summaryrefslogtreecommitdiff
path: root/gcc/flow.c
blob: bc9096ffff12f2141ce5f59ce504243d94308f0f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
/* Data flow analysis for GNU compiler.
   Copyright (C) 1987, 1988, 1992 Free Software Foundation, Inc.

This file is part of GNU CC.

GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING.  If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.  */


/* This file contains the data flow analysis pass of the compiler.
   It computes data flow information
   which tells combine_instructions which insns to consider combining
   and controls register allocation.

   Additional data flow information that is too bulky to record
   is generated during the analysis, and is used at that time to
   create autoincrement and autodecrement addressing.

   The first step is dividing the function into basic blocks.
   find_basic_blocks does this.  Then life_analysis determines
   where each register is live and where it is dead.

   ** find_basic_blocks **

   find_basic_blocks divides the current function's rtl
   into basic blocks.  It records the beginnings and ends of the
   basic blocks in the vectors basic_block_head and basic_block_end,
   and the number of blocks in n_basic_blocks.

   find_basic_blocks also finds any unreachable loops
   and deletes them.

   ** life_analysis **

   life_analysis is called immediately after find_basic_blocks.
   It uses the basic block information to determine where each
   hard or pseudo register is live.

   ** live-register info **

   The information about where each register is live is in two parts:
   the REG_NOTES of insns, and the vector basic_block_live_at_start.

   basic_block_live_at_start has an element for each basic block,
   and the element is a bit-vector with a bit for each hard or pseudo
   register.  The bit is 1 if the register is live at the beginning
   of the basic block.

   Two types of elements can be added to an insn's REG_NOTES.  
   A REG_DEAD note is added to an insn's REG_NOTES for any register
   that meets both of two conditions:  The value in the register is not
   needed in subsequent insns and the insn does not replace the value in
   the register (in the case of multi-word hard registers, the value in
   each register must be replaced by the insn to avoid a REG_DEAD note).

   In the vast majority of cases, an object in a REG_DEAD note will be
   used somewhere in the insn.  The (rare) exception to this is if an
   insn uses a multi-word hard register and only some of the registers are
   needed in subsequent insns.  In that case, REG_DEAD notes will be
   provided for those hard registers that are not subsequently needed.
   Partial REG_DEAD notes of this type do not occur when an insn sets
   only some of the hard registers used in such a multi-word operand;
   omitting REG_DEAD notes for objects stored in an insn is optional and
   the desire to do so does not justify the complexity of the partial
   REG_DEAD notes.

   REG_UNUSED notes are added for each register that is set by the insn
   but is unused subsequently (if every register set by the insn is unused
   and the insn does not reference memory or have some other side-effect,
   the insn is deleted instead).  If only part of a multi-word hard
   register is used in a subsequent insn, REG_UNUSED notes are made for
   the parts that will not be used.

   To determine which registers are live after any insn, one can
   start from the beginning of the basic block and scan insns, noting
   which registers are set by each insn and which die there.

   ** Other actions of life_analysis **

   life_analysis sets up the LOG_LINKS fields of insns because the
   information needed to do so is readily available.

   life_analysis deletes insns whose only effect is to store a value
   that is never used.

   life_analysis notices cases where a reference to a register as
   a memory address can be combined with a preceding or following
   incrementation or decrementation of the register.  The separate
   instruction to increment or decrement is deleted and the address
   is changed to a POST_INC or similar rtx.

   Each time an incrementing or decrementing address is created,
   a REG_INC element is added to the insn's REG_NOTES list.

   life_analysis fills in certain vectors containing information about
   register usage: reg_n_refs, reg_n_deaths, reg_n_sets, reg_live_length,
   reg_n_calls_crosses and reg_basic_block.  */

#include <stdio.h>
#include "config.h"
#include "rtl.h"
#include "basic-block.h"
#include "insn-config.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "flags.h"
#include "output.h"

#include "obstack.h"
#define obstack_chunk_alloc xmalloc
#define obstack_chunk_free free

extern int xmalloc ();
extern void free ();

/* List of labels that must never be deleted.  */
extern rtx forced_labels;

/* Get the basic block number of an insn.
   This info should not be expected to remain available
   after the end of life_analysis.  */

/* This is the limit of the allocated space in the following two arrays.  */

static int max_uid_for_flow;

#define BLOCK_NUM(INSN)  uid_block_number[INSN_UID (INSN)]

/* This is where the BLOCK_NUM values are really stored.
   This is set up by find_basic_blocks and used there and in life_analysis,
   and then freed.  */

static short *uid_block_number;

/* INSN_VOLATILE (insn) is 1 if the insn refers to anything volatile.  */

#define INSN_VOLATILE(INSN) uid_volatile[INSN_UID (INSN)]
static char *uid_volatile;

/* Number of basic blocks in the current function.  */

int n_basic_blocks;

/* Maximum register number used in this function, plus one.  */

int max_regno;

/* Maximum number of SCRATCH rtx's used in any basic block of this function. */

int max_scratch;

/* Number of SCRATCH rtx's in the current block.  */

static int num_scratch;

/* Indexed by n, gives number of basic block that  (REG n) is used in.
   If the value is REG_BLOCK_GLOBAL (-2),
   it means (REG n) is used in more than one basic block.
   REG_BLOCK_UNKNOWN (-1) means it hasn't been seen yet so we don't know.
   This information remains valid for the rest of the compilation
   of the current function; it is used to control register allocation.  */

short *reg_basic_block;

/* Indexed by n, gives number of times (REG n) is used or set, each
   weighted by its loop-depth.
   This information remains valid for the rest of the compilation
   of the current function; it is used to control register allocation.  */

int *reg_n_refs;

/* Indexed by N, gives number of places register N dies.
   This information remains valid for the rest of the compilation
   of the current function; it is used to control register allocation.  */

short *reg_n_deaths;

/* Indexed by N, gives 1 if that reg is live across any CALL_INSNs.
   This information remains valid for the rest of the compilation
   of the current function; it is used to control register allocation.  */

int *reg_n_calls_crossed;

/* Total number of instructions at which (REG n) is live.
   The larger this is, the less priority (REG n) gets for
   allocation in a real register.
   This information remains valid for the rest of the compilation
   of the current function; it is used to control register allocation.

   local-alloc.c may alter this number to change the priority.

