summaryrefslogtreecommitdiff
path: root/gcc/fortran/resolve.c
blob: 0fe067290d6bcc9556366980d7d6ecd499df5fd0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
13548
13549
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598
13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
/* Perform type resolution on the various structures.
   Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
   2010, 2011
   Free Software Foundation, Inc.
   Contributed by Andy Vaught

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "flags.h"
#include "gfortran.h"
#include "obstack.h"
#include "bitmap.h"
#include "arith.h"  /* For gfc_compare_expr().  */
#include "dependency.h"
#include "data.h"
#include "target-memory.h" /* for gfc_simplify_transfer */
#include "constructor.h"

/* Types used in equivalence statements.  */

typedef enum seq_type
{
  SEQ_NONDEFAULT, SEQ_NUMERIC, SEQ_CHARACTER, SEQ_MIXED
}
seq_type;

/* Stack to keep track of the nesting of blocks as we move through the
   code.  See resolve_branch() and resolve_code().  */

typedef struct code_stack
{
  struct gfc_code *head, *current;
  struct code_stack *prev;

  /* This bitmap keeps track of the targets valid for a branch from
     inside this block except for END {IF|SELECT}s of enclosing
     blocks.  */
  bitmap reachable_labels;
}
code_stack;

static code_stack *cs_base = NULL;


/* Nonzero if we're inside a FORALL block.  */

static int forall_flag;

/* Nonzero if we're inside a OpenMP WORKSHARE or PARALLEL WORKSHARE block.  */

static int omp_workshare_flag;

/* Nonzero if we are processing a formal arglist. The corresponding function
   resets the flag each time that it is read.  */
static int formal_arg_flag = 0;

/* True if we are resolving a specification expression.  */
static int specification_expr = 0;

/* The id of the last entry seen.  */
static int current_entry_id;

/* We use bitmaps to determine if a branch target is valid.  */
static bitmap_obstack labels_obstack;

/* True when simplifying a EXPR_VARIABLE argument to an inquiry function.  */
static bool inquiry_argument = false;

int
gfc_is_formal_arg (void)
{
  return formal_arg_flag;
}

/* Is the symbol host associated?  */
static bool
is_sym_host_assoc (gfc_symbol *sym, gfc_namespace *ns)
{
  for (ns = ns->parent; ns; ns = ns->parent)
    {      
      if (sym->ns == ns)
	return true;
    }

  return false;
}

/* Ensure a typespec used is valid; for instance, TYPE(t) is invalid if t is
   an ABSTRACT derived-type.  If where is not NULL, an error message with that
   locus is printed, optionally using name.  */

static gfc_try
resolve_typespec_used (gfc_typespec* ts, locus* where, const char* name)
{
  if (ts->type == BT_DERIVED && ts->u.derived->attr.abstract)
    {
      if (where)
	{
	  if (name)
	    gfc_error ("'%s' at %L is of the ABSTRACT type '%s'",
		       name, where, ts->u.derived->name);
	  else
	    gfc_error ("ABSTRACT type '%s' used at %L",
		       ts->u.derived->name, where);
	}

      return FAILURE;
    }

  return SUCCESS;
}


static void resolve_symbol (gfc_symbol *sym);
static gfc_try resolve_intrinsic (gfc_symbol *sym, locus *loc);


/* Resolve the interface for a PROCEDURE declaration or procedure pointer.  */

static gfc_try
resolve_procedure_interface (gfc_symbol *sym)
{
  if (sym->ts.interface == sym)
    {
      gfc_error ("PROCEDURE '%s' at %L may not be used as its own interface",
		 sym->name, &sym->declared_at);
      return FAILURE;
    }
  if (sym->ts.interface->attr.procedure)
    {
      gfc_error ("Interface '%s', used by procedure '%s' at %L, is declared "
		 "in a later PROCEDURE statement", sym->ts.interface->name,
		 sym->name, &sym->declared_at);
      return FAILURE;
    }

  /* Get the attributes from the interface (now resolved).  */
  if (sym->ts.interface->attr.if_source || sym->ts.interface->attr.intrinsic)
    {
      gfc_symbol *ifc = sym->ts.interface;
      resolve_symbol (ifc);

      if (ifc->attr.intrinsic)
	resolve_intrinsic (ifc, &ifc->declared_at);

      if (ifc->result)
	{
	  sym->ts = ifc->result->ts;
	  sym->result = sym;
	}
      else   
	sym->ts = ifc->ts;
      sym->ts.interface = ifc;
      sym->attr.function = ifc->attr.function;
      sym->attr.subroutine = ifc->attr.subroutine;
      gfc_copy_formal_args (sym, ifc);

      sym->attr.allocatable = ifc->attr.allocatable;
      sym->attr.pointer = ifc->attr.pointer;
      sym->attr.pure = ifc->attr.pure;
      sym->attr.elemental = ifc->attr.elemental;
      sym->attr.dimension = ifc->attr.dimension;
      sym->attr.contiguous = ifc->attr.contiguous;
      sym->attr.recursive = ifc->attr.recursive;
      sym->attr.always_explicit = ifc->attr.always_explicit;
      sym->attr.ext_attr |= ifc->attr.ext_attr;
      sym->attr.is_bind_c = ifc->attr.is_bind_c;
      /* Copy array spec.  */
      sym->as = gfc_copy_array_spec (ifc->as);
      if (sym->as)
	{
	  int i;
	  for (i = 0; i < sym->as->rank; i++)
	    {
	      gfc_expr_replace_symbols (sym->as->lower[i], sym);
	      gfc_expr_replace_symbols (sym->as->upper[i], sym);
	    }
	}
      /* Copy char length.  */
      if (ifc->ts.type == BT_CHARACTER && ifc->ts.u.cl)
	{
	  sym->ts.u.cl = gfc_new_charlen (sym->ns, ifc->ts.u.cl);
	  gfc_expr_replace_symbols (sym->ts.u.cl->length, sym);
	  if (sym->ts.u.cl->length && !sym->ts.u.cl->resolved
	      && gfc_resolve_expr (sym->ts.u.cl->length) == FAILURE)
	    return FAILURE;
	}
    }
  else if (sym->ts.interface->name[0] != '\0')
    {
      gfc_error ("Interface '%s' of procedure '%s' at %L must be explicit",
		 sym->ts.interface->name, sym->name, &sym->declared_at);
      return FAILURE;
    }

  return SUCCESS;
}


/* Resolve types of formal argument lists.  These have to be done early so that
   the formal argument lists of module procedures can be copied to the
   containing module before the individual procedures are resolved
   individually.  We also resolve argument lists of procedures in interface
   blocks because they are self-contained scoping units.

   Since a dummy argument cannot be a non-dummy procedure, the only
   resort left for untyped names are the IMPLICIT types.  */

static void
resolve_formal_arglist (gfc_symbol *proc)
{
  gfc_formal_arglist *f;
  gfc_symbol *sym;
  int i;

  if (proc->result != NULL)
    sym = proc->result;
  else
    sym = proc;

  if (gfc_elemental (proc)
      || sym->attr.pointer || sym->attr.allocatable
      || (sym->as && sym->as->rank > 0))
    {
      proc->attr.always_explicit = 1;
      sym->attr.always_explicit = 1;
    }

  formal_arg_flag = 1;

  for (f = proc->formal; f; f = f->next)
    {
      sym = f->sym;

      if (sym == NULL)
	{
	  /* Alternate return placeholder.  */
	  if (gfc_elemental (proc))
	    gfc_error ("Alternate return specifier in elemental subroutine "
		       "'%s' at %L is not allowed", proc->name,
		       &proc->declared_at);
	  if (proc->attr.function)
	    gfc_error ("Alternate return specifier in function "
		       "'%s' at %L is not allowed", proc->name,
		       &proc->declared_at);
	  continue;
	}
      else if (sym->attr.procedure && sym->ts.interface
	       && sym->attr.if_source != IFSRC_DECL)
	resolve_procedure_interface (sym);

      if (sym->attr.if_source != IFSRC_UNKNOWN)
	resolve_formal_arglist (sym);

      if (sym->attr.subroutine || sym->attr.external || sym->attr.intrinsic)
	{
	  if (gfc_pure (proc) && !gfc_pure (sym))
	    {
	      gfc_error ("Dummy procedure '%s' of PURE procedure at %L must "
			 "also be PURE", sym->name, &sym->declared_at);
	      continue;
	    }

	  if (proc->attr.implicit_pure && !gfc_pure(sym))
	    proc->attr.implicit_pure = 0;

	  if (gfc_elemental (proc))
	    {
	      gfc_error ("Dummy procedure at %L not allowed in ELEMENTAL "
			 "procedure", &sym->declared_at);
	      continue;
	    }

	  if (sym->attr.function
		&& sym->ts.type == BT_UNKNOWN
		&& sym->attr.intrinsic)
	    {
	      gfc_intrinsic_sym *isym;
	      isym = gfc_find_function (sym->name);
	      if (isym == NULL || !isym->specific)
		{
		  gfc_error ("Unable to find a specific INTRINSIC procedure "
			     "for the reference '%s' at %L", sym->name,
			     &sym->declared_at);
		}
	      sym->ts = isym->ts;
	    }

	  continue;
	}

      if (sym->ts.type == BT_UNKNOWN && !proc->attr.intrinsic
	  && (!sym->attr.function || sym->result == sym))
	gfc_set_default_type (sym, 1, sym->ns);

      gfc_resolve_array_spec (sym->as, 0);

      /* We can't tell if an array with dimension (:) is assumed or deferred
	 shape until we know if it has the pointer or allocatable attributes.
      */
      if (sym->as && sym->as->rank > 0 && sym->as->type == AS_DEFERRED
	  && !(sym->attr.pointer || sym->attr.allocatable))
	{
	  sym->as->type = AS_ASSUMED_SHAPE;
	  for (i = 0; i < sym->as->rank; i++)
	    sym->as->lower[i] = gfc_get_int_expr (gfc_default_integer_kind,
						  NULL, 1);
	}

      if ((sym->as && sym->as->rank > 0 && sym->as->type == AS_ASSUMED_SHAPE)
	  || sym->attr.pointer || sym->attr.allocatable || sym->attr.target
	  || sym->attr.optional)
	{
	  proc->attr.always_explicit = 1;
	  if (proc->result)
	    proc->result->attr.always_explicit = 1;
	}

      /* If the flavor is unknown at this point, it has to be a variable.
	 A procedure specification would have already set the type.  */

      if (sym->attr.flavor == FL_UNKNOWN)
	gfc_add_flavor (&sym->attr, FL_VARIABLE, sym->name, &sym->declared_at);

      if (gfc_pure (proc) && !sym->attr.pointer
	  && sym->attr.flavor != FL_PROCEDURE)
	{
	  if (proc->attr.function && sym->attr.intent != INTENT_IN
	      && !sym->attr.value)
	    gfc_error ("Argument '%s' of pure function '%s' at %L must be "
		       "INTENT(IN) or VALUE", sym->name, proc->name,
		       &sym->declared_at);

	  if (proc->attr.subroutine && sym->attr.intent == INTENT_UNKNOWN
	      && !sym->attr.value)
	    gfc_error ("Argument '%s' of pure subroutine '%s' at %L must "
		       "have its INTENT specified or have the VALUE "
		       "attribute", sym->name, proc->name, &sym->declared_at);
	}

      if (proc->attr.implicit_pure && !sym->attr.pointer
	  && sym->attr.flavor != FL_PROCEDURE)
	{
	  if (proc->attr.function && sym->attr.intent != INTENT_IN)
	    proc->attr.implicit_pure = 0;

	  if (proc->attr.subroutine && sym->attr.intent == INTENT_UNKNOWN)
	    proc->attr.implicit_pure = 0;
	}

      if (gfc_elemental (proc))
	{
	  /* F2008, C1289.  */
	  if (sym->attr.codimension)
	    {
	      gfc_error ("Coarray dummy argument '%s' at %L to elemental "
			 "procedure", sym->name, &sym->declared_at);
	      continue;
	    }

	  if (sym->as != NULL)
	    {
	      gfc_error ("Argument '%s' of elemental procedure at %L must "
			 "be scalar", sym->name, &sym->declared_at);
	      continue;
	    }

	  if (sym->attr.allocatable)
	    {
	      gfc_error ("Argument '%s' of elemental procedure at %L cannot "
			 "have the ALLOCATABLE attribute", sym->name,
			 &sym->declared_at);
	      continue;
	    }

	  if (sym->attr.pointer)
	    {
	      gfc_error ("Argument '%s' of elemental procedure at %L cannot "
			 "have the POINTER attribute", sym->name,
			 &sym->declared_at);
	      continue;
	    }

	  if (sym->attr.flavor == FL_PROCEDURE)
	    {
	      gfc_error ("Dummy procedure '%s' not allowed in elemental "
			 "procedure '%s' at %L", sym->name, proc->name,
			 &sym->declared_at);
	      continue;
	    }

	  if (sym->attr.intent == INTENT_UNKNOWN)
	    {
	      gfc_error ("Argument '%s' of elemental procedure '%s' at %L must "
			 "have its INTENT specified", sym->name, proc->name,
			 &sym->declared_at);
	      continue;
	    }
	}

      /* Each dummy shall be specified to be scalar.  */
      if (proc->attr.proc == PROC_ST_FUNCTION)
	{
	  if (sym->as != NULL)
	    {
	      gfc_error ("Argument '%s' of statement function at %L must "
			 "be scalar", sym->name, &sym->declared_at);
	      continue;
	    }

	  if (sym->ts.type == BT_CHARACTER)
	    {
	      gfc_charlen *cl = sym->ts.u.cl;
	      if (!cl || !cl->length || cl->length->expr_type != EXPR_CONSTANT)
		{
		  gfc_error ("Character-valued argument '%s' of statement "
			     "function at %L must have constant length",
			     sym->name, &sym->declared_at);
		  continue;
		}
	    }
	}
    }
  formal_arg_flag = 0;
}


/* Work function called when searching for symbols that have argument lists
   associated with them.  */

static void
find_arglists (gfc_symbol *sym)
{
  if (sym->attr.if_source == IFSRC_UNKNOWN || sym->ns != gfc_current_ns)
    return;

  resolve_formal_arglist (sym);
}


/* Given a namespace, resolve all formal argument lists within the namespace.
 */

static void
resolve_formal_arglists (gfc_namespace *ns)
{
  if (ns == NULL)
    return;

  gfc_traverse_ns (ns, find_arglists);
}


static void
resolve_contained_fntype (gfc_symbol *sym, gfc_namespace *ns)
{
  gfc_try t;

  /* If this namespace is not a function or an entry master function,
     ignore it.  */
  if (! sym || !(sym->attr.function || sym->attr.flavor == FL_VARIABLE)
      || sym->attr.entry_master)
    return;

  /* Try to find out of what the return type is.  */
  if (sym->result->ts.type == BT_UNKNOWN && sym->result->ts.interface == NULL)
    {
      t = gfc_set_default_type (sym->result, 0, ns);

      if (t == FAILURE && !sym->result->attr.untyped)
	{
	  if (sym->result == sym)
	    gfc_error ("Contained function '%s' at %L has no IMPLICIT type",
		       sym->name, &sym->declared_at);
	  else if (!sym->result->attr.proc_pointer)
	    gfc_error ("Result '%s' of contained function '%s' at %L has "
		       "no IMPLICIT type", sym->result->name, sym->name,
		       &sym->result->declared_at);
	  sym->result->attr.untyped = 1;
	}
    }

  /* Fortran 95 Draft Standard, page 51, Section 5.1.1.5, on the Character 
     type, lists the only ways a character length value of * can be used:
     dummy arguments of procedures, named constants, and function results
     in external functions.  Internal function results and results of module
     procedures are not on this list, ergo, not permitted.  */

  if (sym->result->ts.type == BT_CHARACTER)
    {
      gfc_charlen *cl = sym->result->ts.u.cl;
      if ((!cl || !cl->length) && !sym->result->ts.deferred)
	{
	  /* See if this is a module-procedure and adapt error message
	     accordingly.  */
	  bool module_proc;
	  gcc_assert (ns->parent && ns->parent->proc_name);
	  module_proc = (ns->parent->proc_name->attr.flavor == FL_MODULE);

	  gfc_error ("Character-valued %s '%s' at %L must not be"
		     " assumed length",
		     module_proc ? _("module procedure")
				 : _("internal function"),
		     sym->name, &sym->declared_at);
	}
    }
}


/* Add NEW_ARGS to the formal argument list of PROC, taking care not to
   introduce duplicates.  */

static void
merge_argument_lists (gfc_symbol *proc, gfc_formal_arglist *new_args)
{
  gfc_formal_arglist *f, *new_arglist;
  gfc_symbol *new_sym;

  for (; new_args != NULL; new_args = new_args->next)
    {
      new_sym = new_args->sym;
      /* See if this arg is already in the formal argument list.  */
      for (f = proc->formal; f; f = f->next)
	{
	  if (new_sym == f->sym)
	    break;
	}

      if (f)
	continue;

      /* Add a new argument.  Argument order is not important.  */
      new_arglist = gfc_get_formal_arglist ();
      new_arglist->sym = new_sym;
      new_arglist->next = proc->formal;
      proc->formal  = new_arglist;
    }
}


/* Flag the arguments that are not present in all entries.  */

static void
check_argument_lists (gfc_symbol *proc, gfc_formal_arglist *new_args)
{
  gfc_formal_arglist *f, *head;
  head = new_args;

  for (f = proc->formal; f; f = f->next)
    {
      if (f->sym == NULL)
	continue;

      for (new_args = head; new_args; new_args = new_args->next)
	{
	  if (new_args->sym == f->sym)
	    break;
	}

      if (new_args)
	continue;

      f->sym->attr.not_always_present = 1;
    }
}


/* Resolve alternate entry points.  If a symbol has multiple entry points we
   create a new master symbol for the main routine, and turn the existing
   symbol into an entry point.  */

static void
resolve_entries (gfc_namespace *ns)
{
  gfc_namespace *old_ns;
  gfc_code *c;
  gfc_symbol *proc;
  gfc_entry_list *el;
  char name[GFC_MAX_SYMBOL_LEN + 1];
  static int master_count = 0;

  if (ns->proc_name == NULL)
    return;

  /* No need to do anything if this procedure doesn't have alternate entry
     points.  */
  if (!ns->entries)
    return;

  /* We may already have resolved alternate entry points.  */
  if (ns->proc_name->attr.entry_master)
    return;

  /* If this isn't a procedure something has gone horribly wrong.  */
  gcc_assert (ns->proc_name->attr.flavor == FL_PROCEDURE);

  /* Remember the current namespace.  */
  old_ns = gfc_current_ns;

  gfc_current_ns = ns;

  /* Add the main entry point to the list of entry points.  */
  el = gfc_get_entry_list ();
  el->sym = ns->proc_name;
  el->id = 0;
  el->next = ns->entries;
  ns->entries = el;
  ns->proc_name->attr.entry = 1;

  /* If it is a module function, it needs to be in the right namespace
     so that gfc_get_fake_result_decl can gather up the results. The
     need for this arose in get_proc_name, where these beasts were
     left in their own namespace, to keep prior references linked to
     the entry declaration.*/
  if (ns->proc_name->attr.function
      && ns->parent && ns->parent->proc_name->attr.flavor == FL_MODULE)
    el->sym->ns = ns;

  /* Do the same for entries where the master is not a module
     procedure.  These are retained in the module namespace because
     of the module procedure declaration.  */
  for (el = el->next; el; el = el->next)
    if (el->sym->ns->proc_name->attr.flavor == FL_MODULE
	  && el->sym->attr.mod_proc)
      el->sym->ns = ns;
  el = ns->entries;

  /* Add an entry statement for it.  */
  c = gfc_get_code ();
  c->op = EXEC_ENTRY;
  c->ext.entry = el;
  c->next = ns->code;
  ns->code = c;

  /* Create a new symbol for the master function.  */
  /* Give the internal function a unique name (within this file).
     Also include the function name so the user has some hope of figuring
     out what is going on.  */
  snprintf (name, GFC_MAX_SYMBOL_LEN, "master.%d.%s",
	    master_count++, ns->proc_name->name);
  gfc_get_ha_symbol (name, &proc);
  gcc_assert (proc != NULL);

  gfc_add_procedure (&proc->attr, PROC_INTERNAL, proc->name, NULL);
  if (ns->proc_name->attr.subroutine)
    gfc_add_subroutine (&proc->attr, proc->name, NULL);
  else
    {
      gfc_symbol *sym;
      gfc_typespec *ts, *fts;
      gfc_array_spec *as, *fas;
      gfc_add_function (&proc->attr, proc->name, NULL);
      proc->result = proc;
      fas = ns->entries->sym->as;
      fas = fas ? fas : ns->entries->sym->result->as;
      fts = &ns->entries->sym->result->ts;
      if (fts->type == BT_UNKNOWN)
	fts = gfc_get_default_type (ns->entries->sym->result->name, NULL);
      for (el = ns->entries->next; el; el = el->next)
	{
	  ts = &el->sym->result->ts;
	  as = el->sym->as;
	  as = as ? as : el->sym->result->as;
	  if (ts->type == BT_UNKNOWN)
	    ts = gfc_get_default_type (el->sym->result->name, NULL);

	  if (! gfc_compare_types (ts, fts)
	      || (el->sym->result->attr.dimension
		  != ns->entries->sym->result->attr.dimension)
	      || (el->sym->result->attr.pointer
		  != ns->entries->sym->result->attr.pointer))
	    break;
	  else if (as && fas && ns->entries->sym->result != el->sym->result
		      && gfc_compare_array_spec (as, fas) == 0)
	    gfc_error ("Function %s at %L has entries with mismatched "
		       "array specifications", ns->entries->sym->name,
		       &ns->entries->sym->declared_at);
	  /* The characteristics need to match and thus both need to have
	     the same string length, i.e. both len=*, or both len=4.
	     Having both len=<variable> is also possible, but difficult to
	     check at compile time.  */
	  else if (ts->type == BT_CHARACTER && ts->u.cl && fts->u.cl
		   && (((ts->u.cl->length && !fts->u.cl->length)
			||(!ts->u.cl->length && fts->u.cl->length))
		       || (ts->u.cl->length
			   && ts->u.cl->length->expr_type
			      != fts->u.cl->length->expr_type)
		       || (ts->u.cl->length
			   && ts->u.cl->length->expr_type == EXPR_CONSTANT
		           && mpz_cmp (ts->u.cl->length->value.integer,
				       fts->u.cl->length->value.integer) != 0)))
	    gfc_notify_std (GFC_STD_GNU, "Extension: Function %s at %L with "
			    "entries returning variables of different "
			    "string lengths", ns->entries->sym->name,
			    &ns->entries->sym->declared_at);
	}

      if (el == NULL)
	{
	  sym = ns->entries->sym->result;
	  /* All result types the same.  */
	  proc->ts = *fts;
	  if (sym->attr.dimension)
	    gfc_set_array_spec (proc, gfc_copy_array_spec (sym->as), NULL);
	  if (sym->attr.pointer)
	    gfc_add_pointer (&proc->attr, NULL);
	}
      else
	{
	  /* Otherwise the result will be passed through a union by
	     reference.  */
	  proc->attr.mixed_entry_master = 1;
	  for (el = ns->entries; el; el = el->next)
	    {
	      sym = el->sym->result;
	      if (sym->attr.dimension)
		{
		  if (el == ns->entries)
		    gfc_error ("FUNCTION result %s can't be an array in "
			       "FUNCTION %s at %L", sym->name,
			       ns->entries->sym->name, &sym->declared_at);
		  else
		    gfc_error ("ENTRY result %s can't be an array in "
			       "FUNCTION %s at %L", sym->name,
			       ns->entries->sym->name, &sym->declared_at);
		}
	      else if (sym->attr.pointer)
		{
		  if (el == ns->entries)
		    gfc_error ("FUNCTION result %s can't be a POINTER in "
			       "FUNCTION %s at %L", sym->name,
			       ns->entries->sym->name, &sym->declared_at);
		  else
		    gfc_error ("ENTRY result %s can't be a POINTER in "
			       "FUNCTION %s at %L", sym->name,
			       ns->entries->sym->name, &sym->declared_at);
		}
	      else
		{
		  ts = &sym->ts;
		  if (ts->type == BT_UNKNOWN)
		    ts = gfc_get_default_type (sym->name, NULL);
		  switch (ts->type)
		    {
		    case BT_INTEGER:
		      if (ts->kind == gfc_default_integer_kind)
			sym = NULL;
		      break;
		    case BT_REAL:
		      if (ts->kind == gfc_default_real_kind
			  || ts->kind == gfc_default_double_kind)
			sym = NULL;
		      break;
		    case BT_COMPLEX:
		      if (ts->kind == gfc_default_complex_kind)
			sym = NULL;
		      break;
		    case BT_LOGICAL:
		      if (ts->kind == gfc_default_logical_kind)
			sym = NULL;
		      break;
		    case BT_UNKNOWN:
		      /* We will issue error elsewhere.  */
		      sym = NULL;
		      break;
		    default:
		      break;
		    }
		  if (sym)
		    {
		      if (el == ns->entries)
			gfc_error ("FUNCTION result %s can't be of type %s "
				   "in FUNCTION %s at %L", sym->name,
				   gfc_typename (ts), ns->entries->sym->name,
				   &sym->declared_at);
		      else
			gfc_error ("ENTRY result %s can't be of type %s "
				   "in FUNCTION %s at %L", sym->name,
				   gfc_typename (ts), ns->entries->sym->name,
				   &sym->declared_at);
		    }
		}
	    }
	}
    }
  proc->attr.access = ACCESS_PRIVATE;
  proc->attr.entry_master = 1;

  /* Merge all the entry point arguments.  */
  for (el = ns->entries; el; el = el->next)
    merge_argument_lists (proc, el->sym->formal);

  /* Check the master formal arguments for any that are not
     present in all entry points.  */
  for (el = ns->entries; el; el = el->next)
    check_argument_lists (proc, el->sym->formal);

  /* Use the master function for the function body.  */
  ns->proc_name = proc;

  /* Finalize the new symbols.  */
  gfc_commit_symbols ();

  /* Restore the original namespace.  */
  gfc_current_ns = old_ns;
}


/* Resolve common variables.  */
static void
resolve_common_vars (gfc_symbol *sym, bool named_common)
{
  gfc_symbol *csym = sym;

  for (; csym; csym = csym->common_next)
    {
      if (csym->value || csym->attr.data)
	{
	  if (!csym->ns->is_block_data)
	    gfc_notify_std (GFC_STD_GNU, "Variable '%s' at %L is in COMMON "
			    "but only in BLOCK DATA initialization is "
			    "allowed", csym->name, &csym->declared_at);
	  else if (!named_common)
	    gfc_notify_std (GFC_STD_GNU, "Initialized variable '%s' at %L is "
			    "in a blank COMMON but initialization is only "
			    "allowed in named common blocks", csym->name,
			    &csym->declared_at);
	}

      if (csym->ts.type != BT_DERIVED)
	continue;

      if (!(csym->ts.u.derived->attr.sequence
	    || csym->ts.u.derived->attr.is_bind_c))
	gfc_error_now ("Derived type variable '%s' in COMMON at %L "
		       "has neither the SEQUENCE nor the BIND(C) "
		       "attribute", csym->name, &csym->declared_at);
      if (csym->ts.u.derived->attr.alloc_comp)
	gfc_error_now ("Derived type variable '%s' in COMMON at %L "
		       "has an ultimate component that is "
		       "allocatable", csym->name, &csym->declared_at);
      if (gfc_has_default_initializer (csym->ts.u.derived))
	gfc_error_now ("Derived type variable '%s' in COMMON at %L "
		       "may not have default initializer", csym->name,
		       &csym->declared_at);

      if (csym->attr.flavor == FL_UNKNOWN && !csym->attr.proc_pointer)
	gfc_add_flavor (&csym->attr, FL_VARIABLE, csym->name, &csym->declared_at);
    }
}

/* Resolve common blocks.  */
static void
resolve_common_blocks (gfc_symtree *common_root)
{
  gfc_symbol *sym;

  if (common_root == NULL)
    return;

  if (common_root->left)
    resolve_common_blocks (common_root->left);
  if (common_root->right)
    resolve_common_blocks (common_root->right);

  resolve_common_vars (common_root->n.common->head, true);

  gfc_find_symbol (common_root->name, gfc_current_ns, 0, &sym);
  if (sym == NULL)
    return;

  if (sym->attr.flavor == FL_PARAMETER)
    gfc_error ("COMMON block '%s' at %L is used as PARAMETER at %L",
	       sym->name, &common_root->n.common->where, &sym->declared_at);

  if (sym->attr.intrinsic)
    gfc_error ("COMMON block '%s' at %L is also an intrinsic procedure",
	       sym->name, &common_root->n.common->where);
  else if (sym->attr.result
	   || gfc_is_function_return_value (sym, gfc_current_ns))
    gfc_notify_std (GFC_STD_F2003, "Fortran 2003: COMMON block '%s' at %L "
		    "that is also a function result", sym->name,
		    &common_root->n.common->where);
  else if (sym->attr.flavor == FL_PROCEDURE && sym->attr.proc != PROC_INTERNAL
	   && sym->attr.proc != PROC_ST_FUNCTION)
    gfc_notify_std (GFC_STD_F2003, "Fortran 2003: COMMON block '%s' at %L "
		    "that is also a global procedure", sym->name,
		    &common_root->n.common->where);
}


/* Resolve contained function types.  Because contained functions can call one
   another, they have to be worked out before any of the contained procedures
   can be resolved.

   The good news is that if a function doesn't already have a type, the only
   way it can get one is through an IMPLICIT type or a RESULT variable, because
   by definition contained functions are contained namespace they're contained
   in, not in a sibling or parent namespace.  */

static void
resolve_contained_functions (gfc_namespace *ns)
{
  gfc_namespace *child;
  gfc_entry_list *el;

  resolve_formal_arglists (ns);

  for (child = ns->contained; child; child = child->sibling)
    {
      /* Resolve alternate entry points first.  */
      resolve_entries (child);

      /* Then check function return types.  */
      resolve_contained_fntype (child->proc_name, child);
      for (el = child->entries; el; el = el->next)
	resolve_contained_fntype (el->sym, child);
    }
}


/* Resolve all of the elements of a structure constructor and make sure that
   the types are correct. The 'init' flag indicates that the given
   constructor is an initializer.  */

static gfc_try
resolve_structure_cons (gfc_expr *expr, int init)
{
  gfc_constructor *cons;
  gfc_component *comp;
  gfc_try t;
  symbol_attribute a;

  t = SUCCESS;

  if (expr->ts.type == BT_DERIVED)
    resolve_symbol (expr->ts.u.derived);

  cons = gfc_constructor_first (expr->value.constructor);
  /* A constructor may have references if it is the result of substituting a
     parameter variable.  In this case we just pull out the component we
     want.  */
  if (expr->ref)
    comp = expr->ref->u.c.sym->components;
  else
    comp = expr->ts.u.derived->components;

  /* See if the user is trying to invoke a structure constructor for one of
     the iso_c_binding derived types.  */
  if (expr->ts.type == BT_DERIVED && expr->ts.u.derived
      && expr->ts.u.derived->ts.is_iso_c && cons
      && (cons->expr == NULL || cons->expr->expr_type != EXPR_NULL))
    {
      gfc_error ("Components of structure constructor '%s' at %L are PRIVATE",
		 expr->ts.u.derived->name, &(expr->where));
      return FAILURE;
    }

  /* Return if structure constructor is c_null_(fun)prt.  */
  if (expr->ts.type == BT_DERIVED && expr->ts.u.derived
      && expr->ts.u.derived->ts.is_iso_c && cons
      && cons->expr && cons->expr->expr_type == EXPR_NULL)
    return SUCCESS;

  for (; comp && cons; comp = comp->next, cons = gfc_constructor_next (cons))
    {
      int rank;

      if (!cons->expr)
	continue;

      if (gfc_resolve_expr (cons->expr) == FAILURE)
	{
	  t = FAILURE;
	  continue;
	}

      rank = comp->as ? comp->as->rank : 0;
      if (cons->expr->expr_type != EXPR_NULL && rank != cons->expr->rank
	  && (comp->attr.allocatable || cons->expr->rank))
	{
	  gfc_error ("The rank of the element in the derived type "
		     "constructor at %L does not match that of the "
		     "component (%d/%d)", &cons->expr->where,
		     cons->expr->rank, rank);
	  t = FAILURE;
	}

      /* If we don't have the right type, try to convert it.  */

      if (!comp->attr.proc_pointer &&
	  !gfc_compare_types (&cons->expr->ts, &comp->ts))
	{
	  t = FAILURE;
	  if (strcmp (comp->name, "_extends") == 0)
	    {
	      /* Can afford to be brutal with the _extends initializer.
		 The derived type can get lost because it is PRIVATE
		 but it is not usage constrained by the standard.  */
	      cons->expr->ts = comp->ts;
	      t = SUCCESS;
	    }
	  else if (comp->attr.pointer && cons->expr->ts.type != BT_UNKNOWN)
	    gfc_error ("The element in the derived type constructor at %L, "
		       "for pointer component '%s', is %s but should be %s",
		       &cons->expr->where, comp->name,
		       gfc_basic_typename (cons->expr->ts.type),
		       gfc_basic_typename (comp->ts.type));
	  else
	    t = gfc_convert_type (cons->expr, &comp->ts, 1);
	}

      /* For strings, the length of the constructor should be the same as
	 the one of the structure, ensure this if the lengths are known at
 	 compile time and when we are dealing with PARAMETER or structure
	 constructors.  */
      if (cons->expr->ts.type == BT_CHARACTER && comp->ts.u.cl
	  && comp->ts.u.cl->length
	  && comp->ts.u.cl->length->expr_type == EXPR_CONSTANT
	  && cons->expr->ts.u.cl && cons->expr->ts.u.cl->length
	  && cons->expr->ts.u.cl->length->expr_type == EXPR_CONSTANT
	  && mpz_cmp (cons->expr->ts.u.cl->length->value.integer,
		      comp->ts.u.cl->length->value.integer) != 0)
	{
	  if (cons->expr->expr_type == EXPR_VARIABLE
	      && cons->expr->symtree->n.sym->attr.flavor == FL_PARAMETER)
	    {
	      /* Wrap the parameter in an array constructor (EXPR_ARRAY)
		 to make use of the gfc_resolve_character_array_constructor
		 machinery.  The expression is later simplified away to
		 an array of string literals.  */
	      gfc_expr *para = cons->expr;
	      cons->expr = gfc_get_expr ();
	      cons->expr->ts = para->ts;
	      cons->expr->where = para->where;
	      cons->expr->expr_type = EXPR_ARRAY;
	      cons->expr->rank = para->rank;
	      cons->expr->shape = gfc_copy_shape (para->shape, para->rank);
	      gfc_constructor_append_expr (&cons->expr->value.constructor,
					   para, &cons->expr->where);
	    }
	  if (cons->expr->expr_type == EXPR_ARRAY)
	    {
	      gfc_constructor *p;
	      p = gfc_constructor_first (cons->expr->value.constructor);
	      if (cons->expr->ts.u.cl != p->expr->ts.u.cl)
		{
		  gfc_charlen *cl, *cl2;

		  cl2 = NULL;
		  for (cl = gfc_current_ns->cl_list; cl; cl = cl->next)
		    {
		      if (cl == cons->expr->ts.u.cl)
			break;
		      cl2 = cl;
		    }

		  gcc_assert (cl);

		  if (cl2)
		    cl2->next = cl->next;

		  gfc_free_expr (cl->length);
		  gfc_free (cl);
		}

	      cons->expr->ts.u.cl = gfc_new_charlen (gfc_current_ns, NULL);
	      cons->expr->ts.u.cl->length_from_typespec = true;
	      cons->expr->ts.u.cl->length = gfc_copy_expr (comp->ts.u.cl->length);
	      gfc_resolve_character_array_constructor (cons->expr);
	    }
	}

      if (cons->expr->expr_type == EXPR_NULL
	  && !(comp->attr.pointer || comp->attr.allocatable
	       || comp->attr.proc_pointer
	       || (comp->ts.type == BT_CLASS
		   && (CLASS_DATA (comp)->attr.class_pointer
		       || CLASS_DATA (comp)->attr.allocatable))))
	{
	  t = FAILURE;
	  gfc_error ("The NULL in the derived type constructor at %L is "
		     "being applied to component '%s', which is neither "
		     "a POINTER nor ALLOCATABLE", &cons->expr->where,
		     comp->name);
	}

      if (!comp->attr.pointer || comp->attr.proc_pointer
	  || cons->expr->expr_type == EXPR_NULL)
	continue;

      a = gfc_expr_attr (cons->expr);

      if (!a.pointer && !a.target)
	{
	  t = FAILURE;
	  gfc_error ("The element in the derived type constructor at %L, "
		     "for pointer component '%s' should be a POINTER or "
		     "a TARGET", &cons->expr->where, comp->name);
	}

      if (init)
	{
	  /* F08:C461. Additional checks for pointer initialization.  */
	  if (a.allocatable)
	    {
	      t = FAILURE;
	      gfc_error ("Pointer initialization target at %L "
			 "must not be ALLOCATABLE ", &cons->expr->where);
	    }
	  if (!a.save)
	    {
	      t = FAILURE;
	      gfc_error ("Pointer initialization target at %L "
			 "must have the SAVE attribute", &cons->expr->where);
	    }
	}

      /* F2003, C1272 (3).  */
      if (gfc_pure (NULL) && cons->expr->expr_type == EXPR_VARIABLE
	  && (gfc_impure_variable (cons->expr->symtree->n.sym)
	      || gfc_is_coindexed (cons->expr)))
	{
	  t = FAILURE;
	  gfc_error ("Invalid expression in the derived type constructor for "
		     "pointer component '%s' at %L in PURE procedure",
		     comp->name, &cons->expr->where);
	}

      if (gfc_implicit_pure (NULL)
	    && cons->expr->expr_type == EXPR_VARIABLE
	    && (gfc_impure_variable (cons->expr->symtree->n.sym)
		|| gfc_is_coindexed (cons->expr)))
	gfc_current_ns->proc_name->attr.implicit_pure = 0;

    }

  return t;
}


/****************** Expression name resolution ******************/

/* Returns 0 if a symbol was not declared with a type or
   attribute declaration statement, nonzero otherwise.  */

static int
was_declared (gfc_symbol *sym)
{
  symbol_attribute a;

  a = sym->attr;

  if (!a.implicit_type && sym->ts.type != BT_UNKNOWN)
    return 1;

  if (a.allocatable || a.dimension || a.dummy || a.external || a.intrinsic
      || a.optional || a.pointer || a.save || a.target || a.volatile_
      || a.value || a.access != ACCESS_UNKNOWN || a.intent != INTENT_UNKNOWN
      || a.asynchronous || a.codimension)
    return 1;

  return 0;
}


/* Determine if a symbol is generic or not.  */

static int
generic_sym (gfc_symbol *sym)
{
  gfc_symbol *s;

  if (sym->attr.generic ||
      (sym->attr.intrinsic && gfc_generic_intrinsic (sym->name)))
    return 1;

  if (was_declared (sym) || sym->ns->parent == NULL)
    return 0;

  gfc_find_symbol (sym->name, sym->ns->parent, 1, &s);
  
  if (s != NULL)
    {
      if (s == sym)
	return 0;
      else
	return generic_sym (s);
    }

  return 0;
}


/* Determine if a symbol is specific or not.  */

static int
specific_sym (gfc_symbol *sym)
{
  gfc_symbol *s;

  if (sym->attr.if_source == IFSRC_IFBODY
      || sym->attr.proc == PROC_MODULE
      || sym->attr.proc == PROC_INTERNAL
      || sym->attr.proc == PROC_ST_FUNCTION
      || (sym->attr.intrinsic && gfc_specific_intrinsic (sym->name))
      || sym->attr.external)
    return 1;

  if (was_declared (sym) || sym->ns->parent == NULL)
    return 0;

  gfc_find_symbol (sym->name, sym->ns->parent, 1, &s);

  return (s == NULL) ? 0 : specific_sym (s);
}


/* Figure out if the procedure is specific, generic or unknown.  */

typedef enum
{ PTYPE_GENERIC = 1, PTYPE_SPECIFIC, PTYPE_UNKNOWN }
proc_type;

static proc_type
procedure_kind (gfc_symbol *sym)
{
  if (generic_sym (sym))
    return PTYPE_GENERIC;

  if (specific_sym (sym))
    return PTYPE_SPECIFIC;

  return PTYPE_UNKNOWN;
}

/* Check references to assumed size arrays.  The flag need_full_assumed_size
   is nonzero when matching actual arguments.  */

static int need_full_assumed_size = 0;

static bool
check_assumed_size_reference (gfc_symbol *sym, gfc_expr *e)
{
  if (need_full_assumed_size || !(sym->as && sym->as->type == AS_ASSUMED_SIZE))
      return false;

  /* FIXME: The comparison "e->ref->u.ar.type == AR_FULL" is wrong.
     What should it be?  */
  if ((e->ref->u.ar.end[e->ref->u.ar.as->rank - 1] == NULL)
	  && (e->ref->u.ar.as->type == AS_ASSUMED_SIZE)
	       && (e->ref->u.ar.type == AR_FULL))
    {
      gfc_error ("The upper bound in the last dimension must "
		 "appear in the reference to the assumed size "
		 "array '%s' at %L", sym->name, &e->where);
      return true;
    }
  return false;
}


/* Look for bad assumed size array references in argument expressions
  of elemental and array valued intrinsic procedures.  Since this is
  called from procedure resolution functions, it only recurses at
  operators.  */

static bool
resolve_assumed_size_actual (gfc_expr *e)
{
  if (e == NULL)
   return false;

  switch (e->expr_type)
    {
    case EXPR_VARIABLE:
      if (e->symtree && check_assumed_size_reference (e->symtree->n.sym, e))
	return true;
      break;

    case EXPR_OP:
      if (resolve_assumed_size_actual (e->value.op.op1)
	  || resolve_assumed_size_actual (e->value.op.op2))
	return true;
      break;

    default:
      break;
    }
  return false;
}


/* Check a generic procedure, passed as an actual argument, to see if
   there is a matching specific name.  If none, it is an error, and if
   more than one, the reference is ambiguous.  */
static int
count_specific_procs (gfc_expr *e)
{
  int n;
  gfc_interface *p;
  gfc_symbol *sym;
	
  n = 0;
  sym = e->symtree->n.sym;

  for (p = sym->generic; p; p = p->next)
    if (strcmp (sym->name, p->sym->name) == 0)
      {
	e->symtree = gfc_find_symtree (p->sym->ns->sym_root,
				       sym->name);
	n++;
      }

  if (n > 1)
    gfc_error ("'%s' at %L is ambiguous", e->symtree->n.sym->name,
	       &e->where);

  if (n == 0)
    gfc_error ("GENERIC procedure '%s' is not allowed as an actual "
	       "argument at %L", sym->name, &e->where);

  return n;
}


/* See if a call to sym could possibly be a not allowed RECURSION because of
   a missing RECURIVE declaration.  This means that either sym is the current
   context itself, or sym is the parent of a contained procedure calling its
   non-RECURSIVE containing procedure.
   This also works if sym is an ENTRY.  */

static bool
is_illegal_recursion (gfc_symbol* sym, gfc_namespace* context)
{
  gfc_symbol* proc_sym;
  gfc_symbol* context_proc;
  gfc_namespace* real_context;

  if (sym->attr.flavor == FL_PROGRAM)
    return false;

  gcc_assert (sym->attr.flavor == FL_PROCEDURE);

  /* If we've got an ENTRY, find real procedure.  */
  if (sym->attr.entry && sym->ns->entries)
    proc_sym = sym->ns->entries->sym;
  else
    proc_sym = sym;

  /* If sym is RECURSIVE, all is well of course.  */
  if (proc_sym->attr.recursive || gfc_option.flag_recursive)
    return false;

  /* Find the context procedure's "real" symbol if it has entries.
     We look for a procedure symbol, so recurse on the parents if we don't
     find one (like in case of a BLOCK construct).  */
  for (real_context = context; ; real_context = real_context->parent)
    {
      /* We should find something, eventually!  */
      gcc_assert (real_context);

      context_proc = (real_context->entries ? real_context->entries->sym
					    : real_context->proc_name);

      /* In some special cases, there may not be a proc_name, like for this
	 invalid code:
	 real(bad_kind()) function foo () ...
	 when checking the call to bad_kind ().
	 In these cases, we simply return here and assume that the
	 call is ok.  */
      if (!context_proc)
	return false;

      if (context_proc->attr.flavor != FL_LABEL)
	break;
    }

  /* A call from sym's body to itself is recursion, of course.  */
  if (context_proc == proc_sym)
    return true;

  /* The same is true if context is a contained procedure and sym the
     containing one.  */
  if (context_proc->attr.contained)
    {
      gfc_symbol* parent_proc;

      gcc_assert (context->parent);
      parent_proc = (context->parent->entries ? context->parent->entries->sym
					      : context->parent->proc_name);

      if (parent_proc == proc_sym)
	return true;
    }

  return false;
}


/* Resolve an intrinsic procedure: Set its function/subroutine attribute,
   its typespec and formal argument list.  */

static gfc_try
resolve_intrinsic (gfc_symbol *sym, locus *loc)
{
  gfc_intrinsic_sym* isym = NULL;
  const char* symstd;

  if (sym->formal)
    return SUCCESS;

  /* We already know this one is an intrinsic, so we don't call
     gfc_is_intrinsic for full checking but rather use gfc_find_function and
     gfc_find_subroutine directly to check whether it is a function or
     subroutine.  */

  if (sym->intmod_sym_id)
    isym = gfc_intrinsic_function_by_id ((gfc_isym_id) sym->intmod_sym_id);
  else
    isym = gfc_find_function (sym->name);

  if (isym)
    {
      if (sym->ts.type != BT_UNKNOWN && gfc_option.warn_surprising
	  && !sym->attr.implicit_type)
	gfc_warning ("Type specified for intrinsic function '%s' at %L is"
		      " ignored", sym->name, &sym->declared_at);

      if (!sym->attr.function &&
	  gfc_add_function (&sym->attr, sym->name, loc) == FAILURE)
	return FAILURE;

      sym->ts = isym->ts;
    }
  else if ((isym = gfc_find_subroutine (sym->name)))
    {
      if (sym->ts.type != BT_UNKNOWN && !sym->attr.implicit_type)
	{
	  gfc_error ("Intrinsic subroutine '%s' at %L shall not have a type"
		      " specifier", sym->name, &sym->declared_at);
	  return FAILURE;
	}

      if (!sym->attr.subroutine &&
	  gfc_add_subroutine (&sym->attr, sym->name, loc) == FAILURE)
	return FAILURE;
    }
  else
    {
      gfc_error ("'%s' declared INTRINSIC at %L does not exist", sym->name,
		 &sym->declared_at);
      return FAILURE;
    }

  gfc_copy_formal_args_intr (sym, isym);

  /* Check it is actually available in the standard settings.  */
  if (gfc_check_intrinsic_standard (isym, &symstd, false, sym->declared_at)
      == FAILURE)
    {
      gfc_error ("The intrinsic '%s' declared INTRINSIC at %L is not"
		 " available in the current standard settings but %s.  Use"
		 " an appropriate -std=* option or enable -fall-intrinsics"
		 " in order to use it.",
		 sym->name, &sym->declared_at, symstd);
      return FAILURE;
    }

  return SUCCESS;
}


/* Resolve a procedure expression, like passing it to a called procedure or as
   RHS for a procedure pointer assignment.  */

static gfc_try
resolve_procedure_expression (gfc_expr* expr)
{
  gfc_symbol* sym;

  if (expr->expr_type != EXPR_VARIABLE)
    return SUCCESS;
  gcc_assert (expr->symtree);

  sym = expr->symtree->n.sym;

  if (sym->attr.intrinsic)
    resolve_intrinsic (sym, &expr->where);

  if (sym->attr.flavor != FL_PROCEDURE
      || (sym->attr.function && sym->result == sym))
    return SUCCESS;

  /* A non-RECURSIVE procedure that is used as procedure expression within its
     own body is in danger of being called recursively.  */
  if (is_illegal_recursion (sym, gfc_current_ns))
    gfc_warning ("Non-RECURSIVE procedure '%s' at %L is possibly calling"
		 " itself recursively.  Declare it RECURSIVE or use"
		 " -frecursive", sym->name, &expr->where);
  
  return SUCCESS;
}


/* Resolve an actual argument list.  Most of the time, this is just
   resolving the expressions in the list.
   The exception is that we sometimes have to decide whether arguments
   that look like procedure arguments are really simple variable
   references.  */

static gfc_try
resolve_actual_arglist (gfc_actual_arglist *arg, procedure_type ptype,
			bool no_formal_args)
{
  gfc_symbol *sym;
  gfc_symtree *parent_st;
  gfc_expr *e;
  int save_need_full_assumed_size;

  for (; arg; arg = arg->next)
    {
      e = arg->expr;
      if (e == NULL)
	{
	  /* Check the label is a valid branching target.  */
	  if (arg->label)
	    {
	      if (arg->label->defined == ST_LABEL_UNKNOWN)
		{
		  gfc_error ("Label %d referenced at %L is never defined",
			     arg->label->value, &arg->label->where);
		  return FAILURE;
		}
	    }
	  continue;
	}

      if (e->expr_type == EXPR_VARIABLE
	    && e->symtree->n.sym->attr.generic
	    && no_formal_args
	    && count_specific_procs (e) != 1)
	return FAILURE;

      if (e->ts.type != BT_PROCEDURE)
	{
	  save_need_full_assumed_size = need_full_assumed_size;
	  if (e->expr_type != EXPR_VARIABLE)
	    need_full_assumed_size = 0;
	  if (gfc_resolve_expr (e) != SUCCESS)
	    return FAILURE;
	  need_full_assumed_size = save_need_full_assumed_size;
	  goto argument_list;
	}

      /* See if the expression node should really be a variable reference.  */

      sym = e->symtree->n.sym;

      if (sym->attr.flavor == FL_PROCEDURE
	  || sym->attr.intrinsic
	  || sym->attr.external)
	{
	  int actual_ok;

	  /* If a procedure is not already determined to be something else
	     check if it is intrinsic.  */
	  if (!sym->attr.intrinsic
	      && !(sym->attr.external || sym->attr.use_assoc
		   || sym->attr.if_source == IFSRC_IFBODY)
	      && gfc_is_intrinsic (sym, sym->attr.subroutine, e->where))
	    sym->attr.intrinsic = 1;

	  if (sym->attr.proc == PROC_ST_FUNCTION)
	    {
	      gfc_error ("Statement function '%s' at %L is not allowed as an "
			 "actual argument", sym->name, &e->where);
	    }

	  actual_ok = gfc_intrinsic_actual_ok (sym->name,
					       sym->attr.subroutine);
	  if (sym->attr.intrinsic && actual_ok == 0)
	    {
	      gfc_error ("Intrinsic '%s' at %L is not allowed as an "
			 "actual argument", sym->name, &e->where);
	    }

	  if (sym->attr.contained && !sym->attr.use_assoc
	      && sym->ns->proc_name->attr.flavor != FL_MODULE)
	    {
	      if (gfc_notify_std (GFC_STD_F2008,
				  "Fortran 2008: Internal procedure '%s' is"
				  " used as actual argument at %L",
				  sym->name, &e->where) == FAILURE)
		return FAILURE;
	    }

	  if (sym->attr.elemental && !sym->attr.intrinsic)
	    {
	      gfc_error ("ELEMENTAL non-INTRINSIC procedure '%s' is not "
			 "allowed as an actual argument at %L", sym->name,
			 &e->where);
	    }

	  /* Check if a generic interface has a specific procedure
	    with the same name before emitting an error.  */
	  if (sym->attr.generic && count_specific_procs (e) != 1)
	    return FAILURE;
	  
	  /* Just in case a specific was found for the expression.  */
	  sym = e->symtree->n.sym;

	  /* If the symbol is the function that names the current (or
	     parent) scope, then we really have a variable reference.  */

	  if (gfc_is_function_return_value (sym, sym->ns))
	    goto got_variable;

	  /* If all else fails, see if we have a specific intrinsic.  */
	  if (sym->ts.type == BT_UNKNOWN && sym->attr.intrinsic)
	    {
	      gfc_intrinsic_sym *isym;

	      isym = gfc_find_function (sym->name);
	      if (isym == NULL || !isym->specific)
		{
		  gfc_error ("Unable to find a specific INTRINSIC procedure "
			     "for the reference '%s' at %L", sym->name,
			     &e->where);
		  return FAILURE;
		}
	      sym->ts = isym->ts;
	      sym->attr.intrinsic = 1;
	      sym->attr.function = 1;
	    }

	  if (gfc_resolve_expr (e) == FAILURE)
	    return FAILURE;
	  goto argument_list;
	}

      /* See if the name is a module procedure in a parent unit.  */

      if (was_declared (sym) || sym->ns->parent == NULL)
	goto got_variable;

      if (gfc_find_sym_tree (sym->name, sym->ns->parent, 1, &parent_st))
	{
	  gfc_error ("Symbol '%s' at %L is ambiguous", sym->name, &e->where);
	  return FAILURE;
	}

      if (parent_st == NULL)
	goto got_variable;

      sym = parent_st->n.sym;
      e->symtree = parent_st;		/* Point to the right thing.  */

      if (sym->attr.flavor == FL_PROCEDURE
	  || sym->attr.intrinsic
	  || sym->attr.external)
	{
	  if (gfc_resolve_expr (e) == FAILURE)
	    return FAILURE;
	  goto argument_list;
	}

    got_variable:
      e->expr_type = EXPR_VARIABLE;
      e->ts = sym->ts;
      if (sym->as != NULL)
	{
	  e->rank = sym->as->rank;
	  e->ref = gfc_get_ref ();
	  e->ref->type = REF_ARRAY;
	  e->ref->u.ar.type = AR_FULL;
	  e->ref->u.ar.as = sym->as;
	}

