summaryrefslogtreecommitdiff
path: root/gcc/fortran/gfortran.texi
blob: ffcd3ece2d7d51815948974e185b68a585af319f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
\input texinfo  @c -*-texinfo-*-
@c %**start of header
@setfilename gfortran.info
@set copyrights-gfortran 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012

@include gcc-common.texi

@settitle The GNU Fortran Compiler

@c Create a separate index for command line options
@defcodeindex op
@c Merge the standard indexes into a single one.
@syncodeindex fn cp
@syncodeindex vr cp
@syncodeindex ky cp
@syncodeindex pg cp
@syncodeindex tp cp

@c TODO: The following "Part" definitions are included here temporarily
@c until they are incorporated into the official Texinfo distribution.
@c They borrow heavily from Texinfo's \unnchapentry definitions.

@tex
\gdef\part#1#2{%
  \pchapsepmacro
  \gdef\thischapter{}
  \begingroup
    \vglue\titlepagetopglue
    \titlefonts \rm
    \leftline{Part #1:@* #2}
    \vskip4pt \hrule height 4pt width \hsize \vskip4pt
  \endgroup
  \writetocentry{part}{#2}{#1}
}
\gdef\blankpart{%
  \writetocentry{blankpart}{}{}
}
% Part TOC-entry definition for summary contents.
\gdef\dosmallpartentry#1#2#3#4{%
  \vskip .5\baselineskip plus.2\baselineskip
  \begingroup
    \let\rm=\bf \rm
    \tocentry{Part #2: #1}{\doshortpageno\bgroup#4\egroup}
  \endgroup
}
\gdef\dosmallblankpartentry#1#2#3#4{%
  \vskip .5\baselineskip plus.2\baselineskip
}
% Part TOC-entry definition for regular contents.  This has to be
% equated to an existing entry to not cause problems when the PDF
% outline is created.
\gdef\dopartentry#1#2#3#4{%
  \unnchapentry{Part #2: #1}{}{#3}{#4}
}
\gdef\doblankpartentry#1#2#3#4{}
@end tex

@c %**end of header

@c Use with @@smallbook.

@c %** start of document

@c Cause even numbered pages to be printed on the left hand side of
@c the page and odd numbered pages to be printed on the right hand
@c side of the page.  Using this, you can print on both sides of a
@c sheet of paper and have the text on the same part of the sheet.

@c The text on right hand pages is pushed towards the right hand
@c margin and the text on left hand pages is pushed toward the left
@c hand margin.
@c (To provide the reverse effect, set bindingoffset to -0.75in.)

@c @tex
@c \global\bindingoffset=0.75in
@c \global\normaloffset =0.75in
@c @end tex

@copying
Copyright @copyright{} @value{copyrights-gfortran} Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with the
Invariant Sections being ``Funding Free Software'', the Front-Cover
Texts being (a) (see below), and with the Back-Cover Texts being (b)
(see below).  A copy of the license is included in the section entitled
``GNU Free Documentation License''.

(a) The FSF's Front-Cover Text is:

     A GNU Manual

(b) The FSF's Back-Cover Text is:

     You have freedom to copy and modify this GNU Manual, like GNU
     software.  Copies published by the Free Software Foundation raise
     funds for GNU development.
@end copying

@ifinfo
@dircategory Software development
@direntry
* gfortran: (gfortran).                  The GNU Fortran Compiler.
@end direntry
This file documents the use and the internals of
the GNU Fortran compiler, (@command{gfortran}).

Published by the Free Software Foundation
51 Franklin Street, Fifth Floor
Boston, MA 02110-1301 USA

@insertcopying
@end ifinfo


@setchapternewpage odd
@titlepage
@title Using GNU Fortran
@versionsubtitle
@author The @t{gfortran} team
@page
@vskip 0pt plus 1filll
Published by the Free Software Foundation@*
51 Franklin Street, Fifth Floor@*
Boston, MA 02110-1301, USA@*
@c Last printed ??ber, 19??.@*
@c Printed copies are available for $? each.@*
@c ISBN ???
@sp 1
@insertcopying
@end titlepage

@c TODO: The following "Part" definitions are included here temporarily
@c until they are incorporated into the official Texinfo distribution.

@tex
\global\let\partentry=\dosmallpartentry
\global\let\blankpartentry=\dosmallblankpartentry
@end tex
@summarycontents

@tex
\global\let\partentry=\dopartentry
\global\let\blankpartentry=\doblankpartentry
@end tex
@contents

@page

@c ---------------------------------------------------------------------
@c TexInfo table of contents.
@c ---------------------------------------------------------------------

@ifnottex
@node Top
@top Introduction
@cindex Introduction

This manual documents the use of @command{gfortran}, 
the GNU Fortran compiler.  You can find in this manual how to invoke
@command{gfortran}, as well as its features and incompatibilities.

@ifset DEVELOPMENT
@emph{Warning:} This document, and the compiler it describes, are still
under development.  While efforts are made to keep it up-to-date, it might
not accurately reflect the status of the most recent GNU Fortran compiler.
@end ifset

@comment
@comment  When you add a new menu item, please keep the right hand
@comment  aligned to the same column.  Do not use tabs.  This provides
@comment  better formatting.
@comment
@menu
* Introduction::

Part I: Invoking GNU Fortran
* Invoking GNU Fortran:: Command options supported by @command{gfortran}.
* Runtime::              Influencing runtime behavior with environment variables.

Part II: Language Reference
* Fortran 2003 and 2008 status::  Fortran 2003 and 2008 features supported by GNU Fortran.
* Compiler Characteristics::      User-visible implementation details.
* Mixed-Language Programming::    Interoperability with C
* Extensions::           Language extensions implemented by GNU Fortran.
* Intrinsic Procedures:: Intrinsic procedures supported by GNU Fortran.
* Intrinsic Modules::    Intrinsic modules supported by GNU Fortran.

* Contributing::         How you can help.
* Copying::              GNU General Public License says
                         how you can copy and share GNU Fortran.
* GNU Free Documentation License::
                         How you can copy and share this manual.
* Funding::              How to help assure continued work for free software.
* Option Index::         Index of command line options
* Keyword Index::        Index of concepts
@end menu
@end ifnottex

@c ---------------------------------------------------------------------
@c Introduction
@c ---------------------------------------------------------------------

@node Introduction
@chapter Introduction

@c The following duplicates the text on the TexInfo table of contents.
@iftex
This manual documents the use of @command{gfortran}, the GNU Fortran
compiler.  You can find in this manual how to invoke @command{gfortran},
as well as its features and incompatibilities.

@ifset DEVELOPMENT
@emph{Warning:} This document, and the compiler it describes, are still
under development.  While efforts are made to keep it up-to-date, it
might not accurately reflect the status of the most recent GNU Fortran
compiler.
@end ifset
@end iftex

The GNU Fortran compiler front end was
designed initially as a free replacement for,
or alternative to, the unix @command{f95} command;
@command{gfortran} is the command you will use to invoke the compiler.

@menu
* About GNU Fortran::    What you should know about the GNU Fortran compiler.
* GNU Fortran and GCC::  You can compile Fortran, C, or other programs.
* Preprocessing and conditional compilation:: The Fortran preprocessor
* GNU Fortran and G77::  Why we chose to start from scratch.
* Project Status::       Status of GNU Fortran, roadmap, proposed extensions.
* Standards::            Standards supported by GNU Fortran.
@end menu


@c ---------------------------------------------------------------------
@c About GNU Fortran
@c ---------------------------------------------------------------------

@node About GNU Fortran
@section About GNU Fortran

The GNU Fortran compiler supports the Fortran 77, 90 and 95 standards
completely, parts of the Fortran 2003 and Fortran 2008 standards, and
several vendor extensions.  The development goal is to provide the
following features:

@itemize @bullet
@item
Read a user's program,
stored in a file and containing instructions written
in Fortran 77, Fortran 90, Fortran 95, Fortran 2003 or Fortran 2008.
This file contains @dfn{source code}.

@item
Translate the user's program into instructions a computer
can carry out more quickly than it takes to translate the
instructions in the first
place.  The result after compilation of a program is
@dfn{machine code},
code designed to be efficiently translated and processed
by a machine such as your computer.
Humans usually are not as good writing machine code
as they are at writing Fortran (or C++, Ada, or Java),
because it is easy to make tiny mistakes writing machine code.

@item
Provide the user with information about the reasons why
the compiler is unable to create a binary from the source code.
Usually this will be the case if the source code is flawed.
The Fortran 90 standard requires that the compiler can point out
mistakes to the user.
An incorrect usage of the language causes an @dfn{error message}.

The compiler will also attempt to diagnose cases where the
user's program contains a correct usage of the language,
but instructs the computer to do something questionable.
This kind of diagnostics message is called a @dfn{warning message}.

@item
Provide optional information about the translation passes
from the source code to machine code.
This can help a user of the compiler to find the cause of
certain bugs which may not be obvious in the source code,
but may be more easily found at a lower level compiler output.
It also helps developers to find bugs in the compiler itself.

@item
Provide information in the generated machine code that can
make it easier to find bugs in the program (using a debugging tool,
called a @dfn{debugger}, such as the GNU Debugger @command{gdb}). 

@item
Locate and gather machine code already generated to
perform actions requested by statements in the user's program.
This machine code is organized into @dfn{modules} and is located
and @dfn{linked} to the user program. 
@end itemize

The GNU Fortran compiler consists of several components:

@itemize @bullet
@item
A version of the @command{gcc} command
(which also might be installed as the system's @command{cc} command)
that also understands and accepts Fortran source code.
The @command{gcc} command is the @dfn{driver} program for
all the languages in the GNU Compiler Collection (GCC);
With @command{gcc},
you can compile the source code of any language for
which a front end is available in GCC.

@item
The @command{gfortran} command itself,
which also might be installed as the
system's @command{f95} command.
@command{gfortran} is just another driver program,
but specifically for the Fortran compiler only.
The difference with @command{gcc} is that @command{gfortran}
will automatically link the correct libraries to your program.

@item
A collection of run-time libraries.
These libraries contain the machine code needed to support
capabilities of the Fortran language that are not directly
provided by the machine code generated by the
@command{gfortran} compilation phase,
such as intrinsic functions and subroutines,
and routines for interaction with files and the operating system.
@c and mechanisms to spawn,
@c unleash and pause threads in parallelized code.

@item
The Fortran compiler itself, (@command{f951}).
This is the GNU Fortran parser and code generator,
linked to and interfaced with the GCC backend library.
@command{f951} ``translates'' the source code to
assembler code.  You would typically not use this
program directly;
instead, the @command{gcc} or @command{gfortran} driver
programs will call it for you.
@end itemize


@c ---------------------------------------------------------------------
@c GNU Fortran and GCC
@c ---------------------------------------------------------------------

@node GNU Fortran and GCC
@section GNU Fortran and GCC
@cindex GNU Compiler Collection
@cindex GCC

GNU Fortran is a part of GCC, the @dfn{GNU Compiler Collection}.  GCC
consists of a collection of front ends for various languages, which
translate the source code into a language-independent form called
@dfn{GENERIC}.  This is then processed by a common middle end which
provides optimization, and then passed to one of a collection of back
ends which generate code for different computer architectures and
operating systems.

Functionally, this is implemented with a driver program (@command{gcc})
which provides the command-line interface for the compiler.  It calls
the relevant compiler front-end program (e.g., @command{f951} for
Fortran) for each file in the source code, and then calls the assembler
and linker as appropriate to produce the compiled output.  In a copy of
GCC which has been compiled with Fortran language support enabled,
@command{gcc} will recognize files with @file{.f}, @file{.for}, @file{.ftn},
@file{.f90}, @file{.f95}, @file{.f03} and @file{.f08} extensions as
Fortran source code, and compile it accordingly.  A @command{gfortran}
driver program is also provided, which is identical to @command{gcc}
except that it automatically links the Fortran runtime libraries into the
compiled program.

Source files with @file{.f}, @file{.for}, @file{.fpp}, @file{.ftn}, @file{.F},
@file{.FOR}, @file{.FPP}, and @file{.FTN} extensions are treated as fixed form.
Source files with @file{.f90}, @file{.f95}, @file{.f03}, @file{.f08},
@file{.F90}, @file{.F95}, @file{.F03} and @file{.F08} extensions are
treated as free form.  The capitalized versions of either form are run
through preprocessing.  Source files with the lower case @file{.fpp}
extension are also run through preprocessing.

This manual specifically documents the Fortran front end, which handles
the programming language's syntax and semantics.  The aspects of GCC
which relate to the optimization passes and the back-end code generation
are documented in the GCC manual; see 
@ref{Top,,Introduction,gcc,Using the GNU Compiler Collection (GCC)}.
The two manuals together provide a complete reference for the GNU
Fortran compiler.


@c ---------------------------------------------------------------------
@c Preprocessing and conditional compilation
@c ---------------------------------------------------------------------

@node Preprocessing and conditional compilation
@section Preprocessing and conditional compilation
@cindex CPP
@cindex FPP
@cindex Conditional compilation
@cindex Preprocessing
@cindex preprocessor, include file handling

Many Fortran compilers including GNU Fortran allow passing the source code
through a C preprocessor (CPP; sometimes also called the Fortran preprocessor,
FPP) to allow for conditional compilation.  In the case of GNU Fortran,
this is the GNU C Preprocessor in the traditional mode.  On systems with
case-preserving file names, the preprocessor is automatically invoked if the
filename extension is @file{.F}, @file{.FOR}, @file{.FTN}, @file{.fpp},
@file{.FPP}, @file{.F90}, @file{.F95}, @file{.F03} or @file{.F08}.  To manually
invoke the preprocessor on any file, use @option{-cpp}, to disable
preprocessing on files where the preprocessor is run automatically, use
@option{-nocpp}.

