (is_init)
gfc_todo_error ("initial values for COMMON or EQUIVALENCE");
if (sym)
decl = build_common_decl (sym, union_type, is_init);
else
decl = build_equiv_decl (union_type, is_init);
/* Build component reference for each variable. */
for (h = current_common; h; h = next_s)
{
h->sym->backend_decl = build (COMPONENT_REF, TREE_TYPE (h->field),
decl, h->field);
next_s = h->next;
gfc_free (h);
}
}
/* Given a symbol, find it in the current segment list. Returns NULL if
not found. */
static segment_info *
find_segment_info (gfc_symbol *symbol)
{
segment_info *n;
for (n = current_segment; n; n = n->next)
if (n->sym == symbol) return n;
return NULL;
}
/* Given a variable symbol, calculate the total length in bytes of the
variable. */
static int
calculate_length (gfc_symbol *symbol)
{
int j, element_size;
mpz_t elements;
if (symbol->ts.type == BT_CHARACTER)
gfc_conv_const_charlen (symbol->ts.cl);
element_size = int_size_in_bytes (gfc_typenode_for_spec (&symbol->ts));
if (symbol->as == NULL)
return element_size;
/* Calculate the number of elements in the array */
if (spec_size (symbol->as, &elements) == FAILURE)
gfc_internal_error ("calculate_length(): Unable to determine array size");
j = mpz_get_ui (elements);
mpz_clear (elements);
return j*element_size;;
}
/* Given an expression node, make sure it is a constant integer and return
the mpz_t value. */
static mpz_t *
get_mpz (gfc_expr *g)
{
if (g->expr_type != EXPR_CONSTANT)
gfc_internal_error ("get_mpz(): Not an integer constant");
return &g->value.integer;
}
/* Given an array specification and an array reference, figure out the
array element number (zero based). Bounds and elements are guaranteed
to be constants. If something goes wrong we generate an error and
return zero. */
static int
element_number (gfc_array_ref *ar)
{
mpz_t multiplier, offset, extent, l;
gfc_array_spec *as;
int b, rank;
as = ar->as;
rank = as->rank;
mpz_init_set_ui (multiplier, 1);
mpz_init_set_ui (offset, 0);
mpz_init (extent);
mpz_init (l);
for (b = 0; b < rank; b++)
{
if (ar->dimen_type[b] != DIMEN_ELEMENT)
gfc_internal_error ("element_number(): Bad dimension type");
mpz_sub (l, *get_mpz (ar->start[b]), *get_mpz (as->lower[b]));
mpz_mul (l, l, multiplier);
mpz_add (offset, offset, l);
mpz_sub (extent, *get_mpz (as->upper[b]), *get_mpz (as->lower[b]));
mpz_add_ui (extent, extent, 1);
if (mpz_sgn (extent) < 0)
mpz_set_ui (extent, 0);
mpz_mul (multiplier, multiplier, extent);
}
b = mpz_get_ui (offset);
mpz_clear (multiplier);
mpz_clear (offset);
mpz_clear (extent);
mpz_clear (l);
return b;
}
/* Given a single element of an equivalence list, figure out the offset
from the base symbol. For simple variables or full arrays, this is
simply zero. For an array element we have to calculate the array
element number and multiply by the element size. For a substring we
have to calculate the further reference. */
static int
calculate_offset (gfc_expr *s)
{
int a, element_size, offset;
gfc_typespec *element_type;
gfc_ref *reference;
offset = 0;
element_type = &s->symtree->n.sym->ts;
for (reference = s->ref; reference; reference = reference->next)
switch (reference->type)
{
case REF_ARRAY:
switch (reference->u.ar.type)
{
case AR_FULL:
break;
case AR_ELEMENT:
a = element_number (&reference->u.ar);
if (element_type->type == BT_CHARACTER)
gfc_conv_const_charlen (element_type->cl);
element_size =
int_size_in_bytes (gfc_typenode_for_spec (element_type));
offset += a * element_size;
break;
default:
gfc_error ("bad array reference at %L", &s->where);
}
break;
case REF_SUBSTRING:
if (reference->u.ss.start != NULL)
offset += mpz_get_ui (*get_mpz (reference->u.ss.start)) - 1;
break;
default:
gfc_error ("illegal reference type at %L as EQUIVALENCE object",
&s->where);
}
return offset;
}
/* Add a new segment_info structure to the current eq1 is already in the
list at s1, eq2 is not. */
static void
new_condition (segment_info *v, gfc_equiv *eq1, gfc_equiv *eq2)
{
int offset1, offset2;
segment_info *a;
offset1 = calculate_offset (eq1->expr);
offset2 = calculate_offset (eq2->expr);
a = get_segment_info ();
a->sym = eq2->expr->symtree->n.sym;
a->offset = v->offset + offset1 - offset2;
a->length = calculate_length (eq2->expr->symtree->n.sym);
a->next = current_segment;
current_segment = a;
}
/* Given two equivalence structures that are both already in the list, make
sure that this new condition is not violated, generating an error if it
is. */
static void
confirm_condition (segment_info *k, gfc_equiv *eq1, segment_info *e,
gfc_equiv *eq2)
{
int offset1, offset2;
offset1 = calculate_offset (eq1->expr);
offset2 = calculate_offset (eq2->expr);
if (k->offset + offset1 != e->offset + offset2)
gfc_error ("inconsistent equivalence rules involving '%s' at %L and "
"'%s' at %L", k->sym->name, &k->sym->declared_at,
e->sym->name, &e->sym->declared_at);
}
/* At this point we have a new equivalence condition to process. If both
variables are already present, then we are confirming that the condition
holds. Otherwise we are adding a new variable to the segment list. */
static void
add_condition (gfc_equiv *eq1, gfc_equiv *eq2)
{
segment_info *n, *t;