      /* Expressions are assigned a default ts.type of BT_PROCEDURE in
	 primary.c (match_actual_arg). If above code determines that it
	 is a  variable instead, it needs to be resolved as it was not
	 done at the beginning of this function.  */
      save_need_full_assumed_size = need_full_assumed_size;
      if (e->expr_type != EXPR_VARIABLE)
	need_full_assumed_size = 0;
      if (gfc_resolve_expr (e) != SUCCESS)
	return FAILURE;
      need_full_assumed_size = save_need_full_assumed_size;

    argument_list:
      /* Check argument list functions %VAL, %LOC and %REF.  There is
	 nothing to do for %REF.  */
      if (arg->name && arg->name[0] == '%')
	{
	  if (strncmp ("%VAL", arg->name, 4) == 0)
	    {
	      if (e->ts.type == BT_CHARACTER || e->ts.type == BT_DERIVED)
		{
		  gfc_error ("By-value argument at %L is not of numeric "
			     "type", &e->where);
		  return FAILURE;
		}

	      if (e->rank)
		{
		  gfc_error ("By-value argument at %L cannot be an array or "
			     "an array section", &e->where);
		return FAILURE;
		}

	      /* Intrinsics are still PROC_UNKNOWN here.  However,
		 since same file external procedures are not resolvable
		 in gfortran, it is a good deal easier to leave them to
		 intrinsic.c.  */
	      if (ptype != PROC_UNKNOWN
		  && ptype != PROC_DUMMY
		  && ptype != PROC_EXTERNAL
		  && ptype != PROC_MODULE)
		{
		  gfc_error ("By-value argument at %L is not allowed "
			     "in this context", &e->where);
		  return FAILURE;
		}
	    }

	  /* Statement functions have already been excluded above.  */
	  else if (strncmp ("%LOC", arg->name, 4) == 0
		   && e->ts.type == BT_PROCEDURE)
	    {
	      if (e->symtree->n.sym->attr.proc == PROC_INTERNAL)
		{
		  gfc_error ("Passing internal procedure at %L by location "
			     "not allowed", &e->where);
		  return FAILURE;
		}
	    }
	}

      /* Fortran 2008, C1237.  */
      if (e->expr_type == EXPR_VARIABLE && gfc_is_coindexed (e)
          && gfc_has_ultimate_pointer (e))
        {
          gfc_error ("Coindexed actual argument at %L with ultimate pointer "
		     "component", &e->where);
          return FAILURE;
        }
    }

  return SUCCESS;
}


/* Do the checks of the actual argument list that are specific to elemental
   procedures.  If called with c == NULL, we have a function, otherwise if
   expr == NULL, we have a subroutine.  */

static gfc_try
resolve_elemental_actual (gfc_expr *expr, gfc_code *c)
{
  gfc_actual_arglist *arg0;
  gfc_actual_arglist *arg;
  gfc_symbol *esym = NULL;
  gfc_intrinsic_sym *isym = NULL;
  gfc_expr *e = NULL;
  gfc_intrinsic_arg *iformal = NULL;
  gfc_formal_arglist *eformal = NULL;
  bool formal_optional = false;
  bool set_by_optional = false;
  int i;
  int rank = 0;

  /* Is this an elemental procedure?  */
  if (expr && expr->value.function.actual != NULL)
    {
      if (expr->value.function.esym != NULL
	  && expr->value.function.esym->attr.elemental)
	{
	  arg0 = expr->value.function.actual;
	  esym = expr->value.function.esym;
	}
      else if (expr->value.function.isym != NULL
	       && expr->value.function.isym->elemental)
	{
	  arg0 = expr->value.function.actual;
	  isym = expr->value.function.isym;
	}
      else
	return SUCCESS;
    }
  else if (c && c->ext.actual != NULL)
    {
      arg0 = c->ext.actual;
      
      if (c->resolved_sym)
	esym = c->resolved_sym;
      else
	esym = c->symtree->n.sym;
      gcc_assert (esym);

      if (!esym->attr.elemental)
	return SUCCESS;
    }
  else
    return SUCCESS;

  /* The rank of an elemental is the rank of its array argument(s).  */
  for (arg = arg0; arg; arg = arg->next)
    {
      if (arg->expr != NULL && arg->expr->rank > 0)
	{
	  rank = arg->expr->rank;
	  if (arg->expr->expr_type == EXPR_VARIABLE
	      && arg->expr->symtree->n.sym->attr.optional)
	    set_by_optional = true;

	  /* Function specific; set the result rank and shape.  */
	  if (expr)
	    {
	      expr->rank = rank;
	      if (!expr->shape && arg->expr->shape)
		{
		  expr->shape = gfc_get_shape (rank);
		  for (i = 0; i < rank; i++)
		    mpz_init_set (expr->shape[i], arg->expr->shape[i]);
		}
	    }
	  break;
	}
    }

  /* If it is an array, it shall not be supplied as an actual argument
     to an elemental procedure unless an array of the same rank is supplied
     as an actual argument corresponding to a nonoptional dummy argument of
     that elemental procedure(12.4.1.5).  */
  formal_optional = false;
  if (isym)
    iformal = isym->formal;
  else
    eformal = esym->formal;

  for (arg = arg0; arg; arg = arg->next)
    {
      if (eformal)
	{
	  if (eformal->sym && eformal->sym->attr.optional)
	    formal_optional = true;
	  eformal = eformal->next;
	}
      else if (isym && iformal)
	{
	  if (iformal->optional)
	    formal_optional = true;
	  iformal = iformal->next;
	}
      else if (isym)
	formal_optional = true;

      if (pedantic && arg->expr != NULL
	  && arg->expr->expr_type == EXPR_VARIABLE
	  && arg->expr->symtree->n.sym->attr.optional
	  && formal_optional
	  && arg->expr->rank
	  && (set_by_optional || arg->expr->rank != rank)
	  && !(isym && isym->id == GFC_ISYM_CONVERSION))
	{
	  gfc_warning ("'%s' at %L is an array and OPTIONAL; IF IT IS "
		       "MISSING, it cannot be the actual argument of an "
		       "ELEMENTAL procedure unless there is a non-optional "
		       "argument with the same rank (12.4.1.5)",
		       arg->expr->symtree->n.sym->name, &arg->expr->where);
	  return FAILURE;
	}
    }

  for (arg = arg0; arg; arg = arg->next)
    {
      if (arg->expr == NULL || arg->expr->rank == 0)
	continue;

      /* Being elemental, the last upper bound of an assumed size array
	 argument must be present.  */
      if (resolve_assumed_size_actual (arg->expr))
	return FAILURE;

      /* Elemental procedure's array actual arguments must conform.  */
      if (e != NULL)
	{
	  if (gfc_check_conformance (arg->expr, e,
				     "elemental procedure") == FAILURE)
	    return FAILURE;
	}
      else
	e = arg->expr;
    }

  /* INTENT(OUT) is only allowed for subroutines; if any actual argument
     is an array, the intent inout/out variable needs to be also an array.  */
  if (rank > 0 && esym && expr == NULL)
    for (eformal = esym->formal, arg = arg0; arg && eformal;
	 arg = arg->next, eformal = eformal->next)
      if ((eformal->sym->attr.intent == INTENT_OUT
	   || eformal->sym->attr.intent == INTENT_INOUT)
	  && arg->expr && arg->expr->rank == 0)
	{
	  gfc_error ("Actual argument at %L for INTENT(%s) dummy '%s' of "
		     "ELEMENTAL subroutine '%s' is a scalar, but another "
		     "actual argument is an array", &arg->expr->where,
		     (eformal->sym->attr.intent == INTENT_OUT) ? "OUT"
		     : "INOUT", eformal->sym->name, esym->name);
	  return FAILURE;
	}
  return SUCCESS;
}


/* This function does the checking of references to global procedures
   as defined in sections 18.1 and 14.1, respectively, of the Fortran
   77 and 95 standards.  It checks for a gsymbol for the name, making
   one if it does not already exist.  If it already exists, then the
   reference being resolved must correspond to the type of gsymbol.
   Otherwise, the new symbol is equipped with the attributes of the
   reference.  The corresponding code that is called in creating
   global entities is parse.c.

   In addition, for all but -std=legacy, the gsymbols are used to
   check the interfaces of external procedures from the same file.
   The namespace of the gsymbol is resolved and then, once this is
   done the interface is checked.  */


static bool
not_in_recursive (gfc_symbol *sym, gfc_namespace *gsym_ns)
{
  if (!gsym_ns->proc_name->attr.recursive)
    return true;

  if (sym->ns == gsym_ns)
    return false;

  if (sym->ns->parent && sym->ns->parent == gsym_ns)
    return false;

  return true;
}

static bool
not_entry_self_reference  (gfc_symbol *sym, gfc_namespace *gsym_ns)
{
  if (gsym_ns->entries)
    {
      gfc_entry_list *entry = gsym_ns->entries;

      for (; entry; entry = entry->next)
	{
	  if (strcmp (sym->name, entry->sym->name) == 0)
	    {
	      if (strcmp (gsym_ns->proc_name->name,
			  sym->ns->proc_name->name) == 0)
		return false;

	      if (sym->ns->parent
		  && strcmp (gsym_ns->proc_name->name,
			     sym->ns->parent->proc_name->name) == 0)
		return false;
	    }
	}
    }
  return true;
}

static void
resolve_global_procedure (gfc_symbol *sym, locus *where,
			  gfc_actual_arglist **actual, int sub)
{
  gfc_gsymbol * gsym;
  gfc_namespace *ns;
  enum gfc_symbol_type type;

  type = sub ? GSYM_SUBROUTINE : GSYM_FUNCTION;

  gsym = gfc_get_gsymbol (sym->name);

  if ((gsym->type != GSYM_UNKNOWN && gsym->type != type))
    gfc_global_used (gsym, where);

  if (gfc_option.flag_whole_file
	&& (sym->attr.if_source == IFSRC_UNKNOWN
	    || sym->attr.if_source == IFSRC_IFBODY)
	&& gsym->type != GSYM_UNKNOWN
	&& gsym->ns
	&& gsym->ns->resolved != -1
	&& gsym->ns->proc_name
	&& not_in_recursive (sym, gsym->ns)
	&& not_entry_self_reference (sym, gsym->ns))
    {
      gfc_symbol *def_sym;

      /* Resolve the gsymbol namespace if needed.  */
      if (!gsym->ns->resolved)
	{
	  gfc_dt_list *old_dt_list;
	  struct gfc_omp_saved_state old_omp_state;

	  /* Stash away derived types so that the backend_decls do not
	     get mixed up.  */
	  old_dt_list = gfc_derived_types;
	  gfc_derived_types = NULL;
	  /* And stash away openmp state.  */
	  gfc_omp_save_and_clear_state (&old_omp_state);

	  gfc_resolve (gsym->ns);

	  /* Store the new derived types with the global namespace.  */
	  if (gfc_derived_types)
	    gsym->ns->derived_types = gfc_derived_types;

	  /* Restore the derived types of this namespace.  */
	  gfc_derived_types = old_dt_list;
	  /* And openmp state.  */
	  gfc_omp_restore_state (&old_omp_state);
	}

      /* Make sure that translation for the gsymbol occurs before
	 the procedure currently being resolved.  */
      ns = gfc_global_ns_list;
      for (; ns && ns != gsym->ns; ns = ns->sibling)
	{
	  if (ns->sibling == gsym->ns)
	    {
	      ns->sibling = gsym->ns->sibling;
	      gsym->ns->sibling = gfc_global_ns_list;
	      gfc_global_ns_list = gsym->ns;
	      break;
	    }
	}

      def_sym = gsym->ns->proc_name;
      if (def_sym->attr.entry_master)
	{
	  gfc_entry_list *entry;
	  for (entry = gsym->ns->entries; entry; entry = entry->next)
	    if (strcmp (entry->sym->name, sym->name) == 0)
	      {
		def_sym = entry->sym;
		break;
	      }
	}

      /* Differences in constant character lengths.  */
      if (sym->attr.function && sym->ts.type == BT_CHARACTER)
	{
	  long int l1 = 0, l2 = 0;
	  gfc_charlen *cl1 = sym->ts.u.cl;
	  gfc_charlen *cl2 = def_sym->ts.u.cl;

	  if (cl1 != NULL
	      && cl1->length != NULL
	      && cl1->length->expr_type == EXPR_CONSTANT)
	    l1 = mpz_get_si (cl1->length->value.integer);

  	  if (cl2 != NULL
	      && cl2->length != NULL
	      && cl2->length->expr_type == EXPR_CONSTANT)
	    l2 = mpz_get_si (cl2->length->value.integer);

	  if (l1 && l2 && l1 != l2)
	    gfc_error ("Character length mismatch in return type of "
		       "function '%s' at %L (%ld/%ld)", sym->name,
		       &sym->declared_at, l1, l2);
	}

     /* Type mismatch of function return type and expected type.  */
     if (sym->attr.function
	 && !gfc_compare_types (&sym->ts, &def_sym->ts))
	gfc_error ("Return type mismatch of function '%s' at %L (%s/%s)",
		   sym->name, &sym->declared_at, gfc_typename (&sym->ts),
		   gfc_typename (&def_sym->ts));

      if (def_sym->formal && sym->attr.if_source != IFSRC_IFBODY)
	{
	  gfc_formal_arglist *arg = def_sym->formal;
	  for ( ; arg; arg = arg->next)
	    if (!arg->sym)
	      continue;
	    /* F2003, 12.3.1.1 (2a); F2008, 12.4.2.2 (2a)  */
	    else if (arg->sym->attr.allocatable
		     || arg->sym->attr.asynchronous
		     || arg->sym->attr.optional
		     || arg->sym->attr.pointer
		     || arg->sym->attr.target
		     || arg->sym->attr.value
		     || arg->sym->attr.volatile_)
	      {
		gfc_error ("Dummy argument '%s' of procedure '%s' at %L "
			   "has an attribute that requires an explicit "
			   "interface for this procedure", arg->sym->name,
			   sym->name, &sym->declared_at);
		break;
	      }
	    /* F2003, 12.3.1.1 (2b); F2008, 12.4.2.2 (2b)  */
	    else if (arg->sym && arg->sym->as
		     && arg->sym->as->type == AS_ASSUMED_SHAPE)
	      {
		gfc_error ("Procedure '%s' at %L with assumed-shape dummy "
			   "argument '%s' must have an explicit interface",
			   sym->name, &sym->declared_at, arg->sym->name);
		break;
	      }
	    /* F2008, 12.4.2.2 (2c)  */
	    else if (arg->sym->attr.codimension)
	      {
		gfc_error ("Procedure '%s' at %L with coarray dummy argument "
			   "'%s' must have an explicit interface",
			   sym->name, &sym->declared_at, arg->sym->name);
		break;
	      }
	    /* F2003, 12.3.1.1 (2c); F2008, 12.4.2.2 (2d)   */
	    else if (false) /* TODO: is a parametrized derived type  */
	      {
		gfc_error ("Procedure '%s' at %L with parametrized derived "
			   "type argument '%s' must have an explicit "
			   "interface", sym->name, &sym->declared_at,
			   arg->sym->name);
		break;
	      }
	    /* F2003, 12.3.1.1 (2d); F2008, 12.4.2.2 (2e)   */
	    else if (arg->sym->ts.type == BT_CLASS)
	      {
		gfc_error ("Procedure '%s' at %L with polymorphic dummy "
			   "argument '%s' must have an explicit interface",
			   sym->name, &sym->declared_at, arg->sym->name);
		break;
	      }
	}

      if (def_sym->attr.function)
	{
	  /* F2003, 12.3.1.1 (3a); F2008, 12.4.2.2 (3a) */
	  if (def_sym->as && def_sym->as->rank
	      && (!sym->as || sym->as->rank != def_sym->as->rank))
	    gfc_error ("The reference to function '%s' at %L either needs an "
		       "explicit INTERFACE or the rank is incorrect", sym->name,
		       where);

	  /* F2003, 12.3.1.1 (3b); F2008, 12.4.2.2 (3b) */
	  if ((def_sym->result->attr.pointer
	       || def_sym->result->attr.allocatable)
	       && (sym->attr.if_source != IFSRC_IFBODY
		   || def_sym->result->attr.pointer
			!= sym->result->attr.pointer
		   || def_sym->result->attr.allocatable
			!= sym->result->attr.allocatable))
	    gfc_error ("Function '%s' at %L with a POINTER or ALLOCATABLE "
		       "result must have an explicit interface", sym->name,
		       where);

	  /* F2003, 12.3.1.1 (3c); F2008, 12.4.2.2 (3c)  */
	  if (sym->ts.type == BT_CHARACTER && sym->attr.if_source != IFSRC_IFBODY
	      && def_sym->ts.u.cl->length != NULL)
	    {
	      gfc_charlen *cl = sym->ts.u.cl;

	      if (!sym->attr.entry_master && sym->attr.if_source == IFSRC_UNKNOWN
		  && cl && cl->length && cl->length->expr_type != EXPR_CONSTANT)
		{
		  gfc_error ("Nonconstant character-length function '%s' at %L "
			     "must have an explicit interface", sym->name,
			     &sym->declared_at);
		}
	    }
	}

      /* F2003, 12.3.1.1 (4); F2008, 12.4.2.2 (4) */
      if (def_sym->attr.elemental && !sym->attr.elemental)
	{
	  gfc_error ("ELEMENTAL procedure '%s' at %L must have an explicit "
		     "interface", sym->name, &sym->declared_at);
	}

      /* F2003, 12.3.1.1 (5); F2008, 12.4.2.2 (5) */
      if (def_sym->attr.is_bind_c && !sym->attr.is_bind_c)
	{
	  gfc_error ("Procedure '%s' at %L with BIND(C) attribute must have "
		     "an explicit interface", sym->name, &sym->declared_at);
	}

      if (gfc_option.flag_whole_file == 1
	  || ((gfc_option.warn_std & GFC_STD_LEGACY)
	      && !(gfc_option.warn_std & GFC_STD_GNU)))
	gfc_errors_to_warnings (1);

      if (sym->attr.if_source != IFSRC_IFBODY)  
	gfc_procedure_use (def_sym, actual, where);

      gfc_errors_to_warnings (0);
    }

  if (gsym->type == GSYM_UNKNOWN)
    {
      gsym->type = type;
      gsym->where = *where;
    }

  gsym->used = 1;
}


/************* Function resolution *************/

/* Resolve a function call known to be generic.
   Section 14.1.2.4.1.  */

static match
resolve_generic_f0 (gfc_expr *expr, gfc_symbol *sym)
{
  gfc_symbol *s;

  if (sym->attr.generic)
    {
      s = gfc_search_interface (sym->generic, 0, &expr->value.function.actual);
      if (s != NULL)
	{
	  expr->value.function.name = s->name;
	  expr->value.function.esym = s;

	  if (s->ts.type != BT_UNKNOWN)
	    expr->ts = s->ts;
	  else if (s->result != NULL && s->result->ts.type != BT_UNKNOWN)
	    expr->ts = s->result->ts;

	  if (s->as != NULL)
	    expr->rank = s->as->rank;
	  else if (s->result != NULL && s->result->as != NULL)
	    expr->rank = s->result->as->rank;

	  gfc_set_sym_referenced (expr->value.function.esym);

	  return MATCH_YES;
	}

      /* TODO: Need to search for elemental references in generic
	 interface.  */
    }

  if (sym->attr.intrinsic)
    return gfc_intrinsic_func_interface (expr, 0);

  return MATCH_NO;
}


static gfc_try
resolve_generic_f (gfc_expr *expr)
{
  gfc_symbol *sym;
  match m;

  sym = expr->symtree->n.sym;

  for (;;)
    {
      m = resolve_generic_f0 (expr, sym);
      if (m == MATCH_YES)
	return SUCCESS;
      else if (m == MATCH_ERROR)
	return FAILURE;

generic:
      if (sym->ns->parent == NULL)
	break;
      gfc_find_symbol (sym->name, sym->ns->parent, 1, &sym);

      if (sym == NULL)
	break;
      if (!generic_sym (sym))
	goto generic;
    }

  /* Last ditch attempt.  See if the reference is to an intrinsic
     that possesses a matching interface.  14.1.2.4  */
  if (sym && !gfc_is_intrinsic (sym, 0, expr->where))
    {
      gfc_error ("There is no specific function for the generic '%s' at %L",
		 expr->symtree->n.sym->name, &expr->where);
      return FAILURE;
    }

  m = gfc_intrinsic_func_interface (expr, 0);
  if (m == MATCH_YES)
    return SUCCESS;
  if (m == MATCH_NO)
    gfc_error ("Generic function '%s' at %L is not consistent with a "
	       "specific intrinsic interface", expr->symtree->n.sym->name,
	       &expr->where);

  return FAILURE;
}


/* Resolve a function call known to be specific.  */

static match
resolve_specific_f0 (gfc_symbol *sym, gfc_expr *expr)
{
  match m;

  if (sym->attr.external || sym->attr.if_source == IFSRC_IFBODY)
    {
      if (sym->attr.dummy)
	{
	  sym->attr.proc = PROC_DUMMY;
	  goto found;
	}

      sym->attr.proc = PROC_EXTERNAL;
      goto found;
    }

  if (sym->attr.proc == PROC_MODULE
      || sym->attr.proc == PROC_ST_FUNCTION
      || sym->attr.proc == PROC_INTERNAL)
    goto found;

  if (sym->attr.intrinsic)
    {
      m = gfc_intrinsic_func_interface (expr, 1);
      if (m == MATCH_YES)
	return MATCH_YES;
      if (m == MATCH_NO)
	gfc_error ("Function '%s' at %L is INTRINSIC but is not compatible "
		   "with an intrinsic", sym->name, &expr->where);

      return MATCH_ERROR;
    }

  return MATCH_NO;

found:
  gfc_procedure_use (sym, &expr->value.function.actual, &expr->where);

  if (sym->result)
    expr->ts = sym->result->ts;
  else
    expr->ts = sym->ts;
  expr->value.function.name = sym->name;
  expr->value.function.esym = sym;
  if (sym->as != NULL)
    expr->rank = sym->as->rank;

  return MATCH_YES;
}


static gfc_try
resolve_specific_f (gfc_expr *expr)
{
  gfc_symbol *sym;
  match m;

  sym = expr->symtree->n.sym;

  for (;;)
    {
      m = resolve_specific_f0 (sym, expr);
      if (m == MATCH_YES)
	return SUCCESS;
      if (m == MATCH_ERROR)
	return FAILURE;

      if (sym->ns->parent == NULL)
	break;

      gfc_find_symbol (sym->name, sym->ns->parent, 1, &sym);

      if (sym == NULL)
	break;
    }

  gfc_error ("Unable to resolve the specific function '%s' at %L",
	     expr->symtree->n.sym->name, &expr->where);

  return SUCCESS;
}


/* Resolve a procedure call not known to be generic nor specific.  */

static gfc_try
resolve_unknown_f (gfc_expr *expr)
{
  gfc_symbol *sym;
  gfc_typespec *ts;

  sym = expr->symtree->n.sym;

  if (sym->attr.dummy)
    {
      sym->attr.proc = PROC_DUMMY;
      expr->value.function.name = sym->name;
      goto set_type;
    }

  /* See if we have an intrinsic function reference.  */

  if (gfc_is_intrinsic (sym, 0, expr->where))
    {
      if (gfc_intrinsic_func_interface (expr, 1) == MATCH_YES)
	return SUCCESS;
      return FAILURE;
    }

  /* The reference is to an external name.  */

  sym->attr.proc = PROC_EXTERNAL;
  expr->value.function.name = sym->name;
  expr->value.function.esym = expr->symtree->n.sym;

  if (sym->as != NULL)
    expr->rank = sym->as->rank;

  /* Type of the expression is either the type of the symbol or the
     default type of the symbol.  */

set_type:
  gfc_procedure_use (sym, &expr->value.function.actual, &expr->where);

  if (sym->ts.type != BT_UNKNOWN)
    expr->ts = sym->ts;
  else
    {
      ts = gfc_get_default_type (sym->name, sym->ns);

      if (ts->type == BT_UNKNOWN)
	{
	  gfc_error ("Function '%s' at %L has no IMPLICIT type",
		     sym->name, &expr->where);
	  return FAILURE;
	}
      else
	expr->ts = *ts;
    }

  return SUCCESS;
}


/* Return true, if the symbol is an external procedure.  */
static bool
is_external_proc (gfc_symbol *sym)
{
  if (!sym->attr.dummy && !sym->attr.contained
	&& !(sym->attr.intrinsic
	      || gfc_is_intrinsic (sym, sym->attr.subroutine, sym->declared_at))
	&& sym->attr.proc != PROC_ST_FUNCTION
	&& !sym->attr.proc_pointer
	&& !sym->attr.use_assoc
	&& sym->name)
    return true;

  return false;
}


/* Figure out if a function reference is pure or not.  Also set the name
   of the function for a potential error message.  Return nonzero if the
   function is PURE, zero if not.  */
static int
pure_stmt_function (gfc_expr *, gfc_symbol *);

static int
pure_function (gfc_expr *e, const char **name)
{
  int pure;

  *name = NULL;

  if (e->symtree != NULL
        && e->symtree->n.sym != NULL
        && e->symtree->n.sym->attr.proc == PROC_ST_FUNCTION)
    return pure_stmt_function (e, e->symtree->n.sym);

  if (e->value.function.esym)
    {
      pure = gfc_pure (e->value.function.esym);
      *name = e->value.function.esym->name;
    }
  else if (e->value.function.isym)
    {
      pure = e->value.function.isym->pure
	     || e->value.function.isym->elemental;
      *name = e->value.function.isym->name;
    }
  else
    {
      /* Implicit functions are not pure.  */
      pure = 0;
      *name = e->value.function.name;
    }

  return pure;
}


static bool
impure_stmt_fcn (gfc_expr *e, gfc_symbol *sym,
		 int *f ATTRIBUTE_UNUSED)
{
  const char *name;

  /* Don't bother recursing into other statement functions
     since they will be checked individually for purity.  */
  if (e->expr_type != EXPR_FUNCTION
	|| !e->symtree
	|| e->symtree->n.sym == sym
	|| e->symtree->n.sym->attr.proc == PROC_ST_FUNCTION)
    return false;

  return pure_function (e, &name) ? false : true;
}


static int
pure_stmt_function (gfc_expr *e, gfc_symbol *sym)
{
  return gfc_traverse_expr (e, sym, impure_stmt_fcn, 0) ? 0 : 1;
}


static gfc_try
is_scalar_expr_ptr (gfc_expr *expr)
{
  gfc_try retval = SUCCESS;
  gfc_ref *ref;
  int start;
  int end;

  /* See if we have a gfc_ref, which means we have a substring, array
     reference, or a component.  */
  if (expr->ref != NULL)
    {
      ref = expr->ref;
      while (ref->next != NULL)
        ref = ref->next;

      switch (ref->type)
        {
        case REF_SUBSTRING:
          if (ref->u.ss.start == NULL || ref->u.ss.end == NULL
	      || gfc_dep_compare_expr (ref->u.ss.start, ref->u.ss.end) != 0)
	    retval = FAILURE;
          break;

        case REF_ARRAY:
          if (ref->u.ar.type == AR_ELEMENT)
            retval = SUCCESS;
          else if (ref->u.ar.type == AR_FULL)
            {
              /* The user can give a full array if the array is of size 1.  */
              if (ref->u.ar.as != NULL
                  && ref->u.ar.as->rank == 1
                  && ref->u.ar.as->type == AS_EXPLICIT
                  && ref->u.ar.as->lower[0] != NULL
                  && ref->u.ar.as->lower[0]->expr_type == EXPR_CONSTANT
                  && ref->u.ar.as->upper[0] != NULL
                  && ref->u.ar.as->upper[0]->expr_type == EXPR_CONSTANT)
                {
		  /* If we have a character string, we need to check if
		     its length is one.	 */
		  if (expr->ts.type == BT_CHARACTER)
		    {
		      if (expr->ts.u.cl == NULL
			  || expr->ts.u.cl->length == NULL
			  || mpz_cmp_si (expr->ts.u.cl->length->value.integer, 1)
			  != 0)
                        retval = FAILURE;
		    }
		  else
		    {
		      /* We have constant lower and upper bounds.  If the
			 difference between is 1, it can be considered a
			 scalar.  
			 FIXME: Use gfc_dep_compare_expr instead.  */
		      start = (int) mpz_get_si
				(ref->u.ar.as->lower[0]->value.integer);
		      end = (int) mpz_get_si
				(ref->u.ar.as->upper[0]->value.integer);
		      if (end - start + 1 != 1)
			retval = FAILURE;
		   }
                }
              else
                retval = FAILURE;
            }
          else
            retval = FAILURE;
          break;
        default:
          retval = SUCCESS;
          break;
        }
    }
  else if (expr->ts.type == BT_CHARACTER && expr->rank == 0)
    {
      /* Character string.  Make sure it's of length 1.  */
      if (expr->ts.u.cl == NULL
          || expr->ts.u.cl->length == NULL
          || mpz_cmp_si (expr->ts.u.cl->length->value.integer, 1) != 0)
        retval = FAILURE;
    }
  else if (expr->rank != 0)
    retval = FAILURE;

  return retval;
}


/* Match one of the iso_c_binding functions (c_associated or c_loc)
   and, in the case of c_associated, set the binding label based on
   the arguments.  */

static gfc_try
gfc_iso_c_func_interface (gfc_symbol *sym, gfc_actual_arglist *args,
                          gfc_symbol **new_sym)
{
  char name[GFC_MAX_SYMBOL_LEN + 1];
  char binding_label[GFC_MAX_BINDING_LABEL_LEN + 1];
  int optional_arg = 0;
  gfc_try retval = SUCCESS;
  gfc_symbol *args_sym;
  gfc_typespec *arg_ts;
  symbol_attribute arg_attr;

  if (args->expr->expr_type == EXPR_CONSTANT
      || args->expr->expr_type == EXPR_OP
      || args->expr->expr_type == EXPR_NULL)
    {
      gfc_error ("Argument to '%s' at %L is not a variable",
		 sym->name, &(args->expr->where));
      return FAILURE;
    }

  args_sym = args->expr->symtree->n.sym;

  /* The typespec for the actual arg should be that stored in the expr
     and not necessarily that of the expr symbol (args_sym), because
     the actual expression could be a part-ref of the expr symbol.  */
  arg_ts = &(args->expr->ts);
  arg_attr = gfc_expr_attr (args->expr);
    
  if (sym->intmod_sym_id == ISOCBINDING_ASSOCIATED)
    {
      /* If the user gave two args then they are providing something for
	 the optional arg (the second cptr).  Therefore, set the name and
	 binding label to the c_associated for two cptrs.  Otherwise,
	 set c_associated to expect one cptr.  */
      if (args->next)
	{
	  /* two args.  */
	  sprintf (name, "%s_2", sym->name);
	  sprintf (binding_label, "%s_2", sym->binding_label);
	  optional_arg = 1;
	}
      else
	{
	  /* one arg.  */
	  sprintf (name, "%s_1", sym->name);
	  sprintf (binding_label, "%s_1", sym->binding_label);
	  optional_arg = 0;
	}

      /* Get a new symbol for the version of c_associated that
	 will get called.  */
      *new_sym = get_iso_c_sym (sym, name, binding_label, optional_arg);
    }
  else if (sym->intmod_sym_id == ISOCBINDING_LOC
	   || sym->intmod_sym_id == ISOCBINDING_FUNLOC)
    {
      sprintf (name, "%s", sym->name);
      sprintf (binding_label, "%s", sym->binding_label);

      /* Error check the call.  */
      if (args->next != NULL)
        {
          gfc_error_now ("More actual than formal arguments in '%s' "
                         "call at %L", name, &(args->expr->where));
          retval = FAILURE;
        }
      else if (sym->intmod_sym_id == ISOCBINDING_LOC)
        {
	  gfc_ref *ref;
	  bool seen_section;

          /* Make sure we have either the target or pointer attribute.  */
	  if (!arg_attr.target && !arg_attr.pointer)
            {
              gfc_error_now ("Parameter '%s' to '%s' at %L must be either "
                             "a TARGET or an associated pointer",
                             args_sym->name,
                             sym->name, &(args->expr->where));
              retval = FAILURE;
            }

	  if (gfc_is_coindexed (args->expr))
	    {
	      gfc_error_now ("Coindexed argument not permitted"
			     " in '%s' call at %L", name,
			     &(args->expr->where));
	      retval = FAILURE;
	    }

	  /* Follow references to make sure there are no array
	     sections.  */
	  seen_section = false;

	  for (ref=args->expr->ref; ref; ref = ref->next)
	    {
	      if (ref->type == REF_ARRAY)
		{
		  if (ref->u.ar.type == AR_SECTION)
		    seen_section = true;

		  if (ref->u.ar.type != AR_ELEMENT)
		    {
		      gfc_ref *r;
		      for (r = ref->next; r; r=r->next)
			if (r->type == REF_COMPONENT)
			  {
			    gfc_error_now ("Array section not permitted"
					   " in '%s' call at %L", name,
					   &(args->expr->where));
			    retval = FAILURE;
			    break;
			  }
		    }
		}
	    }

	  if (seen_section && retval == SUCCESS)
	    gfc_warning ("Array section in '%s' call at %L", name,
			 &(args->expr->where));
			 
          /* See if we have interoperable type and type param.  */
          if (verify_c_interop (arg_ts) == SUCCESS
              || gfc_check_any_c_kind (arg_ts) == SUCCESS)
            {
              if (args_sym->attr.target == 1)
                {
                  /* Case 1a, section 15.1.2.5, J3/04-007: variable that
                     has the target attribute and is interoperable.  */
                  /* Case 1b, section 15.1.2.5, J3/04-007: allocated
                     allocatable variable that has the TARGET attribute and
                     is not an array of zero size.  */
                  if (args_sym->attr.allocatable == 1)
                    {
                      if (args_sym->attr.dimension != 0 
                          && (args_sym->as && args_sym->as->rank == 0))
                        {
                          gfc_error_now ("Allocatable variable '%s' used as a "
                                         "parameter to '%s' at %L must not be "
                                         "an array of zero size",
                                         args_sym->name, sym->name,
                                         &(args->expr->where));
                          retval = FAILURE;
                        }
                    }
                  else
		    {
		      /* A non-allocatable target variable with C
			 interoperable type and type parameters must be
			 interoperable.	 */
		      if (args_sym && args_sym->attr.dimension)
			{
			  if (args_sym->as->type == AS_ASSUMED_SHAPE)
			    {
			      gfc_error ("Assumed-shape array '%s' at %L "
					 "cannot be an argument to the "
					 "procedure '%s' because "
					 "it is not C interoperable",
					 args_sym->name,
					 &(args->expr->where), sym->name);
			      retval = FAILURE;
			    }
			  else if (args_sym->as->type == AS_DEFERRED)
			    {
			      gfc_error ("Deferred-shape array '%s' at %L "
					 "cannot be an argument to the "
					 "procedure '%s' because "
					 "it is not C interoperable",
					 args_sym->name,
					 &(args->expr->where), sym->name);
			      retval = FAILURE;
			    }
			}
                              
                      /* Make sure it's not a character string.  Arrays of
                         any type should be ok if the variable is of a C
                         interoperable type.  */
		      if (arg_ts->type == BT_CHARACTER)
			if (arg_ts->u.cl != NULL
			    && (arg_ts->u.cl->length == NULL
				|| arg_ts->u.cl->length->expr_type
				   != EXPR_CONSTANT
				|| mpz_cmp_si
				    (arg_ts->u.cl->length->value.integer, 1)
				   != 0)
			    && is_scalar_expr_ptr (args->expr) != SUCCESS)
			  {
			    gfc_error_now ("CHARACTER argument '%s' to '%s' "
					   "at %L must have a length of 1",
					   args_sym->name, sym->name,
					   &(args->expr->where));
			    retval = FAILURE;
			  }
                    }
                }
              else if (arg_attr.pointer
		       && is_scalar_expr_ptr (args->expr) != SUCCESS)
                {
                  /* Case 1c, section 15.1.2.5, J3/04-007: an associated
                     scalar pointer.  */
                  gfc_error_now ("Argument '%s' to '%s' at %L must be an "
                                 "associated scalar POINTER", args_sym->name,
                                 sym->name, &(args->expr->where));
                  retval = FAILURE;
                }
            }
          else
            {
              /* The parameter is not required to be C interoperable.  If it
                 is not C interoperable, it must be a nonpolymorphic scalar
                 with no length type parameters.  It still must have either
                 the pointer or target attribute, and it can be
                 allocatable (but must be allocated when c_loc is called).  */
              if (args->expr->rank != 0 
                  && is_scalar_expr_ptr (args->expr) != SUCCESS)
                {
                  gfc_error_now ("Parameter '%s' to '%s' at %L must be a "
                                 "scalar", args_sym->name, sym->name,
                                 &(args->expr->where));
                  retval = FAILURE;
                }
              else if (arg_ts->type == BT_CHARACTER 
                       && is_scalar_expr_ptr (args->expr) != SUCCESS)
                {
                  gfc_error_now ("CHARACTER argument '%s' to '%s' at "
                                 "%L must have a length of 1",
                                 args_sym->name, sym->name,
                                 &(args->expr->where));
                  retval = FAILURE;
                }
	      else if (arg_ts->type == BT_CLASS)
		{
		  gfc_error_now ("Parameter '%s' to '%s' at %L must not be "
				 "polymorphic", args_sym->name, sym->name,
				 &(args->expr->where));
		  retval = FAILURE;
		}
            }
        }
      else if (sym->intmod_sym_id == ISOCBINDING_FUNLOC)
        {
          if (args_sym->attr.flavor != FL_PROCEDURE)
            {
              /* TODO: Update this error message to allow for procedure
                 pointers once they are implemented.  */
              gfc_error_now ("Parameter '%s' to '%s' at %L must be a "
                             "procedure",
                             args_sym->name, sym->name,
                             &(args->expr->where));
              retval = FAILURE;
            }
	  else if (args_sym->attr.is_bind_c != 1)
	    {
	      gfc_error_now ("Parameter '%s' to '%s' at %L must be "
			     "BIND(C)",
			     args_sym->name, sym->name,
			     &(args->expr->where));
	      retval = FAILURE;
	    }
        }
      
      /* for c_loc/c_funloc, the new symbol is the same as the old one */
      *new_sym = sym;
    }
  else
    {
      gfc_internal_error ("gfc_iso_c_func_interface(): Unhandled "
			  "iso_c_binding function: '%s'!\n", sym->name);
    }

  return retval;
}


/* Resolve a function call, which means resolving the arguments, then figuring
   out which entity the name refers to.  */

static gfc_try
resolve_function (gfc_expr *expr)
{
  gfc_actual_arglist *arg;
  gfc_symbol *sym;
  const char *name;
  gfc_try t;
  int temp;
  procedure_type p = PROC_INTRINSIC;
  bool no_formal_args;

  sym = NULL;
  if (expr->symtree)
    sym = expr->symtree->n.sym;

  /* If this is a procedure pointer component, it has already been resolved.  */
  if (gfc_is_proc_ptr_comp (expr, NULL))
    return SUCCESS;
  
  if (sym && sym->attr.intrinsic
      && resolve_intrinsic (sym, &expr->where) == FAILURE)
    return FAILURE;

  if (sym && (sym->attr.flavor == FL_VARIABLE || sym->attr.subroutine))
    {
      gfc_error ("'%s' at %L is not a function", sym->name, &expr->where);
      return FAILURE;
    }

  /* If this ia a deferred TBP with an abstract interface (which may
     of course be referenced), expr->value.function.esym will be set.  */
  if (sym && sym->attr.abstract && !expr->value.function.esym)
    {
      gfc_error ("ABSTRACT INTERFACE '%s' must not be referenced at %L",
		 sym->name, &expr->where);
      return FAILURE;
    }

  /* Switch off assumed size checking and do this again for certain kinds
     of procedure, once the procedure itself is resolved.  */
  need_full_assumed_size++;

  if (expr->symtree && expr->symtree->n.sym)
    p = expr->symtree->n.sym->attr.proc;

  if (expr->value.function.isym && expr->value.function.isym->inquiry)
    inquiry_argument = true;
  no_formal_args = sym && is_external_proc (sym) && sym->formal == NULL;

  if (resolve_actual_arglist (expr->value.function.actual,
			      p, no_formal_args) == FAILURE)
    {
      inquiry_argument = false;
      return FAILURE;
    }

  inquiry_argument = false;
 
  /* Need to setup the call to the correct c_associated, depending on
     the number of cptrs to user gives to compare.  */
  if (sym && sym->attr.is_iso_c == 1)
    {
      if (gfc_iso_c_func_interface (sym, expr->value.function.actual, &sym)
          == FAILURE)
        return FAILURE;
      
      /* Get the symtree for the new symbol (resolved func).
         the old one will be freed later, when it's no longer used.  */
      gfc_find_sym_tree (sym->name, sym->ns, 1, &(expr->symtree));
    }
  
  /* Resume assumed_size checking.  */
  need_full_assumed_size--;

  /* If the procedure is external, check for usage.  */
  if (sym && is_external_proc (sym))
    resolve_global_procedure (sym, &expr->where,
			      &expr->value.function.actual, 0);

  if (sym && sym->ts.type == BT_CHARACTER
      && sym->ts.u.cl
      && sym->ts.u.cl->length == NULL
      && !sym->attr.dummy
      && !sym->ts.deferred
      && expr->value.function.esym == NULL
      && !sym->attr.contained)
    {
      /* Internal procedures are taken care of in resolve_contained_fntype.  */
      gfc_error ("Function '%s' is declared CHARACTER(*) and cannot "
		 "be used at %L since it is not a dummy argument",
		 sym->name, &expr->where);
      return FAILURE;
    }

  /* See if function is already resolved.  */

  if (expr->value.function.name != NULL)
    {
      if (expr->ts.type == BT_UNKNOWN)
	expr->ts = sym->ts;
      t = SUCCESS;
    }
  else
    {
      /* Apply the rules of section 14.1.2.  */

      switch (procedure_kind (sym))
	{
	case PTYPE_GENERIC:
	  t = resolve_generic_f (expr);
	  break;

	case PTYPE_SPECIFIC:
	  t = resolve_specific_f (expr);
	  break;

	case PTYPE_UNKNOWN:
	  t = resolve_unknown_f (expr);
	  break;

	default:
	  gfc_internal_error ("resolve_function(): bad function type");
	}
    }

  /* If the expression is still a function (it might have simplified),
     then we check to see if we are calling an elemental function.  */

  if (expr->expr_type != EXPR_FUNCTION)
    return t;

  temp = need_full_assumed_size;
  need_full_assumed_size = 0;

  if (resolve_elemental_actual (expr, NULL) == FAILURE)
    return FAILURE;

  if (omp_workshare_flag
      && expr->value.function.esym
      && ! gfc_elemental (expr->value.function.esym))
    {
      gfc_error ("User defined non-ELEMENTAL function '%s' at %L not allowed "
		 "in WORKSHARE construct", expr->value.function.esym->name,
		 &expr->where);
      t = FAILURE;
    }

#define GENERIC_ID expr->value.function.isym->id
  else if (expr->value.function.actual != NULL
	   && expr->value.function.isym != NULL
	   && GENERIC_ID != GFC_ISYM_LBOUND
	   && GENERIC_ID != GFC_ISYM_LEN
	   && GENERIC_ID != GFC_ISYM_LOC
	   && GENERIC_ID != GFC_ISYM_PRESENT)
    {
      /* Array intrinsics must also have the last upper bound of an
	 assumed size array argument.  UBOUND and SIZE have to be
	 excluded from the check if the second argument is anything
	 than a constant.  */

      for (arg = expr->value.function.actual; arg; arg = arg->next)
	{
	  if ((GENERIC_ID == GFC_ISYM_UBOUND || GENERIC_ID == GFC_ISYM_SIZE)
	      && arg->next != NULL && arg->next->expr)
	    {
	      if (arg->next->expr->expr_type != EXPR_CONSTANT)
		break;

	      if (arg->next->name && strncmp(arg->next->name, "kind", 4) == 0)
		break;

	      if ((int)mpz_get_si (arg->next->expr->value.integer)
			< arg->expr->rank)
		break;
	    }

	  if (arg->expr != NULL
	      && arg->expr->rank > 0
	      && resolve_assumed_size_actual (arg->expr))
	    return FAILURE;
	}
    }
#undef GENERIC_ID

  need_full_assumed_size = temp;
  name = NULL;

  if (!pure_function (expr, &name) && name)
    {
      if (forall_flag)
	{
	  gfc_error ("reference to non-PURE function '%s' at %L inside a "
		     "FORALL %s", name, &expr->where,
		     forall_flag == 2 ? "mask" : "block");
	  t = FAILURE;
	}
      else if (gfc_pure (NULL))
	{
	  gfc_error ("Function reference to '%s' at %L is to a non-PURE "
		     "procedure within a PURE procedure", name, &expr->where);
	  t = FAILURE;
	}
    }

  if (!pure_function (expr, &name) && name && gfc_implicit_pure (NULL))
    gfc_current_ns->proc_name->attr.implicit_pure = 0;

  /* Functions without the RECURSIVE attribution are not allowed to
   * call themselves.  */
  if (expr->value.function.esym && !expr->value.function.esym->attr.recursive)
    {
      gfc_symbol *esym;
      esym = expr->value.function.esym;

      if (is_illegal_recursion (esym, gfc_current_ns))
      {
	if (esym->attr.entry && esym->ns->entries)
	  gfc_error ("ENTRY '%s' at %L cannot be called recursively, as"
		     " function '%s' is not RECURSIVE",
		     esym->name, &expr->where, esym->ns->entries->sym->name);
	else
	  gfc_error ("Function '%s' at %L cannot be called recursively, as it"
		     " is not RECURSIVE", esym->name, &expr->where);

	t = FAILURE;
      }
    }

  /* Character lengths of use associated functions may contains references to
     symbols not referenced from the current program unit otherwise.  Make sure
     those symbols are marked as referenced.  */

  if (expr->ts.type == BT_CHARACTER && expr->value.function.esym
      && expr->value.function.esym->attr.use_assoc)
    {
      gfc_expr_set_symbols_referenced (expr->ts.u.cl->length);
    }

  /* Make sure that the expression has a typespec that works.  */
  if (expr->ts.type == BT_UNKNOWN)
    {
      if (expr->symtree->n.sym->result
	    && expr->symtree->n.sym->result->ts.type != BT_UNKNOWN
	    && !expr->symtree->n.sym->result->attr.proc_pointer)
	expr->ts = expr->symtree->n.sym->result->ts;
    }

  return t;
}


/************* Subroutine resolution *************/

static void
pure_subroutine (gfc_code *c, gfc_symbol *sym)
{
  if (gfc_pure (sym))
    return;

  if (forall_flag)
    gfc_error ("Subroutine call to '%s' in FORALL block at %L is not PURE",
	       sym->name, &c->loc);
  else if (gfc_pure (NULL))
    gfc_error ("Subroutine call to '%s' at %L is not PURE", sym->name,
	       &c->loc);
}


static match
resolve_generic_s0 (gfc_code *c, gfc_symbol *sym)
{
  gfc_symbol *s;

  if (sym->attr.generic)
    {
      s = gfc_search_interface (sym->generic, 1, &c->ext.actual);
      if (s != NULL)
	{
	  c->resolved_sym = s;
	  pure_subroutine (c, s);
	  return MATCH_YES;
	}

      /* TODO: Need to search for elemental references in generic interface.  */
    }

  if (sym->attr.intrinsic)
    return gfc_intrinsic_sub_interface (c, 0);

  return MATCH_NO;
}


static gfc_try
resolve_generic_s (gfc_code *c)
{
  gfc_symbol *sym;
  match m;

  sym = c->symtree->n.sym;

  for (;;)
    {
      m = resolve_generic_s0 (c, sym);
      if (m == MATCH_YES)
	return SUCCESS;
      else if (m == MATCH_ERROR)
	return FAILURE;

generic:
      if (sym->ns->parent == NULL)
	break;
      gfc_find_symbol (sym->name, sym->ns->parent, 1, &sym);

      if (sym == NULL)
	break;
      if (!generic_sym (sym))
	goto generic;
    }

  /* Last ditch attempt.  See if the reference is to an intrinsic
     that possesses a matching interface.  14.1.2.4  */
  sym = c->symtree->n.sym;

  if (!gfc_is_intrinsic (sym, 1, c->loc))
    {
      gfc_error ("There is no specific subroutine for the generic '%s' at %L",
		 sym->name, &c->loc);
      return FAILURE;
    }

  m = gfc_intrinsic_sub_interface (c, 0);
  if (m == MATCH_YES)
    return SUCCESS;
  if (m == MATCH_NO)
    gfc_error ("Generic subroutine '%s' at %L is not consistent with an "
	       "intrinsic subroutine interface", sym->name, &c->loc);

  return FAILURE;
}


/* Set the name and binding label of the subroutine symbol in the call
   expression represented by 'c' to include the type and kind of the
   second parameter.  This function is for resolving the appropriate
   version of c_f_pointer() and c_f_procpointer().  For example, a
   call to c_f_pointer() for a default integer pointer could have a
   name of c_f_pointer_i4.  If no second arg exists, which is an error
   for these two functions, it defaults to the generic symbol's name
   and binding label.  */

static void
set_name_and_label (gfc_code *c, gfc_symbol *sym,
                    char *name, char *binding_label)
{
  gfc_expr *arg = NULL;
  char type;
  int kind;

  /* The second arg of c_f_pointer and c_f_procpointer determines
     the type and kind for the procedure name.  */
  arg = c->ext.actual->next->expr;

  if (arg != NULL)
    {
      /* Set up the name to have the given symbol's name,
         plus the type and kind.  */
      /* a derived type is marked with the type letter 'u' */
      if (arg->ts.type == BT_DERIVED)
        {
          type = 'd';
          kind = 0; /* set the kind as 0 for now */
        }
      else
        {
          type = gfc_type_letter (arg->ts.type);
          kind = arg->ts.kind;
        }

      if (arg->ts.type == BT_CHARACTER)
	/* Kind info for character strings not needed.	*/
	kind = 0;

      sprintf (name, "%s_%c%d", sym->name, type, kind);
      /* Set up the binding label as the given symbol's label plus
         the type and kind.  */
      sprintf (binding_label, "%s_%c%d", sym->binding_label, type, kind);
    }
  else
    {
      /* If the second arg is missing, set the name and label as
         was, cause it should at least be found, and the missing
         arg error will be caught by compare_parameters().  */
      sprintf (name, "%s", sym->name);
      sprintf (binding_label, "%s", sym->binding_label);
    }
   
  return;
}


/* Resolve a generic version of the iso_c_binding procedure given
   (sym) to the specific one based on the type and kind of the
   argument(s).  Currently, this function resolves c_f_pointer() and
   c_f_procpointer based on the type and kind of the second argument
   (FPTR).  Other iso_c_binding procedures aren't specially handled.
   Upon successfully exiting, c->resolved_sym will hold the resolved
   symbol.  Returns MATCH_ERROR if an error occurred; MATCH_YES
   otherwise.  */

match
gfc_iso_c_sub_interface (gfc_code *c, gfc_symbol *sym)
{
  gfc_symbol *new_sym;
  /* this is fine, since we know the names won't use the max */
  char name[GFC_MAX_SYMBOL_LEN + 1];
  char binding_label[GFC_MAX_BINDING_LABEL_LEN + 1];
  /* default to success; will override if find error */
  match m = MATCH_YES;

  /* Make sure the actual arguments are in the necessary order (based on the 
     formal args) before resolving.  */
  gfc_procedure_use (sym, &c->ext.actual, &(c->loc));

  if ((sym->intmod_sym_id == ISOCBINDING_F_POINTER) ||
      (sym->intmod_sym_id == ISOCBINDING_F_PROCPOINTER))
    {
      set_name_and_label (c, sym, name, binding_label);
      
      if (sym->intmod_sym_id == ISOCBINDING_F_POINTER)
	{
	  if (c->ext.actual != NULL && c->ext.actual->next != NULL)
	    {
	      /* Make sure we got a third arg if the second arg has non-zero
		 rank.	We must also check that the type and rank are
		 correct since we short-circuit this check in
		 gfc_procedure_use() (called above to sort actual args).  */
	      if (c->ext.actual->next->expr->rank != 0)
		{
		  if(c->ext.actual->next->next == NULL 
		     || c->ext.actual->next->next->expr == NULL)
		    {
		      m = MATCH_ERROR;
		      gfc_error ("Missing SHAPE parameter for call to %s "
				 "at %L", sym->name, &(c->loc));
		    }
		  else if (c->ext.actual->next->next->expr->ts.type
			   != BT_INTEGER
			   || c->ext.actual->next->next->expr->rank != 1)
		    {
		      m = MATCH_ERROR;
		      gfc_error ("SHAPE parameter for call to %s at %L must "
				 "be a rank 1 INTEGER array", sym->name,
				 &(c->loc));
		    }
		}
	    }
	}
      
      if (m != MATCH_ERROR)
	{
	  /* the 1 means to add the optional arg to formal list */
	  new_sym = get_iso_c_sym (sym, name, binding_label, 1);
	 
	  /* for error reporting, say it's declared where the original was */
	  new_sym->declared_at = sym->declared_at;
	}
    }
  else
    {
      /* no differences for c_loc or c_funloc */
      new_sym = sym;
    }

