summaryrefslogtreecommitdiff
path: root/gcc/fold-const.c
blob: 947d575dd9398442d5faab5fe6eea3f204f7dbf4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
/* Fold a constant sub-tree into a single node for C-compiler
   Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
   1999, 2000, 2001, 2002 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING.  If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.  */

/*@@ This file should be rewritten to use an arbitrary precision
  @@ representation for "struct tree_int_cst" and "struct tree_real_cst".
  @@ Perhaps the routines could also be used for bc/dc, and made a lib.
  @@ The routines that translate from the ap rep should
  @@ warn if precision et. al. is lost.
  @@ This would also make life easier when this technology is used
  @@ for cross-compilers.  */

/* The entry points in this file are fold, size_int_wide, size_binop
   and force_fit_type.

   fold takes a tree as argument and returns a simplified tree.

   size_binop takes a tree code for an arithmetic operation
   and two operands that are trees, and produces a tree for the
   result, assuming the type comes from `sizetype'.

   size_int takes an integer value, and creates a tree constant
   with type from `sizetype'.

   force_fit_type takes a constant and prior overflow indicator, and
   forces the value to fit the type.  It returns an overflow indicator.  */

#include "config.h"
#include "system.h"
#include "flags.h"
#include "tree.h"
#include "real.h"
#include "rtl.h"
#include "expr.h"
#include "tm_p.h"
#include "toplev.h"
#include "ggc.h"
#include "hashtab.h"
#include "langhooks.h"

static void encode		PARAMS ((HOST_WIDE_INT *,
					 unsigned HOST_WIDE_INT,
					 HOST_WIDE_INT));
static void decode		PARAMS ((HOST_WIDE_INT *,
					 unsigned HOST_WIDE_INT *,
					 HOST_WIDE_INT *));
static tree negate_expr		PARAMS ((tree));
static tree split_tree		PARAMS ((tree, enum tree_code, tree *, tree *,
					 tree *, int));
static tree associate_trees	PARAMS ((tree, tree, enum tree_code, tree));
static tree int_const_binop	PARAMS ((enum tree_code, tree, tree, int));
static tree const_binop		PARAMS ((enum tree_code, tree, tree, int));
static hashval_t size_htab_hash	PARAMS ((const void *));
static int size_htab_eq		PARAMS ((const void *, const void *));
static tree fold_convert	PARAMS ((tree, tree));
static enum tree_code invert_tree_comparison PARAMS ((enum tree_code));
static enum tree_code swap_tree_comparison PARAMS ((enum tree_code));
static int truth_value_p	PARAMS ((enum tree_code));
static int operand_equal_for_comparison_p PARAMS ((tree, tree, tree));
static int twoval_comparison_p	PARAMS ((tree, tree *, tree *, int *));
static tree eval_subst		PARAMS ((tree, tree, tree, tree, tree));
static tree omit_one_operand	PARAMS ((tree, tree, tree));
static tree pedantic_omit_one_operand PARAMS ((tree, tree, tree));
static tree distribute_bit_expr PARAMS ((enum tree_code, tree, tree, tree));
static tree make_bit_field_ref	PARAMS ((tree, tree, int, int, int));
static tree optimize_bit_field_compare PARAMS ((enum tree_code, tree,
						tree, tree));
static tree decode_field_reference PARAMS ((tree, HOST_WIDE_INT *,
					    HOST_WIDE_INT *,
					    enum machine_mode *, int *,
					    int *, tree *, tree *));
static int all_ones_mask_p	PARAMS ((tree, int));
static tree sign_bit_p		PARAMS ((tree, tree));
static int simple_operand_p	PARAMS ((tree));
static tree range_binop		PARAMS ((enum tree_code, tree, tree, int,
					 tree, int));
static tree make_range		PARAMS ((tree, int *, tree *, tree *));
static tree build_range_check	PARAMS ((tree, tree, int, tree, tree));
static int merge_ranges		PARAMS ((int *, tree *, tree *, int, tree, tree,
				       int, tree, tree));
static tree fold_range_test	PARAMS ((tree));
static tree unextend		PARAMS ((tree, int, int, tree));
static tree fold_truthop	PARAMS ((enum tree_code, tree, tree, tree));
static tree optimize_minmax_comparison PARAMS ((tree));
static tree extract_muldiv	PARAMS ((tree, tree, enum tree_code, tree));
static tree strip_compound_expr PARAMS ((tree, tree));
static int multiple_of_p	PARAMS ((tree, tree, tree));
static tree constant_boolean_node PARAMS ((int, tree));
static int count_cond		PARAMS ((tree, int));
static tree fold_binary_op_with_conditional_arg
  PARAMS ((enum tree_code, tree, tree, tree, int));
static bool fold_real_zero_addition_p	PARAMS ((tree, tree, int));

#if defined(HOST_EBCDIC)
/* bit 8 is significant in EBCDIC */
#define CHARMASK 0xff
#else
#define CHARMASK 0x7f
#endif

/* We know that A1 + B1 = SUM1, using 2's complement arithmetic and ignoring
   overflow.  Suppose A, B and SUM have the same respective signs as A1, B1,
   and SUM1.  Then this yields nonzero if overflow occurred during the
   addition.

   Overflow occurs if A and B have the same sign, but A and SUM differ in
   sign.  Use `^' to test whether signs differ, and `< 0' to isolate the
   sign.  */
#define OVERFLOW_SUM_SIGN(a, b, sum) ((~((a) ^ (b)) & ((a) ^ (sum))) < 0)

/* To do constant folding on INTEGER_CST nodes requires two-word arithmetic.
   We do that by representing the two-word integer in 4 words, with only
   HOST_BITS_PER_WIDE_INT / 2 bits stored in each word, as a positive
   number.  The value of the word is LOWPART + HIGHPART * BASE.  */

#define LOWPART(x) \
  ((x) & (((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)) - 1))
#define HIGHPART(x) \
  ((unsigned HOST_WIDE_INT) (x) >> HOST_BITS_PER_WIDE_INT / 2)
#define BASE ((unsigned HOST_WIDE_INT) 1 << HOST_BITS_PER_WIDE_INT / 2)

/* Unpack a two-word integer into 4 words.
   LOW and HI are the integer, as two `HOST_WIDE_INT' pieces.
   WORDS points to the array of HOST_WIDE_INTs.  */

static void
encode (words, low, hi)
     HOST_WIDE_INT *words;
     unsigned HOST_WIDE_INT low;
     HOST_WIDE_INT hi;
{
  words[0] = LOWPART (low);
  words[1] = HIGHPART (low);
  words[2] = LOWPART (hi);
  words[3] = HIGHPART (hi);
}

/* Pack an array of 4 words into a two-word integer.
   WORDS points to the array of words.
   The integer is stored into *LOW and *HI as two `HOST_WIDE_INT' pieces.  */

static void
decode (words, low, hi)
     HOST_WIDE_INT *words;
     unsigned HOST_WIDE_INT *low;
     HOST_WIDE_INT *hi;
{
  *low = words[0] + words[1] * BASE;
  *hi = words[2] + words[3] * BASE;
}

/* Make the integer constant T valid for its type by setting to 0 or 1 all
   the bits in the constant that don't belong in the type.

   Return 1 if a signed overflow occurs, 0 otherwise.  If OVERFLOW is
   nonzero, a signed overflow has already occurred in calculating T, so
   propagate it.

   Make the real constant T valid for its type by calling CHECK_FLOAT_VALUE,
   if it exists.  */

int
force_fit_type (t, overflow)
     tree t;
     int overflow;
{
  unsigned HOST_WIDE_INT low;
  HOST_WIDE_INT high;
  unsigned int prec;

  if (TREE_CODE (t) == REAL_CST)
    {
#ifdef CHECK_FLOAT_VALUE
      CHECK_FLOAT_VALUE (TYPE_MODE (TREE_TYPE (t)), TREE_REAL_CST (t),
			 overflow);
#endif
      return overflow;
    }

  else if (TREE_CODE (t) != INTEGER_CST)
    return overflow;

  low = TREE_INT_CST_LOW (t);
  high = TREE_INT_CST_HIGH (t);

  if (POINTER_TYPE_P (TREE_TYPE (t)))
    prec = POINTER_SIZE;
  else
    prec = TYPE_PRECISION (TREE_TYPE (t));

  /* First clear all bits that are beyond the type's precision.  */

  if (prec == 2 * HOST_BITS_PER_WIDE_INT)
    ;
  else if (prec > HOST_BITS_PER_WIDE_INT)
    TREE_INT_CST_HIGH (t)
      &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
  else
    {
      TREE_INT_CST_HIGH (t) = 0;
      if (prec < HOST_BITS_PER_WIDE_INT)
	TREE_INT_CST_LOW (t) &= ~((unsigned HOST_WIDE_INT) (-1) << prec);
    }

  /* Unsigned types do not suffer sign extension or overflow unless they
     are a sizetype.  */
  if (TREE_UNSIGNED (TREE_TYPE (t))
      && ! (TREE_CODE (TREE_TYPE (t)) == INTEGER_TYPE
	    && TYPE_IS_SIZETYPE (TREE_TYPE (t))))
    return overflow;

  /* If the value's sign bit is set, extend the sign.  */
  if (prec != 2 * HOST_BITS_PER_WIDE_INT
      && (prec > HOST_BITS_PER_WIDE_INT
	  ? 0 != (TREE_INT_CST_HIGH (t)
		  & ((HOST_WIDE_INT) 1
		     << (prec - HOST_BITS_PER_WIDE_INT - 1)))
	  : 0 != (TREE_INT_CST_LOW (t)
		  & ((unsigned HOST_WIDE_INT) 1 << (prec - 1)))))
    {
      /* Value is negative:
	 set to 1 all the bits that are outside this type's precision.  */
      if (prec > HOST_BITS_PER_WIDE_INT)
	TREE_INT_CST_HIGH (t)
	  |= ((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
      else
	{
	  TREE_INT_CST_HIGH (t) = -1;
	  if (prec < HOST_BITS_PER_WIDE_INT)
	    TREE_INT_CST_LOW (t) |= ((unsigned HOST_WIDE_INT) (-1) << prec);
	}
    }

  /* Return nonzero if signed overflow occurred.  */
  return
    ((overflow | (low ^ TREE_INT_CST_LOW (t)) | (high ^ TREE_INT_CST_HIGH (t)))
     != 0);
}

/* Add two doubleword integers with doubleword result.
   Each argument is given as two `HOST_WIDE_INT' pieces.
   One argument is L1 and H1; the other, L2 and H2.
   The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV.  */

int
add_double (l1, h1, l2, h2, lv, hv)
     unsigned HOST_WIDE_INT l1, l2;
     HOST_WIDE_INT h1, h2;
     unsigned HOST_WIDE_INT *lv;
     HOST_WIDE_INT *hv;
{
  unsigned HOST_WIDE_INT l;
  HOST_WIDE_INT h;

  l = l1 + l2;
  h = h1 + h2 + (l < l1);

  *lv = l;
  *hv = h;
  return OVERFLOW_SUM_SIGN (h1, h2, h);
}

/* Negate a doubleword integer with doubleword result.
   Return nonzero if the operation overflows, assuming it's signed.
   The argument is given as two `HOST_WIDE_INT' pieces in L1 and H1.
   The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV.  */

int
neg_double (l1, h1, lv, hv)
     unsigned HOST_WIDE_INT l1;
     HOST_WIDE_INT h1;
     unsigned HOST_WIDE_INT *lv;
     HOST_WIDE_INT *hv;
{
  if (l1 == 0)
    {
      *lv = 0;
      *hv = - h1;
      return (*hv & h1) < 0;
    }
  else
    {
      *lv = -l1;
      *hv = ~h1;
      return 0;
    }
}

/* Multiply two doubleword integers with doubleword result.
   Return nonzero if the operation overflows, assuming it's signed.
   Each argument is given as two `HOST_WIDE_INT' pieces.
   One argument is L1 and H1; the other, L2 and H2.
   The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV.  */

int
mul_double (l1, h1, l2, h2, lv, hv)
     unsigned HOST_WIDE_INT l1, l2;
     HOST_WIDE_INT h1, h2;
     unsigned HOST_WIDE_INT *lv;
     HOST_WIDE_INT *hv;
{
  HOST_WIDE_INT arg1[4];
  HOST_WIDE_INT arg2[4];
  HOST_WIDE_INT prod[4 * 2];
  unsigned HOST_WIDE_INT carry;
  int i, j, k;
  unsigned HOST_WIDE_INT toplow, neglow;
  HOST_WIDE_INT tophigh, neghigh;

  encode (arg1, l1, h1);
  encode (arg2, l2, h2);

  memset ((char *) prod, 0, sizeof prod);

  for (i = 0; i < 4; i++)
    {
      carry = 0;
      for (j = 0; j < 4; j++)
	{
	  k = i + j;
	  /* This product is <= 0xFFFE0001, the sum <= 0xFFFF0000.  */
	  carry += arg1[i] * arg2[j];
	  /* Since prod[p] < 0xFFFF, this sum <= 0xFFFFFFFF.  */
	  carry += prod[k];
	  prod[k] = LOWPART (carry);
	  carry = HIGHPART (carry);
	}
      prod[i + 4] = carry;
    }

  decode (prod, lv, hv);	/* This ignores prod[4] through prod[4*2-1] */

  /* Check for overflow by calculating the top half of the answer in full;
     it should agree with the low half's sign bit.  */
  decode (prod + 4, &toplow, &tophigh);
  if (h1 < 0)
    {
      neg_double (l2, h2, &neglow, &neghigh);
      add_double (neglow, neghigh, toplow, tophigh, &toplow, &tophigh);
    }
  if (h2 < 0)
    {
      neg_double (l1, h1, &neglow, &neghigh);
      add_double (neglow, neghigh, toplow, tophigh, &toplow, &tophigh);
    }
  return (*hv < 0 ? ~(toplow & tophigh) : toplow | tophigh) != 0;
}

/* Shift the doubleword integer in L1, H1 left by COUNT places
   keeping only PREC bits of result.
   Shift right if COUNT is negative.
   ARITH nonzero specifies arithmetic shifting; otherwise use logical shift.
   Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV.  */

void
lshift_double (l1, h1, count, prec, lv, hv, arith)
     unsigned HOST_WIDE_INT l1;
     HOST_WIDE_INT h1, count;
     unsigned int prec;
     unsigned HOST_WIDE_INT *lv;
     HOST_WIDE_INT *hv;
     int arith;
{
  unsigned HOST_WIDE_INT signmask;

  if (count < 0)
    {
      rshift_double (l1, h1, -count, prec, lv, hv, arith);
      return;
    }

#ifdef SHIFT_COUNT_TRUNCATED
  if (SHIFT_COUNT_TRUNCATED)
    count %= prec;
#endif

  if (count >= 2 * HOST_BITS_PER_WIDE_INT)
    {
      /* Shifting by the host word size is undefined according to the
	 ANSI standard, so we must handle this as a special case.  */
      *hv = 0;
      *lv = 0;
    }
  else if (count >= HOST_BITS_PER_WIDE_INT)
    {
      *hv = l1 << (count - HOST_BITS_PER_WIDE_INT);
      *lv = 0;
    }
  else
    {
      *hv = (((unsigned HOST_WIDE_INT) h1 << count)
	     | (l1 >> (HOST_BITS_PER_WIDE_INT - count - 1) >> 1));
      *lv = l1 << count;
    }

  /* Sign extend all bits that are beyond the precision.  */

  signmask = -((prec > HOST_BITS_PER_WIDE_INT
		? ((unsigned HOST_WIDE_INT) *hv
		   >> (prec - HOST_BITS_PER_WIDE_INT - 1))
		: (*lv >> (prec - 1))) & 1);

  if (prec >= 2 * HOST_BITS_PER_WIDE_INT)
    ;
  else if (prec >= HOST_BITS_PER_WIDE_INT)
    {
      *hv &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
      *hv |= signmask << (prec - HOST_BITS_PER_WIDE_INT);
    }
  else
    {
      *hv = signmask;
      *lv &= ~((unsigned HOST_WIDE_INT) (-1) << prec);
      *lv |= signmask << prec;
    }
}

/* Shift the doubleword integer in L1, H1 right by COUNT places
   keeping only PREC bits of result.  COUNT must be positive.
   ARITH nonzero specifies arithmetic shifting; otherwise use logical shift.
   Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV.  */

void
rshift_double (l1, h1, count, prec, lv, hv, arith)
     unsigned HOST_WIDE_INT l1;
     HOST_WIDE_INT h1, count;
     unsigned int prec;
     unsigned HOST_WIDE_INT *lv;
     HOST_WIDE_INT *hv;
     int arith;
{
  unsigned HOST_WIDE_INT signmask;

  signmask = (arith
	      ? -((unsigned HOST_WIDE_INT) h1 >> (HOST_BITS_PER_WIDE_INT - 1))
	      : 0);

#ifdef SHIFT_COUNT_TRUNCATED
  if (SHIFT_COUNT_TRUNCATED)
    count %= prec;
#endif

  if (count >= 2 * HOST_BITS_PER_WIDE_INT)
    {
      /* Shifting by the host word size is undefined according to the
	 ANSI standard, so we must handle this as a special case.  */
      *hv = 0;
      *lv = 0;
    }
  else if (count >= HOST_BITS_PER_WIDE_INT)
    {
      *hv = 0;
      *lv = (unsigned HOST_WIDE_INT) h1 >> (count - HOST_BITS_PER_WIDE_INT);
    }
  else
    {
      *hv = (unsigned HOST_WIDE_INT) h1 >> count;
      *lv = ((l1 >> count)
	     | ((unsigned HOST_WIDE_INT) h1 << (HOST_BITS_PER_WIDE_INT - count - 1) << 1));
    }

  /* Zero / sign extend all bits that are beyond the precision.  */

  if (count >= (HOST_WIDE_INT)prec)
    {
      *hv = signmask;
      *lv = signmask;
    }
  else if ((prec - count) >= 2 * HOST_BITS_PER_WIDE_INT)
    ;
  else if ((prec - count) >= HOST_BITS_PER_WIDE_INT)
    {
      *hv &= ~((HOST_WIDE_INT) (-1) << (prec - count - HOST_BITS_PER_WIDE_INT));
      *hv |= signmask << (prec - count - HOST_BITS_PER_WIDE_INT);
    }
  else
    {
      *hv = signmask;
      *lv &= ~((unsigned HOST_WIDE_INT) (-1) << (prec - count));
      *lv |= signmask << (prec - count);
    }
}

/* Rotate the doubleword integer in L1, H1 left by COUNT places
   keeping only PREC bits of result.
   Rotate right if COUNT is negative.
   Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV.  */

void
lrotate_double (l1, h1, count, prec, lv, hv)
     unsigned HOST_WIDE_INT l1;
     HOST_WIDE_INT h1, count;
     unsigned int prec;
     unsigned HOST_WIDE_INT *lv;
     HOST_WIDE_INT *hv;
{
  unsigned HOST_WIDE_INT s1l, s2l;
  HOST_WIDE_INT s1h, s2h;

  count %= prec;
  if (count < 0)
    count += prec;

  lshift_double (l1, h1, count, prec, &s1l, &s1h, 0);
  rshift_double (l1, h1, prec - count, prec, &s2l, &s2h, 0);
  *lv = s1l | s2l;
  *hv = s1h | s2h;
}

/* Rotate the doubleword integer in L1, H1 left by COUNT places
   keeping only PREC bits of result.  COUNT must be positive.
   Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV.  */

void
rrotate_double (l1, h1, count, prec, lv, hv)
     unsigned HOST_WIDE_INT l1;
     HOST_WIDE_INT h1, count;
     unsigned int prec;
     unsigned HOST_WIDE_INT *lv;
     HOST_WIDE_INT *hv;
{
  unsigned HOST_WIDE_INT s1l, s2l;
  HOST_WIDE_INT s1h, s2h;

  count %= prec;
  if (count < 0)
    count += prec;

  rshift_double (l1, h1, count, prec, &s1l, &s1h, 0);
  lshift_double (l1, h1, prec - count, prec, &s2l, &s2h, 0);
  *lv = s1l | s2l;
  *hv = s1h | s2h;
}

/* Divide doubleword integer LNUM, HNUM by doubleword integer LDEN, HDEN
   for a quotient (stored in *LQUO, *HQUO) and remainder (in *LREM, *HREM).
   CODE is a tree code for a kind of division, one of
   TRUNC_DIV_EXPR, FLOOR_DIV_EXPR, CEIL_DIV_EXPR, ROUND_DIV_EXPR
   or EXACT_DIV_EXPR
   It controls how the quotient is rounded to an integer.
   Return nonzero if the operation overflows.
   UNS nonzero says do unsigned division.  */

int
div_and_round_double (code, uns,
		      lnum_orig, hnum_orig, lden_orig, hden_orig,
		      lquo, hquo, lrem, hrem)
     enum tree_code code;
     int uns;
     unsigned HOST_WIDE_INT lnum_orig; /* num == numerator == dividend */
     HOST_WIDE_INT hnum_orig;
     unsigned HOST_WIDE_INT lden_orig; /* den == denominator == divisor */
     HOST_WIDE_INT hden_orig;
     unsigned HOST_WIDE_INT *lquo, *lrem;
     HOST_WIDE_INT *hquo, *hrem;
{
  int quo_neg = 0;
  HOST_WIDE_INT num[4 + 1];	/* extra element for scaling.  */
  HOST_WIDE_INT den[4], quo[4];
  int i, j;
  unsigned HOST_WIDE_INT work;
  unsigned HOST_WIDE_INT carry = 0;
  unsigned HOST_WIDE_INT lnum = lnum_orig;
  HOST_WIDE_INT hnum = hnum_orig;
  unsigned HOST_WIDE_INT lden = lden_orig;
  HOST_WIDE_INT hden = hden_orig;
  int overflow = 0;

  if (hden == 0 && lden == 0)
    overflow = 1, lden = 1;

  /* calculate quotient sign and convert operands to unsigned.  */
  if (!uns)
    {
      if (hnum < 0)
	{
	  quo_neg = ~ quo_neg;
	  /* (minimum integer) / (-1) is the only overflow case.  */
	  if (neg_double (lnum, hnum, &lnum, &hnum)
	      && ((HOST_WIDE_INT) lden & hden) == -1)
	    overflow = 1;
	}
      if (hden < 0)
	{
	  quo_neg = ~ quo_neg;
	  neg_double (lden, hden, &lden, &hden);
	}
    }

  if (hnum == 0 && hden == 0)
    {				/* single precision */
      *hquo = *hrem = 0;
      /* This unsigned division rounds toward zero.  */
      *lquo = lnum / lden;
      goto finish_up;
    }

  if (hnum == 0)
    {				/* trivial case: dividend < divisor */
      /* hden != 0 already checked.  */
      *hquo = *lquo = 0;
      *hrem = hnum;
      *lrem = lnum;
      goto finish_up;
    }

  memset ((char *) quo, 0, sizeof quo);

  memset ((char *) num, 0, sizeof num);	/* to zero 9th element */
  memset ((char *) den, 0, sizeof den);

  encode (num, lnum, hnum);
  encode (den, lden, hden);

  /* Special code for when the divisor < BASE.  */
  if (hden == 0 && lden < (unsigned HOST_WIDE_INT) BASE)
    {
      /* hnum != 0 already checked.  */
      for (i = 4 - 1; i >= 0; i--)
	{
	  work = num[i] + carry * BASE;
	  quo[i] = work / lden;
	  carry = work % lden;
	}
    }
  else
    {
      /* Full double precision division,
	 with thanks to Don Knuth's "Seminumerical Algorithms".  */
      int num_hi_sig, den_hi_sig;
      unsigned HOST_WIDE_INT quo_est, scale;

      /* Find the highest non-zero divisor digit.  */
      for (i = 4 - 1;; i--)
	if (den[i] != 0)
	  {
	    den_hi_sig = i;
	    break;
	  }

      /* Insure that the first digit of the divisor is at least BASE/2.
	 This is required by the quotient digit estimation algorithm.  */

      scale = BASE / (den[den_hi_sig] + 1);
      if (scale > 1)
	{		/* scale divisor and dividend */
	  carry = 0;
	  for (i = 0; i <= 4 - 1; i++)
	    {
	      work = (num[i] * scale) + carry;
	      num[i] = LOWPART (work);
	      carry = HIGHPART (work);
	    }

	  num[4] = carry;
	  carry = 0;
	  for (i = 0; i <= 4 - 1; i++)
	    {
	      work = (den[i] * scale) + carry;
	      den[i] = LOWPART (work);
	      carry = HIGHPART (work);
	      if (den[i] != 0) den_hi_sig = i;
	    }
	}

      num_hi_sig = 4;

      /* Main loop */
      for (i = num_hi_sig - den_hi_sig - 1; i >= 0; i--)
	{
	  /* Guess the next quotient digit, quo_est, by dividing the first
	     two remaining dividend digits by the high order quotient digit.
	     quo_est is never low and is at most 2 high.  */
	  unsigned HOST_WIDE_INT tmp;

	  num_hi_sig = i + den_hi_sig + 1;
	  work = num[num_hi_sig] * BASE + num[num_hi_sig - 1];
	  if (num[num_hi_sig] != den[den_hi_sig])
	    quo_est = work / den[den_hi_sig];
	  else
	    quo_est = BASE - 1;

	  /* Refine quo_est so it's usually correct, and at most one high.  */
	  tmp = work - quo_est * den[den_hi_sig];
	  if (tmp < BASE
	      && (den[den_hi_sig - 1] * quo_est
		  > (tmp * BASE + num[num_hi_sig - 2])))
	    quo_est--;

	  /* Try QUO_EST as the quotient digit, by multiplying the
	     divisor by QUO_EST and subtracting from the remaining dividend.
	     Keep in mind that QUO_EST is the I - 1st digit.  */

	  carry = 0;
	  for (j = 0; j <= den_hi_sig; j++)
	    {
	      work = quo_est * den[j] + carry;
	      carry = HIGHPART (work);
	      work = num[i + j] - LOWPART (work);
	      num[i + j] = LOWPART (work);
	      carry += HIGHPART (work) != 0;
	    }

	  /* If quo_est was high by one, then num[i] went negative and
	     we need to correct things.  */
	  if (num[num_hi_sig] < (HOST_WIDE_INT) carry)
	    {
	      quo_est--;
	      carry = 0;		/* add divisor back in */
	      for (j = 0; j <= den_hi_sig; j++)
		{
		  work = num[i + j] + den[j] + carry;
		  carry = HIGHPART (work);
		  num[i + j] = LOWPART (work);
		}

	      num [num_hi_sig] += carry;
	    }

	  /* Store the quotient digit.  */
	  quo[i] = quo_est;
	}
    }

  decode (quo, lquo, hquo);

 finish_up:
  /* if result is negative, make it so.  */
  if (quo_neg)
    neg_double (*lquo, *hquo, lquo, hquo);

  /* compute trial remainder:  rem = num - (quo * den)  */
  mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem);
  neg_double (*lrem, *hrem, lrem, hrem);
  add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem);

  switch (code)
    {
    case TRUNC_DIV_EXPR:
    case TRUNC_MOD_EXPR:	/* round toward zero */
    case EXACT_DIV_EXPR:	/* for this one, it shouldn't matter */
      return overflow;

    case FLOOR_DIV_EXPR:
    case FLOOR_MOD_EXPR:	/* round toward negative infinity */
      if (quo_neg && (*lrem != 0 || *hrem != 0))   /* ratio < 0 && rem != 0 */
	{
	  /* quo = quo - 1;  */
	  add_double (*lquo, *hquo, (HOST_WIDE_INT) -1, (HOST_WIDE_INT)  -1,
		      lquo, hquo);
	}
      else
	return overflow;
      break;

    case CEIL_DIV_EXPR:
    case CEIL_MOD_EXPR:		/* round toward positive infinity */
      if (!quo_neg && (*lrem != 0 || *hrem != 0))  /* ratio > 0 && rem != 0 */
	{
	  add_double (*lquo, *hquo, (HOST_WIDE_INT) 1, (HOST_WIDE_INT) 0,
		      lquo, hquo);
	}
      else
	return overflow;
      break;

    case ROUND_DIV_EXPR:
    case ROUND_MOD_EXPR:	/* round to closest integer */
      {
	unsigned HOST_WIDE_INT labs_rem = *lrem;
	HOST_WIDE_INT habs_rem = *hrem;
	unsigned HOST_WIDE_INT labs_den = lden, ltwice;
	HOST_WIDE_INT habs_den = hden, htwice;

	/* Get absolute values */
	if (*hrem < 0)
	  neg_double (*lrem, *hrem, &labs_rem, &habs_rem);
	if (hden < 0)
	  neg_double (lden, hden, &labs_den, &habs_den);

	/* If (2 * abs (lrem) >= abs (lden)) */
	mul_double ((HOST_WIDE_INT) 2, (HOST_WIDE_INT) 0,
		    labs_rem, habs_rem, &ltwice, &htwice);

	if (((unsigned HOST_WIDE_INT) habs_den
	     < (unsigned HOST_WIDE_INT) htwice)
	    || (((unsigned HOST_WIDE_INT) habs_den
		 == (unsigned HOST_WIDE_INT) htwice)
		&& (labs_den < ltwice)))
	  {
	    if (*hquo < 0)
	      /* quo = quo - 1;  */
	      add_double (*lquo, *hquo,
			  (HOST_WIDE_INT) -1, (HOST_WIDE_INT) -1, lquo, hquo);
	    else
	      /* quo = quo + 1; */
	      add_double (*lquo, *hquo, (HOST_WIDE_INT) 1, (HOST_WIDE_INT) 0,
			  lquo, hquo);
	  }
	else
	  return overflow;
      }
      break;

    default:
      abort ();
    }

  /* compute true remainder:  rem = num - (quo * den)  */
  mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem);
  neg_double (*lrem, *hrem, lrem, hrem);
  add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem);
  return overflow;
}

/* Given T, an expression, return the negation of T.  Allow for T to be
   null, in which case return null.  */

static tree
negate_expr (t)
     tree t;
{
  tree type;
  tree tem;

  if (t == 0)
    return 0;

  type = TREE_TYPE (t);
  STRIP_SIGN_NOPS (t);

  switch (TREE_CODE (t))
    {
    case INTEGER_CST:
    case REAL_CST:
      if (! TREE_UNSIGNED (type)
	  && 0 != (tem = fold (build1 (NEGATE_EXPR, type, t)))
	  && ! TREE_OVERFLOW (tem))
	return tem;
      break;

    case NEGATE_EXPR:
      return convert (type, TREE_OPERAND (t, 0));

    case MINUS_EXPR:
      /* - (A - B) -> B - A  */
      if (! FLOAT_TYPE_P (type) || flag_unsafe_math_optimizations)
	return convert (type,
			fold (build (MINUS_EXPR, TREE_TYPE (t),
				     TREE_OPERAND (t, 1),
				     TREE_OPERAND (t, 0))));
      break;

    default:
      break;
    }

  return convert (type, fold (build1 (NEGATE_EXPR, TREE_TYPE (t), t)));
}

/* Split a tree IN into a constant, literal and variable parts that could be
   combined with CODE to make IN.  "constant" means an expression with
   TREE_CONSTANT but that isn't an actual constant.  CODE must be a
   commutative arithmetic operation.  Store the constant part into *CONP,
   the literal in *LITP and return the variable part.  If a part isn't
   present, set it to null.  If the tree does not decompose in this way,
   return the entire tree as the variable part and the other parts as null.

   If CODE is PLUS_EXPR we also split trees that use MINUS_EXPR.  In that
   case, we negate an operand that was subtracted.  Except if it is a
   literal for which we use *MINUS_LITP instead.

   If NEGATE_P is true, we are negating all of IN, again except a literal
   for which we use *MINUS_LITP instead.

   If IN is itself a literal or constant, return it as appropriate.

   Note that we do not guarantee that any of the three values will be the
   same type as IN, but they will have the same signedness and mode.  */

static tree
split_tree (in, code, conp, litp, minus_litp, negate_p)
     tree in;
     enum tree_code code;
     tree *conp, *litp, *minus_litp;
     int negate_p;
{
  tree var = 0;

  *conp = 0;
  *litp = 0;
  *minus_litp = 0;

  /* Strip any conversions that don't change the machine mode or signedness.  */
  STRIP_SIGN_NOPS (in);

  if (TREE_CODE (in) == INTEGER_CST || TREE_CODE (in) == REAL_CST)
    *litp = in;
  else if (TREE_CODE (in) == code
	   || (! FLOAT_TYPE_P (TREE_TYPE (in))
	       /* We can associate addition and subtraction together (even
		  though the C standard doesn't say so) for integers because
		  the value is not affected.  For reals, the value might be
		  affected, so we can't.  */
	       && ((code == PLUS_EXPR && TREE_CODE (in) == MINUS_EXPR)
		   || (code == MINUS_EXPR && TREE_CODE (in) == PLUS_EXPR))))
    {
      tree op0 = TREE_OPERAND (in, 0);
      tree op1 = TREE_OPERAND (in, 1);
      int neg1_p = TREE_CODE (in) == MINUS_EXPR;
      int neg_litp_p = 0, neg_conp_p = 0, neg_var_p = 0;

      /* First see if either of the operands is a literal, then a constant.  */
      if (TREE_CODE (op0) == INTEGER_CST || TREE_CODE (op0) == REAL_CST)
	*litp = op0, op0 = 0;
      else if (TREE_CODE (op1) == INTEGER_CST || TREE_CODE (op1) == REAL_CST)
	*litp = op1, neg_litp_p = neg1_p, op1 = 0;

      if (op0 != 0 && TREE_CONSTANT (op0))
	*conp = op0, op0 = 0;
      else if (op1 != 0 && TREE_CONSTANT (op1))
	*conp = op1, neg_conp_p = neg1_p, op1 = 0;

      /* If we haven't dealt with either operand, this is not a case we can
	 decompose.  Otherwise, VAR is either of the ones remaining, if any.  */
      if (op0 != 0 && op1 != 0)
	var = in;
      else if (op0 != 0)
	var = op0;
      else
	var = op1, neg_var_p = neg1_p;

      /* Now do any needed negations.  */
      if (neg_litp_p)
	*minus_litp = *litp, *litp = 0;
      if (neg_conp_p)
	*conp = negate_expr (*conp);
      if (neg_var_p)
	var = negate_expr (var);
    }
  else if (TREE_CONSTANT (in))
    *conp = in;
  else
    var = in;

  if (negate_p)
    {
      if (*litp)
	*minus_litp = *litp, *litp = 0;
      else if (*minus_litp)
	*litp = *minus_litp, *minus_litp = 0;
      *conp = negate_expr (*conp);
      var = negate_expr (var);
    }

  return var;
}

/* Re-associate trees split by the above function.  T1 and T2 are either
   expressions to associate or null.  Return the new expression, if any.  If
   we build an operation, do it in TYPE and with CODE.  */

static tree
associate_trees (t1, t2, code, type)
     tree t1, t2;
     enum tree_code code;
     tree type;
{
  if (t1 == 0)
    return t2;
  else if (t2 == 0)
    return t1;

  /* If either input is CODE, a PLUS_EXPR, or a MINUS_EXPR, don't
     try to fold this since we will have infinite recursion.  But do
     deal with any NEGATE_EXPRs.  */
  if (TREE_CODE (t1) == code || TREE_CODE (t2) == code
      || TREE_CODE (t1) == MINUS_EXPR || TREE_CODE (t2) == MINUS_EXPR)
    {
      if (TREE_CODE (t1) == NEGATE_EXPR)
	return build (MINUS_EXPR, type, convert (type, t2),
		      convert (type, TREE_OPERAND (t1, 0)));
      else if (TREE_CODE (t2) == NEGATE_EXPR)
	return build (MINUS_EXPR, type, convert (type, t1),
		      convert (type, TREE_OPERAND (t2, 0)));
      else
	return build (code, type, convert (type, t1), convert (type, t2));
    }

  return fold (build (code, type, convert (type, t1), convert (type, t2)));
}

/* Combine two integer constants ARG1 and ARG2 under operation CODE
   to produce a new constant.

