1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
|
/* Perform type resolution on the various stuctures.
Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation,
Inc.
Contributed by Andy Vaught
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 51 Franklin Street, Fifth Floor,Boston, MA
02110-1301, USA. */
#include "config.h"
#include "system.h"
#include "gfortran.h"
#include "arith.h" /* For gfc_compare_expr(). */
#include "dependency.h"
/* Types used in equivalence statements. */
typedef enum seq_type
{
SEQ_NONDEFAULT, SEQ_NUMERIC, SEQ_CHARACTER, SEQ_MIXED
}
seq_type;
/* Stack to push the current if we descend into a block during
resolution. See resolve_branch() and resolve_code(). */
typedef struct code_stack
{
struct gfc_code *head, *current;
struct code_stack *prev;
}
code_stack;
static code_stack *cs_base = NULL;
/* Nonzero if we're inside a FORALL block */
static int forall_flag;
/* Nonzero if we are processing a formal arglist. The corresponding function
resets the flag each time that it is read. */
static int formal_arg_flag = 0;
int
gfc_is_formal_arg (void)
{
return formal_arg_flag;
}
/* Resolve types of formal argument lists. These have to be done early so that
the formal argument lists of module procedures can be copied to the
containing module before the individual procedures are resolved
individually. We also resolve argument lists of procedures in interface
blocks because they are self-contained scoping units.
Since a dummy argument cannot be a non-dummy procedure, the only
resort left for untyped names are the IMPLICIT types. */
static void
resolve_formal_arglist (gfc_symbol * proc)
{
gfc_formal_arglist *f;
gfc_symbol *sym;
int i;
/* TODO: Procedures whose return character length parameter is not constant
or assumed must also have explicit interfaces. */
if (proc->result != NULL)
sym = proc->result;
else
sym = proc;
if (gfc_elemental (proc)
|| sym->attr.pointer || sym->attr.allocatable
|| (sym->as && sym->as->rank > 0))
proc->attr.always_explicit = 1;
formal_arg_flag = 1;
for (f = proc->formal; f; f = f->next)
{
sym = f->sym;
if (sym == NULL)
{
/* Alternate return placeholder. */
if (gfc_elemental (proc))
gfc_error ("Alternate return specifier in elemental subroutine "
"'%s' at %L is not allowed", proc->name,
&proc->declared_at);
if (proc->attr.function)
gfc_error ("Alternate return specifier in function "
"'%s' at %L is not allowed", proc->name,
&proc->declared_at);
continue;
}
if (sym->attr.if_source != IFSRC_UNKNOWN)
resolve_formal_arglist (sym);
if (sym->attr.subroutine || sym->attr.external || sym->attr.intrinsic)
{
if (gfc_pure (proc) && !gfc_pure (sym))
{
gfc_error
("Dummy procedure '%s' of PURE procedure at %L must also "
"be PURE", sym->name, &sym->declared_at);
continue;
}
if (gfc_elemental (proc))
{
gfc_error
("Dummy procedure at %L not allowed in ELEMENTAL procedure",
&sym->declared_at);
continue;
}
continue;
}
if (sym->ts.type == BT_UNKNOWN)
{
if (!sym->attr.function || sym->result == sym)
gfc_set_default_type (sym, 1, sym->ns);
}
gfc_resolve_array_spec (sym->as, 0);
/* We can't tell if an array with dimension (:) is assumed or deferred
shape until we know if it has the pointer or allocatable attributes.
*/
if (sym->as && sym->as->rank > 0 && sym->as->type == AS_DEFERRED
&& !(sym->attr.pointer || sym->attr.allocatable))
{
sym->as->type = AS_ASSUMED_SHAPE;
for (i = 0; i < sym->as->rank; i++)
sym->as->lower[i] = gfc_int_expr (1);
}
if ((sym->as && sym->as->rank > 0 && sym->as->type == AS_ASSUMED_SHAPE)
|| sym->attr.pointer || sym->attr.allocatable || sym->attr.target
|| sym->attr.optional)
proc->attr.always_explicit = 1;
/* If the flavor is unknown at this point, it has to be a variable.
A procedure specification would have already set the type. */
if (sym->attr.flavor == FL_UNKNOWN)
gfc_add_flavor (&sym->attr, FL_VARIABLE, sym->name, &sym->declared_at);
if (gfc_pure (proc))
{
if (proc->attr.function && !sym->attr.pointer
&& sym->attr.flavor != FL_PROCEDURE
&& sym->attr.intent != INTENT_IN)
gfc_error ("Argument '%s' of pure function '%s' at %L must be "
"INTENT(IN)", sym->name, proc->name,
&sym->declared_at);
if (proc->attr.subroutine && !sym->attr.pointer
&& sym->attr.intent == INTENT_UNKNOWN)
gfc_error
("Argument '%s' of pure subroutine '%s' at %L must have "
"its INTENT specified", sym->name, proc->name,
&sym->declared_at);
}
if (gfc_elemental (proc))
{
if (sym->as != NULL)
{
gfc_error
("Argument '%s' of elemental procedure at %L must be scalar",
sym->name, &sym->declared_at);
continue;
}
if (sym->attr.pointer)
{
gfc_error
("Argument '%s' of elemental procedure at %L cannot have "
"the POINTER attribute", sym->name, &sym->declared_at);
continue;
}
}
/* Each dummy shall be specified to be scalar. */
if (proc->attr.proc == PROC_ST_FUNCTION)
{
if (sym->as != NULL)
{
gfc_error
("Argument '%s' of statement function at %L must be scalar",
sym->name, &sym->declared_at);
continue;
}
if (sym->ts.type == BT_CHARACTER)
{
gfc_charlen *cl = sym->ts.cl;
if (!cl || !cl->length || cl->length->expr_type != EXPR_CONSTANT)
{
gfc_error
("Character-valued argument '%s' of statement function at "
"%L must has constant length",
sym->name, &sym->declared_at);
continue;
}
}
}
}
formal_arg_flag = 0;
}
/* Work function called when searching for symbols that have argument lists
associated with them. */
static void
find_arglists (gfc_symbol * sym)
{
if (sym->attr.if_source == IFSRC_UNKNOWN || sym->ns != gfc_current_ns)
return;
resolve_formal_arglist (sym);
}
/* Given a namespace, resolve all formal argument lists within the namespace.
*/
static void
resolve_formal_arglists (gfc_namespace * ns)
{
if (ns == NULL)
return;
gfc_traverse_ns (ns, find_arglists);
}
static void
resolve_contained_fntype (gfc_symbol * sym, gfc_namespace * ns)
{
try t;
/* If this namespace is not a function, ignore it. */
if (! sym
|| !(sym->attr.function
|| sym->attr.flavor == FL_VARIABLE))
return;
/* Try to find out of what the return type is. */
if (sym->result != NULL)
sym = sym->result;
if (sym->ts.type == BT_UNKNOWN)
{
t = gfc_set_default_type (sym, 0, ns);
if (t == FAILURE && !sym->attr.untyped)
{
gfc_error ("Contained function '%s' at %L has no IMPLICIT type",
sym->name, &sym->declared_at); /* FIXME */
sym->attr.untyped = 1;
}
}
/*Fortran 95 Draft Standard, page 51, Section 5.1.1.5, on the Character type,
lists the only ways a character length value of * can be used: dummy arguments
of procedures, named constants, and function results in external functions.
Internal function results are not on that list; ergo, not permitted. */
if (sym->ts.type == BT_CHARACTER)
{
gfc_charlen *cl = sym->ts.cl;
if (!cl || !cl->length)
gfc_error ("Character-valued internal function '%s' at %L must "
"not be assumed length", sym->name, &sym->declared_at);
}
}
/* Add NEW_ARGS to the formal argument list of PROC, taking care not to
introduce duplicates. */
static void
merge_argument_lists (gfc_symbol *proc, gfc_formal_arglist *new_args)
{
gfc_formal_arglist *f, *new_arglist;
gfc_symbol *new_sym;
for (; new_args != NULL; new_args = new_args->next)
{
new_sym = new_args->sym;
/* See if ths arg is already in the formal argument list. */
for (f = proc->formal; f; f = f->next)
{
if (new_sym == f->sym)
break;
}
if (f)
continue;
/* Add a new argument. Argument order is not important. */
new_arglist = gfc_get_formal_arglist ();
new_arglist->sym = new_sym;
new_arglist->next = proc->formal;
proc->formal = new_arglist;
}
}
/* Resolve alternate entry points. If a symbol has multiple entry points we
create a new master symbol for the main routine, and turn the existing
symbol into an entry point. */
static void
resolve_entries (gfc_namespace * ns)
{
gfc_namespace *old_ns;
gfc_code *c;
gfc_symbol *proc;
gfc_entry_list *el;
char name[GFC_MAX_SYMBOL_LEN + 1];
static int master_count = 0;
if (ns->proc_name == NULL)
return;
/* No need to do anything if this procedure doesn't have alternate entry
points. */
if (!ns->entries)
return;
/* We may already have resolved alternate entry points. */
if (ns->proc_name->attr.entry_master)
return;
/* If this isn't a procedure something has gone horribly wrong. */
gcc_assert (ns->proc_name->attr.flavor == FL_PROCEDURE);
/* Remember the current namespace. */
old_ns = gfc_current_ns;
gfc_current_ns = ns;
/* Add the main entry point to the list of entry points. */
el = gfc_get_entry_list ();
el->sym = ns->proc_name;
el->id = 0;
el->next = ns->entries;
ns->entries = el;
ns->proc_name->attr.entry = 1;
/* Add an entry statement for it. */
c = gfc_get_code ();
c->op = EXEC_ENTRY;
c->ext.entry = el;
c->next = ns->code;
ns->code = c;
/* Create a new symbol for the master function. */
/* Give the internal function a unique name (within this file).
Also include the function name so the user has some hope of figuring
out what is going on. */
snprintf (name, GFC_MAX_SYMBOL_LEN, "master.%d.%s",
master_count++, ns->proc_name->name);
gfc_get_ha_symbol (name, &proc);
gcc_assert (proc != NULL);
gfc_add_procedure (&proc->attr, PROC_INTERNAL, proc->name, NULL);
if (ns->proc_name->attr.subroutine)
gfc_add_subroutine (&proc->attr, proc->name, NULL);
else
{
gfc_symbol *sym;
gfc_typespec *ts, *fts;
gfc_add_function (&proc->attr, proc->name, NULL);
proc->result = proc;
fts = &ns->entries->sym->result->ts;
if (fts->type == BT_UNKNOWN)
fts = gfc_get_default_type (ns->entries->sym->result, NULL);
for (el = ns->entries->next; el; el = el->next)
{
ts = &el->sym->result->ts;
if (ts->type == BT_UNKNOWN)
ts = gfc_get_default_type (el->sym->result, NULL);
if (! gfc_compare_types (ts, fts)
|| (el->sym->result->attr.dimension
!= ns->entries->sym->result->attr.dimension)
|| (el->sym->result->attr.pointer
!= ns->entries->sym->result->attr.pointer))
break;
}
if (el == NULL)
{
sym = ns->entries->sym->result;
/* All result types the same. */
proc->ts = *fts;
if (sym->attr.dimension)
gfc_set_array_spec (proc, gfc_copy_array_spec (sym->as), NULL);
if (sym->attr.pointer)
gfc_add_pointer (&proc->attr, NULL);
}
else
{
/* Otherwise the result will be passed through a union by
reference. */
proc->attr.mixed_entry_master = 1;
for (el = ns->entries; el; el = el->next)
{
sym = el->sym->result;
if (sym->attr.dimension)
{
if (el == ns->entries)
gfc_error
("FUNCTION result %s can't be an array in FUNCTION %s at %L",
sym->name, ns->entries->sym->name, &sym->declared_at);
else
gfc_error
("ENTRY result %s can't be an array in FUNCTION %s at %L",
sym->name, ns->entries->sym->name, &sym->declared_at);
}
else if (sym->attr.pointer)
{
if (el == ns->entries)
gfc_error
("FUNCTION result %s can't be a POINTER in FUNCTION %s at %L",
sym->name, ns->entries->sym->name, &sym->declared_at);
else
gfc_error
("ENTRY result %s can't be a POINTER in FUNCTION %s at %L",
sym->name, ns->entries->sym->name, &sym->declared_at);
}
else
{
ts = &sym->ts;
if (ts->type == BT_UNKNOWN)
ts = gfc_get_default_type (sym, NULL);
switch (ts->type)
{
case BT_INTEGER:
if (ts->kind == gfc_default_integer_kind)
sym = NULL;
break;
case BT_REAL:
if (ts->kind == gfc_default_real_kind
|| ts->kind == gfc_default_double_kind)
sym = NULL;
break;
case BT_COMPLEX:
if (ts->kind == gfc_default_complex_kind)
sym = NULL;
break;
case BT_LOGICAL:
if (ts->kind == gfc_default_logical_kind)
sym = NULL;
break;
case BT_UNKNOWN:
/* We will issue error elsewhere. */
sym = NULL;
break;
default:
break;
}
if (sym)
{
if (el == ns->entries)
gfc_error
("FUNCTION result %s can't be of type %s in FUNCTION %s at %L",
sym->name, gfc_typename (ts), ns->entries->sym->name,
&sym->declared_at);
else
gfc_error
("ENTRY result %s can't be of type %s in FUNCTION %s at %L",
sym->name, gfc_typename (ts), ns->entries->sym->name,
&sym->declared_at);
}
}
}
}
}
proc->attr.access = ACCESS_PRIVATE;
proc->attr.entry_master = 1;
/* Merge all the entry point arguments. */
for (el = ns->entries; el; el = el->next)
merge_argument_lists (proc, el->sym->formal);
/* Use the master function for the function body. */
ns->proc_name = proc;
/* Finalize the new symbols. */
gfc_commit_symbols ();
/* Restore the original namespace. */
gfc_current_ns = old_ns;
}
/* Resolve contained function types. Because contained functions can call one
another, they have to be worked out before any of the contained procedures
can be resolved.
The good news is that if a function doesn't already have a type, the only
way it can get one is through an IMPLICIT type or a RESULT variable, because
by definition contained functions are contained namespace they're contained
in, not in a sibling or parent namespace. */
static void
resolve_contained_functions (gfc_namespace * ns)
{
gfc_namespace *child;
gfc_entry_list *el;
resolve_formal_arglists (ns);
for (child = ns->contained; child; child = child->sibling)
{
/* Resolve alternate entry points first. */
resolve_entries (child);
/* Then check function return types. */
resolve_contained_fntype (child->proc_name, child);
for (el = child->entries; el; el = el->next)
resolve_contained_fntype (el->sym, child);
}
}
/* Resolve all of the elements of a structure constructor and make sure that
the types are correct. */
static try
resolve_structure_cons (gfc_expr * expr)
{
gfc_constructor *cons;
gfc_component *comp;
try t;
t = SUCCESS;
cons = expr->value.constructor;
/* A constructor may have references if it is the result of substituting a
parameter variable. In this case we just pull out the component we
want. */
if (expr->ref)
comp = expr->ref->u.c.sym->components;
else
comp = expr->ts.derived->components;
for (; comp; comp = comp->next, cons = cons->next)
{
if (! cons->expr)
{
t = FAILURE;
continue;
}
if (gfc_resolve_expr (cons->expr) == FAILURE)
{
t = FAILURE;
continue;
}
/* If we don't have the right type, try to convert it. */
if (!gfc_compare_types (&cons->expr->ts, &comp->ts))
{
t = FAILURE;
if (comp->pointer && cons->expr->ts.type != BT_UNKNOWN)
gfc_error ("The element in the derived type constructor at %L, "
"for pointer component '%s', is %s but should be %s",
&cons->expr->where, comp->name,
gfc_basic_typename (cons->expr->ts.type),
gfc_basic_typename (comp->ts.type));
else
t = gfc_convert_type (cons->expr, &comp->ts, 1);
}
}
return t;
}
/****************** Expression name resolution ******************/
/* Returns 0 if a symbol was not declared with a type or
attribute declaration statement, nonzero otherwise. */
static int
was_declared (gfc_symbol * sym)
{
symbol_attribute a;
a = sym->attr;
if (!a.implicit_type && sym->ts.type != BT_UNKNOWN)
return 1;
if (a.allocatable || a.dimension || a.dummy || a.external || a.intrinsic
|| a.optional || a.pointer || a.save || a.target
|| a.access != ACCESS_UNKNOWN || a.intent != INTENT_UNKNOWN)
return 1;
return 0;
}
/* Determine if a symbol is generic or not. */
static int
generic_sym (gfc_symbol * sym)
{
gfc_symbol *s;
if (sym->attr.generic ||
(sym->attr.intrinsic && gfc_generic_intrinsic (sym->name)))
return 1;
if (was_declared (sym) || sym->ns->parent == NULL)
return 0;
gfc_find_symbol (sym->name, sym->ns->parent, 1, &s);
return (s == NULL) ? 0 : generic_sym (s);
}
/* Determine if a symbol is specific or not. */
static int
specific_sym (gfc_symbol * sym)
{
gfc_symbol *s;
if (sym->attr.if_source == IFSRC_IFBODY
|| sym->attr.proc == PROC_MODULE
|| sym->attr.proc == PROC_INTERNAL
|| sym->attr.proc == PROC_ST_FUNCTION
|| (sym->attr.intrinsic &&
gfc_specific_intrinsic (sym->name))
|| sym->attr.external)
return 1;
if (was_declared (sym) || sym->ns->parent == NULL)
return 0;
gfc_find_symbol (sym->name, sym->ns->parent, 1, &s);
return (s == NULL) ? 0 : specific_sym (s);
}
/* Figure out if the procedure is specific, generic or unknown. */
typedef enum
{ PTYPE_GENERIC = 1, PTYPE_SPECIFIC, PTYPE_UNKNOWN }
proc_type;
static proc_type
procedure_kind (gfc_symbol * sym)
{
if (generic_sym (sym))
return PTYPE_GENERIC;
if (specific_sym (sym))
return PTYPE_SPECIFIC;
return PTYPE_UNKNOWN;
}
/* Check references to assumed size arrays. The flag need_full_assumed_size
is non-zero when matching actual arguments. */
static int need_full_assumed_size = 0;
static bool
check_assumed_size_reference (gfc_symbol * sym, gfc_expr * e)
{
gfc_ref * ref;
int dim;
int last = 1;
if (need_full_assumed_size
|| !(sym->as && sym->as->type == AS_ASSUMED_SIZE))
return false;
for (ref = e->ref; ref; ref = ref->next)
if (ref->type == REF_ARRAY)
for (dim = 0; dim < ref->u.ar.as->rank; dim++)
last = (ref->u.ar.end[dim] == NULL) && (ref->u.ar.type == DIMEN_ELEMENT);
if (last)
{
gfc_error ("The upper bound in the last dimension must "
"appear in the reference to the assumed size "
"array '%s' at %L.", sym->name, &e->where);
return true;
}
return false;
}
/* Look for bad assumed size array references in argument expressions
of elemental and array valued intrinsic procedures. Since this is
called from procedure resolution functions, it only recurses at
operators. */
static bool
resolve_assumed_size_actual (gfc_expr *e)
{
if (e == NULL)
return false;
switch (e->expr_type)
{
case EXPR_VARIABLE:
if (e->symtree
&& check_assumed_size_reference (e->symtree->n.sym, e))
return true;
break;
case EXPR_OP:
if (resolve_assumed_size_actual (e->value.op.op1)
|| resolve_assumed_size_actual (e->value.op.op2))
return true;
break;
default:
break;
}
return false;
}
/* Resolve an actual argument list. Most of the time, this is just
resolving the expressions in the list.