   Negative values are special.
   -1 is used to mark a pseudo reg which has a constant or memory equivalent
   and is used infrequently enough that it should not get a hard register.
   -2 is used to mark a pseudo reg for a parameter, when a frame pointer
   is not required.  global-alloc.c makes an allocno for this but does
   not try to assign a hard register to it.  */

int *reg_live_length;

/* Element N is the next insn that uses (hard or pseudo) register number N
   within the current basic block; or zero, if there is no such insn.
   This is valid only during the final backward scan in propagate_block.  */

static rtx *reg_next_use;

/* Size of a regset for the current function,
   in (1) bytes and (2) elements.  */

int regset_bytes;
int regset_size;

/* Element N is first insn in basic block N.
   This info lasts until we finish compiling the function.  */

rtx *basic_block_head;

/* Element N is last insn in basic block N.
   This info lasts until we finish compiling the function.  */

rtx *basic_block_end;

/* Element N is a regset describing the registers live
   at the start of basic block N.
   This info lasts until we finish compiling the function.  */

regset *basic_block_live_at_start;

/* Regset of regs live when calls to `setjmp'-like functions happen.  */

regset regs_live_at_setjmp;

/* List made of EXPR_LIST rtx's which gives pairs of pseudo registers
   that have to go in the same hard reg.
   The first two regs in the list are a pair, and the next two
   are another pair, etc.  */
rtx regs_may_share;

/* Element N is nonzero if control can drop into basic block N
   from the preceding basic block.  Freed after life_analysis.  */

static char *basic_block_drops_in;

/* Element N is depth within loops of the last insn in basic block number N.
   Freed after life_analysis.  */

static short *basic_block_loop_depth;

/* Element N nonzero if basic block N can actually be reached.
   Vector exists only during find_basic_blocks.  */

static char *block_live_static;

/* Depth within loops of basic block being scanned for lifetime analysis,
   plus one.  This is the weight attached to references to registers.  */

static int loop_depth;

/* During propagate_block, this is non-zero if the value of CC0 is live.  */

static int cc0_live;

/* During propagate_block, this contains the last MEM stored into.  It
   is used to eliminate consecutive stores to the same location.  */

static rtx last_mem_set;

/* Set of registers that may be eliminable.  These are handled specially
   in updating regs_ever_live.  */

static HARD_REG_SET elim_reg_set;

/* Forward declarations */
static void find_basic_blocks ();
static void life_analysis ();
static void mark_label_ref ();
void allocate_for_life_analysis (); /* Used also in stupid_life_analysis */
static void init_regset_vector ();
static void propagate_block ();
static void mark_set_regs ();
static void mark_used_regs ();
static int insn_dead_p ();
static int libcall_dead_p ();
static int try_pre_increment ();
static int try_pre_increment_1 ();
static rtx find_use_as_address ();
void dump_flow_info ();

/* Find basic blocks of the current function and perform data flow analysis.
   F is the first insn of the function and NREGS the number of register numbers
   in use.  */

void
flow_analysis (f, nregs, file)
     rtx f;
     int nregs;
     FILE *file;
{
  register rtx insn;
  register int i;
  rtx nonlocal_label_list = nonlocal_label_rtx_list ();

#ifdef ELIMINABLE_REGS
  static struct {int from, to; } eliminables[] = ELIMINABLE_REGS;
#endif

  /* Record which registers will be eliminated.  We use this in
     mark_used_regs. */

  CLEAR_HARD_REG_SET (elim_reg_set);

#ifdef ELIMINABLE_REGS
  for (i = 0; i < sizeof eliminables / sizeof eliminables[0]; i++)
    SET_HARD_REG_BIT (elim_reg_set, eliminables[i].from);
#else
  SET_HARD_REG_BIT (elim_reg_set, FRAME_POINTER_REGNUM);
#endif

  /* Count the basic blocks.  Also find maximum insn uid value used.  */

  {
    register RTX_CODE prev_code = JUMP_INSN;
    register RTX_CODE code;

    max_uid_for_flow = 0;

    for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
      {
	code = GET_CODE (insn);
	if (INSN_UID (insn) > max_uid_for_flow)
	  max_uid_for_flow = INSN_UID (insn);
	if (code == CODE_LABEL
	    || (GET_RTX_CLASS (code) == 'i'
		&& (prev_code == JUMP_INSN
		    || (prev_code == CALL_INSN
			&& nonlocal_label_list != 0)
		    || prev_code == BARRIER)))
	  i++;
	if (code != NOTE)
	  prev_code = code;
      }
  }

#ifdef AUTO_INC_DEC
  /* Leave space for insns we make in some cases for auto-inc.  These cases
     are rare, so we don't need too much space.  */
  max_uid_for_flow += max_uid_for_flow / 10;
#endif

  /* Allocate some tables that last till end of compiling this function
     and some needed only in find_basic_blocks and life_analysis.  */

  n_basic_blocks = i;
  basic_block_head = (rtx *) oballoc (n_basic_blocks * sizeof (rtx));
  basic_block_end = (rtx *) oballoc (n_basic_blocks * sizeof (rtx));
  basic_block_drops_in = (char *) alloca (n_basic_blocks);
  basic_block_loop_depth = (short *) alloca (n_basic_blocks * sizeof (short));
  uid_block_number
    = (short *) alloca ((max_uid_for_flow + 1) * sizeof (short));
  uid_volatile = (char *) alloca (max_uid_for_flow + 1);
  bzero (uid_volatile, max_uid_for_flow + 1);

  find_basic_blocks (f, nonlocal_label_list);
  life_analysis (f, nregs);
  if (file)
    dump_flow_info (file);

  basic_block_drops_in = 0;
  uid_block_number = 0;
  basic_block_loop_depth = 0;
}

/* Find all basic blocks of the function whose first insn is F.
   Store the correct data in the tables that describe the basic blocks,
   set up the chains of references for each CODE_LABEL, and
   delete any entire basic blocks that cannot be reached.