   If NOTRUNC is nonzero, do not truncate the result to fit the data type.  */

static tree
int_const_binop (code, arg1, arg2, notrunc)
     enum tree_code code;
     tree arg1, arg2;
     int notrunc;
{
  unsigned HOST_WIDE_INT int1l, int2l;
  HOST_WIDE_INT int1h, int2h;
  unsigned HOST_WIDE_INT low;
  HOST_WIDE_INT hi;
  unsigned HOST_WIDE_INT garbagel;
  HOST_WIDE_INT garbageh;
  tree t;
  tree type = TREE_TYPE (arg1);
  int uns = TREE_UNSIGNED (type);
  int is_sizetype
    = (TREE_CODE (type) == INTEGER_TYPE && TYPE_IS_SIZETYPE (type));
  int overflow = 0;
  int no_overflow = 0;

  int1l = TREE_INT_CST_LOW (arg1);
  int1h = TREE_INT_CST_HIGH (arg1);
  int2l = TREE_INT_CST_LOW (arg2);
  int2h = TREE_INT_CST_HIGH (arg2);

  switch (code)
    {
    case BIT_IOR_EXPR:
      low = int1l | int2l, hi = int1h | int2h;
      break;

    case BIT_XOR_EXPR:
      low = int1l ^ int2l, hi = int1h ^ int2h;
      break;

    case BIT_AND_EXPR:
      low = int1l & int2l, hi = int1h & int2h;
      break;

    case BIT_ANDTC_EXPR:
      low = int1l & ~int2l, hi = int1h & ~int2h;
      break;

    case RSHIFT_EXPR:
      int2l = -int2l;
    case LSHIFT_EXPR:
      /* It's unclear from the C standard whether shifts can overflow.
	 The following code ignores overflow; perhaps a C standard
	 interpretation ruling is needed.  */
      lshift_double (int1l, int1h, int2l, TYPE_PRECISION (type),
		     &low, &hi, !uns);
      no_overflow = 1;
      break;

    case RROTATE_EXPR:
      int2l = - int2l;
    case LROTATE_EXPR:
      lrotate_double (int1l, int1h, int2l, TYPE_PRECISION (type),
		      &low, &hi);
      break;

    case PLUS_EXPR:
      overflow = add_double (int1l, int1h, int2l, int2h, &low, &hi);
      break;

    case MINUS_EXPR:
      neg_double (int2l, int2h, &low, &hi);
      add_double (int1l, int1h, low, hi, &low, &hi);
      overflow = OVERFLOW_SUM_SIGN (hi, int2h, int1h);
      break;

    case MULT_EXPR:
      overflow = mul_double (int1l, int1h, int2l, int2h, &low, &hi);
      break;

    case TRUNC_DIV_EXPR:
    case FLOOR_DIV_EXPR: case CEIL_DIV_EXPR:
    case EXACT_DIV_EXPR:
      /* This is a shortcut for a common special case.  */
      if (int2h == 0 && (HOST_WIDE_INT) int2l > 0
	  && ! TREE_CONSTANT_OVERFLOW (arg1)
	  && ! TREE_CONSTANT_OVERFLOW (arg2)
	  && int1h == 0 && (HOST_WIDE_INT) int1l >= 0)
	{
	  if (code == CEIL_DIV_EXPR)
	    int1l += int2l - 1;

	  low = int1l / int2l, hi = 0;
	  break;
	}

      /* ... fall through ...  */

    case ROUND_DIV_EXPR:
      if (int2h == 0 && int2l == 1)
	{
	  low = int1l, hi = int1h;
	  break;
	}
      if (int1l == int2l && int1h == int2h
	  && ! (int1l == 0 && int1h == 0))
	{
	  low = 1, hi = 0;
	  break;
	}
      overflow = div_and_round_double (code, uns, int1l, int1h, int2l, int2h,
				       &low, &hi, &garbagel, &garbageh);
      break;

    case TRUNC_MOD_EXPR:
    case FLOOR_MOD_EXPR: case CEIL_MOD_EXPR:
      /* This is a shortcut for a common special case.  */
      if (int2h == 0 && (HOST_WIDE_INT) int2l > 0
	  && ! TREE_CONSTANT_OVERFLOW (arg1)
	  && ! TREE_CONSTANT_OVERFLOW (arg2)
	  && int1h == 0 && (HOST_WIDE_INT) int1l >= 0)
	{
	  if (code == CEIL_MOD_EXPR)
	    int1l += int2l - 1;
	  low = int1l % int2l, hi = 0;
	  break;
	}

      /* ... fall through ...  */

    case ROUND_MOD_EXPR:
      overflow = div_and_round_double (code, uns,
				       int1l, int1h, int2l, int2h,
				       &garbagel, &garbageh, &low, &hi);
      break;

    case MIN_EXPR:
    case MAX_EXPR:
      if (uns)
	low = (((unsigned HOST_WIDE_INT) int1h
		< (unsigned HOST_WIDE_INT) int2h)
	       || (((unsigned HOST_WIDE_INT) int1h
		    == (unsigned HOST_WIDE_INT) int2h)
		   && int1l < int2l));
      else
	low = (int1h < int2h
	       || (int1h == int2h && int1l < int2l));

      if (low == (code == MIN_EXPR))
	low = int1l, hi = int1h;
      else
	low = int2l, hi = int2h;
      break;

    default:
      abort ();
    }

  /* If this is for a sizetype, can be represented as one (signed)
     HOST_WIDE_INT word, and doesn't overflow, use size_int since it caches
     constants.  */
  if (is_sizetype
      && ((hi == 0 && (HOST_WIDE_INT) low >= 0)
	  || (hi == -1 && (HOST_WIDE_INT) low < 0))
      && overflow == 0 && ! TREE_OVERFLOW (arg1) && ! TREE_OVERFLOW (arg2))
    return size_int_type_wide (low, type);
  else
    {
      t = build_int_2 (low, hi);
      TREE_TYPE (t) = TREE_TYPE (arg1);
    }

  TREE_OVERFLOW (t)
    = ((notrunc
	? (!uns || is_sizetype) && overflow
	: (force_fit_type (t, (!uns || is_sizetype) && overflow)
	   && ! no_overflow))
       | TREE_OVERFLOW (arg1)
       | TREE_OVERFLOW (arg2));

  /* If we're doing a size calculation, unsigned arithmetic does overflow.
     So check if force_fit_type truncated the value.  */
  if (is_sizetype
      && ! TREE_OVERFLOW (t)
      && (TREE_INT_CST_HIGH (t) != hi
	  || TREE_INT_CST_LOW (t) != low))
    TREE_OVERFLOW (t) = 1;

  TREE_CONSTANT_OVERFLOW (t) = (TREE_OVERFLOW (t)
				| TREE_CONSTANT_OVERFLOW (arg1)
				| TREE_CONSTANT_OVERFLOW (arg2));
  return t;
}

/* Combine two constants ARG1 and ARG2 under operation CODE to produce a new
   constant.  We assume ARG1 and ARG2 have the same data type, or at least
   are the same kind of constant and the same machine mode.

   If NOTRUNC is nonzero, do not truncate the result to fit the data type.  */

static tree
const_binop (code, arg1, arg2, notrunc)
     enum tree_code code;
     tree arg1, arg2;
     int notrunc;
{
  STRIP_NOPS (arg1);
  STRIP_NOPS (arg2);

  if (TREE_CODE (arg1) == INTEGER_CST)
    return int_const_binop (code, arg1, arg2, notrunc);

  if (TREE_CODE (arg1) == REAL_CST)
    {
      REAL_VALUE_TYPE d1;
      REAL_VALUE_TYPE d2;
      REAL_VALUE_TYPE value;
      tree t;

      d1 = TREE_REAL_CST (arg1);
      d2 = TREE_REAL_CST (arg2);

      /* If either operand is a NaN, just return it.  Otherwise, set up
	 for floating-point trap; we return an overflow.  */
      if (REAL_VALUE_ISNAN (d1))
	return arg1;
      else if (REAL_VALUE_ISNAN (d2))
	return arg2;

      REAL_ARITHMETIC (value, code, d1, d2);

      t = build_real (TREE_TYPE (arg1),
		      real_value_truncate (TYPE_MODE (TREE_TYPE (arg1)),
					   value));

      TREE_OVERFLOW (t)
	= (force_fit_type (t, 0)
	   | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2));
      TREE_CONSTANT_OVERFLOW (t)
	= TREE_OVERFLOW (t)
	  | TREE_CONSTANT_OVERFLOW (arg1)
	  | TREE_CONSTANT_OVERFLOW (arg2);
      return t;
    }
  if (TREE_CODE (arg1) == COMPLEX_CST)
    {
      tree type = TREE_TYPE (arg1);
      tree r1 = TREE_REALPART (arg1);
      tree i1 = TREE_IMAGPART (arg1);
      tree r2 = TREE_REALPART (arg2);
      tree i2 = TREE_IMAGPART (arg2);
      tree t;

      switch (code)
	{
	case PLUS_EXPR:
	  t = build_complex (type,
			     const_binop (PLUS_EXPR, r1, r2, notrunc),
			     const_binop (PLUS_EXPR, i1, i2, notrunc));
	  break;

	case MINUS_EXPR:
	  t = build_complex (type,
			     const_binop (MINUS_EXPR, r1, r2, notrunc),
			     const_binop (MINUS_EXPR, i1, i2, notrunc));
	  break;

	case MULT_EXPR:
	  t = build_complex (type,
			     const_binop (MINUS_EXPR,
					  const_binop (MULT_EXPR,
						       r1, r2, notrunc),
					  const_binop (MULT_EXPR,
						       i1, i2, notrunc),
					  notrunc),
			     const_binop (PLUS_EXPR,
					  const_binop (MULT_EXPR,
						       r1, i2, notrunc),
					  const_binop (MULT_EXPR,
						       i1, r2, notrunc),
					  notrunc));
	  break;

	case RDIV_EXPR:
	  {
	    tree magsquared
	      = const_binop (PLUS_EXPR,
			     const_binop (MULT_EXPR, r2, r2, notrunc),
			     const_binop (MULT_EXPR, i2, i2, notrunc),
			     notrunc);

	    t = build_complex (type,
			       const_binop
			       (INTEGRAL_TYPE_P (TREE_TYPE (r1))
				? TRUNC_DIV_EXPR : RDIV_EXPR,
				const_binop (PLUS_EXPR,
					     const_binop (MULT_EXPR, r1, r2,
							  notrunc),
					     const_binop (MULT_EXPR, i1, i2,
							  notrunc),
					     notrunc),
				magsquared, notrunc),
			       const_binop
			       (INTEGRAL_TYPE_P (TREE_TYPE (r1))
				? TRUNC_DIV_EXPR : RDIV_EXPR,
				const_binop (MINUS_EXPR,
					     const_binop (MULT_EXPR, i1, r2,
							  notrunc),
					     const_binop (MULT_EXPR, r1, i2,
							  notrunc),
					     notrunc),
				magsquared, notrunc));
	  }
	  break;

	default:
	  abort ();
	}
      return t;
    }
  return 0;
}

/* These are the hash table functions for the hash table of INTEGER_CST
   nodes of a sizetype.  */

/* Return the hash code code X, an INTEGER_CST.  */

static hashval_t
size_htab_hash (x)
     const void *x;
{
  tree t = (tree) x;

  return (TREE_INT_CST_HIGH (t) ^ TREE_INT_CST_LOW (t)
	  ^ (hashval_t) ((long) TREE_TYPE (t) >> 3)
	  ^ (TREE_OVERFLOW (t) << 20));
}

/* Return non-zero if the value represented by *X (an INTEGER_CST tree node)
   is the same as that given by *Y, which is the same.  */

static int
size_htab_eq (x, y)
     const void *x;
     const void *y;
{
  tree xt = (tree) x;
  tree yt = (tree) y;

  return (TREE_INT_CST_HIGH (xt) == TREE_INT_CST_HIGH (yt)
	  && TREE_INT_CST_LOW (xt) == TREE_INT_CST_LOW (yt)
	  && TREE_TYPE (xt) == TREE_TYPE (yt)
	  && TREE_OVERFLOW (xt) == TREE_OVERFLOW (yt));
}

/* Return an INTEGER_CST with value whose low-order HOST_BITS_PER_WIDE_INT
   bits are given by NUMBER and of the sizetype represented by KIND.  */

tree
size_int_wide (number, kind)
     HOST_WIDE_INT number;
     enum size_type_kind kind;
{
  return size_int_type_wide (number, sizetype_tab[(int) kind]);
}

/* Likewise, but the desired type is specified explicitly.  */

tree
size_int_type_wide (number, type)
     HOST_WIDE_INT number;
     tree type;
{
  static htab_t size_htab = 0;
  static tree new_const = 0;
  PTR *slot;

  if (size_htab == 0)
    {
      size_htab = htab_create (1024, size_htab_hash, size_htab_eq, NULL);
      ggc_add_deletable_htab (size_htab, NULL, NULL);
      new_const = make_node (INTEGER_CST);
      ggc_add_tree_root (&new_const, 1);
    }

  /* Adjust NEW_CONST to be the constant we want.  If it's already in the
     hash table, we return the value from the hash table.  Otherwise, we
     place that in the hash table and make a new node for the next time.  */
  TREE_INT_CST_LOW (new_const) = number;
  TREE_INT_CST_HIGH (new_const) = number < 0 ? -1 : 0;
  TREE_TYPE (new_const) = type;
  TREE_OVERFLOW (new_const) = TREE_CONSTANT_OVERFLOW (new_const)
    = force_fit_type (new_const, 0);

  slot = htab_find_slot (size_htab, new_const, INSERT);
  if (*slot == 0)
    {
      tree t = new_const;

      *slot = (PTR) new_const;
      new_const = make_node (INTEGER_CST);
      return t;
    }
  else
    return (tree) *slot;
}

/* Combine operands OP1 and OP2 with arithmetic operation CODE.  CODE
   is a tree code.  The type of the result is taken from the operands.
   Both must be the same type integer type and it must be a size type.
   If the operands are constant, so is the result.  */

tree
size_binop (code, arg0, arg1)
     enum tree_code code;
     tree arg0, arg1;
{
  tree type = TREE_TYPE (arg0);

  if (TREE_CODE (type) != INTEGER_TYPE || ! TYPE_IS_SIZETYPE (type)
      || type != TREE_TYPE (arg1))
    abort ();

  /* Handle the special case of two integer constants faster.  */
  if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
    {
      /* And some specific cases even faster than that.  */
      if (code == PLUS_EXPR && integer_zerop (arg0))
	return arg1;
      else if ((code == MINUS_EXPR || code == PLUS_EXPR)
	       && integer_zerop (arg1))
	return arg0;
      else if (code == MULT_EXPR && integer_onep (arg0))
	return arg1;

      /* Handle general case of two integer constants.  */
      return int_const_binop (code, arg0, arg1, 0);
    }

  if (arg0 == error_mark_node || arg1 == error_mark_node)
    return error_mark_node;

  return fold (build (code, type, arg0, arg1));
}

/* Given two values, either both of sizetype or both of bitsizetype,
   compute the difference between the two values.  Return the value
   in signed type corresponding to the type of the operands.  */

tree
size_diffop (arg0, arg1)
     tree arg0, arg1;
{
  tree type = TREE_TYPE (arg0);
  tree ctype;

  if (TREE_CODE (type) != INTEGER_TYPE || ! TYPE_IS_SIZETYPE (type)
      || type != TREE_TYPE (arg1))
    abort ();

  /* If the type is already signed, just do the simple thing.  */
  if (! TREE_UNSIGNED (type))
    return size_binop (MINUS_EXPR, arg0, arg1);

  ctype = (type == bitsizetype || type == ubitsizetype
	   ? sbitsizetype : ssizetype);

  /* If either operand is not a constant, do the conversions to the signed
     type and subtract.  The hardware will do the right thing with any
     overflow in the subtraction.  */
  if (TREE_CODE (arg0) != INTEGER_CST || TREE_CODE (arg1) != INTEGER_CST)
    return size_binop (MINUS_EXPR, convert (ctype, arg0),
		       convert (ctype, arg1));

  /* If ARG0 is larger than ARG1, subtract and return the result in CTYPE.
     Otherwise, subtract the other way, convert to CTYPE (we know that can't
     overflow) and negate (which can't either).  Special-case a result
     of zero while we're here.  */
  if (tree_int_cst_equal (arg0, arg1))
    return convert (ctype, integer_zero_node);
  else if (tree_int_cst_lt (arg1, arg0))
    return convert (ctype, size_binop (MINUS_EXPR, arg0, arg1));
  else
    return size_binop (MINUS_EXPR, convert (ctype, integer_zero_node),
		       convert (ctype, size_binop (MINUS_EXPR, arg1, arg0)));
}


/* Given T, a tree representing type conversion of ARG1, a constant,
   return a constant tree representing the result of conversion.  */

static tree
fold_convert (t, arg1)
     tree t;
     tree arg1;
{
  tree type = TREE_TYPE (t);
  int overflow = 0;

  if (POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type))
    {
      if (TREE_CODE (arg1) == INTEGER_CST)
	{
	  /* If we would build a constant wider than GCC supports,
	     leave the conversion unfolded.  */
	  if (TYPE_PRECISION (type) > 2 * HOST_BITS_PER_WIDE_INT)
	    return t;

	  /* If we are trying to make a sizetype for a small integer, use
	     size_int to pick up cached types to reduce duplicate nodes.  */
	  if (TREE_CODE (type) == INTEGER_TYPE && TYPE_IS_SIZETYPE (type)
	      && !TREE_CONSTANT_OVERFLOW (arg1)
	      && compare_tree_int (arg1, 10000) < 0)
	    return size_int_type_wide (TREE_INT_CST_LOW (arg1), type);

	  /* Given an integer constant, make new constant with new type,
	     appropriately sign-extended or truncated.  */
	  t = build_int_2 (TREE_INT_CST_LOW (arg1),
			   TREE_INT_CST_HIGH (arg1));
	  TREE_TYPE (t) = type;
	  /* Indicate an overflow if (1) ARG1 already overflowed,
	     or (2) force_fit_type indicates an overflow.
	     Tell force_fit_type that an overflow has already occurred
	     if ARG1 is a too-large unsigned value and T is signed.
	     But don't indicate an overflow if converting a pointer.  */
	  TREE_OVERFLOW (t)
	    = ((force_fit_type (t,
				(TREE_INT_CST_HIGH (arg1) < 0
				 && (TREE_UNSIGNED (type)
				    < TREE_UNSIGNED (TREE_TYPE (arg1)))))
		&& ! POINTER_TYPE_P (TREE_TYPE (arg1)))
	       || TREE_OVERFLOW (arg1));
	  TREE_CONSTANT_OVERFLOW (t)
	    = TREE_OVERFLOW (t) | TREE_CONSTANT_OVERFLOW (arg1);
	}
      else if (TREE_CODE (arg1) == REAL_CST)
	{
	  /* Don't initialize these, use assignments.
	     Initialized local aggregates don't work on old compilers.  */
	  REAL_VALUE_TYPE x;
	  REAL_VALUE_TYPE l;
	  REAL_VALUE_TYPE u;
	  tree type1 = TREE_TYPE (arg1);
	  int no_upper_bound;

	  x = TREE_REAL_CST (arg1);
	  l = real_value_from_int_cst (type1, TYPE_MIN_VALUE (type));

	  no_upper_bound = (TYPE_MAX_VALUE (type) == NULL);
	  if (!no_upper_bound)
	    u = real_value_from_int_cst (type1, TYPE_MAX_VALUE (type));

	  /* See if X will be in range after truncation towards 0.
	     To compensate for truncation, move the bounds away from 0,
	     but reject if X exactly equals the adjusted bounds.  */
	  REAL_ARITHMETIC (l, MINUS_EXPR, l, dconst1);
	  if (!no_upper_bound)
	    REAL_ARITHMETIC (u, PLUS_EXPR, u, dconst1);
	  /* If X is a NaN, use zero instead and show we have an overflow.
	     Otherwise, range check.  */
	  if (REAL_VALUE_ISNAN (x))
	    overflow = 1, x = dconst0;
	  else if (! (REAL_VALUES_LESS (l, x)
		      && !no_upper_bound
		      && REAL_VALUES_LESS (x, u)))
	    overflow = 1;

	  {
	    HOST_WIDE_INT low, high;
	    REAL_VALUE_TO_INT (&low, &high, x);
	    t = build_int_2 (low, high);
	  }
	  TREE_TYPE (t) = type;
	  TREE_OVERFLOW (t)
	    = TREE_OVERFLOW (arg1) | force_fit_type (t, overflow);
	  TREE_CONSTANT_OVERFLOW (t)
	    = TREE_OVERFLOW (t) | TREE_CONSTANT_OVERFLOW (arg1);
	}
      TREE_TYPE (t) = type;
    }
  else if (TREE_CODE (type) == REAL_TYPE)
    {
      if (TREE_CODE (arg1) == INTEGER_CST)
	return build_real_from_int_cst (type, arg1);
      if (TREE_CODE (arg1) == REAL_CST)
	{
	  if (REAL_VALUE_ISNAN (TREE_REAL_CST (arg1)))
	    {
	      t = arg1;
	      TREE_TYPE (arg1) = type;
	      return t;
	    }

	  t = build_real (type,
			  real_value_truncate (TYPE_MODE (type),
					       TREE_REAL_CST (arg1)));

	  TREE_OVERFLOW (t)
	    = TREE_OVERFLOW (arg1) | force_fit_type (t, 0);
	  TREE_CONSTANT_OVERFLOW (t)
	    = TREE_OVERFLOW (t) | TREE_CONSTANT_OVERFLOW (arg1);
	  return t;
	}
    }
  TREE_CONSTANT (t) = 1;
  return t;
}

/* Return an expr equal to X but certainly not valid as an lvalue.  */

tree
non_lvalue (x)
     tree x;
{
  tree result;

  /* These things are certainly not lvalues.  */
  if (TREE_CODE (x) == NON_LVALUE_EXPR
      || TREE_CODE (x) == INTEGER_CST
      || TREE_CODE (x) == REAL_CST
      || TREE_CODE (x) == STRING_CST
      || TREE_CODE (x) == ADDR_EXPR)
    return x;

  result = build1 (NON_LVALUE_EXPR, TREE_TYPE (x), x);
  TREE_CONSTANT (result) = TREE_CONSTANT (x);
  return result;
}

/* Nonzero means lvalues are limited to those valid in pedantic ANSI C.
   Zero means allow extended lvalues.  */

int pedantic_lvalues;

/* When pedantic, return an expr equal to X but certainly not valid as a
   pedantic lvalue.  Otherwise, return X.  */

tree
pedantic_non_lvalue (x)
     tree x;
{
  if (pedantic_lvalues)
    return non_lvalue (x);
  else
    return x;
}

/* Given a tree comparison code, return the code that is the logical inverse
   of the given code.  It is not safe to do this for floating-point
   comparisons, except for NE_EXPR and EQ_EXPR.  */

static enum tree_code
invert_tree_comparison (code)
     enum tree_code code;
{
  switch (code)
    {
    case EQ_EXPR:
      return NE_EXPR;
    case NE_EXPR:
      return EQ_EXPR;
    case GT_EXPR:
      return LE_EXPR;
    case GE_EXPR:
      return LT_EXPR;
    case LT_EXPR:
      return GE_EXPR;
    case LE_EXPR:
      return GT_EXPR;
    default:
      abort ();
    }
}

/* Similar, but return the comparison that results if the operands are
   swapped.  This is safe for floating-point.  */

static enum tree_code
swap_tree_comparison (code)
     enum tree_code code;
{
  switch (code)
    {
    case EQ_EXPR:
    case NE_EXPR:
      return code;
    case GT_EXPR:
      return LT_EXPR;
    case GE_EXPR:
      return LE_EXPR;
    case LT_EXPR:
      return GT_EXPR;
    case LE_EXPR:
      return GE_EXPR;
    default:
      abort ();
    }
}

/* Return nonzero if CODE is a tree code that represents a truth value.  */

static int
truth_value_p (code)
     enum tree_code code;
{
  return (TREE_CODE_CLASS (code) == '<'
	  || code == TRUTH_AND_EXPR || code == TRUTH_ANDIF_EXPR
	  || code == TRUTH_OR_EXPR || code == TRUTH_ORIF_EXPR
	  || code == TRUTH_XOR_EXPR || code == TRUTH_NOT_EXPR);
}

/* Return nonzero if two operands are necessarily equal.
   If ONLY_CONST is non-zero, only return non-zero for constants.
   This function tests whether the operands are indistinguishable;
   it does not test whether they are equal using C's == operation.
   The distinction is important for IEEE floating point, because
   (1) -0.0 and 0.0 are distinguishable, but -0.0==0.0, and
   (2) two NaNs may be indistinguishable, but NaN!=NaN.  */

int
operand_equal_p (arg0, arg1, only_const)
     tree arg0, arg1;
     int only_const;
{
  /* If both types don't have the same signedness, then we can't consider
     them equal.  We must check this before the STRIP_NOPS calls
     because they may change the signedness of the arguments.  */
  if (TREE_UNSIGNED (TREE_TYPE (arg0)) != TREE_UNSIGNED (TREE_TYPE (arg1)))
    return 0;

  STRIP_NOPS (arg0);
  STRIP_NOPS (arg1);

  if (TREE_CODE (arg0) != TREE_CODE (arg1)
      /* This is needed for conversions and for COMPONENT_REF.
	 Might as well play it safe and always test this.  */
      || TREE_CODE (TREE_TYPE (arg0)) == ERROR_MARK
      || TREE_CODE (TREE_TYPE (arg1)) == ERROR_MARK
      || TYPE_MODE (TREE_TYPE (arg0)) != TYPE_MODE (TREE_TYPE (arg1)))
    return 0;

  /* If ARG0 and ARG1 are the same SAVE_EXPR, they are necessarily equal.
     We don't care about side effects in that case because the SAVE_EXPR
     takes care of that for us. In all other cases, two expressions are
     equal if they have no side effects.  If we have two identical
     expressions with side effects that should be treated the same due
     to the only side effects being identical SAVE_EXPR's, that will
     be detected in the recursive calls below.  */
  if (arg0 == arg1 && ! only_const
      && (TREE_CODE (arg0) == SAVE_EXPR
	  || (! TREE_SIDE_EFFECTS (arg0) && ! TREE_SIDE_EFFECTS (arg1))))
    return 1;

  /* Next handle constant cases, those for which we can return 1 even
     if ONLY_CONST is set.  */
  if (TREE_CONSTANT (arg0) && TREE_CONSTANT (arg1))
    switch (TREE_CODE (arg0))
      {
      case INTEGER_CST:
	return (! TREE_CONSTANT_OVERFLOW (arg0)
		&& ! TREE_CONSTANT_OVERFLOW (arg1)
		&& tree_int_cst_equal (arg0, arg1));

      case REAL_CST:
	return (! TREE_CONSTANT_OVERFLOW (arg0)
		&& ! TREE_CONSTANT_OVERFLOW (arg1)
		&& REAL_VALUES_IDENTICAL (TREE_REAL_CST (arg0),
					  TREE_REAL_CST (arg1)));

      case VECTOR_CST:
	{
	  tree v1, v2;

	  if (TREE_CONSTANT_OVERFLOW (arg0)
	      || TREE_CONSTANT_OVERFLOW (arg1))
	    return 0;

	  v1 = TREE_VECTOR_CST_ELTS (arg0);
	  v2 = TREE_VECTOR_CST_ELTS (arg1);
	  while (v1 && v2)
	    {
	      if (!operand_equal_p (v1, v2, only_const))
		return 0;
	      v1 = TREE_CHAIN (v1);
	      v2 = TREE_CHAIN (v2);
	    }

	  return 1;
	}

      case COMPLEX_CST:
	return (operand_equal_p (TREE_REALPART (arg0), TREE_REALPART (arg1),
				 only_const)
		&& operand_equal_p (TREE_IMAGPART (arg0), TREE_IMAGPART (arg1),
				    only_const));

      case STRING_CST:
	return (TREE_STRING_LENGTH (arg0) == TREE_STRING_LENGTH (arg1)
		&& ! memcmp (TREE_STRING_POINTER (arg0),
			      TREE_STRING_POINTER (arg1),
			      TREE_STRING_LENGTH (arg0)));

      case ADDR_EXPR:
	return operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0),
				0);
      default:
	break;
      }

  if (only_const)
    return 0;

  switch (TREE_CODE_CLASS (TREE_CODE (arg0)))
    {
    case '1':
      /* Two conversions are equal only if signedness and modes match.  */
      if ((TREE_CODE (arg0) == NOP_EXPR || TREE_CODE (arg0) == CONVERT_EXPR)
	  && (TREE_UNSIGNED (TREE_TYPE (arg0))
	      != TREE_UNSIGNED (TREE_TYPE (arg1))))
	return 0;

      return operand_equal_p (TREE_OPERAND (arg0, 0),
			      TREE_OPERAND (arg1, 0), 0);

    case '<':
    case '2':
      if (operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0), 0)
	  && operand_equal_p (TREE_OPERAND (arg0, 1), TREE_OPERAND (arg1, 1),
			      0))
	return 1;

      /* For commutative ops, allow the other order.  */
      return ((TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MULT_EXPR
	       || TREE_CODE (arg0) == MIN_EXPR || TREE_CODE (arg0) == MAX_EXPR
	       || TREE_CODE (arg0) == BIT_IOR_EXPR
	       || TREE_CODE (arg0) == BIT_XOR_EXPR
	       || TREE_CODE (arg0) == BIT_AND_EXPR
	       || TREE_CODE (arg0) == NE_EXPR || TREE_CODE (arg0) == EQ_EXPR)
	      && operand_equal_p (TREE_OPERAND (arg0, 0),
				  TREE_OPERAND (arg1, 1), 0)
	      && operand_equal_p (TREE_OPERAND (arg0, 1),
				  TREE_OPERAND (arg1, 0), 0));

    case 'r':
      /* If either of the pointer (or reference) expressions we are dereferencing
	 contain a side effect, these cannot be equal.  */
      if (TREE_SIDE_EFFECTS (arg0)
	  || TREE_SIDE_EFFECTS (arg1))
	return 0;

      switch (TREE_CODE (arg0))
	{
	case INDIRECT_REF:
	  return operand_equal_p (TREE_OPERAND (arg0, 0),
				  TREE_OPERAND (arg1, 0), 0);

	case COMPONENT_REF:
	case ARRAY_REF:
	case ARRAY_RANGE_REF:
	  return (operand_equal_p (TREE_OPERAND (arg0, 0),
				   TREE_OPERAND (arg1, 0), 0)
		  && operand_equal_p (TREE_OPERAND (arg0, 1),
				      TREE_OPERAND (arg1, 1), 0));

	case BIT_FIELD_REF:
	  return (operand_equal_p (TREE_OPERAND (arg0, 0),
				   TREE_OPERAND (arg1, 0), 0)
		  && operand_equal_p (TREE_OPERAND (arg0, 1),
				      TREE_OPERAND (arg1, 1), 0)
		  && operand_equal_p (TREE_OPERAND (arg0, 2),
				      TREE_OPERAND (arg1, 2), 0));
	default:
	  return 0;
	}

    case 'e':
      if (TREE_CODE (arg0) == RTL_EXPR)
	return rtx_equal_p (RTL_EXPR_RTL (arg0), RTL_EXPR_RTL (arg1));
      return 0;

    default:
      return 0;
    }
}

/* Similar to operand_equal_p, but see if ARG0 might have been made by
   shorten_compare from ARG1 when ARG1 was being compared with OTHER.

   When in doubt, return 0.  */

static int
operand_equal_for_comparison_p (arg0, arg1, other)
     tree arg0, arg1;
     tree other;
{
  int unsignedp1, unsignedpo;
  tree primarg0, primarg1, primother;
  unsigned int correct_width;

  if (operand_equal_p (arg0, arg1, 0))
    return 1;

  if (! INTEGRAL_TYPE_P (TREE_TYPE (arg0))
      || ! INTEGRAL_TYPE_P (TREE_TYPE (arg1)))
    return 0;

  /* Discard any conversions that don't change the modes of ARG0 and ARG1
     and see if the inner values are the same.  This removes any
     signedness comparison, which doesn't matter here.  */
  primarg0 = arg0, primarg1 = arg1;
  STRIP_NOPS (primarg0);
  STRIP_NOPS (primarg1);
  if (operand_equal_p (primarg0, primarg1, 0))
    return 1;

  /* Duplicate what shorten_compare does to ARG1 and see if that gives the
     actual comparison operand, ARG0.

     First throw away any conversions to wider types
     already present in the operands.  */

  primarg1 = get_narrower (arg1, &unsignedp1);
  primother = get_narrower (other, &unsignedpo);

  correct_width = TYPE_PRECISION (TREE_TYPE (arg1));
  if (unsignedp1 == unsignedpo
      && TYPE_PRECISION (TREE_TYPE (primarg1)) < correct_width
      && TYPE_PRECISION (TREE_TYPE (primother)) < correct_width)
    {
      tree type = TREE_TYPE (arg0);

      /* Make sure shorter operand is extended the right way
	 to match the longer operand.  */
      primarg1 = convert ((*lang_hooks.types.signed_or_unsigned_type)
			  (unsignedp1, TREE_TYPE (primarg1)), primarg1);

      if (operand_equal_p (arg0, convert (type, primarg1), 0))
	return 1;
    }

  return 0;
}

/* See if ARG is an expression that is either a comparison or is performing
   arithmetic on comparisons.  The comparisons must only be comparing
   two different values, which will be stored in *CVAL1 and *CVAL2; if
   they are non-zero it means that some operands have already been found.
   No variables may be used anywhere else in the expression except in the
   comparisons.  If SAVE_P is true it means we removed a SAVE_EXPR around
   the expression and save_expr needs to be called with CVAL1 and CVAL2.

