1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
|
/* Implementation of Fortran 2003 Polymorphism.
Copyright (C) 2009, 2010
Free Software Foundation, Inc.
Contributed by Paul Richard Thomas <pault@gcc.gnu.org>
and Janus Weil <janus@gcc.gnu.org>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
/* class.c -- This file contains the front end functions needed to service
the implementation of Fortran 2003 polymorphism and other
object-oriented features. */
/* Outline of the internal representation:
Each CLASS variable is encapsulated by a class container, which is a
structure with two fields:
* _data: A pointer to the actual data of the variable. This field has the
declared type of the class variable and its attributes
(pointer/allocatable/dimension/...).
* _vptr: A pointer to the vtable entry (see below) of the dynamic type.
For each derived type we set up a "vtable" entry, i.e. a structure with the
following fields:
* _hash: A hash value serving as a unique identifier for this type.
* _size: The size in bytes of the derived type.
* _extends: A pointer to the vtable entry of the parent derived type.
* _def_init: A pointer to a default initialized variable of this type.
* _copy: A procedure pointer to a copying procedure.
After these follow procedure pointer components for the specific
type-bound procedures. */
#include "config.h"
#include "system.h"
#include "gfortran.h"
#include "constructor.h"
/* Insert a reference to the component of the given name.
Only to be used with CLASS containers and vtables. */
void
gfc_add_component_ref (gfc_expr *e, const char *name)
{
gfc_ref **tail = &(e->ref);
gfc_ref *next = NULL;
gfc_symbol *derived = e->symtree->n.sym->ts.u.derived;
while (*tail != NULL)
{
if ((*tail)->type == REF_COMPONENT)
{
if (strcmp ((*tail)->u.c.component->name, "_data") == 0
&& (*tail)->next
&& (*tail)->next->type == REF_ARRAY
&& (*tail)->next->next == NULL)
return;
derived = (*tail)->u.c.component->ts.u.derived;
}
if ((*tail)->type == REF_ARRAY && (*tail)->next == NULL)
break;
tail = &((*tail)->next);
}
if (*tail != NULL && strcmp (name, "_data") == 0)
next = *tail;
(*tail) = gfc_get_ref();
(*tail)->next = next;
(*tail)->type = REF_COMPONENT;
(*tail)->u.c.sym = derived;
(*tail)->u.c.component = gfc_find_component (derived, name, true, true);
gcc_assert((*tail)->u.c.component);
if (!next)
e->ts = (*tail)->u.c.component->ts;
}
/* This is used to add both the _data component reference and an array
reference to class expressions. Used in translation of intrinsic
array inquiry functions. */
void
gfc_add_class_array_ref (gfc_expr *e)
{
int rank = CLASS_DATA (e)->as->rank;
gfc_array_spec *as = CLASS_DATA (e)->as;
gfc_ref *ref = NULL;
gfc_add_component_ref (e, "_data");
e->rank = rank;
for (ref = e->ref; ref; ref = ref->next)
if (!ref->next)
break;
if (ref->type != REF_ARRAY)
{
ref->next = gfc_get_ref ();
ref = ref->next;
ref->type = REF_ARRAY;
ref->u.ar.type = AR_FULL;
ref->u.ar.as = as;
}
}
/* Unfortunately, class array expressions can appear in various conditions;
with and without both _data component and an arrayspec. This function
deals with that variability. The previous reference to 'ref' is to a
class array. */
static bool
class_array_ref_detected (gfc_ref *ref, bool *full_array)
{
bool no_data = false;
bool with_data = false;
/* An array reference with no _data component. */
if (ref && ref->type == REF_ARRAY
&& !ref->next