  /* set the resolved symbol */
  if (m != MATCH_ERROR)
    c->resolved_sym = new_sym;
  else
    c->resolved_sym = sym;
  
  return m;
}


/* Resolve a subroutine call known to be specific.  */

static match
resolve_specific_s0 (gfc_code *c, gfc_symbol *sym)
{
  match m;

  if(sym->attr.is_iso_c)
    {
      m = gfc_iso_c_sub_interface (c,sym);
      return m;
    }
  
  if (sym->attr.external || sym->attr.if_source == IFSRC_IFBODY)
    {
      if (sym->attr.dummy)
	{
	  sym->attr.proc = PROC_DUMMY;
	  goto found;
	}

      sym->attr.proc = PROC_EXTERNAL;
      goto found;
    }

  if (sym->attr.proc == PROC_MODULE || sym->attr.proc == PROC_INTERNAL)
    goto found;

  if (sym->attr.intrinsic)
    {
      m = gfc_intrinsic_sub_interface (c, 1);
      if (m == MATCH_YES)
	return MATCH_YES;
      if (m == MATCH_NO)
	gfc_error ("Subroutine '%s' at %L is INTRINSIC but is not compatible "
		   "with an intrinsic", sym->name, &c->loc);

      return MATCH_ERROR;
    }

  return MATCH_NO;

found:
  gfc_procedure_use (sym, &c->ext.actual, &c->loc);

  c->resolved_sym = sym;
  pure_subroutine (c, sym);

  return MATCH_YES;
}


static gfc_try
resolve_specific_s (gfc_code *c)
{
  gfc_symbol *sym;
  match m;

  sym = c->symtree->n.sym;

  for (;;)
    {
      m = resolve_specific_s0 (c, sym);
      if (m == MATCH_YES)
	return SUCCESS;
      if (m == MATCH_ERROR)
	return FAILURE;

      if (sym->ns->parent == NULL)
	break;

      gfc_find_symbol (sym->name, sym->ns->parent, 1, &sym);

      if (sym == NULL)
	break;
    }

  sym = c->symtree->n.sym;
  gfc_error ("Unable to resolve the specific subroutine '%s' at %L",
	     sym->name, &c->loc);

  return FAILURE;
}


/* Resolve a subroutine call not known to be generic nor specific.  */

static gfc_try
resolve_unknown_s (gfc_code *c)
{
  gfc_symbol *sym;

  sym = c->symtree->n.sym;

  if (sym->attr.dummy)
    {
      sym->attr.proc = PROC_DUMMY;
      goto found;
    }

  /* See if we have an intrinsic function reference.  */

  if (gfc_is_intrinsic (sym, 1, c->loc))
    {
      if (gfc_intrinsic_sub_interface (c, 1) == MATCH_YES)
	return SUCCESS;
      return FAILURE;
    }

  /* The reference is to an external name.  */

found:
  gfc_procedure_use (sym, &c->ext.actual, &c->loc);

  c->resolved_sym = sym;

  pure_subroutine (c, sym);

  return SUCCESS;
}


/* Resolve a subroutine call.  Although it was tempting to use the same code
   for functions, subroutines and functions are stored differently and this
   makes things awkward.  */

static gfc_try
resolve_call (gfc_code *c)
{
  gfc_try t;
  procedure_type ptype = PROC_INTRINSIC;
  gfc_symbol *csym, *sym;
  bool no_formal_args;

  csym = c->symtree ? c->symtree->n.sym : NULL;

  if (csym && csym->ts.type != BT_UNKNOWN)
    {
      gfc_error ("'%s' at %L has a type, which is not consistent with "
		 "the CALL at %L", csym->name, &csym->declared_at, &c->loc);
      return FAILURE;
    }

  if (csym && gfc_current_ns->parent && csym->ns != gfc_current_ns)
    {
      gfc_symtree *st;
      gfc_find_sym_tree (csym->name, gfc_current_ns, 1, &st);
      sym = st ? st->n.sym : NULL;
      if (sym && csym != sym
	      && sym->ns == gfc_current_ns
	      && sym->attr.flavor == FL_PROCEDURE
	      && sym->attr.contained)
	{
	  sym->refs++;
	  if (csym->attr.generic)
	    c->symtree->n.sym = sym;
	  else
	    c->symtree = st;
	  csym = c->symtree->n.sym;
	}
    }

  /* If this ia a deferred TBP with an abstract interface
     (which may of course be referenced), c->expr1 will be set.  */
  if (csym && csym->attr.abstract && !c->expr1)
    {
      gfc_error ("ABSTRACT INTERFACE '%s' must not be referenced at %L",
		 csym->name, &c->loc);
      return FAILURE;
    }

  /* Subroutines without the RECURSIVE attribution are not allowed to
   * call themselves.  */
  if (csym && is_illegal_recursion (csym, gfc_current_ns))
    {
      if (csym->attr.entry && csym->ns->entries)
	gfc_error ("ENTRY '%s' at %L cannot be called recursively, as"
		   " subroutine '%s' is not RECURSIVE",
		   csym->name, &c->loc, csym->ns->entries->sym->name);
      else
	gfc_error ("SUBROUTINE '%s' at %L cannot be called recursively, as it"
		   " is not RECURSIVE", csym->name, &c->loc);

      t = FAILURE;
    }

  /* Switch off assumed size checking and do this again for certain kinds
     of procedure, once the procedure itself is resolved.  */
  need_full_assumed_size++;

  if (csym)
    ptype = csym->attr.proc;

  no_formal_args = csym && is_external_proc (csym) && csym->formal == NULL;
  if (resolve_actual_arglist (c->ext.actual, ptype,
			      no_formal_args) == FAILURE)
    return FAILURE;

  /* Resume assumed_size checking.  */
  need_full_assumed_size--;

  /* If external, check for usage.  */
  if (csym && is_external_proc (csym))
    resolve_global_procedure (csym, &c->loc, &c->ext.actual, 1);

  t = SUCCESS;
  if (c->resolved_sym == NULL)
    {
      c->resolved_isym = NULL;
      switch (procedure_kind (csym))
	{
	case PTYPE_GENERIC:
	  t = resolve_generic_s (c);
	  break;

	case PTYPE_SPECIFIC:
	  t = resolve_specific_s (c);
	  break;

	case PTYPE_UNKNOWN:
	  t = resolve_unknown_s (c);
	  break;

	default:
	  gfc_internal_error ("resolve_subroutine(): bad function type");
	}
    }

  /* Some checks of elemental subroutine actual arguments.  */
  if (resolve_elemental_actual (NULL, c) == FAILURE)
    return FAILURE;

  return t;
}


/* Compare the shapes of two arrays that have non-NULL shapes.  If both
   op1->shape and op2->shape are non-NULL return SUCCESS if their shapes
   match.  If both op1->shape and op2->shape are non-NULL return FAILURE
   if their shapes do not match.  If either op1->shape or op2->shape is
   NULL, return SUCCESS.  */

static gfc_try
compare_shapes (gfc_expr *op1, gfc_expr *op2)
{
  gfc_try t;
  int i;

  t = SUCCESS;

  if (op1->shape != NULL && op2->shape != NULL)
    {
      for (i = 0; i < op1->rank; i++)
	{
	  if (mpz_cmp (op1->shape[i], op2->shape[i]) != 0)
	   {
	     gfc_error ("Shapes for operands at %L and %L are not conformable",
			 &op1->where, &op2->where);
	     t = FAILURE;
	     break;
	   }
	}
    }

  return t;
}


/* Resolve an operator expression node.  This can involve replacing the
   operation with a user defined function call.  */

static gfc_try
resolve_operator (gfc_expr *e)
{
  gfc_expr *op1, *op2;
  char msg[200];
  bool dual_locus_error;
  gfc_try t;

  /* Resolve all subnodes-- give them types.  */

  switch (e->value.op.op)
    {
    default:
      if (gfc_resolve_expr (e->value.op.op2) == FAILURE)
	return FAILURE;

    /* Fall through...  */

    case INTRINSIC_NOT:
    case INTRINSIC_UPLUS:
    case INTRINSIC_UMINUS:
    case INTRINSIC_PARENTHESES:
      if (gfc_resolve_expr (e->value.op.op1) == FAILURE)
	return FAILURE;
      break;
    }

  /* Typecheck the new node.  */

  op1 = e->value.op.op1;
  op2 = e->value.op.op2;
  dual_locus_error = false;

  if ((op1 && op1->expr_type == EXPR_NULL)
      || (op2 && op2->expr_type == EXPR_NULL))
    {
      sprintf (msg, _("Invalid context for NULL() pointer at %%L"));
      goto bad_op;
    }

  switch (e->value.op.op)
    {
    case INTRINSIC_UPLUS:
    case INTRINSIC_UMINUS:
      if (op1->ts.type == BT_INTEGER
	  || op1->ts.type == BT_REAL
	  || op1->ts.type == BT_COMPLEX)
	{
	  e->ts = op1->ts;
	  break;
	}

      sprintf (msg, _("Operand of unary numeric operator '%s' at %%L is %s"),
	       gfc_op2string (e->value.op.op), gfc_typename (&e->ts));
      goto bad_op;

    case INTRINSIC_PLUS:
    case INTRINSIC_MINUS:
    case INTRINSIC_TIMES:
    case INTRINSIC_DIVIDE:
    case INTRINSIC_POWER:
      if (gfc_numeric_ts (&op1->ts) && gfc_numeric_ts (&op2->ts))
	{
	  gfc_type_convert_binary (e, 1);
	  break;
	}

      sprintf (msg,
	       _("Operands of binary numeric operator '%s' at %%L are %s/%s"),
	       gfc_op2string (e->value.op.op), gfc_typename (&op1->ts),
	       gfc_typename (&op2->ts));
      goto bad_op;

    case INTRINSIC_CONCAT:
      if (op1->ts.type == BT_CHARACTER && op2->ts.type == BT_CHARACTER
	  && op1->ts.kind == op2->ts.kind)
	{
	  e->ts.type = BT_CHARACTER;
	  e->ts.kind = op1->ts.kind;
	  break;
	}

      sprintf (msg,
	       _("Operands of string concatenation operator at %%L are %s/%s"),
	       gfc_typename (&op1->ts), gfc_typename (&op2->ts));
      goto bad_op;

    case INTRINSIC_AND:
    case INTRINSIC_OR:
    case INTRINSIC_EQV:
    case INTRINSIC_NEQV:
      if (op1->ts.type == BT_LOGICAL && op2->ts.type == BT_LOGICAL)
	{
	  e->ts.type = BT_LOGICAL;
	  e->ts.kind = gfc_kind_max (op1, op2);
	  if (op1->ts.kind < e->ts.kind)
	    gfc_convert_type (op1, &e->ts, 2);
	  else if (op2->ts.kind < e->ts.kind)
	    gfc_convert_type (op2, &e->ts, 2);
	  break;
	}

      sprintf (msg, _("Operands of logical operator '%s' at %%L are %s/%s"),
	       gfc_op2string (e->value.op.op), gfc_typename (&op1->ts),
	       gfc_typename (&op2->ts));

      goto bad_op;

    case INTRINSIC_NOT:
      if (op1->ts.type == BT_LOGICAL)
	{
	  e->ts.type = BT_LOGICAL;
	  e->ts.kind = op1->ts.kind;
	  break;
	}

      sprintf (msg, _("Operand of .not. operator at %%L is %s"),
	       gfc_typename (&op1->ts));
      goto bad_op;

    case INTRINSIC_GT:
    case INTRINSIC_GT_OS:
    case INTRINSIC_GE:
    case INTRINSIC_GE_OS:
    case INTRINSIC_LT:
    case INTRINSIC_LT_OS:
    case INTRINSIC_LE:
    case INTRINSIC_LE_OS:
      if (op1->ts.type == BT_COMPLEX || op2->ts.type == BT_COMPLEX)
	{
	  strcpy (msg, _("COMPLEX quantities cannot be compared at %L"));
	  goto bad_op;
	}

      /* Fall through...  */

    case INTRINSIC_EQ:
    case INTRINSIC_EQ_OS:
    case INTRINSIC_NE:
    case INTRINSIC_NE_OS:
      if (op1->ts.type == BT_CHARACTER && op2->ts.type == BT_CHARACTER
	  && op1->ts.kind == op2->ts.kind)
	{
	  e->ts.type = BT_LOGICAL;
	  e->ts.kind = gfc_default_logical_kind;
	  break;
	}

      if (gfc_numeric_ts (&op1->ts) && gfc_numeric_ts (&op2->ts))
	{
	  gfc_type_convert_binary (e, 1);

	  e->ts.type = BT_LOGICAL;
	  e->ts.kind = gfc_default_logical_kind;
	  break;
	}

      if (op1->ts.type == BT_LOGICAL && op2->ts.type == BT_LOGICAL)
	sprintf (msg,
		 _("Logicals at %%L must be compared with %s instead of %s"),
		 (e->value.op.op == INTRINSIC_EQ 
		  || e->value.op.op == INTRINSIC_EQ_OS)
		 ? ".eqv." : ".neqv.", gfc_op2string (e->value.op.op));
      else
	sprintf (msg,
		 _("Operands of comparison operator '%s' at %%L are %s/%s"),
		 gfc_op2string (e->value.op.op), gfc_typename (&op1->ts),
		 gfc_typename (&op2->ts));

      goto bad_op;

    case INTRINSIC_USER:
      if (e->value.op.uop->op == NULL)
	sprintf (msg, _("Unknown operator '%s' at %%L"), e->value.op.uop->name);
      else if (op2 == NULL)
	sprintf (msg, _("Operand of user operator '%s' at %%L is %s"),
		 e->value.op.uop->name, gfc_typename (&op1->ts));
      else
	{
	  sprintf (msg, _("Operands of user operator '%s' at %%L are %s/%s"),
		   e->value.op.uop->name, gfc_typename (&op1->ts),
		   gfc_typename (&op2->ts));
	  e->value.op.uop->op->sym->attr.referenced = 1;
	}

      goto bad_op;

    case INTRINSIC_PARENTHESES:
      e->ts = op1->ts;
      if (e->ts.type == BT_CHARACTER)
	e->ts.u.cl = op1->ts.u.cl;
      break;

    default:
      gfc_internal_error ("resolve_operator(): Bad intrinsic");
    }

  /* Deal with arrayness of an operand through an operator.  */

  t = SUCCESS;

  switch (e->value.op.op)
    {
    case INTRINSIC_PLUS:
    case INTRINSIC_MINUS:
    case INTRINSIC_TIMES:
    case INTRINSIC_DIVIDE:
    case INTRINSIC_POWER:
    case INTRINSIC_CONCAT:
    case INTRINSIC_AND:
    case INTRINSIC_OR:
    case INTRINSIC_EQV:
    case INTRINSIC_NEQV:
    case INTRINSIC_EQ:
    case INTRINSIC_EQ_OS:
    case INTRINSIC_NE:
    case INTRINSIC_NE_OS:
    case INTRINSIC_GT:
    case INTRINSIC_GT_OS:
    case INTRINSIC_GE:
    case INTRINSIC_GE_OS:
    case INTRINSIC_LT:
    case INTRINSIC_LT_OS:
    case INTRINSIC_LE:
    case INTRINSIC_LE_OS:

      if (op1->rank == 0 && op2->rank == 0)
	e->rank = 0;

      if (op1->rank == 0 && op2->rank != 0)
	{
	  e->rank = op2->rank;

	  if (e->shape == NULL)
	    e->shape = gfc_copy_shape (op2->shape, op2->rank);
	}

      if (op1->rank != 0 && op2->rank == 0)
	{
	  e->rank = op1->rank;

	  if (e->shape == NULL)
	    e->shape = gfc_copy_shape (op1->shape, op1->rank);
	}

      if (op1->rank != 0 && op2->rank != 0)
	{
	  if (op1->rank == op2->rank)
	    {
	      e->rank = op1->rank;
	      if (e->shape == NULL)
		{
		  t = compare_shapes (op1, op2);
		  if (t == FAILURE)
		    e->shape = NULL;
		  else
		    e->shape = gfc_copy_shape (op1->shape, op1->rank);
		}
	    }
	  else
	    {
	      /* Allow higher level expressions to work.  */
	      e->rank = 0;

	      /* Try user-defined operators, and otherwise throw an error.  */
	      dual_locus_error = true;
	      sprintf (msg,
		       _("Inconsistent ranks for operator at %%L and %%L"));
	      goto bad_op;
	    }
	}

      break;

    case INTRINSIC_PARENTHESES:
    case INTRINSIC_NOT:
    case INTRINSIC_UPLUS:
    case INTRINSIC_UMINUS:
      /* Simply copy arrayness attribute */
      e->rank = op1->rank;

      if (e->shape == NULL)
	e->shape = gfc_copy_shape (op1->shape, op1->rank);

      break;

    default:
      break;
    }

  /* Attempt to simplify the expression.  */
  if (t == SUCCESS)
    {
      t = gfc_simplify_expr (e, 0);
      /* Some calls do not succeed in simplification and return FAILURE
	 even though there is no error; e.g. variable references to
	 PARAMETER arrays.  */
      if (!gfc_is_constant_expr (e))
	t = SUCCESS;
    }
  return t;

bad_op:

  {
    bool real_error;
    if (gfc_extend_expr (e, &real_error) == SUCCESS)
      return SUCCESS;

    if (real_error)
      return FAILURE;
  }

  if (dual_locus_error)
    gfc_error (msg, &op1->where, &op2->where);
  else
    gfc_error (msg, &e->where);

  return FAILURE;
}


/************** Array resolution subroutines **************/

typedef enum
{ CMP_LT, CMP_EQ, CMP_GT, CMP_UNKNOWN }
comparison;

/* Compare two integer expressions.  */

static comparison
compare_bound (gfc_expr *a, gfc_expr *b)
{
  int i;

  if (a == NULL || a->expr_type != EXPR_CONSTANT
      || b == NULL || b->expr_type != EXPR_CONSTANT)
    return CMP_UNKNOWN;

  /* If either of the types isn't INTEGER, we must have
     raised an error earlier.  */

  if (a->ts.type != BT_INTEGER || b->ts.type != BT_INTEGER)
    return CMP_UNKNOWN;

  i = mpz_cmp (a->value.integer, b->value.integer);

  if (i < 0)
    return CMP_LT;
  if (i > 0)
    return CMP_GT;
  return CMP_EQ;
}


/* Compare an integer expression with an integer.  */

static comparison
compare_bound_int (gfc_expr *a, int b)
{
  int i;

  if (a == NULL || a->expr_type != EXPR_CONSTANT)
    return CMP_UNKNOWN;

  if (a->ts.type != BT_INTEGER)
    gfc_internal_error ("compare_bound_int(): Bad expression");

  i = mpz_cmp_si (a->value.integer, b);

  if (i < 0)
    return CMP_LT;
  if (i > 0)
    return CMP_GT;
  return CMP_EQ;
}


/* Compare an integer expression with a mpz_t.  */

static comparison
compare_bound_mpz_t (gfc_expr *a, mpz_t b)
{
  int i;

  if (a == NULL || a->expr_type != EXPR_CONSTANT)
    return CMP_UNKNOWN;

  if (a->ts.type != BT_INTEGER)
    gfc_internal_error ("compare_bound_int(): Bad expression");

  i = mpz_cmp (a->value.integer, b);

  if (i < 0)
    return CMP_LT;
  if (i > 0)
    return CMP_GT;
  return CMP_EQ;
}


/* Compute the last value of a sequence given by a triplet.  
   Return 0 if it wasn't able to compute the last value, or if the
   sequence if empty, and 1 otherwise.  */

static int
compute_last_value_for_triplet (gfc_expr *start, gfc_expr *end,
				gfc_expr *stride, mpz_t last)
{
  mpz_t rem;

  if (start == NULL || start->expr_type != EXPR_CONSTANT
      || end == NULL || end->expr_type != EXPR_CONSTANT
      || (stride != NULL && stride->expr_type != EXPR_CONSTANT))
    return 0;

  if (start->ts.type != BT_INTEGER || end->ts.type != BT_INTEGER
      || (stride != NULL && stride->ts.type != BT_INTEGER))
    return 0;

  if (stride == NULL || compare_bound_int(stride, 1) == CMP_EQ)
    {
      if (compare_bound (start, end) == CMP_GT)
	return 0;
      mpz_set (last, end->value.integer);
      return 1;
    }

  if (compare_bound_int (stride, 0) == CMP_GT)
    {
      /* Stride is positive */
      if (mpz_cmp (start->value.integer, end->value.integer) > 0)
	return 0;
    }
  else
    {
      /* Stride is negative */
      if (mpz_cmp (start->value.integer, end->value.integer) < 0)
	return 0;
    }

  mpz_init (rem);
  mpz_sub (rem, end->value.integer, start->value.integer);
  mpz_tdiv_r (rem, rem, stride->value.integer);
  mpz_sub (last, end->value.integer, rem);
  mpz_clear (rem);

  return 1;
}


/* Compare a single dimension of an array reference to the array
   specification.  */

static gfc_try
check_dimension (int i, gfc_array_ref *ar, gfc_array_spec *as)
{
  mpz_t last_value;

  if (ar->dimen_type[i] == DIMEN_STAR)
    {
      gcc_assert (ar->stride[i] == NULL);
      /* This implies [*] as [*:] and [*:3] are not possible.  */
      if (ar->start[i] == NULL)
	{
	  gcc_assert (ar->end[i] == NULL);
	  return SUCCESS;
	}
    }

/* Given start, end and stride values, calculate the minimum and
   maximum referenced indexes.  */

  switch (ar->dimen_type[i])
    {
    case DIMEN_VECTOR:
      break;

    case DIMEN_STAR:
    case DIMEN_ELEMENT:
      if (compare_bound (ar->start[i], as->lower[i]) == CMP_LT)
	{
	  if (i < as->rank)
	    gfc_warning ("Array reference at %L is out of bounds "
			 "(%ld < %ld) in dimension %d", &ar->c_where[i],
			 mpz_get_si (ar->start[i]->value.integer),
			 mpz_get_si (as->lower[i]->value.integer), i+1);
	  else
	    gfc_warning ("Array reference at %L is out of bounds "
			 "(%ld < %ld) in codimension %d", &ar->c_where[i],
			 mpz_get_si (ar->start[i]->value.integer),
			 mpz_get_si (as->lower[i]->value.integer),
			 i + 1 - as->rank);
	  return SUCCESS;
	}
      if (compare_bound (ar->start[i], as->upper[i]) == CMP_GT)
	{
	  if (i < as->rank)
	    gfc_warning ("Array reference at %L is out of bounds "
			 "(%ld > %ld) in dimension %d", &ar->c_where[i],
			 mpz_get_si (ar->start[i]->value.integer),
			 mpz_get_si (as->upper[i]->value.integer), i+1);
	  else
	    gfc_warning ("Array reference at %L is out of bounds "
			 "(%ld > %ld) in codimension %d", &ar->c_where[i],
			 mpz_get_si (ar->start[i]->value.integer),
			 mpz_get_si (as->upper[i]->value.integer),
			 i + 1 - as->rank);
	  return SUCCESS;
	}

      break;

    case DIMEN_RANGE:
      {
#define AR_START (ar->start[i] ? ar->start[i] : as->lower[i])
#define AR_END (ar->end[i] ? ar->end[i] : as->upper[i])

	comparison comp_start_end = compare_bound (AR_START, AR_END);

	/* Check for zero stride, which is not allowed.  */
	if (compare_bound_int (ar->stride[i], 0) == CMP_EQ)
	  {
	    gfc_error ("Illegal stride of zero at %L", &ar->c_where[i]);
	    return FAILURE;
	  }

	/* if start == len || (stride > 0 && start < len)
			   || (stride < 0 && start > len),
	   then the array section contains at least one element.  In this
	   case, there is an out-of-bounds access if
	   (start < lower || start > upper).  */
	if (compare_bound (AR_START, AR_END) == CMP_EQ
	    || ((compare_bound_int (ar->stride[i], 0) == CMP_GT
		 || ar->stride[i] == NULL) && comp_start_end == CMP_LT)
	    || (compare_bound_int (ar->stride[i], 0) == CMP_LT
	        && comp_start_end == CMP_GT))
	  {
	    if (compare_bound (AR_START, as->lower[i]) == CMP_LT)
	      {
		gfc_warning ("Lower array reference at %L is out of bounds "
		       "(%ld < %ld) in dimension %d", &ar->c_where[i],
		       mpz_get_si (AR_START->value.integer),
		       mpz_get_si (as->lower[i]->value.integer), i+1);
		return SUCCESS;
	      }
	    if (compare_bound (AR_START, as->upper[i]) == CMP_GT)
	      {
		gfc_warning ("Lower array reference at %L is out of bounds "
		       "(%ld > %ld) in dimension %d", &ar->c_where[i],
		       mpz_get_si (AR_START->value.integer),
		       mpz_get_si (as->upper[i]->value.integer), i+1);
		return SUCCESS;
	      }
	  }

	/* If we can compute the highest index of the array section,
	   then it also has to be between lower and upper.  */
	mpz_init (last_value);
	if (compute_last_value_for_triplet (AR_START, AR_END, ar->stride[i],
					    last_value))
	  {
	    if (compare_bound_mpz_t (as->lower[i], last_value) == CMP_GT)
	      {
		gfc_warning ("Upper array reference at %L is out of bounds "
		       "(%ld < %ld) in dimension %d", &ar->c_where[i],
		       mpz_get_si (last_value),
		       mpz_get_si (as->lower[i]->value.integer), i+1);
	        mpz_clear (last_value);
		return SUCCESS;
	      }
	    if (compare_bound_mpz_t (as->upper[i], last_value) == CMP_LT)
	      {
		gfc_warning ("Upper array reference at %L is out of bounds "
		       "(%ld > %ld) in dimension %d", &ar->c_where[i],
		       mpz_get_si (last_value),
		       mpz_get_si (as->upper[i]->value.integer), i+1);
	        mpz_clear (last_value);
		return SUCCESS;
	      }
	  }
	mpz_clear (last_value);

#undef AR_START
#undef AR_END
      }
      break;

    default:
      gfc_internal_error ("check_dimension(): Bad array reference");
    }

  return SUCCESS;
}


/* Compare an array reference with an array specification.  */

static gfc_try
compare_spec_to_ref (gfc_array_ref *ar)
{
  gfc_array_spec *as;
  int i;

  as = ar->as;
  i = as->rank - 1;
  /* TODO: Full array sections are only allowed as actual parameters.  */
  if (as->type == AS_ASSUMED_SIZE
      && (/*ar->type == AR_FULL
	  ||*/ (ar->type == AR_SECTION
	      && ar->dimen_type[i] == DIMEN_RANGE && ar->end[i] == NULL)))
    {
      gfc_error ("Rightmost upper bound of assumed size array section "
		 "not specified at %L", &ar->where);
      return FAILURE;
    }

  if (ar->type == AR_FULL)
    return SUCCESS;

  if (as->rank != ar->dimen)
    {
      gfc_error ("Rank mismatch in array reference at %L (%d/%d)",
		 &ar->where, ar->dimen, as->rank);
      return FAILURE;
    }

  /* ar->codimen == 0 is a local array.  */
  if (as->corank != ar->codimen && ar->codimen != 0)
    {
      gfc_error ("Coindex rank mismatch in array reference at %L (%d/%d)",
		 &ar->where, ar->codimen, as->corank);
      return FAILURE;
    }

  for (i = 0; i < as->rank; i++)
    if (check_dimension (i, ar, as) == FAILURE)
      return FAILURE;

  /* Local access has no coarray spec.  */
  if (ar->codimen != 0)
    for (i = as->rank; i < as->rank + as->corank; i++)
      {
	if (ar->dimen_type[i] != DIMEN_ELEMENT && !ar->in_allocate)
	  {
	    gfc_error ("Coindex of codimension %d must be a scalar at %L",
		       i + 1 - as->rank, &ar->where);
	    return FAILURE;
	  }
	if (check_dimension (i, ar, as) == FAILURE)
	  return FAILURE;
      }

  return SUCCESS;
}


/* Resolve one part of an array index.  */

static gfc_try
gfc_resolve_index_1 (gfc_expr *index, int check_scalar,
		     int force_index_integer_kind)
{
  gfc_typespec ts;

  if (index == NULL)
    return SUCCESS;

  if (gfc_resolve_expr (index) == FAILURE)
    return FAILURE;

  if (check_scalar && index->rank != 0)
    {
      gfc_error ("Array index at %L must be scalar", &index->where);
      return FAILURE;
    }

  if (index->ts.type != BT_INTEGER && index->ts.type != BT_REAL)
    {
      gfc_error ("Array index at %L must be of INTEGER type, found %s",
		 &index->where, gfc_basic_typename (index->ts.type));
      return FAILURE;
    }

  if (index->ts.type == BT_REAL)
    if (gfc_notify_std (GFC_STD_LEGACY, "Extension: REAL array index at %L",
			&index->where) == FAILURE)
      return FAILURE;

  if ((index->ts.kind != gfc_index_integer_kind
       && force_index_integer_kind)
      || index->ts.type != BT_INTEGER)
    {
      gfc_clear_ts (&ts);
      ts.type = BT_INTEGER;
      ts.kind = gfc_index_integer_kind;

      gfc_convert_type_warn (index, &ts, 2, 0);
    }

  return SUCCESS;
}

/* Resolve one part of an array index.  */

gfc_try
gfc_resolve_index (gfc_expr *index, int check_scalar)
{
  return gfc_resolve_index_1 (index, check_scalar, 1);
}

/* Resolve a dim argument to an intrinsic function.  */

gfc_try
gfc_resolve_dim_arg (gfc_expr *dim)
{
  if (dim == NULL)
    return SUCCESS;

  if (gfc_resolve_expr (dim) == FAILURE)
    return FAILURE;

  if (dim->rank != 0)
    {
      gfc_error ("Argument dim at %L must be scalar", &dim->where);
      return FAILURE;

    }

  if (dim->ts.type != BT_INTEGER)
    {
      gfc_error ("Argument dim at %L must be of INTEGER type", &dim->where);
      return FAILURE;
    }

  if (dim->ts.kind != gfc_index_integer_kind)
    {
      gfc_typespec ts;

      gfc_clear_ts (&ts);
      ts.type = BT_INTEGER;
      ts.kind = gfc_index_integer_kind;

      gfc_convert_type_warn (dim, &ts, 2, 0);
    }

  return SUCCESS;
}

/* Given an expression that contains array references, update those array
   references to point to the right array specifications.  While this is
   filled in during matching, this information is difficult to save and load
   in a module, so we take care of it here.

   The idea here is that the original array reference comes from the
   base symbol.  We traverse the list of reference structures, setting
   the stored reference to references.  Component references can
   provide an additional array specification.  */

static void
find_array_spec (gfc_expr *e)
{
  gfc_array_spec *as;
  gfc_component *c;
  gfc_symbol *derived;
  gfc_ref *ref;

  if (e->symtree->n.sym->ts.type == BT_CLASS)
    as = CLASS_DATA (e->symtree->n.sym)->as;
  else
    as = e->symtree->n.sym->as;
  derived = NULL;

  for (ref = e->ref; ref; ref = ref->next)
    switch (ref->type)
      {
      case REF_ARRAY:
	if (as == NULL)
	  gfc_internal_error ("find_array_spec(): Missing spec");

	ref->u.ar.as = as;
	as = NULL;
	break;

      case REF_COMPONENT:
	if (derived == NULL)
	  derived = e->symtree->n.sym->ts.u.derived;

	if (derived->attr.is_class)
	  derived = derived->components->ts.u.derived;

	c = derived->components;

	for (; c; c = c->next)
	  if (c == ref->u.c.component)
	    {
	      /* Track the sequence of component references.  */
	      if (c->ts.type == BT_DERIVED)
		derived = c->ts.u.derived;
	      break;
	    }

	if (c == NULL)
	  gfc_internal_error ("find_array_spec(): Component not found");

	if (c->attr.dimension)
	  {
	    if (as != NULL)
	      gfc_internal_error ("find_array_spec(): unused as(1)");
	    as = c->as;
	  }

	break;

      case REF_SUBSTRING:
	break;
      }

  if (as != NULL)
    gfc_internal_error ("find_array_spec(): unused as(2)");
}


/* Resolve an array reference.  */

static gfc_try
resolve_array_ref (gfc_array_ref *ar)
{
  int i, check_scalar;
  gfc_expr *e;

  for (i = 0; i < ar->dimen + ar->codimen; i++)
    {
      check_scalar = ar->dimen_type[i] == DIMEN_RANGE;

      /* Do not force gfc_index_integer_kind for the start.  We can
         do fine with any integer kind.  This avoids temporary arrays
	 created for indexing with a vector.  */
      if (gfc_resolve_index_1 (ar->start[i], check_scalar, 0) == FAILURE)
	return FAILURE;
      if (gfc_resolve_index (ar->end[i], check_scalar) == FAILURE)
	return FAILURE;
      if (gfc_resolve_index (ar->stride[i], check_scalar) == FAILURE)
	return FAILURE;

      e = ar->start[i];

      if (ar->dimen_type[i] == DIMEN_UNKNOWN)
	switch (e->rank)
	  {
	  case 0:
	    ar->dimen_type[i] = DIMEN_ELEMENT;
	    break;

	  case 1:
	    ar->dimen_type[i] = DIMEN_VECTOR;
	    if (e->expr_type == EXPR_VARIABLE
		&& e->symtree->n.sym->ts.type == BT_DERIVED)
	      ar->start[i] = gfc_get_parentheses (e);
	    break;

	  default:
	    gfc_error ("Array index at %L is an array of rank %d",
		       &ar->c_where[i], e->rank);
	    return FAILURE;
	  }

      /* Fill in the upper bound, which may be lower than the
	 specified one for something like a(2:10:5), which is
	 identical to a(2:7:5).  Only relevant for strides not equal
	 to one.  */
      if (ar->dimen_type[i] == DIMEN_RANGE
	  && ar->stride[i] != NULL && ar->stride[i]->expr_type == EXPR_CONSTANT
	  && mpz_cmp_si (ar->stride[i]->value.integer, 1L) != 0)
	{
	  mpz_t size, end;

	  if (gfc_ref_dimen_size (ar, i, &size, &end) == SUCCESS)
	    {
	      if (ar->end[i] == NULL)
		{
		  ar->end[i] =
		    gfc_get_constant_expr (BT_INTEGER, gfc_index_integer_kind,
					   &ar->where);
		  mpz_set (ar->end[i]->value.integer, end);
		}
	      else if (ar->end[i]->ts.type == BT_INTEGER
		       && ar->end[i]->expr_type == EXPR_CONSTANT)
		{
		  mpz_set (ar->end[i]->value.integer, end);
		}
	      else
		gcc_unreachable ();

	      mpz_clear (size);
	      mpz_clear (end);
	    }
	}
    }

  if (ar->type == AR_FULL && ar->as->rank == 0)
    ar->type = AR_ELEMENT;

  /* If the reference type is unknown, figure out what kind it is.  */

  if (ar->type == AR_UNKNOWN)
    {
      ar->type = AR_ELEMENT;
      for (i = 0; i < ar->dimen; i++)
	if (ar->dimen_type[i] == DIMEN_RANGE
	    || ar->dimen_type[i] == DIMEN_VECTOR)
	  {
	    ar->type = AR_SECTION;
	    break;
	  }
    }

  if (!ar->as->cray_pointee && compare_spec_to_ref (ar) == FAILURE)
    return FAILURE;

  return SUCCESS;
}


static gfc_try
resolve_substring (gfc_ref *ref)
{
  int k = gfc_validate_kind (BT_INTEGER, gfc_charlen_int_kind, false);

  if (ref->u.ss.start != NULL)
    {
      if (gfc_resolve_expr (ref->u.ss.start) == FAILURE)
	return FAILURE;

      if (ref->u.ss.start->ts.type != BT_INTEGER)
	{
	  gfc_error ("Substring start index at %L must be of type INTEGER",
		     &ref->u.ss.start->where);
	  return FAILURE;
	}

      if (ref->u.ss.start->rank != 0)
	{
	  gfc_error ("Substring start index at %L must be scalar",
		     &ref->u.ss.start->where);
	  return FAILURE;
	}

      if (compare_bound_int (ref->u.ss.start, 1) == CMP_LT
	  && (compare_bound (ref->u.ss.end, ref->u.ss.start) == CMP_EQ
	      || compare_bound (ref->u.ss.end, ref->u.ss.start) == CMP_GT))
	{
	  gfc_error ("Substring start index at %L is less than one",
		     &ref->u.ss.start->where);
	  return FAILURE;
	}
    }

  if (ref->u.ss.end != NULL)
    {
      if (gfc_resolve_expr (ref->u.ss.end) == FAILURE)
	return FAILURE;

      if (ref->u.ss.end->ts.type != BT_INTEGER)
	{
	  gfc_error ("Substring end index at %L must be of type INTEGER",
		     &ref->u.ss.end->where);
	  return FAILURE;
	}

      if (ref->u.ss.end->rank != 0)
	{
	  gfc_error ("Substring end index at %L must be scalar",
		     &ref->u.ss.end->where);
	  return FAILURE;
	}

      if (ref->u.ss.length != NULL
	  && compare_bound (ref->u.ss.end, ref->u.ss.length->length) == CMP_GT
	  && (compare_bound (ref->u.ss.end, ref->u.ss.start) == CMP_EQ
	      || compare_bound (ref->u.ss.end, ref->u.ss.start) == CMP_GT))
	{
	  gfc_error ("Substring end index at %L exceeds the string length",
		     &ref->u.ss.start->where);
	  return FAILURE;
	}

      if (compare_bound_mpz_t (ref->u.ss.end,
			       gfc_integer_kinds[k].huge) == CMP_GT
	  && (compare_bound (ref->u.ss.end, ref->u.ss.start) == CMP_EQ
	      || compare_bound (ref->u.ss.end, ref->u.ss.start) == CMP_GT))
	{
	  gfc_error ("Substring end index at %L is too large",
		     &ref->u.ss.end->where);
	  return FAILURE;
	}
    }

  return SUCCESS;
}


/* This function supplies missing substring charlens.  */

void
gfc_resolve_substring_charlen (gfc_expr *e)
{
  gfc_ref *char_ref;
  gfc_expr *start, *end;

  for (char_ref = e->ref; char_ref; char_ref = char_ref->next)
    if (char_ref->type == REF_SUBSTRING)
      break;

  if (!char_ref)
    return;

  gcc_assert (char_ref->next == NULL);

  if (e->ts.u.cl)
    {
      if (e->ts.u.cl->length)
	gfc_free_expr (e->ts.u.cl->length);
      else if (e->expr_type == EXPR_VARIABLE
		 && e->symtree->n.sym->attr.dummy)
	return;
    }

  e->ts.type = BT_CHARACTER;
  e->ts.kind = gfc_default_character_kind;

  if (!e->ts.u.cl)
    e->ts.u.cl = gfc_new_charlen (gfc_current_ns, NULL);

  if (char_ref->u.ss.start)
    start = gfc_copy_expr (char_ref->u.ss.start);
  else
    start = gfc_get_int_expr (gfc_default_integer_kind, NULL, 1);

  if (char_ref->u.ss.end)
    end = gfc_copy_expr (char_ref->u.ss.end);
  else if (e->expr_type == EXPR_VARIABLE)
    end = gfc_copy_expr (e->symtree->n.sym->ts.u.cl->length);
  else
    end = NULL;

  if (!start || !end)
    return;

  /* Length = (end - start +1).  */
  e->ts.u.cl->length = gfc_subtract (end, start);
  e->ts.u.cl->length = gfc_add (e->ts.u.cl->length,
				gfc_get_int_expr (gfc_default_integer_kind,
						  NULL, 1));

  e->ts.u.cl->length->ts.type = BT_INTEGER;
  e->ts.u.cl->length->ts.kind = gfc_charlen_int_kind;

  /* Make sure that the length is simplified.  */
  gfc_simplify_expr (e->ts.u.cl->length, 1);
  gfc_resolve_expr (e->ts.u.cl->length);
}


/* Resolve subtype references.  */

static gfc_try
resolve_ref (gfc_expr *expr)
{
  int current_part_dimension, n_components, seen_part_dimension;
  gfc_ref *ref;

  for (ref = expr->ref; ref; ref = ref->next)
    if (ref->type == REF_ARRAY && ref->u.ar.as == NULL)
      {
	find_array_spec (expr);
	break;
      }

  for (ref = expr->ref; ref; ref = ref->next)
    switch (ref->type)
      {
      case REF_ARRAY:
	if (resolve_array_ref (&ref->u.ar) == FAILURE)
	  return FAILURE;
	break;

      case REF_COMPONENT:
	break;

      case REF_SUBSTRING:
	resolve_substring (ref);
	break;
      }

  /* Check constraints on part references.  */

  current_part_dimension = 0;
  seen_part_dimension = 0;
  n_components = 0;

  for (ref = expr->ref; ref; ref = ref->next)
    {
      switch (ref->type)
	{
	case REF_ARRAY:
	  switch (ref->u.ar.type)
	    {
	    case AR_FULL:
	      /* Coarray scalar.  */
	      if (ref->u.ar.as->rank == 0)
		{
		  current_part_dimension = 0;
		  break;
		}
	      /* Fall through.  */
	    case AR_SECTION:
	      current_part_dimension = 1;
	      break;

	    case AR_ELEMENT:
	      current_part_dimension = 0;
	      break;

	    case AR_UNKNOWN:
	      gfc_internal_error ("resolve_ref(): Bad array reference");
	    }

	  break;

	case REF_COMPONENT:
	  if (current_part_dimension || seen_part_dimension)
	    {
	      /* F03:C614.  */
	      if (ref->u.c.component->attr.pointer
		  || ref->u.c.component->attr.proc_pointer)
		{
		  gfc_error ("Component to the right of a part reference "
			     "with nonzero rank must not have the POINTER "
			     "attribute at %L", &expr->where);
		  return FAILURE;
		}
	      else if (ref->u.c.component->attr.allocatable)
		{
		  gfc_error ("Component to the right of a part reference "
			     "with nonzero rank must not have the ALLOCATABLE "
			     "attribute at %L", &expr->where);
		  return FAILURE;
		}
	    }

	  n_components++;
	  break;

	case REF_SUBSTRING:
	  break;
	}

      if (((ref->type == REF_COMPONENT && n_components > 1)
	   || ref->next == NULL)
	  && current_part_dimension
	  && seen_part_dimension)
	{
	  gfc_error ("Two or more part references with nonzero rank must "
		     "not be specified at %L", &expr->where);
	  return FAILURE;
	}

      if (ref->type == REF_COMPONENT)
	{
	  if (current_part_dimension)
	    seen_part_dimension = 1;

	  /* reset to make sure */
	  current_part_dimension = 0;
	}
    }

  return SUCCESS;
}


/* Given an expression, determine its shape.  This is easier than it sounds.
   Leaves the shape array NULL if it is not possible to determine the shape.  */

static void
expression_shape (gfc_expr *e)
{
  mpz_t array[GFC_MAX_DIMENSIONS];
  int i;

  if (e->rank == 0 || e->shape != NULL)
    return;

  for (i = 0; i < e->rank; i++)
    if (gfc_array_dimen_size (e, i, &array[i]) == FAILURE)
      goto fail;

  e->shape = gfc_get_shape (e->rank);

  memcpy (e->shape, array, e->rank * sizeof (mpz_t));

  return;

fail:
  for (i--; i >= 0; i--)
    mpz_clear (array[i]);
}


/* Given a variable expression node, compute the rank of the expression by
   examining the base symbol and any reference structures it may have.  */

static void
expression_rank (gfc_expr *e)
{
  gfc_ref *ref;
  int i, rank;

  /* Just to make sure, because EXPR_COMPCALL's also have an e->ref and that
     could lead to serious confusion...  */
  gcc_assert (e->expr_type != EXPR_COMPCALL);

  if (e->ref == NULL)
    {
      if (e->expr_type == EXPR_ARRAY)
	goto done;
      /* Constructors can have a rank different from one via RESHAPE().  */

      if (e->symtree == NULL)
	{
	  e->rank = 0;
	  goto done;
	}

      e->rank = (e->symtree->n.sym->as == NULL)
		? 0 : e->symtree->n.sym->as->rank;
      goto done;
    }

  rank = 0;

  for (ref = e->ref; ref; ref = ref->next)
    {
      if (ref->type == REF_COMPONENT && ref->u.c.component->attr.proc_pointer
	  && ref->u.c.component->attr.function && !ref->next)
	rank = ref->u.c.component->as ? ref->u.c.component->as->rank : 0;

      if (ref->type != REF_ARRAY)
	continue;

      if (ref->u.ar.type == AR_FULL)
	{
	  rank = ref->u.ar.as->rank;
	  break;
	}

      if (ref->u.ar.type == AR_SECTION)
	{
	  /* Figure out the rank of the section.  */
	  if (rank != 0)
	    gfc_internal_error ("expression_rank(): Two array specs");

	  for (i = 0; i < ref->u.ar.dimen; i++)
	    if (ref->u.ar.dimen_type[i] == DIMEN_RANGE
		|| ref->u.ar.dimen_type[i] == DIMEN_VECTOR)
	      rank++;

	  break;
	}
    }

  e->rank = rank;

done:
  expression_shape (e);
}


/* Resolve a variable expression.  */

static gfc_try
resolve_variable (gfc_expr *e)
{
  gfc_symbol *sym;
  gfc_try t;

  t = SUCCESS;

  if (e->symtree == NULL)
    return FAILURE;
  sym = e->symtree->n.sym;

  /* If this is an associate-name, it may be parsed with an array reference
     in error even though the target is scalar.  Fail directly in this case.  */
  if (sym->assoc && !sym->attr.dimension && e->ref && e->ref->type == REF_ARRAY)
    return FAILURE;

  /* On the other hand, the parser may not have known this is an array;
     in this case, we have to add a FULL reference.  */
  if (sym->assoc && sym->attr.dimension && !e->ref)
    {
      e->ref = gfc_get_ref ();
      e->ref->type = REF_ARRAY;
      e->ref->u.ar.type = AR_FULL;
      e->ref->u.ar.dimen = 0;
    }

  if (e->ref && resolve_ref (e) == FAILURE)
    return FAILURE;

  if (sym->attr.flavor == FL_PROCEDURE
      && (!sym->attr.function
	  || (sym->attr.function && sym->result
	      && sym->result->attr.proc_pointer
	      && !sym->result->attr.function)))
    {
      e->ts.type = BT_PROCEDURE;
      goto resolve_procedure;
    }

  if (sym->ts.type != BT_UNKNOWN)
    gfc_variable_attr (e, &e->ts);
  else
    {
      /* Must be a simple variable reference.  */
      if (gfc_set_default_type (sym, 1, sym->ns) == FAILURE)
	return FAILURE;
      e->ts = sym->ts;
    }

  if (check_assumed_size_reference (sym, e))
    return FAILURE;

  /* Deal with forward references to entries during resolve_code, to
     satisfy, at least partially, 12.5.2.5.  */
  if (gfc_current_ns->entries
      && current_entry_id == sym->entry_id
      && cs_base
      && cs_base->current
      && cs_base->current->op != EXEC_ENTRY)
    {
      gfc_entry_list *entry;
      gfc_formal_arglist *formal;
      int n;
      bool seen;

      /* If the symbol is a dummy...  */
      if (sym->attr.dummy && sym->ns == gfc_current_ns)
	{
	  entry = gfc_current_ns->entries;
	  seen = false;

	  /* ...test if the symbol is a parameter of previous entries.  */
	  for (; entry && entry->id <= current_entry_id; entry = entry->next)
	    for (formal = entry->sym->formal; formal; formal = formal->next)
	      {
		if (formal->sym && sym->name == formal->sym->name)
		  seen = true;
	      }

	  /*  If it has not been seen as a dummy, this is an error.  */
	  if (!seen)
	    {
	      if (specification_expr)
		gfc_error ("Variable '%s', used in a specification expression"
			   ", is referenced at %L before the ENTRY statement "
			   "in which it is a parameter",
			   sym->name, &cs_base->current->loc);
	      else
		gfc_error ("Variable '%s' is used at %L before the ENTRY "
			   "statement in which it is a parameter",
			   sym->name, &cs_base->current->loc);
	      t = FAILURE;
	    }
	}

      /* Now do the same check on the specification expressions.  */
      specification_expr = 1;
      if (sym->ts.type == BT_CHARACTER
	  && gfc_resolve_expr (sym->ts.u.cl->length) == FAILURE)
	t = FAILURE;

      if (sym->as)
	for (n = 0; n < sym->as->rank; n++)
	  {
	     specification_expr = 1;
	     if (gfc_resolve_expr (sym->as->lower[n]) == FAILURE)
	       t = FAILURE;
	     specification_expr = 1;
	     if (gfc_resolve_expr (sym->as->upper[n]) == FAILURE)
	       t = FAILURE;
	  }
      specification_expr = 0;

      if (t == SUCCESS)
	/* Update the symbol's entry level.  */
	sym->entry_id = current_entry_id + 1;
    }

  /* If a symbol has been host_associated mark it.  This is used latter,
     to identify if aliasing is possible via host association.  */
  if (sym->attr.flavor == FL_VARIABLE
	&& gfc_current_ns->parent
	&& (gfc_current_ns->parent == sym->ns
	      || (gfc_current_ns->parent->parent
		    && gfc_current_ns->parent->parent == sym->ns)))
    sym->attr.host_assoc = 1;

resolve_procedure:
  if (t == SUCCESS && resolve_procedure_expression (e) == FAILURE)
    t = FAILURE;

  /* F2008, C617 and C1229.  */
  if (!inquiry_argument && (e->ts.type == BT_CLASS || e->ts.type == BT_DERIVED)
      && gfc_is_coindexed (e))
    {
      gfc_ref *ref, *ref2 = NULL;

      for (ref = e->ref; ref; ref = ref->next)
	{
	  if (ref->type == REF_COMPONENT)
	    ref2 = ref;
	  if (ref->type == REF_ARRAY && ref->u.ar.codimen > 0)
	    break;
	}

      for ( ; ref; ref = ref->next)
	if (ref->type == REF_COMPONENT)
	  break;

      /* Expression itself is not coindexed object.  */
      if (ref && e->ts.type == BT_CLASS)
	{
	  gfc_error ("Polymorphic subobject of coindexed object at %L",
		     &e->where);
	  t = FAILURE;
	}

      /* Expression itself is coindexed object.  */
      if (ref == NULL)
	{
	  gfc_component *c;
	  c = ref2 ? ref2->u.c.component : e->symtree->n.sym->components;
	  for ( ; c; c = c->next)
	    if (c->attr.allocatable && c->ts.type == BT_CLASS)
	      {
		gfc_error ("Coindexed object with polymorphic allocatable "
			 "subcomponent at %L", &e->where);
		t = FAILURE;
		break;
	      }
	}
    }

  return t;
}


/* Checks to see that the correct symbol has been host associated.
   The only situation where this arises is that in which a twice
   contained function is parsed after the host association is made.
   Therefore, on detecting this, change the symbol in the expression
   and convert the array reference into an actual arglist if the old
   symbol is a variable.  */
static bool
check_host_association (gfc_expr *e)
{
  gfc_symbol *sym, *old_sym;
  gfc_symtree *st;
  int n;
  gfc_ref *ref;
  gfc_actual_arglist *arg, *tail = NULL;
  bool retval = e->expr_type == EXPR_FUNCTION;

  /*  If the expression is the result of substitution in
      interface.c(gfc_extend_expr) because there is no way in
      which the host association can be wrong.  */
  if (e->symtree == NULL
	|| e->symtree->n.sym == NULL
	|| e->user_operator)
    return retval;

  old_sym = e->symtree->n.sym;

  if (gfc_current_ns->parent
	&& old_sym->ns != gfc_current_ns)
    {
      /* Use the 'USE' name so that renamed module symbols are
	 correctly handled.  */
      gfc_find_symbol (e->symtree->name, gfc_current_ns, 1, &sym);

      if (sym && old_sym != sym
	      && sym->ts.type == old_sym->ts.type
	      && sym->attr.flavor == FL_PROCEDURE
	      && sym->attr.contained)
	{
	  /* Clear the shape, since it might not be valid.  */
	  if (e->shape != NULL)
	    {
	      for (n = 0; n < e->rank; n++)
		mpz_clear (e->shape[n]);

	      gfc_free (e->shape);
	    }

	  /* Give the expression the right symtree!  */
	  gfc_find_sym_tree (e->symtree->name, NULL, 1, &st);
	  gcc_assert (st != NULL);

	  if (old_sym->attr.flavor == FL_PROCEDURE
		|| e->expr_type == EXPR_FUNCTION)
  	    {
	      /* Original was function so point to the new symbol, since
		 the actual argument list is already attached to the
		 expression. */
	      e->value.function.esym = NULL;
	      e->symtree = st;
	    }
	  else
	    {
	      /* Original was variable so convert array references into
		 an actual arglist. This does not need any checking now
		 since gfc_resolve_function will take care of it.  */
	      e->value.function.actual = NULL;
	      e->expr_type = EXPR_FUNCTION;
	      e->symtree = st;

	      /* Ambiguity will not arise if the array reference is not
		 the last reference.  */
	      for (ref = e->ref; ref; ref = ref->next)
		if (ref->type == REF_ARRAY && ref->next == NULL)
		  break;

	      gcc_assert (ref->type == REF_ARRAY);