   If this is true, return 1.  Otherwise, return zero.  */

static int
twoval_comparison_p (arg, cval1, cval2, save_p)
     tree arg;
     tree *cval1, *cval2;
     int *save_p;
{
  enum tree_code code = TREE_CODE (arg);
  char class = TREE_CODE_CLASS (code);

  /* We can handle some of the 'e' cases here.  */
  if (class == 'e' && code == TRUTH_NOT_EXPR)
    class = '1';
  else if (class == 'e'
	   && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR
	       || code == COMPOUND_EXPR))
    class = '2';

  else if (class == 'e' && code == SAVE_EXPR && SAVE_EXPR_RTL (arg) == 0
	   && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg, 0)))
    {
      /* If we've already found a CVAL1 or CVAL2, this expression is
	 two complex to handle.  */
      if (*cval1 || *cval2)
	return 0;

      class = '1';
      *save_p = 1;
    }

  switch (class)
    {
    case '1':
      return twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p);

    case '2':
      return (twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p)
	      && twoval_comparison_p (TREE_OPERAND (arg, 1),
				      cval1, cval2, save_p));

    case 'c':
      return 1;

    case 'e':
      if (code == COND_EXPR)
	return (twoval_comparison_p (TREE_OPERAND (arg, 0),
				     cval1, cval2, save_p)
		&& twoval_comparison_p (TREE_OPERAND (arg, 1),
					cval1, cval2, save_p)
		&& twoval_comparison_p (TREE_OPERAND (arg, 2),
					cval1, cval2, save_p));
      return 0;

    case '<':
      /* First see if we can handle the first operand, then the second.  For
	 the second operand, we know *CVAL1 can't be zero.  It must be that
	 one side of the comparison is each of the values; test for the
	 case where this isn't true by failing if the two operands
	 are the same.  */

      if (operand_equal_p (TREE_OPERAND (arg, 0),
			   TREE_OPERAND (arg, 1), 0))
	return 0;

      if (*cval1 == 0)
	*cval1 = TREE_OPERAND (arg, 0);
      else if (operand_equal_p (*cval1, TREE_OPERAND (arg, 0), 0))
	;
      else if (*cval2 == 0)
	*cval2 = TREE_OPERAND (arg, 0);
      else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 0), 0))
	;
      else
	return 0;

      if (operand_equal_p (*cval1, TREE_OPERAND (arg, 1), 0))
	;
      else if (*cval2 == 0)
	*cval2 = TREE_OPERAND (arg, 1);
      else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 1), 0))
	;
      else
	return 0;

      return 1;

    default:
      return 0;
    }
}

/* ARG is a tree that is known to contain just arithmetic operations and
   comparisons.  Evaluate the operations in the tree substituting NEW0 for
   any occurrence of OLD0 as an operand of a comparison and likewise for
   NEW1 and OLD1.  */

static tree
eval_subst (arg, old0, new0, old1, new1)
     tree arg;
     tree old0, new0, old1, new1;
{
  tree type = TREE_TYPE (arg);
  enum tree_code code = TREE_CODE (arg);
  char class = TREE_CODE_CLASS (code);

  /* We can handle some of the 'e' cases here.  */
  if (class == 'e' && code == TRUTH_NOT_EXPR)
    class = '1';
  else if (class == 'e'
	   && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
    class = '2';

  switch (class)
    {
    case '1':
      return fold (build1 (code, type,
			   eval_subst (TREE_OPERAND (arg, 0),
				       old0, new0, old1, new1)));

    case '2':
      return fold (build (code, type,
			  eval_subst (TREE_OPERAND (arg, 0),
				      old0, new0, old1, new1),
			  eval_subst (TREE_OPERAND (arg, 1),
				      old0, new0, old1, new1)));

    case 'e':
      switch (code)
	{
	case SAVE_EXPR:
	  return eval_subst (TREE_OPERAND (arg, 0), old0, new0, old1, new1);

	case COMPOUND_EXPR:
	  return eval_subst (TREE_OPERAND (arg, 1), old0, new0, old1, new1);

	case COND_EXPR:
	  return fold (build (code, type,
			      eval_subst (TREE_OPERAND (arg, 0),
					  old0, new0, old1, new1),
			      eval_subst (TREE_OPERAND (arg, 1),
					  old0, new0, old1, new1),
			      eval_subst (TREE_OPERAND (arg, 2),
					  old0, new0, old1, new1)));
	default:
	  break;
	}
      /* fall through - ??? */

    case '<':
      {
	tree arg0 = TREE_OPERAND (arg, 0);
	tree arg1 = TREE_OPERAND (arg, 1);

	/* We need to check both for exact equality and tree equality.  The
	   former will be true if the operand has a side-effect.  In that
	   case, we know the operand occurred exactly once.  */

	if (arg0 == old0 || operand_equal_p (arg0, old0, 0))
	  arg0 = new0;
	else if (arg0 == old1 || operand_equal_p (arg0, old1, 0))
	  arg0 = new1;

	if (arg1 == old0 || operand_equal_p (arg1, old0, 0))
	  arg1 = new0;
	else if (arg1 == old1 || operand_equal_p (arg1, old1, 0))
	  arg1 = new1;

	return fold (build (code, type, arg0, arg1));
      }

    default:
      return arg;
    }
}

/* Return a tree for the case when the result of an expression is RESULT
   converted to TYPE and OMITTED was previously an operand of the expression
   but is now not needed (e.g., we folded OMITTED * 0).

   If OMITTED has side effects, we must evaluate it.  Otherwise, just do
   the conversion of RESULT to TYPE.  */

static tree
omit_one_operand (type, result, omitted)
     tree type, result, omitted;
{
  tree t = convert (type, result);

  if (TREE_SIDE_EFFECTS (omitted))
    return build (COMPOUND_EXPR, type, omitted, t);

  return non_lvalue (t);
}

/* Similar, but call pedantic_non_lvalue instead of non_lvalue.  */

static tree
pedantic_omit_one_operand (type, result, omitted)
     tree type, result, omitted;
{
  tree t = convert (type, result);

  if (TREE_SIDE_EFFECTS (omitted))
    return build (COMPOUND_EXPR, type, omitted, t);

  return pedantic_non_lvalue (t);
}

/* Return a simplified tree node for the truth-negation of ARG.  This
   never alters ARG itself.  We assume that ARG is an operation that
   returns a truth value (0 or 1).  */

tree
invert_truthvalue (arg)
     tree arg;
{
  tree type = TREE_TYPE (arg);
  enum tree_code code = TREE_CODE (arg);

  if (code == ERROR_MARK)
    return arg;

  /* If this is a comparison, we can simply invert it, except for
     floating-point non-equality comparisons, in which case we just
     enclose a TRUTH_NOT_EXPR around what we have.  */

  if (TREE_CODE_CLASS (code) == '<')
    {
      if (FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (arg, 0)))
	  && !flag_unsafe_math_optimizations
	  && code != NE_EXPR
	  && code != EQ_EXPR)
	return build1 (TRUTH_NOT_EXPR, type, arg);
      else
	return build (invert_tree_comparison (code), type,
		      TREE_OPERAND (arg, 0), TREE_OPERAND (arg, 1));
    }

  switch (code)
    {
    case INTEGER_CST:
      return convert (type, build_int_2 (integer_zerop (arg), 0));

    case TRUTH_AND_EXPR:
      return build (TRUTH_OR_EXPR, type,
		    invert_truthvalue (TREE_OPERAND (arg, 0)),
		    invert_truthvalue (TREE_OPERAND (arg, 1)));

    case TRUTH_OR_EXPR:
      return build (TRUTH_AND_EXPR, type,
		    invert_truthvalue (TREE_OPERAND (arg, 0)),
		    invert_truthvalue (TREE_OPERAND (arg, 1)));

    case TRUTH_XOR_EXPR:
      /* Here we can invert either operand.  We invert the first operand
	 unless the second operand is a TRUTH_NOT_EXPR in which case our
	 result is the XOR of the first operand with the inside of the
	 negation of the second operand.  */

      if (TREE_CODE (TREE_OPERAND (arg, 1)) == TRUTH_NOT_EXPR)
	return build (TRUTH_XOR_EXPR, type, TREE_OPERAND (arg, 0),
		      TREE_OPERAND (TREE_OPERAND (arg, 1), 0));
      else
	return build (TRUTH_XOR_EXPR, type,
		      invert_truthvalue (TREE_OPERAND (arg, 0)),
		      TREE_OPERAND (arg, 1));

    case TRUTH_ANDIF_EXPR:
      return build (TRUTH_ORIF_EXPR, type,
		    invert_truthvalue (TREE_OPERAND (arg, 0)),
		    invert_truthvalue (TREE_OPERAND (arg, 1)));

    case TRUTH_ORIF_EXPR:
      return build (TRUTH_ANDIF_EXPR, type,
		    invert_truthvalue (TREE_OPERAND (arg, 0)),
		    invert_truthvalue (TREE_OPERAND (arg, 1)));

    case TRUTH_NOT_EXPR:
      return TREE_OPERAND (arg, 0);

    case COND_EXPR:
      return build (COND_EXPR, type, TREE_OPERAND (arg, 0),
		    invert_truthvalue (TREE_OPERAND (arg, 1)),
		    invert_truthvalue (TREE_OPERAND (arg, 2)));

    case COMPOUND_EXPR:
      return build (COMPOUND_EXPR, type, TREE_OPERAND (arg, 0),
		    invert_truthvalue (TREE_OPERAND (arg, 1)));

    case WITH_RECORD_EXPR:
      return build (WITH_RECORD_EXPR, type,
		    invert_truthvalue (TREE_OPERAND (arg, 0)),
		    TREE_OPERAND (arg, 1));

    case NON_LVALUE_EXPR:
      return invert_truthvalue (TREE_OPERAND (arg, 0));

    case NOP_EXPR:
    case CONVERT_EXPR:
    case FLOAT_EXPR:
      return build1 (TREE_CODE (arg), type,
		     invert_truthvalue (TREE_OPERAND (arg, 0)));

    case BIT_AND_EXPR:
      if (!integer_onep (TREE_OPERAND (arg, 1)))
	break;
      return build (EQ_EXPR, type, arg, convert (type, integer_zero_node));

    case SAVE_EXPR:
      return build1 (TRUTH_NOT_EXPR, type, arg);

    case CLEANUP_POINT_EXPR:
      return build1 (CLEANUP_POINT_EXPR, type,
		     invert_truthvalue (TREE_OPERAND (arg, 0)));

    default:
      break;
    }
  if (TREE_CODE (TREE_TYPE (arg)) != BOOLEAN_TYPE)
    abort ();
  return build1 (TRUTH_NOT_EXPR, type, arg);
}

/* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
   operands are another bit-wise operation with a common input.  If so,
   distribute the bit operations to save an operation and possibly two if
   constants are involved.  For example, convert
   	(A | B) & (A | C) into A | (B & C)
   Further simplification will occur if B and C are constants.

   If this optimization cannot be done, 0 will be returned.  */

static tree
distribute_bit_expr (code, type, arg0, arg1)
     enum tree_code code;
     tree type;
     tree arg0, arg1;
{
  tree common;
  tree left, right;

  if (TREE_CODE (arg0) != TREE_CODE (arg1)
      || TREE_CODE (arg0) == code
      || (TREE_CODE (arg0) != BIT_AND_EXPR
	  && TREE_CODE (arg0) != BIT_IOR_EXPR))
    return 0;

  if (operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0), 0))
    {
      common = TREE_OPERAND (arg0, 0);
      left = TREE_OPERAND (arg0, 1);
      right = TREE_OPERAND (arg1, 1);
    }
  else if (operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 1), 0))
    {
      common = TREE_OPERAND (arg0, 0);
      left = TREE_OPERAND (arg0, 1);
      right = TREE_OPERAND (arg1, 0);
    }
  else if (operand_equal_p (TREE_OPERAND (arg0, 1), TREE_OPERAND (arg1, 0), 0))
    {
      common = TREE_OPERAND (arg0, 1);
      left = TREE_OPERAND (arg0, 0);
      right = TREE_OPERAND (arg1, 1);
    }
  else if (operand_equal_p (TREE_OPERAND (arg0, 1), TREE_OPERAND (arg1, 1), 0))
    {
      common = TREE_OPERAND (arg0, 1);
      left = TREE_OPERAND (arg0, 0);
      right = TREE_OPERAND (arg1, 0);
    }
  else
    return 0;

  return fold (build (TREE_CODE (arg0), type, common,
		      fold (build (code, type, left, right))));
}

/* Return a BIT_FIELD_REF of type TYPE to refer to BITSIZE bits of INNER
   starting at BITPOS.  The field is unsigned if UNSIGNEDP is non-zero.  */

static tree
make_bit_field_ref (inner, type, bitsize, bitpos, unsignedp)
     tree inner;
     tree type;
     int bitsize, bitpos;
     int unsignedp;
{
  tree result = build (BIT_FIELD_REF, type, inner,
		       size_int (bitsize), bitsize_int (bitpos));

  TREE_UNSIGNED (result) = unsignedp;

  return result;
}

/* Optimize a bit-field compare.

   There are two cases:  First is a compare against a constant and the
   second is a comparison of two items where the fields are at the same
   bit position relative to the start of a chunk (byte, halfword, word)
   large enough to contain it.  In these cases we can avoid the shift
   implicit in bitfield extractions.

   For constants, we emit a compare of the shifted constant with the
   BIT_AND_EXPR of a mask and a byte, halfword, or word of the operand being
   compared.  For two fields at the same position, we do the ANDs with the
   similar mask and compare the result of the ANDs.

   CODE is the comparison code, known to be either NE_EXPR or EQ_EXPR.
   COMPARE_TYPE is the type of the comparison, and LHS and RHS
   are the left and right operands of the comparison, respectively.

   If the optimization described above can be done, we return the resulting
   tree.  Otherwise we return zero.  */

static tree
optimize_bit_field_compare (code, compare_type, lhs, rhs)
     enum tree_code code;
     tree compare_type;
     tree lhs, rhs;
{
  HOST_WIDE_INT lbitpos, lbitsize, rbitpos, rbitsize, nbitpos, nbitsize;
  tree type = TREE_TYPE (lhs);
  tree signed_type, unsigned_type;
  int const_p = TREE_CODE (rhs) == INTEGER_CST;
  enum machine_mode lmode, rmode, nmode;
  int lunsignedp, runsignedp;
  int lvolatilep = 0, rvolatilep = 0;
  tree linner, rinner = NULL_TREE;
  tree mask;
  tree offset;

  /* Get all the information about the extractions being done.  If the bit size
     if the same as the size of the underlying object, we aren't doing an
     extraction at all and so can do nothing.  We also don't want to
     do anything if the inner expression is a PLACEHOLDER_EXPR since we
     then will no longer be able to replace it.  */
  linner = get_inner_reference (lhs, &lbitsize, &lbitpos, &offset, &lmode,
				&lunsignedp, &lvolatilep);
  if (linner == lhs || lbitsize == GET_MODE_BITSIZE (lmode) || lbitsize < 0
      || offset != 0 || TREE_CODE (linner) == PLACEHOLDER_EXPR)
    return 0;

 if (!const_p)
   {
     /* If this is not a constant, we can only do something if bit positions,
	sizes, and signedness are the same.  */
     rinner = get_inner_reference (rhs, &rbitsize, &rbitpos, &offset, &rmode,
				   &runsignedp, &rvolatilep);

     if (rinner == rhs || lbitpos != rbitpos || lbitsize != rbitsize
	 || lunsignedp != runsignedp || offset != 0
	 || TREE_CODE (rinner) == PLACEHOLDER_EXPR)
       return 0;
   }

  /* See if we can find a mode to refer to this field.  We should be able to,
     but fail if we can't.  */
  nmode = get_best_mode (lbitsize, lbitpos,
			 const_p ? TYPE_ALIGN (TREE_TYPE (linner))
			 : MIN (TYPE_ALIGN (TREE_TYPE (linner)),
				TYPE_ALIGN (TREE_TYPE (rinner))),
			 word_mode, lvolatilep || rvolatilep);
  if (nmode == VOIDmode)
    return 0;

  /* Set signed and unsigned types of the precision of this mode for the
     shifts below.  */
  signed_type = (*lang_hooks.types.type_for_mode) (nmode, 0);
  unsigned_type = (*lang_hooks.types.type_for_mode) (nmode, 1);

  /* Compute the bit position and size for the new reference and our offset
     within it. If the new reference is the same size as the original, we
     won't optimize anything, so return zero.  */
  nbitsize = GET_MODE_BITSIZE (nmode);
  nbitpos = lbitpos & ~ (nbitsize - 1);
  lbitpos -= nbitpos;
  if (nbitsize == lbitsize)
    return 0;

  if (BYTES_BIG_ENDIAN)
    lbitpos = nbitsize - lbitsize - lbitpos;

  /* Make the mask to be used against the extracted field.  */
  mask = build_int_2 (~0, ~0);
  TREE_TYPE (mask) = unsigned_type;
  force_fit_type (mask, 0);
  mask = convert (unsigned_type, mask);
  mask = const_binop (LSHIFT_EXPR, mask, size_int (nbitsize - lbitsize), 0);
  mask = const_binop (RSHIFT_EXPR, mask,
		      size_int (nbitsize - lbitsize - lbitpos), 0);

  if (! const_p)
    /* If not comparing with constant, just rework the comparison
       and return.  */
    return build (code, compare_type,
		  build (BIT_AND_EXPR, unsigned_type,
			 make_bit_field_ref (linner, unsigned_type,
					     nbitsize, nbitpos, 1),
			 mask),
		  build (BIT_AND_EXPR, unsigned_type,
			 make_bit_field_ref (rinner, unsigned_type,
					     nbitsize, nbitpos, 1),
			 mask));

  /* Otherwise, we are handling the constant case. See if the constant is too
     big for the field.  Warn and return a tree of for 0 (false) if so.  We do
     this not only for its own sake, but to avoid having to test for this
     error case below.  If we didn't, we might generate wrong code.

     For unsigned fields, the constant shifted right by the field length should
     be all zero.  For signed fields, the high-order bits should agree with
     the sign bit.  */

  if (lunsignedp)
    {
      if (! integer_zerop (const_binop (RSHIFT_EXPR,
					convert (unsigned_type, rhs),
					size_int (lbitsize), 0)))
	{
	  warning ("comparison is always %d due to width of bit-field",
		   code == NE_EXPR);
	  return convert (compare_type,
			  (code == NE_EXPR
			   ? integer_one_node : integer_zero_node));
	}
    }
  else
    {
      tree tem = const_binop (RSHIFT_EXPR, convert (signed_type, rhs),
			      size_int (lbitsize - 1), 0);
      if (! integer_zerop (tem) && ! integer_all_onesp (tem))
	{
	  warning ("comparison is always %d due to width of bit-field",
		   code == NE_EXPR);
	  return convert (compare_type,
			  (code == NE_EXPR
			   ? integer_one_node : integer_zero_node));
	}
    }

  /* Single-bit compares should always be against zero.  */
  if (lbitsize == 1 && ! integer_zerop (rhs))
    {
      code = code == EQ_EXPR ? NE_EXPR : EQ_EXPR;
      rhs = convert (type, integer_zero_node);
    }

  /* Make a new bitfield reference, shift the constant over the
     appropriate number of bits and mask it with the computed mask
     (in case this was a signed field).  If we changed it, make a new one.  */
  lhs = make_bit_field_ref (linner, unsigned_type, nbitsize, nbitpos, 1);
  if (lvolatilep)
    {
      TREE_SIDE_EFFECTS (lhs) = 1;
      TREE_THIS_VOLATILE (lhs) = 1;
    }

  rhs = fold (const_binop (BIT_AND_EXPR,
			   const_binop (LSHIFT_EXPR,
					convert (unsigned_type, rhs),
					size_int (lbitpos), 0),
			   mask, 0));

  return build (code, compare_type,
		build (BIT_AND_EXPR, unsigned_type, lhs, mask),
		rhs);
}

/* Subroutine for fold_truthop: decode a field reference.

   If EXP is a comparison reference, we return the innermost reference.

   *PBITSIZE is set to the number of bits in the reference, *PBITPOS is
   set to the starting bit number.

   If the innermost field can be completely contained in a mode-sized
   unit, *PMODE is set to that mode.  Otherwise, it is set to VOIDmode.

   *PVOLATILEP is set to 1 if the any expression encountered is volatile;
   otherwise it is not changed.

   *PUNSIGNEDP is set to the signedness of the field.

   *PMASK is set to the mask used.  This is either contained in a
   BIT_AND_EXPR or derived from the width of the field.

   *PAND_MASK is set to the mask found in a BIT_AND_EXPR, if any.

   Return 0 if this is not a component reference or is one that we can't
   do anything with.  */

static tree
decode_field_reference (exp, pbitsize, pbitpos, pmode, punsignedp,
			pvolatilep, pmask, pand_mask)
     tree exp;
     HOST_WIDE_INT *pbitsize, *pbitpos;
     enum machine_mode *pmode;
     int *punsignedp, *pvolatilep;
     tree *pmask;
     tree *pand_mask;
{
  tree and_mask = 0;
  tree mask, inner, offset;
  tree unsigned_type;
  unsigned int precision;

  /* All the optimizations using this function assume integer fields.
     There are problems with FP fields since the type_for_size call
     below can fail for, e.g., XFmode.  */
  if (! INTEGRAL_TYPE_P (TREE_TYPE (exp)))
    return 0;

  STRIP_NOPS (exp);

  if (TREE_CODE (exp) == BIT_AND_EXPR)
    {
      and_mask = TREE_OPERAND (exp, 1);
      exp = TREE_OPERAND (exp, 0);
      STRIP_NOPS (exp); STRIP_NOPS (and_mask);
      if (TREE_CODE (and_mask) != INTEGER_CST)
	return 0;
    }

  inner = get_inner_reference (exp, pbitsize, pbitpos, &offset, pmode,
			       punsignedp, pvolatilep);
  if ((inner == exp && and_mask == 0)
      || *pbitsize < 0 || offset != 0
      || TREE_CODE (inner) == PLACEHOLDER_EXPR)
    return 0;

  /* Compute the mask to access the bitfield.  */
  unsigned_type = (*lang_hooks.types.type_for_size) (*pbitsize, 1);
  precision = TYPE_PRECISION (unsigned_type);

  mask = build_int_2 (~0, ~0);
  TREE_TYPE (mask) = unsigned_type;
  force_fit_type (mask, 0);
  mask = const_binop (LSHIFT_EXPR, mask, size_int (precision - *pbitsize), 0);
  mask = const_binop (RSHIFT_EXPR, mask, size_int (precision - *pbitsize), 0);

  /* Merge it with the mask we found in the BIT_AND_EXPR, if any.  */
  if (and_mask != 0)
    mask = fold (build (BIT_AND_EXPR, unsigned_type,
			convert (unsigned_type, and_mask), mask));

  *pmask = mask;
  *pand_mask = and_mask;
  return inner;
}

/* Return non-zero if MASK represents a mask of SIZE ones in the low-order
   bit positions.  */

static int
all_ones_mask_p (mask, size)
     tree mask;
     int size;
{
  tree type = TREE_TYPE (mask);
  unsigned int precision = TYPE_PRECISION (type);
  tree tmask;

  tmask = build_int_2 (~0, ~0);
  TREE_TYPE (tmask) = (*lang_hooks.types.signed_type) (type);
  force_fit_type (tmask, 0);
  return
    tree_int_cst_equal (mask,
			const_binop (RSHIFT_EXPR,
				     const_binop (LSHIFT_EXPR, tmask,
						  size_int (precision - size),
						  0),
				     size_int (precision - size), 0));
}

/* Subroutine for fold: determine if VAL is the INTEGER_CONST that
   represents the sign bit of EXP's type.  If EXP represents a sign
   or zero extension, also test VAL against the unextended type.
   The return value is the (sub)expression whose sign bit is VAL,
   or NULL_TREE otherwise.  */

static tree
sign_bit_p (exp, val)
     tree exp;
     tree val;
{
  unsigned HOST_WIDE_INT lo;
  HOST_WIDE_INT hi;
  int width;
  tree t;

  /* Tree EXP must have a integral type.  */
  t = TREE_TYPE (exp);
  if (! INTEGRAL_TYPE_P (t))
    return NULL_TREE;

  /* Tree VAL must be an integer constant.  */
  if (TREE_CODE (val) != INTEGER_CST
      || TREE_CONSTANT_OVERFLOW (val))
    return NULL_TREE;

  width = TYPE_PRECISION (t);
  if (width > HOST_BITS_PER_WIDE_INT)
    {
      hi = (unsigned HOST_WIDE_INT) 1 << (width - HOST_BITS_PER_WIDE_INT - 1);
      lo = 0;
    }
  else
    {
      hi = 0;
      lo = (unsigned HOST_WIDE_INT) 1 << (width - 1);
    }

  if (TREE_INT_CST_HIGH (val) == hi && TREE_INT_CST_LOW (val) == lo)
    return exp;

  /* Handle extension from a narrower type.  */
  if (TREE_CODE (exp) == NOP_EXPR
      && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))) < width)
    return sign_bit_p (TREE_OPERAND (exp, 0), val);

  return NULL_TREE;
}

/* Subroutine for fold_truthop: determine if an operand is simple enough
   to be evaluated unconditionally.  */

static int
simple_operand_p (exp)
     tree exp;
{
  /* Strip any conversions that don't change the machine mode.  */
  while ((TREE_CODE (exp) == NOP_EXPR
	  || TREE_CODE (exp) == CONVERT_EXPR)
	 && (TYPE_MODE (TREE_TYPE (exp))
	     == TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)))))
    exp = TREE_OPERAND (exp, 0);

  return (TREE_CODE_CLASS (TREE_CODE (exp)) == 'c'
	  || (DECL_P (exp)
	      && ! TREE_ADDRESSABLE (exp)
	      && ! TREE_THIS_VOLATILE (exp)
	      && ! DECL_NONLOCAL (exp)
	      /* Don't regard global variables as simple.  They may be
		 allocated in ways unknown to the compiler (shared memory,
		 #pragma weak, etc).  */
	      && ! TREE_PUBLIC (exp)
	      && ! DECL_EXTERNAL (exp)
	      /* Loading a static variable is unduly expensive, but global
		 registers aren't expensive.  */
	      && (! TREE_STATIC (exp) || DECL_REGISTER (exp))));
}

/* The following functions are subroutines to fold_range_test and allow it to
   try to change a logical combination of comparisons into a range test.

   For example, both
   	X == 2 || X == 3 || X == 4 || X == 5
   and
   	X >= 2 && X <= 5
   are converted to
	(unsigned) (X - 2) <= 3

   We describe each set of comparisons as being either inside or outside
   a range, using a variable named like IN_P, and then describe the
   range with a lower and upper bound.  If one of the bounds is omitted,
   it represents either the highest or lowest value of the type.

   In the comments below, we represent a range by two numbers in brackets
   preceded by a "+" to designate being inside that range, or a "-" to
   designate being outside that range, so the condition can be inverted by
   flipping the prefix.  An omitted bound is represented by a "-".  For
   example, "- [-, 10]" means being outside the range starting at the lowest
   possible value and ending at 10, in other words, being greater than 10.
   The range "+ [-, -]" is always true and hence the range "- [-, -]" is
   always false.

   We set up things so that the missing bounds are handled in a consistent
   manner so neither a missing bound nor "true" and "false" need to be
   handled using a special case.  */

/* Return the result of applying CODE to ARG0 and ARG1, but handle the case
   of ARG0 and/or ARG1 being omitted, meaning an unlimited range. UPPER0_P
   and UPPER1_P are nonzero if the respective argument is an upper bound
   and zero for a lower.  TYPE, if nonzero, is the type of the result; it
   must be specified for a comparison.  ARG1 will be converted to ARG0's
   type if both are specified.  */

static tree
range_binop (code, type, arg0, upper0_p, arg1, upper1_p)
     enum tree_code code;
     tree type;
     tree arg0, arg1;
     int upper0_p, upper1_p;
{
  tree tem;
  int result;
  int sgn0, sgn1;

  /* If neither arg represents infinity, do the normal operation.
     Else, if not a comparison, return infinity.  Else handle the special
     comparison rules. Note that most of the cases below won't occur, but
     are handled for consistency.  */

  if (arg0 != 0 && arg1 != 0)
    {
      tem = fold (build (code, type != 0 ? type : TREE_TYPE (arg0),
			 arg0, convert (TREE_TYPE (arg0), arg1)));
      STRIP_NOPS (tem);
      return TREE_CODE (tem) == INTEGER_CST ? tem : 0;
    }

  if (TREE_CODE_CLASS (code) != '<')
    return 0;

  /* Set SGN[01] to -1 if ARG[01] is a lower bound, 1 for upper, and 0
     for neither.  In real maths, we cannot assume open ended ranges are
     the same. But, this is computer arithmetic, where numbers are finite.
     We can therefore make the transformation of any unbounded range with
     the value Z, Z being greater than any representable number. This permits
     us to treat unbounded ranges as equal.  */
  sgn0 = arg0 != 0 ? 0 : (upper0_p ? 1 : -1);
  sgn1 = arg1 != 0 ? 0 : (upper1_p ? 1 : -1);
  switch (code)
    {
    case EQ_EXPR:
      result = sgn0 == sgn1;
      break;
    case NE_EXPR:
      result = sgn0 != sgn1;
      break;
    case LT_EXPR:
      result = sgn0 < sgn1;
      break;
    case LE_EXPR:
      result = sgn0 <= sgn1;
      break;
    case GT_EXPR:
      result = sgn0 > sgn1;
      break;
    case GE_EXPR:
      result = sgn0 >= sgn1;
      break;
    default:
      abort ();
    }

  return convert (type, result ? integer_one_node : integer_zero_node);
}

/* Given EXP, a logical expression, set the range it is testing into
   variables denoted by PIN_P, PLOW, and PHIGH.  Return the expression
   actually being tested.  *PLOW and *PHIGH will be made of the same type
   as the returned expression.  If EXP is not a comparison, we will most
   likely not be returning a useful value and range.  */

static tree
make_range (exp, pin_p, plow, phigh)
     tree exp;
     int *pin_p;
     tree *plow, *phigh;
{
  enum tree_code code;
  tree arg0 = NULL_TREE, arg1 = NULL_TREE, type = NULL_TREE;
  tree orig_type = NULL_TREE;
  int in_p, n_in_p;
  tree low, high, n_low, n_high;

  /* Start with simply saying "EXP != 0" and then look at the code of EXP
     and see if we can refine the range.  Some of the cases below may not
     happen, but it doesn't seem worth worrying about this.  We "continue"
     the outer loop when we've changed something; otherwise we "break"
     the switch, which will "break" the while.  */

  in_p = 0, low = high = convert (TREE_TYPE (exp), integer_zero_node);

  while (1)
    {
      code = TREE_CODE (exp);

      if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
	{
	  arg0 = TREE_OPERAND (exp, 0);
	  if (TREE_CODE_CLASS (code) == '<'
	      || TREE_CODE_CLASS (code) == '1'
	      || TREE_CODE_CLASS (code) == '2')
	    type = TREE_TYPE (arg0);
	  if (TREE_CODE_CLASS (code) == '2'
	      || TREE_CODE_CLASS (code) == '<'
	      || (TREE_CODE_CLASS (code) == 'e'
		  && TREE_CODE_LENGTH (code) > 1))
	    arg1 = TREE_OPERAND (exp, 1);
	}

      /* Set ORIG_TYPE as soon as TYPE is non-null so that we do not
	 lose a cast by accident.  */
      if (type != NULL_TREE && orig_type == NULL_TREE)
	orig_type = type;

      switch (code)
	{
	case TRUTH_NOT_EXPR:
	  in_p = ! in_p, exp = arg0;
	  continue;

	case EQ_EXPR: case NE_EXPR:
	case LT_EXPR: case LE_EXPR: case GE_EXPR: case GT_EXPR:
	  /* We can only do something if the range is testing for zero
	     and if the second operand is an integer constant.  Note that
	     saying something is "in" the range we make is done by
	     complementing IN_P since it will set in the initial case of
	     being not equal to zero; "out" is leaving it alone.  */
	  if (low == 0 || high == 0
	      || ! integer_zerop (low) || ! integer_zerop (high)
	      || TREE_CODE (arg1) != INTEGER_CST)
	    break;

	  switch (code)
	    {
	    case NE_EXPR:  /* - [c, c]  */
	      low = high = arg1;
	      break;
	    case EQ_EXPR:  /* + [c, c]  */
	      in_p = ! in_p, low = high = arg1;
	      break;
	    case GT_EXPR:  /* - [-, c] */
	      low = 0, high = arg1;
	      break;
	    case GE_EXPR:  /* + [c, -] */
	      in_p = ! in_p, low = arg1, high = 0;
	      break;
	    case LT_EXPR:  /* - [c, -] */
	      low = arg1, high = 0;
	      break;
	    case LE_EXPR:  /* + [-, c] */
	      in_p = ! in_p, low = 0, high = arg1;
	      break;
	    default:
	      abort ();
	    }

	  exp = arg0;

	  /* If this is an unsigned comparison, we also know that EXP is
	     greater than or equal to zero.  We base the range tests we make
	     on that fact, so we record it here so we can parse existing
	     range tests.  */
	  if (TREE_UNSIGNED (type) && (low == 0 || high == 0))
	    {
	      if (! merge_ranges (&n_in_p, &n_low, &n_high, in_p, low, high,
				  1, convert (type, integer_zero_node),
				  NULL_TREE))
		break;

	      in_p = n_in_p, low = n_low, high = n_high;

	      /* If the high bound is missing, but we
		 have a low bound, reverse the range so
		 it goes from zero to the low bound minus 1.  */
	      if (high == 0 && low)
		{
		  in_p = ! in_p;
		  high = range_binop (MINUS_EXPR, NULL_TREE, low, 0,
				      integer_one_node, 0);
		  low = convert (type, integer_zero_node);
		}
	    }
	  continue;

	case NEGATE_EXPR:
	  /* (-x) IN [a,b] -> x in [-b, -a]  */
	  n_low = range_binop (MINUS_EXPR, type,
			       convert (type, integer_zero_node), 0, high, 1);
	  n_high = range_binop (MINUS_EXPR, type,
				convert (type, integer_zero_node), 0, low, 0);
	  low = n_low, high = n_high;
	  exp = arg0;
	  continue;

	case BIT_NOT_EXPR:
	  /* ~ X -> -X - 1  */
	  exp = build (MINUS_EXPR, type, negate_expr (arg0),
		       convert (type, integer_one_node));
	  continue;

	case PLUS_EXPR:  case MINUS_EXPR:
	  if (TREE_CODE (arg1) != INTEGER_CST)
	    break;

	  /* If EXP is signed, any overflow in the computation is undefined,
	     so we don't worry about it so long as our computations on
	     the bounds don't overflow.  For unsigned, overflow is defined
	     and this is exactly the right thing.  */
	  n_low = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
			       type, low, 0, arg1, 0);
	  n_high = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
				type, high, 1, arg1, 0);
	  if ((n_low != 0 && TREE_OVERFLOW (n_low))
	      || (n_high != 0 && TREE_OVERFLOW (n_high)))
	    break;

	  /* Check for an unsigned range which has wrapped around the maximum
	     value thus making n_high < n_low, and normalize it.  */
	  if (n_low && n_high && tree_int_cst_lt (n_high, n_low))
	    {
	      low = range_binop (PLUS_EXPR, type, n_high, 0,
				 integer_one_node, 0);
	      high = range_binop (MINUS_EXPR, type, n_low, 0,
				  integer_one_node, 0);

	      /* If the range is of the form +/- [ x+1, x ], we won't
		 be able to normalize it.  But then, it represents the
		 whole range or the empty set, so make it
		 +/- [ -, - ].  */
	      if (tree_int_cst_equal (n_low, low)
		  && tree_int_cst_equal (n_high, high))
		low = high = 0;
	      else
		in_p = ! in_p;
	    }
	  else
	    low = n_low, high = n_high;

	  exp = arg0;
	  continue;

	case NOP_EXPR:  case NON_LVALUE_EXPR:  case CONVERT_EXPR:
	  if (TYPE_PRECISION (type) > TYPE_PRECISION (orig_type))
	    break;

	  if (! INTEGRAL_TYPE_P (type)
	      || (low != 0 && ! int_fits_type_p (low, type))
	      || (high != 0 && ! int_fits_type_p (high, type)))
	    break;

	  n_low = low, n_high = high;

	  if (n_low != 0)
	    n_low = convert (type, n_low);

	  if (n_high != 0)
	    n_high = convert (type, n_high);

	  /* If we're converting from an unsigned to a signed type,
	     we will be doing the comparison as unsigned.  The tests above
	     have already verified that LOW and HIGH are both positive.