If a preprocessed file includes another file with the Fortran @code{INCLUDE}
statement, the included file is not preprocessed.  To preprocess included
files, use the equivalent preprocessor statement @code{#include}.

If GNU Fortran invokes the preprocessor, @code{__GFORTRAN__}
is defined and @code{__GNUC__}, @code{__GNUC_MINOR__} and
@code{__GNUC_PATCHLEVEL__} can be used to determine the version of the
compiler.  See @ref{Top,,Overview,cpp,The C Preprocessor} for details.

While CPP is the de-facto standard for preprocessing Fortran code,
Part 3 of the Fortran 95 standard (ISO/IEC 1539-3:1998) defines
Conditional Compilation, which is not widely used and not directly
supported by the GNU Fortran compiler.  You can use the program coco
to preprocess such files (@uref{http://www.daniellnagle.com/coco.html}).


@c ---------------------------------------------------------------------
@c GNU Fortran and G77
@c ---------------------------------------------------------------------

@node GNU Fortran and G77
@section GNU Fortran and G77
@cindex Fortran 77
@cindex @command{g77}

The GNU Fortran compiler is the successor to @command{g77}, the Fortran 
77 front end included in GCC prior to version 4.  It is an entirely new 
program that has been designed to provide Fortran 95 support and 
extensibility for future Fortran language standards, as well as providing 
backwards compatibility for Fortran 77 and nearly all of the GNU language 
extensions supported by @command{g77}.


@c ---------------------------------------------------------------------
@c Project Status
@c ---------------------------------------------------------------------

@node Project Status
@section Project Status

@quotation
As soon as @command{gfortran} can parse all of the statements correctly,
it will be in the ``larva'' state.
When we generate code, the ``puppa'' state.
When @command{gfortran} is done,
we'll see if it will be a beautiful butterfly,
or just a big bug....

--Andy Vaught, April 2000
@end quotation

The start of the GNU Fortran 95 project was announced on
the GCC homepage in March 18, 2000
(even though Andy had already been working on it for a while,
of course).

The GNU Fortran compiler is able to compile nearly all
standard-compliant Fortran 95, Fortran 90, and Fortran 77 programs,
including a number of standard and non-standard extensions, and can be
used on real-world programs.  In particular, the supported extensions
include OpenMP, Cray-style pointers, and several Fortran 2003 and Fortran
2008 features, including TR 15581.  However, it is still under
development and has a few remaining rough edges.

At present, the GNU Fortran compiler passes the
@uref{http://www.fortran-2000.com/ArnaudRecipes/fcvs21_f95.html, 
NIST Fortran 77 Test Suite}, and produces acceptable results on the
@uref{http://www.netlib.org/lapack/faq.html#1.21, LAPACK Test Suite}.
It also provides respectable performance on 
the @uref{http://www.polyhedron.com/pb05.html, Polyhedron Fortran
compiler benchmarks} and the
@uref{http://www.llnl.gov/asci_benchmarks/asci/limited/lfk/README.html,
Livermore Fortran Kernels test}.  It has been used to compile a number of
large real-world programs, including
@uref{http://mysite.verizon.net/serveall/moene.pdf, the HIRLAM
weather-forecasting code} and
@uref{http://www.theochem.uwa.edu.au/tonto/, the Tonto quantum 
chemistry package}; see @url{http://gcc.gnu.org/@/wiki/@/GfortranApps} for an
extended list.

Among other things, the GNU Fortran compiler is intended as a replacement
for G77.  At this point, nearly all programs that could be compiled with
G77 can be compiled with GNU Fortran, although there are a few minor known
regressions.

The primary work remaining to be done on GNU Fortran falls into three
categories: bug fixing (primarily regarding the treatment of invalid code
and providing useful error messages), improving the compiler optimizations
and the performance of compiled code, and extending the compiler to support
future standards---in particular, Fortran 2003 and Fortran 2008.


@c ---------------------------------------------------------------------
@c Standards
@c ---------------------------------------------------------------------

@node Standards
@section Standards
@cindex Standards

@menu
* Varying Length Character Strings::
@end menu

The GNU Fortran compiler implements
ISO/IEC 1539:1997 (Fortran 95).  As such, it can also compile essentially all
standard-compliant Fortran 90 and Fortran 77 programs.   It also supports
the ISO/IEC TR-15581 enhancements to allocatable arrays.

In the future, the GNU Fortran compiler will also support ISO/IEC
1539-1:2004 (Fortran 2003), ISO/IEC 1539-1:2010 (Fortran 2008) and
future Fortran standards.  Partial support of the Fortran 2003 and
Fortran 2008 standard is already provided; the current status of the
support is reported in the @ref{Fortran 2003 status} and
@ref{Fortran 2008 status} sections of the documentation.

Additionally, the GNU Fortran compilers supports the OpenMP specification
(version 3.1, @url{http://openmp.org/@/wp/@/openmp-specifications/}).

@node Varying Length Character Strings
@subsection Varying Length Character Strings
@cindex Varying length character strings
@cindex Varying length strings
@cindex strings, varying length

The Fortran 95 standard specifies in Part 2 (ISO/IEC 1539-2:2000)
varying length character strings.  While GNU Fortran currently does not
support such strings directly, there exist two Fortran implementations
for them, which work with GNU Fortran.  They can be found at
@uref{http://www.fortran.com/@/iso_varying_string.f95} and at
@uref{ftp://ftp.nag.co.uk/@/sc22wg5/@/ISO_VARYING_STRING/}.



@c =====================================================================
@c PART I: INVOCATION REFERENCE
@c =====================================================================

@tex
\part{I}{Invoking GNU Fortran}
@end tex

@c ---------------------------------------------------------------------
@c Compiler Options
@c ---------------------------------------------------------------------

@include invoke.texi


@c ---------------------------------------------------------------------
@c Runtime
@c ---------------------------------------------------------------------

@node Runtime
@chapter Runtime:  Influencing runtime behavior with environment variables
@cindex environment variable

The behavior of the @command{gfortran} can be influenced by
environment variables.

Malformed environment variables are silently ignored.

@menu
* TMPDIR:: Directory for scratch files
* GFORTRAN_STDIN_UNIT:: Unit number for standard input
* GFORTRAN_STDOUT_UNIT:: Unit number for standard output
* GFORTRAN_STDERR_UNIT:: Unit number for standard error
* GFORTRAN_UNBUFFERED_ALL:: Do not buffer I/O for all units.
* GFORTRAN_UNBUFFERED_PRECONNECTED:: Do not buffer I/O for preconnected units.
* GFORTRAN_SHOW_LOCUS::  Show location for runtime errors
* GFORTRAN_OPTIONAL_PLUS:: Print leading + where permitted
* GFORTRAN_DEFAULT_RECL:: Default record length for new files
* GFORTRAN_LIST_SEPARATOR::  Separator for list output
* GFORTRAN_CONVERT_UNIT::  Set endianness for unformatted I/O
* GFORTRAN_ERROR_BACKTRACE:: Show backtrace on run-time errors
@end menu

@node TMPDIR
@section @env{TMPDIR}---Directory for scratch files

When opening a file with @code{STATUS='SCRATCH'}, GNU Fortran tries to
create the file in one of the potential directories by testing each
directory in the order below.

@enumerate
@item
The environment variable @env{TMPDIR}, if it exists.

@item
On the MinGW target, the directory returned by the @code{GetTempPath}
function. Alternatively, on the Cygwin target, the @env{TMP} and
@env{TEMP} environment variables, if they exist, in that order.

@item
The @code{P_tmpdir} macro if it is defined, otherwise the directory
@file{/tmp}.
@end enumerate

@node GFORTRAN_STDIN_UNIT
@section @env{GFORTRAN_STDIN_UNIT}---Unit number for standard input

This environment variable can be used to select the unit number
preconnected to standard input.  This must be a positive integer.
The default value is 5.

@node GFORTRAN_STDOUT_UNIT
@section @env{GFORTRAN_STDOUT_UNIT}---Unit number for standard output

This environment variable can be used to select the unit number
preconnected to standard output.  This must be a positive integer.
The default value is 6.

@node GFORTRAN_STDERR_UNIT
@section @env{GFORTRAN_STDERR_UNIT}---Unit number for standard error

This environment variable can be used to select the unit number
preconnected to standard error.  This must be a positive integer.
The default value is 0.

@node GFORTRAN_UNBUFFERED_ALL
@section @env{GFORTRAN_UNBUFFERED_ALL}---Do not buffer I/O on all units

This environment variable controls whether all I/O is unbuffered.  If
the first letter is @samp{y}, @samp{Y} or @samp{1}, all I/O is
unbuffered.  This will slow down small sequential reads and writes.  If
the first letter is @samp{n}, @samp{N} or @samp{0}, I/O is buffered.
This is the default.

@node GFORTRAN_UNBUFFERED_PRECONNECTED
@section @env{GFORTRAN_UNBUFFERED_PRECONNECTED}---Do not buffer I/O on preconnected units

The environment variable named @env{GFORTRAN_UNBUFFERED_PRECONNECTED} controls
whether I/O on a preconnected unit (i.e.@: STDOUT or STDERR) is unbuffered.  If 
the first letter is @samp{y}, @samp{Y} or @samp{1}, I/O is unbuffered.  This
will slow down small sequential reads and writes.  If the first letter
is @samp{n}, @samp{N} or @samp{0}, I/O is buffered.  This is the default.

@node GFORTRAN_SHOW_LOCUS
@section @env{GFORTRAN_SHOW_LOCUS}---Show location for runtime errors

If the first letter is @samp{y}, @samp{Y} or @samp{1}, filename and
line numbers for runtime errors are printed.  If the first letter is
@samp{n}, @samp{N} or @samp{0}, do not print filename and line numbers
for runtime errors.  The default is to print the location.

@node GFORTRAN_OPTIONAL_PLUS
@section @env{GFORTRAN_OPTIONAL_PLUS}---Print leading + where permitted

If the first letter is @samp{y}, @samp{Y} or @samp{1},
a plus sign is printed
where permitted by the Fortran standard.  If the first letter
is @samp{n}, @samp{N} or @samp{0}, a plus sign is not printed
in most cases.  Default is not to print plus signs.

@node GFORTRAN_DEFAULT_RECL
@section @env{GFORTRAN_DEFAULT_RECL}---Default record length for new files

This environment variable specifies the default record length, in
bytes, for files which are opened without a @code{RECL} tag in the
@code{OPEN} statement.  This must be a positive integer.  The
default value is 1073741824 bytes (1 GB).

@node GFORTRAN_LIST_SEPARATOR
@section @env{GFORTRAN_LIST_SEPARATOR}---Separator for list output

This environment variable specifies the separator when writing
list-directed output.  It may contain any number of spaces and
at most one comma.  If you specify this on the command line,
be sure to quote spaces, as in
@smallexample
$ GFORTRAN_LIST_SEPARATOR='  ,  ' ./a.out
@end smallexample
when @command{a.out} is the compiled Fortran program that you want to run.
Default is a single space.

@node GFORTRAN_CONVERT_UNIT
@section @env{GFORTRAN_CONVERT_UNIT}---Set endianness for unformatted I/O

By setting the @env{GFORTRAN_CONVERT_UNIT} variable, it is possible
to change the representation of data for unformatted files.
The syntax for the @env{GFORTRAN_CONVERT_UNIT} variable is:
@smallexample
GFORTRAN_CONVERT_UNIT: mode | mode ';' exception | exception ;
mode: 'native' | 'swap' | 'big_endian' | 'little_endian' ;
exception: mode ':' unit_list | unit_list ;
unit_list: unit_spec | unit_list unit_spec ;
unit_spec: INTEGER | INTEGER '-' INTEGER ;
@end smallexample
The variable consists of an optional default mode, followed by
a list of optional exceptions, which are separated by semicolons
from the preceding default and each other.  Each exception consists
of a format and a comma-separated list of units.  Valid values for
the modes are the same as for the @code{CONVERT} specifier:

@itemize @w{}
@item @code{NATIVE} Use the native format.  This is the default.
@item @code{SWAP} Swap between little- and big-endian.
@item @code{LITTLE_ENDIAN} Use the little-endian format
for unformatted files.
@item @code{BIG_ENDIAN} Use the big-endian format for unformatted files.
@end itemize
A missing mode for an exception is taken to mean @code{BIG_ENDIAN}.
Examples of values for @env{GFORTRAN_CONVERT_UNIT} are:
@itemize @w{}
@item @code{'big_endian'}  Do all unformatted I/O in big_endian mode.
@item @code{'little_endian;native:10-20,25'}  Do all unformatted I/O 
in little_endian mode, except for units 10 to 20 and 25, which are in
native format.
@item @code{'10-20'}  Units 10 to 20 are big-endian, the rest is native.
@end itemize

Setting the environment variables should be done on the command
line or via the @command{export}
command for @command{sh}-compatible shells and via @command{setenv}
for @command{csh}-compatible shells.

Example for @command{sh}:
@smallexample
$ gfortran foo.f90
$ GFORTRAN_CONVERT_UNIT='big_endian;native:10-20' ./a.out
@end smallexample

Example code for @command{csh}:
@smallexample
% gfortran foo.f90
% setenv GFORTRAN_CONVERT_UNIT 'big_endian;native:10-20'
% ./a.out
@end smallexample

Using anything but the native representation for unformatted data
carries a significant speed overhead.  If speed in this area matters
to you, it is best if you use this only for data that needs to be
portable.