&& ref->u.ar.type != AR_ELEMENT)
{
if (full_array)
*full_array = ref->u.ar.type == AR_FULL;
no_data = true;
}
/* Cover cases where _data appears, with or without an array ref. */
if (ref && ref->type == REF_COMPONENT
&& strcmp (ref->u.c.component->name, "_data") == 0)
{
if (!ref->next)
{
with_data = true;
if (full_array)
*full_array = true;
}
else if (ref->next && ref->next->type == REF_ARRAY
&& !ref->next->next
&& ref->type == REF_COMPONENT
&& ref->next->type == REF_ARRAY
&& ref->next->u.ar.type != AR_ELEMENT)
{
with_data = true;
if (full_array)
*full_array = ref->next->u.ar.type == AR_FULL;
}
}
return no_data || with_data;
}
/* Returns true if the expression contains a reference to a class
array. Notice that class array elements return false. */
bool
gfc_is_class_array_ref (gfc_expr *e, bool *full_array)
{
gfc_ref *ref;
if (!e->rank)
return false;
if (full_array)
*full_array= false;
/* Is this a class array object? ie. Is the symbol of type class? */
if (e->symtree
&& e->symtree->n.sym->ts.type == BT_CLASS
&& CLASS_DATA (e->symtree->n.sym)
&& CLASS_DATA (e->symtree->n.sym)->attr.dimension
&& class_array_ref_detected (e->ref, full_array))
return true;
/* Or is this a class array component reference? */
for (ref = e->ref; ref; ref = ref->next)
{
if (ref->type == REF_COMPONENT
&& ref->u.c.component->ts.type == BT_CLASS
&& CLASS_DATA (ref->u.c.component)->attr.dimension
&& class_array_ref_detected (ref->next, full_array))
return true;
}
return false;
}
/* Returns true if the expression is a reference to a class
scalar. This function is necessary because such expressions
can be dressed with a reference to the _data component and so
have a type other than BT_CLASS. */
bool
gfc_is_class_scalar_expr (gfc_expr *e)
{
gfc_ref *ref;
if (e->rank)
return false;
/* Is this a class object? */
if (e->symtree
&& e->symtree->n.sym->ts.type == BT_CLASS
&& CLASS_DATA (e->symtree->n.sym)
&& !CLASS_DATA (e->symtree->n.sym)->attr.dimension
&& (e->ref == NULL
|| (strcmp (e->ref->u.c.component->name, "_data") == 0
&& e->ref->next == NULL)))
return true;
/* Or is the final reference BT_CLASS or _data? */
for (ref = e->ref; ref; ref = ref->next)
{
if (ref->type == REF_COMPONENT
&& ref->u.c.component->ts.type == BT_CLASS
&& CLASS_DATA (ref->u.c.component)
&& !CLASS_DATA (ref->u.c.component)->attr.dimension
&& (ref->next == NULL
|| (strcmp (ref->next->u.c.component->name, "_data") == 0
&& ref->next->next == NULL)))
return true;
}
return false;
}
/* Build a NULL initializer for CLASS pointers,
initializing the _data component to NULL and
the _vptr component to the declared type. */
gfc_expr *
gfc_class_null_initializer (gfc_typespec *ts)
{
gfc_expr *init;
gfc_component *comp;
init = gfc_get_structure_constructor_expr (ts->type, ts->kind,
&ts->u.derived->declared_at);
init->ts = *ts;
for (comp = ts->u.derived->components; comp; comp = comp->next)
{
gfc_constructor *ctor = gfc_constructor_get();
if (strcmp (comp->name, "_vptr") == 0)
ctor->expr = gfc_lval_expr_from_sym (gfc_find_derived_vtab (ts->u.derived));
else
ctor->expr = gfc_get_null_expr (NULL);
gfc_constructor_append (&init->value.constructor, ctor);
}
return init;
}
/* Create a unique string identifier for a derived type, composed of its name
and module name. This is used to construct unique names for the class
containers and vtab symbols. */
static void
get_unique_type_string (char *string, gfc_symbol *derived)
{