	      /* Grab the start expressions from the array ref and
		 copy them into actual arguments.  */
	      for (n = 0; n < ref->u.ar.dimen; n++)
		{
		  arg = gfc_get_actual_arglist ();
		  arg->expr = gfc_copy_expr (ref->u.ar.start[n]);
		  if (e->value.function.actual == NULL)
		    tail = e->value.function.actual = arg;
	          else
		    {
		      tail->next = arg;
		      tail = arg;
		    }
		}

	      /* Dump the reference list and set the rank.  */
	      gfc_free_ref_list (e->ref);
	      e->ref = NULL;
	      e->rank = sym->as ? sym->as->rank : 0;
	    }

	  gfc_resolve_expr (e);
	  sym->refs++;
	}
    }
  /* This might have changed!  */
  return e->expr_type == EXPR_FUNCTION;
}


static void
gfc_resolve_character_operator (gfc_expr *e)
{
  gfc_expr *op1 = e->value.op.op1;
  gfc_expr *op2 = e->value.op.op2;
  gfc_expr *e1 = NULL;
  gfc_expr *e2 = NULL;

  gcc_assert (e->value.op.op == INTRINSIC_CONCAT);

  if (op1->ts.u.cl && op1->ts.u.cl->length)
    e1 = gfc_copy_expr (op1->ts.u.cl->length);
  else if (op1->expr_type == EXPR_CONSTANT)
    e1 = gfc_get_int_expr (gfc_default_integer_kind, NULL,
			   op1->value.character.length);

  if (op2->ts.u.cl && op2->ts.u.cl->length)
    e2 = gfc_copy_expr (op2->ts.u.cl->length);
  else if (op2->expr_type == EXPR_CONSTANT)
    e2 = gfc_get_int_expr (gfc_default_integer_kind, NULL,
			   op2->value.character.length);

  e->ts.u.cl = gfc_new_charlen (gfc_current_ns, NULL);

  if (!e1 || !e2)
    return;

  e->ts.u.cl->length = gfc_add (e1, e2);
  e->ts.u.cl->length->ts.type = BT_INTEGER;
  e->ts.u.cl->length->ts.kind = gfc_charlen_int_kind;
  gfc_simplify_expr (e->ts.u.cl->length, 0);
  gfc_resolve_expr (e->ts.u.cl->length);

  return;
}


/*  Ensure that an character expression has a charlen and, if possible, a
    length expression.  */

static void
fixup_charlen (gfc_expr *e)
{
  /* The cases fall through so that changes in expression type and the need
     for multiple fixes are picked up.  In all circumstances, a charlen should
     be available for the middle end to hang a backend_decl on.  */
  switch (e->expr_type)
    {
    case EXPR_OP:
      gfc_resolve_character_operator (e);

    case EXPR_ARRAY:
      if (e->expr_type == EXPR_ARRAY)
	gfc_resolve_character_array_constructor (e);

    case EXPR_SUBSTRING:
      if (!e->ts.u.cl && e->ref)
	gfc_resolve_substring_charlen (e);

    default:
      if (!e->ts.u.cl)
	e->ts.u.cl = gfc_new_charlen (gfc_current_ns, NULL);

      break;
    }
}


/* Update an actual argument to include the passed-object for type-bound
   procedures at the right position.  */

static gfc_actual_arglist*
update_arglist_pass (gfc_actual_arglist* lst, gfc_expr* po, unsigned argpos,
		     const char *name)
{
  gcc_assert (argpos > 0);

  if (argpos == 1)
    {
      gfc_actual_arglist* result;

      result = gfc_get_actual_arglist ();
      result->expr = po;
      result->next = lst;
      if (name)
        result->name = name;

      return result;
    }

  if (lst)
    lst->next = update_arglist_pass (lst->next, po, argpos - 1, name);
  else
    lst = update_arglist_pass (NULL, po, argpos - 1, name);
  return lst;
}


/* Extract the passed-object from an EXPR_COMPCALL (a copy of it).  */

static gfc_expr*
extract_compcall_passed_object (gfc_expr* e)
{
  gfc_expr* po;

  gcc_assert (e->expr_type == EXPR_COMPCALL);

  if (e->value.compcall.base_object)
    po = gfc_copy_expr (e->value.compcall.base_object);
  else
    {
      po = gfc_get_expr ();
      po->expr_type = EXPR_VARIABLE;
      po->symtree = e->symtree;
      po->ref = gfc_copy_ref (e->ref);
      po->where = e->where;
    }

  if (gfc_resolve_expr (po) == FAILURE)
    return NULL;

  return po;
}


/* Update the arglist of an EXPR_COMPCALL expression to include the
   passed-object.  */

static gfc_try
update_compcall_arglist (gfc_expr* e)
{
  gfc_expr* po;
  gfc_typebound_proc* tbp;

  tbp = e->value.compcall.tbp;

  if (tbp->error)
    return FAILURE;

  po = extract_compcall_passed_object (e);
  if (!po)
    return FAILURE;

  if (tbp->nopass || e->value.compcall.ignore_pass)
    {
      gfc_free_expr (po);
      return SUCCESS;
    }

  gcc_assert (tbp->pass_arg_num > 0);
  e->value.compcall.actual = update_arglist_pass (e->value.compcall.actual, po,
						  tbp->pass_arg_num,
						  tbp->pass_arg);

  return SUCCESS;
}


/* Extract the passed object from a PPC call (a copy of it).  */

static gfc_expr*
extract_ppc_passed_object (gfc_expr *e)
{
  gfc_expr *po;
  gfc_ref **ref;

  po = gfc_get_expr ();
  po->expr_type = EXPR_VARIABLE;
  po->symtree = e->symtree;
  po->ref = gfc_copy_ref (e->ref);
  po->where = e->where;

  /* Remove PPC reference.  */
  ref = &po->ref;
  while ((*ref)->next)
    ref = &(*ref)->next;
  gfc_free_ref_list (*ref);
  *ref = NULL;

  if (gfc_resolve_expr (po) == FAILURE)
    return NULL;

  return po;
}


/* Update the actual arglist of a procedure pointer component to include the
   passed-object.  */

static gfc_try
update_ppc_arglist (gfc_expr* e)
{
  gfc_expr* po;
  gfc_component *ppc;
  gfc_typebound_proc* tb;

  if (!gfc_is_proc_ptr_comp (e, &ppc))
    return FAILURE;

  tb = ppc->tb;

  if (tb->error)
    return FAILURE;
  else if (tb->nopass)
    return SUCCESS;

  po = extract_ppc_passed_object (e);
  if (!po)
    return FAILURE;

  /* F08:R739.  */
  if (po->rank > 0)
    {
      gfc_error ("Passed-object at %L must be scalar", &e->where);
      return FAILURE;
    }

  /* F08:C611.  */
  if (po->ts.type == BT_DERIVED && po->ts.u.derived->attr.abstract)
    {
      gfc_error ("Base object for procedure-pointer component call at %L is of"
		 " ABSTRACT type '%s'", &e->where, po->ts.u.derived->name);
      return FAILURE;
    }

  gcc_assert (tb->pass_arg_num > 0);
  e->value.compcall.actual = update_arglist_pass (e->value.compcall.actual, po,
						  tb->pass_arg_num,
						  tb->pass_arg);

  return SUCCESS;
}


/* Check that the object a TBP is called on is valid, i.e. it must not be
   of ABSTRACT type (as in subobject%abstract_parent%tbp()).  */

static gfc_try
check_typebound_baseobject (gfc_expr* e)
{
  gfc_expr* base;
  gfc_try return_value = FAILURE;

  base = extract_compcall_passed_object (e);
  if (!base)
    return FAILURE;

  gcc_assert (base->ts.type == BT_DERIVED || base->ts.type == BT_CLASS);

  /* F08:C611.  */
  if (base->ts.type == BT_DERIVED && base->ts.u.derived->attr.abstract)
    {
      gfc_error ("Base object for type-bound procedure call at %L is of"
		 " ABSTRACT type '%s'", &e->where, base->ts.u.derived->name);
      goto cleanup;
    }

  /* F08:C1230. If the procedure called is NOPASS,
     the base object must be scalar.  */
  if (e->value.compcall.tbp->nopass && base->rank > 0)
    {
      gfc_error ("Base object for NOPASS type-bound procedure call at %L must"
		 " be scalar", &e->where);
      goto cleanup;
    }

  /* FIXME: Remove once PR 43214 is fixed (TBP with non-scalar PASS).  */
  if (base->rank > 0)
    {
      gfc_error ("Non-scalar base object at %L currently not implemented",
		 &e->where);
      goto cleanup;
    }

  return_value = SUCCESS;

cleanup:
  gfc_free_expr (base);
  return return_value;
}


/* Resolve a call to a type-bound procedure, either function or subroutine,
   statically from the data in an EXPR_COMPCALL expression.  The adapted
   arglist and the target-procedure symtree are returned.  */

static gfc_try
resolve_typebound_static (gfc_expr* e, gfc_symtree** target,
			  gfc_actual_arglist** actual)
{
  gcc_assert (e->expr_type == EXPR_COMPCALL);
  gcc_assert (!e->value.compcall.tbp->is_generic);

  /* Update the actual arglist for PASS.  */
  if (update_compcall_arglist (e) == FAILURE)
    return FAILURE;

  *actual = e->value.compcall.actual;
  *target = e->value.compcall.tbp->u.specific;

  gfc_free_ref_list (e->ref);
  e->ref = NULL;
  e->value.compcall.actual = NULL;

  return SUCCESS;
}


/* Get the ultimate declared type from an expression.  In addition,
   return the last class/derived type reference and the copy of the
   reference list.  */
static gfc_symbol*
get_declared_from_expr (gfc_ref **class_ref, gfc_ref **new_ref,
			gfc_expr *e)
{
  gfc_symbol *declared;
  gfc_ref *ref;

  declared = NULL;
  if (class_ref)
    *class_ref = NULL;
  if (new_ref)
    *new_ref = gfc_copy_ref (e->ref);

  for (ref = e->ref; ref; ref = ref->next)
    {
      if (ref->type != REF_COMPONENT)
	continue;

      if (ref->u.c.component->ts.type == BT_CLASS
	    || ref->u.c.component->ts.type == BT_DERIVED)
	{
	  declared = ref->u.c.component->ts.u.derived;
	  if (class_ref)
	    *class_ref = ref;
	}
    }

  if (declared == NULL)
    declared = e->symtree->n.sym->ts.u.derived;

  return declared;
}


/* Given an EXPR_COMPCALL calling a GENERIC typebound procedure, figure out
   which of the specific bindings (if any) matches the arglist and transform
   the expression into a call of that binding.  */

static gfc_try
resolve_typebound_generic_call (gfc_expr* e, const char **name)
{
  gfc_typebound_proc* genproc;
  const char* genname;
  gfc_symtree *st;
  gfc_symbol *derived;

  gcc_assert (e->expr_type == EXPR_COMPCALL);
  genname = e->value.compcall.name;
  genproc = e->value.compcall.tbp;

  if (!genproc->is_generic)
    return SUCCESS;

  /* Try the bindings on this type and in the inheritance hierarchy.  */
  for (; genproc; genproc = genproc->overridden)
    {
      gfc_tbp_generic* g;

      gcc_assert (genproc->is_generic);
      for (g = genproc->u.generic; g; g = g->next)
	{
	  gfc_symbol* target;
	  gfc_actual_arglist* args;
	  bool matches;

	  gcc_assert (g->specific);

	  if (g->specific->error)
	    continue;

	  target = g->specific->u.specific->n.sym;

	  /* Get the right arglist by handling PASS/NOPASS.  */
	  args = gfc_copy_actual_arglist (e->value.compcall.actual);
	  if (!g->specific->nopass)
	    {
	      gfc_expr* po;
	      po = extract_compcall_passed_object (e);
	      if (!po)
		return FAILURE;

	      gcc_assert (g->specific->pass_arg_num > 0);
	      gcc_assert (!g->specific->error);
	      args = update_arglist_pass (args, po, g->specific->pass_arg_num,
					  g->specific->pass_arg);
	    }
	  resolve_actual_arglist (args, target->attr.proc,
				  is_external_proc (target) && !target->formal);

	  /* Check if this arglist matches the formal.  */
	  matches = gfc_arglist_matches_symbol (&args, target);

	  /* Clean up and break out of the loop if we've found it.  */
	  gfc_free_actual_arglist (args);
	  if (matches)
	    {
	      e->value.compcall.tbp = g->specific;
	      genname = g->specific_st->name;
	      /* Pass along the name for CLASS methods, where the vtab
		 procedure pointer component has to be referenced.  */
	      if (name)
		*name = genname;
	      goto success;
	    }
	}
    }

  /* Nothing matching found!  */
  gfc_error ("Found no matching specific binding for the call to the GENERIC"
	     " '%s' at %L", genname, &e->where);
  return FAILURE;

success:
  /* Make sure that we have the right specific instance for the name.  */
  derived = get_declared_from_expr (NULL, NULL, e);

  st = gfc_find_typebound_proc (derived, NULL, genname, false, &e->where);
  if (st)
    e->value.compcall.tbp = st->n.tb;

  return SUCCESS;
}


/* Resolve a call to a type-bound subroutine.  */

static gfc_try
resolve_typebound_call (gfc_code* c, const char **name)
{
  gfc_actual_arglist* newactual;
  gfc_symtree* target;

  /* Check that's really a SUBROUTINE.  */
  if (!c->expr1->value.compcall.tbp->subroutine)
    {
      gfc_error ("'%s' at %L should be a SUBROUTINE",
		 c->expr1->value.compcall.name, &c->loc);
      return FAILURE;
    }

  if (check_typebound_baseobject (c->expr1) == FAILURE)
    return FAILURE;

  /* Pass along the name for CLASS methods, where the vtab
     procedure pointer component has to be referenced.  */
  if (name)
    *name = c->expr1->value.compcall.name;

  if (resolve_typebound_generic_call (c->expr1, name) == FAILURE)
    return FAILURE;

  /* Transform into an ordinary EXEC_CALL for now.  */

  if (resolve_typebound_static (c->expr1, &target, &newactual) == FAILURE)
    return FAILURE;

  c->ext.actual = newactual;
  c->symtree = target;
  c->op = (c->expr1->value.compcall.assign ? EXEC_ASSIGN_CALL : EXEC_CALL);

  gcc_assert (!c->expr1->ref && !c->expr1->value.compcall.actual);

  gfc_free_expr (c->expr1);
  c->expr1 = gfc_get_expr ();
  c->expr1->expr_type = EXPR_FUNCTION;
  c->expr1->symtree = target;
  c->expr1->where = c->loc;

  return resolve_call (c);
}


/* Resolve a component-call expression.  */
static gfc_try
resolve_compcall (gfc_expr* e, const char **name)
{
  gfc_actual_arglist* newactual;
  gfc_symtree* target;

  /* Check that's really a FUNCTION.  */
  if (!e->value.compcall.tbp->function)
    {
      gfc_error ("'%s' at %L should be a FUNCTION",
		 e->value.compcall.name, &e->where);
      return FAILURE;
    }

  /* These must not be assign-calls!  */
  gcc_assert (!e->value.compcall.assign);

  if (check_typebound_baseobject (e) == FAILURE)
    return FAILURE;

  /* Pass along the name for CLASS methods, where the vtab
     procedure pointer component has to be referenced.  */
  if (name)
    *name = e->value.compcall.name;

  if (resolve_typebound_generic_call (e, name) == FAILURE)
    return FAILURE;
  gcc_assert (!e->value.compcall.tbp->is_generic);

  /* Take the rank from the function's symbol.  */
  if (e->value.compcall.tbp->u.specific->n.sym->as)
    e->rank = e->value.compcall.tbp->u.specific->n.sym->as->rank;

  /* For now, we simply transform it into an EXPR_FUNCTION call with the same
     arglist to the TBP's binding target.  */

  if (resolve_typebound_static (e, &target, &newactual) == FAILURE)
    return FAILURE;

  e->value.function.actual = newactual;
  e->value.function.name = NULL;
  e->value.function.esym = target->n.sym;
  e->value.function.isym = NULL;
  e->symtree = target;
  e->ts = target->n.sym->ts;
  e->expr_type = EXPR_FUNCTION;

  /* Resolution is not necessary if this is a class subroutine; this
     function only has to identify the specific proc. Resolution of
     the call will be done next in resolve_typebound_call.  */
  return gfc_resolve_expr (e);
}



/* Resolve a typebound function, or 'method'. First separate all
   the non-CLASS references by calling resolve_compcall directly.  */

static gfc_try
resolve_typebound_function (gfc_expr* e)
{
  gfc_symbol *declared;
  gfc_component *c;
  gfc_ref *new_ref;
  gfc_ref *class_ref;
  gfc_symtree *st;
  const char *name;
  gfc_typespec ts;
  gfc_expr *expr;

  st = e->symtree;

  /* Deal with typebound operators for CLASS objects.  */
  expr = e->value.compcall.base_object;
  if (expr && expr->ts.type == BT_CLASS && e->value.compcall.name)
    {
      /* Since the typebound operators are generic, we have to ensure
	 that any delays in resolution are corrected and that the vtab
	 is present.  */
      ts = expr->ts;
      declared = ts.u.derived;
      c = gfc_find_component (declared, "_vptr", true, true);
      if (c->ts.u.derived == NULL)
	c->ts.u.derived = gfc_find_derived_vtab (declared);

      if (resolve_compcall (e, &name) == FAILURE)
	return FAILURE;

      /* Use the generic name if it is there.  */
      name = name ? name : e->value.function.esym->name;
      e->symtree = expr->symtree;
      e->ref = gfc_copy_ref (expr->ref);
      gfc_add_vptr_component (e);
      gfc_add_component_ref (e, name);
      e->value.function.esym = NULL;
      return SUCCESS;
    }

  if (st == NULL)
    return resolve_compcall (e, NULL);

  if (resolve_ref (e) == FAILURE)
    return FAILURE;

  /* Get the CLASS declared type.  */
  declared = get_declared_from_expr (&class_ref, &new_ref, e);

  /* Weed out cases of the ultimate component being a derived type.  */
  if ((class_ref && class_ref->u.c.component->ts.type == BT_DERIVED)
	 || (!class_ref && st->n.sym->ts.type != BT_CLASS))
    {
      gfc_free_ref_list (new_ref);
      return resolve_compcall (e, NULL);
    }

  c = gfc_find_component (declared, "_data", true, true);
  declared = c->ts.u.derived;

  /* Treat the call as if it is a typebound procedure, in order to roll
     out the correct name for the specific function.  */
  if (resolve_compcall (e, &name) == FAILURE)
    return FAILURE;
  ts = e->ts;

  /* Then convert the expression to a procedure pointer component call.  */
  e->value.function.esym = NULL;
  e->symtree = st;

  if (new_ref)  
    e->ref = new_ref;

  /* '_vptr' points to the vtab, which contains the procedure pointers.  */
  gfc_add_vptr_component (e);
  gfc_add_component_ref (e, name);

  /* Recover the typespec for the expression.  This is really only
     necessary for generic procedures, where the additional call
     to gfc_add_component_ref seems to throw the collection of the
     correct typespec.  */
  e->ts = ts;
  return SUCCESS;
}

/* Resolve a typebound subroutine, or 'method'. First separate all
   the non-CLASS references by calling resolve_typebound_call
   directly.  */

static gfc_try
resolve_typebound_subroutine (gfc_code *code)
{
  gfc_symbol *declared;
  gfc_component *c;
  gfc_ref *new_ref;
  gfc_ref *class_ref;
  gfc_symtree *st;
  const char *name;
  gfc_typespec ts;
  gfc_expr *expr;

  st = code->expr1->symtree;

  /* Deal with typebound operators for CLASS objects.  */
  expr = code->expr1->value.compcall.base_object;
  if (expr && expr->ts.type == BT_CLASS && code->expr1->value.compcall.name)
    {
      /* Since the typebound operators are generic, we have to ensure
	 that any delays in resolution are corrected and that the vtab
	 is present.  */
      declared = expr->ts.u.derived;
      c = gfc_find_component (declared, "_vptr", true, true);
      if (c->ts.u.derived == NULL)
	c->ts.u.derived = gfc_find_derived_vtab (declared);

      if (resolve_typebound_call (code, &name) == FAILURE)
	return FAILURE;

      /* Use the generic name if it is there.  */
      name = name ? name : code->expr1->value.function.esym->name;
      code->expr1->symtree = expr->symtree;
      code->expr1->ref = gfc_copy_ref (expr->ref);
      gfc_add_vptr_component (code->expr1);
      gfc_add_component_ref (code->expr1, name);
      code->expr1->value.function.esym = NULL;
      return SUCCESS;
    }

  if (st == NULL)
    return resolve_typebound_call (code, NULL);

  if (resolve_ref (code->expr1) == FAILURE)
    return FAILURE;

  /* Get the CLASS declared type.  */
  get_declared_from_expr (&class_ref, &new_ref, code->expr1);

  /* Weed out cases of the ultimate component being a derived type.  */
  if ((class_ref && class_ref->u.c.component->ts.type == BT_DERIVED)
	 || (!class_ref && st->n.sym->ts.type != BT_CLASS))
    {
      gfc_free_ref_list (new_ref);
      return resolve_typebound_call (code, NULL);
    }

  if (resolve_typebound_call (code, &name) == FAILURE)
    return FAILURE;
  ts = code->expr1->ts;

  /* Then convert the expression to a procedure pointer component call.  */
  code->expr1->value.function.esym = NULL;
  code->expr1->symtree = st;

  if (new_ref)
    code->expr1->ref = new_ref;

  /* '_vptr' points to the vtab, which contains the procedure pointers.  */
  gfc_add_vptr_component (code->expr1);
  gfc_add_component_ref (code->expr1, name);

  /* Recover the typespec for the expression.  This is really only
     necessary for generic procedures, where the additional call
     to gfc_add_component_ref seems to throw the collection of the
     correct typespec.  */
  code->expr1->ts = ts;
  return SUCCESS;
}


/* Resolve a CALL to a Procedure Pointer Component (Subroutine).  */

static gfc_try
resolve_ppc_call (gfc_code* c)
{
  gfc_component *comp;
  bool b;

  b = gfc_is_proc_ptr_comp (c->expr1, &comp);
  gcc_assert (b);

  c->resolved_sym = c->expr1->symtree->n.sym;
  c->expr1->expr_type = EXPR_VARIABLE;

  if (!comp->attr.subroutine)
    gfc_add_subroutine (&comp->attr, comp->name, &c->expr1->where);

  if (resolve_ref (c->expr1) == FAILURE)
    return FAILURE;

  if (update_ppc_arglist (c->expr1) == FAILURE)
    return FAILURE;

  c->ext.actual = c->expr1->value.compcall.actual;

  if (resolve_actual_arglist (c->ext.actual, comp->attr.proc,
			      comp->formal == NULL) == FAILURE)
    return FAILURE;

  gfc_ppc_use (comp, &c->expr1->value.compcall.actual, &c->expr1->where);

  return SUCCESS;
}


/* Resolve a Function Call to a Procedure Pointer Component (Function).  */

static gfc_try
resolve_expr_ppc (gfc_expr* e)
{
  gfc_component *comp;
  bool b;

  b = gfc_is_proc_ptr_comp (e, &comp);
  gcc_assert (b);

  /* Convert to EXPR_FUNCTION.  */
  e->expr_type = EXPR_FUNCTION;
  e->value.function.isym = NULL;
  e->value.function.actual = e->value.compcall.actual;
  e->ts = comp->ts;
  if (comp->as != NULL)
    e->rank = comp->as->rank;

  if (!comp->attr.function)
    gfc_add_function (&comp->attr, comp->name, &e->where);

  if (resolve_ref (e) == FAILURE)
    return FAILURE;

  if (resolve_actual_arglist (e->value.function.actual, comp->attr.proc,
			      comp->formal == NULL) == FAILURE)
    return FAILURE;

  if (update_ppc_arglist (e) == FAILURE)
    return FAILURE;

  gfc_ppc_use (comp, &e->value.compcall.actual, &e->where);

  return SUCCESS;
}


static bool
gfc_is_expandable_expr (gfc_expr *e)
{
  gfc_constructor *con;

  if (e->expr_type == EXPR_ARRAY)
    {
      /* Traverse the constructor looking for variables that are flavor
	 parameter.  Parameters must be expanded since they are fully used at
	 compile time.  */
      con = gfc_constructor_first (e->value.constructor);
      for (; con; con = gfc_constructor_next (con))
	{
	  if (con->expr->expr_type == EXPR_VARIABLE
	      && con->expr->symtree
	      && (con->expr->symtree->n.sym->attr.flavor == FL_PARAMETER
	      || con->expr->symtree->n.sym->attr.flavor == FL_VARIABLE))
	    return true;
	  if (con->expr->expr_type == EXPR_ARRAY
	      && gfc_is_expandable_expr (con->expr))
	    return true;
	}
    }

  return false;
}

/* Resolve an expression.  That is, make sure that types of operands agree
   with their operators, intrinsic operators are converted to function calls
   for overloaded types and unresolved function references are resolved.  */

gfc_try
gfc_resolve_expr (gfc_expr *e)
{
  gfc_try t;
  bool inquiry_save;

  if (e == NULL)
    return SUCCESS;

  /* inquiry_argument only applies to variables.  */
  inquiry_save = inquiry_argument;
  if (e->expr_type != EXPR_VARIABLE)
    inquiry_argument = false;

  switch (e->expr_type)
    {
    case EXPR_OP:
      t = resolve_operator (e);
      break;

    case EXPR_FUNCTION:
    case EXPR_VARIABLE:

      if (check_host_association (e))
	t = resolve_function (e);
      else
	{
	  t = resolve_variable (e);
	  if (t == SUCCESS)
	    expression_rank (e);
	}

      if (e->ts.type == BT_CHARACTER && e->ts.u.cl == NULL && e->ref
	  && e->ref->type != REF_SUBSTRING)
	gfc_resolve_substring_charlen (e);

      break;

    case EXPR_COMPCALL:
      t = resolve_typebound_function (e);
      break;

    case EXPR_SUBSTRING:
      t = resolve_ref (e);
      break;

    case EXPR_CONSTANT:
    case EXPR_NULL:
      t = SUCCESS;
      break;

    case EXPR_PPC:
      t = resolve_expr_ppc (e);
      break;

    case EXPR_ARRAY:
      t = FAILURE;
      if (resolve_ref (e) == FAILURE)
	break;

      t = gfc_resolve_array_constructor (e);
      /* Also try to expand a constructor.  */
      if (t == SUCCESS)
	{
	  expression_rank (e);
	  if (gfc_is_constant_expr (e) || gfc_is_expandable_expr (e))
	    gfc_expand_constructor (e, false);
	}

      /* This provides the opportunity for the length of constructors with
	 character valued function elements to propagate the string length
	 to the expression.  */
      if (t == SUCCESS && e->ts.type == BT_CHARACTER)
        {
	  /* For efficiency, we call gfc_expand_constructor for BT_CHARACTER
	     here rather then add a duplicate test for it above.  */ 
	  gfc_expand_constructor (e, false);
	  t = gfc_resolve_character_array_constructor (e);
	}

      break;

    case EXPR_STRUCTURE:
      t = resolve_ref (e);
      if (t == FAILURE)
	break;

      t = resolve_structure_cons (e, 0);
      if (t == FAILURE)
	break;

      t = gfc_simplify_expr (e, 0);
      break;

    default:
      gfc_internal_error ("gfc_resolve_expr(): Bad expression type");
    }

  if (e->ts.type == BT_CHARACTER && t == SUCCESS && !e->ts.u.cl)
    fixup_charlen (e);

  inquiry_argument = inquiry_save;

  return t;
}


/* Resolve an expression from an iterator.  They must be scalar and have
   INTEGER or (optionally) REAL type.  */

static gfc_try
gfc_resolve_iterator_expr (gfc_expr *expr, bool real_ok,
			   const char *name_msgid)
{
  if (gfc_resolve_expr (expr) == FAILURE)
    return FAILURE;

  if (expr->rank != 0)
    {
      gfc_error ("%s at %L must be a scalar", _(name_msgid), &expr->where);
      return FAILURE;
    }

  if (expr->ts.type != BT_INTEGER)
    {
      if (expr->ts.type == BT_REAL)
	{
	  if (real_ok)
	    return gfc_notify_std (GFC_STD_F95_DEL,
				   "Deleted feature: %s at %L must be integer",
				   _(name_msgid), &expr->where);
	  else
	    {
	      gfc_error ("%s at %L must be INTEGER", _(name_msgid),
			 &expr->where);
	      return FAILURE;
	    }
	}
      else
	{
	  gfc_error ("%s at %L must be INTEGER", _(name_msgid), &expr->where);
	  return FAILURE;
	}
    }
  return SUCCESS;
}


/* Resolve the expressions in an iterator structure.  If REAL_OK is
   false allow only INTEGER type iterators, otherwise allow REAL types.  */

gfc_try
gfc_resolve_iterator (gfc_iterator *iter, bool real_ok)
{
  if (gfc_resolve_iterator_expr (iter->var, real_ok, "Loop variable")
      == FAILURE)
    return FAILURE;

  if (gfc_check_vardef_context (iter->var, false, _("iterator variable"))
      == FAILURE)
    return FAILURE;

  if (gfc_resolve_iterator_expr (iter->start, real_ok,
				 "Start expression in DO loop") == FAILURE)
    return FAILURE;

  if (gfc_resolve_iterator_expr (iter->end, real_ok,
				 "End expression in DO loop") == FAILURE)
    return FAILURE;

  if (gfc_resolve_iterator_expr (iter->step, real_ok,
				 "Step expression in DO loop") == FAILURE)
    return FAILURE;

  if (iter->step->expr_type == EXPR_CONSTANT)
    {
      if ((iter->step->ts.type == BT_INTEGER
	   && mpz_cmp_ui (iter->step->value.integer, 0) == 0)
	  || (iter->step->ts.type == BT_REAL
	      && mpfr_sgn (iter->step->value.real) == 0))
	{
	  gfc_error ("Step expression in DO loop at %L cannot be zero",
		     &iter->step->where);
	  return FAILURE;
	}
    }

  /* Convert start, end, and step to the same type as var.  */
  if (iter->start->ts.kind != iter->var->ts.kind
      || iter->start->ts.type != iter->var->ts.type)
    gfc_convert_type (iter->start, &iter->var->ts, 2);

  if (iter->end->ts.kind != iter->var->ts.kind
      || iter->end->ts.type != iter->var->ts.type)
    gfc_convert_type (iter->end, &iter->var->ts, 2);

  if (iter->step->ts.kind != iter->var->ts.kind
      || iter->step->ts.type != iter->var->ts.type)
    gfc_convert_type (iter->step, &iter->var->ts, 2);

  if (iter->start->expr_type == EXPR_CONSTANT
      && iter->end->expr_type == EXPR_CONSTANT
      && iter->step->expr_type == EXPR_CONSTANT)
    {
      int sgn, cmp;
      if (iter->start->ts.type == BT_INTEGER)
	{
	  sgn = mpz_cmp_ui (iter->step->value.integer, 0);
	  cmp = mpz_cmp (iter->end->value.integer, iter->start->value.integer);
	}
      else
	{
	  sgn = mpfr_sgn (iter->step->value.real);
	  cmp = mpfr_cmp (iter->end->value.real, iter->start->value.real);
	}
      if ((sgn > 0 && cmp < 0) || (sgn < 0 && cmp > 0))
	gfc_warning ("DO loop at %L will be executed zero times",
		     &iter->step->where);
    }

  return SUCCESS;
}


/* Traversal function for find_forall_index.  f == 2 signals that
   that variable itself is not to be checked - only the references.  */

static bool
forall_index (gfc_expr *expr, gfc_symbol *sym, int *f)
{
  if (expr->expr_type != EXPR_VARIABLE)
    return false;
  
  /* A scalar assignment  */
  if (!expr->ref || *f == 1)
    {
      if (expr->symtree->n.sym == sym)
	return true;
      else
	return false;
    }

  if (*f == 2)
    *f = 1;
  return false;
}


/* Check whether the FORALL index appears in the expression or not.
   Returns SUCCESS if SYM is found in EXPR.  */

gfc_try
find_forall_index (gfc_expr *expr, gfc_symbol *sym, int f)
{
  if (gfc_traverse_expr (expr, sym, forall_index, f))
    return SUCCESS;
  else
    return FAILURE;
}


/* Resolve a list of FORALL iterators.  The FORALL index-name is constrained
   to be a scalar INTEGER variable.  The subscripts and stride are scalar
   INTEGERs, and if stride is a constant it must be nonzero.
   Furthermore "A subscript or stride in a forall-triplet-spec shall
   not contain a reference to any index-name in the
   forall-triplet-spec-list in which it appears." (7.5.4.1)  */

static void
resolve_forall_iterators (gfc_forall_iterator *it)
{
  gfc_forall_iterator *iter, *iter2;

  for (iter = it; iter; iter = iter->next)
    {
      if (gfc_resolve_expr (iter->var) == SUCCESS
	  && (iter->var->ts.type != BT_INTEGER || iter->var->rank != 0))
	gfc_error ("FORALL index-name at %L must be a scalar INTEGER",
		   &iter->var->where);

      if (gfc_resolve_expr (iter->start) == SUCCESS
	  && (iter->start->ts.type != BT_INTEGER || iter->start->rank != 0))
	gfc_error ("FORALL start expression at %L must be a scalar INTEGER",
		   &iter->start->where);
      if (iter->var->ts.kind != iter->start->ts.kind)
	gfc_convert_type (iter->start, &iter->var->ts, 2);

      if (gfc_resolve_expr (iter->end) == SUCCESS
	  && (iter->end->ts.type != BT_INTEGER || iter->end->rank != 0))
	gfc_error ("FORALL end expression at %L must be a scalar INTEGER",
		   &iter->end->where);
      if (iter->var->ts.kind != iter->end->ts.kind)
	gfc_convert_type (iter->end, &iter->var->ts, 2);

      if (gfc_resolve_expr (iter->stride) == SUCCESS)
	{
	  if (iter->stride->ts.type != BT_INTEGER || iter->stride->rank != 0)
	    gfc_error ("FORALL stride expression at %L must be a scalar %s",
		       &iter->stride->where, "INTEGER");

	  if (iter->stride->expr_type == EXPR_CONSTANT
	      && mpz_cmp_ui(iter->stride->value.integer, 0) == 0)
	    gfc_error ("FORALL stride expression at %L cannot be zero",
		       &iter->stride->where);
	}
      if (iter->var->ts.kind != iter->stride->ts.kind)
	gfc_convert_type (iter->stride, &iter->var->ts, 2);
    }

  for (iter = it; iter; iter = iter->next)
    for (iter2 = iter; iter2; iter2 = iter2->next)
      {
	if (find_forall_index (iter2->start,
			       iter->var->symtree->n.sym, 0) == SUCCESS
	    || find_forall_index (iter2->end,
				  iter->var->symtree->n.sym, 0) == SUCCESS
	    || find_forall_index (iter2->stride,
				  iter->var->symtree->n.sym, 0) == SUCCESS)
	  gfc_error ("FORALL index '%s' may not appear in triplet "
		     "specification at %L", iter->var->symtree->name,
		     &iter2->start->where);
      }
}


/* Given a pointer to a symbol that is a derived type, see if it's
   inaccessible, i.e. if it's defined in another module and the components are
   PRIVATE.  The search is recursive if necessary.  Returns zero if no
   inaccessible components are found, nonzero otherwise.  */

static int
derived_inaccessible (gfc_symbol *sym)
{
  gfc_component *c;

  if (sym->attr.use_assoc && sym->attr.private_comp)
    return 1;

  for (c = sym->components; c; c = c->next)
    {
	if (c->ts.type == BT_DERIVED && derived_inaccessible (c->ts.u.derived))
	  return 1;
    }

  return 0;
}


/* Resolve the argument of a deallocate expression.  The expression must be
   a pointer or a full array.  */

static gfc_try
resolve_deallocate_expr (gfc_expr *e)
{
  symbol_attribute attr;
  int allocatable, pointer;
  gfc_ref *ref;
  gfc_symbol *sym;
  gfc_component *c;

  if (gfc_resolve_expr (e) == FAILURE)
    return FAILURE;

  if (e->expr_type != EXPR_VARIABLE)
    goto bad;

  sym = e->symtree->n.sym;

  if (sym->ts.type == BT_CLASS)
    {
      allocatable = CLASS_DATA (sym)->attr.allocatable;
      pointer = CLASS_DATA (sym)->attr.class_pointer;
    }
  else
    {
      allocatable = sym->attr.allocatable;
      pointer = sym->attr.pointer;
    }
  for (ref = e->ref; ref; ref = ref->next)
    {
      switch (ref->type)
	{
	case REF_ARRAY:
	  if (ref->u.ar.type != AR_FULL)
	    allocatable = 0;
	  break;

	case REF_COMPONENT:
	  c = ref->u.c.component;
	  if (c->ts.type == BT_CLASS)
	    {
	      allocatable = CLASS_DATA (c)->attr.allocatable;
	      pointer = CLASS_DATA (c)->attr.class_pointer;
	    }
	  else
	    {
	      allocatable = c->attr.allocatable;
	      pointer = c->attr.pointer;
	    }
	  break;

	case REF_SUBSTRING:
	  allocatable = 0;
	  break;
	}
    }

  attr = gfc_expr_attr (e);

  if (allocatable == 0 && attr.pointer == 0)
    {
    bad:
      gfc_error ("Allocate-object at %L must be ALLOCATABLE or a POINTER",
		 &e->where);
      return FAILURE;
    }

  if (pointer
      && gfc_check_vardef_context (e, true, _("DEALLOCATE object")) == FAILURE)
    return FAILURE;
  if (gfc_check_vardef_context (e, false, _("DEALLOCATE object")) == FAILURE)
    return FAILURE;

  return SUCCESS;
}


/* Returns true if the expression e contains a reference to the symbol sym.  */
static bool
sym_in_expr (gfc_expr *e, gfc_symbol *sym, int *f ATTRIBUTE_UNUSED)
{
  if (e->expr_type == EXPR_VARIABLE && e->symtree->n.sym == sym)
    return true;

  return false;
}

bool
gfc_find_sym_in_expr (gfc_symbol *sym, gfc_expr *e)
{
  return gfc_traverse_expr (e, sym, sym_in_expr, 0);
}


/* Given the expression node e for an allocatable/pointer of derived type to be
   allocated, get the expression node to be initialized afterwards (needed for
   derived types with default initializers, and derived types with allocatable
   components that need nullification.)  */

gfc_expr *
gfc_expr_to_initialize (gfc_expr *e)
{
  gfc_expr *result;
  gfc_ref *ref;
  int i;

  result = gfc_copy_expr (e);

  /* Change the last array reference from AR_ELEMENT to AR_FULL.  */
  for (ref = result->ref; ref; ref = ref->next)
    if (ref->type == REF_ARRAY && ref->next == NULL)
      {
	ref->u.ar.type = AR_FULL;

	for (i = 0; i < ref->u.ar.dimen; i++)
	  ref->u.ar.start[i] = ref->u.ar.end[i] = ref->u.ar.stride[i] = NULL;

	result->rank = ref->u.ar.dimen;
	break;
      }

  return result;
}


/* If the last ref of an expression is an array ref, return a copy of the
   expression with that one removed.  Otherwise, a copy of the original
   expression.  This is used for allocate-expressions and pointer assignment
   LHS, where there may be an array specification that needs to be stripped
   off when using gfc_check_vardef_context.  */

static gfc_expr*
remove_last_array_ref (gfc_expr* e)
{
  gfc_expr* e2;
  gfc_ref** r;

  e2 = gfc_copy_expr (e);
  for (r = &e2->ref; *r; r = &(*r)->next)
    if ((*r)->type == REF_ARRAY && !(*r)->next)
      {
	gfc_free_ref_list (*r);
	*r = NULL;
	break;
      }

  return e2;
}


/* Used in resolve_allocate_expr to check that a allocation-object and
   a source-expr are conformable.  This does not catch all possible 
   cases; in particular a runtime checking is needed.  */

static gfc_try
conformable_arrays (gfc_expr *e1, gfc_expr *e2)
{
  gfc_ref *tail;
  for (tail = e2->ref; tail && tail->next; tail = tail->next);
  
  /* First compare rank.  */
  if (tail && e1->rank != tail->u.ar.as->rank)
    {
      gfc_error ("Source-expr at %L must be scalar or have the "
		 "same rank as the allocate-object at %L",
		 &e1->where, &e2->where);
      return FAILURE;
    }

  if (e1->shape)
    {
      int i;
      mpz_t s;

      mpz_init (s);

      for (i = 0; i < e1->rank; i++)
	{
	  if (tail->u.ar.end[i])
	    {
	      mpz_set (s, tail->u.ar.end[i]->value.integer);
	      mpz_sub (s, s, tail->u.ar.start[i]->value.integer);
	      mpz_add_ui (s, s, 1);
	    }
	  else
	    {
	      mpz_set (s, tail->u.ar.start[i]->value.integer);
	    }

	  if (mpz_cmp (e1->shape[i], s) != 0)
	    {
	      gfc_error ("Source-expr at %L and allocate-object at %L must "
			 "have the same shape", &e1->where, &e2->where);
	      mpz_clear (s);
   	      return FAILURE;
	    }
	}

      mpz_clear (s);
    }

  return SUCCESS;
}


/* Resolve the expression in an ALLOCATE statement, doing the additional
   checks to see whether the expression is OK or not.  The expression must
   have a trailing array reference that gives the size of the array.  */

static gfc_try
resolve_allocate_expr (gfc_expr *e, gfc_code *code)
{
  int i, pointer, allocatable, dimension, is_abstract;
  int codimension;
  symbol_attribute attr;
  gfc_ref *ref, *ref2;
  gfc_expr *e2;
  gfc_array_ref *ar;
  gfc_symbol *sym = NULL;
  gfc_alloc *a;
  gfc_component *c;
  gfc_try t;

  /* Mark the ultimost array component as being in allocate to allow DIMEN_STAR
     checking of coarrays.  */
  for (ref = e->ref; ref; ref = ref->next)
    if (ref->next == NULL)
      break;

  if (ref && ref->type == REF_ARRAY)
    ref->u.ar.in_allocate = true;

  if (gfc_resolve_expr (e) == FAILURE)
    goto failure;

  /* Make sure the expression is allocatable or a pointer.  If it is
     pointer, the next-to-last reference must be a pointer.  */

  ref2 = NULL;
  if (e->symtree)
    sym = e->symtree->n.sym;

  /* Check whether ultimate component is abstract and CLASS.  */
  is_abstract = 0;

  if (e->expr_type != EXPR_VARIABLE)
    {
      allocatable = 0;
      attr = gfc_expr_attr (e);
      pointer = attr.pointer;
      dimension = attr.dimension;
      codimension = attr.codimension;
    }
  else
    {
      if (sym->ts.type == BT_CLASS)
	{
	  allocatable = CLASS_DATA (sym)->attr.allocatable;
	  pointer = CLASS_DATA (sym)->attr.class_pointer;
	  dimension = CLASS_DATA (sym)->attr.dimension;
	  codimension = CLASS_DATA (sym)->attr.codimension;
	  is_abstract = CLASS_DATA (sym)->attr.abstract;
	}
      else
	{
	  allocatable = sym->attr.allocatable;
	  pointer = sym->attr.pointer;
	  dimension = sym->attr.dimension;
	  codimension = sym->attr.codimension;
	}

      for (ref = e->ref; ref; ref2 = ref, ref = ref->next)
	{
	  switch (ref->type)
	    {
 	      case REF_ARRAY:
		if (ref->next != NULL)
		  pointer = 0;
		break;

	      case REF_COMPONENT:
		/* F2008, C644.  */
		if (gfc_is_coindexed (e))
		  {
		    gfc_error ("Coindexed allocatable object at %L",
			       &e->where);
		    goto failure;
		  }

		c = ref->u.c.component;
		if (c->ts.type == BT_CLASS)
		  {
		    allocatable = CLASS_DATA (c)->attr.allocatable;
		    pointer = CLASS_DATA (c)->attr.class_pointer;
		    dimension = CLASS_DATA (c)->attr.dimension;
		    codimension = CLASS_DATA (c)->attr.codimension;
		    is_abstract = CLASS_DATA (c)->attr.abstract;
		  }
		else
		  {
		    allocatable = c->attr.allocatable;
		    pointer = c->attr.pointer;
		    dimension = c->attr.dimension;
		    codimension = c->attr.codimension;
		    is_abstract = c->attr.abstract;
		  }
		break;

	      case REF_SUBSTRING:
		allocatable = 0;
		pointer = 0;
		break;
	    }
	}
    }

  if (allocatable == 0 && pointer == 0)
    {
      gfc_error ("Allocate-object at %L must be ALLOCATABLE or a POINTER",
		 &e->where);
      goto failure;
    }

  /* Some checks for the SOURCE tag.  */
  if (code->expr3)
    {
      /* Check F03:C631.  */
      if (!gfc_type_compatible (&e->ts, &code->expr3->ts))
	{
	  gfc_error ("Type of entity at %L is type incompatible with "
		      "source-expr at %L", &e->where, &code->expr3->where);
	  goto failure;
	}

      /* Check F03:C632 and restriction following Note 6.18.  */
      if (code->expr3->rank > 0
	  && conformable_arrays (code->expr3, e) == FAILURE)
	goto failure;

      /* Check F03:C633.  */
      if (code->expr3->ts.kind != e->ts.kind)
	{
	  gfc_error ("The allocate-object at %L and the source-expr at %L "
		      "shall have the same kind type parameter",
		      &e->where, &code->expr3->where);
	  goto failure;
	}
    }

  /* Check F08:C629.  */
  if (is_abstract && code->ext.alloc.ts.type == BT_UNKNOWN
      && !code->expr3)
    {
      gcc_assert (e->ts.type == BT_CLASS);
      gfc_error ("Allocating %s of ABSTRACT base type at %L requires a "
		 "type-spec or source-expr", sym->name, &e->where);
      goto failure;
    }

  /* In the variable definition context checks, gfc_expr_attr is used
     on the expression.  This is fooled by the array specification
     present in e, thus we have to eliminate that one temporarily.  */
  e2 = remove_last_array_ref (e);
  t = SUCCESS;
  if (t == SUCCESS && pointer)
    t = gfc_check_vardef_context (e2, true, _("ALLOCATE object"));
  if (t == SUCCESS)
    t = gfc_check_vardef_context (e2, false, _("ALLOCATE object"));
  gfc_free_expr (e2);
  if (t == FAILURE)
    goto failure;

  if (!code->expr3)
    {
      /* Set up default initializer if needed.  */
      gfc_typespec ts;
      gfc_expr *init_e;

      if (code->ext.alloc.ts.type == BT_DERIVED)
	ts = code->ext.alloc.ts;
      else
	ts = e->ts;

      if (ts.type == BT_CLASS)
	ts = ts.u.derived->components->ts;

      if (ts.type == BT_DERIVED && (init_e = gfc_default_initializer (&ts)))
	{
	  gfc_code *init_st = gfc_get_code ();
	  init_st->loc = code->loc;
	  init_st->op = EXEC_INIT_ASSIGN;
	  init_st->expr1 = gfc_expr_to_initialize (e);
	  init_st->expr2 = init_e;
	  init_st->next = code->next;
	  code->next = init_st;
	}
    }
  else if (code->expr3->mold && code->expr3->ts.type == BT_DERIVED)
    {
      /* Default initialization via MOLD (non-polymorphic).  */
      gfc_expr *rhs = gfc_default_initializer (&code->expr3->ts);
      gfc_resolve_expr (rhs);
      gfc_free_expr (code->expr3);
      code->expr3 = rhs;
    }

  if (e->ts.type == BT_CLASS)
    {
      /* Make sure the vtab symbol is present when
	 the module variables are generated.  */
      gfc_typespec ts = e->ts;
      if (code->expr3)
	ts = code->expr3->ts;
      else if (code->ext.alloc.ts.type == BT_DERIVED)
	ts = code->ext.alloc.ts;
      gfc_find_derived_vtab (ts.u.derived);
    }

  if (pointer || (dimension == 0 && codimension == 0))
    goto success;

  /* Make sure the last reference node is an array specifiction.  */

  if (!ref2 || ref2->type != REF_ARRAY || ref2->u.ar.type == AR_FULL
      || (dimension && ref2->u.ar.dimen == 0))
    {
      gfc_error ("Array specification required in ALLOCATE statement "
		 "at %L", &e->where);
      goto failure;
    }

  /* Make sure that the array section reference makes sense in the
    context of an ALLOCATE specification.  */

  ar = &ref2->u.ar;

  if (codimension && ar->codimen == 0)
    {
      gfc_error ("Coarray specification required in ALLOCATE statement "
		 "at %L", &e->where);
      goto failure;
    }

  for (i = 0; i < ar->dimen; i++)
    {
      if (ref2->u.ar.type == AR_ELEMENT)
	goto check_symbols;

      switch (ar->dimen_type[i])
	{
	case DIMEN_ELEMENT:
	  break;

	case DIMEN_RANGE:
	  if (ar->start[i] != NULL
	      && ar->end[i] != NULL
	      && ar->stride[i] == NULL)
	    break;

	  /* Fall Through...  */

	case DIMEN_UNKNOWN:
	case DIMEN_VECTOR:
	case DIMEN_STAR:
	  gfc_error ("Bad array specification in ALLOCATE statement at %L",
		     &e->where);
	  goto failure;
	}

check_symbols:
      for (a = code->ext.alloc.list; a; a = a->next)
	{
	  sym = a->expr->symtree->n.sym;

	  /* TODO - check derived type components.  */
	  if (sym->ts.type == BT_DERIVED || sym->ts.type == BT_CLASS)
	    continue;

	  if ((ar->start[i] != NULL
	       && gfc_find_sym_in_expr (sym, ar->start[i]))
	      || (ar->end[i] != NULL
		  && gfc_find_sym_in_expr (sym, ar->end[i])))
	    {
	      gfc_error ("'%s' must not appear in the array specification at "
			 "%L in the same ALLOCATE statement where it is "
			 "itself allocated", sym->name, &ar->where);
	      goto failure;
	    }
	}
    }

  for (i = ar->dimen; i < ar->codimen + ar->dimen; i++)
    {
      if (ar->dimen_type[i] == DIMEN_ELEMENT
	  || ar->dimen_type[i] == DIMEN_RANGE)
	{
	  if (i == (ar->dimen + ar->codimen - 1))
	    {
	      gfc_error ("Expected '*' in coindex specification in ALLOCATE "
			 "statement at %L", &e->where);
	      goto failure;
	    }
	  break;
	}

      if (ar->dimen_type[i] == DIMEN_STAR && i == (ar->dimen + ar->codimen - 1)
	  && ar->stride[i] == NULL)
	break;

      gfc_error ("Bad coarray specification in ALLOCATE statement at %L",
		 &e->where);
      goto failure;
    }

  if (codimension && ar->as->rank == 0)
    {
      gfc_error ("Sorry, allocatable scalar coarrays are not yet supported "
		 "at %L", &e->where);
      goto failure;
    }

success:
  return SUCCESS;

failure:
  return FAILURE;
}

static void
resolve_allocate_deallocate (gfc_code *code, const char *fcn)
{
  gfc_expr *stat, *errmsg, *pe, *qe;
  gfc_alloc *a, *p, *q;

  stat = code->expr1;
  errmsg = code->expr2;

  /* Check the stat variable.  */
  if (stat)
    {
      gfc_check_vardef_context (stat, false, _("STAT variable"));

      if ((stat->ts.type != BT_INTEGER
	   && !(stat->ref && (stat->ref->type == REF_ARRAY
			      || stat->ref->type == REF_COMPONENT)))
	  || stat->rank > 0)
	gfc_error ("Stat-variable at %L must be a scalar INTEGER "
		   "variable", &stat->where);

      for (p = code->ext.alloc.list; p; p = p->next)
	if (p->expr->symtree->n.sym->name == stat->symtree->n.sym->name)
	  {
	    gfc_ref *ref1, *ref2;
	    bool found = true;

	    for (ref1 = p->expr->ref, ref2 = stat->ref; ref1 && ref2;
		 ref1 = ref1->next, ref2 = ref2->next)
	      {
		if (ref1->type != REF_COMPONENT || ref2->type != REF_COMPONENT)
		  continue;
		if (ref1->u.c.component->name != ref2->u.c.component->name)
		  {
		    found = false;
		    break;
		  }
	      }

	    if (found)
	      {
		gfc_error ("Stat-variable at %L shall not be %sd within "
			   "the same %s statement", &stat->where, fcn, fcn);
		break;
	      }
	  }
    }

  /* Check the errmsg variable.  */
  if (errmsg)
    {
      if (!stat)
	gfc_warning ("ERRMSG at %L is useless without a STAT tag",
		     &errmsg->where);

      gfc_check_vardef_context (errmsg, false, _("ERRMSG variable"));

      if ((errmsg->ts.type != BT_CHARACTER
	   && !(errmsg->ref
		&& (errmsg->ref->type == REF_ARRAY
		    || errmsg->ref->type == REF_COMPONENT)))
	  || errmsg->rank > 0 )
	gfc_error ("Errmsg-variable at %L must be a scalar CHARACTER "
		   "variable", &errmsg->where);

      for (p = code->ext.alloc.list; p; p = p->next)
	if (p->expr->symtree->n.sym->name == errmsg->symtree->n.sym->name)
	  {
	    gfc_ref *ref1, *ref2;
	    bool found = true;

	    for (ref1 = p->expr->ref, ref2 = errmsg->ref; ref1 && ref2;
		 ref1 = ref1->next, ref2 = ref2->next)
	      {
		if (ref1->type != REF_COMPONENT || ref2->type != REF_COMPONENT)
		  continue;
		if (ref1->u.c.component->name != ref2->u.c.component->name)
		  {
		    found = false;
		    break;
		  }
	      }

	    if (found)
	      {
		gfc_error ("Errmsg-variable at %L shall not be %sd within "
			   "the same %s statement", &errmsg->where, fcn, fcn);
		break;
	      }
	  }
    }