   NONLOCAL_LABEL_LIST is the same local variable from flow_analysis.  */

static void
find_basic_blocks (f, nonlocal_label_list)
     rtx f, nonlocal_label_list;
{
  register rtx insn;
  register int i;
  register char *block_live = (char *) alloca (n_basic_blocks);
  register char *block_marked = (char *) alloca (n_basic_blocks);
  /* List of label_refs to all labels whose addresses are taken
     and used as data.  */
  rtx label_value_list = 0;

  block_live_static = block_live;
  bzero (block_live, n_basic_blocks);
  bzero (block_marked, n_basic_blocks);

  /* Initialize with just block 0 reachable and no blocks marked.  */
  if (n_basic_blocks > 0)
    block_live[0] = 1;

  /* Initialize the ref chain of each label to 0.  */
  /* Record where all the blocks start and end and their depth in loops.  */
  /* For each insn, record the block it is in.  */
  /* Also mark as reachable any blocks headed by labels that
     must not be deleted.  */

  {
    register RTX_CODE prev_code = JUMP_INSN;
    register RTX_CODE code;
    int depth = 1;

    for (insn = f, i = -1; insn; insn = NEXT_INSN (insn))
      {
	code = GET_CODE (insn);
	if (code == NOTE)
	  {
	    if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
	      depth++;
	    else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
	      depth--;
	  }
	/* A basic block starts at label, or after something that can jump.  */
	else if (code == CODE_LABEL
		 || (GET_RTX_CLASS (code) == 'i'
		     && (prev_code == JUMP_INSN
			 || (prev_code == CALL_INSN
			     && nonlocal_label_list != 0)
			 || prev_code == BARRIER)))
	  {
	    basic_block_head[++i] = insn;
	    basic_block_end[i] = insn;
	    basic_block_loop_depth[i] = depth;
	    if (code == CODE_LABEL)
	      {
		LABEL_REFS (insn) = insn;
		/* Any label that cannot be deleted
		   is considered to start a reachable block.  */
		if (LABEL_PRESERVE_P (insn))
		  block_live[i] = 1;
	      }
	  }
	else if (GET_RTX_CLASS (code) == 'i')
	  {
	    basic_block_end[i] = insn;
	    basic_block_loop_depth[i] = depth;
	  }

	/* Make a list of all labels referred to other than by jumps.  */
	if (code == INSN || code == CALL_INSN)
	  {
	    rtx note = find_reg_note (insn, REG_LABEL, 0);
	    if (note != 0)
	      label_value_list = gen_rtx (EXPR_LIST, VOIDmode, XEXP (note, 0),
					  label_value_list);
	  }

	BLOCK_NUM (insn) = i;

	/* Don't separate a CALL_INSN from following CLOBBER insns.  This is
	   a kludge that will go away when each CALL_INSN records its
	   USE and CLOBBERs.  */

	if (code != NOTE
	    && ! (prev_code == CALL_INSN && code == INSN
		  && GET_CODE (PATTERN (insn)) == CLOBBER))
	  prev_code = code;
      }
    if (i + 1 != n_basic_blocks)
      abort ();
  }

  /* Don't delete the labels that are referenced by non-jump instructions.  */
  {
    register rtx x;
    for (x = label_value_list; x; x = XEXP (x, 1))
      block_live[BLOCK_NUM (XEXP (x, 0))] = 1;
  }

  /* Record which basic blocks control can drop in to.  */

  {
    register int i;
    for (i = 0; i < n_basic_blocks; i++)
      {
	register rtx insn = PREV_INSN (basic_block_head[i]);
	/* TEMP1 is used to avoid a bug in Sequent's compiler.  */
	register int temp1;
	while (insn && GET_CODE (insn) == NOTE)
	  insn = PREV_INSN (insn);
	temp1 = insn && GET_CODE (insn) != BARRIER;
	basic_block_drops_in[i] = temp1;
      }
  }

  /* Now find which basic blocks can actually be reached
     and put all jump insns' LABEL_REFS onto the ref-chains
     of their target labels.  */

  if (n_basic_blocks > 0)
    {
      int something_marked = 1;

      /* Find all indirect jump insns and mark them as possibly jumping
	 to all the labels whose addresses are explicitly used.
	 This is because, when there are computed gotos,
	 we can't tell which labels they jump to, of all the possibilities.  */

      for (insn = f; insn; insn = NEXT_INSN (insn))
	if (GET_CODE (insn) == JUMP_INSN
	    && GET_CODE (PATTERN (insn)) == SET
	    && SET_DEST (PATTERN (insn)) == pc_rtx
	    && (GET_CODE (SET_SRC (PATTERN (insn))) == REG
		|| GET_CODE (SET_SRC (PATTERN (insn))) == MEM))
	  {
	    rtx x;
	    for (x = label_value_list; x; x = XEXP (x, 1))
	      mark_label_ref (gen_rtx (LABEL_REF, VOIDmode, XEXP (x, 0)),
			      insn, 0);
	    for (x = forced_labels; x; x = XEXP (x, 1))
	      mark_label_ref (gen_rtx (LABEL_REF, VOIDmode, XEXP (x, 0)),
			      insn, 0);
	  }

      /* Find all call insns and mark them as possibly jumping
	 to all the nonlocal goto handler labels.  */

      for (insn = f; insn; insn = NEXT_INSN (insn))
	if (GET_CODE (insn) == CALL_INSN)
	  {
	    rtx x;
	    for (x = nonlocal_label_list; x; x = XEXP (x, 1))
	      mark_label_ref (gen_rtx (LABEL_REF, VOIDmode, XEXP (x, 0)),
			      insn, 0);
	    /* ??? This could be made smarter:
	       in some cases it's possible to tell that certain
	       calls will not do a nonlocal goto.

	       For example, if the nested functions that do the
	       nonlocal gotos do not have their addresses taken, then
	       only calls to those functions or to other nested
	       functions that use them could possibly do nonlocal
	       gotos.  */
	  }

      /* Pass over all blocks, marking each block that is reachable
	 and has not yet been marked.
	 Keep doing this until, in one pass, no blocks have been marked.
	 Then blocks_live and blocks_marked are identical and correct.
	 In addition, all jumps actually reachable have been marked.  */

      while (something_marked)
	{
	  something_marked = 0;
	  for (i = 0; i < n_basic_blocks; i++)
	    if (block_live[i] && !block_marked[i])
	      {
		block_marked[i] = 1;
		something_marked = 1;
		if (i + 1 < n_basic_blocks && basic_block_drops_in[i + 1])
		  block_live[i + 1] = 1;
		insn = basic_block_end[i];
		if (GET_CODE (insn) == JUMP_INSN)
		  mark_label_ref (PATTERN (insn), insn, 0);
	      }
	}