char dt_name[GFC_MAX_SYMBOL_LEN+1];
sprintf (dt_name, "%s", derived->name);
dt_name[0] = TOUPPER (dt_name[0]);
if (derived->module)
sprintf (string, "%s_%s", derived->module, dt_name);
else if (derived->ns->proc_name)
sprintf (string, "%s_%s", derived->ns->proc_name->name, dt_name);
else
sprintf (string, "_%s", dt_name);
}
/* A relative of 'get_unique_type_string' which makes sure the generated
string will not be too long (replacing it by a hash string if needed). */
static void
get_unique_hashed_string (char *string, gfc_symbol *derived)
{
char tmp[2*GFC_MAX_SYMBOL_LEN+2];
get_unique_type_string (&tmp[0], derived);
/* If string is too long, use hash value in hex representation (allow for
extra decoration, cf. gfc_build_class_symbol & gfc_find_derived_vtab). */
if (strlen (tmp) > GFC_MAX_SYMBOL_LEN - 11)
{
int h = gfc_hash_value (derived);
sprintf (string, "%X", h);
}
else
strcpy (string, tmp);
}
/* Assign a hash value for a derived type. The algorithm is that of SDBM. */
unsigned int
gfc_hash_value (gfc_symbol *sym)
{
unsigned int hash = 0;
char c[2*(GFC_MAX_SYMBOL_LEN+1)];
int i, len;
get_unique_type_string (&c[0], sym);
len = strlen (c);
for (i = 0; i < len; i++)
hash = (hash << 6) + (hash << 16) - hash + c[i];
/* Return the hash but take the modulus for the sake of module read,
even though this slightly increases the chance of collision. */
return (hash % 100000000);
}
/* Build a polymorphic CLASS entity, using the symbol that comes from
build_sym. A CLASS entity is represented by an encapsulating type,
which contains the declared type as '_data' component, plus a pointer
component '_vptr' which determines the dynamic type. */
gfc_try
gfc_build_class_symbol (gfc_typespec *ts, symbol_attribute *attr,
gfc_array_spec **as, bool delayed_vtab)
{
char name[GFC_MAX_SYMBOL_LEN+1], tname[GFC_MAX_SYMBOL_LEN+1];
gfc_symbol *fclass;
gfc_symbol *vtab;
gfc_component *c;
if (as && *as && (*as)->type == AS_ASSUMED_SIZE)
{
gfc_error ("Assumed size polymorphic objects or components, such "
"as that at %C, have not yet been implemented");
return FAILURE;
}
if (attr->class_ok)
/* Class container has already been built. */
return SUCCESS;
attr->class_ok = attr->dummy || attr->pointer || attr->allocatable
|| attr->select_type_temporary;
if (!attr->class_ok)
/* We can not build the class container yet. */
return SUCCESS;
/* Determine the name of the encapsulating type. */
get_unique_hashed_string (tname, ts->u.derived);
if ((*as) && (*as)->rank && attr->allocatable)
sprintf (name, "__class_%s_%d_a", tname, (*as)->rank);
else if ((*as) && (*as)->rank)
sprintf (name, "__class_%s_%d", tname, (*as)->rank);
else if (attr->pointer)
sprintf (name, "__class_%s_p", tname);
else if (attr->allocatable)
sprintf (name, "__class_%s_a", tname);
else
sprintf (name, "__class_%s", tname);
gfc_find_symbol (name, ts->u.derived->ns, 0, &fclass);
if (fclass == NULL)
{
gfc_symtree *st;
/* If not there, create a new symbol. */
fclass = gfc_new_symbol (name, ts->u.derived->ns);
st = gfc_new_symtree (&ts->u.derived->ns->sym_root, name);
st->n.sym = fclass;
gfc_set_sym_referenced (fclass);
fclass->refs++;
fclass->ts.type = BT_UNKNOWN;
fclass->attr.abstract = ts->u.derived->attr.abstract;
if (ts->u.derived->f2k_derived)
fclass->f2k_derived = gfc_get_namespace (NULL, 0);
if (gfc_add_flavor (&fclass->attr, FL_DERIVED,
NULL, &gfc_current_locus) == FAILURE)
return FAILURE;
/* Add component '_data'. */