  /* Check that an allocate-object appears only once in the statement.  
     FIXME: Checking derived types is disabled.  */
  for (p = code->ext.alloc.list; p; p = p->next)
    {
      pe = p->expr;
      for (q = p->next; q; q = q->next)
	{
	  qe = q->expr;
	  if (pe->symtree->n.sym->name == qe->symtree->n.sym->name)
	    {
	      /* This is a potential collision.  */
	      gfc_ref *pr = pe->ref;
	      gfc_ref *qr = qe->ref;
	      
	      /* Follow the references  until
		 a) They start to differ, in which case there is no error;
		 you can deallocate a%b and a%c in a single statement
		 b) Both of them stop, which is an error
		 c) One of them stops, which is also an error.  */
	      while (1)
		{
		  if (pr == NULL && qr == NULL)
		    {
		      gfc_error ("Allocate-object at %L also appears at %L",
				 &pe->where, &qe->where);
		      break;
		    }
		  else if (pr != NULL && qr == NULL)
		    {
		      gfc_error ("Allocate-object at %L is subobject of"
				 " object at %L", &pe->where, &qe->where);
		      break;
		    }
		  else if (pr == NULL && qr != NULL)
		    {
		      gfc_error ("Allocate-object at %L is subobject of"
				 " object at %L", &qe->where, &pe->where);
		      break;
		    }
		  /* Here, pr != NULL && qr != NULL  */
		  gcc_assert(pr->type == qr->type);
		  if (pr->type == REF_ARRAY)
		    {
		      /* Handle cases like allocate(v(3)%x(3), v(2)%x(3)),
			 which are legal.  */
		      gcc_assert (qr->type == REF_ARRAY);

		      if (pr->next && qr->next)
			{
			  gfc_array_ref *par = &(pr->u.ar);
			  gfc_array_ref *qar = &(qr->u.ar);
			  if (gfc_dep_compare_expr (par->start[0],
						    qar->start[0]) != 0)
			      break;
			}
		    }
		  else
		    {
		      if (pr->u.c.component->name != qr->u.c.component->name)
			break;
		    }
		  
		  pr = pr->next;
		  qr = qr->next;
		}
	    }
	}
    }

  if (strcmp (fcn, "ALLOCATE") == 0)
    {
      for (a = code->ext.alloc.list; a; a = a->next)
	resolve_allocate_expr (a->expr, code);
    }
  else
    {
      for (a = code->ext.alloc.list; a; a = a->next)
	resolve_deallocate_expr (a->expr);
    }
}


/************ SELECT CASE resolution subroutines ************/

/* Callback function for our mergesort variant.  Determines interval
   overlaps for CASEs. Return <0 if op1 < op2, 0 for overlap, >0 for
   op1 > op2.  Assumes we're not dealing with the default case.  
   We have op1 = (:L), (K:L) or (K:) and op2 = (:N), (M:N) or (M:).
   There are nine situations to check.  */

static int
compare_cases (const gfc_case *op1, const gfc_case *op2)
{
  int retval;

  if (op1->low == NULL) /* op1 = (:L)  */
    {
      /* op2 = (:N), so overlap.  */
      retval = 0;
      /* op2 = (M:) or (M:N),  L < M  */
      if (op2->low != NULL
	  && gfc_compare_expr (op1->high, op2->low, INTRINSIC_LT) < 0)
	retval = -1;
    }
  else if (op1->high == NULL) /* op1 = (K:)  */
    {
      /* op2 = (M:), so overlap.  */
      retval = 0;
      /* op2 = (:N) or (M:N), K > N  */
      if (op2->high != NULL
	  && gfc_compare_expr (op1->low, op2->high, INTRINSIC_GT) > 0)
	retval = 1;
    }
  else /* op1 = (K:L)  */
    {
      if (op2->low == NULL)       /* op2 = (:N), K > N  */
	retval = (gfc_compare_expr (op1->low, op2->high, INTRINSIC_GT) > 0)
		 ? 1 : 0;
      else if (op2->high == NULL) /* op2 = (M:), L < M  */
	retval = (gfc_compare_expr (op1->high, op2->low, INTRINSIC_LT) < 0)
		 ? -1 : 0;
      else			/* op2 = (M:N)  */
	{
	  retval =  0;
	  /* L < M  */
	  if (gfc_compare_expr (op1->high, op2->low, INTRINSIC_LT) < 0)
	    retval =  -1;
	  /* K > N  */
	  else if (gfc_compare_expr (op1->low, op2->high, INTRINSIC_GT) > 0)
	    retval =  1;
	}
    }

  return retval;
}


/* Merge-sort a double linked case list, detecting overlap in the
   process.  LIST is the head of the double linked case list before it
   is sorted.  Returns the head of the sorted list if we don't see any
   overlap, or NULL otherwise.  */

static gfc_case *
check_case_overlap (gfc_case *list)
{
  gfc_case *p, *q, *e, *tail;
  int insize, nmerges, psize, qsize, cmp, overlap_seen;

  /* If the passed list was empty, return immediately.  */
  if (!list)
    return NULL;

  overlap_seen = 0;
  insize = 1;

  /* Loop unconditionally.  The only exit from this loop is a return
     statement, when we've finished sorting the case list.  */
  for (;;)
    {
      p = list;
      list = NULL;
      tail = NULL;

      /* Count the number of merges we do in this pass.  */
      nmerges = 0;

      /* Loop while there exists a merge to be done.  */
      while (p)
	{
	  int i;

	  /* Count this merge.  */
	  nmerges++;

	  /* Cut the list in two pieces by stepping INSIZE places
	     forward in the list, starting from P.  */
	  psize = 0;
	  q = p;
	  for (i = 0; i < insize; i++)
	    {
	      psize++;
	      q = q->right;
	      if (!q)
		break;
	    }
	  qsize = insize;

	  /* Now we have two lists.  Merge them!  */
	  while (psize > 0 || (qsize > 0 && q != NULL))
	    {
	      /* See from which the next case to merge comes from.  */
	      if (psize == 0)
		{
		  /* P is empty so the next case must come from Q.  */
		  e = q;
		  q = q->right;
		  qsize--;
		}
	      else if (qsize == 0 || q == NULL)
		{
		  /* Q is empty.  */
		  e = p;
		  p = p->right;
		  psize--;
		}
	      else
		{
		  cmp = compare_cases (p, q);
		  if (cmp < 0)
		    {
		      /* The whole case range for P is less than the
			 one for Q.  */
		      e = p;
		      p = p->right;
		      psize--;
		    }
		  else if (cmp > 0)
		    {
		      /* The whole case range for Q is greater than
			 the case range for P.  */
		      e = q;
		      q = q->right;
		      qsize--;
		    }
		  else
		    {
		      /* The cases overlap, or they are the same
			 element in the list.  Either way, we must
			 issue an error and get the next case from P.  */
		      /* FIXME: Sort P and Q by line number.  */
		      gfc_error ("CASE label at %L overlaps with CASE "
				 "label at %L", &p->where, &q->where);
		      overlap_seen = 1;
		      e = p;
		      p = p->right;
		      psize--;
		    }
		}

		/* Add the next element to the merged list.  */
	      if (tail)
		tail->right = e;
	      else
		list = e;
	      e->left = tail;
	      tail = e;
	    }

	  /* P has now stepped INSIZE places along, and so has Q.  So
	     they're the same.  */
	  p = q;
	}
      tail->right = NULL;

      /* If we have done only one merge or none at all, we've
	 finished sorting the cases.  */
      if (nmerges <= 1)
	{
	  if (!overlap_seen)
	    return list;
	  else
	    return NULL;
	}

      /* Otherwise repeat, merging lists twice the size.  */
      insize *= 2;
    }
}


/* Check to see if an expression is suitable for use in a CASE statement.
   Makes sure that all case expressions are scalar constants of the same
   type.  Return FAILURE if anything is wrong.  */

static gfc_try
validate_case_label_expr (gfc_expr *e, gfc_expr *case_expr)
{
  if (e == NULL) return SUCCESS;

  if (e->ts.type != case_expr->ts.type)
    {
      gfc_error ("Expression in CASE statement at %L must be of type %s",
		 &e->where, gfc_basic_typename (case_expr->ts.type));
      return FAILURE;
    }

  /* C805 (R808) For a given case-construct, each case-value shall be of
     the same type as case-expr.  For character type, length differences
     are allowed, but the kind type parameters shall be the same.  */

  if (case_expr->ts.type == BT_CHARACTER && e->ts.kind != case_expr->ts.kind)
    {
      gfc_error ("Expression in CASE statement at %L must be of kind %d",
		 &e->where, case_expr->ts.kind);
      return FAILURE;
    }

  /* Convert the case value kind to that of case expression kind,
     if needed */

  if (e->ts.kind != case_expr->ts.kind)
    gfc_convert_type_warn (e, &case_expr->ts, 2, 0);

  if (e->rank != 0)
    {
      gfc_error ("Expression in CASE statement at %L must be scalar",
		 &e->where);
      return FAILURE;
    }

  return SUCCESS;
}


/* Given a completely parsed select statement, we:

     - Validate all expressions and code within the SELECT.
     - Make sure that the selection expression is not of the wrong type.
     - Make sure that no case ranges overlap.
     - Eliminate unreachable cases and unreachable code resulting from
       removing case labels.

   The standard does allow unreachable cases, e.g. CASE (5:3).  But
   they are a hassle for code generation, and to prevent that, we just
   cut them out here.  This is not necessary for overlapping cases
   because they are illegal and we never even try to generate code.

   We have the additional caveat that a SELECT construct could have
   been a computed GOTO in the source code. Fortunately we can fairly
   easily work around that here: The case_expr for a "real" SELECT CASE
   is in code->expr1, but for a computed GOTO it is in code->expr2. All
   we have to do is make sure that the case_expr is a scalar integer
   expression.  */

static void
resolve_select (gfc_code *code)
{
  gfc_code *body;
  gfc_expr *case_expr;
  gfc_case *cp, *default_case, *tail, *head;
  int seen_unreachable;
  int seen_logical;
  int ncases;
  bt type;
  gfc_try t;

  if (code->expr1 == NULL)
    {
      /* This was actually a computed GOTO statement.  */
      case_expr = code->expr2;
      if (case_expr->ts.type != BT_INTEGER|| case_expr->rank != 0)
	gfc_error ("Selection expression in computed GOTO statement "
		   "at %L must be a scalar integer expression",
		   &case_expr->where);

      /* Further checking is not necessary because this SELECT was built
	 by the compiler, so it should always be OK.  Just move the
	 case_expr from expr2 to expr so that we can handle computed
	 GOTOs as normal SELECTs from here on.  */
      code->expr1 = code->expr2;
      code->expr2 = NULL;
      return;
    }

  case_expr = code->expr1;

  type = case_expr->ts.type;
  if (type != BT_LOGICAL && type != BT_INTEGER && type != BT_CHARACTER)
    {
      gfc_error ("Argument of SELECT statement at %L cannot be %s",
		 &case_expr->where, gfc_typename (&case_expr->ts));

      /* Punt. Going on here just produce more garbage error messages.  */
      return;
    }

  if (case_expr->rank != 0)
    {
      gfc_error ("Argument of SELECT statement at %L must be a scalar "
		 "expression", &case_expr->where);

      /* Punt.  */
      return;
    }


  /* Raise a warning if an INTEGER case value exceeds the range of
     the case-expr. Later, all expressions will be promoted to the
     largest kind of all case-labels.  */

  if (type == BT_INTEGER)
    for (body = code->block; body; body = body->block)
      for (cp = body->ext.block.case_list; cp; cp = cp->next)
	{
	  if (cp->low
	      && gfc_check_integer_range (cp->low->value.integer,
					  case_expr->ts.kind) != ARITH_OK)
	    gfc_warning ("Expression in CASE statement at %L is "
			 "not in the range of %s", &cp->low->where,
			 gfc_typename (&case_expr->ts));

	  if (cp->high
	      && cp->low != cp->high
	      && gfc_check_integer_range (cp->high->value.integer,
					  case_expr->ts.kind) != ARITH_OK)
	    gfc_warning ("Expression in CASE statement at %L is "
			 "not in the range of %s", &cp->high->where,
			 gfc_typename (&case_expr->ts));
	}

  /* PR 19168 has a long discussion concerning a mismatch of the kinds
     of the SELECT CASE expression and its CASE values.  Walk the lists
     of case values, and if we find a mismatch, promote case_expr to
     the appropriate kind.  */

  if (type == BT_LOGICAL || type == BT_INTEGER)
    {
      for (body = code->block; body; body = body->block)
	{
	  /* Walk the case label list.  */
	  for (cp = body->ext.block.case_list; cp; cp = cp->next)
	    {
	      /* Intercept the DEFAULT case.  It does not have a kind.  */
	      if (cp->low == NULL && cp->high == NULL)
		continue;

	      /* Unreachable case ranges are discarded, so ignore.  */
	      if (cp->low != NULL && cp->high != NULL
		  && cp->low != cp->high
		  && gfc_compare_expr (cp->low, cp->high, INTRINSIC_GT) > 0)
		continue;

	      if (cp->low != NULL
		  && case_expr->ts.kind != gfc_kind_max(case_expr, cp->low))
		gfc_convert_type_warn (case_expr, &cp->low->ts, 2, 0);

	      if (cp->high != NULL
		  && case_expr->ts.kind != gfc_kind_max(case_expr, cp->high))
		gfc_convert_type_warn (case_expr, &cp->high->ts, 2, 0);
	    }
	 }
    }

  /* Assume there is no DEFAULT case.  */
  default_case = NULL;
  head = tail = NULL;
  ncases = 0;
  seen_logical = 0;

  for (body = code->block; body; body = body->block)
    {
      /* Assume the CASE list is OK, and all CASE labels can be matched.  */
      t = SUCCESS;
      seen_unreachable = 0;

      /* Walk the case label list, making sure that all case labels
	 are legal.  */
      for (cp = body->ext.block.case_list; cp; cp = cp->next)
	{
	  /* Count the number of cases in the whole construct.  */
	  ncases++;

	  /* Intercept the DEFAULT case.  */
	  if (cp->low == NULL && cp->high == NULL)
	    {
	      if (default_case != NULL)
		{
		  gfc_error ("The DEFAULT CASE at %L cannot be followed "
			     "by a second DEFAULT CASE at %L",
			     &default_case->where, &cp->where);
		  t = FAILURE;
		  break;
		}
	      else
		{
		  default_case = cp;
		  continue;
		}
	    }

	  /* Deal with single value cases and case ranges.  Errors are
	     issued from the validation function.  */
	  if (validate_case_label_expr (cp->low, case_expr) != SUCCESS
	      || validate_case_label_expr (cp->high, case_expr) != SUCCESS)
	    {
	      t = FAILURE;
	      break;
	    }

	  if (type == BT_LOGICAL
	      && ((cp->low == NULL || cp->high == NULL)
		  || cp->low != cp->high))
	    {
	      gfc_error ("Logical range in CASE statement at %L is not "
			 "allowed", &cp->low->where);
	      t = FAILURE;
	      break;
	    }

	  if (type == BT_LOGICAL && cp->low->expr_type == EXPR_CONSTANT)
	    {
	      int value;
	      value = cp->low->value.logical == 0 ? 2 : 1;
	      if (value & seen_logical)
		{
		  gfc_error ("Constant logical value in CASE statement "
			     "is repeated at %L",
			     &cp->low->where);
		  t = FAILURE;
		  break;
		}
	      seen_logical |= value;
	    }

	  if (cp->low != NULL && cp->high != NULL
	      && cp->low != cp->high
	      && gfc_compare_expr (cp->low, cp->high, INTRINSIC_GT) > 0)
	    {
	      if (gfc_option.warn_surprising)
		gfc_warning ("Range specification at %L can never "
			     "be matched", &cp->where);

	      cp->unreachable = 1;
	      seen_unreachable = 1;
	    }
	  else
	    {
	      /* If the case range can be matched, it can also overlap with
		 other cases.  To make sure it does not, we put it in a
		 double linked list here.  We sort that with a merge sort
		 later on to detect any overlapping cases.  */
	      if (!head)
		{
		  head = tail = cp;
		  head->right = head->left = NULL;
		}
	      else
		{
		  tail->right = cp;
		  tail->right->left = tail;
		  tail = tail->right;
		  tail->right = NULL;
		}
	    }
	}

      /* It there was a failure in the previous case label, give up
	 for this case label list.  Continue with the next block.  */
      if (t == FAILURE)
	continue;

      /* See if any case labels that are unreachable have been seen.
	 If so, we eliminate them.  This is a bit of a kludge because
	 the case lists for a single case statement (label) is a
	 single forward linked lists.  */
      if (seen_unreachable)
      {
	/* Advance until the first case in the list is reachable.  */
	while (body->ext.block.case_list != NULL
	       && body->ext.block.case_list->unreachable)
	  {
	    gfc_case *n = body->ext.block.case_list;
	    body->ext.block.case_list = body->ext.block.case_list->next;
	    n->next = NULL;
	    gfc_free_case_list (n);
	  }

	/* Strip all other unreachable cases.  */
	if (body->ext.block.case_list)
	  {
	    for (cp = body->ext.block.case_list; cp->next; cp = cp->next)
	      {
		if (cp->next->unreachable)
		  {
		    gfc_case *n = cp->next;
		    cp->next = cp->next->next;
		    n->next = NULL;
		    gfc_free_case_list (n);
		  }
	      }
	  }
      }
    }

  /* See if there were overlapping cases.  If the check returns NULL,
     there was overlap.  In that case we don't do anything.  If head
     is non-NULL, we prepend the DEFAULT case.  The sorted list can
     then used during code generation for SELECT CASE constructs with
     a case expression of a CHARACTER type.  */
  if (head)
    {
      head = check_case_overlap (head);

      /* Prepend the default_case if it is there.  */
      if (head != NULL && default_case)
	{
	  default_case->left = NULL;
	  default_case->right = head;
	  head->left = default_case;
	}
    }

  /* Eliminate dead blocks that may be the result if we've seen
     unreachable case labels for a block.  */
  for (body = code; body && body->block; body = body->block)
    {
      if (body->block->ext.block.case_list == NULL)
	{
	  /* Cut the unreachable block from the code chain.  */
	  gfc_code *c = body->block;
	  body->block = c->block;

	  /* Kill the dead block, but not the blocks below it.  */
	  c->block = NULL;
	  gfc_free_statements (c);
	}
    }

  /* More than two cases is legal but insane for logical selects.
     Issue a warning for it.  */
  if (gfc_option.warn_surprising && type == BT_LOGICAL
      && ncases > 2)
    gfc_warning ("Logical SELECT CASE block at %L has more that two cases",
		 &code->loc);
}


/* Check if a derived type is extensible.  */

bool
gfc_type_is_extensible (gfc_symbol *sym)
{
  return !(sym->attr.is_bind_c || sym->attr.sequence);
}


/* Resolve an associate name:  Resolve target and ensure the type-spec is
   correct as well as possibly the array-spec.  */

static void
resolve_assoc_var (gfc_symbol* sym, bool resolve_target)
{
  gfc_expr* target;

  gcc_assert (sym->assoc);
  gcc_assert (sym->attr.flavor == FL_VARIABLE);

  /* If this is for SELECT TYPE, the target may not yet be set.  In that
     case, return.  Resolution will be called later manually again when
     this is done.  */
  target = sym->assoc->target;
  if (!target)
    return;
  gcc_assert (!sym->assoc->dangling);

  if (resolve_target && gfc_resolve_expr (target) != SUCCESS)
    return;

  /* For variable targets, we get some attributes from the target.  */
  if (target->expr_type == EXPR_VARIABLE)
    {
      gfc_symbol* tsym;

      gcc_assert (target->symtree);
      tsym = target->symtree->n.sym;

      sym->attr.asynchronous = tsym->attr.asynchronous;
      sym->attr.volatile_ = tsym->attr.volatile_;

      sym->attr.target = (tsym->attr.target || tsym->attr.pointer);
    }

  /* Get type if this was not already set.  Note that it can be
     some other type than the target in case this is a SELECT TYPE
     selector!  So we must not update when the type is already there.  */
  if (sym->ts.type == BT_UNKNOWN)
    sym->ts = target->ts;
  gcc_assert (sym->ts.type != BT_UNKNOWN);

  /* See if this is a valid association-to-variable.  */
  sym->assoc->variable = (target->expr_type == EXPR_VARIABLE
			  && !gfc_has_vector_subscript (target));

  /* Finally resolve if this is an array or not.  */
  if (sym->attr.dimension && target->rank == 0)
    {
      gfc_error ("Associate-name '%s' at %L is used as array",
		 sym->name, &sym->declared_at);
      sym->attr.dimension = 0;
      return;
    }
  if (target->rank > 0)
    sym->attr.dimension = 1;

  if (sym->attr.dimension)
    {
      sym->as = gfc_get_array_spec ();
      sym->as->rank = target->rank;
      sym->as->type = AS_DEFERRED;

      /* Target must not be coindexed, thus the associate-variable
	 has no corank.  */
      sym->as->corank = 0;
    }
}


/* Resolve a SELECT TYPE statement.  */

static void
resolve_select_type (gfc_code *code, gfc_namespace *old_ns)
{
  gfc_symbol *selector_type;
  gfc_code *body, *new_st, *if_st, *tail;
  gfc_code *class_is = NULL, *default_case = NULL;
  gfc_case *c;
  gfc_symtree *st;
  char name[GFC_MAX_SYMBOL_LEN];
  gfc_namespace *ns;
  int error = 0;

  ns = code->ext.block.ns;
  gfc_resolve (ns);

  /* Check for F03:C813.  */
  if (code->expr1->ts.type != BT_CLASS
      && !(code->expr2 && code->expr2->ts.type == BT_CLASS))
    {
      gfc_error ("Selector shall be polymorphic in SELECT TYPE statement "
		 "at %L", &code->loc);
      return;
    }

  if (code->expr2)
    {
      if (code->expr1->symtree->n.sym->attr.untyped)
	code->expr1->symtree->n.sym->ts = code->expr2->ts;
      selector_type = CLASS_DATA (code->expr2)->ts.u.derived;
    }
  else
    selector_type = CLASS_DATA (code->expr1)->ts.u.derived;

  /* Loop over TYPE IS / CLASS IS cases.  */
  for (body = code->block; body; body = body->block)
    {
      c = body->ext.block.case_list;

      /* Check F03:C815.  */
      if ((c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
	  && !gfc_type_is_extensible (c->ts.u.derived))
	{
	  gfc_error ("Derived type '%s' at %L must be extensible",
		     c->ts.u.derived->name, &c->where);
	  error++;
	  continue;
	}

      /* Check F03:C816.  */
      if ((c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
	  && !gfc_type_is_extension_of (selector_type, c->ts.u.derived))
	{
	  gfc_error ("Derived type '%s' at %L must be an extension of '%s'",
		     c->ts.u.derived->name, &c->where, selector_type->name);
	  error++;
	  continue;
	}

      /* Intercept the DEFAULT case.  */
      if (c->ts.type == BT_UNKNOWN)
	{
	  /* Check F03:C818.  */
	  if (default_case)
	    {
	      gfc_error ("The DEFAULT CASE at %L cannot be followed "
			 "by a second DEFAULT CASE at %L",
			 &default_case->ext.block.case_list->where, &c->where);
	      error++;
	      continue;
	    }

	  default_case = body;
	}
    }
    
  if (error > 0)
    return;

  /* Transform SELECT TYPE statement to BLOCK and associate selector to
     target if present.  If there are any EXIT statements referring to the
     SELECT TYPE construct, this is no problem because the gfc_code
     reference stays the same and EXIT is equally possible from the BLOCK
     it is changed to.  */
  code->op = EXEC_BLOCK;
  if (code->expr2)
    {
      gfc_association_list* assoc;

      assoc = gfc_get_association_list ();
      assoc->st = code->expr1->symtree;
      assoc->target = gfc_copy_expr (code->expr2);
      /* assoc->variable will be set by resolve_assoc_var.  */
      
      code->ext.block.assoc = assoc;
      code->expr1->symtree->n.sym->assoc = assoc;

      resolve_assoc_var (code->expr1->symtree->n.sym, false);
    }
  else
    code->ext.block.assoc = NULL;

  /* Add EXEC_SELECT to switch on type.  */
  new_st = gfc_get_code ();
  new_st->op = code->op;
  new_st->expr1 = code->expr1;
  new_st->expr2 = code->expr2;
  new_st->block = code->block;
  code->expr1 = code->expr2 =  NULL;
  code->block = NULL;
  if (!ns->code)
    ns->code = new_st;
  else
    ns->code->next = new_st;
  code = new_st;
  code->op = EXEC_SELECT;
  gfc_add_vptr_component (code->expr1);
  gfc_add_hash_component (code->expr1);

  /* Loop over TYPE IS / CLASS IS cases.  */
  for (body = code->block; body; body = body->block)
    {
      c = body->ext.block.case_list;

      if (c->ts.type == BT_DERIVED)
	c->low = c->high = gfc_get_int_expr (gfc_default_integer_kind, NULL,
					     c->ts.u.derived->hash_value);

      else if (c->ts.type == BT_UNKNOWN)
	continue;

      /* Associate temporary to selector.  This should only be done
	 when this case is actually true, so build a new ASSOCIATE
	 that does precisely this here (instead of using the
	 'global' one).  */

      if (c->ts.type == BT_CLASS)
	sprintf (name, "__tmp_class_%s", c->ts.u.derived->name);
      else
	sprintf (name, "__tmp_type_%s", c->ts.u.derived->name);
      st = gfc_find_symtree (ns->sym_root, name);
      gcc_assert (st->n.sym->assoc);
      st->n.sym->assoc->target = gfc_get_variable_expr (code->expr1->symtree);
      if (c->ts.type == BT_DERIVED)
	gfc_add_data_component (st->n.sym->assoc->target);

      new_st = gfc_get_code ();
      new_st->op = EXEC_BLOCK;
      new_st->ext.block.ns = gfc_build_block_ns (ns);
      new_st->ext.block.ns->code = body->next;
      body->next = new_st;

      /* Chain in the new list only if it is marked as dangling.  Otherwise
	 there is a CASE label overlap and this is already used.  Just ignore,
	 the error is diagonsed elsewhere.  */
      if (st->n.sym->assoc->dangling)
	{
	  new_st->ext.block.assoc = st->n.sym->assoc;
	  st->n.sym->assoc->dangling = 0;
	}

      resolve_assoc_var (st->n.sym, false);
    }
    
  /* Take out CLASS IS cases for separate treatment.  */
  body = code;
  while (body && body->block)
    {
      if (body->block->ext.block.case_list->ts.type == BT_CLASS)
	{
	  /* Add to class_is list.  */
	  if (class_is == NULL)
	    { 
	      class_is = body->block;
	      tail = class_is;
	    }
	  else
	    {
	      for (tail = class_is; tail->block; tail = tail->block) ;
	      tail->block = body->block;
	      tail = tail->block;
	    }
	  /* Remove from EXEC_SELECT list.  */
	  body->block = body->block->block;
	  tail->block = NULL;
	}
      else
	body = body->block;
    }

  if (class_is)
    {
      gfc_symbol *vtab;
      
      if (!default_case)
	{
	  /* Add a default case to hold the CLASS IS cases.  */
	  for (tail = code; tail->block; tail = tail->block) ;
	  tail->block = gfc_get_code ();
	  tail = tail->block;
	  tail->op = EXEC_SELECT_TYPE;
	  tail->ext.block.case_list = gfc_get_case ();
	  tail->ext.block.case_list->ts.type = BT_UNKNOWN;
	  tail->next = NULL;
	  default_case = tail;
	}

      /* More than one CLASS IS block?  */
      if (class_is->block)
	{
	  gfc_code **c1,*c2;
	  bool swapped;
	  /* Sort CLASS IS blocks by extension level.  */
	  do
	    {
	      swapped = false;
	      for (c1 = &class_is; (*c1) && (*c1)->block; c1 = &((*c1)->block))
		{
		  c2 = (*c1)->block;
		  /* F03:C817 (check for doubles).  */
		  if ((*c1)->ext.block.case_list->ts.u.derived->hash_value
		      == c2->ext.block.case_list->ts.u.derived->hash_value)
		    {
		      gfc_error ("Double CLASS IS block in SELECT TYPE "
				 "statement at %L",
				 &c2->ext.block.case_list->where);
		      return;
		    }
		  if ((*c1)->ext.block.case_list->ts.u.derived->attr.extension
		      < c2->ext.block.case_list->ts.u.derived->attr.extension)
		    {
		      /* Swap.  */
		      (*c1)->block = c2->block;
		      c2->block = *c1;
		      *c1 = c2;
		      swapped = true;
		    }
		}
	    }
	  while (swapped);
	}
	
      /* Generate IF chain.  */
      if_st = gfc_get_code ();
      if_st->op = EXEC_IF;
      new_st = if_st;
      for (body = class_is; body; body = body->block)
	{
	  new_st->block = gfc_get_code ();
	  new_st = new_st->block;
	  new_st->op = EXEC_IF;
	  /* Set up IF condition: Call _gfortran_is_extension_of.  */
	  new_st->expr1 = gfc_get_expr ();
	  new_st->expr1->expr_type = EXPR_FUNCTION;
	  new_st->expr1->ts.type = BT_LOGICAL;
	  new_st->expr1->ts.kind = 4;
	  new_st->expr1->value.function.name = gfc_get_string (PREFIX ("is_extension_of"));
	  new_st->expr1->value.function.isym = XCNEW (gfc_intrinsic_sym);
	  new_st->expr1->value.function.isym->id = GFC_ISYM_EXTENDS_TYPE_OF;
	  /* Set up arguments.  */
	  new_st->expr1->value.function.actual = gfc_get_actual_arglist ();
	  new_st->expr1->value.function.actual->expr = gfc_get_variable_expr (code->expr1->symtree);
	  new_st->expr1->value.function.actual->expr->where = code->loc;
	  gfc_add_vptr_component (new_st->expr1->value.function.actual->expr);
	  vtab = gfc_find_derived_vtab (body->ext.block.case_list->ts.u.derived);
	  st = gfc_find_symtree (vtab->ns->sym_root, vtab->name);
	  new_st->expr1->value.function.actual->next = gfc_get_actual_arglist ();
	  new_st->expr1->value.function.actual->next->expr = gfc_get_variable_expr (st);
	  new_st->next = body->next;
	}
	if (default_case->next)
	  {
	    new_st->block = gfc_get_code ();
	    new_st = new_st->block;
	    new_st->op = EXEC_IF;
	    new_st->next = default_case->next;
	  }
	  
	/* Replace CLASS DEFAULT code by the IF chain.  */
	default_case->next = if_st;
    }

  /* Resolve the internal code.  This can not be done earlier because
     it requires that the sym->assoc of selectors is set already.  */
  gfc_current_ns = ns;
  gfc_resolve_blocks (code->block, gfc_current_ns);
  gfc_current_ns = old_ns;

  resolve_select (code);
}


/* Resolve a transfer statement. This is making sure that:
   -- a derived type being transferred has only non-pointer components
   -- a derived type being transferred doesn't have private components, unless 
      it's being transferred from the module where the type was defined
   -- we're not trying to transfer a whole assumed size array.  */

static void
resolve_transfer (gfc_code *code)
{
  gfc_typespec *ts;
  gfc_symbol *sym;
  gfc_ref *ref;
  gfc_expr *exp;

  exp = code->expr1;

  while (exp != NULL && exp->expr_type == EXPR_OP
	 && exp->value.op.op == INTRINSIC_PARENTHESES)
    exp = exp->value.op.op1;

  if (exp == NULL || (exp->expr_type != EXPR_VARIABLE
		      && exp->expr_type != EXPR_FUNCTION))
    return;

  /* If we are reading, the variable will be changed.  Note that
     code->ext.dt may be NULL if the TRANSFER is related to
     an INQUIRE statement -- but in this case, we are not reading, either.  */
  if (code->ext.dt && code->ext.dt->dt_io_kind->value.iokind == M_READ
      && gfc_check_vardef_context (exp, false, _("item in READ")) == FAILURE)
    return;

  sym = exp->symtree->n.sym;
  ts = &sym->ts;

  /* Go to actual component transferred.  */
  for (ref = exp->ref; ref; ref = ref->next)
    if (ref->type == REF_COMPONENT)
      ts = &ref->u.c.component->ts;

  if (ts->type == BT_CLASS)
    {
      /* FIXME: Test for defined input/output.  */
      gfc_error ("Data transfer element at %L cannot be polymorphic unless "
                "it is processed by a defined input/output procedure",
                &code->loc);
      return;
    }

  if (ts->type == BT_DERIVED)
    {
      /* Check that transferred derived type doesn't contain POINTER
	 components.  */
      if (ts->u.derived->attr.pointer_comp)
	{
	  gfc_error ("Data transfer element at %L cannot have "
		     "POINTER components", &code->loc);
	  return;
	}

      if (ts->u.derived->attr.alloc_comp)
	{
	  gfc_error ("Data transfer element at %L cannot have "
		     "ALLOCATABLE components", &code->loc);
	  return;
	}

      if (derived_inaccessible (ts->u.derived))
	{
	  gfc_error ("Data transfer element at %L cannot have "
		     "PRIVATE components",&code->loc);
	  return;
	}
    }

  if (sym->as != NULL && sym->as->type == AS_ASSUMED_SIZE
      && exp->ref->type == REF_ARRAY && exp->ref->u.ar.type == AR_FULL)
    {
      gfc_error ("Data transfer element at %L cannot be a full reference to "
		 "an assumed-size array", &code->loc);
      return;
    }
}


/*********** Toplevel code resolution subroutines ***********/

/* Find the set of labels that are reachable from this block.  We also
   record the last statement in each block.  */
     
static void
find_reachable_labels (gfc_code *block)
{
  gfc_code *c;

  if (!block)
    return;

  cs_base->reachable_labels = bitmap_obstack_alloc (&labels_obstack);

  /* Collect labels in this block.  We don't keep those corresponding
     to END {IF|SELECT}, these are checked in resolve_branch by going
     up through the code_stack.  */
  for (c = block; c; c = c->next)
    {
      if (c->here && c->op != EXEC_END_BLOCK)
	bitmap_set_bit (cs_base->reachable_labels, c->here->value);
    }

  /* Merge with labels from parent block.  */
  if (cs_base->prev)
    {
      gcc_assert (cs_base->prev->reachable_labels);
      bitmap_ior_into (cs_base->reachable_labels,
		       cs_base->prev->reachable_labels);
    }
}


static void
resolve_sync (gfc_code *code)
{
  /* Check imageset. The * case matches expr1 == NULL.  */
  if (code->expr1)
    {
      if (code->expr1->ts.type != BT_INTEGER || code->expr1->rank > 1)
	gfc_error ("Imageset argument at %L must be a scalar or rank-1 "
		   "INTEGER expression", &code->expr1->where);
      if (code->expr1->expr_type == EXPR_CONSTANT && code->expr1->rank == 0
	  && mpz_cmp_si (code->expr1->value.integer, 1) < 0)
	gfc_error ("Imageset argument at %L must between 1 and num_images()",
		   &code->expr1->where);
      else if (code->expr1->expr_type == EXPR_ARRAY
	       && gfc_simplify_expr (code->expr1, 0) == SUCCESS)
	{
	   gfc_constructor *cons;
	   cons = gfc_constructor_first (code->expr1->value.constructor);
	   for (; cons; cons = gfc_constructor_next (cons))
	     if (cons->expr->expr_type == EXPR_CONSTANT
		 &&  mpz_cmp_si (cons->expr->value.integer, 1) < 0)
	       gfc_error ("Imageset argument at %L must between 1 and "
			  "num_images()", &cons->expr->where);
	}
    }

  /* Check STAT.  */
  if (code->expr2
      && (code->expr2->ts.type != BT_INTEGER || code->expr2->rank != 0
	  || code->expr2->expr_type != EXPR_VARIABLE))
    gfc_error ("STAT= argument at %L must be a scalar INTEGER variable",
	       &code->expr2->where);

  /* Check ERRMSG.  */
  if (code->expr3
      && (code->expr3->ts.type != BT_CHARACTER || code->expr3->rank != 0
	  || code->expr3->expr_type != EXPR_VARIABLE))
    gfc_error ("ERRMSG= argument at %L must be a scalar CHARACTER variable",
	       &code->expr3->where);
}


/* Given a branch to a label, see if the branch is conforming.
   The code node describes where the branch is located.  */

static void
resolve_branch (gfc_st_label *label, gfc_code *code)
{
  code_stack *stack;

  if (label == NULL)
    return;

  /* Step one: is this a valid branching target?  */

  if (label->defined == ST_LABEL_UNKNOWN)
    {
      gfc_error ("Label %d referenced at %L is never defined", label->value,
		 &label->where);
      return;
    }

  if (label->defined != ST_LABEL_TARGET)
    {
      gfc_error ("Statement at %L is not a valid branch target statement "
		 "for the branch statement at %L", &label->where, &code->loc);
      return;
    }

  /* Step two: make sure this branch is not a branch to itself ;-)  */

  if (code->here == label)
    {
      gfc_warning ("Branch at %L may result in an infinite loop", &code->loc);
      return;
    }

  /* Step three:  See if the label is in the same block as the
     branching statement.  The hard work has been done by setting up
     the bitmap reachable_labels.  */

  if (bitmap_bit_p (cs_base->reachable_labels, label->value))
    {
      /* Check now whether there is a CRITICAL construct; if so, check
	 whether the label is still visible outside of the CRITICAL block,
	 which is invalid.  */
      for (stack = cs_base; stack; stack = stack->prev)
	if (stack->current->op == EXEC_CRITICAL
	    && bitmap_bit_p (stack->reachable_labels, label->value))
	  gfc_error ("GOTO statement at %L leaves CRITICAL construct for label"
		      " at %L", &code->loc, &label->where);

      return;
    }

  /* Step four:  If we haven't found the label in the bitmap, it may
    still be the label of the END of the enclosing block, in which
    case we find it by going up the code_stack.  */

  for (stack = cs_base; stack; stack = stack->prev)
    {
      if (stack->current->next && stack->current->next->here == label)
	break;
      if (stack->current->op == EXEC_CRITICAL)
	{
	  /* Note: A label at END CRITICAL does not leave the CRITICAL
	     construct as END CRITICAL is still part of it.  */
	  gfc_error ("GOTO statement at %L leaves CRITICAL construct for label"
		      " at %L", &code->loc, &label->where);
	  return;
	}
    }

  if (stack)
    {
      gcc_assert (stack->current->next->op == EXEC_END_BLOCK);
      return;
    }

  /* The label is not in an enclosing block, so illegal.  This was
     allowed in Fortran 66, so we allow it as extension.  No
     further checks are necessary in this case.  */
  gfc_notify_std (GFC_STD_LEGACY, "Label at %L is not in the same block "
		  "as the GOTO statement at %L", &label->where,
		  &code->loc);
  return;
}


/* Check whether EXPR1 has the same shape as EXPR2.  */

static gfc_try
resolve_where_shape (gfc_expr *expr1, gfc_expr *expr2)
{
  mpz_t shape[GFC_MAX_DIMENSIONS];
  mpz_t shape2[GFC_MAX_DIMENSIONS];
  gfc_try result = FAILURE;
  int i;

  /* Compare the rank.  */
  if (expr1->rank != expr2->rank)
    return result;

  /* Compare the size of each dimension.  */
  for (i=0; i<expr1->rank; i++)
    {
      if (gfc_array_dimen_size (expr1, i, &shape[i]) == FAILURE)
	goto ignore;

      if (gfc_array_dimen_size (expr2, i, &shape2[i]) == FAILURE)
	goto ignore;

      if (mpz_cmp (shape[i], shape2[i]))
	goto over;
    }

  /* When either of the two expression is an assumed size array, we
     ignore the comparison of dimension sizes.  */
ignore:
  result = SUCCESS;

over:
  for (i--; i >= 0; i--)
    {
      mpz_clear (shape[i]);
      mpz_clear (shape2[i]);
    }
  return result;
}


/* Check whether a WHERE assignment target or a WHERE mask expression
   has the same shape as the outmost WHERE mask expression.  */

static void
resolve_where (gfc_code *code, gfc_expr *mask)
{
  gfc_code *cblock;
  gfc_code *cnext;
  gfc_expr *e = NULL;

  cblock = code->block;

  /* Store the first WHERE mask-expr of the WHERE statement or construct.
     In case of nested WHERE, only the outmost one is stored.  */
  if (mask == NULL) /* outmost WHERE */
    e = cblock->expr1;
  else /* inner WHERE */
    e = mask;

  while (cblock)
    {
      if (cblock->expr1)
	{
	  /* Check if the mask-expr has a consistent shape with the
	     outmost WHERE mask-expr.  */
	  if (resolve_where_shape (cblock->expr1, e) == FAILURE)
	    gfc_error ("WHERE mask at %L has inconsistent shape",
		       &cblock->expr1->where);
	 }

      /* the assignment statement of a WHERE statement, or the first
	 statement in where-body-construct of a WHERE construct */
      cnext = cblock->next;
      while (cnext)
	{
	  switch (cnext->op)
	    {
	    /* WHERE assignment statement */
	    case EXEC_ASSIGN:

	      /* Check shape consistent for WHERE assignment target.  */
	      if (e && resolve_where_shape (cnext->expr1, e) == FAILURE)
	       gfc_error ("WHERE assignment target at %L has "
			  "inconsistent shape", &cnext->expr1->where);
	      break;

  
	    case EXEC_ASSIGN_CALL:
	      resolve_call (cnext);
	      if (!cnext->resolved_sym->attr.elemental)
		gfc_error("Non-ELEMENTAL user-defined assignment in WHERE at %L",
			  &cnext->ext.actual->expr->where);
	      break;

	    /* WHERE or WHERE construct is part of a where-body-construct */
	    case EXEC_WHERE:
	      resolve_where (cnext, e);
	      break;

	    default:
	      gfc_error ("Unsupported statement inside WHERE at %L",
			 &cnext->loc);
	    }
	 /* the next statement within the same where-body-construct */
	 cnext = cnext->next;
       }
    /* the next masked-elsewhere-stmt, elsewhere-stmt, or end-where-stmt */
    cblock = cblock->block;
  }
}


/* Resolve assignment in FORALL construct.
   NVAR is the number of FORALL index variables, and VAR_EXPR records the
   FORALL index variables.  */

static void
gfc_resolve_assign_in_forall (gfc_code *code, int nvar, gfc_expr **var_expr)
{
  int n;

  for (n = 0; n < nvar; n++)
    {
      gfc_symbol *forall_index;

      forall_index = var_expr[n]->symtree->n.sym;

      /* Check whether the assignment target is one of the FORALL index
	 variable.  */
      if ((code->expr1->expr_type == EXPR_VARIABLE)
	  && (code->expr1->symtree->n.sym == forall_index))
	gfc_error ("Assignment to a FORALL index variable at %L",
		   &code->expr1->where);
      else
	{
	  /* If one of the FORALL index variables doesn't appear in the
	     assignment variable, then there could be a many-to-one
	     assignment.  Emit a warning rather than an error because the
	     mask could be resolving this problem.  */
	  if (find_forall_index (code->expr1, forall_index, 0) == FAILURE)
	    gfc_warning ("The FORALL with index '%s' is not used on the "
			 "left side of the assignment at %L and so might "
			 "cause multiple assignment to this object",
			 var_expr[n]->symtree->name, &code->expr1->where);
	}
    }
}


/* Resolve WHERE statement in FORALL construct.  */

static void
gfc_resolve_where_code_in_forall (gfc_code *code, int nvar,
				  gfc_expr **var_expr)
{
  gfc_code *cblock;
  gfc_code *cnext;

  cblock = code->block;
  while (cblock)
    {
      /* the assignment statement of a WHERE statement, or the first
	 statement in where-body-construct of a WHERE construct */
      cnext = cblock->next;
      while (cnext)
	{
	  switch (cnext->op)
	    {
	    /* WHERE assignment statement */
	    case EXEC_ASSIGN:
	      gfc_resolve_assign_in_forall (cnext, nvar, var_expr);
	      break;
  
	    /* WHERE operator assignment statement */
	    case EXEC_ASSIGN_CALL:
	      resolve_call (cnext);
	      if (!cnext->resolved_sym->attr.elemental)
		gfc_error("Non-ELEMENTAL user-defined assignment in WHERE at %L",
			  &cnext->ext.actual->expr->where);
	      break;

	    /* WHERE or WHERE construct is part of a where-body-construct */
	    case EXEC_WHERE:
	      gfc_resolve_where_code_in_forall (cnext, nvar, var_expr);
	      break;

	    default:
	      gfc_error ("Unsupported statement inside WHERE at %L",
			 &cnext->loc);
	    }
	  /* the next statement within the same where-body-construct */
	  cnext = cnext->next;
	}
      /* the next masked-elsewhere-stmt, elsewhere-stmt, or end-where-stmt */
      cblock = cblock->block;
    }
}


/* Traverse the FORALL body to check whether the following errors exist:
   1. For assignment, check if a many-to-one assignment happens.
   2. For WHERE statement, check the WHERE body to see if there is any
      many-to-one assignment.  */

static void
gfc_resolve_forall_body (gfc_code *code, int nvar, gfc_expr **var_expr)
{
  gfc_code *c;

  c = code->block->next;
  while (c)
    {
      switch (c->op)
	{
	case EXEC_ASSIGN:
	case EXEC_POINTER_ASSIGN:
	  gfc_resolve_assign_in_forall (c, nvar, var_expr);
	  break;

	case EXEC_ASSIGN_CALL:
	  resolve_call (c);
	  break;

	/* Because the gfc_resolve_blocks() will handle the nested FORALL,
	   there is no need to handle it here.  */
	case EXEC_FORALL:
	  break;
	case EXEC_WHERE:
	  gfc_resolve_where_code_in_forall(c, nvar, var_expr);
	  break;
	default:
	  break;
	}
      /* The next statement in the FORALL body.  */
      c = c->next;
    }
}


/* Counts the number of iterators needed inside a forall construct, including
   nested forall constructs. This is used to allocate the needed memory 
   in gfc_resolve_forall.  */

static int 
gfc_count_forall_iterators (gfc_code *code)
{
  int max_iters, sub_iters, current_iters;
  gfc_forall_iterator *fa;

  gcc_assert(code->op == EXEC_FORALL);
  max_iters = 0;
  current_iters = 0;

  for (fa = code->ext.forall_iterator; fa; fa = fa->next)
    current_iters ++;
  
  code = code->block->next;

  while (code)
    {          
      if (code->op == EXEC_FORALL)
        {
          sub_iters = gfc_count_forall_iterators (code);
          if (sub_iters > max_iters)
            max_iters = sub_iters;
        }
      code = code->next;
    }

  return current_iters + max_iters;
}


/* Given a FORALL construct, first resolve the FORALL iterator, then call
   gfc_resolve_forall_body to resolve the FORALL body.  */

static void
gfc_resolve_forall (gfc_code *code, gfc_namespace *ns, int forall_save)
{
  static gfc_expr **var_expr;
  static int total_var = 0;
  static int nvar = 0;
  int old_nvar, tmp;
  gfc_forall_iterator *fa;
  int i;

  old_nvar = nvar;

  /* Start to resolve a FORALL construct   */
  if (forall_save == 0)
    {
      /* Count the total number of FORALL index in the nested FORALL
         construct in order to allocate the VAR_EXPR with proper size.  */
      total_var = gfc_count_forall_iterators (code);

      /* Allocate VAR_EXPR with NUMBER_OF_FORALL_INDEX elements.  */
      var_expr = (gfc_expr **) gfc_getmem (total_var * sizeof (gfc_expr *));
    }

  /* The information about FORALL iterator, including FORALL index start, end
     and stride. The FORALL index can not appear in start, end or stride.  */
  for (fa = code->ext.forall_iterator; fa; fa = fa->next)
    {
      /* Check if any outer FORALL index name is the same as the current
	 one.  */
      for (i = 0; i < nvar; i++)
	{
	  if (fa->var->symtree->n.sym == var_expr[i]->symtree->n.sym)
	    {
	      gfc_error ("An outer FORALL construct already has an index "
			 "with this name %L", &fa->var->where);
	    }
	}

      /* Record the current FORALL index.  */
      var_expr[nvar] = gfc_copy_expr (fa->var);

      nvar++;

      /* No memory leak.  */
      gcc_assert (nvar <= total_var);
    }

  /* Resolve the FORALL body.  */
  gfc_resolve_forall_body (code, nvar, var_expr);

  /* May call gfc_resolve_forall to resolve the inner FORALL loop.  */
  gfc_resolve_blocks (code->block, ns);

  tmp = nvar;
  nvar = old_nvar;
  /* Free only the VAR_EXPRs allocated in this frame.  */
  for (i = nvar; i < tmp; i++)
     gfc_free_expr (var_expr[i]);

  if (nvar == 0)
    {
      /* We are in the outermost FORALL construct.  */
      gcc_assert (forall_save == 0);

      /* VAR_EXPR is not needed any more.  */
      gfc_free (var_expr);
      total_var = 0;
    }
}


/* Resolve a BLOCK construct statement.  */

static void
resolve_block_construct (gfc_code* code)
{
  /* Resolve the BLOCK's namespace.  */
  gfc_resolve (code->ext.block.ns);

  /* For an ASSOCIATE block, the associations (and their targets) are already
     resolved during resolve_symbol.  */
}


/* Resolve lists of blocks found in IF, SELECT CASE, WHERE, FORALL, GOTO and
   DO code nodes.  */

static void resolve_code (gfc_code *, gfc_namespace *);

void
gfc_resolve_blocks (gfc_code *b, gfc_namespace *ns)
{
  gfc_try t;

  for (; b; b = b->block)
    {
      t = gfc_resolve_expr (b->expr1);
      if (gfc_resolve_expr (b->expr2) == FAILURE)
	t = FAILURE;

      switch (b->op)
	{
	case EXEC_IF:
	  if (t == SUCCESS && b->expr1 != NULL
	      && (b->expr1->ts.type != BT_LOGICAL || b->expr1->rank != 0))
	    gfc_error ("IF clause at %L requires a scalar LOGICAL expression",
		       &b->expr1->where);
	  break;

	case EXEC_WHERE:
	  if (t == SUCCESS
	      && b->expr1 != NULL
	      && (b->expr1->ts.type != BT_LOGICAL || b->expr1->rank == 0))
	    gfc_error ("WHERE/ELSEWHERE clause at %L requires a LOGICAL array",
		       &b->expr1->where);
	  break;

	case EXEC_GOTO:
	  resolve_branch (b->label1, b);
	  break;

	case EXEC_BLOCK:
	  resolve_block_construct (b);
	  break;

	case EXEC_SELECT:
	case EXEC_SELECT_TYPE:
	case EXEC_FORALL:
	case EXEC_DO:
	case EXEC_DO_WHILE:
	case EXEC_CRITICAL:
	case EXEC_READ:
	case EXEC_WRITE:
	case EXEC_IOLENGTH:
	case EXEC_WAIT:
	  break;

	case EXEC_OMP_ATOMIC:
	case EXEC_OMP_CRITICAL:
	case EXEC_OMP_DO:
	case EXEC_OMP_MASTER:
	case EXEC_OMP_ORDERED:
	case EXEC_OMP_PARALLEL:
	case EXEC_OMP_PARALLEL_DO:
	case EXEC_OMP_PARALLEL_SECTIONS:
	case EXEC_OMP_PARALLEL_WORKSHARE:
	case EXEC_OMP_SECTIONS:
	case EXEC_OMP_SINGLE:
	case EXEC_OMP_TASK:
	case EXEC_OMP_TASKWAIT:
	case EXEC_OMP_WORKSHARE:
	  break;

	default:
	  gfc_internal_error ("gfc_resolve_blocks(): Bad block type");
	}

      resolve_code (b->next, ns);
    }
}


/* Does everything to resolve an ordinary assignment.  Returns true
   if this is an interface assignment.  */
static bool
resolve_ordinary_assign (gfc_code *code, gfc_namespace *ns)
{
  bool rval = false;
  gfc_expr *lhs;
  gfc_expr *rhs;
  int llen = 0;
  int rlen = 0;
  int n;
  gfc_ref *ref;

  if (gfc_extend_assign (code, ns) == SUCCESS)
    {
      gfc_expr** rhsptr;

      if (code->op == EXEC_ASSIGN_CALL)
	{
	  lhs = code->ext.actual->expr;
	  rhsptr = &code->ext.actual->next->expr;
	}
      else
	{
	  gfc_actual_arglist* args;
	  gfc_typebound_proc* tbp;

	  gcc_assert (code->op == EXEC_COMPCALL);

	  args = code->expr1->value.compcall.actual;
	  lhs = args->expr;
	  rhsptr = &args->next->expr;

	  tbp = code->expr1->value.compcall.tbp;
	  gcc_assert (!tbp->is_generic);
	}

      /* Make a temporary rhs when there is a default initializer
	 and rhs is the same symbol as the lhs.  */
      if ((*rhsptr)->expr_type == EXPR_VARIABLE
	    && (*rhsptr)->symtree->n.sym->ts.type == BT_DERIVED
	    && gfc_has_default_initializer ((*rhsptr)->symtree->n.sym->ts.u.derived)
	    && (lhs->symtree->n.sym == (*rhsptr)->symtree->n.sym))
	*rhsptr = gfc_get_parentheses (*rhsptr);

      return true;
    }

  lhs = code->expr1;
  rhs = code->expr2;

  if (rhs->is_boz
      && gfc_notify_std (GFC_STD_GNU, "Extension: BOZ literal at %L outside "
			 "a DATA statement and outside INT/REAL/DBLE/CMPLX",
			 &code->loc) == FAILURE)
    return false;