The exception is that we sometimes have to decide whether arguments
that look like procedure arguments are really simple variable
references. */
static try
resolve_actual_arglist (gfc_actual_arglist * arg)
{
gfc_symbol *sym;
gfc_symtree *parent_st;
gfc_expr *e;
for (; arg; arg = arg->next)
{
e = arg->expr;
if (e == NULL)
{
/* Check the label is a valid branching target. */
if (arg->label)
{
if (arg->label->defined == ST_LABEL_UNKNOWN)
{
gfc_error ("Label %d referenced at %L is never defined",
arg->label->value, &arg->label->where);
return FAILURE;
}
}
continue;
}
if (e->ts.type != BT_PROCEDURE)
{
if (gfc_resolve_expr (e) != SUCCESS)
return FAILURE;
continue;
}
/* See if the expression node should really be a variable
reference. */
sym = e->symtree->n.sym;
if (sym->attr.flavor == FL_PROCEDURE
|| sym->attr.intrinsic
|| sym->attr.external)
{
if (sym->attr.proc == PROC_ST_FUNCTION)
{
gfc_error ("Statement function '%s' at %L is not allowed as an "
"actual argument", sym->name, &e->where);
}
/* If the symbol is the function that names the current (or
parent) scope, then we really have a variable reference. */
if (sym->attr.function && sym->result == sym
&& (sym->ns->proc_name == sym
|| (sym->ns->parent != NULL
&& sym->ns->parent->proc_name == sym)))
goto got_variable;
continue;
}
/* See if the name is a module procedure in a parent unit. */
if (was_declared (sym) || sym->ns->parent == NULL)
goto got_variable;
if (gfc_find_sym_tree (sym->name, sym->ns->parent, 1, &parent_st))
{
gfc_error ("Symbol '%s' at %L is ambiguous", sym->name, &e->where);
return FAILURE;
}
if (parent_st == NULL)
goto got_variable;
sym = parent_st->n.sym;
e->symtree = parent_st; /* Point to the right thing. */
if (sym->attr.flavor == FL_PROCEDURE
|| sym->attr.intrinsic
|| sym->attr.external)
{
continue;
}
got_variable:
e->expr_type = EXPR_VARIABLE;
e->ts = sym->ts;
if (sym->as != NULL)
{
e->rank = sym->as->rank;
e->ref = gfc_get_ref ();
e->ref->type = REF_ARRAY;
e->ref->u.ar.type = AR_FULL;
e->ref->u.ar.as = sym->as;
}
}
return SUCCESS;
}
/* Go through each actual argument in ACTUAL and see if it can be
implemented as an inlined, non-copying intrinsic. FNSYM is the
function being called, or NULL if not known. */
static void
find_noncopying_intrinsics (gfc_symbol * fnsym, gfc_actual_arglist * actual)
{
gfc_actual_arglist *ap;
gfc_expr *expr;
for (ap = actual; ap; ap = ap->next)
if (ap->expr
&& (expr = gfc_get_noncopying_intrinsic_argument (ap->expr))
&& !gfc_check_fncall_dependency (expr, INTENT_IN, fnsym, actual))
ap->expr->inline_noncopying_intrinsic = 1;
}
/************* Function resolution *************/
/* Resolve a function call known to be generic.
Section 14.1.2.4.1. */
static match
resolve_generic_f0 (gfc_expr * expr, gfc_symbol * sym)
{
gfc_symbol *s;
if (sym->attr.generic)
{
s =
gfc_search_interface (sym->generic, 0, &expr->value.function.actual);
if (s != NULL)
{
expr->value.function.name = s->name;
expr->value.function.esym = s;
expr->ts = s->ts;
if (s->as != NULL)
expr->rank = s->as->rank;
return MATCH_YES;
}
/* TODO: Need to search for elemental references in generic interface */
}
if (sym->attr.intrinsic)
return gfc_intrinsic_func_interface (expr, 0);
return MATCH_NO;
}
static try
resolve_generic_f (gfc_expr * expr)
{
gfc_symbol *sym;
match m;
sym = expr->symtree->n.sym;
for (;;)
{
m = resolve_generic_f0 (expr, sym);
if (m == MATCH_YES)
return SUCCESS;
else if (m == MATCH_ERROR)
return FAILURE;
generic:
if (sym->ns->parent == NULL)
break;
gfc_find_symbol (sym->name, sym->ns->parent, 1, &sym);
if (sym == NULL)
break;
if (!generic_sym (sym))
goto generic;
}
/* Last ditch attempt. */
if (!gfc_generic_intrinsic (expr->symtree->n.sym->name))
{
gfc_error ("Generic function '%s' at %L is not an intrinsic function",
expr->symtree->n.sym->name, &expr->where);
return FAILURE;
}
m = gfc_intrinsic_func_interface (expr, 0);
if (m == MATCH_YES)
return SUCCESS;
if (m == MATCH_NO)
gfc_error
("Generic function '%s' at %L is not consistent with a specific "
"intrinsic interface", expr->symtree->n.sym->name, &expr->where);
return FAILURE;
}
/* Resolve a function call known to be specific. */
static match
resolve_specific_f0 (gfc_symbol * sym, gfc_expr * expr)
{
match m;
if (sym->attr.external || sym->attr.if_source == IFSRC_IFBODY)
{
if (sym->attr.dummy)
{
sym->attr.proc = PROC_DUMMY;
goto found;
}
sym->attr.proc = PROC_EXTERNAL;
goto found;
}
if (sym->attr.proc == PROC_MODULE
|| sym->attr.proc == PROC_ST_FUNCTION
|| sym->attr.proc == PROC_INTERNAL)
goto found;
if (sym->attr.intrinsic)
{
m = gfc_intrinsic_func_interface (expr, 1);
if (m == MATCH_YES)
return MATCH_YES;
if (m == MATCH_NO)
gfc_error
("Function '%s' at %L is INTRINSIC but is not compatible with "
"an intrinsic", sym->name, &expr->where);
return MATCH_ERROR;
}
return MATCH_NO;
found:
gfc_procedure_use (sym, &expr->value.function.actual, &expr->where);
expr->ts = sym->ts;
expr->value.function.name = sym->name;
expr->value.function.esym = sym;
if (sym->as != NULL)
expr->rank = sym->as->rank;
return MATCH_YES;
}
static try
resolve_specific_f (gfc_expr * expr)
{
gfc_symbol *sym;
match m;
sym = expr->symtree->n.sym;
for (;;)
{
m = resolve_specific_f0 (sym, expr);
if (m == MATCH_YES)
return SUCCESS;
if (m == MATCH_ERROR)
return FAILURE;
if (sym->ns->parent == NULL)
break;
gfc_find_symbol (sym->name, sym->ns->parent, 1, &sym);
if (sym == NULL)
break;
}
gfc_error ("Unable to resolve the specific function '%s' at %L",
expr->symtree->n.sym->name, &expr->where);
return SUCCESS;
}
/* Resolve a procedure call not known to be generic nor specific. */
static try
resolve_unknown_f (gfc_expr * expr)
{
gfc_symbol *sym;
gfc_typespec *ts;
sym = expr->symtree->n.sym;
if (sym->attr.dummy)
{
sym->attr.proc = PROC_DUMMY;
expr->value.function.name = sym->name;
goto set_type;
}
/* See if we have an intrinsic function reference. */
if (gfc_intrinsic_name (sym->name, 0))
{
if (gfc_intrinsic_func_interface (expr, 1) == MATCH_YES)
return SUCCESS;
return FAILURE;
}
/* The reference is to an external name. */
sym->attr.proc = PROC_EXTERNAL;
expr->value.function.name = sym->name;
expr->value.function.esym = expr->symtree->n.sym;
if (sym->as != NULL)
expr->rank = sym->as->rank;
/* Type of the expression is either the type of the symbol or the
default type of the symbol. */
set_type:
gfc_procedure_use (sym, &expr->value.function.actual, &expr->where);
if (sym->ts.type != BT_UNKNOWN)
expr->ts = sym->ts;
else
{
ts = gfc_get_default_type (sym, sym->ns);
if (ts->type == BT_UNKNOWN)
{
gfc_error ("Function '%s' at %L has no IMPLICIT type",
sym->name, &expr->where);
return FAILURE;
}
else
expr->ts = *ts;
}
return SUCCESS;
}
/* Figure out if a function reference is pure or not. Also set the name
of the function for a potential error message. Return nonzero if the
function is PURE, zero if not. */
static int
pure_function (gfc_expr * e, const char **name)
{
int pure;
if (e->value.function.esym)
{
pure = gfc_pure (e->value.function.esym);
*name = e->value.function.esym->name;
}
else if (e->value.function.isym)
{
pure = e->value.function.isym->pure
|| e->value.function.isym->elemental;
*name = e->value.function.isym->name;
}
else
{
/* Implicit functions are not pure. */
pure = 0;
*name = e->value.function.name;
}
return pure;
}
/* Resolve a function call, which means resolving the arguments, then figuring
out which entity the name refers to. */
/* TODO: Check procedure arguments so that an INTENT(IN) isn't passed
to INTENT(OUT) or INTENT(INOUT). */
static try
resolve_function (gfc_expr * expr)
{
gfc_actual_arglist *arg;
const char *name;
try t;
int temp;
/* Switch off assumed size checking and do this again for certain kinds
of procedure, once the procedure itself is resolved. */
need_full_assumed_size++;
if (resolve_actual_arglist (expr->value.function.actual) == FAILURE)
return FAILURE;
/* Resume assumed_size checking. */
need_full_assumed_size--;
/* See if function is already resolved. */
if (expr->value.function.name != NULL)
{
if (expr->ts.type == BT_UNKNOWN)
expr->ts = expr->symtree->n.sym->ts;
t = SUCCESS;
}
else
{
/* Apply the rules of section 14.1.2. */
switch (procedure_kind (expr->symtree->n.sym))
{
case PTYPE_GENERIC:
t = resolve_generic_f (expr);
break;
case PTYPE_SPECIFIC:
t = resolve_specific_f (expr);
break;
case PTYPE_UNKNOWN:
t = resolve_unknown_f (expr);
break;
default:
gfc_internal_error ("resolve_function(): bad function type");
}
}
/* If the expression is still a function (it might have simplified),
then we check to see if we are calling an elemental function. */
if (expr->expr_type != EXPR_FUNCTION)
return t;
temp = need_full_assumed_size;
need_full_assumed_size = 0;
if (expr->value.function.actual != NULL
&& ((expr->value.function.esym != NULL
&& expr->value.function.esym->attr.elemental)
|| (expr->value.function.isym != NULL
&& expr->value.function.isym->elemental)))
{
/* The rank of an elemental is the rank of its array argument(s). */
for (arg = expr->value.function.actual; arg; arg = arg->next)
{
if (arg->expr != NULL && arg->expr->rank > 0)
{
expr->rank = arg->expr->rank;
break;
}
}
/* Being elemental, the last upper bound of an assumed size array
argument must be present. */
for (arg = expr->value.function.actual; arg; arg = arg->next)
{
if (arg->expr != NULL
&& arg->expr->rank > 0
&& resolve_assumed_size_actual (arg->expr))
return FAILURE;
}
}
else if (expr->value.function.actual != NULL
&& expr->value.function.isym != NULL
&& expr->value.function.isym->generic_id != GFC_ISYM_LBOUND
&& expr->value.function.isym->generic_id != GFC_ISYM_PRESENT)
{
/* Array instrinsics must also have the last upper bound of an
asumed size array argument. UBOUND and SIZE have to be
excluded from the check if the second argument is anything
than a constant. */
int inquiry;
inquiry = expr->value.function.isym->generic_id == GFC_ISYM_UBOUND
|| expr->value.function.isym->generic_id == GFC_ISYM_SIZE;
for (arg = expr->value.function.actual; arg; arg = arg->next)
{
if (inquiry && arg->next != NULL && arg->next->expr
&& arg->next->expr->expr_type != EXPR_CONSTANT)
break;
if (arg->expr != NULL
&& arg->expr->rank > 0
&& resolve_assumed_size_actual (arg->expr))
return FAILURE;
}
}
need_full_assumed_size = temp;
if (!pure_function (expr, &name))
{
if (forall_flag)
{
gfc_error
("Function reference to '%s' at %L is inside a FORALL block",
name, &expr->where);
t = FAILURE;
}
else if (gfc_pure (NULL))
{
gfc_error ("Function reference to '%s' at %L is to a non-PURE "
"procedure within a PURE procedure", name, &expr->where);
t = FAILURE;
}
}
/* Character lengths of use associated functions may contains references to
symbols not referenced from the current program unit otherwise. Make sure
those symbols are marked as referenced. */
if (expr->ts.type == BT_CHARACTER && expr->value.function.esym
&& expr->value.function.esym->attr.use_assoc)
{
gfc_expr_set_symbols_referenced (expr->ts.cl->length);
}
if (t == SUCCESS)
find_noncopying_intrinsics (expr->value.function.esym,
expr->value.function.actual);
return t;
}
/************* Subroutine resolution *************/
static void
pure_subroutine (gfc_code * c, gfc_symbol * sym)
{
if (gfc_pure (sym))
return;
if (forall_flag)
gfc_error ("Subroutine call to '%s' in FORALL block at %L is not PURE",
sym->name, &c->loc);
else if (gfc_pure (NULL))
gfc_error ("Subroutine call to '%s' at %L is not PURE", sym->name,
&c->loc);
}
static match
resolve_generic_s0 (gfc_code * c, gfc_symbol * sym)
{
gfc_symbol *s;
if (sym->attr.generic)
{
s = gfc_search_interface (sym->generic, 1, &c->ext.actual);
if (s != NULL)
{
c->resolved_sym = s;
pure_subroutine (c, s);
return MATCH_YES;
}
/* TODO: Need to search for elemental references in generic interface. */
}
if (sym->attr.intrinsic)
return gfc_intrinsic_sub_interface (c, 0);
return MATCH_NO;
}
static try
resolve_generic_s (gfc_code * c)
{
gfc_symbol *sym;
match m;
sym = c->symtree->n.sym;
m = resolve_generic_s0 (c, sym);
if (m == MATCH_YES)
return SUCCESS;
if (m == MATCH_ERROR)
return FAILURE;
if (sym->ns->parent != NULL)
{
gfc_find_symbol (sym->name, sym->ns->parent, 1, &sym);
if (sym != NULL)
{
m = resolve_generic_s0 (c, sym);
if (m == MATCH_YES)
return SUCCESS;
if (m == MATCH_ERROR)
return FAILURE;
}
}
/* Last ditch attempt. */
if (!gfc_generic_intrinsic (sym->name))
{
gfc_error
("Generic subroutine '%s' at %L is not an intrinsic subroutine",
sym->name, &c->loc);
return FAILURE;
}
m = gfc_intrinsic_sub_interface (c, 0);
if (m == MATCH_YES)
return SUCCESS;
if (m == MATCH_NO)
gfc_error ("Generic subroutine '%s' at %L is not consistent with an "
"intrinsic subroutine interface", sym->name, &c->loc);
return FAILURE;
}
/* Resolve a subroutine call known to be specific. */
static match
resolve_specific_s0 (gfc_code * c, gfc_symbol * sym)
{
match m;
if (sym->attr.external || sym->attr.if_source == IFSRC_IFBODY)
{
if (sym->attr.dummy)
{
sym->attr.proc = PROC_DUMMY;
goto found;
}
sym->attr.proc = PROC_EXTERNAL;
goto found;
}
if (sym->attr.proc == PROC_MODULE || sym->attr.proc == PROC_INTERNAL)
goto found;
if (sym->attr.intrinsic)
{
m = gfc_intrinsic_sub_interface (c, 1);
if (m == MATCH_YES)
return MATCH_YES;
if (m == MATCH_NO)