if (gfc_add_component (fclass, "_data", &c) == FAILURE)
return FAILURE;
c->ts = *ts;
c->ts.type = BT_DERIVED;
c->attr.access = ACCESS_PRIVATE;
c->ts.u.derived = ts->u.derived;
c->attr.class_pointer = attr->pointer;
c->attr.pointer = attr->pointer || (attr->dummy && !attr->allocatable)
|| attr->select_type_temporary;
c->attr.allocatable = attr->allocatable;
c->attr.dimension = attr->dimension;
c->attr.codimension = attr->codimension;
c->attr.abstract = ts->u.derived->attr.abstract;
c->as = (*as);
c->initializer = NULL;
/* Add component '_vptr'. */
if (gfc_add_component (fclass, "_vptr", &c) == FAILURE)
return FAILURE;
c->ts.type = BT_DERIVED;
if (delayed_vtab)
c->ts.u.derived = NULL;
else
{
vtab = gfc_find_derived_vtab (ts->u.derived);
gcc_assert (vtab);
c->ts.u.derived = vtab->ts.u.derived;
}
c->attr.access = ACCESS_PRIVATE;
c->attr.pointer = 1;
}
/* Since the extension field is 8 bit wide, we can only have
up to 255 extension levels. */
if (ts->u.derived->attr.extension == 255)
{
gfc_error ("Maximum extension level reached with type '%s' at %L",
ts->u.derived->name, &ts->u.derived->declared_at);
return FAILURE;
}
fclass->attr.extension = ts->u.derived->attr.extension + 1;
fclass->attr.is_class = 1;
ts->u.derived = fclass;
attr->allocatable = attr->pointer = attr->dimension = attr->codimension = 0;
(*as) = NULL;
return SUCCESS;
}
/* Add a procedure pointer component to the vtype
to represent a specific type-bound procedure. */
static void
add_proc_comp (gfc_symbol *vtype, const char *name, gfc_typebound_proc *tb)
{
gfc_component *c;
if (tb->non_overridable)
return;
c = gfc_find_component (vtype, name, true, true);
if (c == NULL)
{
/* Add procedure component. */
if (gfc_add_component (vtype, name, &c) == FAILURE)
return;
if (!c->tb)
c->tb = XCNEW (gfc_typebound_proc);
*c->tb = *tb;
c->tb->ppc = 1;
c->attr.procedure = 1;
c->attr.proc_pointer = 1;
c->attr.flavor = FL_PROCEDURE;
c->attr.access = ACCESS_PRIVATE;
c->attr.external = 1;
c->attr.untyped = 1;
c->attr.if_source = IFSRC_IFBODY;
}
else if (c->attr.proc_pointer && c->tb)
{
*c->tb = *tb;
c->tb->ppc = 1;
}
if (tb->u.specific)
{
c->ts.interface = tb->u.specific->n.sym;
if (!tb->deferred)
c->initializer = gfc_get_variable_expr (tb->u.specific);
}
}
/* Add all specific type-bound procedures in the symtree 'st' to a vtype. */
static void
add_procs_to_declared_vtab1 (gfc_symtree *st, gfc_symbol *vtype)
{
if (!st)
return;
if (st->left)
add_procs_to_declared_vtab1 (st->left, vtype);
if (st->right)
add_procs_to_declared_vtab1 (st->right, vtype);
if (st->n.tb && !st->n.tb->error
&& !st->n.tb->is_generic && st->n.tb->u.specific)
add_proc_comp (vtype, st->name, st->n.tb);
}
/* Copy procedure pointers components from the parent type. */
static void
copy_vtab_proc_comps (gfc_symbol *declared, gfc_symbol *vtype)
{
gfc_component *cmp;
gfc_symbol *vtab;
vtab = gfc_find_derived_vtab (declared);
for (cmp = vtab->ts.u.derived->components; cmp; cmp = cmp->next)
{
if (gfc_find_component (vtype, cmp->name, true, true))
continue;
add_proc_comp (vtype, cmp->name, cmp->tb);
}
}
/* Add procedure pointers for all type-bound procedures to a vtab. */
static void
add_procs_to_declared_vtab (gfc_symbol *derived, gfc_symbol *vtype)
{
gfc_symbol* super_type;
super_type = gfc_get_derived_super_type (derived);
if (super_type && (super_type != derived))
{
/* Make sure that the PPCs appear in the same order as in the parent. */