      /* Now delete the code for any basic blocks that can't be reached.
	 They can occur because jump_optimize does not recognize
	 unreachable loops as unreachable.  */

      for (i = 0; i < n_basic_blocks; i++)
	if (!block_live[i])
	  {
	    insn = basic_block_head[i];
	    while (1)
	      {
		if (GET_CODE (insn) == BARRIER)
		  abort ();
		if (GET_CODE (insn) != NOTE)
		  {
		    PUT_CODE (insn, NOTE);
		    NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
		    NOTE_SOURCE_FILE (insn) = 0;
		  }
		if (insn == basic_block_end[i])
		  {
		    /* BARRIERs are between basic blocks, not part of one.
		       Delete a BARRIER if the preceding jump is deleted.
		       We cannot alter a BARRIER into a NOTE
		       because it is too short; but we can really delete
		       it because it is not part of a basic block.  */
		    if (NEXT_INSN (insn) != 0
			&& GET_CODE (NEXT_INSN (insn)) == BARRIER)
		      delete_insn (NEXT_INSN (insn));
		    break;
		  }
		insn = NEXT_INSN (insn);
	      }
	    /* Each time we delete some basic blocks,
	       see if there is a jump around them that is
	       being turned into a no-op.  If so, delete it.  */

	    if (block_live[i - 1])
	      {
		register int j;
		for (j = i; j < n_basic_blocks; j++)
		  if (block_live[j])
		    {
		      rtx label;
		      insn = basic_block_end[i - 1];
		      if (GET_CODE (insn) == JUMP_INSN
			  /* An unconditional jump is the only possibility
			     we must check for, since a conditional one
			     would make these blocks live.  */
			  && simplejump_p (insn)
			  && (label = XEXP (SET_SRC (PATTERN (insn)), 0), 1)
			  && INSN_UID (label) != 0
			  && BLOCK_NUM (label) == j)
			{
			  PUT_CODE (insn, NOTE);
			  NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
			  NOTE_SOURCE_FILE (insn) = 0;
			  if (GET_CODE (NEXT_INSN (insn)) != BARRIER)
			    abort ();
			  delete_insn (NEXT_INSN (insn));
			}
		      break;
		    }
	      }
	  }
    }
}

/* Check expression X for label references;
   if one is found, add INSN to the label's chain of references.

   CHECKDUP means check for and avoid creating duplicate references
   from the same insn.  Such duplicates do no serious harm but
   can slow life analysis.  CHECKDUP is set only when duplicates
   are likely.  */

static void
mark_label_ref (x, insn, checkdup)
     rtx x, insn;
     int checkdup;
{
  register RTX_CODE code;
  register int i;
  register char *fmt;

  /* We can be called with NULL when scanning label_value_list.  */
  if (x == 0)
    return;

  code = GET_CODE (x);
  if (code == LABEL_REF)
    {
      register rtx label = XEXP (x, 0);
      register rtx y;
      if (GET_CODE (label) != CODE_LABEL)
	abort ();
      /* If the label was never emitted, this insn is junk,
	 but avoid a crash trying to refer to BLOCK_NUM (label).
	 This can happen as a result of a syntax error
	 and a diagnostic has already been printed.  */
      if (INSN_UID (label) == 0)
	return;
      CONTAINING_INSN (x) = insn;
      /* if CHECKDUP is set, check for duplicate ref from same insn
	 and don't insert.  */
      if (checkdup)
	for (y = LABEL_REFS (label); y != label; y = LABEL_NEXTREF (y))
	  if (CONTAINING_INSN (y) == insn)
	    return;
      LABEL_NEXTREF (x) = LABEL_REFS (label);
      LABEL_REFS (label) = x;
      block_live_static[BLOCK_NUM (label)] = 1;
      return;
    }

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'e')
	mark_label_ref (XEXP (x, i), insn, 0);
      if (fmt[i] == 'E')
	{
	  register int j;
	  for (j = 0; j < XVECLEN (x, i); j++)
	    mark_label_ref (XVECEXP (x, i, j), insn, 1);
	}
    }
}

/* Determine which registers are live at the start of each
   basic block of the function whose first insn is F.
   NREGS is the number of registers used in F.
   We allocate the vector basic_block_live_at_start
   and the regsets that it points to, and fill them with the data.
   regset_size and regset_bytes are also set here.  */

static void
life_analysis (f, nregs)
     rtx f;
     int nregs;
{
  register regset tem;
  int first_pass;
  int changed;
  /* For each basic block, a bitmask of regs
     live on exit from the block.  */
  regset *basic_block_live_at_end;
  /* For each basic block, a bitmask of regs
     live on entry to a successor-block of this block.
     If this does not match basic_block_live_at_end,
     that must be updated, and the block must be rescanned.  */
  regset *basic_block_new_live_at_end;
  /* For each basic block, a bitmask of regs
     whose liveness at the end of the basic block
     can make a difference in which regs are live on entry to the block.
     These are the regs that are set within the basic block,
     possibly excluding those that are used after they are set.  */
  regset *basic_block_significant;
  register int i;
  rtx insn;

  struct obstack flow_obstack;

  gcc_obstack_init (&flow_obstack);

  max_regno = nregs;

  bzero (regs_ever_live, sizeof regs_ever_live);

  /* Allocate and zero out many data structures
     that will record the data from lifetime analysis.  */

  allocate_for_life_analysis ();

  reg_next_use = (rtx *) alloca (nregs * sizeof (rtx));
  bzero (reg_next_use, nregs * sizeof (rtx));

  /* Set up several regset-vectors used internally within this function.
     Their meanings are documented above, with their declarations.  */

  basic_block_live_at_end = (regset *) alloca (n_basic_blocks * sizeof (regset));
  /* Don't use alloca since that leads to a crash rather than an error message
     if there isn't enough space.
     Don't use oballoc since we may need to allocate other things during
     this function on the temporary obstack.  */
  tem = (regset) obstack_alloc (&flow_obstack, n_basic_blocks * regset_bytes);
  bzero (tem, n_basic_blocks * regset_bytes);
  init_regset_vector (basic_block_live_at_end, tem, n_basic_blocks, regset_bytes);

  basic_block_new_live_at_end = (regset *) alloca (n_basic_blocks * sizeof (regset));
  tem = (regset) obstack_alloc (&flow_obstack, n_basic_blocks * regset_bytes);
  bzero (tem, n_basic_blocks * regset_bytes);
  init_regset_vector (basic_block_new_live_at_end, tem, n_basic_blocks, regset_bytes);

  basic_block_significant = (regset *) alloca (n_basic_blocks * sizeof (regset));
  tem = (regset) obstack_alloc (&flow_obstack, n_basic_blocks * regset_bytes);
  bzero (tem, n_basic_blocks * regset_bytes);
  init_regset_vector (basic_block_significant, tem, n_basic_blocks, regset_bytes);