	     So we have to make sure that the original unsigned value will
	     be interpreted as positive.  */
	  if (TREE_UNSIGNED (type) && ! TREE_UNSIGNED (TREE_TYPE (exp)))
	    {
	      tree equiv_type = (*lang_hooks.types.type_for_mode)
		(TYPE_MODE (type), 1);
	      tree high_positive;

	      /* A range without an upper bound is, naturally, unbounded.
		 Since convert would have cropped a very large value, use
		 the max value for the destination type.  */
	      high_positive
		= TYPE_MAX_VALUE (equiv_type) ? TYPE_MAX_VALUE (equiv_type)
		  : TYPE_MAX_VALUE (type);

	      high_positive = fold (build (RSHIFT_EXPR, type,
					   convert (type, high_positive),
					   convert (type, integer_one_node)));

	      /* If the low bound is specified, "and" the range with the
		 range for which the original unsigned value will be
		 positive.  */
	      if (low != 0)
		{
		  if (! merge_ranges (&n_in_p, &n_low, &n_high,
				      1, n_low, n_high,
				      1, convert (type, integer_zero_node),
				      high_positive))
		    break;

		  in_p = (n_in_p == in_p);
		}
	      else
		{
		  /* Otherwise, "or" the range with the range of the input
		     that will be interpreted as negative.  */
		  if (! merge_ranges (&n_in_p, &n_low, &n_high,
				      0, n_low, n_high,
				      1, convert (type, integer_zero_node),
				      high_positive))
		    break;

		  in_p = (in_p != n_in_p);
		}
	    }

	  exp = arg0;
	  low = n_low, high = n_high;
	  continue;

	default:
	  break;
	}

      break;
    }

  /* If EXP is a constant, we can evaluate whether this is true or false.  */
  if (TREE_CODE (exp) == INTEGER_CST)
    {
      in_p = in_p == (integer_onep (range_binop (GE_EXPR, integer_type_node,
						 exp, 0, low, 0))
		      && integer_onep (range_binop (LE_EXPR, integer_type_node,
						    exp, 1, high, 1)));
      low = high = 0;
      exp = 0;
    }

  *pin_p = in_p, *plow = low, *phigh = high;
  return exp;
}

/* Given a range, LOW, HIGH, and IN_P, an expression, EXP, and a result
   type, TYPE, return an expression to test if EXP is in (or out of, depending
   on IN_P) the range.  */

static tree
build_range_check (type, exp, in_p, low, high)
     tree type;
     tree exp;
     int in_p;
     tree low, high;
{
  tree etype = TREE_TYPE (exp);
  tree value;

  if (! in_p
      && (0 != (value = build_range_check (type, exp, 1, low, high))))
    return invert_truthvalue (value);

  if (low == 0 && high == 0)
    return convert (type, integer_one_node);

  if (low == 0)
    return fold (build (LE_EXPR, type, exp, high));

  if (high == 0)
    return fold (build (GE_EXPR, type, exp, low));

  if (operand_equal_p (low, high, 0))
    return fold (build (EQ_EXPR, type, exp, low));

  if (integer_zerop (low))
    {
      if (! TREE_UNSIGNED (etype))
	{
	  etype = (*lang_hooks.types.unsigned_type) (etype);
	  high = convert (etype, high);
	  exp = convert (etype, exp);
	}
      return build_range_check (type, exp, 1, 0, high);
    }

  /* Optimize (c>=1) && (c<=127) into (signed char)c > 0.  */
  if (integer_onep (low) && TREE_CODE (high) == INTEGER_CST)
    {
      unsigned HOST_WIDE_INT lo;
      HOST_WIDE_INT hi;
      int prec;

      prec = TYPE_PRECISION (etype);
      if (prec <= HOST_BITS_PER_WIDE_INT)
	{
	  hi = 0;
	  lo = ((unsigned HOST_WIDE_INT) 1 << (prec - 1)) - 1;
	}
      else
	{
	  hi = ((HOST_WIDE_INT) 1 << (prec - HOST_BITS_PER_WIDE_INT - 1)) - 1;
	  lo = (unsigned HOST_WIDE_INT) -1;
	}

      if (TREE_INT_CST_HIGH (high) == hi && TREE_INT_CST_LOW (high) == lo)
	{
	  if (TREE_UNSIGNED (etype))
	    {
	      etype = (*lang_hooks.types.signed_type) (etype);
	      exp = convert (etype, exp);
	    }
	  return fold (build (GT_EXPR, type, exp,
			      convert (etype, integer_zero_node)));
	}
    }

  if (0 != (value = const_binop (MINUS_EXPR, high, low, 0))
      && ! TREE_OVERFLOW (value))
    return build_range_check (type,
			      fold (build (MINUS_EXPR, etype, exp, low)),
			      1, convert (etype, integer_zero_node), value);

  return 0;
}

/* Given two ranges, see if we can merge them into one.  Return 1 if we
   can, 0 if we can't.  Set the output range into the specified parameters.  */

static int
merge_ranges (pin_p, plow, phigh, in0_p, low0, high0, in1_p, low1, high1)
     int *pin_p;
     tree *plow, *phigh;
     int in0_p, in1_p;
     tree low0, high0, low1, high1;
{
  int no_overlap;
  int subset;
  int temp;
  tree tem;
  int in_p;
  tree low, high;
  int lowequal = ((low0 == 0 && low1 == 0)
		  || integer_onep (range_binop (EQ_EXPR, integer_type_node,
						low0, 0, low1, 0)));
  int highequal = ((high0 == 0 && high1 == 0)
		   || integer_onep (range_binop (EQ_EXPR, integer_type_node,
						 high0, 1, high1, 1)));

  /* Make range 0 be the range that starts first, or ends last if they
     start at the same value.  Swap them if it isn't.  */
  if (integer_onep (range_binop (GT_EXPR, integer_type_node,
				 low0, 0, low1, 0))
      || (lowequal
	  && integer_onep (range_binop (GT_EXPR, integer_type_node,
					high1, 1, high0, 1))))
    {
      temp = in0_p, in0_p = in1_p, in1_p = temp;
      tem = low0, low0 = low1, low1 = tem;
      tem = high0, high0 = high1, high1 = tem;
    }

  /* Now flag two cases, whether the ranges are disjoint or whether the
     second range is totally subsumed in the first.  Note that the tests
     below are simplified by the ones above.  */
  no_overlap = integer_onep (range_binop (LT_EXPR, integer_type_node,
					  high0, 1, low1, 0));
  subset = integer_onep (range_binop (LE_EXPR, integer_type_node,
				      high1, 1, high0, 1));

  /* We now have four cases, depending on whether we are including or
     excluding the two ranges.  */
  if (in0_p && in1_p)
    {
      /* If they don't overlap, the result is false.  If the second range
	 is a subset it is the result.  Otherwise, the range is from the start
	 of the second to the end of the first.  */
      if (no_overlap)
	in_p = 0, low = high = 0;
      else if (subset)
	in_p = 1, low = low1, high = high1;
      else
	in_p = 1, low = low1, high = high0;
    }

  else if (in0_p && ! in1_p)
    {
      /* If they don't overlap, the result is the first range.  If they are
	 equal, the result is false.  If the second range is a subset of the
	 first, and the ranges begin at the same place, we go from just after
	 the end of the first range to the end of the second.  If the second
	 range is not a subset of the first, or if it is a subset and both
	 ranges end at the same place, the range starts at the start of the
	 first range and ends just before the second range.
	 Otherwise, we can't describe this as a single range.  */
      if (no_overlap)
	in_p = 1, low = low0, high = high0;
      else if (lowequal && highequal)
	in_p = 0, low = high = 0;
      else if (subset && lowequal)
	{
	  in_p = 1, high = high0;
	  low = range_binop (PLUS_EXPR, NULL_TREE, high1, 0,
			     integer_one_node, 0);
	}
      else if (! subset || highequal)
	{
	  in_p = 1, low = low0;
	  high = range_binop (MINUS_EXPR, NULL_TREE, low1, 0,
			      integer_one_node, 0);
	}
      else
	return 0;
    }

  else if (! in0_p && in1_p)
    {
      /* If they don't overlap, the result is the second range.  If the second
	 is a subset of the first, the result is false.  Otherwise,
	 the range starts just after the first range and ends at the
	 end of the second.  */
      if (no_overlap)
	in_p = 1, low = low1, high = high1;
      else if (subset || highequal)
	in_p = 0, low = high = 0;
      else
	{
	  in_p = 1, high = high1;
	  low = range_binop (PLUS_EXPR, NULL_TREE, high0, 1,
			     integer_one_node, 0);
	}
    }

  else
    {
      /* The case where we are excluding both ranges.  Here the complex case
	 is if they don't overlap.  In that case, the only time we have a
	 range is if they are adjacent.  If the second is a subset of the
	 first, the result is the first.  Otherwise, the range to exclude
	 starts at the beginning of the first range and ends at the end of the
	 second.  */
      if (no_overlap)
	{
	  if (integer_onep (range_binop (EQ_EXPR, integer_type_node,
					 range_binop (PLUS_EXPR, NULL_TREE,
						      high0, 1,
						      integer_one_node, 1),
					 1, low1, 0)))
	    in_p = 0, low = low0, high = high1;
	  else
	    return 0;
	}
      else if (subset)
	in_p = 0, low = low0, high = high0;
      else
	in_p = 0, low = low0, high = high1;
    }

  *pin_p = in_p, *plow = low, *phigh = high;
  return 1;
}

/* EXP is some logical combination of boolean tests.  See if we can
   merge it into some range test.  Return the new tree if so.  */

static tree
fold_range_test (exp)
     tree exp;
{
  int or_op = (TREE_CODE (exp) == TRUTH_ORIF_EXPR
	       || TREE_CODE (exp) == TRUTH_OR_EXPR);
  int in0_p, in1_p, in_p;
  tree low0, low1, low, high0, high1, high;
  tree lhs = make_range (TREE_OPERAND (exp, 0), &in0_p, &low0, &high0);
  tree rhs = make_range (TREE_OPERAND (exp, 1), &in1_p, &low1, &high1);
  tree tem;

  /* If this is an OR operation, invert both sides; we will invert
     again at the end.  */
  if (or_op)
    in0_p = ! in0_p, in1_p = ! in1_p;

  /* If both expressions are the same, if we can merge the ranges, and we
     can build the range test, return it or it inverted.  If one of the
     ranges is always true or always false, consider it to be the same
     expression as the other.  */
  if ((lhs == 0 || rhs == 0 || operand_equal_p (lhs, rhs, 0))
      && merge_ranges (&in_p, &low, &high, in0_p, low0, high0,
		       in1_p, low1, high1)
      && 0 != (tem = (build_range_check (TREE_TYPE (exp),
					 lhs != 0 ? lhs
					 : rhs != 0 ? rhs : integer_zero_node,
					 in_p, low, high))))
    return or_op ? invert_truthvalue (tem) : tem;

  /* On machines where the branch cost is expensive, if this is a
     short-circuited branch and the underlying object on both sides
     is the same, make a non-short-circuit operation.  */
  else if (BRANCH_COST >= 2
	   && lhs != 0 && rhs != 0
	   && (TREE_CODE (exp) == TRUTH_ANDIF_EXPR
	       || TREE_CODE (exp) == TRUTH_ORIF_EXPR)
	   && operand_equal_p (lhs, rhs, 0))
    {
      /* If simple enough, just rewrite.  Otherwise, make a SAVE_EXPR
	 unless we are at top level or LHS contains a PLACEHOLDER_EXPR, in
	 which cases we can't do this.  */
      if (simple_operand_p (lhs))
	return build (TREE_CODE (exp) == TRUTH_ANDIF_EXPR
		      ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
		      TREE_TYPE (exp), TREE_OPERAND (exp, 0),
		      TREE_OPERAND (exp, 1));

      else if ((*lang_hooks.decls.global_bindings_p) () == 0
	       && ! contains_placeholder_p (lhs))
	{
	  tree common = save_expr (lhs);

	  if (0 != (lhs = build_range_check (TREE_TYPE (exp), common,
					     or_op ? ! in0_p : in0_p,
					     low0, high0))
	      && (0 != (rhs = build_range_check (TREE_TYPE (exp), common,
						 or_op ? ! in1_p : in1_p,
						 low1, high1))))
	    return build (TREE_CODE (exp) == TRUTH_ANDIF_EXPR
			  ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
			  TREE_TYPE (exp), lhs, rhs);
	}
    }

  return 0;
}

/* Subroutine for fold_truthop: C is an INTEGER_CST interpreted as a P
   bit value.  Arrange things so the extra bits will be set to zero if and
   only if C is signed-extended to its full width.  If MASK is nonzero,
   it is an INTEGER_CST that should be AND'ed with the extra bits.  */

static tree
unextend (c, p, unsignedp, mask)
     tree c;
     int p;
     int unsignedp;
     tree mask;
{
  tree type = TREE_TYPE (c);
  int modesize = GET_MODE_BITSIZE (TYPE_MODE (type));
  tree temp;

  if (p == modesize || unsignedp)
    return c;

  /* We work by getting just the sign bit into the low-order bit, then
     into the high-order bit, then sign-extend.  We then XOR that value
     with C.  */
  temp = const_binop (RSHIFT_EXPR, c, size_int (p - 1), 0);
  temp = const_binop (BIT_AND_EXPR, temp, size_int (1), 0);

  /* We must use a signed type in order to get an arithmetic right shift.
     However, we must also avoid introducing accidental overflows, so that
     a subsequent call to integer_zerop will work.  Hence we must
     do the type conversion here.  At this point, the constant is either
     zero or one, and the conversion to a signed type can never overflow.
     We could get an overflow if this conversion is done anywhere else.  */
  if (TREE_UNSIGNED (type))
    temp = convert ((*lang_hooks.types.signed_type) (type), temp);

  temp = const_binop (LSHIFT_EXPR, temp, size_int (modesize - 1), 0);
  temp = const_binop (RSHIFT_EXPR, temp, size_int (modesize - p - 1), 0);
  if (mask != 0)
    temp = const_binop (BIT_AND_EXPR, temp, convert (TREE_TYPE (c), mask), 0);
  /* If necessary, convert the type back to match the type of C.  */
  if (TREE_UNSIGNED (type))
    temp = convert (type, temp);

  return convert (type, const_binop (BIT_XOR_EXPR, c, temp, 0));
}

/* Find ways of folding logical expressions of LHS and RHS:
   Try to merge two comparisons to the same innermost item.
   Look for range tests like "ch >= '0' && ch <= '9'".
   Look for combinations of simple terms on machines with expensive branches
   and evaluate the RHS unconditionally.

   For example, if we have p->a == 2 && p->b == 4 and we can make an
   object large enough to span both A and B, we can do this with a comparison
   against the object ANDed with the a mask.

   If we have p->a == q->a && p->b == q->b, we may be able to use bit masking
   operations to do this with one comparison.

   We check for both normal comparisons and the BIT_AND_EXPRs made this by
   function and the one above.

   CODE is the logical operation being done.  It can be TRUTH_ANDIF_EXPR,
   TRUTH_AND_EXPR, TRUTH_ORIF_EXPR, or TRUTH_OR_EXPR.

   TRUTH_TYPE is the type of the logical operand and LHS and RHS are its
   two operands.

   We return the simplified tree or 0 if no optimization is possible.  */

static tree
fold_truthop (code, truth_type, lhs, rhs)
     enum tree_code code;
     tree truth_type, lhs, rhs;
{
  /* If this is the "or" of two comparisons, we can do something if
     the comparisons are NE_EXPR.  If this is the "and", we can do something
     if the comparisons are EQ_EXPR.  I.e.,
     	(a->b == 2 && a->c == 4) can become (a->new == NEW).

     WANTED_CODE is this operation code.  For single bit fields, we can
     convert EQ_EXPR to NE_EXPR so we need not reject the "wrong"
     comparison for one-bit fields.  */

  enum tree_code wanted_code;
  enum tree_code lcode, rcode;
  tree ll_arg, lr_arg, rl_arg, rr_arg;
  tree ll_inner, lr_inner, rl_inner, rr_inner;
  HOST_WIDE_INT ll_bitsize, ll_bitpos, lr_bitsize, lr_bitpos;
  HOST_WIDE_INT rl_bitsize, rl_bitpos, rr_bitsize, rr_bitpos;
  HOST_WIDE_INT xll_bitpos, xlr_bitpos, xrl_bitpos, xrr_bitpos;
  HOST_WIDE_INT lnbitsize, lnbitpos, rnbitsize, rnbitpos;
  int ll_unsignedp, lr_unsignedp, rl_unsignedp, rr_unsignedp;
  enum machine_mode ll_mode, lr_mode, rl_mode, rr_mode;
  enum machine_mode lnmode, rnmode;
  tree ll_mask, lr_mask, rl_mask, rr_mask;
  tree ll_and_mask, lr_and_mask, rl_and_mask, rr_and_mask;
  tree l_const, r_const;
  tree lntype, rntype, result;
  int first_bit, end_bit;
  int volatilep;

  /* Start by getting the comparison codes.  Fail if anything is volatile.
     If one operand is a BIT_AND_EXPR with the constant one, treat it as if
     it were surrounded with a NE_EXPR.  */

  if (TREE_SIDE_EFFECTS (lhs) || TREE_SIDE_EFFECTS (rhs))
    return 0;

  lcode = TREE_CODE (lhs);
  rcode = TREE_CODE (rhs);

  if (lcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (lhs, 1)))
    lcode = NE_EXPR, lhs = build (NE_EXPR, truth_type, lhs, integer_zero_node);

  if (rcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (rhs, 1)))
    rcode = NE_EXPR, rhs = build (NE_EXPR, truth_type, rhs, integer_zero_node);

  if (TREE_CODE_CLASS (lcode) != '<' || TREE_CODE_CLASS (rcode) != '<')
    return 0;

  code = ((code == TRUTH_AND_EXPR || code == TRUTH_ANDIF_EXPR)
	  ? TRUTH_AND_EXPR : TRUTH_OR_EXPR);

  ll_arg = TREE_OPERAND (lhs, 0);
  lr_arg = TREE_OPERAND (lhs, 1);
  rl_arg = TREE_OPERAND (rhs, 0);
  rr_arg = TREE_OPERAND (rhs, 1);

  /* If the RHS can be evaluated unconditionally and its operands are
     simple, it wins to evaluate the RHS unconditionally on machines
     with expensive branches.  In this case, this isn't a comparison
     that can be merged.  Avoid doing this if the RHS is a floating-point
     comparison since those can trap.  */

  if (BRANCH_COST >= 2
      && ! FLOAT_TYPE_P (TREE_TYPE (rl_arg))
      && simple_operand_p (rl_arg)
      && simple_operand_p (rr_arg))
    {
      /* Convert (a != 0) || (b != 0) into (a | b) != 0.  */
      if (code == TRUTH_OR_EXPR
	  && lcode == NE_EXPR && integer_zerop (lr_arg)
	  && rcode == NE_EXPR && integer_zerop (rr_arg)
	  && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg))
	return build (NE_EXPR, truth_type,
		      build (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
			     ll_arg, rl_arg),
		      integer_zero_node);

      /* Convert (a == 0) && (b == 0) into (a | b) == 0.  */
      if (code == TRUTH_AND_EXPR
	  && lcode == EQ_EXPR && integer_zerop (lr_arg)
	  && rcode == EQ_EXPR && integer_zerop (rr_arg)
	  && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg))
	return build (EQ_EXPR, truth_type,
		      build (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
			     ll_arg, rl_arg),
		      integer_zero_node);

      return build (code, truth_type, lhs, rhs);
    }

  /* See if the comparisons can be merged.  Then get all the parameters for
     each side.  */

  if ((lcode != EQ_EXPR && lcode != NE_EXPR)
      || (rcode != EQ_EXPR && rcode != NE_EXPR))
    return 0;

  volatilep = 0;
  ll_inner = decode_field_reference (ll_arg,
				     &ll_bitsize, &ll_bitpos, &ll_mode,
				     &ll_unsignedp, &volatilep, &ll_mask,
				     &ll_and_mask);
  lr_inner = decode_field_reference (lr_arg,
				     &lr_bitsize, &lr_bitpos, &lr_mode,
				     &lr_unsignedp, &volatilep, &lr_mask,
				     &lr_and_mask);
  rl_inner = decode_field_reference (rl_arg,
				     &rl_bitsize, &rl_bitpos, &rl_mode,
				     &rl_unsignedp, &volatilep, &rl_mask,
				     &rl_and_mask);
  rr_inner = decode_field_reference (rr_arg,
				     &rr_bitsize, &rr_bitpos, &rr_mode,
				     &rr_unsignedp, &volatilep, &rr_mask,
				     &rr_and_mask);

  /* It must be true that the inner operation on the lhs of each
     comparison must be the same if we are to be able to do anything.
     Then see if we have constants.  If not, the same must be true for
     the rhs's.  */
  if (volatilep || ll_inner == 0 || rl_inner == 0
      || ! operand_equal_p (ll_inner, rl_inner, 0))
    return 0;

  if (TREE_CODE (lr_arg) == INTEGER_CST
      && TREE_CODE (rr_arg) == INTEGER_CST)
    l_const = lr_arg, r_const = rr_arg;
  else if (lr_inner == 0 || rr_inner == 0
	   || ! operand_equal_p (lr_inner, rr_inner, 0))
    return 0;
  else
    l_const = r_const = 0;

  /* If either comparison code is not correct for our logical operation,
     fail.  However, we can convert a one-bit comparison against zero into
     the opposite comparison against that bit being set in the field.  */

  wanted_code = (code == TRUTH_AND_EXPR ? EQ_EXPR : NE_EXPR);
  if (lcode != wanted_code)
    {
      if (l_const && integer_zerop (l_const) && integer_pow2p (ll_mask))
	{
	  /* Make the left operand unsigned, since we are only interested
	     in the value of one bit.  Otherwise we are doing the wrong
	     thing below.  */
	  ll_unsignedp = 1;
	  l_const = ll_mask;
	}
      else
	return 0;
    }

  /* This is analogous to the code for l_const above.  */
  if (rcode != wanted_code)
    {
      if (r_const && integer_zerop (r_const) && integer_pow2p (rl_mask))
	{
	  rl_unsignedp = 1;
	  r_const = rl_mask;
	}
      else
	return 0;
    }

  /* See if we can find a mode that contains both fields being compared on
     the left.  If we can't, fail.  Otherwise, update all constants and masks
     to be relative to a field of that size.  */
  first_bit = MIN (ll_bitpos, rl_bitpos);
  end_bit = MAX (ll_bitpos + ll_bitsize, rl_bitpos + rl_bitsize);
  lnmode = get_best_mode (end_bit - first_bit, first_bit,
			  TYPE_ALIGN (TREE_TYPE (ll_inner)), word_mode,
			  volatilep);
  if (lnmode == VOIDmode)
    return 0;

  lnbitsize = GET_MODE_BITSIZE (lnmode);
  lnbitpos = first_bit & ~ (lnbitsize - 1);
  lntype = (*lang_hooks.types.type_for_size) (lnbitsize, 1);
  xll_bitpos = ll_bitpos - lnbitpos, xrl_bitpos = rl_bitpos - lnbitpos;

  if (BYTES_BIG_ENDIAN)
    {
      xll_bitpos = lnbitsize - xll_bitpos - ll_bitsize;
      xrl_bitpos = lnbitsize - xrl_bitpos - rl_bitsize;
    }

  ll_mask = const_binop (LSHIFT_EXPR, convert (lntype, ll_mask),
			 size_int (xll_bitpos), 0);
  rl_mask = const_binop (LSHIFT_EXPR, convert (lntype, rl_mask),
			 size_int (xrl_bitpos), 0);

  if (l_const)
    {
      l_const = convert (lntype, l_const);
      l_const = unextend (l_const, ll_bitsize, ll_unsignedp, ll_and_mask);
      l_const = const_binop (LSHIFT_EXPR, l_const, size_int (xll_bitpos), 0);
      if (! integer_zerop (const_binop (BIT_AND_EXPR, l_const,
					fold (build1 (BIT_NOT_EXPR,
						      lntype, ll_mask)),
					0)))
	{
	  warning ("comparison is always %d", wanted_code == NE_EXPR);

	  return convert (truth_type,
			  wanted_code == NE_EXPR
			  ? integer_one_node : integer_zero_node);
	}
    }
  if (r_const)
    {
      r_const = convert (lntype, r_const);
      r_const = unextend (r_const, rl_bitsize, rl_unsignedp, rl_and_mask);
      r_const = const_binop (LSHIFT_EXPR, r_const, size_int (xrl_bitpos), 0);
      if (! integer_zerop (const_binop (BIT_AND_EXPR, r_const,
					fold (build1 (BIT_NOT_EXPR,
						      lntype, rl_mask)),
					0)))
	{
	  warning ("comparison is always %d", wanted_code == NE_EXPR);

	  return convert (truth_type,
			  wanted_code == NE_EXPR
			  ? integer_one_node : integer_zero_node);
	}
    }

  /* If the right sides are not constant, do the same for it.  Also,
     disallow this optimization if a size or signedness mismatch occurs
     between the left and right sides.  */
  if (l_const == 0)
    {
      if (ll_bitsize != lr_bitsize || rl_bitsize != rr_bitsize
	  || ll_unsignedp != lr_unsignedp || rl_unsignedp != rr_unsignedp
	  /* Make sure the two fields on the right
	     correspond to the left without being swapped.  */
	  || ll_bitpos - rl_bitpos != lr_bitpos - rr_bitpos)
	return 0;

      first_bit = MIN (lr_bitpos, rr_bitpos);
      end_bit = MAX (lr_bitpos + lr_bitsize, rr_bitpos + rr_bitsize);
      rnmode = get_best_mode (end_bit - first_bit, first_bit,
			      TYPE_ALIGN (TREE_TYPE (lr_inner)), word_mode,
			      volatilep);
      if (rnmode == VOIDmode)
	return 0;

      rnbitsize = GET_MODE_BITSIZE (rnmode);
      rnbitpos = first_bit & ~ (rnbitsize - 1);
      rntype = (*lang_hooks.types.type_for_size) (rnbitsize, 1);
      xlr_bitpos = lr_bitpos - rnbitpos, xrr_bitpos = rr_bitpos - rnbitpos;

      if (BYTES_BIG_ENDIAN)
	{
	  xlr_bitpos = rnbitsize - xlr_bitpos - lr_bitsize;
	  xrr_bitpos = rnbitsize - xrr_bitpos - rr_bitsize;
	}

      lr_mask = const_binop (LSHIFT_EXPR, convert (rntype, lr_mask),
			     size_int (xlr_bitpos), 0);
      rr_mask = const_binop (LSHIFT_EXPR, convert (rntype, rr_mask),
			     size_int (xrr_bitpos), 0);

      /* Make a mask that corresponds to both fields being compared.
	 Do this for both items being compared.  If the operands are the
	 same size and the bits being compared are in the same position
	 then we can do this by masking both and comparing the masked
	 results.  */
      ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask, 0);
      lr_mask = const_binop (BIT_IOR_EXPR, lr_mask, rr_mask, 0);
      if (lnbitsize == rnbitsize && xll_bitpos == xlr_bitpos)
	{
	  lhs = make_bit_field_ref (ll_inner, lntype, lnbitsize, lnbitpos,
				    ll_unsignedp || rl_unsignedp);
	  if (! all_ones_mask_p (ll_mask, lnbitsize))
	    lhs = build (BIT_AND_EXPR, lntype, lhs, ll_mask);

	  rhs = make_bit_field_ref (lr_inner, rntype, rnbitsize, rnbitpos,
				    lr_unsignedp || rr_unsignedp);
	  if (! all_ones_mask_p (lr_mask, rnbitsize))
	    rhs = build (BIT_AND_EXPR, rntype, rhs, lr_mask);

	  return build (wanted_code, truth_type, lhs, rhs);
	}

      /* There is still another way we can do something:  If both pairs of
	 fields being compared are adjacent, we may be able to make a wider
	 field containing them both.

	 Note that we still must mask the lhs/rhs expressions.  Furthermore,
	 the mask must be shifted to account for the shift done by
	 make_bit_field_ref.  */
      if ((ll_bitsize + ll_bitpos == rl_bitpos
	   && lr_bitsize + lr_bitpos == rr_bitpos)
	  || (ll_bitpos == rl_bitpos + rl_bitsize
	      && lr_bitpos == rr_bitpos + rr_bitsize))
	{
	  tree type;

	  lhs = make_bit_field_ref (ll_inner, lntype, ll_bitsize + rl_bitsize,
				    MIN (ll_bitpos, rl_bitpos), ll_unsignedp);
	  rhs = make_bit_field_ref (lr_inner, rntype, lr_bitsize + rr_bitsize,
				    MIN (lr_bitpos, rr_bitpos), lr_unsignedp);

	  ll_mask = const_binop (RSHIFT_EXPR, ll_mask,
				 size_int (MIN (xll_bitpos, xrl_bitpos)), 0);
	  lr_mask = const_binop (RSHIFT_EXPR, lr_mask,
				 size_int (MIN (xlr_bitpos, xrr_bitpos)), 0);

	  /* Convert to the smaller type before masking out unwanted bits.  */
	  type = lntype;
	  if (lntype != rntype)
	    {
	      if (lnbitsize > rnbitsize)
		{
		  lhs = convert (rntype, lhs);
		  ll_mask = convert (rntype, ll_mask);
		  type = rntype;
		}
	      else if (lnbitsize < rnbitsize)
		{
		  rhs = convert (lntype, rhs);
		  lr_mask = convert (lntype, lr_mask);
		  type = lntype;
		}
	    }

	  if (! all_ones_mask_p (ll_mask, ll_bitsize + rl_bitsize))
	    lhs = build (BIT_AND_EXPR, type, lhs, ll_mask);

	  if (! all_ones_mask_p (lr_mask, lr_bitsize + rr_bitsize))
	    rhs = build (BIT_AND_EXPR, type, rhs, lr_mask);

	  return build (wanted_code, truth_type, lhs, rhs);
	}

      return 0;
    }

  /* Handle the case of comparisons with constants.  If there is something in
     common between the masks, those bits of the constants must be the same.
     If not, the condition is always false.  Test for this to avoid generating
     incorrect code below.  */
  result = const_binop (BIT_AND_EXPR, ll_mask, rl_mask, 0);
  if (! integer_zerop (result)
      && simple_cst_equal (const_binop (BIT_AND_EXPR, result, l_const, 0),
			   const_binop (BIT_AND_EXPR, result, r_const, 0)) != 1)
    {
      if (wanted_code == NE_EXPR)
	{
	  warning ("`or' of unmatched not-equal tests is always 1");
	  return convert (truth_type, integer_one_node);
	}
      else
	{
	  warning ("`and' of mutually exclusive equal-tests is always 0");
	  return convert (truth_type, integer_zero_node);
	}
    }

  /* Construct the expression we will return.  First get the component
     reference we will make.  Unless the mask is all ones the width of
     that field, perform the mask operation.  Then compare with the
     merged constant.  */
  result = make_bit_field_ref (ll_inner, lntype, lnbitsize, lnbitpos,
			       ll_unsignedp || rl_unsignedp);

  ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask, 0);
  if (! all_ones_mask_p (ll_mask, lnbitsize))
    result = build (BIT_AND_EXPR, lntype, result, ll_mask);

  return build (wanted_code, truth_type, result,
		const_binop (BIT_IOR_EXPR, l_const, r_const, 0));
}

/* Optimize T, which is a comparison of a MIN_EXPR or MAX_EXPR with a
   constant.  */

static tree
optimize_minmax_comparison (t)
     tree t;
{
  tree type = TREE_TYPE (t);
  tree arg0 = TREE_OPERAND (t, 0);
  enum tree_code op_code;
  tree comp_const = TREE_OPERAND (t, 1);
  tree minmax_const;
  int consts_equal, consts_lt;
  tree inner;

  STRIP_SIGN_NOPS (arg0);

  op_code = TREE_CODE (arg0);
  minmax_const = TREE_OPERAND (arg0, 1);
  consts_equal = tree_int_cst_equal (minmax_const, comp_const);
  consts_lt = tree_int_cst_lt (minmax_const, comp_const);
  inner = TREE_OPERAND (arg0, 0);

  /* If something does not permit us to optimize, return the original tree.  */
  if ((op_code != MIN_EXPR && op_code != MAX_EXPR)
      || TREE_CODE (comp_const) != INTEGER_CST
      || TREE_CONSTANT_OVERFLOW (comp_const)
      || TREE_CODE (minmax_const) != INTEGER_CST
      || TREE_CONSTANT_OVERFLOW (minmax_const))
    return t;

  /* Now handle all the various comparison codes.  We only handle EQ_EXPR
     and GT_EXPR, doing the rest with recursive calls using logical
     simplifications.  */
  switch (TREE_CODE (t))
    {
    case NE_EXPR:  case LT_EXPR:  case LE_EXPR:
      return
	invert_truthvalue (optimize_minmax_comparison (invert_truthvalue (t)));

    case GE_EXPR:
      return
	fold (build (TRUTH_ORIF_EXPR, type,
		     optimize_minmax_comparison
		     (build (EQ_EXPR, type, arg0, comp_const)),
		     optimize_minmax_comparison
		     (build (GT_EXPR, type, arg0, comp_const))));

    case EQ_EXPR:
      if (op_code == MAX_EXPR && consts_equal)
	/* MAX (X, 0) == 0  ->  X <= 0  */
	return fold (build (LE_EXPR, type, inner, comp_const));

      else if (op_code == MAX_EXPR && consts_lt)
	/* MAX (X, 0) == 5  ->  X == 5   */
	return fold (build (EQ_EXPR, type, inner, comp_const));

      else if (op_code == MAX_EXPR)
	/* MAX (X, 0) == -1  ->  false  */
	return omit_one_operand (type, integer_zero_node, inner);

      else if (consts_equal)
	/* MIN (X, 0) == 0  ->  X >= 0  */
	return fold (build (GE_EXPR, type, inner, comp_const));

      else if (consts_lt)
	/* MIN (X, 0) == 5  ->  false  */
	return omit_one_operand (type, integer_zero_node, inner);

      else
	/* MIN (X, 0) == -1  ->  X == -1  */
	return fold (build (EQ_EXPR, type, inner, comp_const));

    case GT_EXPR:
      if (op_code == MAX_EXPR && (consts_equal || consts_lt))
	/* MAX (X, 0) > 0  ->  X > 0
	   MAX (X, 0) > 5  ->  X > 5  */
	return fold (build (GT_EXPR, type, inner, comp_const));

      else if (op_code == MAX_EXPR)
	/* MAX (X, 0) > -1  ->  true  */
	return omit_one_operand (type, integer_one_node, inner);

      else if (op_code == MIN_EXPR && (consts_equal || consts_lt))
	/* MIN (X, 0) > 0  ->  false
	   MIN (X, 0) > 5  ->  false  */
	return omit_one_operand (type, integer_zero_node, inner);

      else
	/* MIN (X, 0) > -1  ->  X > -1  */
	return fold (build (GT_EXPR, type, inner, comp_const));

    default:
      return t;
    }
}

/* T is an integer expression that is being multiplied, divided, or taken a
   modulus (CODE says which and what kind of divide or modulus) by a
   constant C.  See if we can eliminate that operation by folding it with
   other operations already in T.  WIDE_TYPE, if non-null, is a type that
   should be used for the computation if wider than our type.