copy_vtab_proc_comps (super_type, vtype);
/* Only needed to get the PPC initializers right. */
add_procs_to_declared_vtab (super_type, vtype);
}
if (derived->f2k_derived && derived->f2k_derived->tb_sym_root)
add_procs_to_declared_vtab1 (derived->f2k_derived->tb_sym_root, vtype);
if (derived->f2k_derived && derived->f2k_derived->tb_uop_root)
add_procs_to_declared_vtab1 (derived->f2k_derived->tb_uop_root, vtype);
}
/* Find (or generate) the symbol for a derived type's vtab. */
gfc_symbol *
gfc_find_derived_vtab (gfc_symbol *derived)
{
gfc_namespace *ns;
gfc_symbol *vtab = NULL, *vtype = NULL, *found_sym = NULL, *def_init = NULL;
gfc_symbol *copy = NULL, *src = NULL, *dst = NULL;
/* Find the top-level namespace (MODULE or PROGRAM). */
for (ns = gfc_current_ns; ns; ns = ns->parent)
if (!ns->parent)
break;
/* If the type is a class container, use the underlying derived type. */
if (derived->attr.is_class)
derived = gfc_get_derived_super_type (derived);
if (ns)
{
char name[GFC_MAX_SYMBOL_LEN+1], tname[GFC_MAX_SYMBOL_LEN+1];
get_unique_hashed_string (tname, derived);
sprintf (name, "__vtab_%s", tname);
/* Look for the vtab symbol in various namespaces. */
gfc_find_symbol (name, gfc_current_ns, 0, &vtab);
if (vtab == NULL)
gfc_find_symbol (name, ns, 0, &vtab);
if (vtab == NULL)
gfc_find_symbol (name, derived->ns, 0, &vtab);
if (vtab == NULL)
{
gfc_get_symbol (name, ns, &vtab);
vtab->ts.type = BT_DERIVED;
if (gfc_add_flavor (&vtab->attr, FL_PARAMETER, NULL,
&gfc_current_locus) == FAILURE)
goto cleanup;
vtab->attr.target = 1;
vtab->attr.save = SAVE_IMPLICIT;
vtab->attr.vtab = 1;
vtab->attr.access = ACCESS_PUBLIC;
gfc_set_sym_referenced (vtab);
sprintf (name, "__vtype_%s", tname);
gfc_find_symbol (name, ns, 0, &vtype);
if (vtype == NULL)
{
gfc_component *c;
gfc_symbol *parent = NULL, *parent_vtab = NULL;
gfc_get_symbol (name, ns, &vtype);
if (gfc_add_flavor (&vtype->attr, FL_DERIVED,
NULL, &gfc_current_locus) == FAILURE)
goto cleanup;
vtype->attr.access = ACCESS_PUBLIC;
vtype->attr.vtype = 1;
gfc_set_sym_referenced (vtype);
/* Add component '_hash'. */
if (gfc_add_component (vtype, "_hash", &c) == FAILURE)
goto cleanup;
c->ts.type = BT_INTEGER;
c->ts.kind = 4;
c->attr.access = ACCESS_PRIVATE;
c->initializer = gfc_get_int_expr (gfc_default_integer_kind,
NULL, derived->hash_value);
/* Add component '_size'. */
if (gfc_add_component (vtype, "_size", &c) == FAILURE)
goto cleanup;
c->ts.type = BT_INTEGER;
c->ts.kind = 4;
c->attr.access = ACCESS_PRIVATE;
/* Remember the derived type in ts.u.derived,
so that the correct initializer can be set later on
(in gfc_conv_structure). */
c->ts.u.derived = derived;
c->initializer = gfc_get_int_expr (gfc_default_integer_kind,
NULL, 0);
/* Add component _extends. */
if (gfc_add_component (vtype, "_extends", &c) == FAILURE)
goto cleanup;
c->attr.pointer = 1;
c->attr.access = ACCESS_PRIVATE;
parent = gfc_get_derived_super_type (derived);
if (parent)
{
parent_vtab = gfc_find_derived_vtab (parent);
c->ts.type = BT_DERIVED;
c->ts.u.derived = parent_vtab->ts.u.derived;
c->initializer = gfc_get_expr ();
c->initializer->expr_type = EXPR_VARIABLE;
gfc_find_sym_tree (parent_vtab->name, parent_vtab->ns,
0, &c->initializer->symtree);
}
else
{
c->ts.type = BT_DERIVED;
c->ts.u.derived = vtype;
c->initializer = gfc_get_null_expr (NULL);
}
if (derived->components == NULL && !derived->attr.zero_comp)
{
/* At this point an error must have occurred.