  /* Record which insns refer to any volatile memory
     or for any reason can't be deleted just because they are dead stores.
     Also, delete any insns that copy a register to itself. */

  for (insn = f; insn; insn = NEXT_INSN (insn))
    {
      enum rtx_code code1 = GET_CODE (insn);
      if (code1 == CALL_INSN)
	INSN_VOLATILE (insn) = 1;
      else if (code1 == INSN || code1 == JUMP_INSN)
	{
	  /* Delete (in effect) any obvious no-op moves.  */
	  if (GET_CODE (PATTERN (insn)) == SET
	      && GET_CODE (SET_DEST (PATTERN (insn))) == REG
	      && GET_CODE (SET_SRC (PATTERN (insn))) == REG
	      && REGNO (SET_DEST (PATTERN (insn))) ==
			REGNO (SET_SRC (PATTERN (insn)))
	      /* Insns carrying these notes are useful later on.  */
	      && ! find_reg_note (insn, REG_EQUAL, 0))
	    {
	      PUT_CODE (insn, NOTE);
	      NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
	      NOTE_SOURCE_FILE (insn) = 0;
	    }
	  else if (GET_CODE (PATTERN (insn)) == PARALLEL)
	    {
	      /* If nothing but SETs of registers to themselves,
		 this insn can also be deleted.  */
	      for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
		{
		  rtx tem = XVECEXP (PATTERN (insn), 0, i);

		  if (GET_CODE (tem) == USE
		      || GET_CODE (tem) == CLOBBER)
		    continue;
		    
		  if (GET_CODE (tem) != SET
		      || GET_CODE (SET_DEST (tem)) != REG
		      || GET_CODE (SET_SRC (tem)) != REG
		      || REGNO (SET_DEST (tem)) != REGNO (SET_SRC (tem)))
		    break;
		}
		
	      if (i == XVECLEN (PATTERN (insn), 0)
		  /* Insns carrying these notes are useful later on.  */
		  && ! find_reg_note (insn, REG_EQUAL, 0))
		{
		  PUT_CODE (insn, NOTE);
		  NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
		  NOTE_SOURCE_FILE (insn) = 0;
		}
	      else
		INSN_VOLATILE (insn) = volatile_refs_p (PATTERN (insn));
	    }
	  else if (GET_CODE (PATTERN (insn)) != USE)
	    INSN_VOLATILE (insn) = volatile_refs_p (PATTERN (insn));
	  /* A SET that makes space on the stack cannot be dead.
	     (Such SETs occur only for allocating variable-size data,
	     so they will always have a PLUS or MINUS according to the
	     direction of stack growth.)
	     Even if this function never uses this stack pointer value,
	     signal handlers do!  */
	  else if (code1 == INSN && GET_CODE (PATTERN (insn)) == SET
		   && SET_DEST (PATTERN (insn)) == stack_pointer_rtx
#ifdef STACK_GROWS_DOWNWARD
		   && GET_CODE (SET_SRC (PATTERN (insn))) == MINUS
#else
		   && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
#endif
		   && XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx)
	    INSN_VOLATILE (insn) = 1;
	}
    }

  if (n_basic_blocks > 0)
#ifdef EXIT_IGNORE_STACK
    if (! EXIT_IGNORE_STACK
	|| (! FRAME_POINTER_REQUIRED && flag_omit_frame_pointer))
#endif
      {
	/* If exiting needs the right stack value,
	   consider the stack pointer live at the end of the function.  */
	basic_block_live_at_end[n_basic_blocks - 1]
	  [STACK_POINTER_REGNUM / REGSET_ELT_BITS]
	    |= 1 << (STACK_POINTER_REGNUM % REGSET_ELT_BITS);
	basic_block_new_live_at_end[n_basic_blocks - 1]
	  [STACK_POINTER_REGNUM / REGSET_ELT_BITS]
	    |= 1 << (STACK_POINTER_REGNUM % REGSET_ELT_BITS);
      }

  /* Mark all global registers as being live at the end of the function
     since they may be referenced by our caller.  */

  if (n_basic_blocks > 0)
    for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
      if (global_regs[i])
	{
	  basic_block_live_at_end[n_basic_blocks - 1]
	    [i / REGSET_ELT_BITS] |= 1 << (i % REGSET_ELT_BITS);
	  basic_block_new_live_at_end[n_basic_blocks - 1]
	    [i / REGSET_ELT_BITS] |= 1 << (i % REGSET_ELT_BITS);
	}

  /* Propagate life info through the basic blocks
     around the graph of basic blocks.

     This is a relaxation process: each time a new register
     is live at the end of the basic block, we must scan the block
     to determine which registers are, as a consequence, live at the beginning
     of that block.  These registers must then be marked live at the ends
     of all the blocks that can transfer control to that block.
     The process continues until it reaches a fixed point.  */

  first_pass = 1;
  changed = 1;
  while (changed)
    {
      changed = 0;
      for (i = n_basic_blocks - 1; i >= 0; i--)
	{
	  int consider = first_pass;
	  int must_rescan = first_pass;
	  register int j;

	  if (!first_pass)
	    {
	      /* Set CONSIDER if this block needs thinking about at all
		 (that is, if the regs live now at the end of it
		 are not the same as were live at the end of it when
		 we last thought about it).
		 Set must_rescan if it needs to be thought about
		 instruction by instruction (that is, if any additional
		 reg that is live at the end now but was not live there before
		 is one of the significant regs of this basic block).  */

	      for (j = 0; j < regset_size; j++)
		{
		  register int x = (basic_block_new_live_at_end[i][j]
				    & ~basic_block_live_at_end[i][j]);
		  if (x)
		    consider = 1;
		  if (x & basic_block_significant[i][j])
		    {
		      must_rescan = 1;
		      consider = 1;
		      break;
		    }
		}

	      if (! consider)
		continue;
	    }

	  /* The live_at_start of this block may be changing,
	     so another pass will be required after this one.  */
	  changed = 1;

	  if (! must_rescan)
	    {
	      /* No complete rescan needed;
		 just record those variables newly known live at end
		 as live at start as well.  */
	      for (j = 0; j < regset_size; j++)
		{
		  register int x = basic_block_new_live_at_end[i][j]
			& ~basic_block_live_at_end[i][j];
		  basic_block_live_at_start[i][j] |= x;
		  basic_block_live_at_end[i][j] |= x;
		}
	    }
	  else
	    {
	      /* Update the basic_block_live_at_start
		 by propagation backwards through the block.  */
	      bcopy (basic_block_new_live_at_end[i],
		     basic_block_live_at_end[i], regset_bytes);
	      bcopy (basic_block_live_at_end[i],
		     basic_block_live_at_start[i], regset_bytes);
	      propagate_block (basic_block_live_at_start[i],
			       basic_block_head[i], basic_block_end[i], 0,
			       first_pass ? basic_block_significant[i] : 0,
			       i);
	    }