eq1->expr->symtree->n.sym->mark = 1;
eq2->expr->symtree->n.sym->mark = 1;
eq2->used = 1;
n = find_segment_info (eq1->expr->symtree->n.sym);
t = find_segment_info (eq2->expr->symtree->n.sym);
if (n == NULL && t == NULL)
abort ();
if (n != NULL && t == NULL)
new_condition (n, eq1, eq2);
if (n == NULL && t != NULL)
new_condition (t, eq2, eq1);
if (n != NULL && t != NULL)
confirm_condition (n, eq1, t, eq2);
}
/* Given a symbol, search through the equivalence lists for an unused
condition that involves the symbol. If a rule is found, we return
nonzero, the rule is marked as used and the eq1 and eq2 pointers point
to the rule. */
static int
find_equivalence (gfc_symbol *sym, gfc_equiv **eq1, gfc_equiv **eq2)
{
gfc_equiv *c, *l;
for (c = sym->ns->equiv; c; c = c->next)
for (l = c->eq; l; l = l->eq)
{
if (l->used) continue;
if (c->expr->symtree->n.sym == sym || l->expr->symtree->n.sym == sym)
{
*eq1 = c;
*eq2 = l;
return 1;
}
}
return 0;
}
/* Function for adding symbols to current segment. Returns zero if the
segment was modified. Equivalence rules are considered to be between
the first expression in the list and each of the other expressions in
the list. Symbols are scanned multiple times because a symbol can be
equivalenced more than once. */
static int
add_equivalences (void)
{
int segment_modified;
gfc_equiv *eq1, *eq2;
segment_info *f;
segment_modified = 0;
for (f = current_segment; f; f = f->next)
if (find_equivalence (f->sym, &eq1, &eq2)) break;
if (f != NULL)
{
add_condition (eq1, eq2);
segment_modified = 1;
}
return segment_modified;
}
/* Given a seed symbol, create a new segment consisting of that symbol
and all of the symbols equivalenced with that symbol. */
static void
new_segment (gfc_symbol *common_sym, gfc_symbol *sym)
{
segment_info *v;
int length;
current_segment = get_segment_info ();
current_segment->sym = sym;
current_segment->offset = current_offset;
length = calculate_length (sym);
current_segment->length = length;
sym->mark = 1;
/* Add all object directly or indirectly equivalenced with this common
variable. */
while (add_equivalences ());
/* Calculate the storage size to hold the common block. */
for (v = current_segment; v; v = v->next)
{
if (v->offset < 0)
gfc_error ("the equivalence set for '%s' cause an invalid extension "
"to COMMON '%s' at %L",
sym->name, common_sym->name, &common_sym->declared_at);
if (current_length < (v->offset + v->length))
current_length = v->offset + v->length;
}
/* The offset of the next common variable. */
current_offset += length;
/* Append the current segment to the current common. */
v = current_segment;
while (v->next != NULL)
v = v->next;
v->next = current_common;
current_common = current_segment;
current_segment = NULL;
}
/* Create a new block for each merged equivalence list. */
static void
finish_equivalences (gfc_namespace *ns)
{
gfc_equiv *z, *y;
gfc_symbol *sym;
segment_info *v;
int min_offset;
for (z = ns->equiv; z; z = z->next)
for (y= z->eq; y; y = y->eq)
{
if (y->used) continue;
sym = z->expr->symtree->n.sym;
current_length = 0;
current_segment = get_segment_info ();
current_segment->sym = sym;
current_segment->offset = 0;
current_segment->length = calculate_length (sym);
sym->mark = 1;
/* All object directly or indrectly equivalenced with this symbol. */
while (add_equivalences ());
/* Calculate the minimal offset. */
min_offset = 0;
for (v = current_segment; v; v = v->next)
min_offset = (min_offset >= v->offset) ? v->offset : min_offset;
/* Adjust the offset of each equivalence object, and calculate the
maximal storage size to hold them. */
for (v = current_segment; v; v = v->next)
{
v->offset -= min_offset;
if (current_length < (v->offset + v->length))
current_length = v->offset + v->length;
}
current_common = current_segment;
create_common (NULL);
break;
}
}
/* Translate a single common block. */
static void
translate_common (gfc_symbol *common_sym, gfc_symbol *var_list)
{
gfc_symbol *sym;
current_common = NULL;
current_length = 0;
current_offset = 0;
/* Mark bits indicate which symbols have already been placed in a
common area. */
for (sym = var_list; sym; sym = sym->common_next)
sym->mark = 0;
for (;;)
{
for (sym = var_list; sym; sym = sym->common_next)
if (!sym->mark) break;
/* All symbols have been placed in a common. */
if (sym == NULL) break;
new_segment (common_sym, sym);
}
create_common (common_sym);
}
/* Work function for translating a named common block. */
static void
named_common (gfc_symbol *s)
{
if (s->attr.common)
translate_common (s, s->common_head);
}
/* Translate the common blocks in a namespace. Unlike other variables,
these have to be created before code, because the backend_decl depends
on the rest of the common block. */
void
gfc_trans_common (gfc_namespace *ns)
{
gfc_symbol *sym;
/* Translate the blank common block. */
if (ns->blank_common != NULL)
{
gfc_get_symbol (BLANK_COMMON_NAME, ns, &sym);
translate_common (sym, ns->blank_common);
}
/* Translate all named common blocks. */
gfc_traverse_ns (ns, named_common);
/* Commit the newly created symbols for common blocks. */
gfc_commit_symbols ();
/* Translate local equivalence. */
finish_equivalences (ns);
}
|