gfc_error ("Subroutine '%s' at %L is INTRINSIC but is not compatible "
"with an intrinsic", sym->name, &c->loc);
return MATCH_ERROR;
}
return MATCH_NO;
found:
gfc_procedure_use (sym, &c->ext.actual, &c->loc);
c->resolved_sym = sym;
pure_subroutine (c, sym);
return MATCH_YES;
}
static try
resolve_specific_s (gfc_code * c)
{
gfc_symbol *sym;
match m;
sym = c->symtree->n.sym;
m = resolve_specific_s0 (c, sym);
if (m == MATCH_YES)
return SUCCESS;
if (m == MATCH_ERROR)
return FAILURE;
gfc_find_symbol (sym->name, sym->ns->parent, 1, &sym);
if (sym != NULL)
{
m = resolve_specific_s0 (c, sym);
if (m == MATCH_YES)
return SUCCESS;
if (m == MATCH_ERROR)
return FAILURE;
}
gfc_error ("Unable to resolve the specific subroutine '%s' at %L",
sym->name, &c->loc);
return FAILURE;
}
/* Resolve a subroutine call not known to be generic nor specific. */
static try
resolve_unknown_s (gfc_code * c)
{
gfc_symbol *sym;
sym = c->symtree->n.sym;
if (sym->attr.dummy)
{
sym->attr.proc = PROC_DUMMY;
goto found;
}
/* See if we have an intrinsic function reference. */
if (gfc_intrinsic_name (sym->name, 1))
{
if (gfc_intrinsic_sub_interface (c, 1) == MATCH_YES)
return SUCCESS;
return FAILURE;
}
/* The reference is to an external name. */
found:
gfc_procedure_use (sym, &c->ext.actual, &c->loc);
c->resolved_sym = sym;
pure_subroutine (c, sym);
return SUCCESS;
}
/* Resolve a subroutine call. Although it was tempting to use the same code
for functions, subroutines and functions are stored differently and this
makes things awkward. */
static try
resolve_call (gfc_code * c)
{
try t;
/* Switch off assumed size checking and do this again for certain kinds
of procedure, once the procedure itself is resolved. */
need_full_assumed_size++;
if (resolve_actual_arglist (c->ext.actual) == FAILURE)
return FAILURE;
/* Resume assumed_size checking. */
need_full_assumed_size--;
t = SUCCESS;
if (c->resolved_sym == NULL)
switch (procedure_kind (c->symtree->n.sym))
{
case PTYPE_GENERIC:
t = resolve_generic_s (c);
break;
case PTYPE_SPECIFIC:
t = resolve_specific_s (c);
break;
case PTYPE_UNKNOWN:
t = resolve_unknown_s (c);
break;
default:
gfc_internal_error ("resolve_subroutine(): bad function type");
}
if (c->ext.actual != NULL
&& c->symtree->n.sym->attr.elemental)
{
gfc_actual_arglist * a;
/* Being elemental, the last upper bound of an assumed size array
argument must be present. */
for (a = c->ext.actual; a; a = a->next)
{
if (a->expr != NULL
&& a->expr->rank > 0
&& resolve_assumed_size_actual (a->expr))
return FAILURE;
}
}
if (t == SUCCESS)
find_noncopying_intrinsics (c->resolved_sym, c->ext.actual);
return t;
}
/* Compare the shapes of two arrays that have non-NULL shapes. If both
op1->shape and op2->shape are non-NULL return SUCCESS if their shapes
match. If both op1->shape and op2->shape are non-NULL return FAILURE
if their shapes do not match. If either op1->shape or op2->shape is
NULL, return SUCCESS. */
static try
compare_shapes (gfc_expr * op1, gfc_expr * op2)
{
try t;
int i;
t = SUCCESS;
if (op1->shape != NULL && op2->shape != NULL)
{
for (i = 0; i < op1->rank; i++)
{
if (mpz_cmp (op1->shape[i], op2->shape[i]) != 0)
{
gfc_error ("Shapes for operands at %L and %L are not conformable",
&op1->where, &op2->where);
t = FAILURE;
break;
}
}
}
return t;
}
/* Resolve an operator expression node. This can involve replacing the
operation with a user defined function call. */
static try
resolve_operator (gfc_expr * e)
{
gfc_expr *op1, *op2;
char msg[200];
try t;
/* Resolve all subnodes-- give them types. */
switch (e->value.op.operator)
{
default:
if (gfc_resolve_expr (e->value.op.op2) == FAILURE)
return FAILURE;
/* Fall through... */
case INTRINSIC_NOT:
case INTRINSIC_UPLUS:
case INTRINSIC_UMINUS:
if (gfc_resolve_expr (e->value.op.op1) == FAILURE)
return FAILURE;
break;
}
/* Typecheck the new node. */
op1 = e->value.op.op1;
op2 = e->value.op.op2;
switch (e->value.op.operator)
{
case INTRINSIC_UPLUS:
case INTRINSIC_UMINUS:
if (op1->ts.type == BT_INTEGER
|| op1->ts.type == BT_REAL
|| op1->ts.type == BT_COMPLEX)
{
e->ts = op1->ts;
break;
}
sprintf (msg, _("Operand of unary numeric operator '%s' at %%L is %s"),
gfc_op2string (e->value.op.operator), gfc_typename (&e->ts));
goto bad_op;
case INTRINSIC_PLUS:
case INTRINSIC_MINUS:
case INTRINSIC_TIMES:
case INTRINSIC_DIVIDE:
case INTRINSIC_POWER:
if (gfc_numeric_ts (&op1->ts) && gfc_numeric_ts (&op2->ts))
{
gfc_type_convert_binary (e);
break;
}
sprintf (msg,
_("Operands of binary numeric operator '%s' at %%L are %s/%s"),
gfc_op2string (e->value.op.operator), gfc_typename (&op1->ts),
gfc_typename (&op2->ts));
goto bad_op;
case INTRINSIC_CONCAT:
if (op1->ts.type == BT_CHARACTER && op2->ts.type == BT_CHARACTER)
{
e->ts.type = BT_CHARACTER;
e->ts.kind = op1->ts.kind;
break;
}
sprintf (msg,
_("Operands of string concatenation operator at %%L are %s/%s"),
gfc_typename (&op1->ts), gfc_typename (&op2->ts));
goto bad_op;
case INTRINSIC_AND:
case INTRINSIC_OR:
case INTRINSIC_EQV:
case INTRINSIC_NEQV:
if (op1->ts.type == BT_LOGICAL && op2->ts.type == BT_LOGICAL)
{
e->ts.type = BT_LOGICAL;
e->ts.kind = gfc_kind_max (op1, op2);
if (op1->ts.kind < e->ts.kind)
gfc_convert_type (op1, &e->ts, 2);
else if (op2->ts.kind < e->ts.kind)
gfc_convert_type (op2, &e->ts, 2);
break;
}
sprintf (msg, _("Operands of logical operator '%s' at %%L are %s/%s"),
gfc_op2string (e->value.op.operator), gfc_typename (&op1->ts),
gfc_typename (&op2->ts));
goto bad_op;
case INTRINSIC_NOT:
if (op1->ts.type == BT_LOGICAL)
{
e->ts.type = BT_LOGICAL;
e->ts.kind = op1->ts.kind;
break;
}
sprintf (msg, _("Operand of .NOT. operator at %%L is %s"),
gfc_typename (&op1->ts));
goto bad_op;
case INTRINSIC_GT:
case INTRINSIC_GE:
case INTRINSIC_LT:
case INTRINSIC_LE:
if (op1->ts.type == BT_COMPLEX || op2->ts.type == BT_COMPLEX)
{
strcpy (msg, _("COMPLEX quantities cannot be compared at %L"));
goto bad_op;
}
/* Fall through... */
case INTRINSIC_EQ:
case INTRINSIC_NE:
if (op1->ts.type == BT_CHARACTER && op2->ts.type == BT_CHARACTER)
{
e->ts.type = BT_LOGICAL;
e->ts.kind = gfc_default_logical_kind;
break;
}
if (gfc_numeric_ts (&op1->ts) && gfc_numeric_ts (&op2->ts))
{
gfc_type_convert_binary (e);
e->ts.type = BT_LOGICAL;
e->ts.kind = gfc_default_logical_kind;
break;
}
if (op1->ts.type == BT_LOGICAL && op2->ts.type == BT_LOGICAL)
sprintf (msg,
_("Logicals at %%L must be compared with %s instead of %s"),
e->value.op.operator == INTRINSIC_EQ ? ".EQV." : ".NEQV.",
gfc_op2string (e->value.op.operator));
else
sprintf (msg,
_("Operands of comparison operator '%s' at %%L are %s/%s"),
gfc_op2string (e->value.op.operator), gfc_typename (&op1->ts),
gfc_typename (&op2->ts));
goto bad_op;
case INTRINSIC_USER:
if (op2 == NULL)
sprintf (msg, _("Operand of user operator '%s' at %%L is %s"),
e->value.op.uop->name, gfc_typename (&op1->ts));
else
sprintf (msg, _("Operands of user operator '%s' at %%L are %s/%s"),
e->value.op.uop->name, gfc_typename (&op1->ts),
gfc_typename (&op2->ts));
goto bad_op;
default:
gfc_internal_error ("resolve_operator(): Bad intrinsic");
}
/* Deal with arrayness of an operand through an operator. */
t = SUCCESS;
switch (e->value.op.operator)
{
case INTRINSIC_PLUS:
case INTRINSIC_MINUS:
case INTRINSIC_TIMES:
case INTRINSIC_DIVIDE:
case INTRINSIC_POWER:
case INTRINSIC_CONCAT:
case INTRINSIC_AND:
case INTRINSIC_OR:
case INTRINSIC_EQV:
case INTRINSIC_NEQV:
case INTRINSIC_EQ:
case INTRINSIC_NE:
case INTRINSIC_GT:
case INTRINSIC_GE:
case INTRINSIC_LT:
case INTRINSIC_LE:
if (op1->rank == 0 && op2->rank == 0)
e->rank = 0;
if (op1->rank == 0 && op2->rank != 0)
{
e->rank = op2->rank;
if (e->shape == NULL)
e->shape = gfc_copy_shape (op2->shape, op2->rank);
}
if (op1->rank != 0 && op2->rank == 0)
{
e->rank = op1->rank;
if (e->shape == NULL)
e->shape = gfc_copy_shape (op1->shape, op1->rank);
}
if (op1->rank != 0 && op2->rank != 0)
{
if (op1->rank == op2->rank)
{
e->rank = op1->rank;
if (e->shape == NULL)
{
t = compare_shapes(op1, op2);
if (t == FAILURE)
e->shape = NULL;
else
e->shape = gfc_copy_shape (op1->shape, op1->rank);
}
}
else
{
gfc_error ("Inconsistent ranks for operator at %L and %L",
&op1->where, &op2->where);
t = FAILURE;
/* Allow higher level expressions to work. */
e->rank = 0;
}
}
break;
case INTRINSIC_NOT:
case INTRINSIC_UPLUS:
case INTRINSIC_UMINUS:
e->rank = op1->rank;
if (e->shape == NULL)
e->shape = gfc_copy_shape (op1->shape, op1->rank);
/* Simply copy arrayness attribute */
break;
default:
break;
}
/* Attempt to simplify the expression. */
if (t == SUCCESS)
t = gfc_simplify_expr (e, 0);
return t;
bad_op:
if (gfc_extend_expr (e) == SUCCESS)
return SUCCESS;
gfc_error (msg, &e->where);
return FAILURE;
}
/************** Array resolution subroutines **************/
typedef enum
{ CMP_LT, CMP_EQ, CMP_GT, CMP_UNKNOWN }
comparison;
/* Compare two integer expressions. */
static comparison
compare_bound (gfc_expr * a, gfc_expr * b)
{
int i;
if (a == NULL || a->expr_type != EXPR_CONSTANT
|| b == NULL || b->expr_type != EXPR_CONSTANT)
return CMP_UNKNOWN;
if (a->ts.type != BT_INTEGER || b->ts.type != BT_INTEGER)
gfc_internal_error ("compare_bound(): Bad expression");
i = mpz_cmp (a->value.integer, b->value.integer);
if (i < 0)
return CMP_LT;
if (i > 0)
return CMP_GT;
return CMP_EQ;
}
/* Compare an integer expression with an integer. */
static comparison
compare_bound_int (gfc_expr * a, int b)
{
int i;
if (a == NULL || a->expr_type != EXPR_CONSTANT)
return CMP_UNKNOWN;
if (a->ts.type != BT_INTEGER)
gfc_internal_error ("compare_bound_int(): Bad expression");
i = mpz_cmp_si (a->value.integer, b);
if (i < 0)
return CMP_LT;
if (i > 0)
return CMP_GT;
return CMP_EQ;
}
/* Compare a single dimension of an array reference to the array
specification. */
static try
check_dimension (int i, gfc_array_ref * ar, gfc_array_spec * as)
{
/* Given start, end and stride values, calculate the minimum and
maximum referenced indexes. */
switch (ar->type)
{
case AR_FULL:
break;
case AR_ELEMENT:
if (compare_bound (ar->start[i], as->lower[i]) == CMP_LT)
goto bound;
if (compare_bound (ar->start[i], as->upper[i]) == CMP_GT)
goto bound;
break;
case AR_SECTION:
if (compare_bound_int (ar->stride[i], 0) == CMP_EQ)
{
gfc_error ("Illegal stride of zero at %L", &ar->c_where[i]);
return FAILURE;
}
if (compare_bound (ar->start[i], as->lower[i]) == CMP_LT)
goto bound;
if (compare_bound (ar->start[i], as->upper[i]) == CMP_GT)
goto bound;
/* TODO: Possibly, we could warn about end[i] being out-of-bound although
it is legal (see 6.2.2.3.1). */
break;
default:
gfc_internal_error ("check_dimension(): Bad array reference");
}
return SUCCESS;
bound:
gfc_warning ("Array reference at %L is out of bounds", &ar->c_where[i]);
return SUCCESS;
}
/* Compare an array reference with an array specification. */
static try
compare_spec_to_ref (gfc_array_ref * ar)
{
gfc_array_spec *as;
int i;
as = ar->as;
i = as->rank - 1;
/* TODO: Full array sections are only allowed as actual parameters. */
if (as->type == AS_ASSUMED_SIZE
&& (/*ar->type == AR_FULL
||*/ (ar->type == AR_SECTION
&& ar->dimen_type[i] == DIMEN_RANGE && ar->end[i] == NULL)))
{
gfc_error ("Rightmost upper bound of assumed size array section"
" not specified at %L", &ar->where);
return FAILURE;
}
if (ar->type == AR_FULL)
return SUCCESS;
if (as->rank != ar->dimen)
{
gfc_error ("Rank mismatch in array reference at %L (%d/%d)",
&ar->where, ar->dimen, as->rank);
return FAILURE;
}
for (i = 0; i < as->rank; i++)
if (check_dimension (i, ar, as) == FAILURE)
return FAILURE;
return SUCCESS;
}
/* Resolve one part of an array index. */
try
gfc_resolve_index (gfc_expr * index, int check_scalar)
{
gfc_typespec ts;
if (index == NULL)
return SUCCESS;
if (gfc_resolve_expr (index) == FAILURE)
return FAILURE;
if (check_scalar && index->rank != 0)
{
gfc_error ("Array index at %L must be scalar", &index->where);
return FAILURE;
}
if (index->ts.type != BT_INTEGER && index->ts.type != BT_REAL)
{
gfc_error ("Array index at %L must be of INTEGER type",
&index->where);
return FAILURE;
}
if (index->ts.type == BT_REAL)
if (gfc_notify_std (GFC_STD_GNU, "Extension: REAL array index at %L",
&index->where) == FAILURE)
return FAILURE;
if (index->ts.kind != gfc_index_integer_kind
|| index->ts.type != BT_INTEGER)
{
ts.type = BT_INTEGER;
ts.kind = gfc_index_integer_kind;
gfc_convert_type_warn (index, &ts, 2, 0);
}
return SUCCESS;
}
/* Resolve a dim argument to an intrinsic function. */
try
gfc_resolve_dim_arg (gfc_expr *dim)
{
if (dim == NULL)
return SUCCESS;
if (gfc_resolve_expr (dim) == FAILURE)
return FAILURE;
if (dim->rank != 0)
{
gfc_error ("Argument dim at %L must be scalar", &dim->where);
return FAILURE;
}
if (dim->ts.type != BT_INTEGER)
{
gfc_error ("Argument dim at %L must be of INTEGER type", &dim->where);
return FAILURE;
}
if (dim->ts.kind != gfc_index_integer_kind)
{
gfc_typespec ts;
ts.type = BT_INTEGER;
ts.kind = gfc_index_integer_kind;
gfc_convert_type_warn (dim, &ts, 2, 0);
}
return SUCCESS;
}
/* Given an expression that contains array references, update those array
references to point to the right array specifications. While this is
filled in during matching, this information is difficult to save and load
in a module, so we take care of it here.