	  {
	    register rtx jump, head;
	    /* Update the basic_block_new_live_at_end's of the block
	       that falls through into this one (if any).  */
	    head = basic_block_head[i];
	    jump = PREV_INSN (head);
	    if (basic_block_drops_in[i])
	      {
		register int from_block = BLOCK_NUM (jump);
		register int j;
		for (j = 0; j < regset_size; j++)
		  basic_block_new_live_at_end[from_block][j]
		    |= basic_block_live_at_start[i][j];
	      }
	    /* Update the basic_block_new_live_at_end's of
	       all the blocks that jump to this one.  */
	    if (GET_CODE (head) == CODE_LABEL)
	      for (jump = LABEL_REFS (head);
		   jump != head;
		   jump = LABEL_NEXTREF (jump))
		{
		  register int from_block = BLOCK_NUM (CONTAINING_INSN (jump));
		  register int j;
		  for (j = 0; j < regset_size; j++)
		    basic_block_new_live_at_end[from_block][j]
		      |= basic_block_live_at_start[i][j];
		}
	  }
#ifdef USE_C_ALLOCA
	  alloca (0);
#endif
	}
      first_pass = 0;
    }

  /* The only pseudos that are live at the beginning of the function are
     those that were not set anywhere in the function.  local-alloc doesn't
     know how to handle these correctly, so mark them as not local to any
     one basic block.  */

  if (n_basic_blocks > 0)
    for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
      if (basic_block_live_at_start[0][i / REGSET_ELT_BITS]
	  & (1 << (i % REGSET_ELT_BITS)))
	reg_basic_block[i] = REG_BLOCK_GLOBAL;

  /* Now the life information is accurate.
     Make one more pass over each basic block
     to delete dead stores, create autoincrement addressing
     and record how many times each register is used, is set, or dies.

     To save time, we operate directly in basic_block_live_at_end[i],
     thus destroying it (in fact, converting it into a copy of
     basic_block_live_at_start[i]).  This is ok now because
     basic_block_live_at_end[i] is no longer used past this point.  */

  max_scratch = 0;

  for (i = 0; i < n_basic_blocks; i++)
    {
      propagate_block (basic_block_live_at_end[i],
		       basic_block_head[i], basic_block_end[i], 1, 0, i);
#ifdef USE_C_ALLOCA
      alloca (0);
#endif
    }

#if 0
  /* Something live during a setjmp should not be put in a register
     on certain machines which restore regs from stack frames
     rather than from the jmpbuf.
     But we don't need to do this for the user's variables, since
     ANSI says only volatile variables need this.  */
#ifdef LONGJMP_RESTORE_FROM_STACK
  for (i = FIRST_PSEUDO_REGISTER; i < nregs; i++)
    if (regs_live_at_setjmp[i / REGSET_ELT_BITS] & (1 << (i % REGSET_ELT_BITS))
	&& regno_reg_rtx[i] != 0 && ! REG_USERVAR_P (regno_reg_rtx[i]))
      {
	reg_live_length[i] = -1;
	reg_basic_block[i] = -1;
      }
#endif
#endif

  /* We have a problem with any pseudoreg that
     lives across the setjmp.  ANSI says that if a
     user variable does not change in value
     between the setjmp and the longjmp, then the longjmp preserves it.
     This includes longjmp from a place where the pseudo appears dead.
     (In principle, the value still exists if it is in scope.)
     If the pseudo goes in a hard reg, some other value may occupy
     that hard reg where this pseudo is dead, thus clobbering the pseudo.
     Conclusion: such a pseudo must not go in a hard reg.  */
  for (i = FIRST_PSEUDO_REGISTER; i < nregs; i++)
    if (regs_live_at_setjmp[i / REGSET_ELT_BITS] & (1 << (i % REGSET_ELT_BITS))
	&& regno_reg_rtx[i] != 0)
      {
	reg_live_length[i] = -1;
	reg_basic_block[i] = -1;
      }

  obstack_free (&flow_obstack, 0);
}

/* Subroutines of life analysis.  */

/* Allocate the permanent data structures that represent the results
   of life analysis.  Not static since used also for stupid life analysis.  */

void
allocate_for_life_analysis ()
{
  register int i;
  register regset tem;

  regset_size = ((max_regno + REGSET_ELT_BITS - 1) / REGSET_ELT_BITS);
  regset_bytes = regset_size * sizeof (*(regset)0);

  reg_n_refs = (int *) oballoc (max_regno * sizeof (int));
  bzero (reg_n_refs, max_regno * sizeof (int));

  reg_n_sets = (short *) oballoc (max_regno * sizeof (short));
  bzero (reg_n_sets, max_regno * sizeof (short));

  reg_n_deaths = (short *) oballoc (max_regno * sizeof (short));
  bzero (reg_n_deaths, max_regno * sizeof (short));

  reg_live_length = (int *) oballoc (max_regno * sizeof (int));
  bzero (reg_live_length, max_regno * sizeof (int));

  reg_n_calls_crossed = (int *) oballoc (max_regno * sizeof (int));
  bzero (reg_n_calls_crossed, max_regno * sizeof (int));

  reg_basic_block = (short *) oballoc (max_regno * sizeof (short));
  for (i = 0; i < max_regno; i++)
    reg_basic_block[i] = REG_BLOCK_UNKNOWN;

  basic_block_live_at_start = (regset *) oballoc (n_basic_blocks * sizeof (regset));
  tem = (regset) oballoc (n_basic_blocks * regset_bytes);
  bzero (tem, n_basic_blocks * regset_bytes);
  init_regset_vector (basic_block_live_at_start, tem, n_basic_blocks, regset_bytes);

  regs_live_at_setjmp = (regset) oballoc (regset_bytes);
  bzero (regs_live_at_setjmp, regset_bytes);
}

/* Make each element of VECTOR point at a regset,
   taking the space for all those regsets from SPACE.
   SPACE is of type regset, but it is really as long as NELTS regsets.
   BYTES_PER_ELT is the number of bytes in one regset.  */

static void
init_regset_vector (vector, space, nelts, bytes_per_elt)
     regset *vector;
     regset space;
     int nelts;
     int bytes_per_elt;
{
  register int i;
  register regset p = space;

  for (i = 0; i < nelts; i++)
    {
      vector[i] = p;
      p += bytes_per_elt / sizeof (*p);
    }
}

/* Compute the registers live at the beginning of a basic block
   from those live at the end.

   When called, OLD contains those live at the end.
   On return, it contains those live at the beginning.
   FIRST and LAST are the first and last insns of the basic block.

   FINAL is nonzero if we are doing the final pass which is not
   for computing the life info (since that has already been done)
   but for acting on it.  On this pass, we delete dead stores,
   set up the logical links and dead-variables lists of instructions,
   and merge instructions for autoincrement and autodecrement addresses.

   SIGNIFICANT is nonzero only the first time for each basic block.
   If it is nonzero, it points to a regset in which we store
   a 1 for each register that is set within the block.