  /* Handle the case of a BOZ literal on the RHS.  */
  if (rhs->is_boz && lhs->ts.type != BT_INTEGER)
    {
      int rc;
      if (gfc_option.warn_surprising)
	gfc_warning ("BOZ literal at %L is bitwise transferred "
		     "non-integer symbol '%s'", &code->loc,
		     lhs->symtree->n.sym->name);

      if (!gfc_convert_boz (rhs, &lhs->ts))
	return false;
      if ((rc = gfc_range_check (rhs)) != ARITH_OK)
	{
	  if (rc == ARITH_UNDERFLOW)
	    gfc_error ("Arithmetic underflow of bit-wise transferred BOZ at %L"
		       ". This check can be disabled with the option "
		       "-fno-range-check", &rhs->where);
	  else if (rc == ARITH_OVERFLOW)
	    gfc_error ("Arithmetic overflow of bit-wise transferred BOZ at %L"
		       ". This check can be disabled with the option "
		       "-fno-range-check", &rhs->where);
	  else if (rc == ARITH_NAN)
	    gfc_error ("Arithmetic NaN of bit-wise transferred BOZ at %L"
		       ". This check can be disabled with the option "
		       "-fno-range-check", &rhs->where);
	  return false;
	}
    }

  if (lhs->ts.type == BT_CHARACTER
	&& gfc_option.warn_character_truncation)
    {
      if (lhs->ts.u.cl != NULL
	    && lhs->ts.u.cl->length != NULL
	    && lhs->ts.u.cl->length->expr_type == EXPR_CONSTANT)
	llen = mpz_get_si (lhs->ts.u.cl->length->value.integer);

      if (rhs->expr_type == EXPR_CONSTANT)
 	rlen = rhs->value.character.length;

      else if (rhs->ts.u.cl != NULL
		 && rhs->ts.u.cl->length != NULL
		 && rhs->ts.u.cl->length->expr_type == EXPR_CONSTANT)
	rlen = mpz_get_si (rhs->ts.u.cl->length->value.integer);

      if (rlen && llen && rlen > llen)
	gfc_warning_now ("CHARACTER expression will be truncated "
			 "in assignment (%d/%d) at %L",
			 llen, rlen, &code->loc);
    }

  /* Ensure that a vector index expression for the lvalue is evaluated
     to a temporary if the lvalue symbol is referenced in it.  */
  if (lhs->rank)
    {
      for (ref = lhs->ref; ref; ref= ref->next)
	if (ref->type == REF_ARRAY)
	  {
	    for (n = 0; n < ref->u.ar.dimen; n++)
	      if (ref->u.ar.dimen_type[n] == DIMEN_VECTOR
		  && gfc_find_sym_in_expr (lhs->symtree->n.sym,
					   ref->u.ar.start[n]))
		ref->u.ar.start[n]
			= gfc_get_parentheses (ref->u.ar.start[n]);
	  }
    }

  if (gfc_pure (NULL))
    {
      if (lhs->ts.type == BT_DERIVED
	    && lhs->expr_type == EXPR_VARIABLE
	    && lhs->ts.u.derived->attr.pointer_comp
	    && rhs->expr_type == EXPR_VARIABLE
	    && (gfc_impure_variable (rhs->symtree->n.sym)
		|| gfc_is_coindexed (rhs)))
	{
	  /* F2008, C1283.  */
	  if (gfc_is_coindexed (rhs))
	    gfc_error ("Coindexed expression at %L is assigned to "
			"a derived type variable with a POINTER "
			"component in a PURE procedure",
			&rhs->where);
	  else
	    gfc_error ("The impure variable at %L is assigned to "
			"a derived type variable with a POINTER "
			"component in a PURE procedure (12.6)",
			&rhs->where);
	  return rval;
	}

      /* Fortran 2008, C1283.  */
      if (gfc_is_coindexed (lhs))
	{
	  gfc_error ("Assignment to coindexed variable at %L in a PURE "
		     "procedure", &rhs->where);
	  return rval;
	}
    }

  if (gfc_implicit_pure (NULL))
    {
      if (lhs->expr_type == EXPR_VARIABLE
	    && lhs->symtree->n.sym != gfc_current_ns->proc_name
	    && lhs->symtree->n.sym->ns != gfc_current_ns)
	gfc_current_ns->proc_name->attr.implicit_pure = 0;

      if (lhs->ts.type == BT_DERIVED
	    && lhs->expr_type == EXPR_VARIABLE
	    && lhs->ts.u.derived->attr.pointer_comp
	    && rhs->expr_type == EXPR_VARIABLE
	    && (gfc_impure_variable (rhs->symtree->n.sym)
		|| gfc_is_coindexed (rhs)))
	gfc_current_ns->proc_name->attr.implicit_pure = 0;

      /* Fortran 2008, C1283.  */
      if (gfc_is_coindexed (lhs))
	gfc_current_ns->proc_name->attr.implicit_pure = 0;
    }

  /* F03:7.4.1.2.  */
  /* FIXME: Valid in Fortran 2008, unless the LHS is both polymorphic
     and coindexed; cf. F2008, 7.2.1.2 and PR 43366.  */
  if (lhs->ts.type == BT_CLASS)
    {
      gfc_error ("Variable must not be polymorphic in assignment at %L",
		 &lhs->where);
      return false;
    }

  /* F2008, Section 7.2.1.2.  */
  if (gfc_is_coindexed (lhs) && gfc_has_ultimate_allocatable (lhs))
    {
      gfc_error ("Coindexed variable must not be have an allocatable ultimate "
		 "component in assignment at %L", &lhs->where);
      return false;
    }

  gfc_check_assign (lhs, rhs, 1);
  return false;
}


/* Given a block of code, recursively resolve everything pointed to by this
   code block.  */

static void
resolve_code (gfc_code *code, gfc_namespace *ns)
{
  int omp_workshare_save;
  int forall_save;
  code_stack frame;
  gfc_try t;

  frame.prev = cs_base;
  frame.head = code;
  cs_base = &frame;

  find_reachable_labels (code);

  for (; code; code = code->next)
    {
      frame.current = code;
      forall_save = forall_flag;

      if (code->op == EXEC_FORALL)
	{
	  forall_flag = 1;
	  gfc_resolve_forall (code, ns, forall_save);
	  forall_flag = 2;
	}
      else if (code->block)
	{
	  omp_workshare_save = -1;
	  switch (code->op)
	    {
	    case EXEC_OMP_PARALLEL_WORKSHARE:
	      omp_workshare_save = omp_workshare_flag;
	      omp_workshare_flag = 1;
	      gfc_resolve_omp_parallel_blocks (code, ns);
	      break;
	    case EXEC_OMP_PARALLEL:
	    case EXEC_OMP_PARALLEL_DO:
	    case EXEC_OMP_PARALLEL_SECTIONS:
	    case EXEC_OMP_TASK:
	      omp_workshare_save = omp_workshare_flag;
	      omp_workshare_flag = 0;
	      gfc_resolve_omp_parallel_blocks (code, ns);
	      break;
	    case EXEC_OMP_DO:
	      gfc_resolve_omp_do_blocks (code, ns);
	      break;
	    case EXEC_SELECT_TYPE:
	      /* Blocks are handled in resolve_select_type because we have
		 to transform the SELECT TYPE into ASSOCIATE first.  */
	      break;
	    case EXEC_OMP_WORKSHARE:
	      omp_workshare_save = omp_workshare_flag;
	      omp_workshare_flag = 1;
	      /* FALLTHROUGH */
	    default:
	      gfc_resolve_blocks (code->block, ns);
	      break;
	    }

	  if (omp_workshare_save != -1)
	    omp_workshare_flag = omp_workshare_save;
	}

      t = SUCCESS;
      if (code->op != EXEC_COMPCALL && code->op != EXEC_CALL_PPC)
	t = gfc_resolve_expr (code->expr1);
      forall_flag = forall_save;

      if (gfc_resolve_expr (code->expr2) == FAILURE)
	t = FAILURE;

      if (code->op == EXEC_ALLOCATE
	  && gfc_resolve_expr (code->expr3) == FAILURE)
	t = FAILURE;

      switch (code->op)
	{
	case EXEC_NOP:
	case EXEC_END_BLOCK:
	case EXEC_CYCLE:
	case EXEC_PAUSE:
	case EXEC_STOP:
	case EXEC_ERROR_STOP:
	case EXEC_EXIT:
	case EXEC_CONTINUE:
	case EXEC_DT_END:
	case EXEC_ASSIGN_CALL:
	case EXEC_CRITICAL:
	  break;

	case EXEC_SYNC_ALL:
	case EXEC_SYNC_IMAGES:
	case EXEC_SYNC_MEMORY:
	  resolve_sync (code);
	  break;

	case EXEC_ENTRY:
	  /* Keep track of which entry we are up to.  */
	  current_entry_id = code->ext.entry->id;
	  break;

	case EXEC_WHERE:
	  resolve_where (code, NULL);
	  break;

	case EXEC_GOTO:
	  if (code->expr1 != NULL)
	    {
	      if (code->expr1->ts.type != BT_INTEGER)
		gfc_error ("ASSIGNED GOTO statement at %L requires an "
			   "INTEGER variable", &code->expr1->where);
	      else if (code->expr1->symtree->n.sym->attr.assign != 1)
		gfc_error ("Variable '%s' has not been assigned a target "
			   "label at %L", code->expr1->symtree->n.sym->name,
			   &code->expr1->where);
	    }
	  else
	    resolve_branch (code->label1, code);
	  break;

	case EXEC_RETURN:
	  if (code->expr1 != NULL
		&& (code->expr1->ts.type != BT_INTEGER || code->expr1->rank))
	    gfc_error ("Alternate RETURN statement at %L requires a SCALAR-"
		       "INTEGER return specifier", &code->expr1->where);
	  break;

	case EXEC_INIT_ASSIGN:
	case EXEC_END_PROCEDURE:
	  break;

	case EXEC_ASSIGN:
	  if (t == FAILURE)
	    break;

	  if (gfc_check_vardef_context (code->expr1, false, _("assignment"))
		== FAILURE)
	    break;

	  if (resolve_ordinary_assign (code, ns))
	    {
	      if (code->op == EXEC_COMPCALL)
		goto compcall;
	      else
		goto call;
	    }
	  break;

	case EXEC_LABEL_ASSIGN:
	  if (code->label1->defined == ST_LABEL_UNKNOWN)
	    gfc_error ("Label %d referenced at %L is never defined",
		       code->label1->value, &code->label1->where);
	  if (t == SUCCESS
	      && (code->expr1->expr_type != EXPR_VARIABLE
		  || code->expr1->symtree->n.sym->ts.type != BT_INTEGER
		  || code->expr1->symtree->n.sym->ts.kind
		     != gfc_default_integer_kind
		  || code->expr1->symtree->n.sym->as != NULL))
	    gfc_error ("ASSIGN statement at %L requires a scalar "
		       "default INTEGER variable", &code->expr1->where);
	  break;

	case EXEC_POINTER_ASSIGN:
	  {
	    gfc_expr* e;

	    if (t == FAILURE)
	      break;

	    /* This is both a variable definition and pointer assignment
	       context, so check both of them.  For rank remapping, a final
	       array ref may be present on the LHS and fool gfc_expr_attr
	       used in gfc_check_vardef_context.  Remove it.  */
	    e = remove_last_array_ref (code->expr1);
	    t = gfc_check_vardef_context (e, true, _("pointer assignment"));
	    if (t == SUCCESS)
	      t = gfc_check_vardef_context (e, false, _("pointer assignment"));
	    gfc_free_expr (e);
	    if (t == FAILURE)
	      break;

	    gfc_check_pointer_assign (code->expr1, code->expr2);
	    break;
	  }

	case EXEC_ARITHMETIC_IF:
	  if (t == SUCCESS
	      && code->expr1->ts.type != BT_INTEGER
	      && code->expr1->ts.type != BT_REAL)
	    gfc_error ("Arithmetic IF statement at %L requires a numeric "
		       "expression", &code->expr1->where);

	  resolve_branch (code->label1, code);
	  resolve_branch (code->label2, code);
	  resolve_branch (code->label3, code);
	  break;

	case EXEC_IF:
	  if (t == SUCCESS && code->expr1 != NULL
	      && (code->expr1->ts.type != BT_LOGICAL
		  || code->expr1->rank != 0))
	    gfc_error ("IF clause at %L requires a scalar LOGICAL expression",
		       &code->expr1->where);
	  break;

	case EXEC_CALL:
	call:
	  resolve_call (code);
	  break;

	case EXEC_COMPCALL:
	compcall:
	  resolve_typebound_subroutine (code);
	  break;

	case EXEC_CALL_PPC:
	  resolve_ppc_call (code);
	  break;

	case EXEC_SELECT:
	  /* Select is complicated. Also, a SELECT construct could be
	     a transformed computed GOTO.  */
	  resolve_select (code);
	  break;

	case EXEC_SELECT_TYPE:
	  resolve_select_type (code, ns);
	  break;

	case EXEC_BLOCK:
	  resolve_block_construct (code);
	  break;

	case EXEC_DO:
	  if (code->ext.iterator != NULL)
	    {
	      gfc_iterator *iter = code->ext.iterator;
	      if (gfc_resolve_iterator (iter, true) != FAILURE)
		gfc_resolve_do_iterator (code, iter->var->symtree->n.sym);
	    }
	  break;

	case EXEC_DO_WHILE:
	  if (code->expr1 == NULL)
	    gfc_internal_error ("resolve_code(): No expression on DO WHILE");
	  if (t == SUCCESS
	      && (code->expr1->rank != 0
		  || code->expr1->ts.type != BT_LOGICAL))
	    gfc_error ("Exit condition of DO WHILE loop at %L must be "
		       "a scalar LOGICAL expression", &code->expr1->where);
	  break;

	case EXEC_ALLOCATE:
	  if (t == SUCCESS)
	    resolve_allocate_deallocate (code, "ALLOCATE");

	  break;

	case EXEC_DEALLOCATE:
	  if (t == SUCCESS)
	    resolve_allocate_deallocate (code, "DEALLOCATE");

	  break;

	case EXEC_OPEN:
	  if (gfc_resolve_open (code->ext.open) == FAILURE)
	    break;

	  resolve_branch (code->ext.open->err, code);
	  break;

	case EXEC_CLOSE:
	  if (gfc_resolve_close (code->ext.close) == FAILURE)
	    break;

	  resolve_branch (code->ext.close->err, code);
	  break;

	case EXEC_BACKSPACE:
	case EXEC_ENDFILE:
	case EXEC_REWIND:
	case EXEC_FLUSH:
	  if (gfc_resolve_filepos (code->ext.filepos) == FAILURE)
	    break;

	  resolve_branch (code->ext.filepos->err, code);
	  break;

	case EXEC_INQUIRE:
	  if (gfc_resolve_inquire (code->ext.inquire) == FAILURE)
	      break;

	  resolve_branch (code->ext.inquire->err, code);
	  break;

	case EXEC_IOLENGTH:
	  gcc_assert (code->ext.inquire != NULL);
	  if (gfc_resolve_inquire (code->ext.inquire) == FAILURE)
	    break;

	  resolve_branch (code->ext.inquire->err, code);
	  break;

	case EXEC_WAIT:
	  if (gfc_resolve_wait (code->ext.wait) == FAILURE)
	    break;

	  resolve_branch (code->ext.wait->err, code);
	  resolve_branch (code->ext.wait->end, code);
	  resolve_branch (code->ext.wait->eor, code);
	  break;

	case EXEC_READ:
	case EXEC_WRITE:
	  if (gfc_resolve_dt (code->ext.dt, &code->loc) == FAILURE)
	    break;

	  resolve_branch (code->ext.dt->err, code);
	  resolve_branch (code->ext.dt->end, code);
	  resolve_branch (code->ext.dt->eor, code);
	  break;

	case EXEC_TRANSFER:
	  resolve_transfer (code);
	  break;

	case EXEC_FORALL:
	  resolve_forall_iterators (code->ext.forall_iterator);

	  if (code->expr1 != NULL
	      && (code->expr1->ts.type != BT_LOGICAL || code->expr1->rank))
	    gfc_error ("FORALL mask clause at %L requires a scalar LOGICAL "
		       "expression", &code->expr1->where);
	  break;

	case EXEC_OMP_ATOMIC:
	case EXEC_OMP_BARRIER:
	case EXEC_OMP_CRITICAL:
	case EXEC_OMP_FLUSH:
	case EXEC_OMP_DO:
	case EXEC_OMP_MASTER:
	case EXEC_OMP_ORDERED:
	case EXEC_OMP_SECTIONS:
	case EXEC_OMP_SINGLE:
	case EXEC_OMP_TASKWAIT:
	case EXEC_OMP_WORKSHARE:
	  gfc_resolve_omp_directive (code, ns);
	  break;

	case EXEC_OMP_PARALLEL:
	case EXEC_OMP_PARALLEL_DO:
	case EXEC_OMP_PARALLEL_SECTIONS:
	case EXEC_OMP_PARALLEL_WORKSHARE:
	case EXEC_OMP_TASK:
	  omp_workshare_save = omp_workshare_flag;
	  omp_workshare_flag = 0;
	  gfc_resolve_omp_directive (code, ns);
	  omp_workshare_flag = omp_workshare_save;
	  break;

	default:
	  gfc_internal_error ("resolve_code(): Bad statement code");
	}
    }

  cs_base = frame.prev;
}


/* Resolve initial values and make sure they are compatible with
   the variable.  */

static void
resolve_values (gfc_symbol *sym)
{
  gfc_try t;

  if (sym->value == NULL)
    return;

  if (sym->value->expr_type == EXPR_STRUCTURE)
    t= resolve_structure_cons (sym->value, 1);
  else 
    t = gfc_resolve_expr (sym->value);

  if (t == FAILURE)
    return;

  gfc_check_assign_symbol (sym, sym->value);
}


/* Verify the binding labels for common blocks that are BIND(C).  The label
   for a BIND(C) common block must be identical in all scoping units in which
   the common block is declared.  Further, the binding label can not collide
   with any other global entity in the program.  */

static void
resolve_bind_c_comms (gfc_symtree *comm_block_tree)
{
  if (comm_block_tree->n.common->is_bind_c == 1)
    {
      gfc_gsymbol *binding_label_gsym;
      gfc_gsymbol *comm_name_gsym;

      /* See if a global symbol exists by the common block's name.  It may
         be NULL if the common block is use-associated.  */
      comm_name_gsym = gfc_find_gsymbol (gfc_gsym_root,
                                         comm_block_tree->n.common->name);
      if (comm_name_gsym != NULL && comm_name_gsym->type != GSYM_COMMON)
        gfc_error ("Binding label '%s' for common block '%s' at %L collides "
                   "with the global entity '%s' at %L",
                   comm_block_tree->n.common->binding_label,
                   comm_block_tree->n.common->name,
                   &(comm_block_tree->n.common->where),
                   comm_name_gsym->name, &(comm_name_gsym->where));
      else if (comm_name_gsym != NULL
	       && strcmp (comm_name_gsym->name,
			  comm_block_tree->n.common->name) == 0)
        {
          /* TODO: Need to make sure the fields of gfc_gsymbol are initialized
             as expected.  */
          if (comm_name_gsym->binding_label == NULL)
            /* No binding label for common block stored yet; save this one.  */
            comm_name_gsym->binding_label =
              comm_block_tree->n.common->binding_label;
          else
            if (strcmp (comm_name_gsym->binding_label,
                        comm_block_tree->n.common->binding_label) != 0)
              {
                /* Common block names match but binding labels do not.  */
                gfc_error ("Binding label '%s' for common block '%s' at %L "
                           "does not match the binding label '%s' for common "
                           "block '%s' at %L",
                           comm_block_tree->n.common->binding_label,
                           comm_block_tree->n.common->name,
                           &(comm_block_tree->n.common->where),
                           comm_name_gsym->binding_label,
                           comm_name_gsym->name,
                           &(comm_name_gsym->where));
                return;
              }
        }

      /* There is no binding label (NAME="") so we have nothing further to
         check and nothing to add as a global symbol for the label.  */
      if (comm_block_tree->n.common->binding_label[0] == '\0' )
        return;
      
      binding_label_gsym =
        gfc_find_gsymbol (gfc_gsym_root,
                          comm_block_tree->n.common->binding_label);
      if (binding_label_gsym == NULL)
        {
          /* Need to make a global symbol for the binding label to prevent
             it from colliding with another.  */
          binding_label_gsym =
            gfc_get_gsymbol (comm_block_tree->n.common->binding_label);
          binding_label_gsym->sym_name = comm_block_tree->n.common->name;
          binding_label_gsym->type = GSYM_COMMON;
        }
      else
        {
          /* If comm_name_gsym is NULL, the name common block is use
             associated and the name could be colliding.  */
          if (binding_label_gsym->type != GSYM_COMMON)
            gfc_error ("Binding label '%s' for common block '%s' at %L "
                       "collides with the global entity '%s' at %L",
                       comm_block_tree->n.common->binding_label,
                       comm_block_tree->n.common->name,
                       &(comm_block_tree->n.common->where),
                       binding_label_gsym->name,
                       &(binding_label_gsym->where));
          else if (comm_name_gsym != NULL
		   && (strcmp (binding_label_gsym->name,
			       comm_name_gsym->binding_label) != 0)
		   && (strcmp (binding_label_gsym->sym_name,
			       comm_name_gsym->name) != 0))
            gfc_error ("Binding label '%s' for common block '%s' at %L "
                       "collides with global entity '%s' at %L",
                       binding_label_gsym->name, binding_label_gsym->sym_name,
                       &(comm_block_tree->n.common->where),
                       comm_name_gsym->name, &(comm_name_gsym->where));
        }
    }
  
  return;
}


/* Verify any BIND(C) derived types in the namespace so we can report errors
   for them once, rather than for each variable declared of that type.  */

static void
resolve_bind_c_derived_types (gfc_symbol *derived_sym)
{
  if (derived_sym != NULL && derived_sym->attr.flavor == FL_DERIVED
      && derived_sym->attr.is_bind_c == 1)
    verify_bind_c_derived_type (derived_sym);
  
  return;
}


/* Verify that any binding labels used in a given namespace do not collide 
   with the names or binding labels of any global symbols.  */

static void
gfc_verify_binding_labels (gfc_symbol *sym)
{
  int has_error = 0;
  
  if (sym != NULL && sym->attr.is_bind_c && sym->attr.is_iso_c == 0 
      && sym->attr.flavor != FL_DERIVED && sym->binding_label[0] != '\0')
    {
      gfc_gsymbol *bind_c_sym;

      bind_c_sym = gfc_find_gsymbol (gfc_gsym_root, sym->binding_label);
      if (bind_c_sym != NULL 
          && strcmp (bind_c_sym->name, sym->binding_label) == 0)
        {
          if (sym->attr.if_source == IFSRC_DECL 
              && (bind_c_sym->type != GSYM_SUBROUTINE 
                  && bind_c_sym->type != GSYM_FUNCTION) 
              && ((sym->attr.contained == 1 
                   && strcmp (bind_c_sym->sym_name, sym->name) != 0) 
                  || (sym->attr.use_assoc == 1 
                      && (strcmp (bind_c_sym->mod_name, sym->module) != 0))))
            {
              /* Make sure global procedures don't collide with anything.  */
              gfc_error ("Binding label '%s' at %L collides with the global "
                         "entity '%s' at %L", sym->binding_label,
                         &(sym->declared_at), bind_c_sym->name,
                         &(bind_c_sym->where));
              has_error = 1;
            }
          else if (sym->attr.contained == 0 
                   && (sym->attr.if_source == IFSRC_IFBODY 
                       && sym->attr.flavor == FL_PROCEDURE) 
                   && (bind_c_sym->sym_name != NULL 
                       && strcmp (bind_c_sym->sym_name, sym->name) != 0))
            {
              /* Make sure procedures in interface bodies don't collide.  */
              gfc_error ("Binding label '%s' in interface body at %L collides "
                         "with the global entity '%s' at %L",
                         sym->binding_label,
                         &(sym->declared_at), bind_c_sym->name,
                         &(bind_c_sym->where));
              has_error = 1;
            }
          else if (sym->attr.contained == 0 
                   && sym->attr.if_source == IFSRC_UNKNOWN)
	    if ((sym->attr.use_assoc && bind_c_sym->mod_name
		 && strcmp (bind_c_sym->mod_name, sym->module) != 0) 
		|| sym->attr.use_assoc == 0)
              {
                gfc_error ("Binding label '%s' at %L collides with global "
                           "entity '%s' at %L", sym->binding_label,
                           &(sym->declared_at), bind_c_sym->name,
                           &(bind_c_sym->where));
                has_error = 1;
              }

          if (has_error != 0)
            /* Clear the binding label to prevent checking multiple times.  */
            sym->binding_label[0] = '\0';
        }
      else if (bind_c_sym == NULL)
	{
	  bind_c_sym = gfc_get_gsymbol (sym->binding_label);
	  bind_c_sym->where = sym->declared_at;
	  bind_c_sym->sym_name = sym->name;

          if (sym->attr.use_assoc == 1)
            bind_c_sym->mod_name = sym->module;
          else
            if (sym->ns->proc_name != NULL)
              bind_c_sym->mod_name = sym->ns->proc_name->name;

          if (sym->attr.contained == 0)
            {
              if (sym->attr.subroutine)
                bind_c_sym->type = GSYM_SUBROUTINE;
              else if (sym->attr.function)
                bind_c_sym->type = GSYM_FUNCTION;
            }
        }
    }
  return;
}


/* Resolve an index expression.  */

static gfc_try
resolve_index_expr (gfc_expr *e)
{
  if (gfc_resolve_expr (e) == FAILURE)
    return FAILURE;

  if (gfc_simplify_expr (e, 0) == FAILURE)
    return FAILURE;

  if (gfc_specification_expr (e) == FAILURE)
    return FAILURE;

  return SUCCESS;
}


/* Resolve a charlen structure.  */

static gfc_try
resolve_charlen (gfc_charlen *cl)
{
  int i, k;

  if (cl->resolved)
    return SUCCESS;

  cl->resolved = 1;

  specification_expr = 1;

  if (resolve_index_expr (cl->length) == FAILURE)
    {
      specification_expr = 0;
      return FAILURE;
    }

  /* "If the character length parameter value evaluates to a negative
     value, the length of character entities declared is zero."  */
  if (cl->length && !gfc_extract_int (cl->length, &i) && i < 0)
    {
      if (gfc_option.warn_surprising)
	gfc_warning_now ("CHARACTER variable at %L has negative length %d,"
			 " the length has been set to zero",
			 &cl->length->where, i);
      gfc_replace_expr (cl->length,
			gfc_get_int_expr (gfc_default_integer_kind, NULL, 0));
    }

  /* Check that the character length is not too large.  */
  k = gfc_validate_kind (BT_INTEGER, gfc_charlen_int_kind, false);
  if (cl->length && cl->length->expr_type == EXPR_CONSTANT
      && cl->length->ts.type == BT_INTEGER
      && mpz_cmp (cl->length->value.integer, gfc_integer_kinds[k].huge) > 0)
    {
      gfc_error ("String length at %L is too large", &cl->length->where);
      return FAILURE;
    }

  return SUCCESS;
}


/* Test for non-constant shape arrays.  */

static bool
is_non_constant_shape_array (gfc_symbol *sym)
{
  gfc_expr *e;
  int i;
  bool not_constant;

  not_constant = false;
  if (sym->as != NULL)
    {
      /* Unfortunately, !gfc_is_compile_time_shape hits a legal case that
	 has not been simplified; parameter array references.  Do the
	 simplification now.  */
      for (i = 0; i < sym->as->rank + sym->as->corank; i++)
	{
	  e = sym->as->lower[i];
	  if (e && (resolve_index_expr (e) == FAILURE
		    || !gfc_is_constant_expr (e)))
	    not_constant = true;
	  e = sym->as->upper[i];
	  if (e && (resolve_index_expr (e) == FAILURE
		    || !gfc_is_constant_expr (e)))
	    not_constant = true;
	}
    }
  return not_constant;
}

/* Given a symbol and an initialization expression, add code to initialize
   the symbol to the function entry.  */
static void
build_init_assign (gfc_symbol *sym, gfc_expr *init)
{
  gfc_expr *lval;
  gfc_code *init_st;
  gfc_namespace *ns = sym->ns;

  /* Search for the function namespace if this is a contained
     function without an explicit result.  */
  if (sym->attr.function && sym == sym->result
      && sym->name != sym->ns->proc_name->name)
    {
      ns = ns->contained;
      for (;ns; ns = ns->sibling)
	if (strcmp (ns->proc_name->name, sym->name) == 0)
	  break;
    }

  if (ns == NULL)
    {
      gfc_free_expr (init);
      return;
    }

  /* Build an l-value expression for the result.  */
  lval = gfc_lval_expr_from_sym (sym);

  /* Add the code at scope entry.  */
  init_st = gfc_get_code ();
  init_st->next = ns->code;
  ns->code = init_st;

  /* Assign the default initializer to the l-value.  */
  init_st->loc = sym->declared_at;
  init_st->op = EXEC_INIT_ASSIGN;
  init_st->expr1 = lval;
  init_st->expr2 = init;
}

/* Assign the default initializer to a derived type variable or result.  */

static void
apply_default_init (gfc_symbol *sym)
{
  gfc_expr *init = NULL;

  if (sym->attr.flavor != FL_VARIABLE && !sym->attr.function)
    return;

  if (sym->ts.type == BT_DERIVED && sym->ts.u.derived)
    init = gfc_default_initializer (&sym->ts);

  if (init == NULL && sym->ts.type != BT_CLASS)
    return;

  build_init_assign (sym, init);
  sym->attr.referenced = 1;
}

/* Build an initializer for a local integer, real, complex, logical, or
   character variable, based on the command line flags finit-local-zero,
   finit-integer=, finit-real=, finit-logical=, and finit-runtime.  Returns 
   null if the symbol should not have a default initialization.  */
static gfc_expr *
build_default_init_expr (gfc_symbol *sym)
{
  int char_len;
  gfc_expr *init_expr;
  int i;

  /* These symbols should never have a default initialization.  */
  if ((sym->attr.dimension && !gfc_is_compile_time_shape (sym->as))
      || sym->attr.external
      || sym->attr.dummy
      || sym->attr.pointer
      || sym->attr.in_equivalence
      || sym->attr.in_common
      || sym->attr.data
      || sym->module
      || sym->attr.cray_pointee
      || sym->attr.cray_pointer)
    return NULL;

  /* Now we'll try to build an initializer expression.  */
  init_expr = gfc_get_constant_expr (sym->ts.type, sym->ts.kind,
				     &sym->declared_at);

  /* We will only initialize integers, reals, complex, logicals, and
     characters, and only if the corresponding command-line flags
     were set.  Otherwise, we free init_expr and return null.  */
  switch (sym->ts.type)
    {    
    case BT_INTEGER:
      if (gfc_option.flag_init_integer != GFC_INIT_INTEGER_OFF)
	mpz_set_si (init_expr->value.integer, 
			 gfc_option.flag_init_integer_value);
      else
	{
	  gfc_free_expr (init_expr);
	  init_expr = NULL;
	}
      break;

    case BT_REAL:
      switch (gfc_option.flag_init_real)
	{
	case GFC_INIT_REAL_SNAN:
	  init_expr->is_snan = 1;
	  /* Fall through.  */
	case GFC_INIT_REAL_NAN:
	  mpfr_set_nan (init_expr->value.real);
	  break;

	case GFC_INIT_REAL_INF:
	  mpfr_set_inf (init_expr->value.real, 1);
	  break;

	case GFC_INIT_REAL_NEG_INF:
	  mpfr_set_inf (init_expr->value.real, -1);
	  break;

	case GFC_INIT_REAL_ZERO:
	  mpfr_set_ui (init_expr->value.real, 0.0, GFC_RND_MODE);
	  break;

	default:
	  gfc_free_expr (init_expr);
	  init_expr = NULL;
	  break;
	}
      break;
	  
    case BT_COMPLEX:
      switch (gfc_option.flag_init_real)
	{
	case GFC_INIT_REAL_SNAN:
	  init_expr->is_snan = 1;
	  /* Fall through.  */
	case GFC_INIT_REAL_NAN:
	  mpfr_set_nan (mpc_realref (init_expr->value.complex));
	  mpfr_set_nan (mpc_imagref (init_expr->value.complex));
	  break;

	case GFC_INIT_REAL_INF:
	  mpfr_set_inf (mpc_realref (init_expr->value.complex), 1);
	  mpfr_set_inf (mpc_imagref (init_expr->value.complex), 1);
	  break;

	case GFC_INIT_REAL_NEG_INF:
	  mpfr_set_inf (mpc_realref (init_expr->value.complex), -1);
	  mpfr_set_inf (mpc_imagref (init_expr->value.complex), -1);
	  break;

	case GFC_INIT_REAL_ZERO:
	  mpc_set_ui (init_expr->value.complex, 0, GFC_MPC_RND_MODE);
	  break;

	default:
	  gfc_free_expr (init_expr);
	  init_expr = NULL;
	  break;
	}
      break;
	  
    case BT_LOGICAL:
      if (gfc_option.flag_init_logical == GFC_INIT_LOGICAL_FALSE)
	init_expr->value.logical = 0;
      else if (gfc_option.flag_init_logical == GFC_INIT_LOGICAL_TRUE)
	init_expr->value.logical = 1;
      else
	{
	  gfc_free_expr (init_expr);
	  init_expr = NULL;
	}
      break;
	  
    case BT_CHARACTER:
      /* For characters, the length must be constant in order to 
	 create a default initializer.  */
      if (gfc_option.flag_init_character == GFC_INIT_CHARACTER_ON
	  && sym->ts.u.cl->length
	  && sym->ts.u.cl->length->expr_type == EXPR_CONSTANT)
	{
	  char_len = mpz_get_si (sym->ts.u.cl->length->value.integer);
	  init_expr->value.character.length = char_len;
	  init_expr->value.character.string = gfc_get_wide_string (char_len+1);
	  for (i = 0; i < char_len; i++)
	    init_expr->value.character.string[i]
	      = (unsigned char) gfc_option.flag_init_character_value;
	}
      else
	{
	  gfc_free_expr (init_expr);
	  init_expr = NULL;
	}
      break;
	  
    default:
     gfc_free_expr (init_expr);
     init_expr = NULL;
    }
  return init_expr;
}

/* Add an initialization expression to a local variable.  */
static void
apply_default_init_local (gfc_symbol *sym)
{
  gfc_expr *init = NULL;

  /* The symbol should be a variable or a function return value.  */
  if ((sym->attr.flavor != FL_VARIABLE && !sym->attr.function)
      || (sym->attr.function && sym->result != sym))
    return;

  /* Try to build the initializer expression.  If we can't initialize
     this symbol, then init will be NULL.  */
  init = build_default_init_expr (sym);
  if (init == NULL)
    return;

  /* For saved variables, we don't want to add an initializer at 
     function entry, so we just add a static initializer.  */
  if (sym->attr.save || sym->ns->save_all 
      || gfc_option.flag_max_stack_var_size == 0)
    {
      /* Don't clobber an existing initializer!  */
      gcc_assert (sym->value == NULL);
      sym->value = init;
      return;
    }

  build_init_assign (sym, init);
}


/* Resolution of common features of flavors variable and procedure.  */

static gfc_try
resolve_fl_var_and_proc (gfc_symbol *sym, int mp_flag)
{
  /* Constraints on deferred shape variable.  */
  if (sym->as == NULL || sym->as->type != AS_DEFERRED)
    {
      if (sym->attr.allocatable)
	{
	  if (sym->attr.dimension)
	    {
	      gfc_error ("Allocatable array '%s' at %L must have "
			 "a deferred shape", sym->name, &sym->declared_at);
	      return FAILURE;
	    }
	  else if (gfc_notify_std (GFC_STD_F2003, "Scalar object '%s' at %L "
				   "may not be ALLOCATABLE", sym->name,
				   &sym->declared_at) == FAILURE)
	    return FAILURE;
	}

      if (sym->attr.pointer && sym->attr.dimension)
	{
	  gfc_error ("Array pointer '%s' at %L must have a deferred shape",
		     sym->name, &sym->declared_at);
	  return FAILURE;
	}
    }
  else
    {
      if (!mp_flag && !sym->attr.allocatable && !sym->attr.pointer
	  && !sym->attr.dummy && sym->ts.type != BT_CLASS && !sym->assoc)
	{
	  gfc_error ("Array '%s' at %L cannot have a deferred shape",
		     sym->name, &sym->declared_at);
	  return FAILURE;
	 }
    }

  /* Constraints on polymorphic variables.  */
  if (sym->ts.type == BT_CLASS && !(sym->result && sym->result != sym))
    {
      /* F03:C502.  */
      if (sym->attr.class_ok
	  && !gfc_type_is_extensible (CLASS_DATA (sym)->ts.u.derived))
	{
	  gfc_error ("Type '%s' of CLASS variable '%s' at %L is not extensible",
		     CLASS_DATA (sym)->ts.u.derived->name, sym->name,
		     &sym->declared_at);
	  return FAILURE;
	}

      /* F03:C509.  */
      /* Assume that use associated symbols were checked in the module ns.
	 Class-variables that are associate-names are also something special
	 and excepted from the test.  */
      if (!sym->attr.class_ok && !sym->attr.use_assoc && !sym->assoc)
	{
	  gfc_error ("CLASS variable '%s' at %L must be dummy, allocatable "
		     "or pointer", sym->name, &sym->declared_at);
	  return FAILURE;
	}
    }
    
  return SUCCESS;
}


/* Additional checks for symbols with flavor variable and derived
   type.  To be called from resolve_fl_variable.  */

static gfc_try
resolve_fl_variable_derived (gfc_symbol *sym, int no_init_flag)
{
  gcc_assert (sym->ts.type == BT_DERIVED || sym->ts.type == BT_CLASS);

  /* Check to see if a derived type is blocked from being host
     associated by the presence of another class I symbol in the same
     namespace.  14.6.1.3 of the standard and the discussion on
     comp.lang.fortran.  */
  if (sym->ns != sym->ts.u.derived->ns
      && sym->ns->proc_name->attr.if_source != IFSRC_IFBODY)
    {
      gfc_symbol *s;
      gfc_find_symbol (sym->ts.u.derived->name, sym->ns, 0, &s);
      if (s && s->attr.flavor != FL_DERIVED)
	{
	  gfc_error ("The type '%s' cannot be host associated at %L "
		     "because it is blocked by an incompatible object "
		     "of the same name declared at %L",
		     sym->ts.u.derived->name, &sym->declared_at,
		     &s->declared_at);
	  return FAILURE;
	}
    }

  /* 4th constraint in section 11.3: "If an object of a type for which
     component-initialization is specified (R429) appears in the
     specification-part of a module and does not have the ALLOCATABLE
     or POINTER attribute, the object shall have the SAVE attribute."

     The check for initializers is performed with
     gfc_has_default_initializer because gfc_default_initializer generates
     a hidden default for allocatable components.  */
  if (!(sym->value || no_init_flag) && sym->ns->proc_name
      && sym->ns->proc_name->attr.flavor == FL_MODULE
      && !sym->ns->save_all && !sym->attr.save
      && !sym->attr.pointer && !sym->attr.allocatable
      && gfc_has_default_initializer (sym->ts.u.derived)
      && gfc_notify_std (GFC_STD_F2008, "Fortran 2008: Implied SAVE for "
			 "module variable '%s' at %L, needed due to "
			 "the default initialization", sym->name,
			 &sym->declared_at) == FAILURE)
    return FAILURE;

  /* Assign default initializer.  */
  if (!(sym->value || sym->attr.pointer || sym->attr.allocatable)
      && (!no_init_flag || sym->attr.intent == INTENT_OUT))
    {
      sym->value = gfc_default_initializer (&sym->ts);
    }

  return SUCCESS;
}


/* Resolve symbols with flavor variable.  */

static gfc_try
resolve_fl_variable (gfc_symbol *sym, int mp_flag)
{
  int no_init_flag, automatic_flag;
  gfc_expr *e;
  const char *auto_save_msg;

  auto_save_msg = "Automatic object '%s' at %L cannot have the "
		  "SAVE attribute";

  if (resolve_fl_var_and_proc (sym, mp_flag) == FAILURE)
    return FAILURE;

  /* Set this flag to check that variables are parameters of all entries.
     This check is effected by the call to gfc_resolve_expr through
     is_non_constant_shape_array.  */
  specification_expr = 1;

  if (sym->ns->proc_name
      && (sym->ns->proc_name->attr.flavor == FL_MODULE
	  || sym->ns->proc_name->attr.is_main_program)
      && !sym->attr.use_assoc
      && !sym->attr.allocatable
      && !sym->attr.pointer
      && is_non_constant_shape_array (sym))
    {
      /* The shape of a main program or module array needs to be
	 constant.  */
      gfc_error ("The module or main program array '%s' at %L must "
		 "have constant shape", sym->name, &sym->declared_at);
      specification_expr = 0;
      return FAILURE;
    }

  /* Constraints on deferred type parameter.  */
  if (sym->ts.deferred && !(sym->attr.pointer || sym->attr.allocatable))
    {
      gfc_error ("Entity '%s' at %L has a deferred type parameter and "
		 "requires either the pointer or allocatable attribute",
		     sym->name, &sym->declared_at);
      return FAILURE;
    }

  if (sym->ts.type == BT_CHARACTER)
    {
      /* Make sure that character string variables with assumed length are
	 dummy arguments.  */
      e = sym->ts.u.cl->length;
      if (e == NULL && !sym->attr.dummy && !sym->attr.result
	  && !sym->ts.deferred)
	{
	  gfc_error ("Entity with assumed character length at %L must be a "
		     "dummy argument or a PARAMETER", &sym->declared_at);
	  return FAILURE;
	}

      if (e && sym->attr.save == SAVE_EXPLICIT && !gfc_is_constant_expr (e))
	{
	  gfc_error (auto_save_msg, sym->name, &sym->declared_at);
	  return FAILURE;
	}

      if (!gfc_is_constant_expr (e)
	  && !(e->expr_type == EXPR_VARIABLE
	       && e->symtree->n.sym->attr.flavor == FL_PARAMETER)
	  && sym->ns->proc_name
	  && (sym->ns->proc_name->attr.flavor == FL_MODULE
	      || sym->ns->proc_name->attr.is_main_program)
	  && !sym->attr.use_assoc)
	{
	  gfc_error ("'%s' at %L must have constant character length "
		     "in this context", sym->name, &sym->declared_at);
	  return FAILURE;
	}
    }

  if (sym->value == NULL && sym->attr.referenced)
    apply_default_init_local (sym); /* Try to apply a default initialization.  */

  /* Determine if the symbol may not have an initializer.  */
  no_init_flag = automatic_flag = 0;
  if (sym->attr.allocatable || sym->attr.external || sym->attr.dummy
      || sym->attr.intrinsic || sym->attr.result)
    no_init_flag = 1;
  else if ((sym->attr.dimension || sym->attr.codimension) && !sym->attr.pointer
	   && is_non_constant_shape_array (sym))
    {
      no_init_flag = automatic_flag = 1;

      /* Also, they must not have the SAVE attribute.
	 SAVE_IMPLICIT is checked below.  */
      if (sym->attr.save == SAVE_EXPLICIT)
	{
	  gfc_error (auto_save_msg, sym->name, &sym->declared_at);
	  return FAILURE;
	}
    }

  /* Ensure that any initializer is simplified.  */
  if (sym->value)
    gfc_simplify_expr (sym->value, 1);

  /* Reject illegal initializers.  */
  if (!sym->mark && sym->value)
    {
      if (sym->attr.allocatable || (sym->ts.type == BT_CLASS
				    && CLASS_DATA (sym)->attr.allocatable))
	gfc_error ("Allocatable '%s' at %L cannot have an initializer",
		   sym->name, &sym->declared_at);
      else if (sym->attr.external)
	gfc_error ("External '%s' at %L cannot have an initializer",
		   sym->name, &sym->declared_at);
      else if (sym->attr.dummy
	&& !(sym->ts.type == BT_DERIVED && sym->attr.intent == INTENT_OUT))
	gfc_error ("Dummy '%s' at %L cannot have an initializer",
		   sym->name, &sym->declared_at);
      else if (sym->attr.intrinsic)
	gfc_error ("Intrinsic '%s' at %L cannot have an initializer",
		   sym->name, &sym->declared_at);
      else if (sym->attr.result)
	gfc_error ("Function result '%s' at %L cannot have an initializer",
		   sym->name, &sym->declared_at);
      else if (automatic_flag)
	gfc_error ("Automatic array '%s' at %L cannot have an initializer",
		   sym->name, &sym->declared_at);
      else
	goto no_init_error;
      return FAILURE;
    }

no_init_error:
  if (sym->ts.type == BT_DERIVED || sym->ts.type == BT_CLASS)
    return resolve_fl_variable_derived (sym, no_init_flag);

  return SUCCESS;
}


/* Resolve a procedure.  */

static gfc_try
resolve_fl_procedure (gfc_symbol *sym, int mp_flag)
{
  gfc_formal_arglist *arg;

  if (sym->attr.function
      && resolve_fl_var_and_proc (sym, mp_flag) == FAILURE)
    return FAILURE;

  if (sym->ts.type == BT_CHARACTER)
    {
      gfc_charlen *cl = sym->ts.u.cl;

      if (cl && cl->length && gfc_is_constant_expr (cl->length)
	     && resolve_charlen (cl) == FAILURE)
	return FAILURE;

      if ((!cl || !cl->length || cl->length->expr_type != EXPR_CONSTANT)
	  && sym->attr.proc == PROC_ST_FUNCTION)
	{
	  gfc_error ("Character-valued statement function '%s' at %L must "
		     "have constant length", sym->name, &sym->declared_at);
	  return FAILURE;
	}
    }

  /* Ensure that derived type for are not of a private type.  Internal
     module procedures are excluded by 2.2.3.3 - i.e., they are not
     externally accessible and can access all the objects accessible in
     the host.  */
  if (!(sym->ns->parent
	&& sym->ns->parent->proc_name->attr.flavor == FL_MODULE)
      && gfc_check_access(sym->attr.access, sym->ns->default_access))
    {
      gfc_interface *iface;

      for (arg = sym->formal; arg; arg = arg->next)
	{
	  if (arg->sym
	      && arg->sym->ts.type == BT_DERIVED
	      && !arg->sym->ts.u.derived->attr.use_assoc
	      && !gfc_check_access (arg->sym->ts.u.derived->attr.access,
				    arg->sym->ts.u.derived->ns->default_access)
	      && gfc_notify_std (GFC_STD_F2003, "Fortran 2003: '%s' is of a "
				 "PRIVATE type and cannot be a dummy argument"
				 " of '%s', which is PUBLIC at %L",
				 arg->sym->name, sym->name, &sym->declared_at)
		 == FAILURE)
	    {
	      /* Stop this message from recurring.  */
	      arg->sym->ts.u.derived->attr.access = ACCESS_PUBLIC;
	      return FAILURE;
	    }
	}

      /* PUBLIC interfaces may expose PRIVATE procedures that take types
	 PRIVATE to the containing module.  */
      for (iface = sym->generic; iface; iface = iface->next)
	{
	  for (arg = iface->sym->formal; arg; arg = arg->next)
	    {
	      if (arg->sym
		  && arg->sym->ts.type == BT_DERIVED
		  && !arg->sym->ts.u.derived->attr.use_assoc
		  && !gfc_check_access (arg->sym->ts.u.derived->attr.access,
					arg->sym->ts.u.derived->ns->default_access)
		  && gfc_notify_std (GFC_STD_F2003, "Fortran 2003: Procedure "
				     "'%s' in PUBLIC interface '%s' at %L "
				     "takes dummy arguments of '%s' which is "
				     "PRIVATE", iface->sym->name, sym->name,
				     &iface->sym->declared_at,
				     gfc_typename (&arg->sym->ts)) == FAILURE)
		{
		  /* Stop this message from recurring.  */
		  arg->sym->ts.u.derived->attr.access = ACCESS_PUBLIC;
		  return FAILURE;
		}
	     }
	}

      /* PUBLIC interfaces may expose PRIVATE procedures that take types
	 PRIVATE to the containing module.  */
      for (iface = sym->generic; iface; iface = iface->next)
	{
	  for (arg = iface->sym->formal; arg; arg = arg->next)
	    {
	      if (arg->sym
		  && arg->sym->ts.type == BT_DERIVED
		  && !arg->sym->ts.u.derived->attr.use_assoc
		  && !gfc_check_access (arg->sym->ts.u.derived->attr.access,
					arg->sym->ts.u.derived->ns->default_access)
		  && gfc_notify_std (GFC_STD_F2003, "Fortran 2003: Procedure "
				     "'%s' in PUBLIC interface '%s' at %L "
				     "takes dummy arguments of '%s' which is "
				     "PRIVATE", iface->sym->name, sym->name,
				     &iface->sym->declared_at,
				     gfc_typename (&arg->sym->ts)) == FAILURE)
		{
		  /* Stop this message from recurring.  */
		  arg->sym->ts.u.derived->attr.access = ACCESS_PUBLIC;
		  return FAILURE;
		}
	     }
	}
    }

  if (sym->attr.function && sym->value && sym->attr.proc != PROC_ST_FUNCTION
      && !sym->attr.proc_pointer)
    {
      gfc_error ("Function '%s' at %L cannot have an initializer",
		 sym->name, &sym->declared_at);
      return FAILURE;
    }

  /* An external symbol may not have an initializer because it is taken to be
     a procedure. Exception: Procedure Pointers.  */
  if (sym->attr.external && sym->value && !sym->attr.proc_pointer)
    {
      gfc_error ("External object '%s' at %L may not have an initializer",
		 sym->name, &sym->declared_at);
      return FAILURE;
    }

  /* An elemental function is required to return a scalar 12.7.1  */
  if (sym->attr.elemental && sym->attr.function && sym->as)
    {
      gfc_error ("ELEMENTAL function '%s' at %L must have a scalar "
		 "result", sym->name, &sym->declared_at);
      /* Reset so that the error only occurs once.  */
      sym->attr.elemental = 0;
      return FAILURE;
    }

  if (sym->attr.proc == PROC_ST_FUNCTION
      && (sym->attr.allocatable || sym->attr.pointer))
    {
      gfc_error ("Statement function '%s' at %L may not have pointer or "
		 "allocatable attribute", sym->name, &sym->declared_at);
      return FAILURE;
    }

  /* 5.1.1.5 of the Standard: A function name declared with an asterisk
     char-len-param shall not be array-valued, pointer-valued, recursive
     or pure.  ....snip... A character value of * may only be used in the
     following ways: (i) Dummy arg of procedure - dummy associates with
     actual length; (ii) To declare a named constant; or (iii) External
     function - but length must be declared in calling scoping unit.  */
  if (sym->attr.function
      && sym->ts.type == BT_CHARACTER
      && sym->ts.u.cl && sym->ts.u.cl->length == NULL)
    {
      if ((sym->as && sym->as->rank) || (sym->attr.pointer)
	  || (sym->attr.recursive) || (sym->attr.pure))
	{
	  if (sym->as && sym->as->rank)
	    gfc_error ("CHARACTER(*) function '%s' at %L cannot be "
		       "array-valued", sym->name, &sym->declared_at);

	  if (sym->attr.pointer)
	    gfc_error ("CHARACTER(*) function '%s' at %L cannot be "
		       "pointer-valued", sym->name, &sym->declared_at);

	  if (sym->attr.pure)
	    gfc_error ("CHARACTER(*) function '%s' at %L cannot be "
		       "pure", sym->name, &sym->declared_at);

	  if (sym->attr.recursive)
	    gfc_error ("CHARACTER(*) function '%s' at %L cannot be "
		       "recursive", sym->name, &sym->declared_at);

	  return FAILURE;
	}

      /* Appendix B.2 of the standard.  Contained functions give an
	 error anyway.  Fixed-form is likely to be F77/legacy. Deferred
	 character length is an F2003 feature.  */
      if (!sym->attr.contained
	    && gfc_current_form != FORM_FIXED
	    && !sym->ts.deferred)
	gfc_notify_std (GFC_STD_F95_OBS, "Obsolescent feature: "
			"CHARACTER(*) function '%s' at %L",
			sym->name, &sym->declared_at);
    }

  if (sym->attr.is_bind_c && sym->attr.is_c_interop != 1)
    {
      gfc_formal_arglist *curr_arg;
      int has_non_interop_arg = 0;

      if (verify_bind_c_sym (sym, &(sym->ts), sym->attr.in_common,
                             sym->common_block) == FAILURE)
        {
          /* Clear these to prevent looking at them again if there was an
             error.  */
          sym->attr.is_bind_c = 0;
          sym->attr.is_c_interop = 0;
          sym->ts.is_c_interop = 0;
        }
      else
        {
          /* So far, no errors have been found.  */
          sym->attr.is_c_interop = 1;
          sym->ts.is_c_interop = 1;
        }
      
      curr_arg = sym->formal;
      while (curr_arg != NULL)
        {
          /* Skip implicitly typed dummy args here.  */
	  if (curr_arg->sym->attr.implicit_type == 0)
	    if (verify_c_interop_param (curr_arg->sym) == FAILURE)
	      /* If something is found to fail, record the fact so we
		 can mark the symbol for the procedure as not being
		 BIND(C) to try and prevent multiple errors being
		 reported.  */
	      has_non_interop_arg = 1;
          
          curr_arg = curr_arg->next;
        }

      /* See if any of the arguments were not interoperable and if so, clear
	 the procedure symbol to prevent duplicate error messages.  */
      if (has_non_interop_arg != 0)
	{
	  sym->attr.is_c_interop = 0;
	  sym->ts.is_c_interop = 0;
	  sym->attr.is_bind_c = 0;
	}
    }
  
  if (!sym->attr.proc_pointer)
    {
      if (sym->attr.save == SAVE_EXPLICIT)
	{
	  gfc_error ("PROCEDURE attribute conflicts with SAVE attribute "
		     "in '%s' at %L", sym->name, &sym->declared_at);
	  return FAILURE;
	}
      if (sym->attr.intent)
	{
	  gfc_error ("PROCEDURE attribute conflicts with INTENT attribute "
		     "in '%s' at %L", sym->name, &sym->declared_at);
	  return FAILURE;
	}
      if (sym->attr.subroutine && sym->attr.result)
	{
	  gfc_error ("PROCEDURE attribute conflicts with RESULT attribute "
		     "in '%s' at %L", sym->name, &sym->declared_at);
	  return FAILURE;
	}
      if (sym->attr.external && sym->attr.function
	  && ((sym->attr.if_source == IFSRC_DECL && !sym->attr.procedure)
	      || sym->attr.contained))
	{
	  gfc_error ("EXTERNAL attribute conflicts with FUNCTION attribute "
		     "in '%s' at %L", sym->name, &sym->declared_at);
	  return FAILURE;
	}
      if (strcmp ("ppr@", sym->name) == 0)
	{
	  gfc_error ("Procedure pointer result '%s' at %L "
		     "is missing the pointer attribute",
		     sym->ns->proc_name->name, &sym->declared_at);
	  return FAILURE;
	}
    }

  return SUCCESS;
}


/* Resolve a list of finalizer procedures.  That is, after they have hopefully
   been defined and we now know their defined arguments, check that they fulfill
   the requirements of the standard for procedures used as finalizers.  */

static gfc_try
gfc_resolve_finalizers (gfc_symbol* derived)
{
  gfc_finalizer* list;
  gfc_finalizer** prev_link; /* For removing wrong entries from the list.  */
  gfc_try result = SUCCESS;
  bool seen_scalar = false;

  if (!derived->f2k_derived || !derived->f2k_derived->finalizers)
    return SUCCESS;