The idea here is that the original array reference comes from the
base symbol. We traverse the list of reference structures, setting
the stored reference to references. Component references can
provide an additional array specification. */
static void
find_array_spec (gfc_expr * e)
{
gfc_array_spec *as;
gfc_component *c;
gfc_ref *ref;
as = e->symtree->n.sym->as;
for (ref = e->ref; ref; ref = ref->next)
switch (ref->type)
{
case REF_ARRAY:
if (as == NULL)
gfc_internal_error ("find_array_spec(): Missing spec");
ref->u.ar.as = as;
as = NULL;
break;
case REF_COMPONENT:
for (c = e->symtree->n.sym->ts.derived->components; c; c = c->next)
if (c == ref->u.c.component)
break;
if (c == NULL)
gfc_internal_error ("find_array_spec(): Component not found");
if (c->dimension)
{
if (as != NULL)
gfc_internal_error ("find_array_spec(): unused as(1)");
as = c->as;
}
break;
case REF_SUBSTRING:
break;
}
if (as != NULL)
gfc_internal_error ("find_array_spec(): unused as(2)");
}
/* Resolve an array reference. */
static try
resolve_array_ref (gfc_array_ref * ar)
{
int i, check_scalar;
for (i = 0; i < ar->dimen; i++)
{
check_scalar = ar->dimen_type[i] == DIMEN_RANGE;
if (gfc_resolve_index (ar->start[i], check_scalar) == FAILURE)
return FAILURE;
if (gfc_resolve_index (ar->end[i], check_scalar) == FAILURE)
return FAILURE;
if (gfc_resolve_index (ar->stride[i], check_scalar) == FAILURE)
return FAILURE;
if (ar->dimen_type[i] == DIMEN_UNKNOWN)
switch (ar->start[i]->rank)
{
case 0:
ar->dimen_type[i] = DIMEN_ELEMENT;
break;
case 1:
ar->dimen_type[i] = DIMEN_VECTOR;
break;
default:
gfc_error ("Array index at %L is an array of rank %d",
&ar->c_where[i], ar->start[i]->rank);
return FAILURE;
}
}
/* If the reference type is unknown, figure out what kind it is. */
if (ar->type == AR_UNKNOWN)
{
ar->type = AR_ELEMENT;
for (i = 0; i < ar->dimen; i++)
if (ar->dimen_type[i] == DIMEN_RANGE
|| ar->dimen_type[i] == DIMEN_VECTOR)
{
ar->type = AR_SECTION;
break;
}
}
if (!ar->as->cray_pointee && compare_spec_to_ref (ar) == FAILURE)
return FAILURE;
return SUCCESS;
}
static try
resolve_substring (gfc_ref * ref)
{
if (ref->u.ss.start != NULL)
{
if (gfc_resolve_expr (ref->u.ss.start) == FAILURE)
return FAILURE;
if (ref->u.ss.start->ts.type != BT_INTEGER)
{
gfc_error ("Substring start index at %L must be of type INTEGER",
&ref->u.ss.start->where);
return FAILURE;
}
if (ref->u.ss.start->rank != 0)
{
gfc_error ("Substring start index at %L must be scalar",
&ref->u.ss.start->where);
return FAILURE;
}
if (compare_bound_int (ref->u.ss.start, 1) == CMP_LT)
{
gfc_error ("Substring start index at %L is less than one",
&ref->u.ss.start->where);
return FAILURE;
}
}
if (ref->u.ss.end != NULL)
{
if (gfc_resolve_expr (ref->u.ss.end) == FAILURE)
return FAILURE;
if (ref->u.ss.end->ts.type != BT_INTEGER)
{
gfc_error ("Substring end index at %L must be of type INTEGER",
&ref->u.ss.end->where);
return FAILURE;
}
if (ref->u.ss.end->rank != 0)
{
gfc_error ("Substring end index at %L must be scalar",
&ref->u.ss.end->where);
return FAILURE;
}
if (ref->u.ss.length != NULL
&& compare_bound (ref->u.ss.end, ref->u.ss.length->length) == CMP_GT)
{
gfc_error ("Substring end index at %L is out of bounds",
&ref->u.ss.start->where);
return FAILURE;
}
}
return SUCCESS;
}
/* Resolve subtype references. */
static try
resolve_ref (gfc_expr * expr)
{
int current_part_dimension, n_components, seen_part_dimension;
gfc_ref *ref;
for (ref = expr->ref; ref; ref = ref->next)
if (ref->type == REF_ARRAY && ref->u.ar.as == NULL)
{
find_array_spec (expr);
break;
}
for (ref = expr->ref; ref; ref = ref->next)
switch (ref->type)
{
case REF_ARRAY:
if (resolve_array_ref (&ref->u.ar) == FAILURE)
return FAILURE;
break;
case REF_COMPONENT:
break;
case REF_SUBSTRING:
resolve_substring (ref);
break;
}
/* Check constraints on part references. */
current_part_dimension = 0;
seen_part_dimension = 0;
n_components = 0;
for (ref = expr->ref; ref; ref = ref->next)
{
switch (ref->type)
{
case REF_ARRAY:
switch (ref->u.ar.type)
{
case AR_FULL:
case AR_SECTION:
current_part_dimension = 1;
break;
case AR_ELEMENT:
current_part_dimension = 0;
break;
case AR_UNKNOWN:
gfc_internal_error ("resolve_ref(): Bad array reference");
}
break;
case REF_COMPONENT:
if ((current_part_dimension || seen_part_dimension)
&& ref->u.c.component->pointer)
{
gfc_error
("Component to the right of a part reference with nonzero "
"rank must not have the POINTER attribute at %L",
&expr->where);
return FAILURE;
}
n_components++;
break;
case REF_SUBSTRING:
break;
}
if (((ref->type == REF_COMPONENT && n_components > 1)
|| ref->next == NULL)
&& current_part_dimension
&& seen_part_dimension)
{
gfc_error ("Two or more part references with nonzero rank must "
"not be specified at %L", &expr->where);
return FAILURE;
}
if (ref->type == REF_COMPONENT)
{
if (current_part_dimension)
seen_part_dimension = 1;
/* reset to make sure */
current_part_dimension = 0;
}
}
return SUCCESS;
}
/* Given an expression, determine its shape. This is easier than it sounds.
Leaves the shape array NULL if it is not possible to determine the shape. */
static void
expression_shape (gfc_expr * e)
{
mpz_t array[GFC_MAX_DIMENSIONS];
int i;
if (e->rank == 0 || e->shape != NULL)
return;
for (i = 0; i < e->rank; i++)
if (gfc_array_dimen_size (e, i, &array[i]) == FAILURE)
goto fail;
e->shape = gfc_get_shape (e->rank);
memcpy (e->shape, array, e->rank * sizeof (mpz_t));
return;
fail:
for (i--; i >= 0; i--)
mpz_clear (array[i]);
}
/* Given a variable expression node, compute the rank of the expression by
examining the base symbol and any reference structures it may have. */
static void
expression_rank (gfc_expr * e)
{
gfc_ref *ref;
int i, rank;
if (e->ref == NULL)
{
if (e->expr_type == EXPR_ARRAY)
goto done;
/* Constructors can have a rank different from one via RESHAPE(). */
if (e->symtree == NULL)
{
e->rank = 0;
goto done;
}
e->rank = (e->symtree->n.sym->as == NULL)
? 0 : e->symtree->n.sym->as->rank;
goto done;
}
rank = 0;
for (ref = e->ref; ref; ref = ref->next)
{
if (ref->type != REF_ARRAY)
continue;
if (ref->u.ar.type == AR_FULL)
{
rank = ref->u.ar.as->rank;
break;
}
if (ref->u.ar.type == AR_SECTION)
{
/* Figure out the rank of the section. */
if (rank != 0)
gfc_internal_error ("expression_rank(): Two array specs");
for (i = 0; i < ref->u.ar.dimen; i++)
if (ref->u.ar.dimen_type[i] == DIMEN_RANGE
|| ref->u.ar.dimen_type[i] == DIMEN_VECTOR)
rank++;
break;
}
}
e->rank = rank;
done:
expression_shape (e);
}
/* Resolve a variable expression. */
static try
resolve_variable (gfc_expr * e)
{
gfc_symbol *sym;
if (e->ref && resolve_ref (e) == FAILURE)
return FAILURE;
if (e->symtree == NULL)
return FAILURE;
sym = e->symtree->n.sym;
if (sym->attr.flavor == FL_PROCEDURE && !sym->attr.function)
{
e->ts.type = BT_PROCEDURE;
return SUCCESS;
}
if (sym->ts.type != BT_UNKNOWN)
gfc_variable_attr (e, &e->ts);
else
{
/* Must be a simple variable reference. */
if (gfc_set_default_type (sym, 1, NULL) == FAILURE)
return FAILURE;
e->ts = sym->ts;
}
if (check_assumed_size_reference (sym, e))
return FAILURE;
return SUCCESS;
}
/* Resolve an expression. That is, make sure that types of operands agree
with their operators, intrinsic operators are converted to function calls
for overloaded types and unresolved function references are resolved. */
try
gfc_resolve_expr (gfc_expr * e)
{
try t;
if (e == NULL)
return SUCCESS;
switch (e->expr_type)
{
case EXPR_OP:
t = resolve_operator (e);
break;
case EXPR_FUNCTION:
t = resolve_function (e);
break;
case EXPR_VARIABLE:
t = resolve_variable (e);
if (t == SUCCESS)
expression_rank (e);
break;
case EXPR_SUBSTRING:
t = resolve_ref (e);
break;
case EXPR_CONSTANT:
case EXPR_NULL:
t = SUCCESS;
break;
case EXPR_ARRAY:
t = FAILURE;
if (resolve_ref (e) == FAILURE)
break;
t = gfc_resolve_array_constructor (e);
/* Also try to expand a constructor. */
if (t == SUCCESS)
{
expression_rank (e);
gfc_expand_constructor (e);
}
break;
case EXPR_STRUCTURE:
t = resolve_ref (e);
if (t == FAILURE)
break;
t = resolve_structure_cons (e);
if (t == FAILURE)
break;
t = gfc_simplify_expr (e, 0);
break;
default:
gfc_internal_error ("gfc_resolve_expr(): Bad expression type");
}
return t;
}
/* Resolve an expression from an iterator. They must be scalar and have
INTEGER or (optionally) REAL type. */
static try
gfc_resolve_iterator_expr (gfc_expr * expr, bool real_ok,
const char * name_msgid)
{
if (gfc_resolve_expr (expr) == FAILURE)
return FAILURE;
if (expr->rank != 0)
{
gfc_error ("%s at %L must be a scalar", _(name_msgid), &expr->where);
return FAILURE;
}
if (!(expr->ts.type == BT_INTEGER
|| (expr->ts.type == BT_REAL && real_ok)))
{
if (real_ok)
gfc_error ("%s at %L must be INTEGER or REAL", _(name_msgid),
&expr->where);
else
gfc_error ("%s at %L must be INTEGER", _(name_msgid), &expr->where);
return FAILURE;
}
return SUCCESS;
}
/* Resolve the expressions in an iterator structure. If REAL_OK is
false allow only INTEGER type iterators, otherwise allow REAL types. */
try
gfc_resolve_iterator (gfc_iterator * iter, bool real_ok)
{
if (iter->var->ts.type == BT_REAL)
gfc_notify_std (GFC_STD_F95_DEL,
"Obsolete: REAL DO loop iterator at %L",
&iter->var->where);
if (gfc_resolve_iterator_expr (iter->var, real_ok, "Loop variable")
== FAILURE)
return FAILURE;
if (gfc_pure (NULL) && gfc_impure_variable (iter->var->symtree->n.sym))
{
gfc_error ("Cannot assign to loop variable in PURE procedure at %L",
&iter->var->where);
return FAILURE;
}
if (gfc_resolve_iterator_expr (iter->start, real_ok,
"Start expression in DO loop") == FAILURE)
return FAILURE;
if (gfc_resolve_iterator_expr (iter->end, real_ok,
"End expression in DO loop") == FAILURE)
return FAILURE;
if (gfc_resolve_iterator_expr (iter->step, real_ok,
"Step expression in DO loop") == FAILURE)
return FAILURE;
if (iter->step->expr_type == EXPR_CONSTANT)
{
if ((iter->step->ts.type == BT_INTEGER
&& mpz_cmp_ui (iter->step->value.integer, 0) == 0)
|| (iter->step->ts.type == BT_REAL
&& mpfr_sgn (iter->step->value.real) == 0))
{
gfc_error ("Step expression in DO loop at %L cannot be zero",
&iter->step->where);
return FAILURE;
}
}
/* Convert start, end, and step to the same type as var. */
if (iter->start->ts.kind != iter->var->ts.kind
|| iter->start->ts.type != iter->var->ts.type)
gfc_convert_type (iter->start, &iter->var->ts, 2);
if (iter->end->ts.kind != iter->var->ts.kind
|| iter->end->ts.type != iter->var->ts.type)
gfc_convert_type (iter->end, &iter->var->ts, 2);
if (iter->step->ts.kind != iter->var->ts.kind
|| iter->step->ts.type != iter->var->ts.type)
gfc_convert_type (iter->step, &iter->var->ts, 2);
return SUCCESS;
}
/* Resolve a list of FORALL iterators. The FORALL index-name is constrained
to be a scalar INTEGER variable. The subscripts and stride are scalar
INTEGERs, and if stride is a constant it must be nonzero. */
static void
resolve_forall_iterators (gfc_forall_iterator * iter)
{
while (iter)
{
if (gfc_resolve_expr (iter->var) == SUCCESS
&& (iter->var->ts.type != BT_INTEGER || iter->var->rank != 0))
gfc_error ("FORALL index-name at %L must be a scalar INTEGER",
&iter->var->where);
if (gfc_resolve_expr (iter->start) == SUCCESS
&& (iter->start->ts.type != BT_INTEGER || iter->start->rank != 0))
gfc_error ("FORALL start expression at %L must be a scalar INTEGER",
&iter->start->where);
if (iter->var->ts.kind != iter->start->ts.kind)
gfc_convert_type (iter->start, &iter->var->ts, 2);
if (gfc_resolve_expr (iter->end) == SUCCESS
&& (iter->end->ts.type != BT_INTEGER || iter->end->rank != 0))
gfc_error ("FORALL end expression at %L must be a scalar INTEGER",
&iter->end->where);
if (iter->var->ts.kind != iter->end->ts.kind)
gfc_convert_type (iter->end, &iter->var->ts, 2);
if (gfc_resolve_expr (iter->stride) == SUCCESS)
{
if (iter->stride->ts.type != BT_INTEGER || iter->stride->rank != 0)
gfc_error ("FORALL stride expression at %L must be a scalar %s",
&iter->stride->where, "INTEGER");
if (iter->stride->expr_type == EXPR_CONSTANT
&& mpz_cmp_ui(iter->stride->value.integer, 0) == 0)
gfc_error ("FORALL stride expression at %L cannot be zero",
&iter->stride->where);
}
if (iter->var->ts.kind != iter->stride->ts.kind)
gfc_convert_type (iter->stride, &iter->var->ts, 2);
iter = iter->next;
}
}
/* Given a pointer to a symbol that is a derived type, see if any components
have the POINTER attribute. The search is recursive if necessary.
Returns zero if no pointer components are found, nonzero otherwise. */
static int
derived_pointer (gfc_symbol * sym)
{
gfc_component *c;
for (c = sym->components; c; c = c->next)
{
if (c->pointer)
return 1;
if (c->ts.type == BT_DERIVED && derived_pointer (c->ts.derived))
return 1;
}
return 0;
}
/* Given a pointer to a symbol that is a derived type, see if it's
inaccessible, i.e. if it's defined in another module and the components are
PRIVATE. The search is recursive if necessary. Returns zero if no
inaccessible components are found, nonzero otherwise. */
static int
derived_inaccessible (gfc_symbol *sym)
{
gfc_component *c;
if (sym->attr.use_assoc && sym->component_access == ACCESS_PRIVATE)
return 1;
for (c = sym->components; c; c = c->next)
{
if (c->ts.type == BT_DERIVED && derived_inaccessible (c->ts.derived))
return 1;
}
return 0;
}
/* Resolve the argument of a deallocate expression. The expression must be
a pointer or a full array. */
static try
resolve_deallocate_expr (gfc_expr * e)
{
symbol_attribute attr;
int allocatable;
gfc_ref *ref;
if (gfc_resolve_expr (e) == FAILURE)
return FAILURE;
attr = gfc_expr_attr (e);
if (attr.pointer)
return SUCCESS;
if (e->expr_type != EXPR_VARIABLE)
goto bad;
allocatable = e->symtree->n.sym->attr.allocatable;
for (ref = e->ref; ref; ref = ref->next)
switch (ref->type)
{
case REF_ARRAY:
if (ref->u.ar.type != AR_FULL)
allocatable = 0;
break;
case REF_COMPONENT:
allocatable = (ref->u.c.component->as != NULL
&& ref->u.c.component->as->type == AS_DEFERRED);
break;
case REF_SUBSTRING:
allocatable = 0;
break;
}
if (allocatable == 0)
{
bad:
gfc_error ("Expression in DEALLOCATE statement at %L must be "
"ALLOCATABLE or a POINTER", &e->where);
}
return SUCCESS;
}
/* Given the expression node e for an allocatable/pointer of derived type to be
allocated, get the expression node to be initialized afterwards (needed for
derived types with default initializers). */
static gfc_expr *
expr_to_initialize (gfc_expr * e)
{
gfc_expr *result;
gfc_ref *ref;
int i;
result = gfc_copy_expr (e);
/* Change the last array reference from AR_ELEMENT to AR_FULL. */
for (ref = result->ref; ref; ref = ref->next)
if (ref->type == REF_ARRAY && ref->next == NULL)
{
ref->u.ar.type = AR_FULL;
for (i = 0; i < ref->u.ar.dimen; i++)
ref->u.ar.start[i] = ref->u.ar.end[i] = ref->u.ar.stride[i] = NULL;
result->rank = ref->u.ar.dimen;
break;
}
return result;
}
/* Resolve the expression in an ALLOCATE statement, doing the additional
checks to see whether the expression is OK or not. The expression must
have a trailing array reference that gives the size of the array. */
static try
resolve_allocate_expr (gfc_expr * e, gfc_code * code)
{
int i, pointer, allocatable, dimension;
symbol_attribute attr;
gfc_ref *ref, *ref2;
gfc_array_ref *ar;
gfc_code *init_st;
gfc_expr *init_e;
if (gfc_resolve_expr (e) == FAILURE)
return FAILURE;
/* Make sure the expression is allocatable or a pointer. If it is
pointer, the next-to-last reference must be a pointer. */
ref2 = NULL;
if (e->expr_type != EXPR_VARIABLE)
{
allocatable = 0;
attr = gfc_expr_attr (e);
pointer = attr.pointer;
dimension = attr.dimension;
}
else
{
allocatable = e->symtree->n.sym->attr.allocatable;
pointer = e->symtree->n.sym->attr.pointer;
dimension = e->symtree->n.sym->attr.dimension;
for (ref = e->ref; ref; ref2 = ref, ref = ref->next)
switch (ref->type)
{
case REF_ARRAY:
if (ref->next != NULL)
pointer = 0;
break;
case REF_COMPONENT:
allocatable = (ref->u.c.component->as != NULL
&& ref->u.c.component->as->type == AS_DEFERRED);
pointer = ref->u.c.component->pointer;
dimension = ref->u.c.component->dimension;
break;
case REF_SUBSTRING:
allocatable = 0;
pointer = 0;
break;
}
}
if (allocatable == 0 && pointer == 0)
{
gfc_error ("Expression in ALLOCATE statement at %L must be "
"ALLOCATABLE or a POINTER", &e->where);
return FAILURE;
}
/* Add default initializer for those derived types that need them. */
if (e->ts.type == BT_DERIVED && (init_e = gfc_default_initializer (&e->ts)))
{
init_st = gfc_get_code ();
init_st->loc = code->loc;
init_st->op = EXEC_ASSIGN;
init_st->expr = expr_to_initialize (e);
init_st->expr2 = init_e;
init_st->next = code->next;
code->next = init_st;
}
if (pointer && dimension == 0)
return SUCCESS;
/* Make sure the next-to-last reference node is an array specification. */
if (ref2 == NULL || ref2->type != REF_ARRAY || ref2->u.ar.type == AR_FULL)
{
gfc_error ("Array specification required in ALLOCATE statement "
"at %L", &e->where);
return FAILURE;
}
if (ref2->u.ar.type == AR_ELEMENT)
return SUCCESS;
/* Make sure that the array section reference makes sense in the
context of an ALLOCATE specification. */
ar = &ref2->u.ar;
for (i = 0; i < ar->dimen; i++)
switch (ar->dimen_type[i])
{
case DIMEN_ELEMENT:
break;
case DIMEN_RANGE:
if (ar->start[i] != NULL
&& ar->end[i] != NULL
&& ar->stride[i] == NULL)
break;
/* Fall Through... */
case DIMEN_UNKNOWN:
case DIMEN_VECTOR:
gfc_error ("Bad array specification in ALLOCATE statement at %L",
&e->where);
return FAILURE;
}
return SUCCESS;
}
/************ SELECT CASE resolution subroutines ************/
/* Callback function for our mergesort variant. Determines interval
overlaps for CASEs. Return <0 if op1 < op2, 0 for overlap, >0 for
op1 > op2. Assumes we're not dealing with the default case.