@xref{CONVERT specifier}, for an alternative way to specify the
data representation for unformatted files.  @xref{Runtime Options}, for
setting a default data representation for the whole program.  The
@code{CONVERT} specifier overrides the @option{-fconvert} compile options.

@emph{Note that the values specified via the GFORTRAN_CONVERT_UNIT
environment variable will override the CONVERT specifier in the
open statement}.  This is to give control over data formats to
users who do not have the source code of their program available.

@node GFORTRAN_ERROR_BACKTRACE
@section @env{GFORTRAN_ERROR_BACKTRACE}---Show backtrace on run-time errors

If the @env{GFORTRAN_ERROR_BACKTRACE} variable is set to @samp{y},
@samp{Y} or @samp{1} (only the first letter is relevant) then a
backtrace is printed when a serious run-time error occurs.  To disable
the backtracing, set the variable to @samp{n}, @samp{N}, @samp{0}.
Default is to print a backtrace unless the @option{-fno-backtrace}
compile option was used.

@c =====================================================================
@c PART II: LANGUAGE REFERENCE
@c =====================================================================

@tex
\part{II}{Language Reference}
@end tex

@c ---------------------------------------------------------------------
@c Fortran 2003 and 2008 Status
@c ---------------------------------------------------------------------

@node Fortran 2003 and 2008 status
@chapter Fortran 2003 and 2008 Status

@menu
* Fortran 2003 status::
* Fortran 2008 status::
* TS 29113 status::
@end menu

@node Fortran 2003 status
@section Fortran 2003 status

GNU Fortran supports several Fortran 2003 features; an incomplete
list can be found below.  See also the
@uref{http://gcc.gnu.org/wiki/Fortran2003, wiki page} about Fortran 2003.

@itemize
@item Procedure pointers including procedure-pointer components with
@code{PASS} attribute.

@item Procedures which are bound to a derived type (type-bound procedures)
including @code{PASS}, @code{PROCEDURE} and @code{GENERIC}, and
operators bound to a type.

@item Abstract interfaces and type extension with the possibility to
override type-bound procedures or to have deferred binding.

@item Polymorphic entities (``@code{CLASS}'') for derived types -- including
@code{SAME_TYPE_AS}, @code{EXTENDS_TYPE_OF} and @code{SELECT TYPE}.
Note that unlimited polymorphism is currently not supported.

@item Generic interface names, which have the same name as derived types,
are now supported. This allows one to write constructor functions.  Note
that Fortran does not support static constructor functions.  For static
variables, only default initialization or structure-constructor
initialization are available.

@item The @code{ASSOCIATE} construct.

@item Interoperability with C including enumerations, 

@item In structure constructors the components with default values may be
omitted.

@item Extensions to the @code{ALLOCATE} statement, allowing for a
type-specification with type parameter and for allocation and initialization
from a @code{SOURCE=} expression; @code{ALLOCATE} and @code{DEALLOCATE}
optionally return an error message string via @code{ERRMSG=}.

@item Reallocation on assignment: If an intrinsic assignment is
used, an allocatable variable on the left-hand side is automatically allocated
(if unallocated) or reallocated (if the shape is different). Currently, scalar
deferred character length left-hand sides are correctly handled but arrays
are not yet fully implemented.

@item Transferring of allocations via @code{MOVE_ALLOC}.

@item The @code{PRIVATE} and @code{PUBLIC} attributes may be given individually
to derived-type components.

@item In pointer assignments, the lower bound may be specified and
the remapping of elements is supported.

@item For pointers an @code{INTENT} may be specified which affect the
association status not the value of the pointer target.

@item Intrinsics @code{command_argument_count}, @code{get_command},
@code{get_command_argument}, and @code{get_environment_variable}.

@item Support for Unicode characters (ISO 10646) and UTF-8, including
the @code{SELECTED_CHAR_KIND} and @code{NEW_LINE} intrinsic functions.

@item Support for binary, octal and hexadecimal (BOZ) constants in the
intrinsic functions @code{INT}, @code{REAL}, @code{CMPLX} and @code{DBLE}.

@item Support for namelist variables with allocatable and pointer
attribute and nonconstant length type parameter.

@item
@cindex array, constructors
@cindex @code{[...]}
Array constructors using square brackets.  That is, @code{[...]} rather
than @code{(/.../)}.  Type-specification for array constructors like
@code{(/ some-type :: ... /)}.

@item Extensions to the specification and initialization expressions,
including the support for intrinsics with real and complex arguments.

@item Support for the asynchronous input/output syntax; however, the
data transfer is currently always synchronously performed. 

@item
@cindex @code{FLUSH} statement
@cindex statement, @code{FLUSH}
@code{FLUSH} statement.

@item
@cindex @code{IOMSG=} specifier
@code{IOMSG=} specifier for I/O statements.

@item
@cindex @code{ENUM} statement
@cindex @code{ENUMERATOR} statement
@cindex statement, @code{ENUM}
@cindex statement, @code{ENUMERATOR}
@opindex @code{fshort-enums}
Support for the declaration of enumeration constants via the
@code{ENUM} and @code{ENUMERATOR} statements.  Interoperability with
@command{gcc} is guaranteed also for the case where the
@command{-fshort-enums} command line option is given.

@item
@cindex TR 15581
TR 15581:
@itemize
@item
@cindex @code{ALLOCATABLE} dummy arguments
@code{ALLOCATABLE} dummy arguments.
@item
@cindex @code{ALLOCATABLE} function results
@code{ALLOCATABLE} function results
@item
@cindex @code{ALLOCATABLE} components of derived types
@code{ALLOCATABLE} components of derived types
@end itemize

@item
@cindex @code{STREAM} I/O
@cindex @code{ACCESS='STREAM'} I/O
The @code{OPEN} statement supports the @code{ACCESS='STREAM'} specifier,
allowing I/O without any record structure.

@item
Namelist input/output for internal files.

@item Further I/O extensions: Rounding during formatted output, using of
a decimal comma instead of a decimal point, setting whether a plus sign
should appear for positive numbers.

@item
@cindex @code{PROTECTED} statement
@cindex statement, @code{PROTECTED}
The @code{PROTECTED} statement and attribute.

@item
@cindex @code{VALUE} statement
@cindex statement, @code{VALUE}
The @code{VALUE} statement and attribute.

@item
@cindex @code{VOLATILE} statement
@cindex statement, @code{VOLATILE}
The @code{VOLATILE} statement and attribute.

@item
@cindex @code{IMPORT} statement
@cindex statement, @code{IMPORT}
The @code{IMPORT} statement, allowing to import
host-associated derived types.

@item The intrinsic modules @code{ISO_FORTRAN_ENVIRONMENT} is supported,
which contains parameters of the I/O units, storage sizes. Additionally,
procedures for C interoperability are available in the @code{ISO_C_BINDING}
module.

@item
@cindex @code{USE, INTRINSIC} statement
@cindex statement, @code{USE, INTRINSIC}
@cindex @code{ISO_FORTRAN_ENV} statement
@cindex statement, @code{ISO_FORTRAN_ENV}
@code{USE} statement with @code{INTRINSIC} and @code{NON_INTRINSIC}
attribute; supported intrinsic modules: @code{ISO_FORTRAN_ENV},
@code{ISO_C_BINDING}, @code{OMP_LIB} and @code{OMP_LIB_KINDS}.

@item
Renaming of operators in the @code{USE} statement.

@end itemize


@node Fortran 2008 status
@section Fortran 2008 status

The latest version of the Fortran standard is ISO/IEC 1539-1:2010, informally
known as Fortran 2008.  The official version is available from International
Organization for Standardization (ISO) or its national member organizations.
The the final draft (FDIS) can be downloaded free of charge from
@url{http://www.nag.co.uk/@/sc22wg5/@/links.html}.  Fortran is developed by the
Working Group 5 of Sub-Committee 22 of the Joint Technical Committee 1 of the
International Organization for Standardization and the International
Electrotechnical Commission (IEC).  This group is known as
@uref{http://www.nag.co.uk/sc22wg5/, WG5}.

The GNU Fortran compiler supports several of the new features of Fortran 2008;
the @uref{http://gcc.gnu.org/wiki/Fortran2008Status, wiki} has some information
about the current Fortran 2008 implementation status.  In particular, the
following is implemented.

@itemize
@item The @option{-std=f2008} option and support for the file extensions 
@file{.f08} and @file{.F08}.

@item The @code{OPEN} statement now supports the @code{NEWUNIT=} option,
which returns a unique file unit, thus preventing inadvertent use of the
same unit in different parts of the program.

@item The @code{g0} format descriptor and unlimited format items.

@item The mathematical intrinsics @code{ASINH}, @code{ACOSH}, @code{ATANH},
@code{ERF}, @code{ERFC}, @code{GAMMA}, @code{LOG_GAMMA}, @code{BESSEL_J0},
@code{BESSEL_J1}, @code{BESSEL_JN}, @code{BESSEL_Y0}, @code{BESSEL_Y1},
@code{BESSEL_YN}, @code{HYPOT}, @code{NORM2}, and @code{ERFC_SCALED}.

@item Using complex arguments with @code{TAN}, @code{SINH}, @code{COSH},
@code{TANH}, @code{ASIN}, @code{ACOS}, and @code{ATAN} is now possible;
@code{ATAN}(@var{Y},@var{X}) is now an alias for @code{ATAN2}(@var{Y},@var{X}).

@item Support of the @code{PARITY} intrinsic functions.

@item The following bit intrinsics: @code{LEADZ} and @code{TRAILZ} for
counting the number of leading and trailing zero bits, @code{POPCNT} and
@code{POPPAR} for counting the number of one bits and returning the parity;
@code{BGE}, @code{BGT}, @code{BLE}, and @code{BLT} for bitwise comparisons;
@code{DSHIFTL} and @code{DSHIFTR} for combined left and right shifts,
@code{MASKL} and @code{MASKR} for simple left and right justified masks,
@code{MERGE_BITS} for a bitwise merge using a mask, @code{SHIFTA},
@code{SHIFTL} and @code{SHIFTR} for shift operations, and the
transformational bit intrinsics @code{IALL}, @code{IANY} and @code{IPARITY}.

@item Support of the @code{EXECUTE_COMMAND_LINE} intrinsic subroutine.

@item Support for the @code{STORAGE_SIZE} intrinsic inquiry function.

@item The @code{INT@{8,16,32@}} and @code{REAL@{32,64,128@}} kind type
parameters and the array-valued named constants @code{INTEGER_KINDS},
@code{LOGICAL_KINDS}, @code{REAL_KINDS} and @code{CHARACTER_KINDS} of
the intrinsic module @code{ISO_FORTRAN_ENV}.

@item The module procedures @code{C_SIZEOF} of the intrinsic module
@code{ISO_C_BINDINGS} and @code{COMPILER_VERSION} and @code{COMPILER_OPTIONS}
of @code{ISO_FORTRAN_ENV}.

@item Coarray support for serial programs with @option{-fcoarray=single} flag
and experimental support for multiple images with the @option{-fcoarray=lib}
flag.

@item The @code{DO CONCURRENT} construct is supported.

@item The @code{BLOCK} construct is supported.

@item The @code{STOP} and the new @code{ERROR STOP} statements now
support all constant expressions.

@item Support for the @code{CONTIGUOUS} attribute.

@item Support for @code{ALLOCATE} with @code{MOLD}.

@item Support for the @code{IMPURE} attribute for procedures, which
allows for @code{ELEMENTAL} procedures without the restrictions of
@code{PURE}.

@item Null pointers (including @code{NULL()}) and not-allocated variables
can be used as actual argument to optional non-pointer, non-allocatable
dummy arguments, denoting an absent argument.

@item Non-pointer variables with @code{TARGET} attribute can be used as
actual argument to @code{POINTER} dummies with @code{INTENT(IN)}.

@item Pointers including procedure pointers and those in a derived
type (pointer components) can now be initialized by a target instead
of only by @code{NULL}.

@item The @code{EXIT} statement (with construct-name) can be now be
used to leave not only the @code{DO} but also the @code{ASSOCIATE},
@code{BLOCK}, @code{IF}, @code{SELECT CASE} and @code{SELECT TYPE}
constructs.

@item Internal procedures can now be used as actual argument.

@item Minor features: obsolesce diagnostics for @code{ENTRY} with
@option{-std=f2008}; a line may start with a semicolon; for internal
and module procedures @code{END} can be used instead of
@code{END SUBROUTINE} and @code{END FUNCTION}; @code{SELECTED_REAL_KIND}
now also takes a @code{RADIX} argument; intrinsic types are supported
for @code{TYPE}(@var{intrinsic-type-spec}); multiple type-bound procedures
can be declared in a single @code{PROCEDURE} statement; implied-shape
arrays are supported for named constants (@code{PARAMETER}).
@end itemize



@node TS 29113 status
@section Technical Specification 29113 Status

GNU Fortran supports some of the new features of the Technical
Specification (TS) 29113 on Further Interoperability of Fortran with C.
The @uref{http://gcc.gnu.org/wiki/TS29113Status, wiki} has some information
about the current TS 29113 implementation status.  In particular, the
following is implemented.

@itemize
@item The @option{-std=f2008ts} option.

@item The @code{OPTIONAL} attribute is allowed for dummy arguments
of @code{BIND(C) procedures.}

@item The RANK intrinsic is supported.

@item GNU Fortran's implementation for variables with @code{ASYNCHRONOUS}
attribute is compatible with TS 29113.
@end itemize



@c ---------------------------------------------------------------------
@c Compiler Characteristics
@c ---------------------------------------------------------------------

@node Compiler Characteristics
@chapter Compiler Characteristics

This chapter describes certain characteristics of the GNU Fortran
compiler, that are not specified by the Fortran standard, but which
might in some way or another become visible to the programmer.