   BNUM is the number of the basic block.  */

static void
propagate_block (old, first, last, final, significant, bnum)
     register regset old;
     rtx first;
     rtx last;
     int final;
     regset significant;
     int bnum;
{
  register rtx insn;
  rtx prev;
  regset live;
  regset dead;

  /* The following variables are used only if FINAL is nonzero.  */
  /* This vector gets one element for each reg that has been live
     at any point in the basic block that has been scanned so far.
     SOMETIMES_MAX says how many elements are in use so far.
     In each element, OFFSET is the byte-number within a regset
     for the register described by the element, and BIT is a mask
     for that register's bit within the byte.  */
  register struct foo { short offset; short bit; } *regs_sometimes_live;
  int sometimes_max = 0;
  /* This regset has 1 for each reg that we have seen live so far.
     It and REGS_SOMETIMES_LIVE are updated together.  */
  regset maxlive;

  /* The loop depth may change in the middle of a basic block.  Since we
     scan from end to beginning, we start with the depth at the end of the
     current basic block, and adjust as we pass ends and starts of loops.  */
  loop_depth = basic_block_loop_depth[bnum];

  dead = (regset) alloca (regset_bytes);
  live = (regset) alloca (regset_bytes);

  cc0_live = 0;
  last_mem_set = 0;

  /* Include any notes at the end of the block in the scan.
     This is in case the block ends with a call to setjmp.  */

  while (NEXT_INSN (last) != 0 && GET_CODE (NEXT_INSN (last)) == NOTE)
    {
      /* Look for loop boundaries, we are going forward here.  */
      last = NEXT_INSN (last);
      if (NOTE_LINE_NUMBER (last) == NOTE_INSN_LOOP_BEG)
	loop_depth++;
      else if (NOTE_LINE_NUMBER (last) == NOTE_INSN_LOOP_END)
	loop_depth--;
    }

  if (final)
    {
      register int i, offset, bit;

      num_scratch = 0;
      maxlive = (regset) alloca (regset_bytes);
      bcopy (old, maxlive, regset_bytes);
      regs_sometimes_live
	= (struct foo *) alloca (max_regno * sizeof (struct foo));

      /* Process the regs live at the end of the block.
	 Enter them in MAXLIVE and REGS_SOMETIMES_LIVE.
	 Also mark them as not local to any one basic block.  */

      for (offset = 0, i = 0; offset < regset_size; offset++)
	for (bit = 1; bit; bit <<= 1, i++)
	  {
	    if (i == max_regno)
	      break;
	    if (old[offset] & bit)
	      {
		reg_basic_block[i] = REG_BLOCK_GLOBAL;
		regs_sometimes_live[sometimes_max].offset = offset;
		regs_sometimes_live[sometimes_max].bit = i % REGSET_ELT_BITS;
		sometimes_max++;
	      }
	  }
    }

  /* Scan the block an insn at a time from end to beginning.  */

  for (insn = last; ; insn = prev)
    {
      prev = PREV_INSN (insn);

      /* Look for loop boundaries, remembering that we are going backwards.  */
      if (GET_CODE (insn) == NOTE
	  && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
	loop_depth++;
      else if (GET_CODE (insn) == NOTE
	       && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
	loop_depth--;

      /* If we have LOOP_DEPTH == 0, there has been a bookkeeping error. 
	 Abort now rather than setting register status incorrectly.  */
      if (loop_depth == 0)
	abort ();

      /* If this is a call to `setjmp' et al,
	 warn if any non-volatile datum is live.  */

      if (final && GET_CODE (insn) == NOTE
	  && NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP)
	{
	  int i;
	  for (i = 0; i < regset_size; i++)
	    regs_live_at_setjmp[i] |= old[i];
	}

      /* Update the life-status of regs for this insn.
	 First DEAD gets which regs are set in this insn
	 then LIVE gets which regs are used in this insn.
	 Then the regs live before the insn
	 are those live after, with DEAD regs turned off,
	 and then LIVE regs turned on.  */

      if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
	{
	  register int i;
	  rtx note = find_reg_note (insn, REG_RETVAL, 0);
	  int insn_is_dead
	    = (insn_dead_p (PATTERN (insn), old, 0)
	       /* Don't delete something that refers to volatile storage!  */
	       && ! INSN_VOLATILE (insn));
	  int libcall_is_dead 
	    = (insn_is_dead && note != 0
	       && libcall_dead_p (PATTERN (insn), old, note, insn));

	  /* If an instruction consists of just dead store(s) on final pass,
	     "delete" it by turning it into a NOTE of type NOTE_INSN_DELETED.
	     We could really delete it with delete_insn, but that
	     can cause trouble for first or last insn in a basic block.  */
	  if (final && insn_is_dead)
	    {
	      PUT_CODE (insn, NOTE);
	      NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
	      NOTE_SOURCE_FILE (insn) = 0;

	      /* CC0 is now known to be dead.  Either this insn used it,
		 in which case it doesn't anymore, or clobbered it,
		 so the next insn can't use it.  */
	      cc0_live = 0;

	      /* If this insn is copying the return value from a library call,
		 delete the entire library call.  */
	      if (libcall_is_dead)
		{
		  rtx first = XEXP (note, 0);
		  rtx p = insn;
		  while (INSN_DELETED_P (first))
		    first = NEXT_INSN (first);
		  while (p != first)
		    {
		      p = PREV_INSN (p);
		      PUT_CODE (p, NOTE);
		      NOTE_LINE_NUMBER (p) = NOTE_INSN_DELETED;
		      NOTE_SOURCE_FILE (p) = 0;
		    }
		}
	      goto flushed;
	    }

	  for (i = 0; i < regset_size; i++)
	    {
	      dead[i] = 0;	/* Faster than bzero here */
	      live[i] = 0;	/* since regset_size is usually small */
	    }

	  /* See if this is an increment or decrement that can be
	     merged into a following memory address.  */
#ifdef AUTO_INC_DEC
	  {
	    register rtx x = PATTERN (insn);
	    /* Does this instruction increment or decrement a register?  */
	    if (final && GET_CODE (x) == SET
		&& GET_CODE (SET_DEST (x)) == REG
		&& (GET_CODE (SET_SRC (x)) == PLUS
		    || GET_CODE (SET_SRC (x)) == MINUS)
		&& XEXP (SET_SRC (x), 0) == SET_DEST (x)
		&& GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
		/* Ok, look for a following memory ref we can combine with.
		   If one is found, change the memory ref to a PRE_INC
		   or PRE_DEC, cancel this insn, and return 1.
		   Return 0 if nothing has been done.  */
		&& try_pre_increment_1 (insn))
	      goto flushed;
	  }
#endif /* AUTO_INC_DEC */