We have op1 = (:L), (K:L) or (K:) and op2 = (:N), (M:N) or (M:).
There are nine situations to check. */
static int
compare_cases (const gfc_case * op1, const gfc_case * op2)
{
int retval;
if (op1->low == NULL) /* op1 = (:L) */
{
/* op2 = (:N), so overlap. */
retval = 0;
/* op2 = (M:) or (M:N), L < M */
if (op2->low != NULL
&& gfc_compare_expr (op1->high, op2->low) < 0)
retval = -1;
}
else if (op1->high == NULL) /* op1 = (K:) */
{
/* op2 = (M:), so overlap. */
retval = 0;
/* op2 = (:N) or (M:N), K > N */
if (op2->high != NULL
&& gfc_compare_expr (op1->low, op2->high) > 0)
retval = 1;
}
else /* op1 = (K:L) */
{
if (op2->low == NULL) /* op2 = (:N), K > N */
retval = (gfc_compare_expr (op1->low, op2->high) > 0) ? 1 : 0;
else if (op2->high == NULL) /* op2 = (M:), L < M */
retval = (gfc_compare_expr (op1->high, op2->low) < 0) ? -1 : 0;
else /* op2 = (M:N) */
{
retval = 0;
/* L < M */
if (gfc_compare_expr (op1->high, op2->low) < 0)
retval = -1;
/* K > N */
else if (gfc_compare_expr (op1->low, op2->high) > 0)
retval = 1;
}
}
return retval;
}
/* Merge-sort a double linked case list, detecting overlap in the
process. LIST is the head of the double linked case list before it
is sorted. Returns the head of the sorted list if we don't see any
overlap, or NULL otherwise. */
static gfc_case *
check_case_overlap (gfc_case * list)
{
gfc_case *p, *q, *e, *tail;
int insize, nmerges, psize, qsize, cmp, overlap_seen;
/* If the passed list was empty, return immediately. */
if (!list)
return NULL;
overlap_seen = 0;
insize = 1;
/* Loop unconditionally. The only exit from this loop is a return
statement, when we've finished sorting the case list. */
for (;;)
{
p = list;
list = NULL;
tail = NULL;
/* Count the number of merges we do in this pass. */
nmerges = 0;
/* Loop while there exists a merge to be done. */
while (p)
{
int i;
/* Count this merge. */
nmerges++;
/* Cut the list in two pieces by stepping INSIZE places
forward in the list, starting from P. */
psize = 0;
q = p;
for (i = 0; i < insize; i++)
{
psize++;
q = q->right;
if (!q)
break;
}
qsize = insize;
/* Now we have two lists. Merge them! */
while (psize > 0 || (qsize > 0 && q != NULL))
{
/* See from which the next case to merge comes from. */
if (psize == 0)
{
/* P is empty so the next case must come from Q. */
e = q;
q = q->right;
qsize--;
}
else if (qsize == 0 || q == NULL)
{
/* Q is empty. */
e = p;
p = p->right;
psize--;
}
else
{
cmp = compare_cases (p, q);
if (cmp < 0)
{
/* The whole case range for P is less than the
one for Q. */
e = p;
p = p->right;
psize--;
}
else if (cmp > 0)
{
/* The whole case range for Q is greater than
the case range for P. */
e = q;
q = q->right;
qsize--;
}
else
{
/* The cases overlap, or they are the same
element in the list. Either way, we must
issue an error and get the next case from P. */
/* FIXME: Sort P and Q by line number. */
gfc_error ("CASE label at %L overlaps with CASE "
"label at %L", &p->where, &q->where);
overlap_seen = 1;
e = p;
p = p->right;
psize--;
}
}
/* Add the next element to the merged list. */
if (tail)
tail->right = e;
else
list = e;
e->left = tail;
tail = e;
}
/* P has now stepped INSIZE places along, and so has Q. So
they're the same. */
p = q;
}
tail->right = NULL;
/* If we have done only one merge or none at all, we've
finished sorting the cases. */
if (nmerges <= 1)
{
if (!overlap_seen)
return list;
else
return NULL;
}
/* Otherwise repeat, merging lists twice the size. */
insize *= 2;
}
}
/* Check to see if an expression is suitable for use in a CASE statement.
Makes sure that all case expressions are scalar constants of the same
type. Return FAILURE if anything is wrong. */
static try
validate_case_label_expr (gfc_expr * e, gfc_expr * case_expr)
{
if (e == NULL) return SUCCESS;
if (e->ts.type != case_expr->ts.type)
{
gfc_error ("Expression in CASE statement at %L must be of type %s",
&e->where, gfc_basic_typename (case_expr->ts.type));
return FAILURE;
}
/* C805 (R808) For a given case-construct, each case-value shall be of
the same type as case-expr. For character type, length differences
are allowed, but the kind type parameters shall be the same. */
if (case_expr->ts.type == BT_CHARACTER && e->ts.kind != case_expr->ts.kind)
{
gfc_error("Expression in CASE statement at %L must be kind %d",
&e->where, case_expr->ts.kind);
return FAILURE;
}
/* Convert the case value kind to that of case expression kind, if needed.
FIXME: Should a warning be issued? */
if (e->ts.kind != case_expr->ts.kind)
gfc_convert_type_warn (e, &case_expr->ts, 2, 0);
if (e->rank != 0)
{
gfc_error ("Expression in CASE statement at %L must be scalar",
&e->where);
return FAILURE;
}
return SUCCESS;
}
/* Given a completely parsed select statement, we:
- Validate all expressions and code within the SELECT.
- Make sure that the selection expression is not of the wrong type.
- Make sure that no case ranges overlap.
- Eliminate unreachable cases and unreachable code resulting from
removing case labels.
The standard does allow unreachable cases, e.g. CASE (5:3). But
they are a hassle for code generation, and to prevent that, we just
cut them out here. This is not necessary for overlapping cases
because they are illegal and we never even try to generate code.
We have the additional caveat that a SELECT construct could have
been a computed GOTO in the source code. Fortunately we can fairly
easily work around that here: The case_expr for a "real" SELECT CASE
is in code->expr1, but for a computed GOTO it is in code->expr2. All
we have to do is make sure that the case_expr is a scalar integer
expression. */
static void
resolve_select (gfc_code * code)
{
gfc_code *body;
gfc_expr *case_expr;
gfc_case *cp, *default_case, *tail, *head;
int seen_unreachable;
int ncases;
bt type;
try t;
if (code->expr == NULL)
{
/* This was actually a computed GOTO statement. */
case_expr = code->expr2;
if (case_expr->ts.type != BT_INTEGER
|| case_expr->rank != 0)
gfc_error ("Selection expression in computed GOTO statement "
"at %L must be a scalar integer expression",
&case_expr->where);
/* Further checking is not necessary because this SELECT was built
by the compiler, so it should always be OK. Just move the
case_expr from expr2 to expr so that we can handle computed
GOTOs as normal SELECTs from here on. */
code->expr = code->expr2;
code->expr2 = NULL;
return;
}
case_expr = code->expr;
type = case_expr->ts.type;
if (type != BT_LOGICAL && type != BT_INTEGER && type != BT_CHARACTER)
{
gfc_error ("Argument of SELECT statement at %L cannot be %s",
&case_expr->where, gfc_typename (&case_expr->ts));
/* Punt. Going on here just produce more garbage error messages. */
return;
}
if (case_expr->rank != 0)
{
gfc_error ("Argument of SELECT statement at %L must be a scalar "
"expression", &case_expr->where);
/* Punt. */
return;
}
/* PR 19168 has a long discussion concerning a mismatch of the kinds
of the SELECT CASE expression and its CASE values. Walk the lists
of case values, and if we find a mismatch, promote case_expr to
the appropriate kind. */
if (type == BT_LOGICAL || type == BT_INTEGER)
{
for (body = code->block; body; body = body->block)
{
/* Walk the case label list. */
for (cp = body->ext.case_list; cp; cp = cp->next)
{
/* Intercept the DEFAULT case. It does not have a kind. */
if (cp->low == NULL && cp->high == NULL)
continue;
/* Unreachable case ranges are discarded, so ignore. */
if (cp->low != NULL && cp->high != NULL
&& cp->low != cp->high
&& gfc_compare_expr (cp->low, cp->high) > 0)
continue;
/* FIXME: Should a warning be issued? */
if (cp->low != NULL
&& case_expr->ts.kind != gfc_kind_max(case_expr, cp->low))
gfc_convert_type_warn (case_expr, &cp->low->ts, 2, 0);
if (cp->high != NULL
&& case_expr->ts.kind != gfc_kind_max(case_expr, cp->high))
gfc_convert_type_warn (case_expr, &cp->high->ts, 2, 0);
}
}
}
/* Assume there is no DEFAULT case. */
default_case = NULL;
head = tail = NULL;
ncases = 0;
for (body = code->block; body; body = body->block)
{
/* Assume the CASE list is OK, and all CASE labels can be matched. */
t = SUCCESS;
seen_unreachable = 0;
/* Walk the case label list, making sure that all case labels
are legal. */
for (cp = body->ext.case_list; cp; cp = cp->next)
{
/* Count the number of cases in the whole construct. */
ncases++;
/* Intercept the DEFAULT case. */
if (cp->low == NULL && cp->high == NULL)
{
if (default_case != NULL)
{
gfc_error ("The DEFAULT CASE at %L cannot be followed "
"by a second DEFAULT CASE at %L",
&default_case->where, &cp->where);
t = FAILURE;
break;
}
else
{
default_case = cp;
continue;
}
}
/* Deal with single value cases and case ranges. Errors are
issued from the validation function. */
if(validate_case_label_expr (cp->low, case_expr) != SUCCESS
|| validate_case_label_expr (cp->high, case_expr) != SUCCESS)
{
t = FAILURE;
break;
}
if (type == BT_LOGICAL
&& ((cp->low == NULL || cp->high == NULL)
|| cp->low != cp->high))
{
gfc_error
("Logical range in CASE statement at %L is not allowed",
&cp->low->where);
t = FAILURE;
break;
}
if (cp->low != NULL && cp->high != NULL
&& cp->low != cp->high
&& gfc_compare_expr (cp->low, cp->high) > 0)
{
if (gfc_option.warn_surprising)
gfc_warning ("Range specification at %L can never "
"be matched", &cp->where);
cp->unreachable = 1;
seen_unreachable = 1;
}
else
{
/* If the case range can be matched, it can also overlap with
other cases. To make sure it does not, we put it in a
double linked list here. We sort that with a merge sort
later on to detect any overlapping cases. */
if (!head)
{
head = tail = cp;
head->right = head->left = NULL;
}
else
{
tail->right = cp;
tail->right->left = tail;
tail = tail->right;
tail->right = NULL;
}
}
}
/* It there was a failure in the previous case label, give up
for this case label list. Continue with the next block. */
if (t == FAILURE)
continue;
/* See if any case labels that are unreachable have been seen.
If so, we eliminate them. This is a bit of a kludge because
the case lists for a single case statement (label) is a
single forward linked lists. */
if (seen_unreachable)
{
/* Advance until the first case in the list is reachable. */
while (body->ext.case_list != NULL
&& body->ext.case_list->unreachable)
{
gfc_case *n = body->ext.case_list;
body->ext.case_list = body->ext.case_list->next;
n->next = NULL;
gfc_free_case_list (n);
}
/* Strip all other unreachable cases. */
if (body->ext.case_list)
{
for (cp = body->ext.case_list; cp->next; cp = cp->next)
{
if (cp->next->unreachable)
{
gfc_case *n = cp->next;
cp->next = cp->next->next;
n->next = NULL;
gfc_free_case_list (n);
}
}
}
}
}
/* See if there were overlapping cases. If the check returns NULL,
there was overlap. In that case we don't do anything. If head
is non-NULL, we prepend the DEFAULT case. The sorted list can
then used during code generation for SELECT CASE constructs with
a case expression of a CHARACTER type. */
if (head)
{
head = check_case_overlap (head);
/* Prepend the default_case if it is there. */
if (head != NULL && default_case)
{
default_case->left = NULL;
default_case->right = head;
head->left = default_case;
}
}
/* Eliminate dead blocks that may be the result if we've seen
unreachable case labels for a block. */
for (body = code; body && body->block; body = body->block)
{
if (body->block->ext.case_list == NULL)
{
/* Cut the unreachable block from the code chain. */
gfc_code *c = body->block;
body->block = c->block;
/* Kill the dead block, but not the blocks below it. */
c->block = NULL;
gfc_free_statements (c);
}
}
/* More than two cases is legal but insane for logical selects.
Issue a warning for it. */
if (gfc_option.warn_surprising && type == BT_LOGICAL
&& ncases > 2)
gfc_warning ("Logical SELECT CASE block at %L has more that two cases",
&code->loc);
}
/* Resolve a transfer statement. This is making sure that:
-- a derived type being transferred has only non-pointer components
-- a derived type being transferred doesn't have private components, unless
it's being transferred from the module where the type was defined
-- we're not trying to transfer a whole assumed size array. */
static void
resolve_transfer (gfc_code * code)
{
gfc_typespec *ts;
gfc_symbol *sym;
gfc_ref *ref;
gfc_expr *exp;
exp = code->expr;
if (exp->expr_type != EXPR_VARIABLE)
return;
sym = exp->symtree->n.sym;
ts = &sym->ts;
/* Go to actual component transferred. */
for (ref = code->expr->ref; ref; ref = ref->next)
if (ref->type == REF_COMPONENT)
ts = &ref->u.c.component->ts;
if (ts->type == BT_DERIVED)
{
/* Check that transferred derived type doesn't contain POINTER
components. */
if (derived_pointer (ts->derived))
{
gfc_error ("Data transfer element at %L cannot have "
"POINTER components", &code->loc);
return;
}
if (derived_inaccessible (ts->derived))
{
gfc_error ("Data transfer element at %L cannot have "
"PRIVATE components",&code->loc);
return;
}
}
if (sym->as != NULL && sym->as->type == AS_ASSUMED_SIZE
&& exp->ref->type == REF_ARRAY && exp->ref->u.ar.type == AR_FULL)
{
gfc_error ("Data transfer element at %L cannot be a full reference to "
"an assumed-size array", &code->loc);
return;
}
}
/*********** Toplevel code resolution subroutines ***********/
/* Given a branch to a label and a namespace, if the branch is conforming.
The code node described where the branch is located. */
static void
resolve_branch (gfc_st_label * label, gfc_code * code)
{
gfc_code *block, *found;
code_stack *stack;
gfc_st_label *lp;
if (label == NULL)
return;
lp = label;
/* Step one: is this a valid branching target? */
if (lp->defined == ST_LABEL_UNKNOWN)
{
gfc_error ("Label %d referenced at %L is never defined", lp->value,
&lp->where);
return;
}
if (lp->defined != ST_LABEL_TARGET)
{
gfc_error ("Statement at %L is not a valid branch target statement "
"for the branch statement at %L", &lp->where, &code->loc);
return;
}
/* Step two: make sure this branch is not a branch to itself ;-) */
if (code->here == label)
{
gfc_warning ("Branch at %L causes an infinite loop", &code->loc);
return;
}
/* Step three: Try to find the label in the parse tree. To do this,
we traverse the tree block-by-block: first the block that
contains this GOTO, then the block that it is nested in, etc. We
can ignore other blocks because branching into another block is
not allowed. */
found = NULL;
for (stack = cs_base; stack; stack = stack->prev)
{
for (block = stack->head; block; block = block->next)
{
if (block->here == label)
{
found = block;
break;
}
}
if (found)
break;
}
if (found == NULL)
{
/* still nothing, so illegal. */
gfc_error_now ("Label at %L is not in the same block as the "
"GOTO statement at %L", &lp->where, &code->loc);
return;
}
/* Step four: Make sure that the branching target is legal if
the statement is an END {SELECT,DO,IF}. */
if (found->op == EXEC_NOP)
{
for (stack = cs_base; stack; stack = stack->prev)
if (stack->current->next == found)
break;
if (stack == NULL)
gfc_notify_std (GFC_STD_F95_DEL,
"Obsolete: GOTO at %L jumps to END of construct at %L",
&code->loc, &found->loc);
}
}
/* Check whether EXPR1 has the same shape as EXPR2. */
static try
resolve_where_shape (gfc_expr *expr1, gfc_expr *expr2)
{
mpz_t shape[GFC_MAX_DIMENSIONS];
mpz_t shape2[GFC_MAX_DIMENSIONS];
try result = FAILURE;
int i;
/* Compare the rank. */
if (expr1->rank != expr2->rank)
return result;
/* Compare the size of each dimension. */
for (i=0; i<expr1->rank; i++)
{
if (gfc_array_dimen_size (expr1, i, &shape[i]) == FAILURE)
goto ignore;
if (gfc_array_dimen_size (expr2, i, &shape2[i]) == FAILURE)
goto ignore;
if (mpz_cmp (shape[i], shape2[i]))
goto over;
}
/* When either of the two expression is an assumed size array, we
ignore the comparison of dimension sizes. */
ignore:
result = SUCCESS;
over:
for (i--; i>=0; i--)
{
mpz_clear (shape[i]);
mpz_clear (shape2[i]);
}
return result;
}
/* Check whether a WHERE assignment target or a WHERE mask expression
has the same shape as the outmost WHERE mask expression. */
static void
resolve_where (gfc_code *code, gfc_expr *mask)
{
gfc_code *cblock;
gfc_code *cnext;
gfc_expr *e = NULL;
cblock = code->block;
/* Store the first WHERE mask-expr of the WHERE statement or construct.