   For example, if we are dividing (X * 8) + (Y * 16) by 4, we can return
   (X * 2) + (Y * 4).  We must, however, be assured that either the original
   expression would not overflow or that overflow is undefined for the type
   in the language in question.

   We also canonicalize (X + 7) * 4 into X * 4 + 28 in the hope that either
   the machine has a multiply-accumulate insn or that this is part of an
   addressing calculation.

   If we return a non-null expression, it is an equivalent form of the
   original computation, but need not be in the original type.  */

static tree
extract_muldiv (t, c, code, wide_type)
     tree t;
     tree c;
     enum tree_code code;
     tree wide_type;
{
  tree type = TREE_TYPE (t);
  enum tree_code tcode = TREE_CODE (t);
  tree ctype = (wide_type != 0 && (GET_MODE_SIZE (TYPE_MODE (wide_type))
				   > GET_MODE_SIZE (TYPE_MODE (type)))
		? wide_type : type);
  tree t1, t2;
  int same_p = tcode == code;
  tree op0 = NULL_TREE, op1 = NULL_TREE;

  /* Don't deal with constants of zero here; they confuse the code below.  */
  if (integer_zerop (c))
    return NULL_TREE;

  if (TREE_CODE_CLASS (tcode) == '1')
    op0 = TREE_OPERAND (t, 0);

  if (TREE_CODE_CLASS (tcode) == '2')
    op0 = TREE_OPERAND (t, 0), op1 = TREE_OPERAND (t, 1);

  /* Note that we need not handle conditional operations here since fold
     already handles those cases.  So just do arithmetic here.  */
  switch (tcode)
    {
    case INTEGER_CST:
      /* For a constant, we can always simplify if we are a multiply
	 or (for divide and modulus) if it is a multiple of our constant.  */
      if (code == MULT_EXPR
	  || integer_zerop (const_binop (TRUNC_MOD_EXPR, t, c, 0)))
	return const_binop (code, convert (ctype, t), convert (ctype, c), 0);
      break;

    case CONVERT_EXPR:  case NON_LVALUE_EXPR:  case NOP_EXPR:
      /* If op0 is an expression, and is unsigned, and the type is
	 smaller than ctype, then we cannot widen the expression.  */
      if ((TREE_CODE_CLASS (TREE_CODE (op0)) == '<'
	   || TREE_CODE_CLASS (TREE_CODE (op0)) == '1'
	   || TREE_CODE_CLASS (TREE_CODE (op0)) == '2'
	   || TREE_CODE_CLASS (TREE_CODE (op0)) == 'e')
	  && TREE_UNSIGNED (TREE_TYPE (op0))
	  && ! (TREE_CODE (TREE_TYPE (op0)) == INTEGER_TYPE
		&& TYPE_IS_SIZETYPE (TREE_TYPE (op0)))
	  && (GET_MODE_SIZE (TYPE_MODE (ctype))
	      > GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0)))))
	break;

      /* Pass the constant down and see if we can make a simplification.  If
	 we can, replace this expression with the inner simplification for
	 possible later conversion to our or some other type.  */
      if (0 != (t1 = extract_muldiv (op0, convert (TREE_TYPE (op0), c), code,
				     code == MULT_EXPR ? ctype : NULL_TREE)))
	return t1;
      break;

    case NEGATE_EXPR:  case ABS_EXPR:
      if ((t1 = extract_muldiv (op0, c, code, wide_type)) != 0)
	return fold (build1 (tcode, ctype, convert (ctype, t1)));
      break;

    case MIN_EXPR:  case MAX_EXPR:
      /* If widening the type changes the signedness, then we can't perform
	 this optimization as that changes the result.  */
      if (TREE_UNSIGNED (ctype) != TREE_UNSIGNED (type))
	break;

      /* MIN (a, b) / 5 -> MIN (a / 5, b / 5)  */
      if ((t1 = extract_muldiv (op0, c, code, wide_type)) != 0
	  && (t2 = extract_muldiv (op1, c, code, wide_type)) != 0)
	{
	  if (tree_int_cst_sgn (c) < 0)
	    tcode = (tcode == MIN_EXPR ? MAX_EXPR : MIN_EXPR);

	  return fold (build (tcode, ctype, convert (ctype, t1),
			      convert (ctype, t2)));
	}
      break;

    case WITH_RECORD_EXPR:
      if ((t1 = extract_muldiv (TREE_OPERAND (t, 0), c, code, wide_type)) != 0)
	return build (WITH_RECORD_EXPR, TREE_TYPE (t1), t1,
		      TREE_OPERAND (t, 1));
      break;

    case SAVE_EXPR:
      /* If this has not been evaluated and the operand has no side effects,
	 we can see if we can do something inside it and make a new one.
	 Note that this test is overly conservative since we can do this
	 if the only reason it had side effects is that it was another
	 similar SAVE_EXPR, but that isn't worth bothering with.  */
      if (SAVE_EXPR_RTL (t) == 0 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (t, 0))
	  && 0 != (t1 = extract_muldiv (TREE_OPERAND (t, 0), c, code,
					wide_type)))
	{
	  t1 = save_expr (t1);
	  if (SAVE_EXPR_PERSISTENT_P (t) && TREE_CODE (t1) == SAVE_EXPR)
	    SAVE_EXPR_PERSISTENT_P (t1) = 1;
	  if (is_pending_size (t))
	    put_pending_size (t1);
	  return t1;
	}
      break;

    case LSHIFT_EXPR:  case RSHIFT_EXPR:
      /* If the second operand is constant, this is a multiplication
	 or floor division, by a power of two, so we can treat it that
	 way unless the multiplier or divisor overflows.  */
      if (TREE_CODE (op1) == INTEGER_CST
	  /* const_binop may not detect overflow correctly,
	     so check for it explicitly here.  */
	  && TYPE_PRECISION (TREE_TYPE (size_one_node)) > TREE_INT_CST_LOW (op1)
	  && TREE_INT_CST_HIGH (op1) == 0
	  && 0 != (t1 = convert (ctype,
				 const_binop (LSHIFT_EXPR, size_one_node,
					      op1, 0)))
	  && ! TREE_OVERFLOW (t1))
	return extract_muldiv (build (tcode == LSHIFT_EXPR
				      ? MULT_EXPR : FLOOR_DIV_EXPR,
				      ctype, convert (ctype, op0), t1),
			       c, code, wide_type);
      break;

    case PLUS_EXPR:  case MINUS_EXPR:
      /* See if we can eliminate the operation on both sides.  If we can, we
	 can return a new PLUS or MINUS.  If we can't, the only remaining
	 cases where we can do anything are if the second operand is a
	 constant.  */
      t1 = extract_muldiv (op0, c, code, wide_type);
      t2 = extract_muldiv (op1, c, code, wide_type);
      if (t1 != 0 && t2 != 0
	  && (code == MULT_EXPR
	      /* If not multiplication, we can only do this if either operand
		 is divisible by c.  */
	      || multiple_of_p (ctype, op0, c)
	      || multiple_of_p (ctype, op1, c)))
	return fold (build (tcode, ctype, convert (ctype, t1),
			    convert (ctype, t2)));

      /* If this was a subtraction, negate OP1 and set it to be an addition.
	 This simplifies the logic below.  */
      if (tcode == MINUS_EXPR)
	tcode = PLUS_EXPR, op1 = negate_expr (op1);

      if (TREE_CODE (op1) != INTEGER_CST)
	break;

      /* If either OP1 or C are negative, this optimization is not safe for
	 some of the division and remainder types while for others we need
	 to change the code.  */
      if (tree_int_cst_sgn (op1) < 0 || tree_int_cst_sgn (c) < 0)
	{
	  if (code == CEIL_DIV_EXPR)
	    code = FLOOR_DIV_EXPR;
	  else if (code == FLOOR_DIV_EXPR)
	    code = CEIL_DIV_EXPR;
	  else if (code != MULT_EXPR
		   && code != CEIL_MOD_EXPR && code != FLOOR_MOD_EXPR)
	    break;
	}

      /* If it's a multiply or a division/modulus operation of a multiple
         of our constant, do the operation and verify it doesn't overflow.  */
      if (code == MULT_EXPR
	  || integer_zerop (const_binop (TRUNC_MOD_EXPR, op1, c, 0)))
	{
	  op1 = const_binop (code, convert (ctype, op1), convert (ctype, c), 0);
	  if (op1 == 0 || TREE_OVERFLOW (op1))
	    break;
	}
      else
	break;

      /* If we have an unsigned type is not a sizetype, we cannot widen
	 the operation since it will change the result if the original
	 computation overflowed.  */
      if (TREE_UNSIGNED (ctype)
	  && ! (TREE_CODE (ctype) == INTEGER_TYPE && TYPE_IS_SIZETYPE (ctype))
	  && ctype != type)
	break;

      /* If we were able to eliminate our operation from the first side,
	 apply our operation to the second side and reform the PLUS.  */
      if (t1 != 0 && (TREE_CODE (t1) != code || code == MULT_EXPR))
	return fold (build (tcode, ctype, convert (ctype, t1), op1));

      /* The last case is if we are a multiply.  In that case, we can
	 apply the distributive law to commute the multiply and addition
	 if the multiplication of the constants doesn't overflow.  */
      if (code == MULT_EXPR)
	return fold (build (tcode, ctype, fold (build (code, ctype,
						       convert (ctype, op0),
						       convert (ctype, c))),
			    op1));

      break;

    case MULT_EXPR:
      /* We have a special case here if we are doing something like
	 (C * 8) % 4 since we know that's zero.  */
      if ((code == TRUNC_MOD_EXPR || code == CEIL_MOD_EXPR
	   || code == FLOOR_MOD_EXPR || code == ROUND_MOD_EXPR)
	  && TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
	  && integer_zerop (const_binop (TRUNC_MOD_EXPR, op1, c, 0)))
	return omit_one_operand (type, integer_zero_node, op0);

      /* ... fall through ...  */

    case TRUNC_DIV_EXPR:  case CEIL_DIV_EXPR:  case FLOOR_DIV_EXPR:
    case ROUND_DIV_EXPR:  case EXACT_DIV_EXPR:
      /* If we can extract our operation from the LHS, do so and return a
	 new operation.  Likewise for the RHS from a MULT_EXPR.  Otherwise,
	 do something only if the second operand is a constant.  */
      if (same_p
	  && (t1 = extract_muldiv (op0, c, code, wide_type)) != 0)
	return fold (build (tcode, ctype, convert (ctype, t1),
			    convert (ctype, op1)));
      else if (tcode == MULT_EXPR && code == MULT_EXPR
	       && (t1 = extract_muldiv (op1, c, code, wide_type)) != 0)
	return fold (build (tcode, ctype, convert (ctype, op0),
			    convert (ctype, t1)));
      else if (TREE_CODE (op1) != INTEGER_CST)
	return 0;

      /* If these are the same operation types, we can associate them
	 assuming no overflow.  */
      if (tcode == code
	  && 0 != (t1 = const_binop (MULT_EXPR, convert (ctype, op1),
				     convert (ctype, c), 0))
	  && ! TREE_OVERFLOW (t1))
	return fold (build (tcode, ctype, convert (ctype, op0), t1));

      /* If these operations "cancel" each other, we have the main
	 optimizations of this pass, which occur when either constant is a
	 multiple of the other, in which case we replace this with either an
	 operation or CODE or TCODE.

	 If we have an unsigned type that is not a sizetype, we cannot do
	 this since it will change the result if the original computation
	 overflowed.  */
      if ((! TREE_UNSIGNED (ctype)
	   || (TREE_CODE (ctype) == INTEGER_TYPE && TYPE_IS_SIZETYPE (ctype)))
	  && ((code == MULT_EXPR && tcode == EXACT_DIV_EXPR)
	      || (tcode == MULT_EXPR
		  && code != TRUNC_MOD_EXPR && code != CEIL_MOD_EXPR
		  && code != FLOOR_MOD_EXPR && code != ROUND_MOD_EXPR)))
	{
	  if (integer_zerop (const_binop (TRUNC_MOD_EXPR, op1, c, 0)))
	    return fold (build (tcode, ctype, convert (ctype, op0),
				convert (ctype,
					 const_binop (TRUNC_DIV_EXPR,
						      op1, c, 0))));
	  else if (integer_zerop (const_binop (TRUNC_MOD_EXPR, c, op1, 0)))
	    return fold (build (code, ctype, convert (ctype, op0),
				convert (ctype,
					 const_binop (TRUNC_DIV_EXPR,
						      c, op1, 0))));
	}
      break;

    default:
      break;
    }

  return 0;
}

/* If T contains a COMPOUND_EXPR which was inserted merely to evaluate
   S, a SAVE_EXPR, return the expression actually being evaluated.   Note
   that we may sometimes modify the tree.  */

static tree
strip_compound_expr (t, s)
     tree t;
     tree s;
{
  enum tree_code code = TREE_CODE (t);

  /* See if this is the COMPOUND_EXPR we want to eliminate.  */
  if (code == COMPOUND_EXPR && TREE_CODE (TREE_OPERAND (t, 0)) == CONVERT_EXPR
      && TREE_OPERAND (TREE_OPERAND (t, 0), 0) == s)
    return TREE_OPERAND (t, 1);

  /* See if this is a COND_EXPR or a simple arithmetic operator.   We
     don't bother handling any other types.  */
  else if (code == COND_EXPR)
    {
      TREE_OPERAND (t, 0) = strip_compound_expr (TREE_OPERAND (t, 0), s);
      TREE_OPERAND (t, 1) = strip_compound_expr (TREE_OPERAND (t, 1), s);
      TREE_OPERAND (t, 2) = strip_compound_expr (TREE_OPERAND (t, 2), s);
    }
  else if (TREE_CODE_CLASS (code) == '1')
    TREE_OPERAND (t, 0) = strip_compound_expr (TREE_OPERAND (t, 0), s);
  else if (TREE_CODE_CLASS (code) == '<'
	   || TREE_CODE_CLASS (code) == '2')
    {
      TREE_OPERAND (t, 0) = strip_compound_expr (TREE_OPERAND (t, 0), s);
      TREE_OPERAND (t, 1) = strip_compound_expr (TREE_OPERAND (t, 1), s);
    }

  return t;
}

/* Return a node which has the indicated constant VALUE (either 0 or
   1), and is of the indicated TYPE.  */

static tree
constant_boolean_node (value, type)
     int value;
     tree type;
{
  if (type == integer_type_node)
    return value ? integer_one_node : integer_zero_node;
  else if (TREE_CODE (type) == BOOLEAN_TYPE)
    return (*lang_hooks.truthvalue_conversion) (value ? integer_one_node :
						integer_zero_node);
  else
    {
      tree t = build_int_2 (value, 0);

      TREE_TYPE (t) = type;
      return t;
    }
}

/* Utility function for the following routine, to see how complex a nesting of
   COND_EXPRs can be.  EXPR is the expression and LIMIT is a count beyond which
   we don't care (to avoid spending too much time on complex expressions.).  */

static int
count_cond (expr, lim)
     tree expr;
     int lim;
{
  int ctrue, cfalse;

  if (TREE_CODE (expr) != COND_EXPR)
    return 0;
  else if (lim <= 0)
    return 0;

  ctrue = count_cond (TREE_OPERAND (expr, 1), lim - 1);
  cfalse = count_cond (TREE_OPERAND (expr, 2), lim - 1 - ctrue);
  return MIN (lim, 1 + ctrue + cfalse);
}

/* Transform `a + (b ? x : y)' into `b ? (a + x) : (a + y)'.
   Transform, `a + (x < y)' into `(x < y) ? (a + 1) : (a + 0)'.  Here
   CODE corresponds to the `+', COND to the `(b ? x : y)' or `(x < y)'
   expression, and ARG to `a'.  If COND_FIRST_P is non-zero, then the
   COND is the first argument to CODE; otherwise (as in the example
   given here), it is the second argument.  TYPE is the type of the
   original expression.  */

static tree
fold_binary_op_with_conditional_arg (code, type, cond, arg, cond_first_p)
     enum tree_code code;
     tree type;
     tree cond;
     tree arg;
     int cond_first_p;
{
  tree test, true_value, false_value;
  tree lhs = NULL_TREE;
  tree rhs = NULL_TREE;
  /* In the end, we'll produce a COND_EXPR.  Both arms of the
     conditional expression will be binary operations.  The left-hand
     side of the expression to be executed if the condition is true
     will be pointed to by TRUE_LHS.  Similarly, the right-hand side
     of the expression to be executed if the condition is true will be
     pointed to by TRUE_RHS.  FALSE_LHS and FALSE_RHS are analogous --
     but apply to the expression to be executed if the conditional is
     false.  */
  tree *true_lhs;
  tree *true_rhs;
  tree *false_lhs;
  tree *false_rhs;
  /* These are the codes to use for the left-hand side and right-hand
     side of the COND_EXPR.  Normally, they are the same as CODE.  */
  enum tree_code lhs_code = code;
  enum tree_code rhs_code = code;
  /* And these are the types of the expressions.  */
  tree lhs_type = type;
  tree rhs_type = type;

  if (cond_first_p)
    {
      true_rhs = false_rhs = &arg;
      true_lhs = &true_value;
      false_lhs = &false_value;
    }
  else
    {
      true_lhs = false_lhs = &arg;
      true_rhs = &true_value;
      false_rhs = &false_value;
    }

  if (TREE_CODE (cond) == COND_EXPR)
    {
      test = TREE_OPERAND (cond, 0);
      true_value = TREE_OPERAND (cond, 1);
      false_value = TREE_OPERAND (cond, 2);
      /* If this operand throws an expression, then it does not make
	 sense to try to perform a logical or arithmetic operation
	 involving it.  Instead of building `a + throw 3' for example,
	 we simply build `a, throw 3'.  */
      if (VOID_TYPE_P (TREE_TYPE (true_value)))
	{
	  lhs_code = COMPOUND_EXPR;
	  if (!cond_first_p)
	    lhs_type = void_type_node;
	}
      if (VOID_TYPE_P (TREE_TYPE (false_value)))
	{
	  rhs_code = COMPOUND_EXPR;
	  if (!cond_first_p)
	    rhs_type = void_type_node;
	}
    }
  else
    {
      tree testtype = TREE_TYPE (cond);
      test = cond;
      true_value = convert (testtype, integer_one_node);
      false_value = convert (testtype, integer_zero_node);
    }

  /* If ARG is complex we want to make sure we only evaluate
     it once.  Though this is only required if it is volatile, it
     might be more efficient even if it is not.  However, if we
     succeed in folding one part to a constant, we do not need
     to make this SAVE_EXPR.  Since we do this optimization
     primarily to see if we do end up with constant and this
     SAVE_EXPR interferes with later optimizations, suppressing
     it when we can is important.

     If we are not in a function, we can't make a SAVE_EXPR, so don't
     try to do so.  Don't try to see if the result is a constant
     if an arm is a COND_EXPR since we get exponential behavior
     in that case.  */

  if (TREE_CODE (arg) != SAVE_EXPR && ! TREE_CONSTANT (arg)
      && (*lang_hooks.decls.global_bindings_p) () == 0
      && ((TREE_CODE (arg) != VAR_DECL
	   && TREE_CODE (arg) != PARM_DECL)
	  || TREE_SIDE_EFFECTS (arg)))
    {
      if (TREE_CODE (true_value) != COND_EXPR)
	lhs = fold (build (lhs_code, lhs_type, *true_lhs, *true_rhs));

      if (TREE_CODE (false_value) != COND_EXPR)
	rhs = fold (build (rhs_code, rhs_type, *false_lhs, *false_rhs));

      if ((lhs == 0 || ! TREE_CONSTANT (lhs))
	  && (rhs == 0 || !TREE_CONSTANT (rhs)))
	arg = save_expr (arg), lhs = rhs = 0;
    }

  if (lhs == 0)
    lhs = fold (build (lhs_code, lhs_type, *true_lhs, *true_rhs));
  if (rhs == 0)
    rhs = fold (build (rhs_code, rhs_type, *false_lhs, *false_rhs));

  test = fold (build (COND_EXPR, type, test, lhs, rhs));

  if (TREE_CODE (arg) == SAVE_EXPR)
    return build (COMPOUND_EXPR, type,
		  convert (void_type_node, arg),
		  strip_compound_expr (test, arg));
  else
    return convert (type, test);
}


/* Subroutine of fold() that checks for the addition of +/- 0.0.

   If !NEGATE, return true if ADDEND is +/-0.0 and, for all X of type
   TYPE, X + ADDEND is the same as X.  If NEGATE, return true if X -
   ADDEND is the same as X.

   X + 0 and X - 0 both give X when X is NaN, infinite, or non-zero
   and finite.  The problematic cases are when X is zero, and its mode
   has signed zeros.  In the case of rounding towards -infinity,
   X - 0 is not the same as X because 0 - 0 is -0.  In other rounding
   modes, X + 0 is not the same as X because -0 + 0 is 0.  */

static bool
fold_real_zero_addition_p (type, addend, negate)
     tree type, addend;
     int negate;
{
  if (!real_zerop (addend))
    return false;

  /* Allow the fold if zeros aren't signed, or their sign isn't important.  */
  if (!HONOR_SIGNED_ZEROS (TYPE_MODE (type)))
    return true;

  /* Treat x + -0 as x - 0 and x - -0 as x + 0.  */
  if (TREE_CODE (addend) == REAL_CST
      && REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (addend)))
    negate = !negate;

  /* The mode has signed zeros, and we have to honor their sign.
     In this situation, there is only one case we can return true for.
     X - 0 is the same as X unless rounding towards -infinity is
     supported.  */
  return negate && !HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (type));
}


/* Perform constant folding and related simplification of EXPR.
   The related simplifications include x*1 => x, x*0 => 0, etc.,
   and application of the associative law.
   NOP_EXPR conversions may be removed freely (as long as we
   are careful not to change the C type of the overall expression)
   We cannot simplify through a CONVERT_EXPR, FIX_EXPR or FLOAT_EXPR,
   but we can constant-fold them if they have constant operands.  */

tree
fold (expr)
     tree expr;
{
  tree t = expr;
  tree t1 = NULL_TREE;
  tree tem;
  tree type = TREE_TYPE (expr);
  tree arg0 = NULL_TREE, arg1 = NULL_TREE;
  enum tree_code code = TREE_CODE (t);
  int kind = TREE_CODE_CLASS (code);
  int invert;
  /* WINS will be nonzero when the switch is done
     if all operands are constant.  */
  int wins = 1;

  /* Don't try to process an RTL_EXPR since its operands aren't trees.
     Likewise for a SAVE_EXPR that's already been evaluated.  */
  if (code == RTL_EXPR || (code == SAVE_EXPR && SAVE_EXPR_RTL (t) != 0))
    return t;

  /* Return right away if a constant.  */
  if (kind == 'c')
    return t;

#ifdef MAX_INTEGER_COMPUTATION_MODE
  check_max_integer_computation_mode (expr);
#endif

  if (code == NOP_EXPR || code == FLOAT_EXPR || code == CONVERT_EXPR)
    {
      tree subop;

      /* Special case for conversion ops that can have fixed point args.  */
      arg0 = TREE_OPERAND (t, 0);

      /* Don't use STRIP_NOPS, because signedness of argument type matters.  */
      if (arg0 != 0)
	STRIP_SIGN_NOPS (arg0);

      if (arg0 != 0 && TREE_CODE (arg0) == COMPLEX_CST)
	subop = TREE_REALPART (arg0);
      else
	subop = arg0;

      if (subop != 0 && TREE_CODE (subop) != INTEGER_CST
	  && TREE_CODE (subop) != REAL_CST
	  )
	/* Note that TREE_CONSTANT isn't enough:
	   static var addresses are constant but we can't
	   do arithmetic on them.  */
	wins = 0;
    }
  else if (IS_EXPR_CODE_CLASS (kind) || kind == 'r')
    {
      int len = first_rtl_op (code);
      int i;
      for (i = 0; i < len; i++)
	{
	  tree op = TREE_OPERAND (t, i);
	  tree subop;

	  if (op == 0)
	    continue;		/* Valid for CALL_EXPR, at least.  */

	  if (kind == '<' || code == RSHIFT_EXPR)
	    {
	      /* Signedness matters here.  Perhaps we can refine this
		 later.  */
	      STRIP_SIGN_NOPS (op);
	    }
	  else
	    /* Strip any conversions that don't change the mode.  */
	    STRIP_NOPS (op);

	  if (TREE_CODE (op) == COMPLEX_CST)
	    subop = TREE_REALPART (op);
	  else
	    subop = op;

	  if (TREE_CODE (subop) != INTEGER_CST
	      && TREE_CODE (subop) != REAL_CST)
	    /* Note that TREE_CONSTANT isn't enough:
	       static var addresses are constant but we can't
	       do arithmetic on them.  */
	    wins = 0;

	  if (i == 0)
	    arg0 = op;
	  else if (i == 1)
	    arg1 = op;
	}
    }

  /* If this is a commutative operation, and ARG0 is a constant, move it
     to ARG1 to reduce the number of tests below.  */
  if ((code == PLUS_EXPR || code == MULT_EXPR || code == MIN_EXPR
       || code == MAX_EXPR || code == BIT_IOR_EXPR || code == BIT_XOR_EXPR
       || code == BIT_AND_EXPR)
      && (TREE_CODE (arg0) == INTEGER_CST || TREE_CODE (arg0) == REAL_CST))
    {
      tem = arg0; arg0 = arg1; arg1 = tem;

      tem = TREE_OPERAND (t, 0); TREE_OPERAND (t, 0) = TREE_OPERAND (t, 1);
      TREE_OPERAND (t, 1) = tem;
    }

  /* Now WINS is set as described above,
     ARG0 is the first operand of EXPR,
     and ARG1 is the second operand (if it has more than one operand).

     First check for cases where an arithmetic operation is applied to a
     compound, conditional, or comparison operation.  Push the arithmetic
     operation inside the compound or conditional to see if any folding
     can then be done.  Convert comparison to conditional for this purpose.
     The also optimizes non-constant cases that used to be done in
     expand_expr.

     Before we do that, see if this is a BIT_AND_EXPR or a BIT_IOR_EXPR,
     one of the operands is a comparison and the other is a comparison, a
     BIT_AND_EXPR with the constant 1, or a truth value.  In that case, the
     code below would make the expression more complex.  Change it to a
     TRUTH_{AND,OR}_EXPR.  Likewise, convert a similar NE_EXPR to
     TRUTH_XOR_EXPR and an EQ_EXPR to the inversion of a TRUTH_XOR_EXPR.  */

  if ((code == BIT_AND_EXPR || code == BIT_IOR_EXPR
       || code == EQ_EXPR || code == NE_EXPR)
      && ((truth_value_p (TREE_CODE (arg0))
	   && (truth_value_p (TREE_CODE (arg1))
	       || (TREE_CODE (arg1) == BIT_AND_EXPR
		   && integer_onep (TREE_OPERAND (arg1, 1)))))
	  || (truth_value_p (TREE_CODE (arg1))
	      && (truth_value_p (TREE_CODE (arg0))
		  || (TREE_CODE (arg0) == BIT_AND_EXPR
		      && integer_onep (TREE_OPERAND (arg0, 1)))))))
    {
      t = fold (build (code == BIT_AND_EXPR ? TRUTH_AND_EXPR
		       : code == BIT_IOR_EXPR ? TRUTH_OR_EXPR
		       : TRUTH_XOR_EXPR,
		       type, arg0, arg1));

      if (code == EQ_EXPR)
	t = invert_truthvalue (t);

      return t;
    }

  if (TREE_CODE_CLASS (code) == '1')
    {
      if (TREE_CODE (arg0) == COMPOUND_EXPR)
	return build (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
		      fold (build1 (code, type, TREE_OPERAND (arg0, 1))));
      else if (TREE_CODE (arg0) == COND_EXPR)
	{
	  t = fold (build (COND_EXPR, type, TREE_OPERAND (arg0, 0),
			   fold (build1 (code, type, TREE_OPERAND (arg0, 1))),
			   fold (build1 (code, type, TREE_OPERAND (arg0, 2)))));

	  /* If this was a conversion, and all we did was to move into
	     inside the COND_EXPR, bring it back out.  But leave it if
	     it is a conversion from integer to integer and the
	     result precision is no wider than a word since such a
	     conversion is cheap and may be optimized away by combine,
	     while it couldn't if it were outside the COND_EXPR.  Then return
	     so we don't get into an infinite recursion loop taking the
	     conversion out and then back in.  */

	  if ((code == NOP_EXPR || code == CONVERT_EXPR
	       || code == NON_LVALUE_EXPR)
	      && TREE_CODE (t) == COND_EXPR
	      && TREE_CODE (TREE_OPERAND (t, 1)) == code
	      && TREE_CODE (TREE_OPERAND (t, 2)) == code
	      && (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 1), 0))
		  == TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 2), 0)))
	      && ! (INTEGRAL_TYPE_P (TREE_TYPE (t))
		    && (INTEGRAL_TYPE_P
			(TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 1), 0))))
		    && TYPE_PRECISION (TREE_TYPE (t)) <= BITS_PER_WORD))
	    t = build1 (code, type,
			build (COND_EXPR,
			       TREE_TYPE (TREE_OPERAND
					  (TREE_OPERAND (t, 1), 0)),
			       TREE_OPERAND (t, 0),
			       TREE_OPERAND (TREE_OPERAND (t, 1), 0),
			       TREE_OPERAND (TREE_OPERAND (t, 2), 0)));
	  return t;
	}
      else if (TREE_CODE_CLASS (TREE_CODE (arg0)) == '<')
	return fold (build (COND_EXPR, type, arg0,
			    fold (build1 (code, type, integer_one_node)),
			    fold (build1 (code, type, integer_zero_node))));
   }
  else if (TREE_CODE_CLASS (code) == '2'
	   || TREE_CODE_CLASS (code) == '<')
    {
      if (TREE_CODE (arg1) == COMPOUND_EXPR)
	return build (COMPOUND_EXPR, type, TREE_OPERAND (arg1, 0),
		      fold (build (code, type,
				   arg0, TREE_OPERAND (arg1, 1))));
      else if ((TREE_CODE (arg1) == COND_EXPR
		|| (TREE_CODE_CLASS (TREE_CODE (arg1)) == '<'
		    && TREE_CODE_CLASS (code) != '<'))
	       && (TREE_CODE (arg0) != COND_EXPR
		   || count_cond (arg0, 25) + count_cond (arg1, 25) <= 25)
	       && (! TREE_SIDE_EFFECTS (arg0)
		   || ((*lang_hooks.decls.global_bindings_p) () == 0
		       && ! contains_placeholder_p (arg0))))
	return
	  fold_binary_op_with_conditional_arg (code, type, arg1, arg0,
					       /*cond_first_p=*/0);
      else if (TREE_CODE (arg0) == COMPOUND_EXPR)
	return build (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
		      fold (build (code, type, TREE_OPERAND (arg0, 1), arg1)));
      else if ((TREE_CODE (arg0) == COND_EXPR
		|| (TREE_CODE_CLASS (TREE_CODE (arg0)) == '<'
		    && TREE_CODE_CLASS (code) != '<'))
	       && (TREE_CODE (arg1) != COND_EXPR
		   || count_cond (arg0, 25) + count_cond (arg1, 25) <= 25)
	       && (! TREE_SIDE_EFFECTS (arg1)
		   || ((*lang_hooks.decls.global_bindings_p) () == 0
		       && ! contains_placeholder_p (arg1))))
	return
	  fold_binary_op_with_conditional_arg (code, type, arg0, arg1,
					       /*cond_first_p=*/1);
    }
  else if (TREE_CODE_CLASS (code) == '<'
	   && TREE_CODE (arg0) == COMPOUND_EXPR)
    return build (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
		  fold (build (code, type, TREE_OPERAND (arg0, 1), arg1)));
  else if (TREE_CODE_CLASS (code) == '<'
	   && TREE_CODE (arg1) == COMPOUND_EXPR)
    return build (COMPOUND_EXPR, type, TREE_OPERAND (arg1, 0),
		  fold (build (code, type, arg0, TREE_OPERAND (arg1, 1))));

  switch (code)
    {
    case INTEGER_CST:
    case REAL_CST:
    case VECTOR_CST:
    case STRING_CST:
    case COMPLEX_CST:
    case CONSTRUCTOR:
      return t;

    case CONST_DECL:
      return fold (DECL_INITIAL (t));

    case NOP_EXPR:
    case FLOAT_EXPR:
    case CONVERT_EXPR:
    case FIX_TRUNC_EXPR:
      /* Other kinds of FIX are not handled properly by fold_convert.  */

      if (TREE_TYPE (TREE_OPERAND (t, 0)) == TREE_TYPE (t))
	return TREE_OPERAND (t, 0);