@menu
* KIND Type Parameters::
* Internal representation of LOGICAL variables::
* Thread-safety of the runtime library::
* Data consistency and durability::
@end menu


@node KIND Type Parameters
@section KIND Type Parameters
@cindex kind

The @code{KIND} type parameters supported by GNU Fortran for the primitive
data types are:

@table @code

@item INTEGER
1, 2, 4, 8*, 16*, default: 4 (1)

@item LOGICAL
1, 2, 4, 8*, 16*, default: 4 (1)

@item REAL
4, 8, 10*, 16*, default: 4 (2)

@item COMPLEX
4, 8, 10*, 16*, default: 4 (2)

@item CHARACTER
1, 4, default: 1

@end table

@noindent
* = not available on all systems @*
(1) Unless -fdefault-integer-8 is used @*
(2) Unless -fdefault-real-8 is used

@noindent
The @code{KIND} value matches the storage size in bytes, except for
@code{COMPLEX} where the storage size is twice as much (or both real and
imaginary part are a real value of the given size).  It is recommended to use
the @code{SELECTED_CHAR_KIND}, @code{SELECTED_INT_KIND} and
@code{SELECTED_REAL_KIND} intrinsics or the @code{INT8}, @code{INT16},
@code{INT32}, @code{INT64}, @code{REAL32}, @code{REAL64}, and @code{REAL128}
parameters of the @code{ISO_FORTRAN_ENV} module instead of the concrete values.
The available kind parameters can be found in the constant arrays
@code{CHARACTER_KINDS}, @code{INTEGER_KINDS}, @code{LOGICAL_KINDS} and
@code{REAL_KINDS} in the @code{ISO_FORTRAN_ENV} module
(see @ref{ISO_FORTRAN_ENV}).


@node Internal representation of LOGICAL variables
@section Internal representation of LOGICAL variables
@cindex logical, variable representation

The Fortran standard does not specify how variables of @code{LOGICAL}
type are represented, beyond requiring that @code{LOGICAL} variables
of default kind have the same storage size as default @code{INTEGER}
and @code{REAL} variables.  The GNU Fortran internal representation is
as follows.

A @code{LOGICAL(KIND=N)} variable is represented as an
@code{INTEGER(KIND=N)} variable, however, with only two permissible
values: @code{1} for @code{.TRUE.} and @code{0} for
@code{.FALSE.}.  Any other integer value results in undefined behavior.

Note that for mixed-language programming using the
@code{ISO_C_BINDING} feature, there is a @code{C_BOOL} kind that can
be used to create @code{LOGICAL(KIND=C_BOOL)} variables which are
interoperable with the C99 _Bool type.  The C99 _Bool type has an
internal representation described in the C99 standard, which is
identical to the above description, i.e. with 1 for true and 0 for
false being the only permissible values.  Thus the internal
representation of @code{LOGICAL} variables in GNU Fortran is identical
to C99 _Bool, except for a possible difference in storage size
depending on the kind.


@node Thread-safety of the runtime library
@section Thread-safety of the runtime library
@cindex thread-safety, threads

GNU Fortran can be used in programs with multiple threads, e.g.@: by
using OpenMP, by calling OS thread handling functions via the
@code{ISO_C_BINDING} facility, or by GNU Fortran compiled library code
being called from a multi-threaded program.

The GNU Fortran runtime library, (@code{libgfortran}), supports being
called concurrently from multiple threads with the following
exceptions. 

During library initialization, the C @code{getenv} function is used,
which need not be thread-safe.  Similarly, the @code{getenv}
function is used to implement the @code{GET_ENVIRONMENT_VARIABLE} and
@code{GETENV} intrinsics.  It is the responsibility of the user to
ensure that the environment is not being updated concurrently when any
of these actions are taking place.

The @code{EXECUTE_COMMAND_LINE} and @code{SYSTEM} intrinsics are
implemented with the @code{system} function, which need not be
thread-safe.  It is the responsibility of the user to ensure that
@code{system} is not called concurrently.

Finally, for platforms not supporting thread-safe POSIX functions,
further functionality might not be thread-safe.  For details, please
consult the documentation for your operating system.


@node Data consistency and durability
@section Data consistency and durability
@cindex consistency, durability

This section contains a brief overview of data and metadata
consistency and durability issues when doing I/O.

With respect to durability, GNU Fortran makes no effort to ensure that
data is committed to stable storage. If this is required, the GNU
Fortran programmer can use the intrinsic @code{FNUM} to retrieve the
low level file descriptor corresponding to an open Fortran unit. Then,
using e.g. the @code{ISO_C_BINDING} feature, one can call the
underlying system call to flush dirty data to stable storage, such as
@code{fsync} on POSIX, @code{_commit} on MingW, or @code{fcntl(fd,
F_FULLSYNC, 0)} on Mac OS X. The following example shows how to call
fsync:

@smallexample
  ! Declare the interface for POSIX fsync function
  interface
    function fsync (fd) bind(c,name="fsync")
    use iso_c_binding, only: c_int
      integer(c_int), value :: fd
      integer(c_int) :: fsync
    end function fsync
  end interface

  ! Variable declaration
  integer :: ret

  ! Opening unit 10
  open (10,file="foo")

  ! ...
  ! Perform I/O on unit 10
  ! ...

  ! Flush and sync
  flush(10)
  ret = fsync(fnum(10))

  ! Handle possible error
  if (ret /= 0) stop "Error calling FSYNC"
@end smallexample

With respect to consistency, for regular files GNU Fortran uses
buffered I/O in order to improve performance. This buffer is flushed
automatically when full and in some other situations, e.g. when
closing a unit. It can also be explicitly flushed with the
@code{FLUSH} statement. Also, the buffering can be turned off with the
@code{GFORTRAN_UNBUFFERED_ALL} and
@code{GFORTRAN_UNBUFFERED_PRECONNECTED} environment variables. Special
files, such as terminals and pipes, are always unbuffered. Sometimes,
however, further things may need to be done in order to allow other
processes to see data that GNU Fortran has written, as follows.

The Windows platform supports a relaxed metadata consistency model,
where file metadata is written to the directory lazily. This means
that, for instance, the @code{dir} command can show a stale size for a
file. One can force a directory metadata update by closing the unit,
or by calling @code{_commit} on the file descriptor. Note, though,
that @code{_commit} will force all dirty data to stable storage, which
is often a very slow operation.

The Network File System (NFS) implements a relaxed consistency model
called open-to-close consistency. Closing a file forces dirty data and
metadata to be flushed to the server, and opening a file forces the
client to contact the server in order to revalidate cached
data. @code{fsync} will also force a flush of dirty data and metadata
to the server. Similar to @code{open} and @code{close}, acquiring and
releasing @code{fcntl} file locks, if the server supports them, will
also force cache validation and flushing dirty data and metadata.


@c ---------------------------------------------------------------------
@c Extensions
@c ---------------------------------------------------------------------

@c Maybe this chapter should be merged with the 'Standards' section,
@c whenever that is written :-)

@node Extensions
@chapter Extensions
@cindex extensions

The two sections below detail the extensions to standard Fortran that are
implemented in GNU Fortran, as well as some of the popular or
historically important extensions that are not (or not yet) implemented.
For the latter case, we explain the alternatives available to GNU Fortran
users, including replacement by standard-conforming code or GNU
extensions.

@menu
* Extensions implemented in GNU Fortran::
* Extensions not implemented in GNU Fortran::
@end menu


@node Extensions implemented in GNU Fortran
@section Extensions implemented in GNU Fortran
@cindex extensions, implemented

GNU Fortran implements a number of extensions over standard
Fortran.  This chapter contains information on their syntax and
meaning.  There are currently two categories of GNU Fortran
extensions, those that provide functionality beyond that provided
by any standard, and those that are supported by GNU Fortran
purely for backward compatibility with legacy compilers.  By default,
@option{-std=gnu} allows the compiler to accept both types of
extensions, but to warn about the use of the latter.  Specifying
either @option{-std=f95}, @option{-std=f2003} or @option{-std=f2008}
disables both types of extensions, and @option{-std=legacy} allows both
without warning.

@menu
* Old-style kind specifications::
* Old-style variable initialization::
* Extensions to namelist::
* X format descriptor without count field::
* Commas in FORMAT specifications::
* Missing period in FORMAT specifications::
* I/O item lists::
* BOZ literal constants::
* @code{Q} exponent-letter::
* Real array indices::
* Unary operators::
* Implicitly convert LOGICAL and INTEGER values::
* Hollerith constants support::
* Cray pointers::
* CONVERT specifier::
* OpenMP::
* Argument list functions::
@end menu

@node Old-style kind specifications
@subsection Old-style kind specifications
@cindex kind, old-style

GNU Fortran allows old-style kind specifications in declarations.  These
look like:
@smallexample
      TYPESPEC*size x,y,z
@end smallexample
@noindent
where @code{TYPESPEC} is a basic type (@code{INTEGER}, @code{REAL},
etc.), and where @code{size} is a byte count corresponding to the
storage size of a valid kind for that type.  (For @code{COMPLEX}
variables, @code{size} is the total size of the real and imaginary
parts.)  The statement then declares @code{x}, @code{y} and @code{z} to
be of type @code{TYPESPEC} with the appropriate kind.  This is
equivalent to the standard-conforming declaration
@smallexample
      TYPESPEC(k) x,y,z
@end smallexample
@noindent
where @code{k} is the kind parameter suitable for the intended precision.  As
kind parameters are implementation-dependent, use the @code{KIND},
@code{SELECTED_INT_KIND} and @code{SELECTED_REAL_KIND} intrinsics to retrieve
the correct value, for instance @code{REAL*8 x} can be replaced by:
@smallexample
INTEGER, PARAMETER :: dbl = KIND(1.0d0)
REAL(KIND=dbl) :: x
@end smallexample

@node Old-style variable initialization
@subsection Old-style variable initialization

GNU Fortran allows old-style initialization of variables of the
form:
@smallexample
      INTEGER i/1/,j/2/
      REAL x(2,2) /3*0.,1./
@end smallexample
The syntax for the initializers is as for the @code{DATA} statement, but
unlike in a @code{DATA} statement, an initializer only applies to the
variable immediately preceding the initialization.  In other words,
something like @code{INTEGER I,J/2,3/} is not valid.  This style of
initialization is only allowed in declarations without double colons
(@code{::}); the double colons were introduced in Fortran 90, which also
introduced a standard syntax for initializing variables in type
declarations.

Examples of standard-conforming code equivalent to the above example
are:
@smallexample
! Fortran 90
      INTEGER :: i = 1, j = 2
      REAL :: x(2,2) = RESHAPE((/0.,0.,0.,1./),SHAPE(x))
! Fortran 77
      INTEGER i, j
      REAL x(2,2)
      DATA i/1/, j/2/, x/3*0.,1./
@end smallexample

Note that variables which are explicitly initialized in declarations
or in @code{DATA} statements automatically acquire the @code{SAVE}
attribute.

@node Extensions to namelist
@subsection Extensions to namelist
@cindex Namelist

GNU Fortran fully supports the Fortran 95 standard for namelist I/O
including array qualifiers, substrings and fully qualified derived types.
The output from a namelist write is compatible with namelist read.  The
output has all names in upper case and indentation to column 1 after the
namelist name.  Two extensions are permitted:

Old-style use of @samp{$} instead of @samp{&}
@smallexample
$MYNML
 X(:)%Y(2) = 1.0 2.0 3.0
 CH(1:4) = "abcd"
$END
@end smallexample

It should be noted that the default terminator is @samp{/} rather than
@samp{&END}.

Querying of the namelist when inputting from stdin.  After at least
one space, entering @samp{?} sends to stdout the namelist name and the names of
the variables in the namelist:
@smallexample
 ?

&mynml
 x
 x%y
 ch
&end
@end smallexample

Entering @samp{=?} outputs the namelist to stdout, as if
@code{WRITE(*,NML = mynml)} had been called:
@smallexample
=?

&MYNML
 X(1)%Y=  0.000000    ,  1.000000    ,  0.000000    ,
 X(2)%Y=  0.000000    ,  2.000000    ,  0.000000    ,
 X(3)%Y=  0.000000    ,  3.000000    ,  0.000000    ,
 CH=abcd,  /
@end smallexample

To aid this dialog, when input is from stdin, errors send their
messages to stderr and execution continues, even if @code{IOSTAT} is set.

@code{PRINT} namelist is permitted.  This causes an error if
@option{-std=f95} is used.
@smallexample
PROGRAM test_print
  REAL, dimension (4)  ::  x = (/1.0, 2.0, 3.0, 4.0/)
  NAMELIST /mynml/ x
  PRINT mynml
END PROGRAM test_print
@end smallexample

Expanded namelist reads are permitted.  This causes an error if 
@option{-std=f95} is used.  In the following example, the first element
of the array will be given the value 0.00 and the two succeeding
elements will be given the values 1.00 and 2.00.
@smallexample
&MYNML
  X(1,1) = 0.00 , 1.00 , 2.00
/
@end smallexample

@node X format descriptor without count field
@subsection @code{X} format descriptor without count field

To support legacy codes, GNU Fortran permits the count field of the
@code{X} edit descriptor in @code{FORMAT} statements to be omitted.
When omitted, the count is implicitly assumed to be one.

@smallexample
       PRINT 10, 2, 3
10     FORMAT (I1, X, I1)
@end smallexample

@node Commas in FORMAT specifications
@subsection Commas in @code{FORMAT} specifications

To support legacy codes, GNU Fortran allows the comma separator
to be omitted immediately before and after character string edit
descriptors in @code{FORMAT} statements.