Prevent further errors on the vtype components. */
found_sym = vtab;
goto have_vtype;
}
/* Add component _def_init. */
if (gfc_add_component (vtype, "_def_init", &c) == FAILURE)
goto cleanup;
c->attr.pointer = 1;
c->attr.access = ACCESS_PRIVATE;
c->ts.type = BT_DERIVED;
c->ts.u.derived = derived;
if (derived->attr.abstract)
c->initializer = gfc_get_null_expr (NULL);
else
{
/* Construct default initialization variable. */
sprintf (name, "__def_init_%s", tname);
gfc_get_symbol (name, ns, &def_init);
def_init->attr.target = 1;
def_init->attr.save = SAVE_IMPLICIT;
def_init->attr.access = ACCESS_PUBLIC;
def_init->attr.flavor = FL_PARAMETER;
gfc_set_sym_referenced (def_init);
def_init->ts.type = BT_DERIVED;
def_init->ts.u.derived = derived;
def_init->value = gfc_default_initializer (&def_init->ts);
c->initializer = gfc_lval_expr_from_sym (def_init);
}
/* Add component _copy. */
if (gfc_add_component (vtype, "_copy", &c) == FAILURE)
goto cleanup;
c->attr.proc_pointer = 1;
c->attr.access = ACCESS_PRIVATE;
c->tb = XCNEW (gfc_typebound_proc);
c->tb->ppc = 1;
if (derived->attr.abstract)
c->initializer = gfc_get_null_expr (NULL);
else
{
/* Set up namespace. */
gfc_namespace *sub_ns = gfc_get_namespace (ns, 0);
sub_ns->sibling = ns->contained;
ns->contained = sub_ns;
sub_ns->resolved = 1;
/* Set up procedure symbol. */
sprintf (name, "__copy_%s", tname);
gfc_get_symbol (name, sub_ns, ©);
sub_ns->proc_name = copy;
copy->attr.flavor = FL_PROCEDURE;
copy->attr.subroutine = 1;
copy->attr.if_source = IFSRC_DECL;
/* This is elemental so that arrays are automatically
treated correctly by the scalarizer. */
copy->attr.elemental = 1;
if (ns->proc_name->attr.flavor == FL_MODULE)
copy->module = ns->proc_name->name;
gfc_set_sym_referenced (copy);
/* Set up formal arguments. */
gfc_get_symbol ("src", sub_ns, &src);
src->ts.type = BT_DERIVED;
src->ts.u.derived = derived;
src->attr.flavor = FL_VARIABLE;
src->attr.dummy = 1;
src->attr.intent = INTENT_IN;
gfc_set_sym_referenced (src);
copy->formal = gfc_get_formal_arglist ();
copy->formal->sym = src;
gfc_get_symbol ("dst", sub_ns, &dst);
dst->ts.type = BT_DERIVED;
dst->ts.u.derived = derived;
dst->attr.flavor = FL_VARIABLE;
dst->attr.dummy = 1;
dst->attr.intent = INTENT_OUT;
gfc_set_sym_referenced (dst);
copy->formal->next = gfc_get_formal_arglist ();
copy->formal->next->sym = dst;
/* Set up code. */
sub_ns->code = gfc_get_code ();
sub_ns->code->op = EXEC_INIT_ASSIGN;
sub_ns->code->expr1 = gfc_lval_expr_from_sym (dst);
sub_ns->code->expr2 = gfc_lval_expr_from_sym (src);
/* Set initializer. */
c->initializer = gfc_lval_expr_from_sym (copy);
c->ts.interface = copy;
}
/* Add procedure pointers for type-bound procedures. */
add_procs_to_declared_vtab (derived, vtype);
}
have_vtype:
vtab->ts.u.derived = vtype;
vtab->value = gfc_default_initializer (&vtab->ts);
}
}
found_sym = vtab;
cleanup:
/* It is unexpected to have some symbols added at resolution or code
generation time. We commit the changes in order to keep a clean state. */
if (found_sym)
{
gfc_commit_symbol (vtab);
if (vtype)
gfc_commit_symbol (vtype);
if (def_init)
gfc_commit_symbol (def_init);
if (copy)
gfc_commit_symbol (copy);
if (src)
gfc_commit_symbol (src);
if (dst)
gfc_commit_symbol (dst);
}