In case of nested WHERE, only the outmost one is stored. */
if (mask == NULL) /* outmost WHERE */
e = cblock->expr;
else /* inner WHERE */
e = mask;
while (cblock)
{
if (cblock->expr)
{
/* Check if the mask-expr has a consistent shape with the
outmost WHERE mask-expr. */
if (resolve_where_shape (cblock->expr, e) == FAILURE)
gfc_error ("WHERE mask at %L has inconsistent shape",
&cblock->expr->where);
}
/* the assignment statement of a WHERE statement, or the first
statement in where-body-construct of a WHERE construct */
cnext = cblock->next;
while (cnext)
{
switch (cnext->op)
{
/* WHERE assignment statement */
case EXEC_ASSIGN:
/* Check shape consistent for WHERE assignment target. */
if (e && resolve_where_shape (cnext->expr, e) == FAILURE)
gfc_error ("WHERE assignment target at %L has "
"inconsistent shape", &cnext->expr->where);
break;
/* WHERE or WHERE construct is part of a where-body-construct */
case EXEC_WHERE:
resolve_where (cnext, e);
break;
default:
gfc_error ("Unsupported statement inside WHERE at %L",
&cnext->loc);
}
/* the next statement within the same where-body-construct */
cnext = cnext->next;
}
/* the next masked-elsewhere-stmt, elsewhere-stmt, or end-where-stmt */
cblock = cblock->block;
}
}
/* Check whether the FORALL index appears in the expression or not. */
static try
gfc_find_forall_index (gfc_expr *expr, gfc_symbol *symbol)
{
gfc_array_ref ar;
gfc_ref *tmp;
gfc_actual_arglist *args;
int i;
switch (expr->expr_type)
{
case EXPR_VARIABLE:
gcc_assert (expr->symtree->n.sym);
/* A scalar assignment */
if (!expr->ref)
{
if (expr->symtree->n.sym == symbol)
return SUCCESS;
else
return FAILURE;
}
/* the expr is array ref, substring or struct component. */
tmp = expr->ref;
while (tmp != NULL)
{
switch (tmp->type)
{
case REF_ARRAY:
/* Check if the symbol appears in the array subscript. */
ar = tmp->u.ar;
for (i = 0; i < GFC_MAX_DIMENSIONS; i++)
{
if (ar.start[i])
if (gfc_find_forall_index (ar.start[i], symbol) == SUCCESS)
return SUCCESS;
if (ar.end[i])
if (gfc_find_forall_index (ar.end[i], symbol) == SUCCESS)
return SUCCESS;
if (ar.stride[i])
if (gfc_find_forall_index (ar.stride[i], symbol) == SUCCESS)
return SUCCESS;
} /* end for */
break;
case REF_SUBSTRING:
if (expr->symtree->n.sym == symbol)
return SUCCESS;
tmp = expr->ref;
/* Check if the symbol appears in the substring section. */
if (gfc_find_forall_index (tmp->u.ss.start, symbol) == SUCCESS)
return SUCCESS;
if (gfc_find_forall_index (tmp->u.ss.end, symbol) == SUCCESS)
return SUCCESS;
break;
case REF_COMPONENT:
break;
default:
gfc_error("expresion reference type error at %L", &expr->where);
}
tmp = tmp->next;
}
break;
/* If the expression is a function call, then check if the symbol
appears in the actual arglist of the function. */
case EXPR_FUNCTION:
for (args = expr->value.function.actual; args; args = args->next)
{
if (gfc_find_forall_index(args->expr,symbol) == SUCCESS)
return SUCCESS;
}
break;
/* It seems not to happen. */
case EXPR_SUBSTRING:
if (expr->ref)
{
tmp = expr->ref;
gcc_assert (expr->ref->type == REF_SUBSTRING);
if (gfc_find_forall_index (tmp->u.ss.start, symbol) == SUCCESS)
return SUCCESS;
if (gfc_find_forall_index (tmp->u.ss.end, symbol) == SUCCESS)
return SUCCESS;
}
break;
/* It seems not to happen. */
case EXPR_STRUCTURE:
case EXPR_ARRAY:
gfc_error ("Unsupported statement while finding forall index in "
"expression");
break;
case EXPR_OP:
/* Find the FORALL index in the first operand. */
if (expr->value.op.op1)
{
if (gfc_find_forall_index (expr->value.op.op1, symbol) == SUCCESS)
return SUCCESS;
}
/* Find the FORALL index in the second operand. */
if (expr->value.op.op2)
{
if (gfc_find_forall_index (expr->value.op.op2, symbol) == SUCCESS)
return SUCCESS;
}
break;
default:
break;
}
return FAILURE;
}
/* Resolve assignment in FORALL construct.
NVAR is the number of FORALL index variables, and VAR_EXPR records the
FORALL index variables. */
static void
gfc_resolve_assign_in_forall (gfc_code *code, int nvar, gfc_expr **var_expr)
{
int n;
for (n = 0; n < nvar; n++)
{
gfc_symbol *forall_index;
forall_index = var_expr[n]->symtree->n.sym;
/* Check whether the assignment target is one of the FORALL index
variable. */
if ((code->expr->expr_type == EXPR_VARIABLE)
&& (code->expr->symtree->n.sym == forall_index))
gfc_error ("Assignment to a FORALL index variable at %L",
&code->expr->where);
else
{
/* If one of the FORALL index variables doesn't appear in the
assignment target, then there will be a many-to-one
assignment. */
if (gfc_find_forall_index (code->expr, forall_index) == FAILURE)
gfc_error ("The FORALL with index '%s' cause more than one "
"assignment to this object at %L",
var_expr[n]->symtree->name, &code->expr->where);
}
}
}
/* Resolve WHERE statement in FORALL construct. */
static void
gfc_resolve_where_code_in_forall (gfc_code *code, int nvar, gfc_expr **var_expr){
gfc_code *cblock;
gfc_code *cnext;
cblock = code->block;
while (cblock)
{
/* the assignment statement of a WHERE statement, or the first
statement in where-body-construct of a WHERE construct */
cnext = cblock->next;
while (cnext)
{
switch (cnext->op)
{
/* WHERE assignment statement */
case EXEC_ASSIGN:
gfc_resolve_assign_in_forall (cnext, nvar, var_expr);
break;
/* WHERE or WHERE construct is part of a where-body-construct */
case EXEC_WHERE:
gfc_resolve_where_code_in_forall (cnext, nvar, var_expr);
break;
default:
gfc_error ("Unsupported statement inside WHERE at %L",
&cnext->loc);
}
/* the next statement within the same where-body-construct */
cnext = cnext->next;
}
/* the next masked-elsewhere-stmt, elsewhere-stmt, or end-where-stmt */
cblock = cblock->block;
}
}
/* Traverse the FORALL body to check whether the following errors exist:
1. For assignment, check if a many-to-one assignment happens.
2. For WHERE statement, check the WHERE body to see if there is any
many-to-one assignment. */
static void
gfc_resolve_forall_body (gfc_code *code, int nvar, gfc_expr **var_expr)
{
gfc_code *c;
c = code->block->next;
while (c)
{
switch (c->op)
{
case EXEC_ASSIGN:
case EXEC_POINTER_ASSIGN:
gfc_resolve_assign_in_forall (c, nvar, var_expr);
break;
/* Because the resolve_blocks() will handle the nested FORALL,
there is no need to handle it here. */
case EXEC_FORALL:
break;
case EXEC_WHERE:
gfc_resolve_where_code_in_forall(c, nvar, var_expr);
break;
default:
break;
}
/* The next statement in the FORALL body. */
c = c->next;
}
}
/* Given a FORALL construct, first resolve the FORALL iterator, then call
gfc_resolve_forall_body to resolve the FORALL body. */
static void resolve_blocks (gfc_code *, gfc_namespace *);
static void
gfc_resolve_forall (gfc_code *code, gfc_namespace *ns, int forall_save)
{
static gfc_expr **var_expr;
static int total_var = 0;
static int nvar = 0;
gfc_forall_iterator *fa;
gfc_symbol *forall_index;
gfc_code *next;
int i;
/* Start to resolve a FORALL construct */
if (forall_save == 0)
{
/* Count the total number of FORALL index in the nested FORALL
construct in order to allocate the VAR_EXPR with proper size. */
next = code;
while ((next != NULL) && (next->op == EXEC_FORALL))
{
for (fa = next->ext.forall_iterator; fa; fa = fa->next)
total_var ++;
next = next->block->next;
}
/* Allocate VAR_EXPR with NUMBER_OF_FORALL_INDEX elements. */
var_expr = (gfc_expr **) gfc_getmem (total_var * sizeof (gfc_expr *));
}
/* The information about FORALL iterator, including FORALL index start, end
and stride. The FORALL index can not appear in start, end or stride. */
for (fa = code->ext.forall_iterator; fa; fa = fa->next)
{
/* Check if any outer FORALL index name is the same as the current
one. */
for (i = 0; i < nvar; i++)
{
if (fa->var->symtree->n.sym == var_expr[i]->symtree->n.sym)
{
gfc_error ("An outer FORALL construct already has an index "
"with this name %L", &fa->var->where);
}
}
/* Record the current FORALL index. */
var_expr[nvar] = gfc_copy_expr (fa->var);
forall_index = fa->var->symtree->n.sym;
/* Check if the FORALL index appears in start, end or stride. */
if (gfc_find_forall_index (fa->start, forall_index) == SUCCESS)
gfc_error ("A FORALL index must not appear in a limit or stride "
"expression in the same FORALL at %L", &fa->start->where);
if (gfc_find_forall_index (fa->end, forall_index) == SUCCESS)
gfc_error ("A FORALL index must not appear in a limit or stride "
"expression in the same FORALL at %L", &fa->end->where);
if (gfc_find_forall_index (fa->stride, forall_index) == SUCCESS)
gfc_error ("A FORALL index must not appear in a limit or stride "
"expression in the same FORALL at %L", &fa->stride->where);
nvar++;
}
/* Resolve the FORALL body. */
gfc_resolve_forall_body (code, nvar, var_expr);
/* May call gfc_resolve_forall to resolve the inner FORALL loop. */
resolve_blocks (code->block, ns);
/* Free VAR_EXPR after the whole FORALL construct resolved. */
for (i = 0; i < total_var; i++)
gfc_free_expr (var_expr[i]);
/* Reset the counters. */
total_var = 0;
nvar = 0;
}
/* Resolve lists of blocks found in IF, SELECT CASE, WHERE, FORALL ,GOTO and
DO code nodes. */
static void resolve_code (gfc_code *, gfc_namespace *);
static void
resolve_blocks (gfc_code * b, gfc_namespace * ns)
{
try t;
for (; b; b = b->block)
{
t = gfc_resolve_expr (b->expr);
if (gfc_resolve_expr (b->expr2) == FAILURE)
t = FAILURE;
switch (b->op)
{
case EXEC_IF:
if (t == SUCCESS && b->expr != NULL
&& (b->expr->ts.type != BT_LOGICAL || b->expr->rank != 0))
gfc_error
("ELSE IF clause at %L requires a scalar LOGICAL expression",
&b->expr->where);
break;
case EXEC_WHERE:
if (t == SUCCESS
&& b->expr != NULL
&& (b->expr->ts.type != BT_LOGICAL
|| b->expr->rank == 0))
gfc_error
("WHERE/ELSEWHERE clause at %L requires a LOGICAL array",
&b->expr->where);
break;
case EXEC_GOTO:
resolve_branch (b->label, b);
break;
case EXEC_SELECT:
case EXEC_FORALL:
case EXEC_DO:
case EXEC_DO_WHILE:
case EXEC_READ:
case EXEC_WRITE:
case EXEC_IOLENGTH:
break;
default:
gfc_internal_error ("resolve_block(): Bad block type");
}
resolve_code (b->next, ns);
}
}
/* Given a block of code, recursively resolve everything pointed to by this
code block. */
static void
resolve_code (gfc_code * code, gfc_namespace * ns)
{
int forall_save = 0;
code_stack frame;
gfc_alloc *a;
try t;
frame.prev = cs_base;
frame.head = code;
cs_base = &frame;
for (; code; code = code->next)
{
frame.current = code;
if (code->op == EXEC_FORALL)
{
forall_save = forall_flag;
forall_flag = 1;
gfc_resolve_forall (code, ns, forall_save);
}
else
resolve_blocks (code->block, ns);
if (code->op == EXEC_FORALL)
forall_flag = forall_save;
t = gfc_resolve_expr (code->expr);
if (gfc_resolve_expr (code->expr2) == FAILURE)
t = FAILURE;
switch (code->op)
{
case EXEC_NOP:
case EXEC_CYCLE:
case EXEC_PAUSE:
case EXEC_STOP:
case EXEC_EXIT:
case EXEC_CONTINUE:
case EXEC_DT_END:
case EXEC_ENTRY:
break;
case EXEC_WHERE:
resolve_where (code, NULL);
break;
case EXEC_GOTO:
if (code->expr != NULL)
{
if (code->expr->ts.type != BT_INTEGER)
gfc_error ("ASSIGNED GOTO statement at %L requires an INTEGER "
"variable", &code->expr->where);
else if (code->expr->symtree->n.sym->attr.assign != 1)
gfc_error ("Variable '%s' has not been assigned a target label "
"at %L", code->expr->symtree->n.sym->name,
&code->expr->where);
}
else
resolve_branch (code->label, code);
break;
case EXEC_RETURN:
if (code->expr != NULL && code->expr->ts.type != BT_INTEGER)
gfc_error ("Alternate RETURN statement at %L requires an INTEGER "
"return specifier", &code->expr->where);
break;
case EXEC_ASSIGN:
if (t == FAILURE)
break;
if (gfc_extend_assign (code, ns) == SUCCESS)
goto call;
if (gfc_pure (NULL))
{
if (gfc_impure_variable (code->expr->symtree->n.sym))
{
gfc_error
("Cannot assign to variable '%s' in PURE procedure at %L",
code->expr->symtree->n.sym->name, &code->expr->where);
break;
}
if (code->expr2->ts.type == BT_DERIVED
&& derived_pointer (code->expr2->ts.derived))
{
gfc_error
("Right side of assignment at %L is a derived type "
"containing a POINTER in a PURE procedure",
&code->expr2->where);
break;
}
}
gfc_check_assign (code->expr, code->expr2, 1);
break;
case EXEC_LABEL_ASSIGN:
if (code->label->defined == ST_LABEL_UNKNOWN)
gfc_error ("Label %d referenced at %L is never defined",
code->label->value, &code->label->where);
if (t == SUCCESS
&& (code->expr->expr_type != EXPR_VARIABLE
|| code->expr->symtree->n.sym->ts.type != BT_INTEGER
|| code->expr->symtree->n.sym->ts.kind
!= gfc_default_integer_kind
|| code->expr->symtree->n.sym->as != NULL))
gfc_error ("ASSIGN statement at %L requires a scalar "
"default INTEGER variable", &code->expr->where);
break;
case EXEC_POINTER_ASSIGN:
if (t == FAILURE)
break;
gfc_check_pointer_assign (code->expr, code->expr2);
break;
case EXEC_ARITHMETIC_IF:
if (t == SUCCESS
&& code->expr->ts.type != BT_INTEGER
&& code->expr->ts.type != BT_REAL)
gfc_error ("Arithmetic IF statement at %L requires a numeric "
"expression", &code->expr->where);
resolve_branch (code->label, code);
resolve_branch (code->label2, code);
resolve_branch (code->label3, code);
break;
case EXEC_IF:
if (t == SUCCESS && code->expr != NULL
&& (code->expr->ts.type != BT_LOGICAL
|| code->expr->rank != 0))
gfc_error ("IF clause at %L requires a scalar LOGICAL expression",
&code->expr->where);
break;
case EXEC_CALL:
call:
resolve_call (code);
break;
case EXEC_SELECT:
/* Select is complicated. Also, a SELECT construct could be
a transformed computed GOTO. */
resolve_select (code);
break;
case EXEC_DO:
if (code->ext.iterator != NULL)
gfc_resolve_iterator (code->ext.iterator, true);
break;
case EXEC_DO_WHILE:
if (code->expr == NULL)
gfc_internal_error ("resolve_code(): No expression on DO WHILE");
if (t == SUCCESS
&& (code->expr->rank != 0
|| code->expr->ts.type != BT_LOGICAL))
gfc_error ("Exit condition of DO WHILE loop at %L must be "
"a scalar LOGICAL expression", &code->expr->where);
break;
case EXEC_ALLOCATE:
if (t == SUCCESS && code->expr != NULL
&& code->expr->ts.type != BT_INTEGER)
gfc_error ("STAT tag in ALLOCATE statement at %L must be "
"of type INTEGER", &code->expr->where);
for (a = code->ext.alloc_list; a; a = a->next)
resolve_allocate_expr (a->expr, code);
break;
case EXEC_DEALLOCATE:
if (t == SUCCESS && code->expr != NULL
&& code->expr->ts.type != BT_INTEGER)
gfc_error
("STAT tag in DEALLOCATE statement at %L must be of type "
"INTEGER", &code->expr->where);
for (a = code->ext.alloc_list; a; a = a->next)
resolve_deallocate_expr (a->expr);
break;
case EXEC_OPEN:
if (gfc_resolve_open (code->ext.open) == FAILURE)
break;
resolve_branch (code->ext.open->err, code);
break;
case EXEC_CLOSE:
if (gfc_resolve_close (code->ext.close) == FAILURE)
break;
resolve_branch (code->ext.close->err, code);
break;
case EXEC_BACKSPACE:
case EXEC_ENDFILE:
case EXEC_REWIND:
case EXEC_FLUSH:
if (gfc_resolve_filepos (code->ext.filepos) == FAILURE)
break;
resolve_branch (code->ext.filepos->err, code);
break;
case EXEC_INQUIRE:
if (gfc_resolve_inquire (code->ext.inquire) == FAILURE)
break;
resolve_branch (code->ext.inquire->err, code);
break;
case EXEC_IOLENGTH:
gcc_assert (code->ext.inquire != NULL);
if (gfc_resolve_inquire (code->ext.inquire) == FAILURE)
break;
resolve_branch (code->ext.inquire->err, code);
break;
case EXEC_READ:
case EXEC_WRITE:
if (gfc_resolve_dt (code->ext.dt) == FAILURE)
break;
resolve_branch (code->ext.dt->err, code);
resolve_branch (code->ext.dt->end, code);
resolve_branch (code->ext.dt->eor, code);
break;
case EXEC_TRANSFER:
resolve_transfer (code);
break;
case EXEC_FORALL:
resolve_forall_iterators (code->ext.forall_iterator);
if (code->expr != NULL && code->expr->ts.type != BT_LOGICAL)
gfc_error
("FORALL mask clause at %L requires a LOGICAL expression",
&code->expr->where);
break;
default:
gfc_internal_error ("resolve_code(): Bad statement code");
}
}
cs_base = frame.prev;
}
/* Resolve initial values and make sure they are compatible with
the variable. */
static void
resolve_values (gfc_symbol * sym)
{
if (sym->value == NULL)
return;
if (gfc_resolve_expr (sym->value) == FAILURE)
return;
gfc_check_assign_symbol (sym, sym->value);
}
/* Resolve a charlen structure. */
static try
resolve_charlen (gfc_charlen *cl)
{
if (cl->resolved)
return SUCCESS;
cl->resolved = 1;
if (gfc_resolve_expr (cl->length) == FAILURE)
return FAILURE;
if (gfc_simplify_expr (cl->length, 0) == FAILURE)
return FAILURE;
if (gfc_specification_expr (cl->length) == FAILURE)
return FAILURE;
return SUCCESS;
}
/* Resolve the components of a derived type. */
static try
resolve_derived (gfc_symbol *sym)
{
gfc_component *c;
for (c = sym->components; c != NULL; c = c->next)
{
if (c->ts.type == BT_CHARACTER)
{
if (resolve_charlen (c->ts.cl) == FAILURE)
return FAILURE;
if (c->ts.cl->length == NULL