@smallexample
       PRINT 10, 2, 3
10     FORMAT ('FOO='I1' BAR='I2)
@end smallexample


@node Missing period in FORMAT specifications
@subsection Missing period in @code{FORMAT} specifications

To support legacy codes, GNU Fortran allows missing periods in format
specifications if and only if @option{-std=legacy} is given on the
command line.  This is considered non-conforming code and is
discouraged.

@smallexample
       REAL :: value
       READ(*,10) value
10     FORMAT ('F4')
@end smallexample

@node I/O item lists
@subsection I/O item lists
@cindex I/O item lists

To support legacy codes, GNU Fortran allows the input item list
of the @code{READ} statement, and the output item lists of the
@code{WRITE} and @code{PRINT} statements, to start with a comma.

@node @code{Q} exponent-letter
@subsection @code{Q} exponent-letter
@cindex @code{Q} exponent-letter

GNU Fortran accepts real literal constants with an exponent-letter
of @code{Q}, for example, @code{1.23Q45}.  The constant is interpreted
as a @code{REAL(16)} entity on targets that support this type.  If
the target does not support @code{REAL(16)} but has a @code{REAL(10)}
type, then the real-literal-constant will be interpreted as a
@code{REAL(10)} entity.  In the absence of @code{REAL(16)} and
@code{REAL(10)}, an error will occur.

@node BOZ literal constants
@subsection BOZ literal constants
@cindex BOZ literal constants

Besides decimal constants, Fortran also supports binary (@code{b}),
octal (@code{o}) and hexadecimal (@code{z}) integer constants.  The
syntax is: @samp{prefix quote digits quote}, were the prefix is
either @code{b}, @code{o} or @code{z}, quote is either @code{'} or
@code{"} and the digits are for binary @code{0} or @code{1}, for
octal between @code{0} and @code{7}, and for hexadecimal between
@code{0} and @code{F}.  (Example: @code{b'01011101'}.)

Up to Fortran 95, BOZ literals were only allowed to initialize
integer variables in DATA statements.  Since Fortran 2003 BOZ literals
are also allowed as argument of @code{REAL}, @code{DBLE}, @code{INT}
and @code{CMPLX}; the result is the same as if the integer BOZ
literal had been converted by @code{TRANSFER} to, respectively,
@code{real}, @code{double precision}, @code{integer} or @code{complex}.
As GNU Fortran extension the intrinsic procedures @code{FLOAT},
@code{DFLOAT}, @code{COMPLEX} and @code{DCMPLX} are treated alike.

As an extension, GNU Fortran allows hexadecimal BOZ literal constants to
be specified using the @code{X} prefix, in addition to the standard
@code{Z} prefix.  The BOZ literal can also be specified by adding a
suffix to the string, for example, @code{Z'ABC'} and @code{'ABC'Z} are
equivalent.

Furthermore, GNU Fortran allows using BOZ literal constants outside
DATA statements and the four intrinsic functions allowed by Fortran 2003.
In DATA statements, in direct assignments, where the right-hand side
only contains a BOZ literal constant, and for old-style initializers of
the form @code{integer i /o'0173'/}, the constant is transferred
as if @code{TRANSFER} had been used; for @code{COMPLEX} numbers, only
the real part is initialized unless @code{CMPLX} is used.  In all other
cases, the BOZ literal constant is converted to an @code{INTEGER} value with
the largest decimal representation.  This value is then converted
numerically to the type and kind of the variable in question.
(For instance, @code{real :: r = b'0000001' + 1} initializes @code{r}
with @code{2.0}.) As different compilers implement the extension
differently, one should be careful when doing bitwise initialization
of non-integer variables.

Note that initializing an @code{INTEGER} variable with a statement such
as @code{DATA i/Z'FFFFFFFF'/} will give an integer overflow error rather
than the desired result of @math{-1} when @code{i} is a 32-bit integer
on a system that supports 64-bit integers.  The @samp{-fno-range-check}
option can be used as a workaround for legacy code that initializes
integers in this manner.

@node Real array indices
@subsection Real array indices
@cindex array, indices of type real

As an extension, GNU Fortran allows the use of @code{REAL} expressions
or variables as array indices.

@node Unary operators
@subsection Unary operators
@cindex operators, unary

As an extension, GNU Fortran allows unary plus and unary minus operators
to appear as the second operand of binary arithmetic operators without
the need for parenthesis.

@smallexample
       X = Y * -Z
@end smallexample

@node Implicitly convert LOGICAL and INTEGER values
@subsection Implicitly convert @code{LOGICAL} and @code{INTEGER} values
@cindex conversion, to integer
@cindex conversion, to logical

As an extension for backwards compatibility with other compilers, GNU
Fortran allows the implicit conversion of @code{LOGICAL} values to
@code{INTEGER} values and vice versa.  When converting from a
@code{LOGICAL} to an @code{INTEGER}, @code{.FALSE.} is interpreted as
zero, and @code{.TRUE.} is interpreted as one.  When converting from
@code{INTEGER} to @code{LOGICAL}, the value zero is interpreted as
@code{.FALSE.} and any nonzero value is interpreted as @code{.TRUE.}.

@smallexample
        LOGICAL :: l
        l = 1
@end smallexample
@smallexample
        INTEGER :: i
        i = .TRUE.
@end smallexample

However, there is no implicit conversion of @code{INTEGER} values in
@code{if}-statements, nor of @code{LOGICAL} or @code{INTEGER} values
in I/O operations.

@node Hollerith constants support
@subsection Hollerith constants support
@cindex Hollerith constants

GNU Fortran supports Hollerith constants in assignments, function
arguments, and @code{DATA} and @code{ASSIGN} statements.  A Hollerith
constant is written as a string of characters preceded by an integer
constant indicating the character count, and the letter @code{H} or
@code{h}, and stored in bytewise fashion in a numeric (@code{INTEGER},
@code{REAL}, or @code{complex}) or @code{LOGICAL} variable.  The
constant will be padded or truncated to fit the size of the variable in
which it is stored.

Examples of valid uses of Hollerith constants:
@smallexample
      complex*16 x(2)
      data x /16Habcdefghijklmnop, 16Hqrstuvwxyz012345/
      x(1) = 16HABCDEFGHIJKLMNOP
      call foo (4h abc)
@end smallexample

Invalid Hollerith constants examples:
@smallexample
      integer*4 a
      a = 8H12345678 ! Valid, but the Hollerith constant will be truncated.
      a = 0H         ! At least one character is needed.
@end smallexample

In general, Hollerith constants were used to provide a rudimentary
facility for handling character strings in early Fortran compilers,
prior to the introduction of @code{CHARACTER} variables in Fortran 77;
in those cases, the standard-compliant equivalent is to convert the
program to use proper character strings.  On occasion, there may be a
case where the intent is specifically to initialize a numeric variable
with a given byte sequence.  In these cases, the same result can be
obtained by using the @code{TRANSFER} statement, as in this example.
@smallexample
      INTEGER(KIND=4) :: a
      a = TRANSFER ("abcd", a)     ! equivalent to: a = 4Habcd
@end smallexample


@node Cray pointers
@subsection Cray pointers
@cindex pointer, Cray

Cray pointers are part of a non-standard extension that provides a
C-like pointer in Fortran.  This is accomplished through a pair of
variables: an integer "pointer" that holds a memory address, and a
"pointee" that is used to dereference the pointer.

Pointer/pointee pairs are declared in statements of the form:
@smallexample
        pointer ( <pointer> , <pointee> )
@end smallexample
or,
@smallexample
        pointer ( <pointer1> , <pointee1> ), ( <pointer2> , <pointee2> ), ...
@end smallexample
The pointer is an integer that is intended to hold a memory address.
The pointee may be an array or scalar.  A pointee can be an assumed
size array---that is, the last dimension may be left unspecified by
using a @code{*} in place of a value---but a pointee cannot be an
assumed shape array.  No space is allocated for the pointee.

The pointee may have its type declared before or after the pointer
statement, and its array specification (if any) may be declared
before, during, or after the pointer statement.  The pointer may be
declared as an integer prior to the pointer statement.  However, some
machines have default integer sizes that are different than the size
of a pointer, and so the following code is not portable:
@smallexample
        integer ipt
        pointer (ipt, iarr)
@end smallexample
If a pointer is declared with a kind that is too small, the compiler
will issue a warning; the resulting binary will probably not work
correctly, because the memory addresses stored in the pointers may be
truncated.  It is safer to omit the first line of the above example;
if explicit declaration of ipt's type is omitted, then the compiler
will ensure that ipt is an integer variable large enough to hold a
pointer.

Pointer arithmetic is valid with Cray pointers, but it is not the same
as C pointer arithmetic.  Cray pointers are just ordinary integers, so
the user is responsible for determining how many bytes to add to a
pointer in order to increment it.  Consider the following example:
@smallexample
        real target(10)
        real pointee(10)
        pointer (ipt, pointee)
        ipt = loc (target)
        ipt = ipt + 1       
@end smallexample
The last statement does not set @code{ipt} to the address of
@code{target(1)}, as it would in C pointer arithmetic.  Adding @code{1}
to @code{ipt} just adds one byte to the address stored in @code{ipt}.

Any expression involving the pointee will be translated to use the
value stored in the pointer as the base address.

To get the address of elements, this extension provides an intrinsic
function @code{LOC()}.  The @code{LOC()} function is equivalent to the
@code{&} operator in C, except the address is cast to an integer type:
@smallexample
        real ar(10)
        pointer(ipt, arpte(10))
        real arpte
        ipt = loc(ar)  ! Makes arpte is an alias for ar
        arpte(1) = 1.0 ! Sets ar(1) to 1.0
@end smallexample
The pointer can also be set by a call to the @code{MALLOC} intrinsic
(see @ref{MALLOC}).

Cray pointees often are used to alias an existing variable.  For
example:
@smallexample
        integer target(10)
        integer iarr(10)
        pointer (ipt, iarr)
        ipt = loc(target)
@end smallexample
As long as @code{ipt} remains unchanged, @code{iarr} is now an alias for
@code{target}.  The optimizer, however, will not detect this aliasing, so
it is unsafe to use @code{iarr} and @code{target} simultaneously.  Using
a pointee in any way that violates the Fortran aliasing rules or
assumptions is illegal.  It is the user's responsibility to avoid doing
this; the compiler works under the assumption that no such aliasing
occurs.

Cray pointers will work correctly when there is no aliasing (i.e., when
they are used to access a dynamically allocated block of memory), and
also in any routine where a pointee is used, but any variable with which
it shares storage is not used.  Code that violates these rules may not
run as the user intends.  This is not a bug in the optimizer; any code
that violates the aliasing rules is illegal.  (Note that this is not
unique to GNU Fortran; any Fortran compiler that supports Cray pointers
will ``incorrectly'' optimize code with illegal aliasing.)

There are a number of restrictions on the attributes that can be applied
to Cray pointers and pointees.  Pointees may not have the
@code{ALLOCATABLE}, @code{INTENT}, @code{OPTIONAL}, @code{DUMMY},
@code{TARGET}, @code{INTRINSIC}, or @code{POINTER} attributes.  Pointers
may not have the @code{DIMENSION}, @code{POINTER}, @code{TARGET},
@code{ALLOCATABLE}, @code{EXTERNAL}, or @code{INTRINSIC} attributes, nor
may they be function results.  Pointees may not occur in more than one
pointer statement.  A pointee cannot be a pointer.  Pointees cannot occur
in equivalence, common, or data statements.

A Cray pointer may also point to a function or a subroutine.  For
example, the following excerpt is valid:
@smallexample
  implicit none
  external sub
  pointer (subptr,subpte)
  external subpte
  subptr = loc(sub)
  call subpte()
  [...]
  subroutine sub
  [...]
  end subroutine sub
@end smallexample

A pointer may be modified during the course of a program, and this
will change the location to which the pointee refers.  However, when
pointees are passed as arguments, they are treated as ordinary
variables in the invoked function.  Subsequent changes to the pointer
will not change the base address of the array that was passed.

@node CONVERT specifier
@subsection @code{CONVERT} specifier
@cindex @code{CONVERT} specifier

GNU Fortran allows the conversion of unformatted data between little-
and big-endian representation to facilitate moving of data
between different systems.  The conversion can be indicated with
the @code{CONVERT} specifier on the @code{OPEN} statement.
@xref{GFORTRAN_CONVERT_UNIT}, for an alternative way of specifying
the data format via an environment variable.

Valid values for @code{CONVERT} are:
@itemize @w{}
@item @code{CONVERT='NATIVE'} Use the native format.  This is the default.
@item @code{CONVERT='SWAP'} Swap between little- and big-endian.
@item @code{CONVERT='LITTLE_ENDIAN'} Use the little-endian representation
for unformatted files.
@item @code{CONVERT='BIG_ENDIAN'} Use the big-endian representation for
unformatted files.
@end itemize

Using the option could look like this:
@smallexample
  open(file='big.dat',form='unformatted',access='sequential', &
       convert='big_endian')
@end smallexample

The value of the conversion can be queried by using
@code{INQUIRE(CONVERT=ch)}.  The values returned are
@code{'BIG_ENDIAN'} and @code{'LITTLE_ENDIAN'}.

@code{CONVERT} works between big- and little-endian for
@code{INTEGER} values of all supported kinds and for @code{REAL}
on IEEE systems of kinds 4 and 8.  Conversion between different
``extended double'' types on different architectures such as
m68k and x86_64, which GNU Fortran
supports as @code{REAL(KIND=10)} and @code{REAL(KIND=16)}, will
probably not work.