      /* Handle cases of two conversions in a row.  */
      if (TREE_CODE (TREE_OPERAND (t, 0)) == NOP_EXPR
	  || TREE_CODE (TREE_OPERAND (t, 0)) == CONVERT_EXPR)
	{
	  tree inside_type = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 0), 0));
	  tree inter_type = TREE_TYPE (TREE_OPERAND (t, 0));
	  tree final_type = TREE_TYPE (t);
	  int inside_int = INTEGRAL_TYPE_P (inside_type);
	  int inside_ptr = POINTER_TYPE_P (inside_type);
	  int inside_float = FLOAT_TYPE_P (inside_type);
	  unsigned int inside_prec = TYPE_PRECISION (inside_type);
	  int inside_unsignedp = TREE_UNSIGNED (inside_type);
	  int inter_int = INTEGRAL_TYPE_P (inter_type);
	  int inter_ptr = POINTER_TYPE_P (inter_type);
	  int inter_float = FLOAT_TYPE_P (inter_type);
	  unsigned int inter_prec = TYPE_PRECISION (inter_type);
	  int inter_unsignedp = TREE_UNSIGNED (inter_type);
	  int final_int = INTEGRAL_TYPE_P (final_type);
	  int final_ptr = POINTER_TYPE_P (final_type);
	  int final_float = FLOAT_TYPE_P (final_type);
	  unsigned int final_prec = TYPE_PRECISION (final_type);
	  int final_unsignedp = TREE_UNSIGNED (final_type);

	  /* In addition to the cases of two conversions in a row
	     handled below, if we are converting something to its own
	     type via an object of identical or wider precision, neither
	     conversion is needed.  */
	  if (TYPE_MAIN_VARIANT (inside_type) == TYPE_MAIN_VARIANT (final_type)
	      && ((inter_int && final_int) || (inter_float && final_float))
	      && inter_prec >= final_prec)
	    return convert (final_type, TREE_OPERAND (TREE_OPERAND (t, 0), 0));

	  /* Likewise, if the intermediate and final types are either both
	     float or both integer, we don't need the middle conversion if
	     it is wider than the final type and doesn't change the signedness
	     (for integers).  Avoid this if the final type is a pointer
	     since then we sometimes need the inner conversion.  Likewise if
	     the outer has a precision not equal to the size of its mode.  */
	  if ((((inter_int || inter_ptr) && (inside_int || inside_ptr))
	       || (inter_float && inside_float))
	      && inter_prec >= inside_prec
	      && (inter_float || inter_unsignedp == inside_unsignedp)
	      && ! (final_prec != GET_MODE_BITSIZE (TYPE_MODE (final_type))
		    && TYPE_MODE (final_type) == TYPE_MODE (inter_type))
	      && ! final_ptr)
	    return convert (final_type, TREE_OPERAND (TREE_OPERAND (t, 0), 0));

	  /* If we have a sign-extension of a zero-extended value, we can
	     replace that by a single zero-extension.  */
	  if (inside_int && inter_int && final_int
	      && inside_prec < inter_prec && inter_prec < final_prec
	      && inside_unsignedp && !inter_unsignedp)
	    return convert (final_type, TREE_OPERAND (TREE_OPERAND (t, 0), 0));

	  /* Two conversions in a row are not needed unless:
	     - some conversion is floating-point (overstrict for now), or
	     - the intermediate type is narrower than both initial and
	       final, or
	     - the intermediate type and innermost type differ in signedness,
	       and the outermost type is wider than the intermediate, or
	     - the initial type is a pointer type and the precisions of the
	       intermediate and final types differ, or
	     - the final type is a pointer type and the precisions of the
	       initial and intermediate types differ.  */
	  if (! inside_float && ! inter_float && ! final_float
	      && (inter_prec > inside_prec || inter_prec > final_prec)
	      && ! (inside_int && inter_int
		    && inter_unsignedp != inside_unsignedp
		    && inter_prec < final_prec)
	      && ((inter_unsignedp && inter_prec > inside_prec)
		  == (final_unsignedp && final_prec > inter_prec))
	      && ! (inside_ptr && inter_prec != final_prec)
	      && ! (final_ptr && inside_prec != inter_prec)
	      && ! (final_prec != GET_MODE_BITSIZE (TYPE_MODE (final_type))
		    && TYPE_MODE (final_type) == TYPE_MODE (inter_type))
	      && ! final_ptr)
	    return convert (final_type, TREE_OPERAND (TREE_OPERAND (t, 0), 0));
	}

      if (TREE_CODE (TREE_OPERAND (t, 0)) == MODIFY_EXPR
	  && TREE_CONSTANT (TREE_OPERAND (TREE_OPERAND (t, 0), 1))
	  /* Detect assigning a bitfield.  */
	  && !(TREE_CODE (TREE_OPERAND (TREE_OPERAND (t, 0), 0)) == COMPONENT_REF
	       && DECL_BIT_FIELD (TREE_OPERAND (TREE_OPERAND (TREE_OPERAND (t, 0), 0), 1))))
	{
	  /* Don't leave an assignment inside a conversion
	     unless assigning a bitfield.  */
	  tree prev = TREE_OPERAND (t, 0);
	  TREE_OPERAND (t, 0) = TREE_OPERAND (prev, 1);
	  /* First do the assignment, then return converted constant.  */
	  t = build (COMPOUND_EXPR, TREE_TYPE (t), prev, fold (t));
	  TREE_USED (t) = 1;
	  return t;
	}

      /* Convert (T)(x & c) into (T)x & (T)c, if c is an integer
	 constants (if x has signed type, the sign bit cannot be set
	 in c).  This folds extension into the BIT_AND_EXPR.  */
      if (INTEGRAL_TYPE_P (TREE_TYPE (t))
	  && TREE_CODE (TREE_TYPE (t)) != BOOLEAN_TYPE
	  && TREE_CODE (TREE_OPERAND (t, 0)) == BIT_AND_EXPR
	  && TREE_CODE (TREE_OPERAND (TREE_OPERAND (t, 0), 1)) == INTEGER_CST)
	{
	  tree and = TREE_OPERAND (t, 0);
	  tree and0 = TREE_OPERAND (and, 0), and1 = TREE_OPERAND (and, 1);
	  int change = 0;

	  if (TREE_UNSIGNED (TREE_TYPE (and))
	      || (TYPE_PRECISION (TREE_TYPE (t))
		  <= TYPE_PRECISION (TREE_TYPE (and))))
	    change = 1;
	  else if (TYPE_PRECISION (TREE_TYPE (and1))
		   <= HOST_BITS_PER_WIDE_INT
		   && host_integerp (and1, 1))
	    {
	      unsigned HOST_WIDE_INT cst;

	      cst = tree_low_cst (and1, 1);
	      cst &= (HOST_WIDE_INT) -1
		     << (TYPE_PRECISION (TREE_TYPE (and1)) - 1);
	      change = (cst == 0);
#ifdef LOAD_EXTEND_OP
	      if (change
		  && (LOAD_EXTEND_OP (TYPE_MODE (TREE_TYPE (and0)))
		      == ZERO_EXTEND))
		{
		  tree uns = (*lang_hooks.types.unsigned_type) (TREE_TYPE (and0));
		  and0 = convert (uns, and0);
	  	  and1 = convert (uns, and1);
		}
#endif
	    }
	  if (change)
	    return fold (build (BIT_AND_EXPR, TREE_TYPE (t),
				convert (TREE_TYPE (t), and0),
				convert (TREE_TYPE (t), and1)));
	}

      if (!wins)
	{
	  TREE_CONSTANT (t) = TREE_CONSTANT (arg0);
	  return t;
	}
      return fold_convert (t, arg0);

    case VIEW_CONVERT_EXPR:
      if (TREE_CODE (TREE_OPERAND (t, 0)) == VIEW_CONVERT_EXPR)
	return build1 (VIEW_CONVERT_EXPR, type,
		       TREE_OPERAND (TREE_OPERAND (t, 0), 0));
      return t;

    case COMPONENT_REF:
      if (TREE_CODE (arg0) == CONSTRUCTOR)
	{
	  tree m = purpose_member (arg1, CONSTRUCTOR_ELTS (arg0));
	  if (m)
	    t = TREE_VALUE (m);
	}
      return t;

    case RANGE_EXPR:
      TREE_CONSTANT (t) = wins;
      return t;

    case NEGATE_EXPR:
      if (wins)
	{
	  if (TREE_CODE (arg0) == INTEGER_CST)
	    {
	      unsigned HOST_WIDE_INT low;
	      HOST_WIDE_INT high;
	      int overflow = neg_double (TREE_INT_CST_LOW (arg0),
					 TREE_INT_CST_HIGH (arg0),
					 &low, &high);
	      t = build_int_2 (low, high);
	      TREE_TYPE (t) = type;
	      TREE_OVERFLOW (t)
		= (TREE_OVERFLOW (arg0)
		   | force_fit_type (t, overflow && !TREE_UNSIGNED (type)));
	      TREE_CONSTANT_OVERFLOW (t)
		= TREE_OVERFLOW (t) | TREE_CONSTANT_OVERFLOW (arg0);
	    }
	  else if (TREE_CODE (arg0) == REAL_CST)
	    t = build_real (type, REAL_VALUE_NEGATE (TREE_REAL_CST (arg0)));
	}
      else if (TREE_CODE (arg0) == NEGATE_EXPR)
	return TREE_OPERAND (arg0, 0);

      /* Convert - (a - b) to (b - a) for non-floating-point.  */
      else if (TREE_CODE (arg0) == MINUS_EXPR
	       && (! FLOAT_TYPE_P (type) || flag_unsafe_math_optimizations))
	return build (MINUS_EXPR, type, TREE_OPERAND (arg0, 1),
		      TREE_OPERAND (arg0, 0));

      return t;

    case ABS_EXPR:
      if (wins)
	{
	  if (TREE_CODE (arg0) == INTEGER_CST)
	    {
	      /* If the value is unsigned, then the absolute value is
		 the same as the ordinary value.  */
	      if (TREE_UNSIGNED (type))
		return arg0;
	      /* Similarly, if the value is non-negative.  */
	      else if (INT_CST_LT (integer_minus_one_node, arg0))
		return arg0;
	      /* If the value is negative, then the absolute value is
		 its negation.  */
	      else
		{
		  unsigned HOST_WIDE_INT low;
		  HOST_WIDE_INT high;
		  int overflow = neg_double (TREE_INT_CST_LOW (arg0),
					     TREE_INT_CST_HIGH (arg0),
					     &low, &high);
		  t = build_int_2 (low, high);
		  TREE_TYPE (t) = type;
		  TREE_OVERFLOW (t)
		    = (TREE_OVERFLOW (arg0)
		       | force_fit_type (t, overflow));
		  TREE_CONSTANT_OVERFLOW (t)
		    = TREE_OVERFLOW (t) | TREE_CONSTANT_OVERFLOW (arg0);
		}
	    }
	  else if (TREE_CODE (arg0) == REAL_CST)
	    {
	      if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg0)))
		t = build_real (type,
				REAL_VALUE_NEGATE (TREE_REAL_CST (arg0)));
	    }
	}
      else if (TREE_CODE (arg0) == ABS_EXPR || TREE_CODE (arg0) == NEGATE_EXPR)
	return build1 (ABS_EXPR, type, TREE_OPERAND (arg0, 0));
      return t;

    case CONJ_EXPR:
      if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
	return convert (type, arg0);
      else if (TREE_CODE (arg0) == COMPLEX_EXPR)
	return build (COMPLEX_EXPR, type,
		      TREE_OPERAND (arg0, 0),
		      negate_expr (TREE_OPERAND (arg0, 1)));
      else if (TREE_CODE (arg0) == COMPLEX_CST)
	return build_complex (type, TREE_REALPART (arg0),
			      negate_expr (TREE_IMAGPART (arg0)));
      else if (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
	return fold (build (TREE_CODE (arg0), type,
			    fold (build1 (CONJ_EXPR, type,
					  TREE_OPERAND (arg0, 0))),
			    fold (build1 (CONJ_EXPR,
					  type, TREE_OPERAND (arg0, 1)))));
      else if (TREE_CODE (arg0) == CONJ_EXPR)
	return TREE_OPERAND (arg0, 0);
      return t;

    case BIT_NOT_EXPR:
      if (wins)
	{
	  t = build_int_2 (~ TREE_INT_CST_LOW (arg0),
			   ~ TREE_INT_CST_HIGH (arg0));
	  TREE_TYPE (t) = type;
	  force_fit_type (t, 0);
	  TREE_OVERFLOW (t) = TREE_OVERFLOW (arg0);
	  TREE_CONSTANT_OVERFLOW (t) = TREE_CONSTANT_OVERFLOW (arg0);
	}
      else if (TREE_CODE (arg0) == BIT_NOT_EXPR)
	return TREE_OPERAND (arg0, 0);
      return t;

    case PLUS_EXPR:
      /* A + (-B) -> A - B */
      if (TREE_CODE (arg1) == NEGATE_EXPR)
	return fold (build (MINUS_EXPR, type, arg0, TREE_OPERAND (arg1, 0)));
      /* (-A) + B -> B - A */
      if (TREE_CODE (arg0) == NEGATE_EXPR)
	return fold (build (MINUS_EXPR, type, arg1, TREE_OPERAND (arg0, 0)));
      else if (! FLOAT_TYPE_P (type))
	{
	  if (integer_zerop (arg1))
	    return non_lvalue (convert (type, arg0));

	  /* If we are adding two BIT_AND_EXPR's, both of which are and'ing
	     with a constant, and the two constants have no bits in common,
	     we should treat this as a BIT_IOR_EXPR since this may produce more
	     simplifications.  */
	  if (TREE_CODE (arg0) == BIT_AND_EXPR
	      && TREE_CODE (arg1) == BIT_AND_EXPR
	      && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
	      && TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
	      && integer_zerop (const_binop (BIT_AND_EXPR,
					     TREE_OPERAND (arg0, 1),
					     TREE_OPERAND (arg1, 1), 0)))
	    {
	      code = BIT_IOR_EXPR;
	      goto bit_ior;
	    }

	  /* Reassociate (plus (plus (mult) (foo)) (mult)) as
	     (plus (plus (mult) (mult)) (foo)) so that we can
	     take advantage of the factoring cases below.  */
	  if ((TREE_CODE (arg0) == PLUS_EXPR
	       && TREE_CODE (arg1) == MULT_EXPR)
	      || (TREE_CODE (arg1) == PLUS_EXPR
		  && TREE_CODE (arg0) == MULT_EXPR))
	    {
	      tree parg0, parg1, parg, marg;

	      if (TREE_CODE (arg0) == PLUS_EXPR)
		parg = arg0, marg = arg1;
	      else
		parg = arg1, marg = arg0;
	      parg0 = TREE_OPERAND (parg, 0);
	      parg1 = TREE_OPERAND (parg, 1);
	      STRIP_NOPS (parg0);
	      STRIP_NOPS (parg1);

	      if (TREE_CODE (parg0) == MULT_EXPR
		  && TREE_CODE (parg1) != MULT_EXPR)
		return fold (build (PLUS_EXPR, type,
				    fold (build (PLUS_EXPR, type, parg0, marg)),
				    parg1));
	      if (TREE_CODE (parg0) != MULT_EXPR
		  && TREE_CODE (parg1) == MULT_EXPR)
		return fold (build (PLUS_EXPR, type,
				    fold (build (PLUS_EXPR, type, parg1, marg)),
				    parg0));
	    }

	  if (TREE_CODE (arg0) == MULT_EXPR && TREE_CODE (arg1) == MULT_EXPR)
	    {
	      tree arg00, arg01, arg10, arg11;
	      tree alt0 = NULL_TREE, alt1 = NULL_TREE, same;

	      /* (A * C) + (B * C) -> (A+B) * C.
		 We are most concerned about the case where C is a constant,
		 but other combinations show up during loop reduction.  Since
		 it is not difficult, try all four possibilities.  */

	      arg00 = TREE_OPERAND (arg0, 0);
	      arg01 = TREE_OPERAND (arg0, 1);
	      arg10 = TREE_OPERAND (arg1, 0);
	      arg11 = TREE_OPERAND (arg1, 1);
	      same = NULL_TREE;

	      if (operand_equal_p (arg01, arg11, 0))
		same = arg01, alt0 = arg00, alt1 = arg10;
	      else if (operand_equal_p (arg00, arg10, 0))
		same = arg00, alt0 = arg01, alt1 = arg11;
	      else if (operand_equal_p (arg00, arg11, 0))
		same = arg00, alt0 = arg01, alt1 = arg10;
	      else if (operand_equal_p (arg01, arg10, 0))
		same = arg01, alt0 = arg00, alt1 = arg11;

	      /* No identical multiplicands; see if we can find a common
		 power-of-two factor in non-power-of-two multiplies.  This
		 can help in multi-dimensional array access.  */
	      else if (TREE_CODE (arg01) == INTEGER_CST
		       && TREE_CODE (arg11) == INTEGER_CST
		       && TREE_INT_CST_HIGH (arg01) == 0
		       && TREE_INT_CST_HIGH (arg11) == 0)
		{
		  HOST_WIDE_INT int01, int11, tmp;
		  int01 = TREE_INT_CST_LOW (arg01);
		  int11 = TREE_INT_CST_LOW (arg11);

		  /* Move min of absolute values to int11.  */
		  if ((int01 >= 0 ? int01 : -int01)
		      < (int11 >= 0 ? int11 : -int11))
		    {
		      tmp = int01, int01 = int11, int11 = tmp;
		      alt0 = arg00, arg00 = arg10, arg10 = alt0;
		      alt0 = arg01, arg01 = arg11, arg11 = alt0;
		    }

		  if (exact_log2 (int11) > 0 && int01 % int11 == 0)
		    {
		      alt0 = fold (build (MULT_EXPR, type, arg00,
					  build_int_2 (int01 / int11, 0)));
		      alt1 = arg10;
		      same = arg11;
		    }
		}

	      if (same)
		return fold (build (MULT_EXPR, type,
				    fold (build (PLUS_EXPR, type, alt0, alt1)),
				    same));
	    }
	}

      /* See if ARG1 is zero and X + ARG1 reduces to X.  */
      else if (fold_real_zero_addition_p (TREE_TYPE (arg0), arg1, 0))
	return non_lvalue (convert (type, arg0));

      /* Likewise if the operands are reversed.  */
      else if (fold_real_zero_addition_p (TREE_TYPE (arg1), arg0, 0))
	return non_lvalue (convert (type, arg1));

     bit_rotate:
      /* (A << C1) + (A >> C2) if A is unsigned and C1+C2 is the size of A
	 is a rotate of A by C1 bits.  */
      /* (A << B) + (A >> (Z - B)) if A is unsigned and Z is the size of A
	 is a rotate of A by B bits.  */
      {
	enum tree_code code0, code1;
	code0 = TREE_CODE (arg0);
	code1 = TREE_CODE (arg1);
	if (((code0 == RSHIFT_EXPR && code1 == LSHIFT_EXPR)
	     || (code1 == RSHIFT_EXPR && code0 == LSHIFT_EXPR))
	    && operand_equal_p (TREE_OPERAND (arg0, 0),
			        TREE_OPERAND (arg1, 0), 0)
	    && TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0, 0))))
	  {
	    tree tree01, tree11;
	    enum tree_code code01, code11;

	    tree01 = TREE_OPERAND (arg0, 1);
	    tree11 = TREE_OPERAND (arg1, 1);
	    STRIP_NOPS (tree01);
	    STRIP_NOPS (tree11);
	    code01 = TREE_CODE (tree01);
	    code11 = TREE_CODE (tree11);
	    if (code01 == INTEGER_CST
		&& code11 == INTEGER_CST
		&& TREE_INT_CST_HIGH (tree01) == 0
		&& TREE_INT_CST_HIGH (tree11) == 0
		&& ((TREE_INT_CST_LOW (tree01) + TREE_INT_CST_LOW (tree11))
		    == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0, 0)))))
	      return build (LROTATE_EXPR, type, TREE_OPERAND (arg0, 0),
			    code0 == LSHIFT_EXPR ? tree01 : tree11);
	    else if (code11 == MINUS_EXPR)
	      {
		tree tree110, tree111;
		tree110 = TREE_OPERAND (tree11, 0);
		tree111 = TREE_OPERAND (tree11, 1);
		STRIP_NOPS (tree110);
		STRIP_NOPS (tree111);
		if (TREE_CODE (tree110) == INTEGER_CST
		    && 0 == compare_tree_int (tree110,
					      TYPE_PRECISION
					      (TREE_TYPE (TREE_OPERAND
							  (arg0, 0))))
		    && operand_equal_p (tree01, tree111, 0))
		  return build ((code0 == LSHIFT_EXPR
				 ? LROTATE_EXPR
				 : RROTATE_EXPR),
				type, TREE_OPERAND (arg0, 0), tree01);
	      }
	    else if (code01 == MINUS_EXPR)
	      {
		tree tree010, tree011;
		tree010 = TREE_OPERAND (tree01, 0);
		tree011 = TREE_OPERAND (tree01, 1);
		STRIP_NOPS (tree010);
		STRIP_NOPS (tree011);
		if (TREE_CODE (tree010) == INTEGER_CST
		    && 0 == compare_tree_int (tree010,
					      TYPE_PRECISION
					      (TREE_TYPE (TREE_OPERAND
							  (arg0, 0))))
		    && operand_equal_p (tree11, tree011, 0))
		  return build ((code0 != LSHIFT_EXPR
				 ? LROTATE_EXPR
				 : RROTATE_EXPR),
				type, TREE_OPERAND (arg0, 0), tree11);
	      }
	  }
      }

    associate:
      /* In most languages, can't associate operations on floats through
	 parentheses.  Rather than remember where the parentheses were, we
	 don't associate floats at all.  It shouldn't matter much.  However,
	 associating multiplications is only very slightly inaccurate, so do
	 that if -funsafe-math-optimizations is specified.  */

      if (! wins
	  && (! FLOAT_TYPE_P (type)
	      || (flag_unsafe_math_optimizations && code == MULT_EXPR)))
	{
	  tree var0, con0, lit0, minus_lit0;
	  tree var1, con1, lit1, minus_lit1;

	  /* Split both trees into variables, constants, and literals.  Then
	     associate each group together, the constants with literals,
	     then the result with variables.  This increases the chances of
	     literals being recombined later and of generating relocatable
	     expressions for the sum of a constant and literal.  */
	  var0 = split_tree (arg0, code, &con0, &lit0, &minus_lit0, 0);
	  var1 = split_tree (arg1, code, &con1, &lit1, &minus_lit1,
			     code == MINUS_EXPR);

	  /* Only do something if we found more than two objects.  Otherwise,
	     nothing has changed and we risk infinite recursion.  */
	  if (2 < ((var0 != 0) + (var1 != 0)
		   + (con0 != 0) + (con1 != 0)
		   + (lit0 != 0) + (lit1 != 0)
		   + (minus_lit0 != 0) + (minus_lit1 != 0)))
	    {
	      /* Recombine MINUS_EXPR operands by using PLUS_EXPR.  */
	      if (code == MINUS_EXPR)
		code = PLUS_EXPR;

	      var0 = associate_trees (var0, var1, code, type);
	      con0 = associate_trees (con0, con1, code, type);
	      lit0 = associate_trees (lit0, lit1, code, type);
	      minus_lit0 = associate_trees (minus_lit0, minus_lit1, code, type);

	      /* Preserve the MINUS_EXPR if the negative part of the literal is
		 greater than the positive part.  Otherwise, the multiplicative
		 folding code (i.e extract_muldiv) may be fooled in case
		 unsigned constants are substracted, like in the following
		 example: ((X*2 + 4) - 8U)/2.  */
	      if (minus_lit0 && lit0)
		{
		  if (tree_int_cst_lt (lit0, minus_lit0))
		    {
		      minus_lit0 = associate_trees (minus_lit0, lit0,
						    MINUS_EXPR, type);
		      lit0 = 0;
		    }
		  else
		    {
		      lit0 = associate_trees (lit0, minus_lit0,
					      MINUS_EXPR, type);
		      minus_lit0 = 0;
		    }
		}
	      if (minus_lit0)
		{
		  if (con0 == 0)
		    return convert (type, associate_trees (var0, minus_lit0,
							   MINUS_EXPR, type));
		  else
		    {
		      con0 = associate_trees (con0, minus_lit0,
					      MINUS_EXPR, type);
		      return convert (type, associate_trees (var0, con0,
							     PLUS_EXPR, type));
		    }
		}

	      con0 = associate_trees (con0, lit0, code, type);
	      return convert (type, associate_trees (var0, con0, code, type));
	    }
	}

    binary:
      if (wins)
	t1 = const_binop (code, arg0, arg1, 0);
      if (t1 != NULL_TREE)
	{
	  /* The return value should always have
	     the same type as the original expression.  */
	  if (TREE_TYPE (t1) != TREE_TYPE (t))
	    t1 = convert (TREE_TYPE (t), t1);

	  return t1;
	}
      return t;

    case MINUS_EXPR:
      /* A - (-B) -> A + B */
      if (TREE_CODE (arg1) == NEGATE_EXPR)
	return fold (build (PLUS_EXPR, type, arg0, TREE_OPERAND (arg1, 0)));
      /* (-A) - CST -> (-CST) - A   for floating point (what about ints ?)  */
      if (TREE_CODE (arg0) == NEGATE_EXPR && TREE_CODE (arg1) == REAL_CST)
	return
	  fold (build (MINUS_EXPR, type,
		       build_real (TREE_TYPE (arg1),
				   REAL_VALUE_NEGATE (TREE_REAL_CST (arg1))),
		       TREE_OPERAND (arg0, 0)));

      if (! FLOAT_TYPE_P (type))
	{
	  if (! wins && integer_zerop (arg0))
	    return negate_expr (convert (type, arg1));
	  if (integer_zerop (arg1))
	    return non_lvalue (convert (type, arg0));

	  /* (A * C) - (B * C) -> (A-B) * C.  Since we are most concerned
	     about the case where C is a constant, just try one of the
	     four possibilities.  */

	  if (TREE_CODE (arg0) == MULT_EXPR && TREE_CODE (arg1) == MULT_EXPR
	      && operand_equal_p (TREE_OPERAND (arg0, 1),
				  TREE_OPERAND (arg1, 1), 0))
	    return fold (build (MULT_EXPR, type,
				fold (build (MINUS_EXPR, type,
					     TREE_OPERAND (arg0, 0),
					     TREE_OPERAND (arg1, 0))),
				TREE_OPERAND (arg0, 1)));
	}

      /* See if ARG1 is zero and X - ARG1 reduces to X.  */
      else if (fold_real_zero_addition_p (TREE_TYPE (arg0), arg1, 1))
	return non_lvalue (convert (type, arg0));

      /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0).  So check whether
	 ARG0 is zero and X + ARG0 reduces to X, since that would mean
	 (-ARG1 + ARG0) reduces to -ARG1.  */
      else if (!wins && fold_real_zero_addition_p (TREE_TYPE (arg1), arg0, 0))
	return negate_expr (convert (type, arg1));

      /* Fold &x - &x.  This can happen from &x.foo - &x.
	 This is unsafe for certain floats even in non-IEEE formats.
	 In IEEE, it is unsafe because it does wrong for NaNs.
	 Also note that operand_equal_p is always false if an operand
	 is volatile.  */

      if ((! FLOAT_TYPE_P (type) || flag_unsafe_math_optimizations)
	  && operand_equal_p (arg0, arg1, 0))
	return convert (type, integer_zero_node);

      goto associate;

    case MULT_EXPR:
      /* (-A) * (-B) -> A * B  */
      if (TREE_CODE (arg0) == NEGATE_EXPR && TREE_CODE (arg1) == NEGATE_EXPR)
	return fold (build (MULT_EXPR, type, TREE_OPERAND (arg0, 0),
			    TREE_OPERAND (arg1, 0)));

      if (! FLOAT_TYPE_P (type))
	{
	  if (integer_zerop (arg1))
	    return omit_one_operand (type, arg1, arg0);
	  if (integer_onep (arg1))
	    return non_lvalue (convert (type, arg0));

	  /* (a * (1 << b)) is (a << b)  */
	  if (TREE_CODE (arg1) == LSHIFT_EXPR
	      && integer_onep (TREE_OPERAND (arg1, 0)))
	    return fold (build (LSHIFT_EXPR, type, arg0,
				TREE_OPERAND (arg1, 1)));
	  if (TREE_CODE (arg0) == LSHIFT_EXPR
	      && integer_onep (TREE_OPERAND (arg0, 0)))
	    return fold (build (LSHIFT_EXPR, type, arg1,
				TREE_OPERAND (arg0, 1)));

	  if (TREE_CODE (arg1) == INTEGER_CST
	      && 0 != (tem = extract_muldiv (TREE_OPERAND (t, 0), arg1,
					     code, NULL_TREE)))
	    return convert (type, tem);

	}
      else
	{
	  /* Maybe fold x * 0 to 0.  The expressions aren't the same
	     when x is NaN, since x * 0 is also NaN.  Nor are they the
	     same in modes with signed zeros, since multiplying a
	     negative value by 0 gives -0, not +0.  */
	  if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0)))
	      && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg0)))
	      && real_zerop (arg1))
	    return omit_one_operand (type, arg1, arg0);
	  /* In IEEE floating point, x*1 is not equivalent to x for snans.
	     However, ANSI says we can drop signals,
	     so we can do this anyway.  */
	  if (real_onep (arg1))
	    return non_lvalue (convert (type, arg0));

	  /* Transform x * -1.0 into -x.  This should be safe for NaNs,
	     signed zeros and signed infinities, but is currently
	     restricted to "unsafe math optimizations" just in case.  */
	  if (flag_unsafe_math_optimizations
	      && real_minus_onep (arg1))
	    return fold (build1 (NEGATE_EXPR, type, arg0));

	  /* x*2 is x+x */
	  if (! wins && real_twop (arg1)
	      && (*lang_hooks.decls.global_bindings_p) () == 0
	      && ! contains_placeholder_p (arg0))
	    {
	      tree arg = save_expr (arg0);
	      return build (PLUS_EXPR, type, arg, arg);
	    }
	}
      goto associate;

    case BIT_IOR_EXPR:
    bit_ior:
      if (integer_all_onesp (arg1))
	return omit_one_operand (type, arg1, arg0);
      if (integer_zerop (arg1))
	return non_lvalue (convert (type, arg0));
      t1 = distribute_bit_expr (code, type, arg0, arg1);
      if (t1 != NULL_TREE)
	return t1;

      /* Convert (or (not arg0) (not arg1)) to (not (and (arg0) (arg1))).

	 This results in more efficient code for machines without a NAND
	 instruction.  Combine will canonicalize to the first form
	 which will allow use of NAND instructions provided by the
	 backend if they exist.  */
      if (TREE_CODE (arg0) == BIT_NOT_EXPR
	  && TREE_CODE (arg1) == BIT_NOT_EXPR)
	{
	  return fold (build1 (BIT_NOT_EXPR, type,
			       build (BIT_AND_EXPR, type,
				      TREE_OPERAND (arg0, 0),
				      TREE_OPERAND (arg1, 0))));
	}

      /* See if this can be simplified into a rotate first.  If that
	 is unsuccessful continue in the association code.  */
      goto bit_rotate;

    case BIT_XOR_EXPR:
      if (integer_zerop (arg1))
	return non_lvalue (convert (type, arg0));
      if (integer_all_onesp (arg1))
	return fold (build1 (BIT_NOT_EXPR, type, arg0));

      /* If we are XORing two BIT_AND_EXPR's, both of which are and'ing
         with a constant, and the two constants have no bits in common,
	 we should treat this as a BIT_IOR_EXPR since this may produce more
	 simplifications.  */
      if (TREE_CODE (arg0) == BIT_AND_EXPR
	  && TREE_CODE (arg1) == BIT_AND_EXPR
	  && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
	  && TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
	  && integer_zerop (const_binop (BIT_AND_EXPR,
					 TREE_OPERAND (arg0, 1),
					 TREE_OPERAND (arg1, 1), 0)))
	{
	  code = BIT_IOR_EXPR;
	  goto bit_ior;
	}

      /* See if this can be simplified into a rotate first.  If that
	 is unsuccessful continue in the association code.  */
      goto bit_rotate;

    case BIT_AND_EXPR:
    bit_and:
      if (integer_all_onesp (arg1))
	return non_lvalue (convert (type, arg0));
      if (integer_zerop (arg1))
	return omit_one_operand (type, arg1, arg0);
      t1 = distribute_bit_expr (code, type, arg0, arg1);
      if (t1 != NULL_TREE)
	return t1;
      /* Simplify ((int)c & 0x377) into (int)c, if c is unsigned char.  */
      if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) == NOP_EXPR
	  && TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0, 0))))
	{
	  unsigned int prec
	    = TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0, 0)));

	  if (prec < BITS_PER_WORD && prec < HOST_BITS_PER_WIDE_INT
	      && (~TREE_INT_CST_LOW (arg1)
		  & (((HOST_WIDE_INT) 1 << prec) - 1)) == 0)
	    return build1 (NOP_EXPR, type, TREE_OPERAND (arg0, 0));
	}

      /* Convert (and (not arg0) (not arg1)) to (not (or (arg0) (arg1))).