|| !gfc_is_constant_expr (c->ts.cl->length))
{
gfc_error ("Character length of component '%s' needs to "
"be a constant specification expression at %L.",
c->name,
c->ts.cl->length ? &c->ts.cl->length->where : &c->loc);
return FAILURE;
}
}
/* TODO: Anything else that should be done here? */
}
return SUCCESS;
}
/* Do anything necessary to resolve a symbol. Right now, we just
assume that an otherwise unknown symbol is a variable. This sort
of thing commonly happens for symbols in module. */
static void
resolve_symbol (gfc_symbol * sym)
{
/* Zero if we are checking a formal namespace. */
static int formal_ns_flag = 1;
int formal_ns_save, check_constant, mp_flag;
int i, flag;
gfc_namelist *nl;
gfc_symtree * symtree;
gfc_symtree * this_symtree;
gfc_namespace * ns;
gfc_component * c;
gfc_formal_arglist * arg;
if (sym->attr.flavor == FL_UNKNOWN)
{
/* If we find that a flavorless symbol is an interface in one of the
parent namespaces, find its symtree in this namespace, free the
symbol and set the symtree to point to the interface symbol. */
for (ns = gfc_current_ns->parent; ns; ns = ns->parent)
{
symtree = gfc_find_symtree (ns->sym_root, sym->name);
if (symtree && symtree->n.sym->generic)
{
this_symtree = gfc_find_symtree (gfc_current_ns->sym_root,
sym->name);
sym->refs--;
if (!sym->refs)
gfc_free_symbol (sym);
symtree->n.sym->refs++;
this_symtree->n.sym = symtree->n.sym;
return;
}
}
/* Otherwise give it a flavor according to such attributes as
it has. */
if (sym->attr.external == 0 && sym->attr.intrinsic == 0)
sym->attr.flavor = FL_VARIABLE;
else
{
sym->attr.flavor = FL_PROCEDURE;
if (sym->attr.dimension)
sym->attr.function = 1;
}
}
if (sym->attr.flavor == FL_DERIVED && resolve_derived (sym) == FAILURE)
return;
/* Symbols that are module procedures with results (functions) have
the types and array specification copied for type checking in
procedures that call them, as well as for saving to a module
file. These symbols can't stand the scrutiny that their results
can. */
mp_flag = (sym->result != NULL && sym->result != sym);
/* Assign default type to symbols that need one and don't have one. */
if (sym->ts.type == BT_UNKNOWN)
{
if (sym->attr.flavor == FL_VARIABLE || sym->attr.flavor == FL_PARAMETER)
gfc_set_default_type (sym, 1, NULL);
if (sym->attr.flavor == FL_PROCEDURE && sym->attr.function)
{
/* The specific case of an external procedure should emit an error
in the case that there is no implicit type. */
if (!mp_flag)
gfc_set_default_type (sym, sym->attr.external, NULL);
else
{
/* Result may be in another namespace. */
resolve_symbol (sym->result);
sym->ts = sym->result->ts;
sym->as = gfc_copy_array_spec (sym->result->as);
sym->attr.dimension = sym->result->attr.dimension;
sym->attr.pointer = sym->result->attr.pointer;
}
}
}
/* Assumed size arrays and assumed shape arrays must be dummy
arguments. */
if (sym->as != NULL
&& (sym->as->type == AS_ASSUMED_SIZE
|| sym->as->type == AS_ASSUMED_SHAPE)
&& sym->attr.dummy == 0)
{
if (sym->as->type == AS_ASSUMED_SIZE)
gfc_error ("Assumed size array at %L must be a dummy argument",
&sym->declared_at);
else
gfc_error ("Assumed shape array at %L must be a dummy argument",
&sym->declared_at);
return;
}
/* A parameter array's shape needs to be constant. */
if (sym->attr.flavor == FL_PARAMETER && sym->as != NULL
&& !gfc_is_compile_time_shape (sym->as))
{
gfc_error ("Parameter array '%s' at %L cannot be automatic "
"or assumed shape", sym->name, &sym->declared_at);
return;
}
/* A module array's shape needs to be constant. */
if (sym->ns->proc_name
&& sym->attr.flavor == FL_VARIABLE
&& sym->ns->proc_name->attr.flavor == FL_MODULE
&& !sym->attr.use_assoc
&& !sym->attr.allocatable
&& !sym->attr.pointer
&& sym->as != NULL
&& !gfc_is_compile_time_shape (sym->as))
{
gfc_error ("Module array '%s' at %L cannot be automatic "
"or assumed shape", sym->name, &sym->declared_at);
return;
}
/* Make sure that character string variables with assumed length are
dummy arguments. */
if (sym->attr.flavor == FL_VARIABLE && !sym->attr.result
&& sym->ts.type == BT_CHARACTER
&& sym->ts.cl->length == NULL && sym->attr.dummy == 0)
{
gfc_error ("Entity with assumed character length at %L must be a "
"dummy argument or a PARAMETER", &sym->declared_at);
return;
}
/* Make sure a parameter that has been implicitly typed still
matches the implicit type, since PARAMETER statements can precede
IMPLICIT statements. */
if (sym->attr.flavor == FL_PARAMETER
&& sym->attr.implicit_type
&& !gfc_compare_types (&sym->ts, gfc_get_default_type (sym, sym->ns)))
gfc_error ("Implicitly typed PARAMETER '%s' at %L doesn't match a "
"later IMPLICIT type", sym->name, &sym->declared_at);
/* Make sure the types of derived parameters are consistent. This
type checking is deferred until resolution because the type may
refer to a derived type from the host. */
if (sym->attr.flavor == FL_PARAMETER
&& sym->ts.type == BT_DERIVED
&& !gfc_compare_types (&sym->ts, &sym->value->ts))
gfc_error ("Incompatible derived type in PARAMETER at %L",
&sym->value->where);
/* Make sure symbols with known intent or optional are really dummy
variable. Because of ENTRY statement, this has to be deferred
until resolution time. */
if (! sym->attr.dummy
&& (sym->attr.optional
|| sym->attr.intent != INTENT_UNKNOWN))
{
gfc_error ("Symbol at %L is not a DUMMY variable", &sym->declared_at);
return;
}
if (sym->attr.proc == PROC_ST_FUNCTION)
{
if (sym->ts.type == BT_CHARACTER)
{
gfc_charlen *cl = sym->ts.cl;
if (!cl || !cl->length || cl->length->expr_type != EXPR_CONSTANT)
{
gfc_error ("Character-valued statement function '%s' at %L must "
"have constant length", sym->name, &sym->declared_at);
return;
}
}
}
/* If a derived type symbol has reached this point, without its
type being declared, we have an error. Notice that most
conditions that produce undefined derived types have already
been dealt with. However, the likes of:
implicit type(t) (t) ..... call foo (t) will get us here if
the type is not declared in the scope of the implicit
statement. Change the type to BT_UNKNOWN, both because it is so
and to prevent an ICE. */
if (sym->ts.type == BT_DERIVED
&& sym->ts.derived->components == NULL)
{
gfc_error ("The derived type '%s' at %L is of type '%s', "
"which has not been defined.", sym->name,
&sym->declared_at, sym->ts.derived->name);
sym->ts.type = BT_UNKNOWN;
return;
}
/* If a component of a derived type is of a type declared to be private,
either the derived type definition must contain the PRIVATE statement,
or the derived type must be private. (4.4.1 just after R427) */
if (sym->attr.flavor == FL_DERIVED
&& sym->component_access != ACCESS_PRIVATE
&& gfc_check_access(sym->attr.access, sym->ns->default_access))
{
for (c = sym->components; c; c = c->next)
{
if (c->ts.type == BT_DERIVED
&& !c->ts.derived->attr.use_assoc
&& !gfc_check_access(c->ts.derived->attr.access,
c->ts.derived->ns->default_access))
{
gfc_error ("The component '%s' is a PRIVATE type and cannot be "
"a component of '%s', which is PUBLIC at %L",
c->name, sym->name, &sym->declared_at);
return;
}
}
}
/* An assumed-size array with INTENT(OUT) shall not be of a type for which
default initialization is defined (5.1.2.4.4). */
if (sym->ts.type == BT_DERIVED
&& sym->attr.dummy
&& sym->attr.intent == INTENT_OUT
&& sym->as
&& sym->as->type == AS_ASSUMED_SIZE)
{
for (c = sym->ts.derived->components; c; c = c->next)
{
if (c->initializer)
{
gfc_error ("The INTENT(OUT) dummy argument '%s' at %L is "
"ASSUMED SIZE and so cannot have a default initializer",
sym->name, &sym->declared_at);
return;
}
}
}
/* Ensure that derived type formal arguments of a public procedure
are not of a private type. */
if (sym->attr.flavor == FL_PROCEDURE
&& gfc_check_access(sym->attr.access, sym->ns->default_access))
{
for (arg = sym->formal; arg; arg = arg->next)
{
if (arg->sym
&& arg->sym->ts.type == BT_DERIVED
&& !arg->sym->ts.derived->attr.use_assoc
&& !gfc_check_access(arg->sym->ts.derived->attr.access,
arg->sym->ts.derived->ns->default_access))
{
gfc_error_now ("'%s' is a PRIVATE type and cannot be "
"a dummy argument of '%s', which is PUBLIC at %L",
arg->sym->name, sym->name, &sym->declared_at);
/* Stop this message from recurring. */
arg->sym->ts.derived->attr.access = ACCESS_PUBLIC;
return;
}
}
}
/* Constraints on deferred shape variable. */
if (sym->attr.flavor == FL_VARIABLE
|| (sym->attr.flavor == FL_PROCEDURE
&& sym->attr.function))
{
if (sym->as == NULL || sym->as->type != AS_DEFERRED)
{
if (sym->attr.allocatable)
{
if (sym->attr.dimension)
gfc_error ("Allocatable array '%s' at %L must have "
"a deferred shape", sym->name, &sym->declared_at);
else
gfc_error ("Scalar object '%s' at %L may not be ALLOCATABLE",
sym->name, &sym->declared_at);
return;
}
if (sym->attr.pointer && sym->attr.dimension)
{
gfc_error ("Array pointer '%s' at %L must have a deferred shape",
sym->name, &sym->declared_at);
return;
}
}
else
{
if (!mp_flag && !sym->attr.allocatable
&& !sym->attr.pointer && !sym->attr.dummy)
{
gfc_error ("Array '%s' at %L cannot have a deferred shape",
sym->name, &sym->declared_at);
return;
}
}
}
switch (sym->attr.flavor)
{
case FL_VARIABLE:
/* Can the symbol have an initializer? */
flag = 0;
if (sym->attr.allocatable || sym->attr.external || sym->attr.dummy
|| sym->attr.intrinsic || sym->attr.result)
flag = 1;
else if (sym->attr.dimension && !sym->attr.pointer)
{
/* Don't allow initialization of automatic arrays. */
for (i = 0; i < sym->as->rank; i++)
{
if (sym->as->lower[i] == NULL
|| sym->as->lower[i]->expr_type != EXPR_CONSTANT
|| sym->as->upper[i] == NULL
|| sym->as->upper[i]->expr_type != EXPR_CONSTANT)
{
flag = 1;
break;
}
}
}
/* Reject illegal initializers. */
if (sym->value && flag)
{
if (sym->attr.allocatable)
gfc_error ("Allocatable '%s' at %L cannot have an initializer",
sym->name, &sym->declared_at);
else if (sym->attr.external)
gfc_error ("External '%s' at %L cannot have an initializer",
sym->name, &sym->declared_at);
else if (sym->attr.dummy)
gfc_error ("Dummy '%s' at %L cannot have an initializer",
sym->name, &sym->declared_at);
else if (sym->attr.intrinsic)
gfc_error ("Intrinsic '%s' at %L cannot have an initializer",
sym->name, &sym->declared_at);
else if (sym->attr.result)
gfc_error ("Function result '%s' at %L cannot have an initializer",
sym->name, &sym->declared_at);
else
gfc_error ("Automatic array '%s' at %L cannot have an initializer",
sym->name, &sym->declared_at);
return;
}
/* Assign default initializer. */
if (sym->ts.type == BT_DERIVED && !(sym->value || flag)
&& !sym->attr.pointer)
sym->value = gfc_default_initializer (&sym->ts);
break;
case FL_NAMELIST:
/* Reject PRIVATE objects in a PUBLIC namelist. */
if (gfc_check_access(sym->attr.access, sym->ns->default_access))
{
for (nl = sym->namelist; nl; nl = nl->next)
{
if (!nl->sym->attr.use_assoc
&&
!(sym->ns->parent == nl->sym->ns)
&&
!gfc_check_access(nl->sym->attr.access,
nl->sym->ns->default_access))
gfc_error ("PRIVATE symbol '%s' cannot be member of "
"PUBLIC namelist at %L", nl->sym->name,
&sym->declared_at);
}
}
break;
case FL_DERIVED:
/* Add derived type to the derived type list. */
{
gfc_dt_list * dt_list;
dt_list = gfc_get_dt_list ();
dt_list->next = sym->ns->derived_types;
dt_list->derived = sym;
sym->ns->derived_types = dt_list;
}
break;
default:
/* An external symbol falls through to here if it is not referenced. */
if (sym->attr.external && sym->value)
{
gfc_error ("External object '%s' at %L may not have an initializer",
sym->name, &sym->declared_at);
return;
}
break;
}
/* Make sure that intrinsic exist */
if (sym->attr.intrinsic
&& ! gfc_intrinsic_name(sym->name, 0)
&& ! gfc_intrinsic_name(sym->name, 1))
gfc_error("Intrinsic at %L does not exist", &sym->declared_at);
/* Resolve array specifier. Check as well some constraints
on COMMON blocks. */
check_constant = sym->attr.in_common && !sym->attr.pointer;
gfc_resolve_array_spec (sym->as, check_constant);
/* Resolve formal namespaces. */
if (formal_ns_flag && sym != NULL && sym->formal_ns != NULL)
{
formal_ns_save = formal_ns_flag;
formal_ns_flag = 0;
gfc_resolve (sym->formal_ns);
formal_ns_flag = formal_ns_save;
}
}
/************* Resolve DATA statements *************/
static struct
{
gfc_data_value *vnode;
unsigned int left;
}
values;
/* Advance the values structure to point to the next value in the data list. */
static try
next_data_value (void)
{
while (values.left == 0)
{
if (values.vnode->next == NULL)
return FAILURE;
values.vnode = values.vnode->next;
values.left = values.vnode->repeat;
}
return SUCCESS;
}
static try
check_data_variable (gfc_data_variable * var, locus * where)
{
gfc_expr *e;
mpz_t size;
mpz_t offset;
try t;
ar_type mark = AR_UNKNOWN;
int i;
mpz_t section_index[GFC_MAX_DIMENSIONS];
gfc_ref *ref;
gfc_array_ref *ar;
if (gfc_resolve_expr (var->expr) == FAILURE)
return FAILURE;
ar = NULL;
mpz_init_set_si (offset, 0);
e = var->expr;
if (e->expr_type != EXPR_VARIABLE)
gfc_internal_error ("check_data_variable(): Bad expression");
if (e->rank == 0)
{
mpz_init_set_ui (size, 1);
ref = NULL;
}
else
{
ref = e->ref;
/* Find the array section reference. */
for (ref = e->ref; ref; ref = ref->next)
{
if (ref->type != REF_ARRAY)
continue;
if (ref->u.ar.type == AR_ELEMENT)
continue;
break;
}
gcc_assert (ref);
/* Set marks according to the reference pattern. */
switch (ref->u.ar.type)
{
case AR_FULL:
mark = AR_FULL;
break;
case AR_SECTION:
ar = &ref->u.ar;
/* Get the start position of array section. */
gfc_get_section_index (ar, section_index, &offset);
mark = AR_SECTION;
break;
default:
gcc_unreachable ();
}
if (gfc_array_size (e, &size) == FAILURE)
{
gfc_error ("Nonconstant array section at %L in DATA statement",
&e->where);
mpz_clear (offset);
return FAILURE;
}
}
t = SUCCESS;
while (mpz_cmp_ui (size, 0) > 0)
{
if (next_data_value () == FAILURE)
{
gfc_error ("DATA statement at %L has more variables than values",
where);
t = FAILURE;
break;
}
t = gfc_check_assign (var->expr, values.vnode->expr, 0);
if (t == FAILURE)
break;
/* If we have more than one element left in the repeat count,
and we have more than one element left in the target variable,
then create a range assignment. */
/* ??? Only done for full arrays for now, since array sections
seem tricky. */
if (mark == AR_FULL && ref && ref->next == NULL
&& values.left > 1 && mpz_cmp_ui (size, 1) > 0)
{
mpz_t range;
if (mpz_cmp_ui (size, values.left) >= 0)
{
mpz_init_set_ui (range, values.left);
mpz_sub_ui (size, size, values.left);
values.left = 0;
}
else
{
mpz_init_set (range, size);
values.left -= mpz_get_ui (size);
mpz_set_ui (size, 0);
}
gfc_assign_data_value_range (var->expr, values.vnode->expr,
offset, range);
mpz_add (offset, offset, range);
mpz_clear (range);
}
/* Assign initial value to symbol. */
else
{
values.left -= 1;
mpz_sub_ui (size, size, 1);
gfc_assign_data_value (var->expr, values.vnode->expr, offset);
if (mark == AR_FULL)
mpz_add_ui (offset, offset, 1);
/* Modify the array section indexes and recalculate the offset
for next element. */
else if (mark == AR_SECTION)
gfc_advance_section (section_index, ar, &offset);
}
}
if (mark == AR_SECTION)
{
for (i = 0; i < ar->dimen; i++)
mpz_clear (section_index[i]);
}
mpz_clear (size);
mpz_clear (offset);
return t;
}
static try traverse_data_var (gfc_data_variable *, locus *);
/* Iterate over a list of elements in a DATA statement. */
static try
traverse_data_list (gfc_data_variable * var, locus * where)
{
mpz_t trip;
iterator_stack frame;
gfc_expr *e;
mpz_init (frame.value);
mpz_init_set (trip, var->iter.end->value.integer);
mpz_sub (trip, trip, var->iter.start->value.integer);
mpz_add (trip, trip, var->iter.step->value.integer);
mpz_div (trip, trip, var->iter.step->value.integer);
mpz_set (frame.value, var->iter.start->value.integer);
frame.prev = iter_stack;
frame.variable = var->iter.var->symtree;
iter_stack = &frame;
while (mpz_cmp_ui (trip, 0) > 0)
{
if (traverse_data_var (var->list, where) == FAILURE)
{
mpz_clear (trip);
return FAILURE;
}
e = gfc_copy_expr (var->expr);
if (gfc_simplify_expr (e, 1) == FAILURE)
{
gfc_free_expr (e);
return FAILURE;
}
mpz_add (frame.value, frame.value, var->iter.step->value.integer);
mpz_sub_ui (trip, trip, 1);
}
mpz_clear (trip);
mpz_clear (frame.value);
iter_stack = frame.prev;
return SUCCESS;
}
/* Type resolve variables in the variable list of a DATA statement. */
static try
traverse_data_var (gfc_data_variable * var, locus * where)
{
try t;
for (; var; var = var->next)
{
if (var->expr == NULL)
t = traverse_data_list (var, where);
else
t = check_data_variable (var, where);
if (t == FAILURE)
return FAILURE;
}
return SUCCESS;
}
/* Resolve the expressions and iterators associated with a data statement.