@emph{Note that the values specified via the GFORTRAN_CONVERT_UNIT
environment variable will override the CONVERT specifier in the
open statement}.  This is to give control over data formats to
users who do not have the source code of their program available.

Using anything but the native representation for unformatted data
carries a significant speed overhead.  If speed in this area matters
to you, it is best if you use this only for data that needs to be
portable.

@node OpenMP
@subsection OpenMP
@cindex OpenMP

OpenMP (Open Multi-Processing) is an application programming
interface (API) that supports multi-platform shared memory 
multiprocessing programming in C/C++ and Fortran on many 
architectures, including Unix and Microsoft Windows platforms.
It consists of a set of compiler directives, library routines,
and environment variables that influence run-time behavior.

GNU Fortran strives to be compatible to the 
@uref{http://www.openmp.org/mp-documents/spec31.pdf,
OpenMP Application Program Interface v3.1}.

To enable the processing of the OpenMP directive @code{!$omp} in
free-form source code; the @code{c$omp}, @code{*$omp} and @code{!$omp}
directives in fixed form; the @code{!$} conditional compilation sentinels
in free form; and the @code{c$}, @code{*$} and @code{!$} sentinels
in fixed form, @command{gfortran} needs to be invoked with the
@option{-fopenmp}.  This also arranges for automatic linking of the
GNU OpenMP runtime library @ref{Top,,libgomp,libgomp,GNU OpenMP
runtime library}.

The OpenMP Fortran runtime library routines are provided both in a
form of a Fortran 90 module named @code{omp_lib} and in a form of
a Fortran @code{include} file named @file{omp_lib.h}.

An example of a parallelized loop taken from Appendix A.1 of
the OpenMP Application Program Interface v2.5:
@smallexample
SUBROUTINE A1(N, A, B)
  INTEGER I, N
  REAL B(N), A(N)
!$OMP PARALLEL DO !I is private by default
  DO I=2,N
    B(I) = (A(I) + A(I-1)) / 2.0
  ENDDO
!$OMP END PARALLEL DO
END SUBROUTINE A1
@end smallexample

Please note:
@itemize
@item
@option{-fopenmp} implies @option{-frecursive}, i.e., all local arrays
will be allocated on the stack.  When porting existing code to OpenMP,
this may lead to surprising results, especially to segmentation faults
if the stacksize is limited.

@item
On glibc-based systems, OpenMP enabled applications cannot be statically
linked due to limitations of the underlying pthreads-implementation.  It
might be possible to get a working solution if 
@command{-Wl,--whole-archive -lpthread -Wl,--no-whole-archive} is added
to the command line.  However, this is not supported by @command{gcc} and
thus not recommended.
@end itemize

@node Argument list functions
@subsection Argument list functions @code{%VAL}, @code{%REF} and @code{%LOC}
@cindex argument list functions
@cindex @code{%VAL}
@cindex @code{%REF}
@cindex @code{%LOC}

GNU Fortran supports argument list functions @code{%VAL}, @code{%REF} 
and @code{%LOC} statements, for backward compatibility with g77. 
It is recommended that these should be used only for code that is 
accessing facilities outside of GNU Fortran, such as operating system 
or windowing facilities.  It is best to constrain such uses to isolated 
portions of a program--portions that deal specifically and exclusively 
with low-level, system-dependent facilities.  Such portions might well 
provide a portable interface for use by the program as a whole, but are 
themselves not portable, and should be thoroughly tested each time they 
are rebuilt using a new compiler or version of a compiler.

@code{%VAL} passes a scalar argument by value, @code{%REF} passes it by 
reference and @code{%LOC} passes its memory location.  Since gfortran 
already passes scalar arguments by reference, @code{%REF} is in effect 
a do-nothing.  @code{%LOC} has the same effect as a Fortran pointer.

An example of passing an argument by value to a C subroutine foo.:
@smallexample
C
C prototype      void foo_ (float x);
C
      external foo
      real*4 x
      x = 3.14159
      call foo (%VAL (x))
      end
@end smallexample

For details refer to the g77 manual
@uref{http://gcc.gnu.org/@/onlinedocs/@/gcc-3.4.6/@/g77/@/index.html#Top}.

Also, @code{c_by_val.f} and its partner @code{c_by_val.c} of the
GNU Fortran testsuite are worth a look.


@node Extensions not implemented in GNU Fortran
@section Extensions not implemented in GNU Fortran
@cindex extensions, not implemented

The long history of the Fortran language, its wide use and broad
userbase, the large number of different compiler vendors and the lack of
some features crucial to users in the first standards have lead to the
existence of a number of important extensions to the language.  While
some of the most useful or popular extensions are supported by the GNU
Fortran compiler, not all existing extensions are supported.  This section
aims at listing these extensions and offering advice on how best make
code that uses them running with the GNU Fortran compiler.

@c More can be found here:
@c   -- http://gcc.gnu.org/onlinedocs/gcc-3.4.6/g77/Missing-Features.html
@c   -- the list of Fortran and libgfortran bugs closed as WONTFIX:
@c      http://tinyurl.com/2u4h5y

@menu
* STRUCTURE and RECORD::
@c * UNION and MAP::
* ENCODE and DECODE statements::
* Variable FORMAT expressions::
@c * Q edit descriptor::
@c * AUTOMATIC statement::
@c * TYPE and ACCEPT I/O Statements::
@c * .XOR. operator::
@c * CARRIAGECONTROL, DEFAULTFILE, DISPOSE and RECORDTYPE I/O specifiers::
@c * Omitted arguments in procedure call::
* Alternate complex function syntax::
@end menu


@node STRUCTURE and RECORD
@subsection @code{STRUCTURE} and @code{RECORD}
@cindex @code{STRUCTURE}
@cindex @code{RECORD}

Structures are user-defined aggregate data types; this functionality was
standardized in Fortran 90 with an different syntax, under the name of
``derived types''.  Here is an example of code using the non portable
structure syntax:

@example
! Declaring a structure named ``item'' and containing three fields:
! an integer ID, an description string and a floating-point price.
STRUCTURE /item/
  INTEGER id
  CHARACTER(LEN=200) description
  REAL price
END STRUCTURE

! Define two variables, an single record of type ``item''
! named ``pear'', and an array of items named ``store_catalog''
RECORD /item/ pear, store_catalog(100)

! We can directly access the fields of both variables
pear.id = 92316
pear.description = "juicy D'Anjou pear"
pear.price = 0.15
store_catalog(7).id = 7831
store_catalog(7).description = "milk bottle"
store_catalog(7).price = 1.2

! We can also manipulate the whole structure
store_catalog(12) = pear
print *, store_catalog(12)
@end example

@noindent
This code can easily be rewritten in the Fortran 90 syntax as following:

@example
! ``STRUCTURE /name/ ... END STRUCTURE'' becomes
! ``TYPE name ... END TYPE''
TYPE item
  INTEGER id
  CHARACTER(LEN=200) description
  REAL price
END TYPE

! ``RECORD /name/ variable'' becomes ``TYPE(name) variable''
TYPE(item) pear, store_catalog(100)

! Instead of using a dot (.) to access fields of a record, the
! standard syntax uses a percent sign (%)
pear%id = 92316
pear%description = "juicy D'Anjou pear"
pear%price = 0.15
store_catalog(7)%id = 7831
store_catalog(7)%description = "milk bottle"
store_catalog(7)%price = 1.2

! Assignments of a whole variable do not change
store_catalog(12) = pear
print *, store_catalog(12)
@end example


@c @node UNION and MAP
@c @subsection @code{UNION} and @code{MAP}
@c @cindex @code{UNION}
@c @cindex @code{MAP}
@c
@c For help writing this one, see
@c http://www.eng.umd.edu/~nsw/ench250/fortran1.htm#UNION and
@c http://www.tacc.utexas.edu/services/userguides/pgi/pgiws_ug/pgi32u06.htm


@node ENCODE and DECODE statements
@subsection @code{ENCODE} and @code{DECODE} statements
@cindex @code{ENCODE}
@cindex @code{DECODE}

GNU Fortran does not support the @code{ENCODE} and @code{DECODE}
statements.  These statements are best replaced by @code{READ} and
@code{WRITE} statements involving internal files (@code{CHARACTER}
variables and arrays), which have been part of the Fortran standard since
Fortran 77.  For example, replace a code fragment like

@smallexample
      INTEGER*1 LINE(80)
      REAL A, B, C
c     ... Code that sets LINE
      DECODE (80, 9000, LINE) A, B, C
 9000 FORMAT (1X, 3(F10.5))
@end smallexample

@noindent
with the following:

@smallexample
      CHARACTER(LEN=80) LINE
      REAL A, B, C
c     ... Code that sets LINE
      READ (UNIT=LINE, FMT=9000) A, B, C
 9000 FORMAT (1X, 3(F10.5))
@end smallexample

Similarly, replace a code fragment like

@smallexample
      INTEGER*1 LINE(80)
      REAL A, B, C
c     ... Code that sets A, B and C
      ENCODE (80, 9000, LINE) A, B, C
 9000 FORMAT (1X, 'OUTPUT IS ', 3(F10.5))
@end smallexample

@noindent
with the following:

@smallexample
      CHARACTER(LEN=80) LINE
      REAL A, B, C
c     ... Code that sets A, B and C
      WRITE (UNIT=LINE, FMT=9000) A, B, C
 9000 FORMAT (1X, 'OUTPUT IS ', 3(F10.5))
@end smallexample


@node Variable FORMAT expressions
@subsection Variable @code{FORMAT} expressions
@cindex @code{FORMAT}

A variable @code{FORMAT} expression is format statement which includes
angle brackets enclosing a Fortran expression: @code{FORMAT(I<N>)}.  GNU
Fortran does not support this legacy extension.  The effect of variable
format expressions can be reproduced by using the more powerful (and
standard) combination of internal output and string formats.  For example,
replace a code fragment like this:

@smallexample
      WRITE(6,20) INT1
 20   FORMAT(I<N+1>)
@end smallexample

@noindent
with the following:

@smallexample
c     Variable declaration
      CHARACTER(LEN=20) FMT
c     
c     Other code here...
c
      WRITE(FMT,'("(I", I0, ")")') N+1
      WRITE(6,FMT) INT1
@end smallexample

@noindent
or with:

@smallexample
c     Variable declaration
      CHARACTER(LEN=20) FMT
c     
c     Other code here...
c
      WRITE(FMT,*) N+1
      WRITE(6,"(I" // ADJUSTL(FMT) // ")") INT1
@end smallexample


@node Alternate complex function syntax
@subsection Alternate complex function syntax
@cindex Complex function

Some Fortran compilers, including @command{g77}, let the user declare
complex functions with the syntax @code{COMPLEX FUNCTION name*16()}, as
well as @code{COMPLEX*16 FUNCTION name()}.  Both are non-standard, legacy
extensions.  @command{gfortran} accepts the latter form, which is more
common, but not the former.



@c ---------------------------------------------------------------------
@c Mixed-Language Programming
@c ---------------------------------------------------------------------

@node Mixed-Language Programming
@chapter Mixed-Language Programming
@cindex Interoperability
@cindex Mixed-language programming

@menu
* Interoperability with C::
* GNU Fortran Compiler Directives::
* Non-Fortran Main Program::
@end menu

This chapter is about mixed-language interoperability, but also applies
if one links Fortran code compiled by different compilers.  In most cases,
use of the C Binding features of the Fortran 2003 standard is sufficient,
and their use is highly recommended.


@node Interoperability with C
@section Interoperability with C

@menu
* Intrinsic Types::
* Derived Types and struct::
* Interoperable Global Variables::
* Interoperable Subroutines and Functions::
* Working with Pointers::
* Further Interoperability of Fortran with C::
@end menu

Since Fortran 2003 (ISO/IEC 1539-1:2004(E)) there is a
standardized way to generate procedure and derived-type
declarations and global variables which are interoperable with C
(ISO/IEC 9899:1999).  The @code{bind(C)} attribute has been added
to inform the compiler that a symbol shall be interoperable with C;
also, some constraints are added.  Note, however, that not
all C features have a Fortran equivalent or vice versa.  For instance,
neither C's unsigned integers nor C's functions with variable number
of arguments have an equivalent in Fortran.

Note that array dimensions are reversely ordered in C and that arrays in
C always start with index 0 while in Fortran they start by default with
1.  Thus, an array declaration @code{A(n,m)} in Fortran matches
@code{A[m][n]} in C and accessing the element @code{A(i,j)} matches
@code{A[j-1][i-1]}.  The element following @code{A(i,j)} (C: @code{A[j-1][i-1]};
assuming @math{i < n}) in memory is @code{A(i+1,j)} (C: @code{A[j-1][i]}).

@node Intrinsic Types
@subsection Intrinsic Types

In order to ensure that exactly the same variable type and kind is used
in C and Fortran, the named constants shall be used which are defined in the
@code{ISO_C_BINDING} intrinsic module.  That module contains named constants
for kind parameters and character named constants for the escape sequences
in C.  For a list of the constants, see @ref{ISO_C_BINDING}.

@node Derived Types and struct
@subsection Derived Types and struct

For compatibility of derived types with @code{struct}, one needs to use
the @code{BIND(C)} attribute in the type declaration.  For instance, the
following type declaration

@smallexample
 USE ISO_C_BINDING
 TYPE, BIND(C) :: myType
   INTEGER(C_INT) :: i1, i2
   INTEGER(C_SIGNED_CHAR) :: i3
   REAL(C_DOUBLE) :: d1
   COMPLEX(C_FLOAT_COMPLEX) :: c1
   CHARACTER(KIND=C_CHAR) :: str(5)
 END TYPE
@end smallexample

matches the following @code{struct} declaration in C

@smallexample
 struct @{
   int i1, i2;
   /* Note: "char" might be signed or unsigned.  */
   signed char i3;
   double d1;
   float _Complex c1;
   char str[5];
 @} myType;
@end smallexample

Derived types with the C binding attribute shall not have the @code{sequence}
attribute, type parameters, the @code{extends} attribute, nor type-bound
procedures.  Every component must be of interoperable type and kind and may not
have the @code{pointer} or @code{allocatable} attribute.  The names of the
variables are irrelevant for interoperability.