	 This results in more efficient code for machines without a NOR
	 instruction.  Combine will canonicalize to the first form
	 which will allow use of NOR instructions provided by the
	 backend if they exist.  */
      if (TREE_CODE (arg0) == BIT_NOT_EXPR
	  && TREE_CODE (arg1) == BIT_NOT_EXPR)
	{
	  return fold (build1 (BIT_NOT_EXPR, type,
			       build (BIT_IOR_EXPR, type,
				      TREE_OPERAND (arg0, 0),
				      TREE_OPERAND (arg1, 0))));
	}

      goto associate;

    case BIT_ANDTC_EXPR:
      if (integer_all_onesp (arg0))
	return non_lvalue (convert (type, arg1));
      if (integer_zerop (arg0))
	return omit_one_operand (type, arg0, arg1);
      if (TREE_CODE (arg1) == INTEGER_CST)
	{
	  arg1 = fold (build1 (BIT_NOT_EXPR, type, arg1));
	  code = BIT_AND_EXPR;
	  goto bit_and;
	}
      goto binary;

    case RDIV_EXPR:
      /* Don't touch a floating-point divide by zero unless the mode
	 of the constant can represent infinity.  */
      if (TREE_CODE (arg1) == REAL_CST
	  && !MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (arg1)))
	  && real_zerop (arg1))
	return t;

      /* (-A) / (-B) -> A / B  */
      if (TREE_CODE (arg0) == NEGATE_EXPR && TREE_CODE (arg1) == NEGATE_EXPR)
	return fold (build (RDIV_EXPR, type, TREE_OPERAND (arg0, 0),
			    TREE_OPERAND (arg1, 0)));

      /* In IEEE floating point, x/1 is not equivalent to x for snans.
	 However, ANSI says we can drop signals, so we can do this anyway.  */
      if (real_onep (arg1))
	return non_lvalue (convert (type, arg0));

      /* If ARG1 is a constant, we can convert this to a multiply by the
	 reciprocal.  This does not have the same rounding properties,
	 so only do this if -funsafe-math-optimizations.  We can actually
	 always safely do it if ARG1 is a power of two, but it's hard to
	 tell if it is or not in a portable manner.  */
      if (TREE_CODE (arg1) == REAL_CST)
	{
	  if (flag_unsafe_math_optimizations
	      && 0 != (tem = const_binop (code, build_real (type, dconst1),
					  arg1, 0)))
	    return fold (build (MULT_EXPR, type, arg0, tem));
	  /* Find the reciprocal if optimizing and the result is exact.  */
	  else if (optimize)
	    {
	      REAL_VALUE_TYPE r;
	      r = TREE_REAL_CST (arg1);
	      if (exact_real_inverse (TYPE_MODE(TREE_TYPE(arg0)), &r))
		{
		  tem = build_real (type, r);
		  return fold (build (MULT_EXPR, type, arg0, tem));
		}
	    }
	}
      /* Convert A/B/C to A/(B*C).  */
      if (flag_unsafe_math_optimizations
	  && TREE_CODE (arg0) == RDIV_EXPR)
	{
	  return fold (build (RDIV_EXPR, type, TREE_OPERAND (arg0, 0),
			      build (MULT_EXPR, type, TREE_OPERAND (arg0, 1),
				     arg1)));
	}
      /* Convert A/(B/C) to (A/B)*C.  */
      if (flag_unsafe_math_optimizations
	  && TREE_CODE (arg1) == RDIV_EXPR)
	{
	  return fold (build (MULT_EXPR, type,
			      build (RDIV_EXPR, type, arg0,
			     	     TREE_OPERAND (arg1, 0)),
	 		      TREE_OPERAND (arg1, 1)));
	}
      goto binary;

    case TRUNC_DIV_EXPR:
    case ROUND_DIV_EXPR:
    case FLOOR_DIV_EXPR:
    case CEIL_DIV_EXPR:
    case EXACT_DIV_EXPR:
      if (integer_onep (arg1))
	return non_lvalue (convert (type, arg0));
      if (integer_zerop (arg1))
	return t;

      /* If arg0 is a multiple of arg1, then rewrite to the fastest div
	 operation, EXACT_DIV_EXPR.

	 Note that only CEIL_DIV_EXPR and FLOOR_DIV_EXPR are rewritten now.
	 At one time others generated faster code, it's not clear if they do
	 after the last round to changes to the DIV code in expmed.c.  */
      if ((code == CEIL_DIV_EXPR || code == FLOOR_DIV_EXPR)
	  && multiple_of_p (type, arg0, arg1))
	return fold (build (EXACT_DIV_EXPR, type, arg0, arg1));

      if (TREE_CODE (arg1) == INTEGER_CST
	  && 0 != (tem = extract_muldiv (TREE_OPERAND (t, 0), arg1,
					 code, NULL_TREE)))
	return convert (type, tem);

      goto binary;

    case CEIL_MOD_EXPR:
    case FLOOR_MOD_EXPR:
    case ROUND_MOD_EXPR:
    case TRUNC_MOD_EXPR:
      if (integer_onep (arg1))
	return omit_one_operand (type, integer_zero_node, arg0);
      if (integer_zerop (arg1))
	return t;

      if (TREE_CODE (arg1) == INTEGER_CST
	  && 0 != (tem = extract_muldiv (TREE_OPERAND (t, 0), arg1,
					 code, NULL_TREE)))
	return convert (type, tem);

      goto binary;

    case LSHIFT_EXPR:
    case RSHIFT_EXPR:
    case LROTATE_EXPR:
    case RROTATE_EXPR:
      if (integer_zerop (arg1))
	return non_lvalue (convert (type, arg0));
      /* Since negative shift count is not well-defined,
	 don't try to compute it in the compiler.  */
      if (TREE_CODE (arg1) == INTEGER_CST && tree_int_cst_sgn (arg1) < 0)
	return t;
      /* Rewrite an LROTATE_EXPR by a constant into an
	 RROTATE_EXPR by a new constant.  */
      if (code == LROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST)
	{
	  TREE_SET_CODE (t, RROTATE_EXPR);
	  code = RROTATE_EXPR;
	  TREE_OPERAND (t, 1) = arg1
	    = const_binop
	      (MINUS_EXPR,
	       convert (TREE_TYPE (arg1),
			build_int_2 (GET_MODE_BITSIZE (TYPE_MODE (type)), 0)),
	       arg1, 0);
	  if (tree_int_cst_sgn (arg1) < 0)
	    return t;
	}

      /* If we have a rotate of a bit operation with the rotate count and
	 the second operand of the bit operation both constant,
	 permute the two operations.  */
      if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
	  && (TREE_CODE (arg0) == BIT_AND_EXPR
	      || TREE_CODE (arg0) == BIT_ANDTC_EXPR
	      || TREE_CODE (arg0) == BIT_IOR_EXPR
	      || TREE_CODE (arg0) == BIT_XOR_EXPR)
	  && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
	return fold (build (TREE_CODE (arg0), type,
			    fold (build (code, type,
					 TREE_OPERAND (arg0, 0), arg1)),
			    fold (build (code, type,
					 TREE_OPERAND (arg0, 1), arg1))));

      /* Two consecutive rotates adding up to the width of the mode can
	 be ignored.  */
      if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
	  && TREE_CODE (arg0) == RROTATE_EXPR
	  && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
	  && TREE_INT_CST_HIGH (arg1) == 0
	  && TREE_INT_CST_HIGH (TREE_OPERAND (arg0, 1)) == 0
	  && ((TREE_INT_CST_LOW (arg1)
	       + TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1)))
	      == (unsigned int) GET_MODE_BITSIZE (TYPE_MODE (type))))
	return TREE_OPERAND (arg0, 0);

      goto binary;

    case MIN_EXPR:
      if (operand_equal_p (arg0, arg1, 0))
	return omit_one_operand (type, arg0, arg1);
      if (INTEGRAL_TYPE_P (type)
	  && operand_equal_p (arg1, TYPE_MIN_VALUE (type), 1))
	return omit_one_operand (type, arg1, arg0);
      goto associate;

    case MAX_EXPR:
      if (operand_equal_p (arg0, arg1, 0))
	return omit_one_operand (type, arg0, arg1);
      if (INTEGRAL_TYPE_P (type)
	  && TYPE_MAX_VALUE (type)
	  && operand_equal_p (arg1, TYPE_MAX_VALUE (type), 1))
	return omit_one_operand (type, arg1, arg0);
      goto associate;

    case TRUTH_NOT_EXPR:
      /* Note that the operand of this must be an int
	 and its values must be 0 or 1.
	 ("true" is a fixed value perhaps depending on the language,
	 but we don't handle values other than 1 correctly yet.)  */
      tem = invert_truthvalue (arg0);
      /* Avoid infinite recursion.  */
      if (TREE_CODE (tem) == TRUTH_NOT_EXPR)
	return t;
      return convert (type, tem);

    case TRUTH_ANDIF_EXPR:
      /* Note that the operands of this must be ints
	 and their values must be 0 or 1.
	 ("true" is a fixed value perhaps depending on the language.)  */
      /* If first arg is constant zero, return it.  */
      if (integer_zerop (arg0))
	return convert (type, arg0);
    case TRUTH_AND_EXPR:
      /* If either arg is constant true, drop it.  */
      if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
	return non_lvalue (convert (type, arg1));
      if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1)
	  /* Preserve sequence points.  */
	  && (code != TRUTH_ANDIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
	return non_lvalue (convert (type, arg0));
      /* If second arg is constant zero, result is zero, but first arg
	 must be evaluated.  */
      if (integer_zerop (arg1))
	return omit_one_operand (type, arg1, arg0);
      /* Likewise for first arg, but note that only the TRUTH_AND_EXPR
	 case will be handled here.  */
      if (integer_zerop (arg0))
	return omit_one_operand (type, arg0, arg1);

    truth_andor:
      /* We only do these simplifications if we are optimizing.  */
      if (!optimize)
	return t;

      /* Check for things like (A || B) && (A || C).  We can convert this
	 to A || (B && C).  Note that either operator can be any of the four
	 truth and/or operations and the transformation will still be
	 valid.   Also note that we only care about order for the
	 ANDIF and ORIF operators.  If B contains side effects, this
	 might change the truth-value of A.  */
      if (TREE_CODE (arg0) == TREE_CODE (arg1)
	  && (TREE_CODE (arg0) == TRUTH_ANDIF_EXPR
	      || TREE_CODE (arg0) == TRUTH_ORIF_EXPR
	      || TREE_CODE (arg0) == TRUTH_AND_EXPR
	      || TREE_CODE (arg0) == TRUTH_OR_EXPR)
	  && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg0, 1)))
	{
	  tree a00 = TREE_OPERAND (arg0, 0);
	  tree a01 = TREE_OPERAND (arg0, 1);
	  tree a10 = TREE_OPERAND (arg1, 0);
	  tree a11 = TREE_OPERAND (arg1, 1);
	  int commutative = ((TREE_CODE (arg0) == TRUTH_OR_EXPR
			      || TREE_CODE (arg0) == TRUTH_AND_EXPR)
			     && (code == TRUTH_AND_EXPR
				 || code == TRUTH_OR_EXPR));

	  if (operand_equal_p (a00, a10, 0))
	    return fold (build (TREE_CODE (arg0), type, a00,
				fold (build (code, type, a01, a11))));
	  else if (commutative && operand_equal_p (a00, a11, 0))
	    return fold (build (TREE_CODE (arg0), type, a00,
				fold (build (code, type, a01, a10))));
	  else if (commutative && operand_equal_p (a01, a10, 0))
	    return fold (build (TREE_CODE (arg0), type, a01,
				fold (build (code, type, a00, a11))));

	  /* This case if tricky because we must either have commutative
	     operators or else A10 must not have side-effects.  */

	  else if ((commutative || ! TREE_SIDE_EFFECTS (a10))
		   && operand_equal_p (a01, a11, 0))
	    return fold (build (TREE_CODE (arg0), type,
				fold (build (code, type, a00, a10)),
				a01));
	}

      /* See if we can build a range comparison.  */
      if (0 != (tem = fold_range_test (t)))
	return tem;

      /* Check for the possibility of merging component references.  If our
	 lhs is another similar operation, try to merge its rhs with our
	 rhs.  Then try to merge our lhs and rhs.  */
      if (TREE_CODE (arg0) == code
	  && 0 != (tem = fold_truthop (code, type,
				       TREE_OPERAND (arg0, 1), arg1)))
	return fold (build (code, type, TREE_OPERAND (arg0, 0), tem));

      if ((tem = fold_truthop (code, type, arg0, arg1)) != 0)
	return tem;

      return t;

    case TRUTH_ORIF_EXPR:
      /* Note that the operands of this must be ints
	 and their values must be 0 or true.
	 ("true" is a fixed value perhaps depending on the language.)  */
      /* If first arg is constant true, return it.  */
      if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
	return convert (type, arg0);
    case TRUTH_OR_EXPR:
      /* If either arg is constant zero, drop it.  */
      if (TREE_CODE (arg0) == INTEGER_CST && integer_zerop (arg0))
	return non_lvalue (convert (type, arg1));
      if (TREE_CODE (arg1) == INTEGER_CST && integer_zerop (arg1)
	  /* Preserve sequence points.  */
	  && (code != TRUTH_ORIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
	return non_lvalue (convert (type, arg0));
      /* If second arg is constant true, result is true, but we must
	 evaluate first arg.  */
      if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1))
	return omit_one_operand (type, arg1, arg0);
      /* Likewise for first arg, but note this only occurs here for
	 TRUTH_OR_EXPR.  */
      if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
	return omit_one_operand (type, arg0, arg1);
      goto truth_andor;

    case TRUTH_XOR_EXPR:
      /* If either arg is constant zero, drop it.  */
      if (integer_zerop (arg0))
	return non_lvalue (convert (type, arg1));
      if (integer_zerop (arg1))
	return non_lvalue (convert (type, arg0));
      /* If either arg is constant true, this is a logical inversion.  */
      if (integer_onep (arg0))
	return non_lvalue (convert (type, invert_truthvalue (arg1)));
      if (integer_onep (arg1))
	return non_lvalue (convert (type, invert_truthvalue (arg0)));
      return t;

    case EQ_EXPR:
    case NE_EXPR:
    case LT_EXPR:
    case GT_EXPR:
    case LE_EXPR:
    case GE_EXPR:
      if (FLOAT_TYPE_P (TREE_TYPE (arg0)))
	{
	  /* (-a) CMP (-b) -> b CMP a  */
	  if (TREE_CODE (arg0) == NEGATE_EXPR
	      && TREE_CODE (arg1) == NEGATE_EXPR)
	    return fold (build (code, type, TREE_OPERAND (arg1, 0),
				TREE_OPERAND (arg0, 0)));
	  /* (-a) CMP CST -> a swap(CMP) (-CST)  */
	  if (TREE_CODE (arg0) == NEGATE_EXPR && TREE_CODE (arg1) == REAL_CST)
	    return
	      fold (build
		    (swap_tree_comparison (code), type,
		     TREE_OPERAND (arg0, 0),
		     build_real (TREE_TYPE (arg1),
				 REAL_VALUE_NEGATE (TREE_REAL_CST (arg1)))));
	  /* IEEE doesn't distinguish +0 and -0 in comparisons.  */
	  /* a CMP (-0) -> a CMP 0  */
	  if (TREE_CODE (arg1) == REAL_CST
	      && REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (arg1)))
	    return fold (build (code, type, arg0,
				build_real (TREE_TYPE (arg1), dconst0)));
	}

      /* If one arg is a constant integer, put it last.  */
      if (TREE_CODE (arg0) == INTEGER_CST
	  && TREE_CODE (arg1) != INTEGER_CST)
	{
	  TREE_OPERAND (t, 0) = arg1;
	  TREE_OPERAND (t, 1) = arg0;
	  arg0 = TREE_OPERAND (t, 0);
	  arg1 = TREE_OPERAND (t, 1);
	  code = swap_tree_comparison (code);
	  TREE_SET_CODE (t, code);
	}

      /* Convert foo++ == CONST into ++foo == CONST + INCR.
	 First, see if one arg is constant; find the constant arg
	 and the other one.  */
      {
	tree constop = 0, varop = NULL_TREE;
	int constopnum = -1;

	if (TREE_CONSTANT (arg1))
	  constopnum = 1, constop = arg1, varop = arg0;
	if (TREE_CONSTANT (arg0))
	  constopnum = 0, constop = arg0, varop = arg1;

	if (constop && TREE_CODE (varop) == POSTINCREMENT_EXPR)
	  {
	    /* This optimization is invalid for ordered comparisons
	       if CONST+INCR overflows or if foo+incr might overflow.
	       This optimization is invalid for floating point due to rounding.
	       For pointer types we assume overflow doesn't happen.  */
	    if (POINTER_TYPE_P (TREE_TYPE (varop))
		|| (! FLOAT_TYPE_P (TREE_TYPE (varop))
		    && (code == EQ_EXPR || code == NE_EXPR)))
	      {
		tree newconst
		  = fold (build (PLUS_EXPR, TREE_TYPE (varop),
				 constop, TREE_OPERAND (varop, 1)));

		/* Do not overwrite the current varop to be a preincrement,
		   create a new node so that we won't confuse our caller who
		   might create trees and throw them away, reusing the
		   arguments that they passed to build.  This shows up in
		   the THEN or ELSE parts of ?: being postincrements.  */
		varop = build (PREINCREMENT_EXPR, TREE_TYPE (varop),
			       TREE_OPERAND (varop, 0),
			       TREE_OPERAND (varop, 1));

		/* If VAROP is a reference to a bitfield, we must mask
		   the constant by the width of the field.  */
		if (TREE_CODE (TREE_OPERAND (varop, 0)) == COMPONENT_REF
		    && DECL_BIT_FIELD(TREE_OPERAND
				      (TREE_OPERAND (varop, 0), 1)))
		  {
		    int size
		      = TREE_INT_CST_LOW (DECL_SIZE
					  (TREE_OPERAND
					   (TREE_OPERAND (varop, 0), 1)));
		    tree mask, unsigned_type;
		    unsigned int precision;
		    tree folded_compare;

		    /* First check whether the comparison would come out
		       always the same.  If we don't do that we would
		       change the meaning with the masking.  */
		    if (constopnum == 0)
		      folded_compare = fold (build (code, type, constop,
						    TREE_OPERAND (varop, 0)));
		    else
		      folded_compare = fold (build (code, type,
						    TREE_OPERAND (varop, 0),
						    constop));
		    if (integer_zerop (folded_compare)
			|| integer_onep (folded_compare))
		      return omit_one_operand (type, folded_compare, varop);

		    unsigned_type = (*lang_hooks.types.type_for_size)(size, 1);
		    precision = TYPE_PRECISION (unsigned_type);
		    mask = build_int_2 (~0, ~0);
		    TREE_TYPE (mask) = unsigned_type;
		    force_fit_type (mask, 0);
		    mask = const_binop (RSHIFT_EXPR, mask,
					size_int (precision - size), 0);
		    newconst = fold (build (BIT_AND_EXPR,
					    TREE_TYPE (varop), newconst,
					    convert (TREE_TYPE (varop),
						     mask)));
		  }

		t = build (code, type,
			   (constopnum == 0) ? newconst : varop,
			   (constopnum == 1) ? newconst : varop);
		return t;
	      }
	  }
	else if (constop && TREE_CODE (varop) == POSTDECREMENT_EXPR)
	  {
	    if (POINTER_TYPE_P (TREE_TYPE (varop))
		|| (! FLOAT_TYPE_P (TREE_TYPE (varop))
		    && (code == EQ_EXPR || code == NE_EXPR)))
	      {
		tree newconst
		  = fold (build (MINUS_EXPR, TREE_TYPE (varop),
				 constop, TREE_OPERAND (varop, 1)));

		/* Do not overwrite the current varop to be a predecrement,
		   create a new node so that we won't confuse our caller who
		   might create trees and throw them away, reusing the
		   arguments that they passed to build.  This shows up in
		   the THEN or ELSE parts of ?: being postdecrements.  */
		varop = build (PREDECREMENT_EXPR, TREE_TYPE (varop),
			       TREE_OPERAND (varop, 0),
			       TREE_OPERAND (varop, 1));

		if (TREE_CODE (TREE_OPERAND (varop, 0)) == COMPONENT_REF
		    && DECL_BIT_FIELD(TREE_OPERAND
				      (TREE_OPERAND (varop, 0), 1)))
		  {
		    int size
		      = TREE_INT_CST_LOW (DECL_SIZE
					  (TREE_OPERAND
					   (TREE_OPERAND (varop, 0), 1)));
		    tree mask, unsigned_type;
		    unsigned int precision;
		    tree folded_compare;

		    if (constopnum == 0)
		      folded_compare = fold (build (code, type, constop,
						    TREE_OPERAND (varop, 0)));
		    else
		      folded_compare = fold (build (code, type,
						    TREE_OPERAND (varop, 0),
						    constop));
		    if (integer_zerop (folded_compare)
			|| integer_onep (folded_compare))
		      return omit_one_operand (type, folded_compare, varop);

		    unsigned_type = (*lang_hooks.types.type_for_size)(size, 1);
		    precision = TYPE_PRECISION (unsigned_type);
		    mask = build_int_2 (~0, ~0);
		    TREE_TYPE (mask) = TREE_TYPE (varop);
		    force_fit_type (mask, 0);
		    mask = const_binop (RSHIFT_EXPR, mask,
					size_int (precision - size), 0);
		    newconst = fold (build (BIT_AND_EXPR,
					    TREE_TYPE (varop), newconst,
					    convert (TREE_TYPE (varop),
						     mask)));
		  }

		t = build (code, type,
			   (constopnum == 0) ? newconst : varop,
			   (constopnum == 1) ? newconst : varop);
		return t;
	      }
	  }
      }

      /* Comparisons with the highest or lowest possible integer of
	 the specified size will have known values and an unsigned
	 <= 0x7fffffff can be simplified.  */
      {
	int width = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (arg1)));

	if (TREE_CODE (arg1) == INTEGER_CST
	    && ! TREE_CONSTANT_OVERFLOW (arg1)
	    && width <= HOST_BITS_PER_WIDE_INT
	    && (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
		|| POINTER_TYPE_P (TREE_TYPE (arg1))))
	  {
	    if (TREE_INT_CST_HIGH (arg1) == 0
		&& (TREE_INT_CST_LOW (arg1)
		    == ((unsigned HOST_WIDE_INT) 1 << (width - 1)) - 1)
		&& ! TREE_UNSIGNED (TREE_TYPE (arg1)))
	      switch (TREE_CODE (t))
		{
		case GT_EXPR:
		  return omit_one_operand (type,
					   convert (type, integer_zero_node),
					   arg0);
		case GE_EXPR:
		  TREE_SET_CODE (t, EQ_EXPR);
		  break;

		case LE_EXPR:
		  return omit_one_operand (type,
					   convert (type, integer_one_node),
					   arg0);
		case LT_EXPR:
		  TREE_SET_CODE (t, NE_EXPR);
		  break;

		default:
		  break;
		}

	    else if (TREE_INT_CST_HIGH (arg1) == -1
		     && (TREE_INT_CST_LOW (arg1)
			 == ((unsigned HOST_WIDE_INT) -1 << (width - 1)))
		     && ! TREE_UNSIGNED (TREE_TYPE (arg1)))
	      switch (TREE_CODE (t))
		{
		case LT_EXPR:
		  return omit_one_operand (type,
					   convert (type, integer_zero_node),
					   arg0);
		case LE_EXPR:
		  TREE_SET_CODE (t, EQ_EXPR);
		  break;

		case GE_EXPR:
		  return omit_one_operand (type,
					   convert (type, integer_one_node),
					   arg0);
		case GT_EXPR:
		  TREE_SET_CODE (t, NE_EXPR);
		  break;

		default:
		  break;
		}

	    else if (TREE_INT_CST_HIGH (arg1) == 0
		     && (TREE_INT_CST_LOW (arg1)
			 == ((unsigned HOST_WIDE_INT) 1 << (width - 1)) - 1)
		     && TREE_UNSIGNED (TREE_TYPE (arg1))
		     /* signed_type does not work on pointer types.  */
		     && INTEGRAL_TYPE_P (TREE_TYPE (arg1)))
	      {
		if (TREE_CODE (t) == LE_EXPR || TREE_CODE (t) == GT_EXPR)
		  {
		    tree st0, st1;
		    st0 = (*lang_hooks.types.signed_type) (TREE_TYPE (arg0));
		    st1 = (*lang_hooks.types.signed_type) (TREE_TYPE (arg1));
		    return fold
		      (build (TREE_CODE (t) == LE_EXPR ? GE_EXPR: LT_EXPR,
			      type, convert (st0, arg0),
			      convert (st1, integer_zero_node)));
		  }
	      }
	    else if (TREE_INT_CST_HIGH (arg1) == 0
		     && (TREE_INT_CST_LOW (arg1)
			 == ((unsigned HOST_WIDE_INT) 2 << (width - 1)) - 1)
		     && TREE_UNSIGNED (TREE_TYPE (arg1)))
	      switch (TREE_CODE (t))
		{
		case GT_EXPR:
		  return omit_one_operand (type,
					   convert (type, integer_zero_node),
					   arg0);
		case GE_EXPR:
		  TREE_SET_CODE (t, EQ_EXPR);
		  break;

		case LE_EXPR:
		  return omit_one_operand (type,
					   convert (type, integer_one_node),
					   arg0);
		case LT_EXPR:
		  TREE_SET_CODE (t, NE_EXPR);
		  break;

		default:
		  break;
		}
	  }
      }

      /* Change X >= C to X > C-1 and X < C to X <= C-1 if C is positive.  */
      if (TREE_CODE (arg1) == INTEGER_CST
	  && TREE_CODE (arg0) != INTEGER_CST
	  && tree_int_cst_sgn (arg1) > 0)
	{
	  switch (TREE_CODE (t))
	    {
	    case GE_EXPR:
	      code = GT_EXPR;
	      arg1 = const_binop (MINUS_EXPR, arg1, integer_one_node, 0);
	      t = build (code, type, TREE_OPERAND (t, 0), arg1);
	      break;

	    case LT_EXPR:
	      code = LE_EXPR;
	      arg1 = const_binop (MINUS_EXPR, arg1, integer_one_node, 0);
	      t = build (code, type, TREE_OPERAND (t, 0), arg1);
	      break;

	    default:
	      break;
	    }
	}

      /* An unsigned comparison against 0 can be simplified.  */
      if (integer_zerop (arg1)
	  && (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
	      || POINTER_TYPE_P (TREE_TYPE (arg1)))
	  && TREE_UNSIGNED (TREE_TYPE (arg1)))
	{
	  switch (TREE_CODE (t))
	    {
	    case GT_EXPR:
	      code = NE_EXPR;
	      TREE_SET_CODE (t, NE_EXPR);
	      break;
	    case LE_EXPR:
	      code = EQ_EXPR;
	      TREE_SET_CODE (t, EQ_EXPR);
	      break;
	    case GE_EXPR:
	      return omit_one_operand (type,
				       convert (type, integer_one_node),
				       arg0);
	    case LT_EXPR:
	      return omit_one_operand (type,
				       convert (type, integer_zero_node),
				       arg0);
	    default:
	      break;
	    }
	}

      /* If this is an EQ or NE comparison of a constant with a PLUS_EXPR or
	 a MINUS_EXPR of a constant, we can convert it into a comparison with
	 a revised constant as long as no overflow occurs.  */
      if ((code == EQ_EXPR || code == NE_EXPR)
	  && TREE_CODE (arg1) == INTEGER_CST
	  && (TREE_CODE (arg0) == PLUS_EXPR
	      || TREE_CODE (arg0) == MINUS_EXPR)
	  && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
	  && 0 != (tem = const_binop (TREE_CODE (arg0) == PLUS_EXPR
				      ? MINUS_EXPR : PLUS_EXPR,
				      arg1, TREE_OPERAND (arg0, 1), 0))
	  && ! TREE_CONSTANT_OVERFLOW (tem))
	return fold (build (code, type, TREE_OPERAND (arg0, 0), tem));

      /* Similarly for a NEGATE_EXPR.  */
      else if ((code == EQ_EXPR || code == NE_EXPR)
	       && TREE_CODE (arg0) == NEGATE_EXPR
	       && TREE_CODE (arg1) == INTEGER_CST
	       && 0 != (tem = negate_expr (arg1))
	       && TREE_CODE (tem) == INTEGER_CST
	       && ! TREE_CONSTANT_OVERFLOW (tem))
	return fold (build (code, type, TREE_OPERAND (arg0, 0), tem));

      /* If we have X - Y == 0, we can convert that to X == Y and similarly
	 for !=.  Don't do this for ordered comparisons due to overflow.  */
      else if ((code == NE_EXPR || code == EQ_EXPR)
	       && integer_zerop (arg1) && TREE_CODE (arg0) == MINUS_EXPR)
	return fold (build (code, type,
			    TREE_OPERAND (arg0, 0), TREE_OPERAND (arg0, 1)));

      /* If we are widening one operand of an integer comparison,
	 see if the other operand is similarly being widened.  Perhaps we
	 can do the comparison in the narrower type.  */
      else if (TREE_CODE (TREE_TYPE (arg0)) == INTEGER_TYPE
	       && TREE_CODE (arg0) == NOP_EXPR
	       && (tem = get_unwidened (arg0, NULL_TREE)) != arg0
	       && (t1 = get_unwidened (arg1, TREE_TYPE (tem))) != 0
	       && (TREE_TYPE (t1) == TREE_TYPE (tem)
		   || (TREE_CODE (t1) == INTEGER_CST
		       && int_fits_type_p (t1, TREE_TYPE (tem)))))
	return fold (build (code, type, tem, convert (TREE_TYPE (tem), t1)));

      /* If this is comparing a constant with a MIN_EXPR or a MAX_EXPR of a
	 constant, we can simplify it.  */
      else if (TREE_CODE (arg1) == INTEGER_CST
	       && (TREE_CODE (arg0) == MIN_EXPR
		   || TREE_CODE (arg0) == MAX_EXPR)
	       && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
	return optimize_minmax_comparison (t);

      /* If we are comparing an ABS_EXPR with a constant, we can
	 convert all the cases into explicit comparisons, but they may
	 well not be faster than doing the ABS and one comparison.
	 But ABS (X) <= C is a range comparison, which becomes a subtraction
	 and a comparison, and is probably faster.  */
      else if (code == LE_EXPR && TREE_CODE (arg1) == INTEGER_CST
	       && TREE_CODE (arg0) == ABS_EXPR
	       && ! TREE_SIDE_EFFECTS (arg0)
	       && (0 != (tem = negate_expr (arg1)))
	       && TREE_CODE (tem) == INTEGER_CST
	       && ! TREE_CONSTANT_OVERFLOW (tem))
	return fold (build (TRUTH_ANDIF_EXPR, type,
			    build (GE_EXPR, type, TREE_OPERAND (arg0, 0), tem),
			    build (LE_EXPR, type,
				   TREE_OPERAND (arg0, 0), arg1)));

      /* If this is an EQ or NE comparison with zero and ARG0 is
	 (1 << foo) & bar, convert it to (bar >> foo) & 1.  Both require
	 two operations, but the latter can be done in one less insn
	 on machines that have only two-operand insns or on which a
	 constant cannot be the first operand.  */
      if (integer_zerop (arg1) && (code == EQ_EXPR || code == NE_EXPR)
	  && TREE_CODE (arg0) == BIT_AND_EXPR)
	{
	  if (TREE_CODE (TREE_OPERAND (arg0, 0)) == LSHIFT_EXPR
	      && integer_onep (TREE_OPERAND (TREE_OPERAND (arg0, 0), 0)))
	    return
	      fold (build (code, type,
			   build (BIT_AND_EXPR, TREE_TYPE (arg0),
				  build (RSHIFT_EXPR,
					 TREE_TYPE (TREE_OPERAND (arg0, 0)),
					 TREE_OPERAND (arg0, 1),
					 TREE_OPERAND (TREE_OPERAND (arg0, 0), 1)),
				  convert (TREE_TYPE (arg0),
					   integer_one_node)),
			   arg1));
	  else if (TREE_CODE (TREE_OPERAND (arg0, 1)) == LSHIFT_EXPR
		   && integer_onep (TREE_OPERAND (TREE_OPERAND (arg0, 1), 0)))
	    return
	      fold (build (code, type,
			   build (BIT_AND_EXPR, TREE_TYPE (arg0),
				  build (RSHIFT_EXPR,
					 TREE_TYPE (TREE_OPERAND (arg0, 1)),
					 TREE_OPERAND (arg0, 0),
					 TREE_OPERAND (TREE_OPERAND (arg0, 1), 1)),
				  convert (TREE_TYPE (arg0),
					   integer_one_node)),
			   arg1));
	}

      /* If this is an NE or EQ comparison of zero against the result of a
	 signed MOD operation whose second operand is a power of 2, make
	 the MOD operation unsigned since it is simpler and equivalent.  */
      if ((code == NE_EXPR || code == EQ_EXPR)
	  && integer_zerop (arg1)
	  && ! TREE_UNSIGNED (TREE_TYPE (arg0))
	  && (TREE_CODE (arg0) == TRUNC_MOD_EXPR
	      || TREE_CODE (arg0) == CEIL_MOD_EXPR
	      || TREE_CODE (arg0) == FLOOR_MOD_EXPR
	      || TREE_CODE (arg0) == ROUND_MOD_EXPR)
	  && integer_pow2p (TREE_OPERAND (arg0, 1)))
	{
	  tree newtype = (*lang_hooks.types.unsigned_type) (TREE_TYPE (arg0));
	  tree newmod = build (TREE_CODE (arg0), newtype,
			       convert (newtype, TREE_OPERAND (arg0, 0)),
			       convert (newtype, TREE_OPERAND (arg0, 1)));

	  return build (code, type, newmod, convert (newtype, arg1));
	}

      /* If this is an NE comparison of zero with an AND of one, remove the
	 comparison since the AND will give the correct value.  */
      if (code == NE_EXPR && integer_zerop (arg1)
	  && TREE_CODE (arg0) == BIT_AND_EXPR
	  && integer_onep (TREE_OPERAND (arg0, 1)))
	return convert (type, arg0);

      /* If we have (A & C) == C where C is a power of 2, convert this into
	 (A & C) != 0.  Similarly for NE_EXPR.  */
      if ((code == EQ_EXPR || code == NE_EXPR)
	  && TREE_CODE (arg0) == BIT_AND_EXPR
	  && integer_pow2p (TREE_OPERAND (arg0, 1))
	  && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
	return fold (build (code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
			    arg0, integer_zero_node));

      /* If we have (A & C) != 0 where C is the sign bit of A, convert
	 this into A < 0.  Similarly for (A & C) == 0 into A >= 0.  */
      if ((code == EQ_EXPR || code == NE_EXPR)
	  && TREE_CODE (arg0) == BIT_AND_EXPR
	  && integer_zerop (arg1))
	{
	  tree arg00 = sign_bit_p (TREE_OPERAND (arg0, 0),
				   TREE_OPERAND (arg0, 1));
	  if (arg00 != NULL_TREE)
	  {
	    tree stype = (*lang_hooks.types.signed_type) (TREE_TYPE (arg00));
	    return fold (build (code == EQ_EXPR ? GE_EXPR : LT_EXPR, type,
			        convert (stype, arg00),
				convert (stype, integer_zero_node)));
	  }
	}

      /* If X is unsigned, convert X < (1 << Y) into X >> Y == 0
	 and similarly for >= into !=.  */
      if ((code == LT_EXPR || code == GE_EXPR)
	  && TREE_UNSIGNED (TREE_TYPE (arg0))
	  && TREE_CODE (arg1) == LSHIFT_EXPR
	  && integer_onep (TREE_OPERAND (arg1, 0)))
	return build (code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
		      build (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
			     TREE_OPERAND (arg1, 1)),
		      convert (TREE_TYPE (arg0), integer_zero_node));

      else if ((code == LT_EXPR || code == GE_EXPR)
	       && TREE_UNSIGNED (TREE_TYPE (arg0))
	       && (TREE_CODE (arg1) == NOP_EXPR
		   || TREE_CODE (arg1) == CONVERT_EXPR)
	       && TREE_CODE (TREE_OPERAND (arg1, 0)) == LSHIFT_EXPR
	       && integer_onep (TREE_OPERAND (TREE_OPERAND (arg1, 0), 0)))
	return
	  build (code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
		 convert (TREE_TYPE (arg0),
			  build (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
				 TREE_OPERAND (TREE_OPERAND (arg1, 0), 1))),
		 convert (TREE_TYPE (arg0), integer_zero_node));

      /* Simplify comparison of something with itself.  (For IEEE
	 floating-point, we can only do some of these simplifications.)  */
      if (operand_equal_p (arg0, arg1, 0))
	{
	  switch (code)
	    {
	    case EQ_EXPR:
	    case GE_EXPR:
	    case LE_EXPR:
	      if (! FLOAT_TYPE_P (TREE_TYPE (arg0)))
		return constant_boolean_node (1, type);
	      code = EQ_EXPR;
	      TREE_SET_CODE (t, code);
	      break;

	    case NE_EXPR:
	      /* For NE, we can only do this simplification if integer.  */
	      if (FLOAT_TYPE_P (TREE_TYPE (arg0)))
		break;
	      /* ... fall through ...  */
	    case GT_EXPR:
	    case LT_EXPR:
	      return constant_boolean_node (0, type);
	    default:
	      abort ();
	    }
	}

      /* If we are comparing an expression that just has comparisons
	 of two integer values, arithmetic expressions of those comparisons,
	 and constants, we can simplify it.  There are only three cases
	 to check: the two values can either be equal, the first can be
	 greater, or the second can be greater.  Fold the expression for
	 those three values.  Since each value must be 0 or 1, we have
	 eight possibilities, each of which corresponds to the constant 0
	 or 1 or one of the six possible comparisons.