This is separate from the assignment checking because data lists should
only be resolved once. */
static try
resolve_data_variables (gfc_data_variable * d)
{
for (; d; d = d->next)
{
if (d->list == NULL)
{
if (gfc_resolve_expr (d->expr) == FAILURE)
return FAILURE;
}
else
{
if (gfc_resolve_iterator (&d->iter, false) == FAILURE)
return FAILURE;
if (d->iter.start->expr_type != EXPR_CONSTANT
|| d->iter.end->expr_type != EXPR_CONSTANT
|| d->iter.step->expr_type != EXPR_CONSTANT)
gfc_internal_error ("resolve_data_variables(): Bad iterator");
if (resolve_data_variables (d->list) == FAILURE)
return FAILURE;
}
}
return SUCCESS;
}
/* Resolve a single DATA statement. We implement this by storing a pointer to
the value list into static variables, and then recursively traversing the
variables list, expanding iterators and such. */
static void
resolve_data (gfc_data * d)
{
if (resolve_data_variables (d->var) == FAILURE)
return;
values.vnode = d->value;
values.left = (d->value == NULL) ? 0 : d->value->repeat;
if (traverse_data_var (d->var, &d->where) == FAILURE)
return;
/* At this point, we better not have any values left. */
if (next_data_value () == SUCCESS)
gfc_error ("DATA statement at %L has more values than variables",
&d->where);
}
/* Determines if a variable is not 'pure', ie not assignable within a pure
procedure. Returns zero if assignment is OK, nonzero if there is a problem.
*/
int
gfc_impure_variable (gfc_symbol * sym)
{
if (sym->attr.use_assoc || sym->attr.in_common)
return 1;
if (sym->ns != gfc_current_ns)
return !sym->attr.function;
/* TODO: Check storage association through EQUIVALENCE statements */
return 0;
}
/* Test whether a symbol is pure or not. For a NULL pointer, checks the
symbol of the current procedure. */
int
gfc_pure (gfc_symbol * sym)
{
symbol_attribute attr;
if (sym == NULL)
sym = gfc_current_ns->proc_name;
if (sym == NULL)
return 0;
attr = sym->attr;
return attr.flavor == FL_PROCEDURE && (attr.pure || attr.elemental);
}
/* Test whether the current procedure is elemental or not. */
int
gfc_elemental (gfc_symbol * sym)
{
symbol_attribute attr;
if (sym == NULL)
sym = gfc_current_ns->proc_name;
if (sym == NULL)
return 0;
attr = sym->attr;
return attr.flavor == FL_PROCEDURE && attr.elemental;
}
/* Warn about unused labels. */
static void
warn_unused_label (gfc_namespace * ns)
{
gfc_st_label *l;
l = ns->st_labels;
if (l == NULL)
return;
while (l->next)
l = l->next;
for (; l; l = l->prev)
{
if (l->defined == ST_LABEL_UNKNOWN)
continue;
switch (l->referenced)
{
case ST_LABEL_UNKNOWN:
gfc_warning ("Label %d at %L defined but not used", l->value,
&l->where);
break;
case ST_LABEL_BAD_TARGET:
gfc_warning ("Label %d at %L defined but cannot be used", l->value,
&l->where);
break;
default:
break;
}
}
}
/* Returns the sequence type of a symbol or sequence. */
static seq_type
sequence_type (gfc_typespec ts)
{
seq_type result;
gfc_component *c;
switch (ts.type)
{
case BT_DERIVED:
if (ts.derived->components == NULL)
return SEQ_NONDEFAULT;
result = sequence_type (ts.derived->components->ts);
for (c = ts.derived->components->next; c; c = c->next)
if (sequence_type (c->ts) != result)
return SEQ_MIXED;
return result;
case BT_CHARACTER:
if (ts.kind != gfc_default_character_kind)
return SEQ_NONDEFAULT;
return SEQ_CHARACTER;
case BT_INTEGER:
if (ts.kind != gfc_default_integer_kind)
return SEQ_NONDEFAULT;
return SEQ_NUMERIC;
case BT_REAL:
if (!(ts.kind == gfc_default_real_kind
|| ts.kind == gfc_default_double_kind))
return SEQ_NONDEFAULT;
return SEQ_NUMERIC;
case BT_COMPLEX:
if (ts.kind != gfc_default_complex_kind)
return SEQ_NONDEFAULT;
return SEQ_NUMERIC;
case BT_LOGICAL:
if (ts.kind != gfc_default_logical_kind)
return SEQ_NONDEFAULT;
return SEQ_NUMERIC;
default:
return SEQ_NONDEFAULT;
}
}
/* Resolve derived type EQUIVALENCE object. */
static try
resolve_equivalence_derived (gfc_symbol *derived, gfc_symbol *sym, gfc_expr *e)
{
gfc_symbol *d;
gfc_component *c = derived->components;
if (!derived)
return SUCCESS;
/* Shall not be an object of nonsequence derived type. */
if (!derived->attr.sequence)
{
gfc_error ("Derived type variable '%s' at %L must have SEQUENCE "
"attribute to be an EQUIVALENCE object", sym->name, &e->where);
return FAILURE;
}
for (; c ; c = c->next)
{
d = c->ts.derived;
if (d && (resolve_equivalence_derived (c->ts.derived, sym, e) == FAILURE))
return FAILURE;
/* Shall not be an object of sequence derived type containing a pointer
in the structure. */
if (c->pointer)
{
gfc_error ("Derived type variable '%s' at %L with pointer component(s) "
"cannot be an EQUIVALENCE object", sym->name, &e->where);
return FAILURE;
}
if (c->initializer)
{
gfc_error ("Derived type variable '%s' at %L with default initializer "
"cannot be an EQUIVALENCE object", sym->name, &e->where);
return FAILURE;
}
}
return SUCCESS;
}
/* Resolve equivalence object.
An EQUIVALENCE object shall not be a dummy argument, a pointer, a target,
an allocatable array, an object of nonsequence derived type, an object of
sequence derived type containing a pointer at any level of component
selection, an automatic object, a function name, an entry name, a result
name, a named constant, a structure component, or a subobject of any of
the preceding objects. A substring shall not have length zero. A
derived type shall not have components with default initialization nor
shall two objects of an equivalence group be initialized.
The simple constraints are done in symbol.c(check_conflict) and the rest
are implemented here. */
static void
resolve_equivalence (gfc_equiv *eq)
{
gfc_symbol *sym;
gfc_symbol *derived;
gfc_symbol *first_sym;
gfc_expr *e;
gfc_ref *r;
locus *last_where = NULL;
seq_type eq_type, last_eq_type;
gfc_typespec *last_ts;
int object;
const char *value_name;
const char *msg;
value_name = NULL;
last_ts = &eq->expr->symtree->n.sym->ts;
first_sym = eq->expr->symtree->n.sym;
for (object = 1; eq; eq = eq->eq, object++)
{
e = eq->expr;
e->ts = e->symtree->n.sym->ts;
/* match_varspec might not know yet if it is seeing
array reference or substring reference, as it doesn't
know the types. */
if (e->ref && e->ref->type == REF_ARRAY)
{
gfc_ref *ref = e->ref;
sym = e->symtree->n.sym;
if (sym->attr.dimension)
{
ref->u.ar.as = sym->as;
ref = ref->next;
}
/* For substrings, convert REF_ARRAY into REF_SUBSTRING. */
if (e->ts.type == BT_CHARACTER
&& ref
&& ref->type == REF_ARRAY
&& ref->u.ar.dimen == 1
&& ref->u.ar.dimen_type[0] == DIMEN_RANGE
&& ref->u.ar.stride[0] == NULL)
{
gfc_expr *start = ref->u.ar.start[0];
gfc_expr *end = ref->u.ar.end[0];
void *mem = NULL;
/* Optimize away the (:) reference. */
if (start == NULL && end == NULL)
{
if (e->ref == ref)
e->ref = ref->next;
else
e->ref->next = ref->next;
mem = ref;
}
else
{
ref->type = REF_SUBSTRING;
if (start == NULL)
start = gfc_int_expr (1);
ref->u.ss.start = start;
if (end == NULL && e->ts.cl)
end = gfc_copy_expr (e->ts.cl->length);
ref->u.ss.end = end;
ref->u.ss.length = e->ts.cl;
e->ts.cl = NULL;
}
ref = ref->next;
gfc_free (mem);
}
/* Any further ref is an error. */
if (ref)
{
gcc_assert (ref->type == REF_ARRAY);
gfc_error ("Syntax error in EQUIVALENCE statement at %L",
&ref->u.ar.where);
continue;
}
}
if (gfc_resolve_expr (e) == FAILURE)
continue;
sym = e->symtree->n.sym;
/* An equivalence statement cannot have more than one initialized
object. */
if (sym->value)
{
if (value_name != NULL)
{
gfc_error ("Initialized objects '%s' and '%s' cannot both "
"be in the EQUIVALENCE statement at %L",
value_name, sym->name, &e->where);
continue;
}
else
value_name = sym->name;
}
/* Shall not equivalence common block variables in a PURE procedure. */
if (sym->ns->proc_name
&& sym->ns->proc_name->attr.pure
&& sym->attr.in_common)
{
gfc_error ("Common block member '%s' at %L cannot be an EQUIVALENCE "
"object in the pure procedure '%s'",
sym->name, &e->where, sym->ns->proc_name->name);
break;
}
/* Shall not be a named constant. */
if (e->expr_type == EXPR_CONSTANT)
{
gfc_error ("Named constant '%s' at %L cannot be an EQUIVALENCE "
"object", sym->name, &e->where);
continue;
}
derived = e->ts.derived;
if (derived && resolve_equivalence_derived (derived, sym, e) == FAILURE)
continue;
/* Check that the types correspond correctly:
Note 5.28:
A numeric sequence structure may be equivalenced to another sequence
structure, an object of default integer type, default real type, double
precision real type, default logical type such that components of the
structure ultimately only become associated to objects of the same
kind. A character sequence structure may be equivalenced to an object
of default character kind or another character sequence structure.
Other objects may be equivalenced only to objects of the same type and
kind parameters. */
/* Identical types are unconditionally OK. */
if (object == 1 || gfc_compare_types (last_ts, &sym->ts))
goto identical_types;
last_eq_type = sequence_type (*last_ts);
eq_type = sequence_type (sym->ts);
/* Since the pair of objects is not of the same type, mixed or
non-default sequences can be rejected. */
msg = "Sequence %s with mixed components in EQUIVALENCE "
"statement at %L with different type objects";
if ((object ==2
&& last_eq_type == SEQ_MIXED
&& gfc_notify_std (GFC_STD_GNU, msg, first_sym->name,
last_where) == FAILURE)
|| (eq_type == SEQ_MIXED
&& gfc_notify_std (GFC_STD_GNU, msg,sym->name,
&e->where) == FAILURE))
continue;
msg = "Non-default type object or sequence %s in EQUIVALENCE "
"statement at %L with objects of different type";
if ((object ==2
&& last_eq_type == SEQ_NONDEFAULT
&& gfc_notify_std (GFC_STD_GNU, msg, first_sym->name,
last_where) == FAILURE)
|| (eq_type == SEQ_NONDEFAULT
&& gfc_notify_std (GFC_STD_GNU, msg, sym->name,
&e->where) == FAILURE))
continue;
msg ="Non-CHARACTER object '%s' in default CHARACTER "
"EQUIVALENCE statement at %L";
if (last_eq_type == SEQ_CHARACTER
&& eq_type != SEQ_CHARACTER
&& gfc_notify_std (GFC_STD_GNU, msg, sym->name,
&e->where) == FAILURE)
continue;
msg ="Non-NUMERIC object '%s' in default NUMERIC "
"EQUIVALENCE statement at %L";
if (last_eq_type == SEQ_NUMERIC
&& eq_type != SEQ_NUMERIC
&& gfc_notify_std (GFC_STD_GNU, msg, sym->name,
&e->where) == FAILURE)
continue;
identical_types:
last_ts =&sym->ts;
last_where = &e->where;
if (!e->ref)
continue;
/* Shall not be an automatic array. */
if (e->ref->type == REF_ARRAY
&& gfc_resolve_array_spec (e->ref->u.ar.as, 1) == FAILURE)
{
gfc_error ("Array '%s' at %L with non-constant bounds cannot be "
"an EQUIVALENCE object", sym->name, &e->where);
continue;
}
r = e->ref;
while (r)
{
/* Shall not be a structure component. */
if (r->type == REF_COMPONENT)
{
gfc_error ("Structure component '%s' at %L cannot be an "
"EQUIVALENCE object",
r->u.c.component->name, &e->where);
break;
}
/* A substring shall not have length zero. */
if (r->type == REF_SUBSTRING)
{
if (compare_bound (r->u.ss.start, r->u.ss.end) == CMP_GT)
{
gfc_error ("Substring at %L has length zero",
&r->u.ss.start->where);
break;
}
}
r = r->next;
}
}
}
/* Resolve function and ENTRY types, issue diagnostics if needed. */
static void
resolve_fntype (gfc_namespace * ns)
{
gfc_entry_list *el;
gfc_symbol *sym;
if (ns->proc_name == NULL || !ns->proc_name->attr.function)
return;
/* If there are any entries, ns->proc_name is the entry master
synthetic symbol and ns->entries->sym actual FUNCTION symbol. */
if (ns->entries)
sym = ns->entries->sym;
else
sym = ns->proc_name;
if (sym->result == sym
&& sym->ts.type == BT_UNKNOWN
&& gfc_set_default_type (sym, 0, NULL) == FAILURE
&& !sym->attr.untyped)
{
gfc_error ("Function '%s' at %L has no IMPLICIT type",
sym->name, &sym->declared_at);
sym->attr.untyped = 1;
}
if (sym->ts.type == BT_DERIVED && !sym->ts.derived->attr.use_assoc
&& !gfc_check_access (sym->ts.derived->attr.access,
sym->ts.derived->ns->default_access)
&& gfc_check_access (sym->attr.access, sym->ns->default_access))
{
gfc_error ("PUBLIC function '%s' at %L cannot be of PRIVATE type '%s'",
sym->name, &sym->declared_at, sym->ts.derived->name);
}
if (ns->entries)
for (el = ns->entries->next; el; el = el->next)
{
if (el->sym->result == el->sym
&& el->sym->ts.type == BT_UNKNOWN
&& gfc_set_default_type (el->sym, 0, NULL) == FAILURE
&& !el->sym->attr.untyped)
{
gfc_error ("ENTRY '%s' at %L has no IMPLICIT type",
el->sym->name, &el->sym->declared_at);
el->sym->attr.untyped = 1;
}
}
}
/* This function is called after a complete program unit has been compiled.
Its purpose is to examine all of the expressions associated with a program
unit, assign types to all intermediate expressions, make sure that all
assignments are to compatible types and figure out which names refer to
which functions or subroutines. */
void
gfc_resolve (gfc_namespace * ns)
{
gfc_namespace *old_ns, *n;
gfc_charlen *cl;
gfc_data *d;
gfc_equiv *eq;
old_ns = gfc_current_ns;
gfc_current_ns = ns;
resolve_entries (ns);
resolve_contained_functions (ns);
gfc_traverse_ns (ns, resolve_symbol);
resolve_fntype (ns);
for (n = ns->contained; n; n = n->sibling)
{
if (gfc_pure (ns->proc_name) && !gfc_pure (n->proc_name))
gfc_error ("Contained procedure '%s' at %L of a PURE procedure must "
"also be PURE", n->proc_name->name,
&n->proc_name->declared_at);
gfc_resolve (n);
}
forall_flag = 0;
gfc_check_interfaces (ns);
for (cl = ns->cl_list; cl; cl = cl->next)
resolve_charlen (cl);
gfc_traverse_ns (ns, resolve_values);
if (ns->save_all)
gfc_save_all (ns);
iter_stack = NULL;
for (d = ns->data; d; d = d->next)
resolve_data (d);
iter_stack = NULL;
gfc_traverse_ns (ns, gfc_formalize_init_value);
for (eq = ns->equiv; eq; eq = eq->next)
resolve_equivalence (eq);
cs_base = NULL;
resolve_code (ns->code, ns);
/* Warn about unused labels. */
if (gfc_option.warn_unused_labels)
warn_unused_label (ns);
gfc_current_ns = old_ns;
}
|