As there exist no direct Fortran equivalents, neither unions nor structs
with bit field or variable-length array members are interoperable.

@node Interoperable Global Variables
@subsection Interoperable Global Variables

Variables can be made accessible from C using the C binding attribute,
optionally together with specifying a binding name.  Those variables
have to be declared in the declaration part of a @code{MODULE},
be of interoperable type, and have neither the @code{pointer} nor
the @code{allocatable} attribute.

@smallexample
  MODULE m
    USE myType_module
    USE ISO_C_BINDING
    integer(C_INT), bind(C, name="_MyProject_flags") :: global_flag
    type(myType), bind(C) :: tp
  END MODULE
@end smallexample

Here, @code{_MyProject_flags} is the case-sensitive name of the variable
as seen from C programs while @code{global_flag} is the case-insensitive
name as seen from Fortran.  If no binding name is specified, as for
@var{tp}, the C binding name is the (lowercase) Fortran binding name.
If a binding name is specified, only a single variable may be after the
double colon.  Note of warning: You cannot use a global variable to
access @var{errno} of the C library as the C standard allows it to be
a macro.  Use the @code{IERRNO} intrinsic (GNU extension) instead.

@node Interoperable Subroutines and Functions
@subsection Interoperable Subroutines and Functions

Subroutines and functions have to have the @code{BIND(C)} attribute to
be compatible with C.  The dummy argument declaration is relatively
straightforward.  However, one needs to be careful because C uses
call-by-value by default while Fortran behaves usually similar to
call-by-reference.  Furthermore, strings and pointers are handled
differently.  Note that only explicit size and assumed-size arrays are
supported but not assumed-shape or allocatable arrays.

To pass a variable by value, use the @code{VALUE} attribute.
Thus the following C prototype

@smallexample
@code{int func(int i, int *j)}
@end smallexample

matches the Fortran declaration

@smallexample
  integer(c_int) function func(i,j)
    use iso_c_binding, only: c_int
    integer(c_int), VALUE :: i
    integer(c_int) :: j
@end smallexample

Note that pointer arguments also frequently need the @code{VALUE} attribute,
see @ref{Working with Pointers}.

Strings are handled quite differently in C and Fortran.  In C a string
is a @code{NUL}-terminated array of characters while in Fortran each string
has a length associated with it and is thus not terminated (by e.g.
@code{NUL}).  For example, if one wants to use the following C function,

@smallexample
  #include <stdio.h>
  void print_C(char *string) /* equivalent: char string[]  */
  @{
     printf("%s\n", string);
  @}
@end smallexample

to print ``Hello World'' from Fortran, one can call it using

@smallexample
  use iso_c_binding, only: C_CHAR, C_NULL_CHAR
  interface
    subroutine print_c(string) bind(C, name="print_C")
      use iso_c_binding, only: c_char
      character(kind=c_char) :: string(*)
    end subroutine print_c
  end interface
  call print_c(C_CHAR_"Hello World"//C_NULL_CHAR)
@end smallexample

As the example shows, one needs to ensure that the
string is @code{NUL} terminated.  Additionally, the dummy argument
@var{string} of @code{print_C} is a length-one assumed-size
array; using @code{character(len=*)} is not allowed.  The example
above uses @code{c_char_"Hello World"} to ensure the string
literal has the right type; typically the default character
kind and @code{c_char} are the same and thus @code{"Hello World"}
is equivalent.  However, the standard does not guarantee this.

The use of strings is now further illustrated using the C library
function @code{strncpy}, whose prototype is

@smallexample
  char *strncpy(char *restrict s1, const char *restrict s2, size_t n);
@end smallexample

The function @code{strncpy} copies at most @var{n} characters from
string @var{s2} to @var{s1} and returns @var{s1}.  In the following
example, we ignore the return value:

@smallexample
  use iso_c_binding
  implicit none
  character(len=30) :: str,str2
  interface
    ! Ignore the return value of strncpy -> subroutine
    ! "restrict" is always assumed if we do not pass a pointer
    subroutine strncpy(dest, src, n) bind(C)
      import
      character(kind=c_char),  intent(out) :: dest(*)
      character(kind=c_char),  intent(in)  :: src(*)
      integer(c_size_t), value, intent(in) :: n
    end subroutine strncpy
  end interface
  str = repeat('X',30) ! Initialize whole string with 'X'
  call strncpy(str, c_char_"Hello World"//C_NULL_CHAR, &
               len(c_char_"Hello World",kind=c_size_t))
  print '(a)', str ! prints: "Hello WorldXXXXXXXXXXXXXXXXXXX"
  end
@end smallexample

The intrinsic procedures are described in @ref{Intrinsic Procedures}.

@node Working with Pointers
@subsection Working with Pointers

C pointers are represented in Fortran via the special opaque derived type
@code{type(c_ptr)} (with private components).  Thus one needs to
use intrinsic conversion procedures to convert from or to C pointers.
For example,

@smallexample
  use iso_c_binding
  type(c_ptr) :: cptr1, cptr2
  integer, target :: array(7), scalar
  integer, pointer :: pa(:), ps
  cptr1 = c_loc(array(1)) ! The programmer needs to ensure that the
                          ! array is contiguous if required by the C
                          ! procedure
  cptr2 = c_loc(scalar)
  call c_f_pointer(cptr2, ps)
  call c_f_pointer(cptr2, pa, shape=[7])
@end smallexample

When converting C to Fortran arrays, the one-dimensional @code{SHAPE} argument
has to be passed.

If a pointer is a dummy-argument of an interoperable procedure, it usually
has to be declared using the @code{VALUE} attribute.  @code{void*}
matches @code{TYPE(C_PTR), VALUE}, while @code{TYPE(C_PTR)} alone
matches @code{void**}.

Procedure pointers are handled analogously to pointers; the C type is
@code{TYPE(C_FUNPTR)} and the intrinsic conversion procedures are
@code{C_F_PROCPOINTER} and @code{C_FUNLOC}.

Let us consider two examples of actually passing a procedure pointer from
C to Fortran and vice versa.  Note that these examples are also very
similar to passing ordinary pointers between both languages. First,
consider this code in C:

@smallexample
/* Procedure implemented in Fortran.  */
void get_values (void (*)(double));

/* Call-back routine we want called from Fortran.  */
void
print_it (double x)
@{
  printf ("Number is %f.\n", x);
@}

/* Call Fortran routine and pass call-back to it.  */
void
foobar ()
@{
  get_values (&print_it);
@}
@end smallexample

A matching implementation for @code{get_values} in Fortran, that correctly
receives the procedure pointer from C and is able to call it, is given
in the following @code{MODULE}:

@smallexample
MODULE m
  IMPLICIT NONE

  ! Define interface of call-back routine.
  ABSTRACT INTERFACE
    SUBROUTINE callback (x)
      USE, INTRINSIC :: ISO_C_BINDING
      REAL(KIND=C_DOUBLE), INTENT(IN), VALUE :: x
    END SUBROUTINE callback
  END INTERFACE

CONTAINS

  ! Define C-bound procedure.
  SUBROUTINE get_values (cproc) BIND(C)
    USE, INTRINSIC :: ISO_C_BINDING
    TYPE(C_FUNPTR), INTENT(IN), VALUE :: cproc

    PROCEDURE(callback), POINTER :: proc

    ! Convert C to Fortran procedure pointer.
    CALL C_F_PROCPOINTER (cproc, proc)

    ! Call it.
    CALL proc (1.0_C_DOUBLE)
    CALL proc (-42.0_C_DOUBLE)
    CALL proc (18.12_C_DOUBLE)
  END SUBROUTINE get_values

END MODULE m
@end smallexample

Next, we want to call a C routine that expects a procedure pointer argument
and pass it a Fortran procedure (which clearly must be interoperable!).
Again, the C function may be:

@smallexample
int
call_it (int (*func)(int), int arg)
@{
  return func (arg);
@}
@end smallexample

It can be used as in the following Fortran code:

@smallexample
MODULE m
  USE, INTRINSIC :: ISO_C_BINDING
  IMPLICIT NONE

  ! Define interface of C function.
  INTERFACE
    INTEGER(KIND=C_INT) FUNCTION call_it (func, arg) BIND(C)
      USE, INTRINSIC :: ISO_C_BINDING
      TYPE(C_FUNPTR), INTENT(IN), VALUE :: func
      INTEGER(KIND=C_INT), INTENT(IN), VALUE :: arg
    END FUNCTION call_it
  END INTERFACE

CONTAINS

  ! Define procedure passed to C function.
  ! It must be interoperable!
  INTEGER(KIND=C_INT) FUNCTION double_it (arg) BIND(C)
    INTEGER(KIND=C_INT), INTENT(IN), VALUE :: arg
    double_it = arg + arg
  END FUNCTION double_it

  ! Call C function.
  SUBROUTINE foobar ()
    TYPE(C_FUNPTR) :: cproc
    INTEGER(KIND=C_INT) :: i

    ! Get C procedure pointer.
    cproc = C_FUNLOC (double_it)

    ! Use it.
    DO i = 1_C_INT, 10_C_INT
      PRINT *, call_it (cproc, i)
    END DO
  END SUBROUTINE foobar

END MODULE m
@end smallexample

@node Further Interoperability of Fortran with C
@subsection Further Interoperability of Fortran with C

Assumed-shape and allocatable arrays are passed using an array descriptor
(dope vector).  The internal structure of the array descriptor used
by GNU Fortran is not yet documented and will change.  There will also be
a Technical Specification (TS 29113) which standardizes an interoperable
array descriptor.  Until then, you can use the Chasm Language
Interoperability Tools, @url{http://chasm-interop.sourceforge.net/},
which provide an interface to GNU Fortran's array descriptor.

GNU Fortran already supports the C-interoperable @code{OPTIONAL}
attribute; for absent arguments, a @code{NULL} pointer is passed.



@node GNU Fortran Compiler Directives
@section GNU Fortran Compiler Directives

The Fortran standard describes how a conforming program shall
behave; however, the exact implementation is not standardized.  In order
to allow the user to choose specific implementation details, compiler
directives can be used to set attributes of variables and procedures
which are not part of the standard.  Whether a given attribute is
supported and its exact effects depend on both the operating system and
on the processor; see
@ref{Top,,C Extensions,gcc,Using the GNU Compiler Collection (GCC)}
for details.

For procedures and procedure pointers, the following attributes can
be used to change the calling convention:

@itemize
@item @code{CDECL} -- standard C calling convention
@item @code{STDCALL} -- convention where the called procedure pops the stack
@item @code{FASTCALL} -- part of the arguments are passed via registers
instead using the stack
@end itemize

Besides changing the calling convention, the attributes also influence
the decoration of the symbol name, e.g., by a leading underscore or by
a trailing at-sign followed by the number of bytes on the stack.  When
assigning a procedure to a procedure pointer, both should use the same
calling convention.

On some systems, procedures and global variables (module variables and
@code{COMMON} blocks) need special handling to be accessible when they
are in a shared library.  The following attributes are available:

@itemize
@item @code{DLLEXPORT} -- provide a global pointer to a pointer in the DLL
@item @code{DLLIMPORT} -- reference the function or variable using a global pointer 
@end itemize

The attributes are specified using the syntax

@code{!GCC$ ATTRIBUTES} @var{attribute-list} @code{::} @var{variable-list}

where in free-form source code only whitespace is allowed before @code{!GCC$}
and in fixed-form source code @code{!GCC$}, @code{cGCC$} or @code{*GCC$} shall
start in the first column.

For procedures, the compiler directives shall be placed into the body
of the procedure; for variables and procedure pointers, they shall be in
the same declaration part as the variable or procedure pointer.



@node Non-Fortran Main Program
@section Non-Fortran Main Program

@menu
* _gfortran_set_args:: Save command-line arguments
* _gfortran_set_options:: Set library option flags
* _gfortran_set_convert:: Set endian conversion
* _gfortran_set_record_marker:: Set length of record markers
* _gfortran_set_max_subrecord_length:: Set subrecord length
* _gfortran_set_fpe:: Set when a Floating Point Exception should be raised
@end menu

Even if you are doing mixed-language programming, it is very
likely that you do not need to know or use the information in this
section.  Since it is about the internal structure of GNU Fortran,
it may also change in GCC minor releases.

When you compile a @code{PROGRAM} with GNU Fortran, a function
with the name @code{main} (in the symbol table of the object file)
is generated, which initializes the libgfortran library and then
calls the actual program which uses the name @code{MAIN__}, for
historic reasons.  If you link GNU Fortran compiled procedures
to, e.g., a C or C++ program or to a Fortran program compiled by
a different compiler, the libgfortran library is not initialized
and thus a few intrinsic procedures do not work properly, e.g.
those for obtaining the command-line arguments.

Therefore, if your @code{PROGRAM} is not compiled with
GNU Fortran and the GNU Fortran compiled procedures require
intrinsics relying on the library initialization, you need to
initialize the library yourself.  Using the default options,
gfortran calls @code{_gfortran_set_args} and
@code{_gfortran_set_options}.  The initialization of the former
is needed if the called procedures access the command line
(and for backtracing); the latter sets some flags based on the
standard chosen or to enable backtracing.  In typical programs,
it is not necessary to call any initialization function.