  /* Walk over the list of finalizer-procedures, check them, and if any one
     does not fit in with the standard's definition, print an error and remove
     it from the list.  */
  prev_link = &derived->f2k_derived->finalizers;
  for (list = derived->f2k_derived->finalizers; list; list = *prev_link)
    {
      gfc_symbol* arg;
      gfc_finalizer* i;
      int my_rank;

      /* Skip this finalizer if we already resolved it.  */
      if (list->proc_tree)
	{
	  prev_link = &(list->next);
	  continue;
	}

      /* Check this exists and is a SUBROUTINE.  */
      if (!list->proc_sym->attr.subroutine)
	{
	  gfc_error ("FINAL procedure '%s' at %L is not a SUBROUTINE",
		     list->proc_sym->name, &list->where);
	  goto error;
	}

      /* We should have exactly one argument.  */
      if (!list->proc_sym->formal || list->proc_sym->formal->next)
	{
	  gfc_error ("FINAL procedure at %L must have exactly one argument",
		     &list->where);
	  goto error;
	}
      arg = list->proc_sym->formal->sym;

      /* This argument must be of our type.  */
      if (arg->ts.type != BT_DERIVED || arg->ts.u.derived != derived)
	{
	  gfc_error ("Argument of FINAL procedure at %L must be of type '%s'",
		     &arg->declared_at, derived->name);
	  goto error;
	}

      /* It must neither be a pointer nor allocatable nor optional.  */
      if (arg->attr.pointer)
	{
	  gfc_error ("Argument of FINAL procedure at %L must not be a POINTER",
		     &arg->declared_at);
	  goto error;
	}
      if (arg->attr.allocatable)
	{
	  gfc_error ("Argument of FINAL procedure at %L must not be"
		     " ALLOCATABLE", &arg->declared_at);
	  goto error;
	}
      if (arg->attr.optional)
	{
	  gfc_error ("Argument of FINAL procedure at %L must not be OPTIONAL",
		     &arg->declared_at);
	  goto error;
	}

      /* It must not be INTENT(OUT).  */
      if (arg->attr.intent == INTENT_OUT)
	{
	  gfc_error ("Argument of FINAL procedure at %L must not be"
		     " INTENT(OUT)", &arg->declared_at);
	  goto error;
	}

      /* Warn if the procedure is non-scalar and not assumed shape.  */
      if (gfc_option.warn_surprising && arg->as && arg->as->rank > 0
	  && arg->as->type != AS_ASSUMED_SHAPE)
	gfc_warning ("Non-scalar FINAL procedure at %L should have assumed"
		     " shape argument", &arg->declared_at);

      /* Check that it does not match in kind and rank with a FINAL procedure
	 defined earlier.  To really loop over the *earlier* declarations,
	 we need to walk the tail of the list as new ones were pushed at the
	 front.  */
      /* TODO: Handle kind parameters once they are implemented.  */
      my_rank = (arg->as ? arg->as->rank : 0);
      for (i = list->next; i; i = i->next)
	{
	  /* Argument list might be empty; that is an error signalled earlier,
	     but we nevertheless continued resolving.  */
	  if (i->proc_sym->formal)
	    {
	      gfc_symbol* i_arg = i->proc_sym->formal->sym;
	      const int i_rank = (i_arg->as ? i_arg->as->rank : 0);
	      if (i_rank == my_rank)
		{
		  gfc_error ("FINAL procedure '%s' declared at %L has the same"
			     " rank (%d) as '%s'",
			     list->proc_sym->name, &list->where, my_rank, 
			     i->proc_sym->name);
		  goto error;
		}
	    }
	}

	/* Is this the/a scalar finalizer procedure?  */
	if (!arg->as || arg->as->rank == 0)
	  seen_scalar = true;

	/* Find the symtree for this procedure.  */
	gcc_assert (!list->proc_tree);
	list->proc_tree = gfc_find_sym_in_symtree (list->proc_sym);

	prev_link = &list->next;
	continue;

	/* Remove wrong nodes immediately from the list so we don't risk any
	   troubles in the future when they might fail later expectations.  */
error:
	result = FAILURE;
	i = list;
	*prev_link = list->next;
	gfc_free_finalizer (i);
    }

  /* Warn if we haven't seen a scalar finalizer procedure (but we know there
     were nodes in the list, must have been for arrays.  It is surely a good
     idea to have a scalar version there if there's something to finalize.  */
  if (gfc_option.warn_surprising && result == SUCCESS && !seen_scalar)
    gfc_warning ("Only array FINAL procedures declared for derived type '%s'"
		 " defined at %L, suggest also scalar one",
		 derived->name, &derived->declared_at);

  /* TODO:  Remove this error when finalization is finished.  */
  gfc_error ("Finalization at %L is not yet implemented",
	     &derived->declared_at);

  return result;
}


/* Check that it is ok for the typebound procedure proc to override the
   procedure old.  */

static gfc_try
check_typebound_override (gfc_symtree* proc, gfc_symtree* old)
{
  locus where;
  const gfc_symbol* proc_target;
  const gfc_symbol* old_target;
  unsigned proc_pass_arg, old_pass_arg, argpos;
  gfc_formal_arglist* proc_formal;
  gfc_formal_arglist* old_formal;

  /* This procedure should only be called for non-GENERIC proc.  */
  gcc_assert (!proc->n.tb->is_generic);

  /* If the overwritten procedure is GENERIC, this is an error.  */
  if (old->n.tb->is_generic)
    {
      gfc_error ("Can't overwrite GENERIC '%s' at %L",
		 old->name, &proc->n.tb->where);
      return FAILURE;
    }

  where = proc->n.tb->where;
  proc_target = proc->n.tb->u.specific->n.sym;
  old_target = old->n.tb->u.specific->n.sym;

  /* Check that overridden binding is not NON_OVERRIDABLE.  */
  if (old->n.tb->non_overridable)
    {
      gfc_error ("'%s' at %L overrides a procedure binding declared"
		 " NON_OVERRIDABLE", proc->name, &where);
      return FAILURE;
    }

  /* It's an error to override a non-DEFERRED procedure with a DEFERRED one.  */
  if (!old->n.tb->deferred && proc->n.tb->deferred)
    {
      gfc_error ("'%s' at %L must not be DEFERRED as it overrides a"
		 " non-DEFERRED binding", proc->name, &where);
      return FAILURE;
    }

  /* If the overridden binding is PURE, the overriding must be, too.  */
  if (old_target->attr.pure && !proc_target->attr.pure)
    {
      gfc_error ("'%s' at %L overrides a PURE procedure and must also be PURE",
		 proc->name, &where);
      return FAILURE;
    }

  /* If the overridden binding is ELEMENTAL, the overriding must be, too.  If it
     is not, the overriding must not be either.  */
  if (old_target->attr.elemental && !proc_target->attr.elemental)
    {
      gfc_error ("'%s' at %L overrides an ELEMENTAL procedure and must also be"
		 " ELEMENTAL", proc->name, &where);
      return FAILURE;
    }
  if (!old_target->attr.elemental && proc_target->attr.elemental)
    {
      gfc_error ("'%s' at %L overrides a non-ELEMENTAL procedure and must not"
		 " be ELEMENTAL, either", proc->name, &where);
      return FAILURE;
    }

  /* If the overridden binding is a SUBROUTINE, the overriding must also be a
     SUBROUTINE.  */
  if (old_target->attr.subroutine && !proc_target->attr.subroutine)
    {
      gfc_error ("'%s' at %L overrides a SUBROUTINE and must also be a"
		 " SUBROUTINE", proc->name, &where);
      return FAILURE;
    }

  /* If the overridden binding is a FUNCTION, the overriding must also be a
     FUNCTION and have the same characteristics.  */
  if (old_target->attr.function)
    {
      if (!proc_target->attr.function)
	{
	  gfc_error ("'%s' at %L overrides a FUNCTION and must also be a"
		     " FUNCTION", proc->name, &where);
	  return FAILURE;
	}

      /* FIXME:  Do more comprehensive checking (including, for instance, the
	 rank and array-shape).  */
      gcc_assert (proc_target->result && old_target->result);
      if (!gfc_compare_types (&proc_target->result->ts,
			      &old_target->result->ts))
	{
	  gfc_error ("'%s' at %L and the overridden FUNCTION should have"
		     " matching result types", proc->name, &where);
	  return FAILURE;
	}
    }

  /* If the overridden binding is PUBLIC, the overriding one must not be
     PRIVATE.  */
  if (old->n.tb->access == ACCESS_PUBLIC
      && proc->n.tb->access == ACCESS_PRIVATE)
    {
      gfc_error ("'%s' at %L overrides a PUBLIC procedure and must not be"
		 " PRIVATE", proc->name, &where);
      return FAILURE;
    }

  /* Compare the formal argument lists of both procedures.  This is also abused
     to find the position of the passed-object dummy arguments of both
     bindings as at least the overridden one might not yet be resolved and we
     need those positions in the check below.  */
  proc_pass_arg = old_pass_arg = 0;
  if (!proc->n.tb->nopass && !proc->n.tb->pass_arg)
    proc_pass_arg = 1;
  if (!old->n.tb->nopass && !old->n.tb->pass_arg)
    old_pass_arg = 1;
  argpos = 1;
  for (proc_formal = proc_target->formal, old_formal = old_target->formal;
       proc_formal && old_formal;
       proc_formal = proc_formal->next, old_formal = old_formal->next)
    {
      if (proc->n.tb->pass_arg
	  && !strcmp (proc->n.tb->pass_arg, proc_formal->sym->name))
	proc_pass_arg = argpos;
      if (old->n.tb->pass_arg
	  && !strcmp (old->n.tb->pass_arg, old_formal->sym->name))
	old_pass_arg = argpos;

      /* Check that the names correspond.  */
      if (strcmp (proc_formal->sym->name, old_formal->sym->name))
	{
	  gfc_error ("Dummy argument '%s' of '%s' at %L should be named '%s' as"
		     " to match the corresponding argument of the overridden"
		     " procedure", proc_formal->sym->name, proc->name, &where,
		     old_formal->sym->name);
	  return FAILURE;
	}

      /* Check that the types correspond if neither is the passed-object
	 argument.  */
      /* FIXME:  Do more comprehensive testing here.  */
      if (proc_pass_arg != argpos && old_pass_arg != argpos
	  && !gfc_compare_types (&proc_formal->sym->ts, &old_formal->sym->ts))
	{
	  gfc_error ("Types mismatch for dummy argument '%s' of '%s' %L "
		     "in respect to the overridden procedure",
		     proc_formal->sym->name, proc->name, &where);
	  return FAILURE;
	}

      ++argpos;
    }
  if (proc_formal || old_formal)
    {
      gfc_error ("'%s' at %L must have the same number of formal arguments as"
		 " the overridden procedure", proc->name, &where);
      return FAILURE;
    }

  /* If the overridden binding is NOPASS, the overriding one must also be
     NOPASS.  */
  if (old->n.tb->nopass && !proc->n.tb->nopass)
    {
      gfc_error ("'%s' at %L overrides a NOPASS binding and must also be"
		 " NOPASS", proc->name, &where);
      return FAILURE;
    }

  /* If the overridden binding is PASS(x), the overriding one must also be
     PASS and the passed-object dummy arguments must correspond.  */
  if (!old->n.tb->nopass)
    {
      if (proc->n.tb->nopass)
	{
	  gfc_error ("'%s' at %L overrides a binding with PASS and must also be"
		     " PASS", proc->name, &where);
	  return FAILURE;
	}

      if (proc_pass_arg != old_pass_arg)
	{
	  gfc_error ("Passed-object dummy argument of '%s' at %L must be at"
		     " the same position as the passed-object dummy argument of"
		     " the overridden procedure", proc->name, &where);
	  return FAILURE;
	}
    }

  return SUCCESS;
}


/* Check if two GENERIC targets are ambiguous and emit an error is they are.  */

static gfc_try
check_generic_tbp_ambiguity (gfc_tbp_generic* t1, gfc_tbp_generic* t2,
			     const char* generic_name, locus where)
{
  gfc_symbol* sym1;
  gfc_symbol* sym2;

  gcc_assert (t1->specific && t2->specific);
  gcc_assert (!t1->specific->is_generic);
  gcc_assert (!t2->specific->is_generic);

  sym1 = t1->specific->u.specific->n.sym;
  sym2 = t2->specific->u.specific->n.sym;

  if (sym1 == sym2)
    return SUCCESS;

  /* Both must be SUBROUTINEs or both must be FUNCTIONs.  */
  if (sym1->attr.subroutine != sym2->attr.subroutine
      || sym1->attr.function != sym2->attr.function)
    {
      gfc_error ("'%s' and '%s' can't be mixed FUNCTION/SUBROUTINE for"
		 " GENERIC '%s' at %L",
		 sym1->name, sym2->name, generic_name, &where);
      return FAILURE;
    }

  /* Compare the interfaces.  */
  if (gfc_compare_interfaces (sym1, sym2, sym2->name, 1, 0, NULL, 0))
    {
      gfc_error ("'%s' and '%s' for GENERIC '%s' at %L are ambiguous",
		 sym1->name, sym2->name, generic_name, &where);
      return FAILURE;
    }

  return SUCCESS;
}


/* Worker function for resolving a generic procedure binding; this is used to
   resolve GENERIC as well as user and intrinsic OPERATOR typebound procedures.

   The difference between those cases is finding possible inherited bindings
   that are overridden, as one has to look for them in tb_sym_root,
   tb_uop_root or tb_op, respectively.  Thus the caller must already find
   the super-type and set p->overridden correctly.  */

static gfc_try
resolve_tb_generic_targets (gfc_symbol* super_type,
			    gfc_typebound_proc* p, const char* name)
{
  gfc_tbp_generic* target;
  gfc_symtree* first_target;
  gfc_symtree* inherited;

  gcc_assert (p && p->is_generic);

  /* Try to find the specific bindings for the symtrees in our target-list.  */
  gcc_assert (p->u.generic);
  for (target = p->u.generic; target; target = target->next)
    if (!target->specific)
      {
	gfc_typebound_proc* overridden_tbp;
	gfc_tbp_generic* g;
	const char* target_name;

	target_name = target->specific_st->name;

	/* Defined for this type directly.  */
	if (target->specific_st->n.tb && !target->specific_st->n.tb->error)
	  {
	    target->specific = target->specific_st->n.tb;
	    goto specific_found;
	  }

	/* Look for an inherited specific binding.  */
	if (super_type)
	  {
	    inherited = gfc_find_typebound_proc (super_type, NULL, target_name,
						 true, NULL);

	    if (inherited)
	      {
		gcc_assert (inherited->n.tb);
		target->specific = inherited->n.tb;
		goto specific_found;
	      }
	  }

	gfc_error ("Undefined specific binding '%s' as target of GENERIC '%s'"
		   " at %L", target_name, name, &p->where);
	return FAILURE;

	/* Once we've found the specific binding, check it is not ambiguous with
	   other specifics already found or inherited for the same GENERIC.  */
specific_found:
	gcc_assert (target->specific);

	/* This must really be a specific binding!  */
	if (target->specific->is_generic)
	  {
	    gfc_error ("GENERIC '%s' at %L must target a specific binding,"
		       " '%s' is GENERIC, too", name, &p->where, target_name);
	    return FAILURE;
	  }

	/* Check those already resolved on this type directly.  */
	for (g = p->u.generic; g; g = g->next)
	  if (g != target && g->specific
	      && check_generic_tbp_ambiguity (target, g, name, p->where)
		  == FAILURE)
	    return FAILURE;

	/* Check for ambiguity with inherited specific targets.  */
	for (overridden_tbp = p->overridden; overridden_tbp;
	     overridden_tbp = overridden_tbp->overridden)
	  if (overridden_tbp->is_generic)
	    {
	      for (g = overridden_tbp->u.generic; g; g = g->next)
		{
		  gcc_assert (g->specific);
		  if (check_generic_tbp_ambiguity (target, g,
						   name, p->where) == FAILURE)
		    return FAILURE;
		}
	    }
      }

  /* If we attempt to "overwrite" a specific binding, this is an error.  */
  if (p->overridden && !p->overridden->is_generic)
    {
      gfc_error ("GENERIC '%s' at %L can't overwrite specific binding with"
		 " the same name", name, &p->where);
      return FAILURE;
    }

  /* Take the SUBROUTINE/FUNCTION attributes of the first specific target, as
     all must have the same attributes here.  */
  first_target = p->u.generic->specific->u.specific;
  gcc_assert (first_target);
  p->subroutine = first_target->n.sym->attr.subroutine;
  p->function = first_target->n.sym->attr.function;

  return SUCCESS;
}


/* Resolve a GENERIC procedure binding for a derived type.  */

static gfc_try
resolve_typebound_generic (gfc_symbol* derived, gfc_symtree* st)
{
  gfc_symbol* super_type;

  /* Find the overridden binding if any.  */
  st->n.tb->overridden = NULL;
  super_type = gfc_get_derived_super_type (derived);
  if (super_type)
    {
      gfc_symtree* overridden;
      overridden = gfc_find_typebound_proc (super_type, NULL, st->name,
					    true, NULL);

      if (overridden && overridden->n.tb)
	st->n.tb->overridden = overridden->n.tb;
    }

  /* Resolve using worker function.  */
  return resolve_tb_generic_targets (super_type, st->n.tb, st->name);
}


/* Retrieve the target-procedure of an operator binding and do some checks in
   common for intrinsic and user-defined type-bound operators.  */

static gfc_symbol*
get_checked_tb_operator_target (gfc_tbp_generic* target, locus where)
{
  gfc_symbol* target_proc;

  gcc_assert (target->specific && !target->specific->is_generic);
  target_proc = target->specific->u.specific->n.sym;
  gcc_assert (target_proc);

  /* All operator bindings must have a passed-object dummy argument.  */
  if (target->specific->nopass)
    {
      gfc_error ("Type-bound operator at %L can't be NOPASS", &where);
      return NULL;
    }

  return target_proc;
}


/* Resolve a type-bound intrinsic operator.  */

static gfc_try
resolve_typebound_intrinsic_op (gfc_symbol* derived, gfc_intrinsic_op op,
				gfc_typebound_proc* p)
{
  gfc_symbol* super_type;
  gfc_tbp_generic* target;
  
  /* If there's already an error here, do nothing (but don't fail again).  */
  if (p->error)
    return SUCCESS;

  /* Operators should always be GENERIC bindings.  */
  gcc_assert (p->is_generic);

  /* Look for an overridden binding.  */
  super_type = gfc_get_derived_super_type (derived);
  if (super_type && super_type->f2k_derived)
    p->overridden = gfc_find_typebound_intrinsic_op (super_type, NULL,
						     op, true, NULL);
  else
    p->overridden = NULL;

  /* Resolve general GENERIC properties using worker function.  */
  if (resolve_tb_generic_targets (super_type, p, gfc_op2string (op)) == FAILURE)
    goto error;

  /* Check the targets to be procedures of correct interface.  */
  for (target = p->u.generic; target; target = target->next)
    {
      gfc_symbol* target_proc;

      target_proc = get_checked_tb_operator_target (target, p->where);
      if (!target_proc)
	goto error;

      if (!gfc_check_operator_interface (target_proc, op, p->where))
	goto error;
    }

  return SUCCESS;

error:
  p->error = 1;
  return FAILURE;
}


/* Resolve a type-bound user operator (tree-walker callback).  */

static gfc_symbol* resolve_bindings_derived;
static gfc_try resolve_bindings_result;

static gfc_try check_uop_procedure (gfc_symbol* sym, locus where);

static void
resolve_typebound_user_op (gfc_symtree* stree)
{
  gfc_symbol* super_type;
  gfc_tbp_generic* target;

  gcc_assert (stree && stree->n.tb);

  if (stree->n.tb->error)
    return;

  /* Operators should always be GENERIC bindings.  */
  gcc_assert (stree->n.tb->is_generic);

  /* Find overridden procedure, if any.  */
  super_type = gfc_get_derived_super_type (resolve_bindings_derived);
  if (super_type && super_type->f2k_derived)
    {
      gfc_symtree* overridden;
      overridden = gfc_find_typebound_user_op (super_type, NULL,
					       stree->name, true, NULL);

      if (overridden && overridden->n.tb)
	stree->n.tb->overridden = overridden->n.tb;
    }
  else
    stree->n.tb->overridden = NULL;

  /* Resolve basically using worker function.  */
  if (resolve_tb_generic_targets (super_type, stree->n.tb, stree->name)
	== FAILURE)
    goto error;

  /* Check the targets to be functions of correct interface.  */
  for (target = stree->n.tb->u.generic; target; target = target->next)
    {
      gfc_symbol* target_proc;

      target_proc = get_checked_tb_operator_target (target, stree->n.tb->where);
      if (!target_proc)
	goto error;

      if (check_uop_procedure (target_proc, stree->n.tb->where) == FAILURE)
	goto error;
    }

  return;

error:
  resolve_bindings_result = FAILURE;
  stree->n.tb->error = 1;
}


/* Resolve the type-bound procedures for a derived type.  */

static void
resolve_typebound_procedure (gfc_symtree* stree)
{
  gfc_symbol* proc;
  locus where;
  gfc_symbol* me_arg;
  gfc_symbol* super_type;
  gfc_component* comp;

  gcc_assert (stree);

  /* Undefined specific symbol from GENERIC target definition.  */
  if (!stree->n.tb)
    return;

  if (stree->n.tb->error)
    return;

  /* If this is a GENERIC binding, use that routine.  */
  if (stree->n.tb->is_generic)
    {
      if (resolve_typebound_generic (resolve_bindings_derived, stree)
	    == FAILURE)
	goto error;
      return;
    }

  /* Get the target-procedure to check it.  */
  gcc_assert (!stree->n.tb->is_generic);
  gcc_assert (stree->n.tb->u.specific);
  proc = stree->n.tb->u.specific->n.sym;
  where = stree->n.tb->where;

  /* Default access should already be resolved from the parser.  */
  gcc_assert (stree->n.tb->access != ACCESS_UNKNOWN);

  /* It should be a module procedure or an external procedure with explicit
     interface.  For DEFERRED bindings, abstract interfaces are ok as well.  */
  if ((!proc->attr.subroutine && !proc->attr.function)
      || (proc->attr.proc != PROC_MODULE
	  && proc->attr.if_source != IFSRC_IFBODY)
      || (proc->attr.abstract && !stree->n.tb->deferred))
    {
      gfc_error ("'%s' must be a module procedure or an external procedure with"
		 " an explicit interface at %L", proc->name, &where);
      goto error;
    }
  stree->n.tb->subroutine = proc->attr.subroutine;
  stree->n.tb->function = proc->attr.function;

  /* Find the super-type of the current derived type.  We could do this once and
     store in a global if speed is needed, but as long as not I believe this is
     more readable and clearer.  */
  super_type = gfc_get_derived_super_type (resolve_bindings_derived);

  /* If PASS, resolve and check arguments if not already resolved / loaded
     from a .mod file.  */
  if (!stree->n.tb->nopass && stree->n.tb->pass_arg_num == 0)
    {
      if (stree->n.tb->pass_arg)
	{
	  gfc_formal_arglist* i;

	  /* If an explicit passing argument name is given, walk the arg-list
	     and look for it.  */

	  me_arg = NULL;
	  stree->n.tb->pass_arg_num = 1;
	  for (i = proc->formal; i; i = i->next)
	    {
	      if (!strcmp (i->sym->name, stree->n.tb->pass_arg))
		{
		  me_arg = i->sym;
		  break;
		}
	      ++stree->n.tb->pass_arg_num;
	    }

	  if (!me_arg)
	    {
	      gfc_error ("Procedure '%s' with PASS(%s) at %L has no"
			 " argument '%s'",
			 proc->name, stree->n.tb->pass_arg, &where,
			 stree->n.tb->pass_arg);
	      goto error;
	    }
	}
      else
	{
	  /* Otherwise, take the first one; there should in fact be at least
	     one.  */
	  stree->n.tb->pass_arg_num = 1;
	  if (!proc->formal)
	    {
	      gfc_error ("Procedure '%s' with PASS at %L must have at"
			 " least one argument", proc->name, &where);
	      goto error;
	    }
	  me_arg = proc->formal->sym;
	}

      /* Now check that the argument-type matches and the passed-object
	 dummy argument is generally fine.  */

      gcc_assert (me_arg);

      if (me_arg->ts.type != BT_CLASS)
	{
	  gfc_error ("Non-polymorphic passed-object dummy argument of '%s'"
		     " at %L", proc->name, &where);
	  goto error;
	}

      if (CLASS_DATA (me_arg)->ts.u.derived
	  != resolve_bindings_derived)
	{
	  gfc_error ("Argument '%s' of '%s' with PASS(%s) at %L must be of"
		     " the derived-type '%s'", me_arg->name, proc->name,
		     me_arg->name, &where, resolve_bindings_derived->name);
	  goto error;
	}
  
      gcc_assert (me_arg->ts.type == BT_CLASS);
      if (CLASS_DATA (me_arg)->as && CLASS_DATA (me_arg)->as->rank > 0)
	{
	  gfc_error ("Passed-object dummy argument of '%s' at %L must be"
		     " scalar", proc->name, &where);
	  goto error;
	}
      if (CLASS_DATA (me_arg)->attr.allocatable)
	{
	  gfc_error ("Passed-object dummy argument of '%s' at %L must not"
		     " be ALLOCATABLE", proc->name, &where);
	  goto error;
	}
      if (CLASS_DATA (me_arg)->attr.class_pointer)
	{
	  gfc_error ("Passed-object dummy argument of '%s' at %L must not"
		     " be POINTER", proc->name, &where);
	  goto error;
	}
    }

  /* If we are extending some type, check that we don't override a procedure
     flagged NON_OVERRIDABLE.  */
  stree->n.tb->overridden = NULL;
  if (super_type)
    {
      gfc_symtree* overridden;
      overridden = gfc_find_typebound_proc (super_type, NULL,
					    stree->name, true, NULL);

      if (overridden && overridden->n.tb)
	stree->n.tb->overridden = overridden->n.tb;

      if (overridden && check_typebound_override (stree, overridden) == FAILURE)
	goto error;
    }

  /* See if there's a name collision with a component directly in this type.  */
  for (comp = resolve_bindings_derived->components; comp; comp = comp->next)
    if (!strcmp (comp->name, stree->name))
      {
	gfc_error ("Procedure '%s' at %L has the same name as a component of"
		   " '%s'",
		   stree->name, &where, resolve_bindings_derived->name);
	goto error;
      }

  /* Try to find a name collision with an inherited component.  */
  if (super_type && gfc_find_component (super_type, stree->name, true, true))
    {
      gfc_error ("Procedure '%s' at %L has the same name as an inherited"
		 " component of '%s'",
		 stree->name, &where, resolve_bindings_derived->name);
      goto error;
    }

  stree->n.tb->error = 0;
  return;

error:
  resolve_bindings_result = FAILURE;
  stree->n.tb->error = 1;
}


static gfc_try
resolve_typebound_procedures (gfc_symbol* derived)
{
  int op;

  if (!derived->f2k_derived || !derived->f2k_derived->tb_sym_root)
    return SUCCESS;

  resolve_bindings_derived = derived;
  resolve_bindings_result = SUCCESS;

  /* Make sure the vtab has been generated.  */
  gfc_find_derived_vtab (derived);

  if (derived->f2k_derived->tb_sym_root)
    gfc_traverse_symtree (derived->f2k_derived->tb_sym_root,
			  &resolve_typebound_procedure);

  if (derived->f2k_derived->tb_uop_root)
    gfc_traverse_symtree (derived->f2k_derived->tb_uop_root,
			  &resolve_typebound_user_op);

  for (op = 0; op != GFC_INTRINSIC_OPS; ++op)
    {
      gfc_typebound_proc* p = derived->f2k_derived->tb_op[op];
      if (p && resolve_typebound_intrinsic_op (derived, (gfc_intrinsic_op) op,
					       p) == FAILURE)
	resolve_bindings_result = FAILURE;
    }

  return resolve_bindings_result;
}


/* Add a derived type to the dt_list.  The dt_list is used in trans-types.c
   to give all identical derived types the same backend_decl.  */
static void
add_dt_to_dt_list (gfc_symbol *derived)
{
  gfc_dt_list *dt_list;

  for (dt_list = gfc_derived_types; dt_list; dt_list = dt_list->next)
    if (derived == dt_list->derived)
      return;

  dt_list = gfc_get_dt_list ();
  dt_list->next = gfc_derived_types;
  dt_list->derived = derived;
  gfc_derived_types = dt_list;
}


/* Ensure that a derived-type is really not abstract, meaning that every
   inherited DEFERRED binding is overridden by a non-DEFERRED one.  */

static gfc_try
ensure_not_abstract_walker (gfc_symbol* sub, gfc_symtree* st)
{
  if (!st)
    return SUCCESS;

  if (ensure_not_abstract_walker (sub, st->left) == FAILURE)
    return FAILURE;
  if (ensure_not_abstract_walker (sub, st->right) == FAILURE)
    return FAILURE;

  if (st->n.tb && st->n.tb->deferred)
    {
      gfc_symtree* overriding;
      overriding = gfc_find_typebound_proc (sub, NULL, st->name, true, NULL);
      if (!overriding)
	return FAILURE;
      gcc_assert (overriding->n.tb);
      if (overriding->n.tb->deferred)
	{
	  gfc_error ("Derived-type '%s' declared at %L must be ABSTRACT because"
		     " '%s' is DEFERRED and not overridden",
		     sub->name, &sub->declared_at, st->name);
	  return FAILURE;
	}
    }

  return SUCCESS;
}

static gfc_try
ensure_not_abstract (gfc_symbol* sub, gfc_symbol* ancestor)
{
  /* The algorithm used here is to recursively travel up the ancestry of sub
     and for each ancestor-type, check all bindings.  If any of them is
     DEFERRED, look it up starting from sub and see if the found (overriding)
     binding is not DEFERRED.
     This is not the most efficient way to do this, but it should be ok and is
     clearer than something sophisticated.  */

  gcc_assert (ancestor && !sub->attr.abstract);
  
  if (!ancestor->attr.abstract)
    return SUCCESS;

  /* Walk bindings of this ancestor.  */
  if (ancestor->f2k_derived)
    {
      gfc_try t;
      t = ensure_not_abstract_walker (sub, ancestor->f2k_derived->tb_sym_root);
      if (t == FAILURE)
	return FAILURE;
    }

  /* Find next ancestor type and recurse on it.  */
  ancestor = gfc_get_derived_super_type (ancestor);
  if (ancestor)
    return ensure_not_abstract (sub, ancestor);

  return SUCCESS;
}


/* Resolve the components of a derived type.  */

static gfc_try
resolve_fl_derived (gfc_symbol *sym)
{
  gfc_symbol* super_type;
  gfc_component *c;

  super_type = gfc_get_derived_super_type (sym);
  
  if (sym->attr.is_class && sym->ts.u.derived == NULL)
    {
      /* Fix up incomplete CLASS symbols.  */
      gfc_component *data = gfc_find_component (sym, "_data", true, true);
      gfc_component *vptr = gfc_find_component (sym, "_vptr", true, true);
      if (vptr->ts.u.derived == NULL)
	{
	  gfc_symbol *vtab = gfc_find_derived_vtab (data->ts.u.derived);
	  gcc_assert (vtab);
	  vptr->ts.u.derived = vtab->ts.u.derived;
	}
    }

  /* F2008, C432. */
  if (super_type && sym->attr.coarray_comp && !super_type->attr.coarray_comp)
    {
      gfc_error ("As extending type '%s' at %L has a coarray component, "
		 "parent type '%s' shall also have one", sym->name,
		 &sym->declared_at, super_type->name);
      return FAILURE;
    }

  /* Ensure the extended type gets resolved before we do.  */
  if (super_type && resolve_fl_derived (super_type) == FAILURE)
    return FAILURE;

  /* An ABSTRACT type must be extensible.  */
  if (sym->attr.abstract && !gfc_type_is_extensible (sym))
    {
      gfc_error ("Non-extensible derived-type '%s' at %L must not be ABSTRACT",
		 sym->name, &sym->declared_at);
      return FAILURE;
    }

  for (c = sym->components; c != NULL; c = c->next)
    {
      /* F2008, C442.  */
      if (c->attr.codimension /* FIXME: c->as check due to PR 43412.  */
	  && (!c->attr.allocatable || (c->as && c->as->type != AS_DEFERRED)))
	{
	  gfc_error ("Coarray component '%s' at %L must be allocatable with "
		     "deferred shape", c->name, &c->loc);
	  return FAILURE;
	}

      /* F2008, C443.  */
      if (c->attr.codimension && c->ts.type == BT_DERIVED
	  && c->ts.u.derived->ts.is_iso_c)
	{
	  gfc_error ("Component '%s' at %L of TYPE(C_PTR) or TYPE(C_FUNPTR) "
		     "shall not be a coarray", c->name, &c->loc);
	  return FAILURE;
	}

      /* F2008, C444.  */
      if (c->ts.type == BT_DERIVED && c->ts.u.derived->attr.coarray_comp
	  && (c->attr.codimension || c->attr.pointer || c->attr.dimension
	      || c->attr.allocatable))
	{
	  gfc_error ("Component '%s' at %L with coarray component "
		     "shall be a nonpointer, nonallocatable scalar",
		     c->name, &c->loc);
	  return FAILURE;
	}

      /* F2008, C448.  */
      if (c->attr.contiguous && (!c->attr.dimension || !c->attr.pointer))
	{
	  gfc_error ("Component '%s' at %L has the CONTIGUOUS attribute but "
		     "is not an array pointer", c->name, &c->loc);
	  return FAILURE;
	}

      if (c->attr.proc_pointer && c->ts.interface)
	{
	  if (c->ts.interface->attr.procedure && !sym->attr.vtype)
	    gfc_error ("Interface '%s', used by procedure pointer component "
		       "'%s' at %L, is declared in a later PROCEDURE statement",
		       c->ts.interface->name, c->name, &c->loc);

	  /* Get the attributes from the interface (now resolved).  */
	  if (c->ts.interface->attr.if_source
	      || c->ts.interface->attr.intrinsic)
	    {
	      gfc_symbol *ifc = c->ts.interface;

	      if (ifc->formal && !ifc->formal_ns)
		resolve_symbol (ifc);

	      if (ifc->attr.intrinsic)
		resolve_intrinsic (ifc, &ifc->declared_at);

	      if (ifc->result)
		{
		  c->ts = ifc->result->ts;
		  c->attr.allocatable = ifc->result->attr.allocatable;
		  c->attr.pointer = ifc->result->attr.pointer;
		  c->attr.dimension = ifc->result->attr.dimension;
		  c->as = gfc_copy_array_spec (ifc->result->as);
		}
	      else
		{   
		  c->ts = ifc->ts;
		  c->attr.allocatable = ifc->attr.allocatable;
		  c->attr.pointer = ifc->attr.pointer;
		  c->attr.dimension = ifc->attr.dimension;
		  c->as = gfc_copy_array_spec (ifc->as);
		}
	      c->ts.interface = ifc;
	      c->attr.function = ifc->attr.function;
	      c->attr.subroutine = ifc->attr.subroutine;
	      gfc_copy_formal_args_ppc (c, ifc);

	      c->attr.pure = ifc->attr.pure;
	      c->attr.elemental = ifc->attr.elemental;
	      c->attr.recursive = ifc->attr.recursive;
	      c->attr.always_explicit = ifc->attr.always_explicit;
	      c->attr.ext_attr |= ifc->attr.ext_attr;
	      /* Replace symbols in array spec.  */
	      if (c->as)
		{
		  int i;
		  for (i = 0; i < c->as->rank; i++)
		    {
		      gfc_expr_replace_comp (c->as->lower[i], c);
		      gfc_expr_replace_comp (c->as->upper[i], c);
		    }
	        }
	      /* Copy char length.  */
	      if (ifc->ts.type == BT_CHARACTER && ifc->ts.u.cl)
		{
		  gfc_charlen *cl = gfc_new_charlen (sym->ns, ifc->ts.u.cl);
		  gfc_expr_replace_comp (cl->length, c);
		  if (cl->length && !cl->resolved
		        && gfc_resolve_expr (cl->length) == FAILURE)
		    return FAILURE;
		  c->ts.u.cl = cl;
		}
	    }
	  else if (!sym->attr.vtype && c->ts.interface->name[0] != '\0')
	    {
	      gfc_error ("Interface '%s' of procedure pointer component "
			 "'%s' at %L must be explicit", c->ts.interface->name,
			 c->name, &c->loc);
	      return FAILURE;
 	    }
	}
      else if (c->attr.proc_pointer && c->ts.type == BT_UNKNOWN)
	{
	  /* Since PPCs are not implicitly typed, a PPC without an explicit
	     interface must be a subroutine.  */
	  gfc_add_subroutine (&c->attr, c->name, &c->loc);
	}

      /* Procedure pointer components: Check PASS arg.  */
      if (c->attr.proc_pointer && !c->tb->nopass && c->tb->pass_arg_num == 0
	  && !sym->attr.vtype)
	{
	  gfc_symbol* me_arg;

	  if (c->tb->pass_arg)
	    {
	      gfc_formal_arglist* i;

	      /* If an explicit passing argument name is given, walk the arg-list
		and look for it.  */

	      me_arg = NULL;
	      c->tb->pass_arg_num = 1;
	      for (i = c->formal; i; i = i->next)
		{
		  if (!strcmp (i->sym->name, c->tb->pass_arg))
		    {
		      me_arg = i->sym;
		      break;
		    }
		  c->tb->pass_arg_num++;
		}

	      if (!me_arg)
		{
		  gfc_error ("Procedure pointer component '%s' with PASS(%s) "
			     "at %L has no argument '%s'", c->name,
			     c->tb->pass_arg, &c->loc, c->tb->pass_arg);
		  c->tb->error = 1;
		  return FAILURE;
		}
	    }
	  else
	    {
	      /* Otherwise, take the first one; there should in fact be at least
		one.  */
	      c->tb->pass_arg_num = 1;
	      if (!c->formal)
		{
		  gfc_error ("Procedure pointer component '%s' with PASS at %L "
			     "must have at least one argument",
			     c->name, &c->loc);
		  c->tb->error = 1;
		  return FAILURE;
		}
	      me_arg = c->formal->sym;
	    }

	  /* Now check that the argument-type matches.  */
	  gcc_assert (me_arg);
	  if ((me_arg->ts.type != BT_DERIVED && me_arg->ts.type != BT_CLASS)
	      || (me_arg->ts.type == BT_DERIVED && me_arg->ts.u.derived != sym)
	      || (me_arg->ts.type == BT_CLASS
		  && CLASS_DATA (me_arg)->ts.u.derived != sym))
	    {
	      gfc_error ("Argument '%s' of '%s' with PASS(%s) at %L must be of"
			 " the derived type '%s'", me_arg->name, c->name,
			 me_arg->name, &c->loc, sym->name);
	      c->tb->error = 1;
	      return FAILURE;
	    }

	  /* Check for C453.  */
	  if (me_arg->attr.dimension)
	    {
	      gfc_error ("Argument '%s' of '%s' with PASS(%s) at %L "
			 "must be scalar", me_arg->name, c->name, me_arg->name,
			 &c->loc);
	      c->tb->error = 1;
	      return FAILURE;
	    }

	  if (me_arg->attr.pointer)
	    {
	      gfc_error ("Argument '%s' of '%s' with PASS(%s) at %L "
			 "may not have the POINTER attribute", me_arg->name,
			 c->name, me_arg->name, &c->loc);
	      c->tb->error = 1;
	      return FAILURE;
	    }

	  if (me_arg->attr.allocatable)
	    {
	      gfc_error ("Argument '%s' of '%s' with PASS(%s) at %L "
			 "may not be ALLOCATABLE", me_arg->name, c->name,
			 me_arg->name, &c->loc);
	      c->tb->error = 1;
	      return FAILURE;
	    }

	  if (gfc_type_is_extensible (sym) && me_arg->ts.type != BT_CLASS)
	    gfc_error ("Non-polymorphic passed-object dummy argument of '%s'"
		       " at %L", c->name, &c->loc);

	}

      /* Check type-spec if this is not the parent-type component.  */
      if ((!sym->attr.extension || c != sym->components) && !sym->attr.vtype
	  && resolve_typespec_used (&c->ts, &c->loc, c->name) == FAILURE)
	return FAILURE;

      /* If this type is an extension, set the accessibility of the parent
	 component.  */
      if (super_type && c == sym->components
	  && strcmp (super_type->name, c->name) == 0)
	c->attr.access = super_type->attr.access;
      
      /* If this type is an extension, see if this component has the same name
	 as an inherited type-bound procedure.  */
      if (super_type && !sym->attr.is_class
	  && gfc_find_typebound_proc (super_type, NULL, c->name, true, NULL))
	{
	  gfc_error ("Component '%s' of '%s' at %L has the same name as an"
		     " inherited type-bound procedure",
		     c->name, sym->name, &c->loc);
	  return FAILURE;
	}

      if (c->ts.type == BT_CHARACTER && !c->attr.proc_pointer
	    && !c->ts.deferred)
	{
	 if (c->ts.u.cl->length == NULL
	     || (resolve_charlen (c->ts.u.cl) == FAILURE)
	     || !gfc_is_constant_expr (c->ts.u.cl->length))
	   {
	     gfc_error ("Character length of component '%s' needs to "
			"be a constant specification expression at %L",
			c->name,
			c->ts.u.cl->length ? &c->ts.u.cl->length->where : &c->loc);
	     return FAILURE;
	   }
	}

      if (c->ts.type == BT_CHARACTER && c->ts.deferred
	  && !c->attr.pointer && !c->attr.allocatable)
	{
	  gfc_error ("Character component '%s' of '%s' at %L with deferred "
		     "length must be a POINTER or ALLOCATABLE",
		     c->name, sym->name, &c->loc);
	  return FAILURE;
	}

      if (c->ts.type == BT_DERIVED
	  && sym->component_access != ACCESS_PRIVATE
	  && gfc_check_access (sym->attr.access, sym->ns->default_access)
	  && !is_sym_host_assoc (c->ts.u.derived, sym->ns)
	  && !c->ts.u.derived->attr.use_assoc
	  && !gfc_check_access (c->ts.u.derived->attr.access,
				c->ts.u.derived->ns->default_access)
	  && gfc_notify_std (GFC_STD_F2003, "Fortran 2003: the component '%s' "
			     "is a PRIVATE type and cannot be a component of "
			     "'%s', which is PUBLIC at %L", c->name,
			     sym->name, &sym->declared_at) == FAILURE)
	return FAILURE;

      if ((sym->attr.sequence || sym->attr.is_bind_c) && c->ts.type == BT_CLASS)
	{
	  gfc_error ("Polymorphic component %s at %L in SEQUENCE or BIND(C) "
		     "type %s", c->name, &c->loc, sym->name);
	  return FAILURE;
	}

      if (sym->attr.sequence)
	{
	  if (c->ts.type == BT_DERIVED && c->ts.u.derived->attr.sequence == 0)
	    {
	      gfc_error ("Component %s of SEQUENCE type declared at %L does "
			 "not have the SEQUENCE attribute",
			 c->ts.u.derived->name, &sym->declared_at);
	      return FAILURE;
	    }
	}

      if (!sym->attr.is_class && c->ts.type == BT_DERIVED && !sym->attr.vtype
	  && c->attr.pointer && c->ts.u.derived->components == NULL
	  && !c->ts.u.derived->attr.zero_comp)
	{
	  gfc_error ("The pointer component '%s' of '%s' at %L is a type "
		     "that has not been declared", c->name, sym->name,
		     &c->loc);
	  return FAILURE;
	}

      if (c->ts.type == BT_CLASS && CLASS_DATA (c)->attr.class_pointer
	  && CLASS_DATA (c)->ts.u.derived->components == NULL
	  && !CLASS_DATA (c)->ts.u.derived->attr.zero_comp)
	{
	  gfc_error ("The pointer component '%s' of '%s' at %L is a type "
		     "that has not been declared", c->name, sym->name,
		     &c->loc);
	  return FAILURE;
	}

      /* C437.  */
      if (c->ts.type == BT_CLASS
	  && !(CLASS_DATA (c)->attr.class_pointer
	       || CLASS_DATA (c)->attr.allocatable))
	{
	  gfc_error ("Component '%s' with CLASS at %L must be allocatable "
		     "or pointer", c->name, &c->loc);
	  return FAILURE;
	}

      /* Ensure that all the derived type components are put on the
	 derived type list; even in formal namespaces, where derived type
	 pointer components might not have been declared.  */
      if (c->ts.type == BT_DERIVED
	    && c->ts.u.derived
	    && c->ts.u.derived->components
	    && c->attr.pointer
	    && sym != c->ts.u.derived)
	add_dt_to_dt_list (c->ts.u.derived);

      if (gfc_resolve_array_spec (c->as, !(c->attr.pointer
					   || c->attr.proc_pointer
					   || c->attr.allocatable)) == FAILURE)
	return FAILURE;
    }

  /* Resolve the type-bound procedures.  */
  if (resolve_typebound_procedures (sym) == FAILURE)
    return FAILURE;

  /* Resolve the finalizer procedures.  */
  if (gfc_resolve_finalizers (sym) == FAILURE)
    return FAILURE;

  /* If this is a non-ABSTRACT type extending an ABSTRACT one, ensure that
     all DEFERRED bindings are overridden.  */
  if (super_type && super_type->attr.abstract && !sym->attr.abstract
      && !sym->attr.is_class
      && ensure_not_abstract (sym, super_type) == FAILURE)
    return FAILURE;

  /* Add derived type to the derived type list.  */
  add_dt_to_dt_list (sym);

  return SUCCESS;
}


static gfc_try
resolve_fl_namelist (gfc_symbol *sym)
{
  gfc_namelist *nl;
  gfc_symbol *nlsym;

  for (nl = sym->namelist; nl; nl = nl->next)
    {
      /* Check again, the check in match only works if NAMELIST comes
	 after the decl.  */
      if (nl->sym->as && nl->sym->as->type == AS_ASSUMED_SIZE)
     	{
	  gfc_error ("Assumed size array '%s' in namelist '%s' at %L is not "
		     "allowed", nl->sym->name, sym->name, &sym->declared_at);
	  return FAILURE;
	}

      if (nl->sym->as && nl->sym->as->type == AS_ASSUMED_SHAPE
	  && gfc_notify_std (GFC_STD_F2003, "Fortran 2003: NAMELIST array "
			     "object '%s' with assumed shape in namelist "
			     "'%s' at %L", nl->sym->name, sym->name,
			     &sym->declared_at) == FAILURE)
	return FAILURE;

      if (is_non_constant_shape_array (nl->sym)
	  && gfc_notify_std (GFC_STD_F2003,  "Fortran 2003: NAMELIST array "
			     "object '%s' with nonconstant shape in namelist "
			     "'%s' at %L", nl->sym->name, sym->name,
			     &sym->declared_at) == FAILURE)
	return FAILURE;

      if (nl->sym->ts.type == BT_CHARACTER
	  && (nl->sym->ts.u.cl->length == NULL
	      || !gfc_is_constant_expr (nl->sym->ts.u.cl->length))
	  && gfc_notify_std (GFC_STD_F2003,  "Fortran 2003: NAMELIST object "
			     "'%s' with nonconstant character length in "
			     "namelist '%s' at %L", nl->sym->name, sym->name,
			     &sym->declared_at) == FAILURE)
	return FAILURE;

      /* FIXME: Once UDDTIO is implemented, the following can be
	 removed.  */
      if (nl->sym->ts.type == BT_CLASS)
	{
	  gfc_error ("NAMELIST object '%s' in namelist '%s' at %L is "
		     "polymorphic and requires a defined input/output "
		     "procedure", nl->sym->name, sym->name, &sym->declared_at);
	  return FAILURE;
	}

      if (nl->sym->ts.type == BT_DERIVED
	  && (nl->sym->ts.u.derived->attr.alloc_comp
	      || nl->sym->ts.u.derived->attr.pointer_comp))
	{
	  if (gfc_notify_std (GFC_STD_F2003,  "Fortran 2003: NAMELIST object "
			      "'%s' in namelist '%s' at %L with ALLOCATABLE "
			      "or POINTER components", nl->sym->name,
			      sym->name, &sym->declared_at) == FAILURE)
	    return FAILURE;

	 /* FIXME: Once UDDTIO is implemented, the following can be
	    removed.  */
	  gfc_error ("NAMELIST object '%s' in namelist '%s' at %L has "
		     "ALLOCATABLE or POINTER components and thus requires "
		     "a defined input/output procedure", nl->sym->name,
		     sym->name, &sym->declared_at);
	  return FAILURE;
	}
    }

  /* Reject PRIVATE objects in a PUBLIC namelist.  */
  if (gfc_check_access(sym->attr.access, sym->ns->default_access))
    {
      for (nl = sym->namelist; nl; nl = nl->next)
	{
	  if (!nl->sym->attr.use_assoc
	      && !is_sym_host_assoc (nl->sym, sym->ns)
	      && !gfc_check_access(nl->sym->attr.access,
				nl->sym->ns->default_access))
	    {
	      gfc_error ("NAMELIST object '%s' was declared PRIVATE and "
			 "cannot be member of PUBLIC namelist '%s' at %L",
			 nl->sym->name, sym->name, &sym->declared_at);
	      return FAILURE;
	    }

	  /* Types with private components that came here by USE-association.  */
	  if (nl->sym->ts.type == BT_DERIVED
	      && derived_inaccessible (nl->sym->ts.u.derived))
	    {
	      gfc_error ("NAMELIST object '%s' has use-associated PRIVATE "
			 "components and cannot be member of namelist '%s' at %L",
			 nl->sym->name, sym->name, &sym->declared_at);
	      return FAILURE;
	    }

	  /* Types with private components that are defined in the same module.  */
	  if (nl->sym->ts.type == BT_DERIVED
	      && !is_sym_host_assoc (nl->sym->ts.u.derived, sym->ns)
	      && !gfc_check_access (nl->sym->ts.u.derived->attr.private_comp
					? ACCESS_PRIVATE : ACCESS_UNKNOWN,
					nl->sym->ns->default_access))
	    {
	      gfc_error ("NAMELIST object '%s' has PRIVATE components and "
			 "cannot be a member of PUBLIC namelist '%s' at %L",
			 nl->sym->name, sym->name, &sym->declared_at);
	      return FAILURE;
	    }
	}
    }


  /* 14.1.2 A module or internal procedure represent local entities
     of the same type as a namelist member and so are not allowed.  */
  for (nl = sym->namelist; nl; nl = nl->next)
    {
      if (nl->sym->ts.kind != 0 && nl->sym->attr.flavor == FL_VARIABLE)
	continue;

      if (nl->sym->attr.function && nl->sym == nl->sym->result)
	if ((nl->sym == sym->ns->proc_name)
	       ||
	    (sym->ns->parent && nl->sym == sym->ns->parent->proc_name))
	  continue;

      nlsym = NULL;
      if (nl->sym && nl->sym->name)
	gfc_find_symbol (nl->sym->name, sym->ns, 1, &nlsym);
      if (nlsym && nlsym->attr.flavor == FL_PROCEDURE)
	{
	  gfc_error ("PROCEDURE attribute conflicts with NAMELIST "
		     "attribute in '%s' at %L", nlsym->name,
		     &sym->declared_at);
	  return FAILURE;
	}
    }

  return SUCCESS;
}


static gfc_try
resolve_fl_parameter (gfc_symbol *sym)
{
  /* A parameter array's shape needs to be constant.  */
  if (sym->as != NULL 
      && (sym->as->type == AS_DEFERRED
          || is_non_constant_shape_array (sym)))
    {
      gfc_error ("Parameter array '%s' at %L cannot be automatic "
		 "or of deferred shape", sym->name, &sym->declared_at);
      return FAILURE;
    }