else
gfc_undo_symbols ();
return found_sym;
}
/* General worker function to find either a type-bound procedure or a
type-bound user operator. */
static gfc_symtree*
find_typebound_proc_uop (gfc_symbol* derived, gfc_try* t,
const char* name, bool noaccess, bool uop,
locus* where)
{
gfc_symtree* res;
gfc_symtree* root;
/* Set correct symbol-root. */
gcc_assert (derived->f2k_derived);
root = (uop ? derived->f2k_derived->tb_uop_root
: derived->f2k_derived->tb_sym_root);
/* Set default to failure. */
if (t)
*t = FAILURE;
/* Try to find it in the current type's namespace. */
res = gfc_find_symtree (root, name);
if (res && res->n.tb && !res->n.tb->error)
{
/* We found one. */
if (t)
*t = SUCCESS;
if (!noaccess && derived->attr.use_assoc
&& res->n.tb->access == ACCESS_PRIVATE)
{
if (where)
gfc_error ("'%s' of '%s' is PRIVATE at %L",
name, derived->name, where);
if (t)
*t = FAILURE;
}
return res;
}
/* Otherwise, recurse on parent type if derived is an extension. */
if (derived->attr.extension)
{
gfc_symbol* super_type;
super_type = gfc_get_derived_super_type (derived);
gcc_assert (super_type);
return find_typebound_proc_uop (super_type, t, name,
noaccess, uop, where);
}
/* Nothing found. */
return NULL;
}
/* Find a type-bound procedure or user operator by name for a derived-type
(looking recursively through the super-types). */
gfc_symtree*
gfc_find_typebound_proc (gfc_symbol* derived, gfc_try* t,
const char* name, bool noaccess, locus* where)
{
return find_typebound_proc_uop (derived, t, name, noaccess, false, where);
}
gfc_symtree*
gfc_find_typebound_user_op (gfc_symbol* derived, gfc_try* t,
const char* name, bool noaccess, locus* where)
{
return find_typebound_proc_uop (derived, t, name, noaccess, true, where);
}
/* Find a type-bound intrinsic operator looking recursively through the
super-type hierarchy. */
gfc_typebound_proc*
gfc_find_typebound_intrinsic_op (gfc_symbol* derived, gfc_try* t,
gfc_intrinsic_op op, bool noaccess,
locus* where)
{
gfc_typebound_proc* res;
/* Set default to failure. */
if (t)
*t = FAILURE;
/* Try to find it in the current type's namespace. */
if (derived->f2k_derived)
res = derived->f2k_derived->tb_op[op];
else
res = NULL;
/* Check access. */
if (res && !res->error)
{
/* We found one. */
if (t)
*t = SUCCESS;
if (!noaccess && derived->attr.use_assoc
&& res->access == ACCESS_PRIVATE)
{
if (where)
gfc_error ("'%s' of '%s' is PRIVATE at %L",
gfc_op2string (op), derived->name, where);
if (t)
*t = FAILURE;
}
return res;
}
/* Otherwise, recurse on parent type if derived is an extension. */
if (derived->attr.extension)
{
gfc_symbol* super_type;
super_type = gfc_get_derived_super_type (derived);
gcc_assert (super_type);
return gfc_find_typebound_intrinsic_op (super_type, t, op,
noaccess, where);
}
/* Nothing found. */
return NULL;
}
/* Get a typebound-procedure symtree or create and insert it if not yet
present. This is like a very simplified version of gfc_get_sym_tree for
tbp-symtrees rather than regular ones. */
gfc_symtree*
gfc_get_tbp_symtree (gfc_symtree **root, const char *name)
{
gfc_symtree *result;
result = gfc_find_symtree (*root, name);
if (!result)
{
result = gfc_new_symtree (root, name);
gcc_assert (result);
result->n.tb = NULL;
}
return result;
}
|