If your @code{PROGRAM} is compiled with GNU Fortran, you shall
not call any of the following functions.  The libgfortran
initialization functions are shown in C syntax but using C
bindings they are also accessible from Fortran.


@node _gfortran_set_args
@subsection @code{_gfortran_set_args} --- Save command-line arguments
@fnindex _gfortran_set_args
@cindex libgfortran initialization, set_args

@table @asis
@item @emph{Description}:
@code{_gfortran_set_args} saves the command-line arguments; this
initialization is required if any of the command-line intrinsics
is called.  Additionally, it shall be called if backtracing is
enabled (see @code{_gfortran_set_options}).

@item @emph{Syntax}:
@code{void _gfortran_set_args (int argc, char *argv[])}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{argc} @tab number of command line argument strings
@item @var{argv} @tab the command-line argument strings; argv[0]
is the pathname of the executable itself.
@end multitable

@item @emph{Example}:
@smallexample
int main (int argc, char *argv[])
@{
  /* Initialize libgfortran.  */
  _gfortran_set_args (argc, argv);
  return 0;
@}
@end smallexample
@end table


@node _gfortran_set_options
@subsection @code{_gfortran_set_options} --- Set library option flags
@fnindex _gfortran_set_options
@cindex libgfortran initialization, set_options

@table @asis
@item @emph{Description}:
@code{_gfortran_set_options} sets several flags related to the Fortran
standard to be used, whether backtracing should be enabled
and whether range checks should be performed.  The syntax allows for
upward compatibility since the number of passed flags is specified; for
non-passed flags, the default value is used.  See also
@pxref{Code Gen Options}.  Please note that not all flags are actually
used.

@item @emph{Syntax}:
@code{void _gfortran_set_options (int num, int options[])}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{num} @tab number of options passed
@item @var{argv} @tab The list of flag values
@end multitable

@item @emph{option flag list}:
@multitable @columnfractions .15 .70
@item @var{option}[0] @tab Allowed standard; can give run-time errors
if e.g. an input-output edit descriptor is invalid in a given standard.
Possible values are (bitwise or-ed) @code{GFC_STD_F77} (1),
@code{GFC_STD_F95_OBS} (2), @code{GFC_STD_F95_DEL} (4), @code{GFC_STD_F95}
(8), @code{GFC_STD_F2003} (16), @code{GFC_STD_GNU} (32),
@code{GFC_STD_LEGACY} (64), @code{GFC_STD_F2008} (128), 
@code{GFC_STD_F2008_OBS} (256) and GFC_STD_F2008_TS (512). Default:
@code{GFC_STD_F95_OBS | GFC_STD_F95_DEL | GFC_STD_F95 | GFC_STD_F2003
| GFC_STD_F2008 | GFC_STD_F2008_TS | GFC_STD_F2008_OBS | GFC_STD_F77
| GFC_STD_GNU | GFC_STD_LEGACY}.
@item @var{option}[1] @tab Standard-warning flag; prints a warning to
standard error.  Default: @code{GFC_STD_F95_DEL | GFC_STD_LEGACY}.
@item @var{option}[2] @tab If non zero, enable pedantic checking.
Default: off.
@item @var{option}[3] @tab Unused.
@item @var{option}[4] @tab If non zero, enable backtracing on run-time
errors.  Default: off.
Note: Installs a signal handler and requires command-line
initialization using @code{_gfortran_set_args}.
@item @var{option}[5] @tab If non zero, supports signed zeros.
Default: enabled.
@item @var{option}[6] @tab Enables run-time checking.  Possible values
are (bitwise or-ed): GFC_RTCHECK_BOUNDS (1), GFC_RTCHECK_ARRAY_TEMPS (2),
GFC_RTCHECK_RECURSION (4), GFC_RTCHECK_DO (16), GFC_RTCHECK_POINTER (32).
Default: disabled.
@end multitable

@item @emph{Example}:
@smallexample
  /* Use gfortran 4.8 default options.  */
  static int options[] = @{68, 511, 0, 0, 1, 1, 0@};
  _gfortran_set_options (7, &options);
@end smallexample
@end table


@node _gfortran_set_convert
@subsection @code{_gfortran_set_convert} --- Set endian conversion
@fnindex _gfortran_set_convert
@cindex libgfortran initialization, set_convert

@table @asis
@item @emph{Description}:
@code{_gfortran_set_convert} set the representation of data for
unformatted files.

@item @emph{Syntax}:
@code{void _gfortran_set_convert (int conv)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{conv} @tab Endian conversion, possible values:
GFC_CONVERT_NATIVE (0, default), GFC_CONVERT_SWAP (1),
GFC_CONVERT_BIG (2), GFC_CONVERT_LITTLE (3).
@end multitable

@item @emph{Example}:
@smallexample
int main (int argc, char *argv[])
@{
  /* Initialize libgfortran.  */
  _gfortran_set_args (argc, argv);
  _gfortran_set_convert (1);
  return 0;
@}
@end smallexample
@end table


@node _gfortran_set_record_marker
@subsection @code{_gfortran_set_record_marker} --- Set length of record markers
@fnindex _gfortran_set_record_marker
@cindex libgfortran initialization, set_record_marker

@table @asis
@item @emph{Description}:
@code{_gfortran_set_record_marker} sets the length of record markers
for unformatted files.

@item @emph{Syntax}:
@code{void _gfortran_set_record_marker (int val)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{val} @tab Length of the record marker; valid values
are 4 and 8.  Default is 4.
@end multitable

@item @emph{Example}:
@smallexample
int main (int argc, char *argv[])
@{
  /* Initialize libgfortran.  */
  _gfortran_set_args (argc, argv);
  _gfortran_set_record_marker (8);
  return 0;
@}
@end smallexample
@end table


@node _gfortran_set_fpe
@subsection @code{_gfortran_set_fpe} --- Enable floating point exception traps
@fnindex _gfortran_set_fpe
@cindex libgfortran initialization, set_fpe

@table @asis
@item @emph{Description}:
@code{_gfortran_set_fpe} enables floating point exception traps for
the specified exceptions.  On most systems, this will result in a
SIGFPE signal being sent and the program being aborted.

@item @emph{Syntax}:
@code{void _gfortran_set_fpe (int val)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{option}[0] @tab IEEE exceptions.  Possible values are
(bitwise or-ed) zero (0, default) no trapping,
@code{GFC_FPE_INVALID} (1), @code{GFC_FPE_DENORMAL} (2),
@code{GFC_FPE_ZERO} (4), @code{GFC_FPE_OVERFLOW} (8),
@code{GFC_FPE_UNDERFLOW} (16), and @code{GFC_FPE_INEXACT} (32).
@end multitable

@item @emph{Example}:
@smallexample
int main (int argc, char *argv[])
@{
  /* Initialize libgfortran.  */
  _gfortran_set_args (argc, argv);
  /* FPE for invalid operations such as SQRT(-1.0).  */
  _gfortran_set_fpe (1);
  return 0;
@}
@end smallexample
@end table


@node _gfortran_set_max_subrecord_length
@subsection @code{_gfortran_set_max_subrecord_length} --- Set subrecord length
@fnindex _gfortran_set_max_subrecord_length
@cindex libgfortran initialization, set_max_subrecord_length

@table @asis
@item @emph{Description}:
@code{_gfortran_set_max_subrecord_length} set the maximum length
for a subrecord.  This option only makes sense for testing and
debugging of unformatted I/O.

@item @emph{Syntax}:
@code{void _gfortran_set_max_subrecord_length (int val)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{val} @tab the maximum length for a subrecord;
the maximum permitted value is 2147483639, which is also
the default.
@end multitable

@item @emph{Example}:
@smallexample
int main (int argc, char *argv[])
@{
  /* Initialize libgfortran.  */
  _gfortran_set_args (argc, argv);
  _gfortran_set_max_subrecord_length (8);
  return 0;
@}
@end smallexample
@end table



@c Intrinsic Procedures
@c ---------------------------------------------------------------------

@include intrinsic.texi


@tex
\blankpart
@end tex

@c ---------------------------------------------------------------------
@c Contributing
@c ---------------------------------------------------------------------

@node Contributing
@unnumbered Contributing
@cindex Contributing

Free software is only possible if people contribute to efforts
to create it.
We're always in need of more people helping out with ideas
and comments, writing documentation and contributing code.

If you want to contribute to GNU Fortran,
have a look at the long lists of projects you can take on.
Some of these projects are small,
some of them are large;
some are completely orthogonal to the rest of what is
happening on GNU Fortran,
but others are ``mainstream'' projects in need of enthusiastic hackers.
All of these projects are important!
We will eventually get around to the things here,
but they are also things doable by someone who is willing and able.

@menu
* Contributors::
* Projects::
* Proposed Extensions::
@end menu


@node Contributors
@section Contributors to GNU Fortran
@cindex Contributors
@cindex Credits
@cindex Authors

Most of the parser was hand-crafted by @emph{Andy Vaught}, who is
also the initiator of the whole project.  Thanks Andy!
Most of the interface with GCC was written by @emph{Paul Brook}.

The following individuals have contributed code and/or
ideas and significant help to the GNU Fortran project
(in alphabetical order):

@itemize @minus
@item Janne Blomqvist
@item Steven Bosscher
@item Paul Brook
@item Tobias Burnus
@item Fran@,{c}ois-Xavier Coudert
@item Bud Davis
@item Jerry DeLisle
@item Erik Edelmann
@item Bernhard Fischer
@item Daniel Franke
@item Richard Guenther
@item Richard Henderson
@item Katherine Holcomb
@item Jakub Jelinek
@item Niels Kristian Bech Jensen
@item Steven Johnson
@item Steven G. Kargl
@item Thomas Koenig
@item Asher Langton
@item H. J. Lu
@item Toon Moene
@item Brooks Moses
@item Andrew Pinski
@item Tim Prince
@item Christopher D. Rickett
@item Richard Sandiford
@item Tobias Schl@"uter
@item Roger Sayle
@item Paul Thomas
@item Andy Vaught
@item Feng Wang
@item Janus Weil
@item Daniel Kraft
@end itemize

The following people have contributed bug reports,
smaller or larger patches,
and much needed feedback and encouragement for the
GNU Fortran project: 

@itemize @minus
@item Bill Clodius
@item Dominique d'Humi@`eres
@item Kate Hedstrom
@item Erik Schnetter
@item Joost VandeVondele
@end itemize

Many other individuals have helped debug,
test and improve the GNU Fortran compiler over the past few years,
and we welcome you to do the same!
If you already have done so,
and you would like to see your name listed in the
list above, please contact us.


@node Projects
@section Projects

@table @emph

@item Help build the test suite
Solicit more code for donation to the test suite: the more extensive the
testsuite, the smaller the risk of breaking things in the future! We can
keep code private on request.

@item Bug hunting/squishing
Find bugs and write more test cases! Test cases are especially very
welcome, because it allows us to concentrate on fixing bugs instead of
isolating them.  Going through the bugzilla database at
@url{http://gcc.gnu.org/@/bugzilla/} to reduce testcases posted there and
add more information (for example, for which version does the testcase
work, for which versions does it fail?) is also very helpful.

@end table


@node Proposed Extensions
@section Proposed Extensions

Here's a list of proposed extensions for the GNU Fortran compiler, in no particular
order.  Most of these are necessary to be fully compatible with
existing Fortran compilers, but they are not part of the official
J3 Fortran 95 standard.

@subsection Compiler extensions: 
@itemize @bullet
@item
User-specified alignment rules for structures.

@item
Automatically extend single precision constants to double.

@item
Compile code that conserves memory by dynamically allocating common and
module storage either on stack or heap.

@item
Compile flag to generate code for array conformance checking (suggest -CC).

@item
User control of symbol names (underscores, etc).

@item
Compile setting for maximum size of stack frame size before spilling
parts to static or heap.

@item
Flag to force local variables into static space.

@item
Flag to force local variables onto stack.
@end itemize


@subsection Environment Options
@itemize @bullet
@item
Pluggable library modules for random numbers, linear algebra.
LA should use BLAS calling conventions.

@item
Environment variables controlling actions on arithmetic exceptions like
overflow, underflow, precision loss---Generate NaN, abort, default.
action.

@item
Set precision for fp units that support it (i387).

@item
Variable for setting fp rounding mode.

@item
Variable to fill uninitialized variables with a user-defined bit
pattern.

@item
Environment variable controlling filename that is opened for that unit
number.

@item
Environment variable to clear/trash memory being freed.

@item
Environment variable to control tracing of allocations and frees.

@item
Environment variable to display allocated memory at normal program end.

@item
Environment variable for filename for * IO-unit.

@item
Environment variable for temporary file directory.

@item
Environment variable forcing standard output to be line buffered (unix).

@end itemize


@c ---------------------------------------------------------------------
@c GNU General Public License
@c ---------------------------------------------------------------------

@include gpl_v3.texi



@c ---------------------------------------------------------------------
@c GNU Free Documentation License
@c ---------------------------------------------------------------------

@include fdl.texi



@c ---------------------------------------------------------------------
@c Funding Free Software
@c ---------------------------------------------------------------------

@include funding.texi

@c ---------------------------------------------------------------------
@c Indices
@c ---------------------------------------------------------------------

@node Option Index
@unnumbered Option Index
@command{gfortran}'s command line options are indexed here without any
initial @samp{-} or @samp{--}.  Where an option has both positive and
negative forms (such as -foption and -fno-option), relevant entries in
the manual are indexed under the most appropriate form; it may sometimes
be useful to look up both forms.
@printindex op

@node Keyword Index
@unnumbered Keyword Index
@printindex cp

@bye