  /* Make sure a parameter that has been implicitly typed still
     matches the implicit type, since PARAMETER statements can precede
     IMPLICIT statements.  */
  if (sym->attr.implicit_type
      && !gfc_compare_types (&sym->ts, gfc_get_default_type (sym->name,
							     sym->ns)))
    {
      gfc_error ("Implicitly typed PARAMETER '%s' at %L doesn't match a "
		 "later IMPLICIT type", sym->name, &sym->declared_at);
      return FAILURE;
    }

  /* Make sure the types of derived parameters are consistent.  This
     type checking is deferred until resolution because the type may
     refer to a derived type from the host.  */
  if (sym->ts.type == BT_DERIVED
      && !gfc_compare_types (&sym->ts, &sym->value->ts))
    {
      gfc_error ("Incompatible derived type in PARAMETER at %L",
		 &sym->value->where);
      return FAILURE;
    }
  return SUCCESS;
}


/* Do anything necessary to resolve a symbol.  Right now, we just
   assume that an otherwise unknown symbol is a variable.  This sort
   of thing commonly happens for symbols in module.  */

static void
resolve_symbol (gfc_symbol *sym)
{
  int check_constant, mp_flag;
  gfc_symtree *symtree;
  gfc_symtree *this_symtree;
  gfc_namespace *ns;
  gfc_component *c;

  /* Avoid double resolution of function result symbols.  */
  if ((sym->result || sym->attr.result) && !sym->attr.dummy
      && (sym->ns != gfc_current_ns))
    return;
  
  if (sym->attr.flavor == FL_UNKNOWN)
    {

    /* If we find that a flavorless symbol is an interface in one of the
       parent namespaces, find its symtree in this namespace, free the
       symbol and set the symtree to point to the interface symbol.  */
      for (ns = gfc_current_ns->parent; ns; ns = ns->parent)
	{
	  symtree = gfc_find_symtree (ns->sym_root, sym->name);
	  if (symtree && (symtree->n.sym->generic ||
			  (symtree->n.sym->attr.flavor == FL_PROCEDURE
			   && sym->ns->construct_entities)))
	    {
	      this_symtree = gfc_find_symtree (gfc_current_ns->sym_root,
					       sym->name);
	      gfc_release_symbol (sym);
	      symtree->n.sym->refs++;
	      this_symtree->n.sym = symtree->n.sym;
	      return;
	    }
	}

      /* Otherwise give it a flavor according to such attributes as
	 it has.  */
      if (sym->attr.external == 0 && sym->attr.intrinsic == 0)
	sym->attr.flavor = FL_VARIABLE;
      else
	{
	  sym->attr.flavor = FL_PROCEDURE;
	  if (sym->attr.dimension)
	    sym->attr.function = 1;
	}
    }

  if (sym->attr.external && sym->ts.type != BT_UNKNOWN && !sym->attr.function)
    gfc_add_function (&sym->attr, sym->name, &sym->declared_at);

  if (sym->attr.procedure && sym->ts.interface
      && sym->attr.if_source != IFSRC_DECL
      && resolve_procedure_interface (sym) == FAILURE)
    return;

  if (sym->attr.is_protected && !sym->attr.proc_pointer
      && (sym->attr.procedure || sym->attr.external))
    {
      if (sym->attr.external)
	gfc_error ("PROTECTED attribute conflicts with EXTERNAL attribute "
	           "at %L", &sym->declared_at);
      else
	gfc_error ("PROCEDURE attribute conflicts with PROTECTED attribute "
	           "at %L", &sym->declared_at);

      return;
    }


  /* F2008, C530. */
  if (sym->attr.contiguous
      && (!sym->attr.dimension || (sym->as->type != AS_ASSUMED_SHAPE
				   && !sym->attr.pointer)))
    {
      gfc_error ("'%s' at %L has the CONTIGUOUS attribute but is not an "
		  "array pointer or an assumed-shape array", sym->name,
		  &sym->declared_at);
      return;
    }

  if (sym->attr.flavor == FL_DERIVED && resolve_fl_derived (sym) == FAILURE)
    return;

  /* Symbols that are module procedures with results (functions) have
     the types and array specification copied for type checking in
     procedures that call them, as well as for saving to a module
     file.  These symbols can't stand the scrutiny that their results
     can.  */
  mp_flag = (sym->result != NULL && sym->result != sym);

  /* Make sure that the intrinsic is consistent with its internal 
     representation. This needs to be done before assigning a default 
     type to avoid spurious warnings.  */
  if (sym->attr.flavor != FL_MODULE && sym->attr.intrinsic
      && resolve_intrinsic (sym, &sym->declared_at) == FAILURE)
    return;

  /* Resolve associate names.  */
  if (sym->assoc)
    resolve_assoc_var (sym, true);

  /* Assign default type to symbols that need one and don't have one.  */
  if (sym->ts.type == BT_UNKNOWN)
    {
      if (sym->attr.flavor == FL_VARIABLE || sym->attr.flavor == FL_PARAMETER)
	gfc_set_default_type (sym, 1, NULL);

      if (sym->attr.flavor == FL_PROCEDURE && sym->attr.external
	  && !sym->attr.function && !sym->attr.subroutine
	  && gfc_get_default_type (sym->name, sym->ns)->type == BT_UNKNOWN)
	gfc_add_subroutine (&sym->attr, sym->name, &sym->declared_at);

      if (sym->attr.flavor == FL_PROCEDURE && sym->attr.function)
	{
	  /* The specific case of an external procedure should emit an error
	     in the case that there is no implicit type.  */
	  if (!mp_flag)
	    gfc_set_default_type (sym, sym->attr.external, NULL);
	  else
	    {
	      /* Result may be in another namespace.  */
	      resolve_symbol (sym->result);

	      if (!sym->result->attr.proc_pointer)
		{
		  sym->ts = sym->result->ts;
		  sym->as = gfc_copy_array_spec (sym->result->as);
		  sym->attr.dimension = sym->result->attr.dimension;
		  sym->attr.pointer = sym->result->attr.pointer;
		  sym->attr.allocatable = sym->result->attr.allocatable;
		  sym->attr.contiguous = sym->result->attr.contiguous;
		}
	    }
	}
    }

  /* Assumed size arrays and assumed shape arrays must be dummy
     arguments.  Array-spec's of implied-shape should have been resolved to
     AS_EXPLICIT already.  */

  if (sym->as)
    {
      gcc_assert (sym->as->type != AS_IMPLIED_SHAPE);
      if (((sym->as->type == AS_ASSUMED_SIZE && !sym->as->cp_was_assumed)
	   || sym->as->type == AS_ASSUMED_SHAPE)
	  && sym->attr.dummy == 0)
	{
	  if (sym->as->type == AS_ASSUMED_SIZE)
	    gfc_error ("Assumed size array at %L must be a dummy argument",
		       &sym->declared_at);
	  else
	    gfc_error ("Assumed shape array at %L must be a dummy argument",
		       &sym->declared_at);
	  return;
	}
    }

  /* Make sure symbols with known intent or optional are really dummy
     variable.  Because of ENTRY statement, this has to be deferred
     until resolution time.  */

  if (!sym->attr.dummy
      && (sym->attr.optional || sym->attr.intent != INTENT_UNKNOWN))
    {
      gfc_error ("Symbol at %L is not a DUMMY variable", &sym->declared_at);
      return;
    }

  if (sym->attr.value && !sym->attr.dummy)
    {
      gfc_error ("'%s' at %L cannot have the VALUE attribute because "
		 "it is not a dummy argument", sym->name, &sym->declared_at);
      return;
    }

  if (sym->attr.value && sym->ts.type == BT_CHARACTER)
    {
      gfc_charlen *cl = sym->ts.u.cl;
      if (!cl || !cl->length || cl->length->expr_type != EXPR_CONSTANT)
	{
	  gfc_error ("Character dummy variable '%s' at %L with VALUE "
		     "attribute must have constant length",
		     sym->name, &sym->declared_at);
	  return;
	}

      if (sym->ts.is_c_interop
	  && mpz_cmp_si (cl->length->value.integer, 1) != 0)
	{
	  gfc_error ("C interoperable character dummy variable '%s' at %L "
		     "with VALUE attribute must have length one",
		     sym->name, &sym->declared_at);
	  return;
	}
    }

  /* If the symbol is marked as bind(c), verify it's type and kind.  Do not
     do this for something that was implicitly typed because that is handled
     in gfc_set_default_type.  Handle dummy arguments and procedure
     definitions separately.  Also, anything that is use associated is not
     handled here but instead is handled in the module it is declared in.
     Finally, derived type definitions are allowed to be BIND(C) since that
     only implies that they're interoperable, and they are checked fully for
     interoperability when a variable is declared of that type.  */
  if (sym->attr.is_bind_c && sym->attr.implicit_type == 0 &&
      sym->attr.use_assoc == 0 && sym->attr.dummy == 0 &&
      sym->attr.flavor != FL_PROCEDURE && sym->attr.flavor != FL_DERIVED)
    {
      gfc_try t = SUCCESS;
      
      /* First, make sure the variable is declared at the
	 module-level scope (J3/04-007, Section 15.3).	*/
      if (sym->ns->proc_name->attr.flavor != FL_MODULE &&
          sym->attr.in_common == 0)
	{
	  gfc_error ("Variable '%s' at %L cannot be BIND(C) because it "
		     "is neither a COMMON block nor declared at the "
		     "module level scope", sym->name, &(sym->declared_at));
	  t = FAILURE;
	}
      else if (sym->common_head != NULL)
        {
          t = verify_com_block_vars_c_interop (sym->common_head);
        }
      else
	{
	  /* If type() declaration, we need to verify that the components
	     of the given type are all C interoperable, etc.  */
	  if (sym->ts.type == BT_DERIVED &&
              sym->ts.u.derived->attr.is_c_interop != 1)
            {
              /* Make sure the user marked the derived type as BIND(C).  If
                 not, call the verify routine.  This could print an error
                 for the derived type more than once if multiple variables
                 of that type are declared.  */
              if (sym->ts.u.derived->attr.is_bind_c != 1)
                verify_bind_c_derived_type (sym->ts.u.derived);
              t = FAILURE;
            }
	  
	  /* Verify the variable itself as C interoperable if it
             is BIND(C).  It is not possible for this to succeed if
             the verify_bind_c_derived_type failed, so don't have to handle
             any error returned by verify_bind_c_derived_type.  */
          t = verify_bind_c_sym (sym, &(sym->ts), sym->attr.in_common,
                                 sym->common_block);
	}

      if (t == FAILURE)
        {
          /* clear the is_bind_c flag to prevent reporting errors more than
             once if something failed.  */
          sym->attr.is_bind_c = 0;
          return;
        }
    }

  /* If a derived type symbol has reached this point, without its
     type being declared, we have an error.  Notice that most
     conditions that produce undefined derived types have already
     been dealt with.  However, the likes of:
     implicit type(t) (t) ..... call foo (t) will get us here if
     the type is not declared in the scope of the implicit
     statement. Change the type to BT_UNKNOWN, both because it is so
     and to prevent an ICE.  */
  if (sym->ts.type == BT_DERIVED && sym->ts.u.derived->components == NULL
      && !sym->ts.u.derived->attr.zero_comp)
    {
      gfc_error ("The derived type '%s' at %L is of type '%s', "
		 "which has not been defined", sym->name,
		  &sym->declared_at, sym->ts.u.derived->name);
      sym->ts.type = BT_UNKNOWN;
      return;
    }

  /* Make sure that the derived type has been resolved and that the
     derived type is visible in the symbol's namespace, if it is a
     module function and is not PRIVATE.  */
  if (sym->ts.type == BT_DERIVED
	&& sym->ts.u.derived->attr.use_assoc
	&& sym->ns->proc_name
	&& sym->ns->proc_name->attr.flavor == FL_MODULE)
    {
      gfc_symbol *ds;

      if (resolve_fl_derived (sym->ts.u.derived) == FAILURE)
	return;

      gfc_find_symbol (sym->ts.u.derived->name, sym->ns, 1, &ds);
      if (!ds && sym->attr.function
	    && gfc_check_access (sym->attr.access, sym->ns->default_access))
	{
	  symtree = gfc_new_symtree (&sym->ns->sym_root,
				     sym->ts.u.derived->name);
	  symtree->n.sym = sym->ts.u.derived;
	  sym->ts.u.derived->refs++;
	}
    }

  /* Unless the derived-type declaration is use associated, Fortran 95
     does not allow public entries of private derived types.
     See 4.4.1 (F95) and 4.5.1.1 (F2003); and related interpretation
     161 in 95-006r3.  */
  if (sym->ts.type == BT_DERIVED
      && sym->ns->proc_name && sym->ns->proc_name->attr.flavor == FL_MODULE
      && !sym->ts.u.derived->attr.use_assoc
      && gfc_check_access (sym->attr.access, sym->ns->default_access)
      && !gfc_check_access (sym->ts.u.derived->attr.access,
			    sym->ts.u.derived->ns->default_access)
      && gfc_notify_std (GFC_STD_F2003, "Fortran 2003: PUBLIC %s '%s' at %L "
		         "of PRIVATE derived type '%s'",
			 (sym->attr.flavor == FL_PARAMETER) ? "parameter"
			 : "variable", sym->name, &sym->declared_at,
			 sym->ts.u.derived->name) == FAILURE)
    return;

  /* An assumed-size array with INTENT(OUT) shall not be of a type for which
     default initialization is defined (5.1.2.4.4).  */
  if (sym->ts.type == BT_DERIVED
      && sym->attr.dummy
      && sym->attr.intent == INTENT_OUT
      && sym->as
      && sym->as->type == AS_ASSUMED_SIZE)
    {
      for (c = sym->ts.u.derived->components; c; c = c->next)
	{
	  if (c->initializer)
	    {
	      gfc_error ("The INTENT(OUT) dummy argument '%s' at %L is "
			 "ASSUMED SIZE and so cannot have a default initializer",
			 sym->name, &sym->declared_at);
	      return;
	    }
	}
    }

  /* F2008, C526.  */
  if (((sym->ts.type == BT_DERIVED && sym->ts.u.derived->attr.coarray_comp)
       || sym->attr.codimension)
      && sym->attr.result)
    gfc_error ("Function result '%s' at %L shall not be a coarray or have "
	       "a coarray component", sym->name, &sym->declared_at);

  /* F2008, C524.  */
  if (sym->attr.codimension && sym->ts.type == BT_DERIVED
      && sym->ts.u.derived->ts.is_iso_c)
    gfc_error ("Variable '%s' at %L of TYPE(C_PTR) or TYPE(C_FUNPTR) "
	       "shall not be a coarray", sym->name, &sym->declared_at);

  /* F2008, C525.  */
  if (sym->ts.type == BT_DERIVED && sym->ts.u.derived->attr.coarray_comp
      && (sym->attr.codimension || sym->attr.pointer || sym->attr.dimension
	  || sym->attr.allocatable))
    gfc_error ("Variable '%s' at %L with coarray component "
	       "shall be a nonpointer, nonallocatable scalar",
	       sym->name, &sym->declared_at);

  /* F2008, C526.  The function-result case was handled above.  */
  if (((sym->ts.type == BT_DERIVED && sym->ts.u.derived->attr.coarray_comp)
       || sym->attr.codimension)
      && !(sym->attr.allocatable || sym->attr.dummy || sym->attr.save
	   || sym->ns->proc_name->attr.flavor == FL_MODULE
	   || sym->ns->proc_name->attr.is_main_program
	   || sym->attr.function || sym->attr.result || sym->attr.use_assoc))
    gfc_error ("Variable '%s' at %L is a coarray or has a coarray "
	       "component and is not ALLOCATABLE, SAVE nor a "
	       "dummy argument", sym->name, &sym->declared_at);
  /* F2008, C528.  */  /* FIXME: sym->as check due to PR 43412.  */
  else if (sym->attr.codimension && !sym->attr.allocatable
      && sym->as && sym->as->cotype == AS_DEFERRED)
    gfc_error ("Coarray variable '%s' at %L shall not have codimensions with "
		"deferred shape", sym->name, &sym->declared_at);
  else if (sym->attr.codimension && sym->attr.allocatable
      && (sym->as->type != AS_DEFERRED || sym->as->cotype != AS_DEFERRED))
    gfc_error ("Allocatable coarray variable '%s' at %L must have "
	       "deferred shape", sym->name, &sym->declared_at);


  /* F2008, C541.  */
  if (((sym->ts.type == BT_DERIVED && sym->ts.u.derived->attr.coarray_comp)
       || (sym->attr.codimension && sym->attr.allocatable))
      && sym->attr.dummy && sym->attr.intent == INTENT_OUT)
    gfc_error ("Variable '%s' at %L is INTENT(OUT) and can thus not be an "
	       "allocatable coarray or have coarray components",
	       sym->name, &sym->declared_at);

  if (sym->attr.codimension && sym->attr.dummy
      && sym->ns->proc_name && sym->ns->proc_name->attr.is_bind_c)
    gfc_error ("Coarray dummy variable '%s' at %L not allowed in BIND(C) "
	       "procedure '%s'", sym->name, &sym->declared_at,
	       sym->ns->proc_name->name);

  switch (sym->attr.flavor)
    {
    case FL_VARIABLE:
      if (resolve_fl_variable (sym, mp_flag) == FAILURE)
	return;
      break;

    case FL_PROCEDURE:
      if (resolve_fl_procedure (sym, mp_flag) == FAILURE)
	return;
      break;

    case FL_NAMELIST:
      if (resolve_fl_namelist (sym) == FAILURE)
	return;
      break;

    case FL_PARAMETER:
      if (resolve_fl_parameter (sym) == FAILURE)
	return;
      break;

    default:
      break;
    }

  /* Resolve array specifier. Check as well some constraints
     on COMMON blocks.  */

  check_constant = sym->attr.in_common && !sym->attr.pointer;

  /* Set the formal_arg_flag so that check_conflict will not throw
     an error for host associated variables in the specification
     expression for an array_valued function.  */
  if (sym->attr.function && sym->as)
    formal_arg_flag = 1;

  gfc_resolve_array_spec (sym->as, check_constant);

  formal_arg_flag = 0;

  /* Resolve formal namespaces.  */
  if (sym->formal_ns && sym->formal_ns != gfc_current_ns
      && !sym->attr.contained && !sym->attr.intrinsic)
    gfc_resolve (sym->formal_ns);

  /* Make sure the formal namespace is present.  */
  if (sym->formal && !sym->formal_ns)
    {
      gfc_formal_arglist *formal = sym->formal;
      while (formal && !formal->sym)
	formal = formal->next;

      if (formal)
	{
	  sym->formal_ns = formal->sym->ns;
	  sym->formal_ns->refs++;
	}
    }

  /* Check threadprivate restrictions.  */
  if (sym->attr.threadprivate && !sym->attr.save && !sym->ns->save_all
      && (!sym->attr.in_common
	  && sym->module == NULL
	  && (sym->ns->proc_name == NULL
	      || sym->ns->proc_name->attr.flavor != FL_MODULE)))
    gfc_error ("Threadprivate at %L isn't SAVEd", &sym->declared_at);

  /* If we have come this far we can apply default-initializers, as
     described in 14.7.5, to those variables that have not already
     been assigned one.  */
  if (sym->ts.type == BT_DERIVED
      && sym->ns == gfc_current_ns
      && !sym->value
      && !sym->attr.allocatable
      && !sym->attr.alloc_comp)
    {
      symbol_attribute *a = &sym->attr;

      if ((!a->save && !a->dummy && !a->pointer
	   && !a->in_common && !a->use_assoc
	   && (a->referenced || a->result)
	   && !(a->function && sym != sym->result))
	  || (a->dummy && a->intent == INTENT_OUT && !a->pointer))
	apply_default_init (sym);
    }

  if (sym->ts.type == BT_CLASS && sym->ns == gfc_current_ns
      && sym->attr.dummy && sym->attr.intent == INTENT_OUT
      && !CLASS_DATA (sym)->attr.class_pointer
      && !CLASS_DATA (sym)->attr.allocatable)
    apply_default_init (sym);

  /* If this symbol has a type-spec, check it.  */
  if (sym->attr.flavor == FL_VARIABLE || sym->attr.flavor == FL_PARAMETER
      || (sym->attr.flavor == FL_PROCEDURE && sym->attr.function))
    if (resolve_typespec_used (&sym->ts, &sym->declared_at, sym->name)
	  == FAILURE)
      return;
}


/************* Resolve DATA statements *************/

static struct
{
  gfc_data_value *vnode;
  mpz_t left;
}
values;


/* Advance the values structure to point to the next value in the data list.  */

static gfc_try
next_data_value (void)
{
  while (mpz_cmp_ui (values.left, 0) == 0)
    {

      if (values.vnode->next == NULL)
	return FAILURE;

      values.vnode = values.vnode->next;
      mpz_set (values.left, values.vnode->repeat);
    }

  return SUCCESS;
}


static gfc_try
check_data_variable (gfc_data_variable *var, locus *where)
{
  gfc_expr *e;
  mpz_t size;
  mpz_t offset;
  gfc_try t;
  ar_type mark = AR_UNKNOWN;
  int i;
  mpz_t section_index[GFC_MAX_DIMENSIONS];
  gfc_ref *ref;
  gfc_array_ref *ar;
  gfc_symbol *sym;
  int has_pointer;

  if (gfc_resolve_expr (var->expr) == FAILURE)
    return FAILURE;

  ar = NULL;
  mpz_init_set_si (offset, 0);
  e = var->expr;

  if (e->expr_type != EXPR_VARIABLE)
    gfc_internal_error ("check_data_variable(): Bad expression");

  sym = e->symtree->n.sym;

  if (sym->ns->is_block_data && !sym->attr.in_common)
    {
      gfc_error ("BLOCK DATA element '%s' at %L must be in COMMON",
		 sym->name, &sym->declared_at);
    }

  if (e->ref == NULL && sym->as)
    {
      gfc_error ("DATA array '%s' at %L must be specified in a previous"
		 " declaration", sym->name, where);
      return FAILURE;
    }

  has_pointer = sym->attr.pointer;

  for (ref = e->ref; ref; ref = ref->next)
    {
      if (ref->type == REF_COMPONENT && ref->u.c.component->attr.pointer)
	has_pointer = 1;

      if (ref->type == REF_ARRAY && ref->u.ar.codimen)
	{
	  gfc_error ("DATA element '%s' at %L cannot have a coindex",
		     sym->name, where);
	  return FAILURE;
	}

      if (has_pointer
	    && ref->type == REF_ARRAY
	    && ref->u.ar.type != AR_FULL)
	  {
	    gfc_error ("DATA element '%s' at %L is a pointer and so must "
			"be a full array", sym->name, where);
	    return FAILURE;
	  }
    }

  if (e->rank == 0 || has_pointer)
    {
      mpz_init_set_ui (size, 1);
      ref = NULL;
    }
  else
    {
      ref = e->ref;

      /* Find the array section reference.  */
      for (ref = e->ref; ref; ref = ref->next)
	{
	  if (ref->type != REF_ARRAY)
	    continue;
	  if (ref->u.ar.type == AR_ELEMENT)
	    continue;
	  break;
	}
      gcc_assert (ref);

      /* Set marks according to the reference pattern.  */
      switch (ref->u.ar.type)
	{
	case AR_FULL:
	  mark = AR_FULL;
	  break;

	case AR_SECTION:
	  ar = &ref->u.ar;
	  /* Get the start position of array section.  */
	  gfc_get_section_index (ar, section_index, &offset);
	  mark = AR_SECTION;
	  break;

	default:
	  gcc_unreachable ();
	}

      if (gfc_array_size (e, &size) == FAILURE)
	{
	  gfc_error ("Nonconstant array section at %L in DATA statement",
		     &e->where);
	  mpz_clear (offset);
	  return FAILURE;
	}
    }

  t = SUCCESS;

  while (mpz_cmp_ui (size, 0) > 0)
    {
      if (next_data_value () == FAILURE)
	{
	  gfc_error ("DATA statement at %L has more variables than values",
		     where);
	  t = FAILURE;
	  break;
	}

      t = gfc_check_assign (var->expr, values.vnode->expr, 0);
      if (t == FAILURE)
	break;

      /* If we have more than one element left in the repeat count,
	 and we have more than one element left in the target variable,
	 then create a range assignment.  */
      /* FIXME: Only done for full arrays for now, since array sections
	 seem tricky.  */
      if (mark == AR_FULL && ref && ref->next == NULL
	  && mpz_cmp_ui (values.left, 1) > 0 && mpz_cmp_ui (size, 1) > 0)
	{
	  mpz_t range;

	  if (mpz_cmp (size, values.left) >= 0)
	    {
	      mpz_init_set (range, values.left);
	      mpz_sub (size, size, values.left);
	      mpz_set_ui (values.left, 0);
	    }
	  else
	    {
	      mpz_init_set (range, size);
	      mpz_sub (values.left, values.left, size);
	      mpz_set_ui (size, 0);
	    }

	  t = gfc_assign_data_value_range (var->expr, values.vnode->expr,
					   offset, range);

	  mpz_add (offset, offset, range);
	  mpz_clear (range);

	  if (t == FAILURE)
	    break;
	}

      /* Assign initial value to symbol.  */
      else
	{
	  mpz_sub_ui (values.left, values.left, 1);
	  mpz_sub_ui (size, size, 1);

	  t = gfc_assign_data_value (var->expr, values.vnode->expr, offset);
	  if (t == FAILURE)
	    break;

	  if (mark == AR_FULL)
	    mpz_add_ui (offset, offset, 1);

	  /* Modify the array section indexes and recalculate the offset
	     for next element.  */
	  else if (mark == AR_SECTION)
	    gfc_advance_section (section_index, ar, &offset);
	}
    }

  if (mark == AR_SECTION)
    {
      for (i = 0; i < ar->dimen; i++)
	mpz_clear (section_index[i]);
    }

  mpz_clear (size);
  mpz_clear (offset);

  return t;
}


static gfc_try traverse_data_var (gfc_data_variable *, locus *);

/* Iterate over a list of elements in a DATA statement.  */

static gfc_try
traverse_data_list (gfc_data_variable *var, locus *where)
{
  mpz_t trip;
  iterator_stack frame;
  gfc_expr *e, *start, *end, *step;
  gfc_try retval = SUCCESS;

  mpz_init (frame.value);
  mpz_init (trip);

  start = gfc_copy_expr (var->iter.start);
  end = gfc_copy_expr (var->iter.end);
  step = gfc_copy_expr (var->iter.step);

  if (gfc_simplify_expr (start, 1) == FAILURE
      || start->expr_type != EXPR_CONSTANT)
    {
      gfc_error ("start of implied-do loop at %L could not be "
		 "simplified to a constant value", &start->where);
      retval = FAILURE;
      goto cleanup;
    }
  if (gfc_simplify_expr (end, 1) == FAILURE
      || end->expr_type != EXPR_CONSTANT)
    {
      gfc_error ("end of implied-do loop at %L could not be "
		 "simplified to a constant value", &start->where);
      retval = FAILURE;
      goto cleanup;
    }
  if (gfc_simplify_expr (step, 1) == FAILURE
      || step->expr_type != EXPR_CONSTANT)
    {
      gfc_error ("step of implied-do loop at %L could not be "
		 "simplified to a constant value", &start->where);
      retval = FAILURE;
      goto cleanup;
    }

  mpz_set (trip, end->value.integer);
  mpz_sub (trip, trip, start->value.integer);
  mpz_add (trip, trip, step->value.integer);

  mpz_div (trip, trip, step->value.integer);

  mpz_set (frame.value, start->value.integer);

  frame.prev = iter_stack;
  frame.variable = var->iter.var->symtree;
  iter_stack = &frame;

  while (mpz_cmp_ui (trip, 0) > 0)
    {
      if (traverse_data_var (var->list, where) == FAILURE)
	{
	  retval = FAILURE;
	  goto cleanup;
	}

      e = gfc_copy_expr (var->expr);
      if (gfc_simplify_expr (e, 1) == FAILURE)
	{
	  gfc_free_expr (e);
	  retval = FAILURE;
	  goto cleanup;
	}

      mpz_add (frame.value, frame.value, step->value.integer);

      mpz_sub_ui (trip, trip, 1);
    }

cleanup:
  mpz_clear (frame.value);
  mpz_clear (trip);

  gfc_free_expr (start);
  gfc_free_expr (end);
  gfc_free_expr (step);

  iter_stack = frame.prev;
  return retval;
}


/* Type resolve variables in the variable list of a DATA statement.  */

static gfc_try
traverse_data_var (gfc_data_variable *var, locus *where)
{
  gfc_try t;

  for (; var; var = var->next)
    {
      if (var->expr == NULL)
	t = traverse_data_list (var, where);
      else
	t = check_data_variable (var, where);

      if (t == FAILURE)
	return FAILURE;
    }

  return SUCCESS;
}


/* Resolve the expressions and iterators associated with a data statement.
   This is separate from the assignment checking because data lists should
   only be resolved once.  */

static gfc_try
resolve_data_variables (gfc_data_variable *d)
{
  for (; d; d = d->next)
    {
      if (d->list == NULL)
	{
	  if (gfc_resolve_expr (d->expr) == FAILURE)
	    return FAILURE;
	}
      else
	{
	  if (gfc_resolve_iterator (&d->iter, false) == FAILURE)
	    return FAILURE;

	  if (resolve_data_variables (d->list) == FAILURE)
	    return FAILURE;
	}
    }

  return SUCCESS;
}


/* Resolve a single DATA statement.  We implement this by storing a pointer to
   the value list into static variables, and then recursively traversing the
   variables list, expanding iterators and such.  */

static void
resolve_data (gfc_data *d)
{

  if (resolve_data_variables (d->var) == FAILURE)
    return;

  values.vnode = d->value;
  if (d->value == NULL)
    mpz_set_ui (values.left, 0);
  else
    mpz_set (values.left, d->value->repeat);

  if (traverse_data_var (d->var, &d->where) == FAILURE)
    return;

  /* At this point, we better not have any values left.  */

  if (next_data_value () == SUCCESS)
    gfc_error ("DATA statement at %L has more values than variables",
	       &d->where);
}


/* 12.6 Constraint: In a pure subprogram any variable which is in common or
   accessed by host or use association, is a dummy argument to a pure function,
   is a dummy argument with INTENT (IN) to a pure subroutine, or an object that
   is storage associated with any such variable, shall not be used in the
   following contexts: (clients of this function).  */

/* Determines if a variable is not 'pure', i.e., not assignable within a pure
   procedure.  Returns zero if assignment is OK, nonzero if there is a
   problem.  */
int
gfc_impure_variable (gfc_symbol *sym)
{
  gfc_symbol *proc;
  gfc_namespace *ns;

  if (sym->attr.use_assoc || sym->attr.in_common)
    return 1;

  /* Check if the symbol's ns is inside the pure procedure.  */
  for (ns = gfc_current_ns; ns; ns = ns->parent)
    {
      if (ns == sym->ns)
	break;
      if (ns->proc_name->attr.flavor == FL_PROCEDURE && !sym->attr.function)
	return 1;
    }

  proc = sym->ns->proc_name;
  if (sym->attr.dummy && gfc_pure (proc)
	&& ((proc->attr.subroutine && sym->attr.intent == INTENT_IN)
		||
	     proc->attr.function))
    return 1;

  /* TODO: Sort out what can be storage associated, if anything, and include
     it here.  In principle equivalences should be scanned but it does not
     seem to be possible to storage associate an impure variable this way.  */
  return 0;
}


/* Test whether a symbol is pure or not.  For a NULL pointer, checks if the
   current namespace is inside a pure procedure.  */

int
gfc_pure (gfc_symbol *sym)
{
  symbol_attribute attr;
  gfc_namespace *ns;

  if (sym == NULL)
    {
      /* Check if the current namespace or one of its parents
	belongs to a pure procedure.  */
      for (ns = gfc_current_ns; ns; ns = ns->parent)
	{
	  sym = ns->proc_name;
	  if (sym == NULL)
	    return 0;
	  attr = sym->attr;
	  if (attr.flavor == FL_PROCEDURE && attr.pure)
	    return 1;
	}
      return 0;
    }

  attr = sym->attr;

  return attr.flavor == FL_PROCEDURE && attr.pure;
}


/* Test whether a symbol is implicitly pure or not.  For a NULL pointer,
   checks if the current namespace is implicitly pure.  Note that this
   function returns false for a PURE procedure.  */

int
gfc_implicit_pure (gfc_symbol *sym)
{
  symbol_attribute attr;

  if (sym == NULL)
    {
      /* Check if the current namespace is implicit_pure.  */
      sym = gfc_current_ns->proc_name;
      if (sym == NULL)
	return 0;
      attr = sym->attr;
      if (attr.flavor == FL_PROCEDURE
	    && attr.implicit_pure && !attr.pure)
	return 1;
      return 0;
    }

  attr = sym->attr;

  return attr.flavor == FL_PROCEDURE && attr.implicit_pure && !attr.pure;
}


/* Test whether the current procedure is elemental or not.  */

int
gfc_elemental (gfc_symbol *sym)
{
  symbol_attribute attr;

  if (sym == NULL)
    sym = gfc_current_ns->proc_name;
  if (sym == NULL)
    return 0;
  attr = sym->attr;

  return attr.flavor == FL_PROCEDURE && attr.elemental;
}


/* Warn about unused labels.  */

static void
warn_unused_fortran_label (gfc_st_label *label)
{
  if (label == NULL)
    return;

  warn_unused_fortran_label (label->left);

  if (label->defined == ST_LABEL_UNKNOWN)
    return;

  switch (label->referenced)
    {
    case ST_LABEL_UNKNOWN:
      gfc_warning ("Label %d at %L defined but not used", label->value,
		   &label->where);
      break;

    case ST_LABEL_BAD_TARGET:
      gfc_warning ("Label %d at %L defined but cannot be used",
		   label->value, &label->where);
      break;

    default:
      break;
    }

  warn_unused_fortran_label (label->right);
}


/* Returns the sequence type of a symbol or sequence.  */

static seq_type
sequence_type (gfc_typespec ts)
{
  seq_type result;
  gfc_component *c;

  switch (ts.type)
  {
    case BT_DERIVED:

      if (ts.u.derived->components == NULL)
	return SEQ_NONDEFAULT;

      result = sequence_type (ts.u.derived->components->ts);
      for (c = ts.u.derived->components->next; c; c = c->next)
	if (sequence_type (c->ts) != result)
	  return SEQ_MIXED;

      return result;

    case BT_CHARACTER:
      if (ts.kind != gfc_default_character_kind)
	  return SEQ_NONDEFAULT;

      return SEQ_CHARACTER;

    case BT_INTEGER:
      if (ts.kind != gfc_default_integer_kind)
	  return SEQ_NONDEFAULT;

      return SEQ_NUMERIC;

    case BT_REAL:
      if (!(ts.kind == gfc_default_real_kind
	    || ts.kind == gfc_default_double_kind))
	  return SEQ_NONDEFAULT;

      return SEQ_NUMERIC;

    case BT_COMPLEX:
      if (ts.kind != gfc_default_complex_kind)
	  return SEQ_NONDEFAULT;

      return SEQ_NUMERIC;

    case BT_LOGICAL:
      if (ts.kind != gfc_default_logical_kind)
	  return SEQ_NONDEFAULT;

      return SEQ_NUMERIC;

    default:
      return SEQ_NONDEFAULT;
  }
}


/* Resolve derived type EQUIVALENCE object.  */

static gfc_try
resolve_equivalence_derived (gfc_symbol *derived, gfc_symbol *sym, gfc_expr *e)
{
  gfc_component *c = derived->components;

  if (!derived)
    return SUCCESS;

  /* Shall not be an object of nonsequence derived type.  */
  if (!derived->attr.sequence)
    {
      gfc_error ("Derived type variable '%s' at %L must have SEQUENCE "
		 "attribute to be an EQUIVALENCE object", sym->name,
		 &e->where);
      return FAILURE;
    }

  /* Shall not have allocatable components.  */
  if (derived->attr.alloc_comp)
    {
      gfc_error ("Derived type variable '%s' at %L cannot have ALLOCATABLE "
		 "components to be an EQUIVALENCE object",sym->name,
		 &e->where);
      return FAILURE;
    }

  if (sym->attr.in_common && gfc_has_default_initializer (sym->ts.u.derived))
    {
      gfc_error ("Derived type variable '%s' at %L with default "
		 "initialization cannot be in EQUIVALENCE with a variable "
		 "in COMMON", sym->name, &e->where);
      return FAILURE;
    }

  for (; c ; c = c->next)
    {
      if (c->ts.type == BT_DERIVED
	  && (resolve_equivalence_derived (c->ts.u.derived, sym, e) == FAILURE))
	return FAILURE;

      /* Shall not be an object of sequence derived type containing a pointer
	 in the structure.  */
      if (c->attr.pointer)
	{
	  gfc_error ("Derived type variable '%s' at %L with pointer "
		     "component(s) cannot be an EQUIVALENCE object",
		     sym->name, &e->where);
	  return FAILURE;
	}
    }
  return SUCCESS;
}


/* Resolve equivalence object. 
   An EQUIVALENCE object shall not be a dummy argument, a pointer, a target,
   an allocatable array, an object of nonsequence derived type, an object of
   sequence derived type containing a pointer at any level of component
   selection, an automatic object, a function name, an entry name, a result
   name, a named constant, a structure component, or a subobject of any of
   the preceding objects.  A substring shall not have length zero.  A
   derived type shall not have components with default initialization nor
   shall two objects of an equivalence group be initialized.
   Either all or none of the objects shall have an protected attribute.
   The simple constraints are done in symbol.c(check_conflict) and the rest
   are implemented here.  */

static void
resolve_equivalence (gfc_equiv *eq)
{
  gfc_symbol *sym;
  gfc_symbol *first_sym;
  gfc_expr *e;
  gfc_ref *r;
  locus *last_where = NULL;
  seq_type eq_type, last_eq_type;
  gfc_typespec *last_ts;
  int object, cnt_protected;
  const char *msg;

  last_ts = &eq->expr->symtree->n.sym->ts;

  first_sym = eq->expr->symtree->n.sym;

  cnt_protected = 0;

  for (object = 1; eq; eq = eq->eq, object++)
    {
      e = eq->expr;

      e->ts = e->symtree->n.sym->ts;
      /* match_varspec might not know yet if it is seeing
	 array reference or substring reference, as it doesn't
	 know the types.  */
      if (e->ref && e->ref->type == REF_ARRAY)
	{
	  gfc_ref *ref = e->ref;
	  sym = e->symtree->n.sym;

	  if (sym->attr.dimension)
	    {
	      ref->u.ar.as = sym->as;
	      ref = ref->next;
	    }

	  /* For substrings, convert REF_ARRAY into REF_SUBSTRING.  */
	  if (e->ts.type == BT_CHARACTER
	      && ref
	      && ref->type == REF_ARRAY
	      && ref->u.ar.dimen == 1
	      && ref->u.ar.dimen_type[0] == DIMEN_RANGE
	      && ref->u.ar.stride[0] == NULL)
	    {
	      gfc_expr *start = ref->u.ar.start[0];
	      gfc_expr *end = ref->u.ar.end[0];
	      void *mem = NULL;

	      /* Optimize away the (:) reference.  */
	      if (start == NULL && end == NULL)
		{
		  if (e->ref == ref)
		    e->ref = ref->next;
		  else
		    e->ref->next = ref->next;
		  mem = ref;
		}
	      else
		{
		  ref->type = REF_SUBSTRING;
		  if (start == NULL)
		    start = gfc_get_int_expr (gfc_default_integer_kind,
					      NULL, 1);
		  ref->u.ss.start = start;
		  if (end == NULL && e->ts.u.cl)
		    end = gfc_copy_expr (e->ts.u.cl->length);
		  ref->u.ss.end = end;
		  ref->u.ss.length = e->ts.u.cl;
		  e->ts.u.cl = NULL;
		}
	      ref = ref->next;
	      gfc_free (mem);
	    }

	  /* Any further ref is an error.  */
	  if (ref)
	    {
	      gcc_assert (ref->type == REF_ARRAY);
	      gfc_error ("Syntax error in EQUIVALENCE statement at %L",
			 &ref->u.ar.where);
	      continue;
	    }
	}

      if (gfc_resolve_expr (e) == FAILURE)
	continue;

      sym = e->symtree->n.sym;

      if (sym->attr.is_protected)
	cnt_protected++;
      if (cnt_protected > 0 && cnt_protected != object)
       	{
	      gfc_error ("Either all or none of the objects in the "
			 "EQUIVALENCE set at %L shall have the "
			 "PROTECTED attribute",
			 &e->where);
	      break;
	}

      /* Shall not equivalence common block variables in a PURE procedure.  */
      if (sym->ns->proc_name
	  && sym->ns->proc_name->attr.pure
	  && sym->attr.in_common)
	{
	  gfc_error ("Common block member '%s' at %L cannot be an EQUIVALENCE "
		     "object in the pure procedure '%s'",
		     sym->name, &e->where, sym->ns->proc_name->name);
	  break;
	}

      /* Shall not be a named constant.  */
      if (e->expr_type == EXPR_CONSTANT)
	{
	  gfc_error ("Named constant '%s' at %L cannot be an EQUIVALENCE "
		     "object", sym->name, &e->where);
	  continue;
	}

      if (e->ts.type == BT_DERIVED
	  && resolve_equivalence_derived (e->ts.u.derived, sym, e) == FAILURE)
	continue;

      /* Check that the types correspond correctly:
	 Note 5.28:
	 A numeric sequence structure may be equivalenced to another sequence
	 structure, an object of default integer type, default real type, double
	 precision real type, default logical type such that components of the
	 structure ultimately only become associated to objects of the same
	 kind. A character sequence structure may be equivalenced to an object
	 of default character kind or another character sequence structure.
	 Other objects may be equivalenced only to objects of the same type and
	 kind parameters.  */

      /* Identical types are unconditionally OK.  */
      if (object == 1 || gfc_compare_types (last_ts, &sym->ts))
	goto identical_types;

      last_eq_type = sequence_type (*last_ts);
      eq_type = sequence_type (sym->ts);

      /* Since the pair of objects is not of the same type, mixed or
	 non-default sequences can be rejected.  */

      msg = "Sequence %s with mixed components in EQUIVALENCE "
	    "statement at %L with different type objects";
      if ((object ==2
	   && last_eq_type == SEQ_MIXED
	   && gfc_notify_std (GFC_STD_GNU, msg, first_sym->name, last_where)
	      == FAILURE)
	  || (eq_type == SEQ_MIXED
	      && gfc_notify_std (GFC_STD_GNU, msg, sym->name,
				 &e->where) == FAILURE))
	continue;

      msg = "Non-default type object or sequence %s in EQUIVALENCE "
	    "statement at %L with objects of different type";
      if ((object ==2
	   && last_eq_type == SEQ_NONDEFAULT
	   && gfc_notify_std (GFC_STD_GNU, msg, first_sym->name,
			      last_where) == FAILURE)
	  || (eq_type == SEQ_NONDEFAULT
	      && gfc_notify_std (GFC_STD_GNU, msg, sym->name,
				 &e->where) == FAILURE))
	continue;

      msg ="Non-CHARACTER object '%s' in default CHARACTER "
	   "EQUIVALENCE statement at %L";
      if (last_eq_type == SEQ_CHARACTER
	  && eq_type != SEQ_CHARACTER
	  && gfc_notify_std (GFC_STD_GNU, msg, sym->name,
			     &e->where) == FAILURE)
		continue;

      msg ="Non-NUMERIC object '%s' in default NUMERIC "
	   "EQUIVALENCE statement at %L";
      if (last_eq_type == SEQ_NUMERIC
	  && eq_type != SEQ_NUMERIC
	  && gfc_notify_std (GFC_STD_GNU, msg, sym->name,
			     &e->where) == FAILURE)
		continue;

  identical_types:
      last_ts =&sym->ts;
      last_where = &e->where;

      if (!e->ref)
	continue;

      /* Shall not be an automatic array.  */
      if (e->ref->type == REF_ARRAY
	  && gfc_resolve_array_spec (e->ref->u.ar.as, 1) == FAILURE)
	{
	  gfc_error ("Array '%s' at %L with non-constant bounds cannot be "
		     "an EQUIVALENCE object", sym->name, &e->where);
	  continue;
	}

      r = e->ref;
      while (r)
	{
	  /* Shall not be a structure component.  */
	  if (r->type == REF_COMPONENT)
	    {
	      gfc_error ("Structure component '%s' at %L cannot be an "
			 "EQUIVALENCE object",
			 r->u.c.component->name, &e->where);
	      break;
	    }

	  /* A substring shall not have length zero.  */
	  if (r->type == REF_SUBSTRING)
	    {
	      if (compare_bound (r->u.ss.start, r->u.ss.end) == CMP_GT)
		{
		  gfc_error ("Substring at %L has length zero",
			     &r->u.ss.start->where);
		  break;
		}
	    }
	  r = r->next;
	}
    }
}


/* Resolve function and ENTRY types, issue diagnostics if needed.  */

static void
resolve_fntype (gfc_namespace *ns)
{
  gfc_entry_list *el;
  gfc_symbol *sym;

  if (ns->proc_name == NULL || !ns->proc_name->attr.function)
    return;

  /* If there are any entries, ns->proc_name is the entry master
     synthetic symbol and ns->entries->sym actual FUNCTION symbol.  */
  if (ns->entries)
    sym = ns->entries->sym;
  else
    sym = ns->proc_name;
  if (sym->result == sym
      && sym->ts.type == BT_UNKNOWN
      && gfc_set_default_type (sym, 0, NULL) == FAILURE
      && !sym->attr.untyped)
    {
      gfc_error ("Function '%s' at %L has no IMPLICIT type",
		 sym->name, &sym->declared_at);
      sym->attr.untyped = 1;
    }

  if (sym->ts.type == BT_DERIVED && !sym->ts.u.derived->attr.use_assoc
      && !sym->attr.contained
      && !gfc_check_access (sym->ts.u.derived->attr.access,
			    sym->ts.u.derived->ns->default_access)
      && gfc_check_access (sym->attr.access, sym->ns->default_access))
    {
      gfc_notify_std (GFC_STD_F2003, "Fortran 2003: PUBLIC function '%s' at "
		      "%L of PRIVATE type '%s'", sym->name,
		      &sym->declared_at, sym->ts.u.derived->name);
    }

    if (ns->entries)
    for (el = ns->entries->next; el; el = el->next)
      {
	if (el->sym->result == el->sym
	    && el->sym->ts.type == BT_UNKNOWN
	    && gfc_set_default_type (el->sym, 0, NULL) == FAILURE
	    && !el->sym->attr.untyped)
	  {
	    gfc_error ("ENTRY '%s' at %L has no IMPLICIT type",
		       el->sym->name, &el->sym->declared_at);
	    el->sym->attr.untyped = 1;
	  }
      }
}


/* 12.3.2.1.1 Defined operators.  */

static gfc_try
check_uop_procedure (gfc_symbol *sym, locus where)
{
  gfc_formal_arglist *formal;

  if (!sym->attr.function)
    {
      gfc_error ("User operator procedure '%s' at %L must be a FUNCTION",
		 sym->name, &where);
      return FAILURE;
    }

  if (sym->ts.type == BT_CHARACTER
      && !(sym->ts.u.cl && sym->ts.u.cl->length)
      && !(sym->result && sym->result->ts.u.cl
	   && sym->result->ts.u.cl->length))
    {
      gfc_error ("User operator procedure '%s' at %L cannot be assumed "
		 "character length", sym->name, &where);
      return FAILURE;
    }

  formal = sym->formal;
  if (!formal || !formal->sym)
    {
      gfc_error ("User operator procedure '%s' at %L must have at least "
		 "one argument", sym->name, &where);
      return FAILURE;
    }

  if (formal->sym->attr.intent != INTENT_IN)
    {
      gfc_error ("First argument of operator interface at %L must be "
		 "INTENT(IN)", &where);
      return FAILURE;
    }

  if (formal->sym->attr.optional)
    {
      gfc_error ("First argument of operator interface at %L cannot be "
		 "optional", &where);
      return FAILURE;
    }

  formal = formal->next;
  if (!formal || !formal->sym)
    return SUCCESS;

  if (formal->sym->attr.intent != INTENT_IN)
    {
      gfc_error ("Second argument of operator interface at %L must be "
		 "INTENT(IN)", &where);
      return FAILURE;
    }

  if (formal->sym->attr.optional)
    {
      gfc_error ("Second argument of operator interface at %L cannot be "
		 "optional", &where);
      return FAILURE;
    }

  if (formal->next)
    {
      gfc_error ("Operator interface at %L must have, at most, two "
		 "arguments", &where);
      return FAILURE;
    }

  return SUCCESS;
}

static void
gfc_resolve_uops (gfc_symtree *symtree)
{
  gfc_interface *itr;

  if (symtree == NULL)
    return;

  gfc_resolve_uops (symtree->left);
  gfc_resolve_uops (symtree->right);

  for (itr = symtree->n.uop->op; itr; itr = itr->next)
    check_uop_procedure (itr->sym, itr->sym->declared_at);
}


/* Examine all of the expressions associated with a program unit,
   assign types to all intermediate expressions, make sure that all
   assignments are to compatible types and figure out which names
   refer to which functions or subroutines.  It doesn't check code
   block, which is handled by resolve_code.  */

static void
resolve_types (gfc_namespace *ns)
{
  gfc_namespace *n;
  gfc_charlen *cl;
  gfc_data *d;
  gfc_equiv *eq;
  gfc_namespace* old_ns = gfc_current_ns;

  /* Check that all IMPLICIT types are ok.  */
  if (!ns->seen_implicit_none)
    {
      unsigned letter;
      for (letter = 0; letter != GFC_LETTERS; ++letter)
	if (ns->set_flag[letter]
	    && resolve_typespec_used (&ns->default_type[letter],
				      &ns->implicit_loc[letter],
				      NULL) == FAILURE)
	  return;
    }

  gfc_current_ns = ns;

  resolve_entries (ns);

  resolve_common_vars (ns->blank_common.head, false);
  resolve_common_blocks (ns->common_root);

  resolve_contained_functions (ns);

  gfc_traverse_ns (ns, resolve_bind_c_derived_types);

  for (cl = ns->cl_list; cl; cl = cl->next)
    resolve_charlen (cl);

  gfc_traverse_ns (ns, resolve_symbol);

  resolve_fntype (ns);

  for (n = ns->contained; n; n = n->sibling)
    {
      if (gfc_pure (ns->proc_name) && !gfc_pure (n->proc_name))
	gfc_error ("Contained procedure '%s' at %L of a PURE procedure must "
		   "also be PURE", n->proc_name->name,
		   &n->proc_name->declared_at);

      resolve_types (n);
    }

  forall_flag = 0;
  gfc_check_interfaces (ns);

  gfc_traverse_ns (ns, resolve_values);

  if (ns->save_all)
    gfc_save_all (ns);

  iter_stack = NULL;
  for (d = ns->data; d; d = d->next)
    resolve_data (d);

  iter_stack = NULL;
  gfc_traverse_ns (ns, gfc_formalize_init_value);

  gfc_traverse_ns (ns, gfc_verify_binding_labels);

  if (ns->common_root != NULL)
    gfc_traverse_symtree (ns->common_root, resolve_bind_c_comms);

  for (eq = ns->equiv; eq; eq = eq->next)
    resolve_equivalence (eq);

  /* Warn about unused labels.  */
  if (warn_unused_label)
    warn_unused_fortran_label (ns->st_labels);

  gfc_resolve_uops (ns->uop_root);

  gfc_current_ns = old_ns;
}


/* Call resolve_code recursively.  */

static void
resolve_codes (gfc_namespace *ns)
{
  gfc_namespace *n;
  bitmap_obstack old_obstack;

  if (ns->resolved == 1)
    return;

  for (n = ns->contained; n; n = n->sibling)
    resolve_codes (n);

  gfc_current_ns = ns;

  /* Don't clear 'cs_base' if this is the namespace of a BLOCK construct.  */
  if (!(ns->proc_name && ns->proc_name->attr.flavor == FL_LABEL))
    cs_base = NULL;

  /* Set to an out of range value.  */
  current_entry_id = -1;

  old_obstack = labels_obstack;
  bitmap_obstack_initialize (&labels_obstack);

  resolve_code (ns->code, ns);

  bitmap_obstack_release (&labels_obstack);
  labels_obstack = old_obstack;
}


/* This function is called after a complete program unit has been compiled.
   Its purpose is to examine all of the expressions associated with a program
   unit, assign types to all intermediate expressions, make sure that all
   assignments are to compatible types and figure out which names refer to
   which functions or subroutines.  */

void
gfc_resolve (gfc_namespace *ns)
{
  gfc_namespace *old_ns;
  code_stack *old_cs_base;

  if (ns->resolved)
    return;

  ns->resolved = -1;
  old_ns = gfc_current_ns;
  old_cs_base = cs_base;

  resolve_types (ns);
  resolve_codes (ns);

  gfc_current_ns = old_ns;
  cs_base = old_cs_base;
  ns->resolved = 1;

  gfc_run_passes (ns);
}