	 This handles common cases like (a > b) == 0 but also handles
	 expressions like  ((x > y) - (y > x)) > 0, which supposedly
	 occur in macroized code.  */

      if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) != INTEGER_CST)
	{
	  tree cval1 = 0, cval2 = 0;
	  int save_p = 0;

	  if (twoval_comparison_p (arg0, &cval1, &cval2, &save_p)
	      /* Don't handle degenerate cases here; they should already
		 have been handled anyway.  */
	      && cval1 != 0 && cval2 != 0
	      && ! (TREE_CONSTANT (cval1) && TREE_CONSTANT (cval2))
	      && TREE_TYPE (cval1) == TREE_TYPE (cval2)
	      && INTEGRAL_TYPE_P (TREE_TYPE (cval1))
	      && TYPE_MAX_VALUE (TREE_TYPE (cval1))
	      && TYPE_MAX_VALUE (TREE_TYPE (cval2))
	      && ! operand_equal_p (TYPE_MIN_VALUE (TREE_TYPE (cval1)),
				    TYPE_MAX_VALUE (TREE_TYPE (cval2)), 0))
	    {
	      tree maxval = TYPE_MAX_VALUE (TREE_TYPE (cval1));
	      tree minval = TYPE_MIN_VALUE (TREE_TYPE (cval1));

	      /* We can't just pass T to eval_subst in case cval1 or cval2
		 was the same as ARG1.  */

	      tree high_result
		= fold (build (code, type,
			       eval_subst (arg0, cval1, maxval, cval2, minval),
			       arg1));
	      tree equal_result
		= fold (build (code, type,
			       eval_subst (arg0, cval1, maxval, cval2, maxval),
			       arg1));
	      tree low_result
		= fold (build (code, type,
			       eval_subst (arg0, cval1, minval, cval2, maxval),
			       arg1));

	      /* All three of these results should be 0 or 1.  Confirm they
		 are.  Then use those values to select the proper code
		 to use.  */

	      if ((integer_zerop (high_result)
		   || integer_onep (high_result))
		  && (integer_zerop (equal_result)
		      || integer_onep (equal_result))
		  && (integer_zerop (low_result)
		      || integer_onep (low_result)))
		{
		  /* Make a 3-bit mask with the high-order bit being the
		     value for `>', the next for '=', and the low for '<'.  */
		  switch ((integer_onep (high_result) * 4)
			  + (integer_onep (equal_result) * 2)
			  + integer_onep (low_result))
		    {
		    case 0:
		      /* Always false.  */
		      return omit_one_operand (type, integer_zero_node, arg0);
		    case 1:
		      code = LT_EXPR;
		      break;
		    case 2:
		      code = EQ_EXPR;
		      break;
		    case 3:
		      code = LE_EXPR;
		      break;
		    case 4:
		      code = GT_EXPR;
		      break;
		    case 5:
		      code = NE_EXPR;
		      break;
		    case 6:
		      code = GE_EXPR;
		      break;
		    case 7:
		      /* Always true.  */
		      return omit_one_operand (type, integer_one_node, arg0);
		    }

		  t = build (code, type, cval1, cval2);
		  if (save_p)
		    return save_expr (t);
		  else
		    return fold (t);
		}
	    }
	}

      /* If this is a comparison of a field, we may be able to simplify it.  */
      if ((TREE_CODE (arg0) == COMPONENT_REF
	   || TREE_CODE (arg0) == BIT_FIELD_REF)
	  && (code == EQ_EXPR || code == NE_EXPR)
	  /* Handle the constant case even without -O
	     to make sure the warnings are given.  */
	  && (optimize || TREE_CODE (arg1) == INTEGER_CST))
	{
	  t1 = optimize_bit_field_compare (code, type, arg0, arg1);
	  return t1 ? t1 : t;
	}

      /* If this is a comparison of complex values and either or both sides
	 are a COMPLEX_EXPR or COMPLEX_CST, it is best to split up the
	 comparisons and join them with a TRUTH_ANDIF_EXPR or TRUTH_ORIF_EXPR.
	 This may prevent needless evaluations.  */
      if ((code == EQ_EXPR || code == NE_EXPR)
	  && TREE_CODE (TREE_TYPE (arg0)) == COMPLEX_TYPE
	  && (TREE_CODE (arg0) == COMPLEX_EXPR
	      || TREE_CODE (arg1) == COMPLEX_EXPR
	      || TREE_CODE (arg0) == COMPLEX_CST
	      || TREE_CODE (arg1) == COMPLEX_CST))
	{
	  tree subtype = TREE_TYPE (TREE_TYPE (arg0));
	  tree real0, imag0, real1, imag1;

	  arg0 = save_expr (arg0);
	  arg1 = save_expr (arg1);
	  real0 = fold (build1 (REALPART_EXPR, subtype, arg0));
	  imag0 = fold (build1 (IMAGPART_EXPR, subtype, arg0));
	  real1 = fold (build1 (REALPART_EXPR, subtype, arg1));
	  imag1 = fold (build1 (IMAGPART_EXPR, subtype, arg1));

	  return fold (build ((code == EQ_EXPR ? TRUTH_ANDIF_EXPR
			       : TRUTH_ORIF_EXPR),
			      type,
			      fold (build (code, type, real0, real1)),
			      fold (build (code, type, imag0, imag1))));
	}

      /* Optimize comparisons of strlen vs zero to a compare of the
	 first character of the string vs zero.  To wit,
	 	strlen(ptr) == 0   =>  *ptr == 0
		strlen(ptr) != 0   =>  *ptr != 0
	 Other cases should reduce to one of these two (or a constant)
	 due to the return value of strlen being unsigned.  */
      if ((code == EQ_EXPR || code == NE_EXPR)
	  && integer_zerop (arg1)
	  && TREE_CODE (arg0) == CALL_EXPR
	  && TREE_CODE (TREE_OPERAND (arg0, 0)) == ADDR_EXPR)
	{
	  tree fndecl = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
	  tree arglist;

	  if (TREE_CODE (fndecl) == FUNCTION_DECL
	      && DECL_BUILT_IN (fndecl)
	      && DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_MD
	      && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STRLEN
	      && (arglist = TREE_OPERAND (arg0, 1))
	      && TREE_CODE (TREE_TYPE (TREE_VALUE (arglist))) == POINTER_TYPE
	      && ! TREE_CHAIN (arglist))
	    return fold (build (code, type,
				build1 (INDIRECT_REF, char_type_node,
					TREE_VALUE(arglist)),
				integer_zero_node));
	}

      /* From here on, the only cases we handle are when the result is
	 known to be a constant.

	 To compute GT, swap the arguments and do LT.
	 To compute GE, do LT and invert the result.
	 To compute LE, swap the arguments, do LT and invert the result.
	 To compute NE, do EQ and invert the result.

	 Therefore, the code below must handle only EQ and LT.  */

      if (code == LE_EXPR || code == GT_EXPR)
	{
	  tem = arg0, arg0 = arg1, arg1 = tem;
	  code = swap_tree_comparison (code);
	}

      /* Note that it is safe to invert for real values here because we
	 will check below in the one case that it matters.  */

      t1 = NULL_TREE;
      invert = 0;
      if (code == NE_EXPR || code == GE_EXPR)
	{
	  invert = 1;
	  code = invert_tree_comparison (code);
	}

      /* Compute a result for LT or EQ if args permit;
	 otherwise return T.  */
      if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
	{
	  if (code == EQ_EXPR)
	    t1 = build_int_2 (tree_int_cst_equal (arg0, arg1), 0);
	  else
	    t1 = build_int_2 ((TREE_UNSIGNED (TREE_TYPE (arg0))
			       ? INT_CST_LT_UNSIGNED (arg0, arg1)
			       : INT_CST_LT (arg0, arg1)),
			      0);
	}

#if 0 /* This is no longer useful, but breaks some real code.  */
      /* Assume a nonexplicit constant cannot equal an explicit one,
	 since such code would be undefined anyway.
	 Exception: on sysvr4, using #pragma weak,
	 a label can come out as 0.  */
      else if (TREE_CODE (arg1) == INTEGER_CST
	       && !integer_zerop (arg1)
	       && TREE_CONSTANT (arg0)
	       && TREE_CODE (arg0) == ADDR_EXPR
	       && code == EQ_EXPR)
	t1 = build_int_2 (0, 0);
#endif
      /* Two real constants can be compared explicitly.  */
      else if (TREE_CODE (arg0) == REAL_CST && TREE_CODE (arg1) == REAL_CST)
	{
	  /* If either operand is a NaN, the result is false with two
	     exceptions: First, an NE_EXPR is true on NaNs, but that case
	     is already handled correctly since we will be inverting the
	     result for NE_EXPR.  Second, if we had inverted a LE_EXPR
	     or a GE_EXPR into a LT_EXPR, we must return true so that it
	     will be inverted into false.  */

	  if (REAL_VALUE_ISNAN (TREE_REAL_CST (arg0))
	      || REAL_VALUE_ISNAN (TREE_REAL_CST (arg1)))
	    t1 = build_int_2 (invert && code == LT_EXPR, 0);

	  else if (code == EQ_EXPR)
	    t1 = build_int_2 (REAL_VALUES_EQUAL (TREE_REAL_CST (arg0),
						 TREE_REAL_CST (arg1)),
			      0);
	  else
	    t1 = build_int_2 (REAL_VALUES_LESS (TREE_REAL_CST (arg0),
						TREE_REAL_CST (arg1)),
			      0);
	}

      if (t1 == NULL_TREE)
	return t;

      if (invert)
	TREE_INT_CST_LOW (t1) ^= 1;

      TREE_TYPE (t1) = type;
      if (TREE_CODE (type) == BOOLEAN_TYPE)
	return (*lang_hooks.truthvalue_conversion) (t1);
      return t1;

    case COND_EXPR:
      /* Pedantic ANSI C says that a conditional expression is never an lvalue,
	 so all simple results must be passed through pedantic_non_lvalue.  */
      if (TREE_CODE (arg0) == INTEGER_CST)
	return pedantic_non_lvalue
	  (TREE_OPERAND (t, (integer_zerop (arg0) ? 2 : 1)));
      else if (operand_equal_p (arg1, TREE_OPERAND (expr, 2), 0))
	return pedantic_omit_one_operand (type, arg1, arg0);

      /* If the second operand is zero, invert the comparison and swap
	 the second and third operands.  Likewise if the second operand
	 is constant and the third is not or if the third operand is
	 equivalent to the first operand of the comparison.  */

      if (integer_zerop (arg1)
	  || (TREE_CONSTANT (arg1) && ! TREE_CONSTANT (TREE_OPERAND (t, 2)))
	  || (TREE_CODE_CLASS (TREE_CODE (arg0)) == '<'
	      && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0),
						 TREE_OPERAND (t, 2),
						 TREE_OPERAND (arg0, 1))))
	{
	  /* See if this can be inverted.  If it can't, possibly because
	     it was a floating-point inequality comparison, don't do
	     anything.  */
	  tem = invert_truthvalue (arg0);

	  if (TREE_CODE (tem) != TRUTH_NOT_EXPR)
	    {
	      t = build (code, type, tem,
			 TREE_OPERAND (t, 2), TREE_OPERAND (t, 1));
	      arg0 = tem;
	      /* arg1 should be the first argument of the new T.  */
	      arg1 = TREE_OPERAND (t, 1);
	      STRIP_NOPS (arg1);
	    }
	}

      /* If we have A op B ? A : C, we may be able to convert this to a
	 simpler expression, depending on the operation and the values
	 of B and C.  Signed zeros prevent all of these transformations,
	 for reasons given above each one.  */

      if (TREE_CODE_CLASS (TREE_CODE (arg0)) == '<'
	  && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0),
					     arg1, TREE_OPERAND (arg0, 1))
	  && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1))))
	{
	  tree arg2 = TREE_OPERAND (t, 2);
	  enum tree_code comp_code = TREE_CODE (arg0);

	  STRIP_NOPS (arg2);

	  /* If we have A op 0 ? A : -A, consider applying the following
	     transformations:

	     A == 0? A : -A    same as -A
	     A != 0? A : -A    same as A
	     A >= 0? A : -A    same as abs (A)
	     A > 0?  A : -A    same as abs (A)
	     A <= 0? A : -A    same as -abs (A)
	     A < 0?  A : -A    same as -abs (A)

	     None of these transformations work for modes with signed
	     zeros.  If A is +/-0, the first two transformations will
	     change the sign of the result (from +0 to -0, or vice
	     versa).  The last four will fix the sign of the result,
	     even though the original expressions could be positive or
	     negative, depending on the sign of A.

	     Note that all these transformations are correct if A is
	     NaN, since the two alternatives (A and -A) are also NaNs.  */
	  if ((FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (arg0, 1)))
	       ? real_zerop (TREE_OPERAND (arg0, 1))
	       : integer_zerop (TREE_OPERAND (arg0, 1)))
	      && TREE_CODE (arg2) == NEGATE_EXPR
	      && operand_equal_p (TREE_OPERAND (arg2, 0), arg1, 0))
	    switch (comp_code)
	      {
	      case EQ_EXPR:
		return
		  pedantic_non_lvalue
		    (convert (type,
			      negate_expr
			      (convert (TREE_TYPE (TREE_OPERAND (t, 1)),
					arg1))));
	      case NE_EXPR:
		return pedantic_non_lvalue (convert (type, arg1));
	      case GE_EXPR:
	      case GT_EXPR:
		if (TREE_UNSIGNED (TREE_TYPE (arg1)))
		  arg1 = convert ((*lang_hooks.types.signed_type)
				  (TREE_TYPE (arg1)), arg1);
		return pedantic_non_lvalue
		  (convert (type, fold (build1 (ABS_EXPR,
						TREE_TYPE (arg1), arg1))));
	      case LE_EXPR:
	      case LT_EXPR:
		if (TREE_UNSIGNED (TREE_TYPE (arg1)))
		  arg1 = convert ((lang_hooks.types.signed_type)
				  (TREE_TYPE (arg1)), arg1);
		return pedantic_non_lvalue
		  (negate_expr (convert (type,
					 fold (build1 (ABS_EXPR,
						       TREE_TYPE (arg1),
						       arg1)))));
	      default:
		abort ();
	      }

	  /* A != 0 ? A : 0 is simply A, unless A is -0.  Likewise
	     A == 0 ? A : 0 is always 0 unless A is -0.  Note that
	     both transformations are correct when A is NaN: A != 0
	     is then true, and A == 0 is false.  */

	  if (integer_zerop (TREE_OPERAND (arg0, 1)) && integer_zerop (arg2))
	    {
	      if (comp_code == NE_EXPR)
		return pedantic_non_lvalue (convert (type, arg1));
	      else if (comp_code == EQ_EXPR)
		return pedantic_non_lvalue (convert (type, integer_zero_node));
	    }

	  /* Try some transformations of A op B ? A : B.

	     A == B? A : B    same as B
	     A != B? A : B    same as A
	     A >= B? A : B    same as max (A, B)
	     A > B?  A : B    same as max (B, A)
	     A <= B? A : B    same as min (A, B)
	     A < B?  A : B    same as min (B, A)

	     As above, these transformations don't work in the presence
	     of signed zeros.  For example, if A and B are zeros of
	     opposite sign, the first two transformations will change
	     the sign of the result.  In the last four, the original
	     expressions give different results for (A=+0, B=-0) and
	     (A=-0, B=+0), but the transformed expressions do not.

	     The first two transformations are correct if either A or B
	     is a NaN.  In the first transformation, the condition will
	     be false, and B will indeed be chosen.  In the case of the
	     second transformation, the condition A != B will be true,
	     and A will be chosen.

	     The conversions to max() and min() are not correct if B is
	     a number and A is not.  The conditions in the original
	     expressions will be false, so all four give B.  The min()
	     and max() versions would give a NaN instead.  */
	  if (operand_equal_for_comparison_p (TREE_OPERAND (arg0, 1),
					      arg2, TREE_OPERAND (arg0, 0)))
	    {
	      tree comp_op0 = TREE_OPERAND (arg0, 0);
	      tree comp_op1 = TREE_OPERAND (arg0, 1);
	      tree comp_type = TREE_TYPE (comp_op0);

	      /* Avoid adding NOP_EXPRs in case this is an lvalue.  */
	      if (TYPE_MAIN_VARIANT (comp_type) == TYPE_MAIN_VARIANT (type))
		comp_type = type;

	      switch (comp_code)
		{
		case EQ_EXPR:
		  return pedantic_non_lvalue (convert (type, arg2));
		case NE_EXPR:
		  return pedantic_non_lvalue (convert (type, arg1));
		case LE_EXPR:
		case LT_EXPR:
		  /* In C++ a ?: expression can be an lvalue, so put the
		     operand which will be used if they are equal first
		     so that we can convert this back to the
		     corresponding COND_EXPR.  */
		  if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1))))
		    return pedantic_non_lvalue
		      (convert (type, fold (build (MIN_EXPR, comp_type,
						   (comp_code == LE_EXPR
						    ? comp_op0 : comp_op1),
						   (comp_code == LE_EXPR
						    ? comp_op1 : comp_op0)))));
		  break;
		case GE_EXPR:
		case GT_EXPR:
		  if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1))))
		    return pedantic_non_lvalue
		      (convert (type, fold (build (MAX_EXPR, comp_type,
						   (comp_code == GE_EXPR
						    ? comp_op0 : comp_op1),
						   (comp_code == GE_EXPR
						    ? comp_op1 : comp_op0)))));
		  break;
		default:
		  abort ();
		}
	    }

	  /* If this is A op C1 ? A : C2 with C1 and C2 constant integers,
	     we might still be able to simplify this.  For example,
	     if C1 is one less or one more than C2, this might have started
	     out as a MIN or MAX and been transformed by this function.
	     Only good for INTEGER_TYPEs, because we need TYPE_MAX_VALUE.  */

	  if (INTEGRAL_TYPE_P (type)
	      && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
	      && TREE_CODE (arg2) == INTEGER_CST)
	    switch (comp_code)
	      {
	      case EQ_EXPR:
		/* We can replace A with C1 in this case.  */
		arg1 = convert (type, TREE_OPERAND (arg0, 1));
		t = build (code, type, TREE_OPERAND (t, 0), arg1,
			   TREE_OPERAND (t, 2));
		break;

	      case LT_EXPR:
		/* If C1 is C2 + 1, this is min(A, C2).  */
		if (! operand_equal_p (arg2, TYPE_MAX_VALUE (type), 1)
		    && operand_equal_p (TREE_OPERAND (arg0, 1),
					const_binop (PLUS_EXPR, arg2,
						     integer_one_node, 0), 1))
		  return pedantic_non_lvalue
		    (fold (build (MIN_EXPR, type, arg1, arg2)));
		break;

	      case LE_EXPR:
		/* If C1 is C2 - 1, this is min(A, C2).  */
		if (! operand_equal_p (arg2, TYPE_MIN_VALUE (type), 1)
		    && operand_equal_p (TREE_OPERAND (arg0, 1),
					const_binop (MINUS_EXPR, arg2,
						     integer_one_node, 0), 1))
		  return pedantic_non_lvalue
		    (fold (build (MIN_EXPR, type, arg1, arg2)));
		break;

	      case GT_EXPR:
		/* If C1 is C2 - 1, this is max(A, C2).  */
		if (! operand_equal_p (arg2, TYPE_MIN_VALUE (type), 1)
		    && operand_equal_p (TREE_OPERAND (arg0, 1),
					const_binop (MINUS_EXPR, arg2,
						     integer_one_node, 0), 1))
		  return pedantic_non_lvalue
		    (fold (build (MAX_EXPR, type, arg1, arg2)));
		break;

	      case GE_EXPR:
		/* If C1 is C2 + 1, this is max(A, C2).  */
		if (! operand_equal_p (arg2, TYPE_MAX_VALUE (type), 1)
		    && operand_equal_p (TREE_OPERAND (arg0, 1),
					const_binop (PLUS_EXPR, arg2,
						     integer_one_node, 0), 1))
		  return pedantic_non_lvalue
		    (fold (build (MAX_EXPR, type, arg1, arg2)));
		break;
	      case NE_EXPR:
		break;
	      default:
		abort ();
	      }
	}

      /* If the second operand is simpler than the third, swap them
	 since that produces better jump optimization results.  */
      if ((TREE_CONSTANT (arg1) || DECL_P (arg1)
	   || TREE_CODE (arg1) == SAVE_EXPR)
	  && ! (TREE_CONSTANT (TREE_OPERAND (t, 2))
		|| DECL_P (TREE_OPERAND (t, 2))
		|| TREE_CODE (TREE_OPERAND (t, 2)) == SAVE_EXPR))
	{
	  /* See if this can be inverted.  If it can't, possibly because
	     it was a floating-point inequality comparison, don't do
	     anything.  */
	  tem = invert_truthvalue (arg0);

	  if (TREE_CODE (tem) != TRUTH_NOT_EXPR)
	    {
	      t = build (code, type, tem,
			 TREE_OPERAND (t, 2), TREE_OPERAND (t, 1));
	      arg0 = tem;
	      /* arg1 should be the first argument of the new T.  */
	      arg1 = TREE_OPERAND (t, 1);
	      STRIP_NOPS (arg1);
	    }
	}

      /* Convert A ? 1 : 0 to simply A.  */
      if (integer_onep (TREE_OPERAND (t, 1))
	  && integer_zerop (TREE_OPERAND (t, 2))
	  /* If we try to convert TREE_OPERAND (t, 0) to our type, the
	     call to fold will try to move the conversion inside
	     a COND, which will recurse.  In that case, the COND_EXPR
	     is probably the best choice, so leave it alone.  */
	  && type == TREE_TYPE (arg0))
	return pedantic_non_lvalue (arg0);

      /* Look for expressions of the form A & 2 ? 2 : 0.  The result of this
	 operation is simply A & 2.  */

      if (integer_zerop (TREE_OPERAND (t, 2))
	  && TREE_CODE (arg0) == NE_EXPR
	  && integer_zerop (TREE_OPERAND (arg0, 1))
	  && integer_pow2p (arg1)
	  && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
	  && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
			      arg1, 1))
	return pedantic_non_lvalue (convert (type, TREE_OPERAND (arg0, 0)));

      return t;

    case COMPOUND_EXPR:
      /* When pedantic, a compound expression can be neither an lvalue
	 nor an integer constant expression.  */
      if (TREE_SIDE_EFFECTS (arg0) || pedantic)
	return t;
      /* Don't let (0, 0) be null pointer constant.  */
      if (integer_zerop (arg1))
	return build1 (NOP_EXPR, type, arg1);
      return convert (type, arg1);

    case COMPLEX_EXPR:
      if (wins)
	return build_complex (type, arg0, arg1);
      return t;

    case REALPART_EXPR:
      if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
	return t;
      else if (TREE_CODE (arg0) == COMPLEX_EXPR)
	return omit_one_operand (type, TREE_OPERAND (arg0, 0),
				 TREE_OPERAND (arg0, 1));
      else if (TREE_CODE (arg0) == COMPLEX_CST)
	return TREE_REALPART (arg0);
      else if (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
	return fold (build (TREE_CODE (arg0), type,
			    fold (build1 (REALPART_EXPR, type,
					  TREE_OPERAND (arg0, 0))),
			    fold (build1 (REALPART_EXPR,
					  type, TREE_OPERAND (arg0, 1)))));
      return t;

    case IMAGPART_EXPR:
      if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
	return convert (type, integer_zero_node);
      else if (TREE_CODE (arg0) == COMPLEX_EXPR)
	return omit_one_operand (type, TREE_OPERAND (arg0, 1),
				 TREE_OPERAND (arg0, 0));
      else if (TREE_CODE (arg0) == COMPLEX_CST)
	return TREE_IMAGPART (arg0);
      else if (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
	return fold (build (TREE_CODE (arg0), type,
			    fold (build1 (IMAGPART_EXPR, type,
					  TREE_OPERAND (arg0, 0))),
			    fold (build1 (IMAGPART_EXPR, type,
					  TREE_OPERAND (arg0, 1)))));
      return t;

      /* Pull arithmetic ops out of the CLEANUP_POINT_EXPR where
         appropriate.  */
    case CLEANUP_POINT_EXPR:
      if (! has_cleanups (arg0))
	return TREE_OPERAND (t, 0);

      {
	enum tree_code code0 = TREE_CODE (arg0);
	int kind0 = TREE_CODE_CLASS (code0);
	tree arg00 = TREE_OPERAND (arg0, 0);
	tree arg01;

	if (kind0 == '1' || code0 == TRUTH_NOT_EXPR)
	  return fold (build1 (code0, type,
			       fold (build1 (CLEANUP_POINT_EXPR,
					     TREE_TYPE (arg00), arg00))));

	if (kind0 == '<' || kind0 == '2'
	    || code0 == TRUTH_ANDIF_EXPR || code0 == TRUTH_ORIF_EXPR
	    || code0 == TRUTH_AND_EXPR   || code0 == TRUTH_OR_EXPR
	    || code0 == TRUTH_XOR_EXPR)
	  {
	    arg01 = TREE_OPERAND (arg0, 1);

	    if (TREE_CONSTANT (arg00)
		|| ((code0 == TRUTH_ANDIF_EXPR || code0 == TRUTH_ORIF_EXPR)
		    && ! has_cleanups (arg00)))
	      return fold (build (code0, type, arg00,
				  fold (build1 (CLEANUP_POINT_EXPR,
						TREE_TYPE (arg01), arg01))));

	    if (TREE_CONSTANT (arg01))
	      return fold (build (code0, type,
				  fold (build1 (CLEANUP_POINT_EXPR,
						TREE_TYPE (arg00), arg00)),
				  arg01));
	  }

	return t;
      }

    case CALL_EXPR:
      /* Check for a built-in function.  */
      if (TREE_CODE (TREE_OPERAND (expr, 0)) == ADDR_EXPR
	  && (TREE_CODE (TREE_OPERAND (TREE_OPERAND (expr, 0), 0))
	      == FUNCTION_DECL)
	  && DECL_BUILT_IN (TREE_OPERAND (TREE_OPERAND (expr, 0), 0)))
	{
	  tree tmp = fold_builtin (expr);
	  if (tmp)
	    return tmp;
	}
      return t;

    default:
      return t;
    } /* switch (code) */
}

/* Determine if first argument is a multiple of second argument.  Return 0 if
   it is not, or we cannot easily determined it to be.

   An example of the sort of thing we care about (at this point; this routine
   could surely be made more general, and expanded to do what the *_DIV_EXPR's
   fold cases do now) is discovering that

     SAVE_EXPR (I) * SAVE_EXPR (J * 8)

   is a multiple of

     SAVE_EXPR (J * 8)

   when we know that the two SAVE_EXPR (J * 8) nodes are the same node.

   This code also handles discovering that

     SAVE_EXPR (I) * SAVE_EXPR (J * 8)

   is a multiple of 8 so we don't have to worry about dealing with a
   possible remainder.

   Note that we *look* inside a SAVE_EXPR only to determine how it was
   calculated; it is not safe for fold to do much of anything else with the
   internals of a SAVE_EXPR, since it cannot know when it will be evaluated
   at run time.  For example, the latter example above *cannot* be implemented
   as SAVE_EXPR (I) * J or any variant thereof, since the value of J at
   evaluation time of the original SAVE_EXPR is not necessarily the same at
   the time the new expression is evaluated.  The only optimization of this
   sort that would be valid is changing

     SAVE_EXPR (I) * SAVE_EXPR (SAVE_EXPR (J) * 8)

   divided by 8 to

     SAVE_EXPR (I) * SAVE_EXPR (J)

   (where the same SAVE_EXPR (J) is used in the original and the
   transformed version).  */

static int
multiple_of_p (type, top, bottom)
     tree type;
     tree top;
     tree bottom;
{
  if (operand_equal_p (top, bottom, 0))
    return 1;

  if (TREE_CODE (type) != INTEGER_TYPE)
    return 0;

  switch (TREE_CODE (top))
    {
    case MULT_EXPR:
      return (multiple_of_p (type, TREE_OPERAND (top, 0), bottom)
	      || multiple_of_p (type, TREE_OPERAND (top, 1), bottom));

    case PLUS_EXPR:
    case MINUS_EXPR:
      return (multiple_of_p (type, TREE_OPERAND (top, 0), bottom)
	      && multiple_of_p (type, TREE_OPERAND (top, 1), bottom));

    case LSHIFT_EXPR:
      if (TREE_CODE (TREE_OPERAND (top, 1)) == INTEGER_CST)
	{
	  tree op1, t1;

	  op1 = TREE_OPERAND (top, 1);
	  /* const_binop may not detect overflow correctly,
	     so check for it explicitly here.  */
	  if (TYPE_PRECISION (TREE_TYPE (size_one_node))
	      > TREE_INT_CST_LOW (op1)
	      && TREE_INT_CST_HIGH (op1) == 0
	      && 0 != (t1 = convert (type,
				     const_binop (LSHIFT_EXPR, size_one_node,
						  op1, 0)))
	      && ! TREE_OVERFLOW (t1))
	    return multiple_of_p (type, t1, bottom);
	}
      return 0;

    case NOP_EXPR:
      /* Can't handle conversions from non-integral or wider integral type.  */
      if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (top, 0))) != INTEGER_TYPE)
	  || (TYPE_PRECISION (type)
	      < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (top, 0)))))
	return 0;

      /* .. fall through ...  */

    case SAVE_EXPR:
      return multiple_of_p (type, TREE_OPERAND (top, 0), bottom);

    case INTEGER_CST:
      if (TREE_CODE (bottom) != INTEGER_CST
	  || (TREE_UNSIGNED (type)
	      && (tree_int_cst_sgn (top) < 0
		  || tree_int_cst_sgn (bottom) < 0)))
	return 0;
      return integer_zerop (const_binop (TRUNC_MOD_EXPR,
					 top, bottom, 0));

    default:
      return 0;
    }
}

/* Return true if `t' is known to be non-negative.  */

int
tree_expr_nonnegative_p (t)
     tree t;
{
  switch (TREE_CODE (t))
    {
    case ABS_EXPR:
    case FFS_EXPR:
      return 1;
    case INTEGER_CST:
      return tree_int_cst_sgn (t) >= 0;
    case TRUNC_DIV_EXPR:
    case CEIL_DIV_EXPR:
    case FLOOR_DIV_EXPR:
    case ROUND_DIV_EXPR:
      return tree_expr_nonnegative_p (TREE_OPERAND (t, 0))
	&& tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
    case TRUNC_MOD_EXPR:
    case CEIL_MOD_EXPR:
    case FLOOR_MOD_EXPR:
    case ROUND_MOD_EXPR:
      return tree_expr_nonnegative_p (TREE_OPERAND (t, 0));
    case COND_EXPR:
      return tree_expr_nonnegative_p (TREE_OPERAND (t, 1))
	&& tree_expr_nonnegative_p (TREE_OPERAND (t, 2));
    case COMPOUND_EXPR:
      return tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
    case MIN_EXPR:
      return tree_expr_nonnegative_p (TREE_OPERAND (t, 0))
	&& tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
    case MAX_EXPR:
      return tree_expr_nonnegative_p (TREE_OPERAND (t, 0))
	|| tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
    case MODIFY_EXPR:
      return tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
    case BIND_EXPR:
      return tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
    case SAVE_EXPR:
      return tree_expr_nonnegative_p (TREE_OPERAND (t, 0));
    case NON_LVALUE_EXPR:
      return tree_expr_nonnegative_p (TREE_OPERAND (t, 0));
    case RTL_EXPR:
      return rtl_expr_nonnegative_p (RTL_EXPR_RTL (t));

    default:
      if (truth_value_p (TREE_CODE (t)))
	/* Truth values evaluate to 0 or 1, which is nonnegative.  */
	return 1;
      else
	/* We don't know sign of `t', so be conservative and return false.  */
	return 0;
    }
}

/* Return true if `r' is known to be non-negative.
   Only handles constants at the moment.  */

int
rtl_expr_nonnegative_p (r)
     rtx r;
{
  switch (GET_CODE (r))
    {
    case CONST_INT:
      return INTVAL (r) >= 0;

    case CONST_DOUBLE:
      if (GET_MODE (r) == VOIDmode)
	return CONST_DOUBLE_HIGH (r) >= 0;
      return 0;

    case CONST_VECTOR:
      {
	int units, i;
	rtx elt;

	units = CONST_VECTOR_NUNITS (r);

	for (i = 0; i < units; ++i)
	  {
	    elt = CONST_VECTOR_ELT (r, i);
	    if (!rtl_expr_nonnegative_p (elt))
	      return 0;
	  }

	return 1;
      }

    case SYMBOL_REF:
    case LABEL_REF:
      /* These are always nonnegative.  */
      return 1;

    default:
      return 0;
    }
}