	  /* If this is not the final pass, and this insn is copying the
	     value of a library call and it's dead, don't scan the
	     insns that perform the library call, so that the call's
	     arguments are not marked live.  */
	  if (libcall_is_dead)
	    {
	      /* Mark the dest reg as `significant'.  */
	      mark_set_regs (old, dead, PATTERN (insn), 0, significant);

	      insn = XEXP (note, 0);
	      prev = PREV_INSN (insn);
	    }
	  else if (GET_CODE (PATTERN (insn)) == SET
		   && SET_DEST (PATTERN (insn)) == stack_pointer_rtx
		   && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
		   && XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx
		   && GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 1)) == CONST_INT)
	    /* We have an insn to pop a constant amount off the stack.
	       (Such insns use PLUS regardless of the direction of the stack,
	       and any insn to adjust the stack by a constant is always a pop.)
	       These insns, if not dead stores, have no effect on life.  */
	    ;
	  else
	    {
	      /* LIVE gets the regs used in INSN;
		 DEAD gets those set by it.  Dead insns don't make anything
		 live.  */

	      mark_set_regs (old, dead, PATTERN (insn), final ? insn : 0,
			     significant);

	      /* If an insn doesn't use CC0, it becomes dead since we 
		 assume that every insn clobbers it.  So show it dead here;
		 mark_used_regs will set it live if it is referenced.  */
	      cc0_live = 0;

	      if (! insn_is_dead)
		mark_used_regs (old, live, PATTERN (insn), final, insn);

	      /* Sometimes we may have inserted something before INSN (such as
		 a move) when we make an auto-inc.  So ensure we will scan
		 those insns.  */
#ifdef AUTO_INC_DEC
	      prev = PREV_INSN (insn);
#endif

	      if (! insn_is_dead && GET_CODE (insn) == CALL_INSN)
		{
		  register int i;

		  /* Each call clobbers all call-clobbered regs that are not
		     global.  Note that the function-value reg is a
		     call-clobbered reg, and mark_set_regs has already had
		     a chance to handle it.  */

		  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
		    if (call_used_regs[i] && ! global_regs[i])
		      dead[i / REGSET_ELT_BITS]
			|= (1 << (i % REGSET_ELT_BITS));

		  /* The stack ptr is used (honorarily) by a CALL insn.  */
		  live[STACK_POINTER_REGNUM / REGSET_ELT_BITS]
		    |= (1 << (STACK_POINTER_REGNUM % REGSET_ELT_BITS));

		  /* Calls may also reference any of the global registers,
		     so they are made live.  */

		  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
		    if (global_regs[i])
		      live[i / REGSET_ELT_BITS]
			|= (1 << (i % REGSET_ELT_BITS));

		  /* Calls also clobber memory.  */
		  last_mem_set = 0;
		}

	      /* Update OLD for the registers used or set.  */
	      for (i = 0; i < regset_size; i++)
		{
		  old[i] &= ~dead[i];
		  old[i] |= live[i];
		}

	      if (GET_CODE (insn) == CALL_INSN && final)
		{
		  /* Any regs live at the time of a call instruction
		     must not go in a register clobbered by calls.
		     Find all regs now live and record this for them.  */

		  register struct foo *p = regs_sometimes_live;

		  for (i = 0; i < sometimes_max; i++, p++)
		    if (old[p->offset] & (1 << p->bit))
		      reg_n_calls_crossed[p->offset * REGSET_ELT_BITS + p->bit]+= 1;
		}
	    }

	  /* On final pass, add any additional sometimes-live regs
	     into MAXLIVE and REGS_SOMETIMES_LIVE.
	     Also update counts of how many insns each reg is live at.  */

	  if (final)
	    {
	      for (i = 0; i < regset_size; i++)
		{
		  register int diff = live[i] & ~maxlive[i];

		  if (diff)
		    {
		      register int regno;
		      maxlive[i] |= diff;
		      for (regno = 0; diff && regno < REGSET_ELT_BITS; regno++)
			if (diff & (1 << regno))
			  {
			    regs_sometimes_live[sometimes_max].offset = i;
			    regs_sometimes_live[sometimes_max].bit = regno;
			    diff &= ~ (1 << regno);
			    sometimes_max++;
			  }
		    }
		}

	      {
		register struct foo *p = regs_sometimes_live;
		for (i = 0; i < sometimes_max; i++, p++)
		  {
		    if (old[p->offset] & (1 << p->bit))
		      reg_live_length[p->offset * REGSET_ELT_BITS + p->bit]++;
		  }
	      }
	    }
	}
    flushed: ;
      if (insn == first)
	break;
    }

  if (num_scratch > max_scratch)
    max_scratch = num_scratch;
}

/* Return 1 if X (the body of an insn, or part of it) is just dead stores
   (SET expressions whose destinations are registers dead after the insn).
   NEEDED is the regset that says which regs are alive after the insn.

   Unless CALL_OK is non-zero, an insn is needed if it contains a CALL.  */

static int
insn_dead_p (x, needed, call_ok)
     rtx x;
     regset needed;
     int call_ok;
{
  register RTX_CODE code = GET_CODE (x);
  /* If setting something that's a reg or part of one,
     see if that register's altered value will be live.  */

  if (code == SET)
    {
      register rtx r = SET_DEST (x);
      /* A SET that is a subroutine call cannot be dead.  */
      if (! call_ok && GET_CODE (SET_SRC (x)) == CALL)
	return 0;

#ifdef HAVE_cc0
      if (GET_CODE (r) == CC0)
	return ! cc0_live;
#endif
      
      if (GET_CODE (r) == MEM && last_mem_set && ! MEM_VOLATILE_P (r)
	  && rtx_equal_p (r, last_mem_set))
	return 1;

      while (GET_CODE (r) == SUBREG
	     || GET_CODE (r) == STRICT_LOW_PART
	     || GET_CODE (r) == ZERO_EXTRACT
	     || GET_CODE (r) == SIGN_EXTRACT)
	r = SUBREG_REG (r);

      if (GET_CODE (r) == REG)
	{
	  register int regno = REGNO (r);
	  register int offset = regno / REGSET_ELT_BITS;
	  register int bit = 1 << (regno % REGSET_ELT_BITS);

	  if ((regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
	      /* Make sure insns to set frame pointer aren't deleted.  */
	      || regno == FRAME_POINTER_REGNUM
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
	      /* Make sure insns to set arg pointer are never deleted
		 (if the arg pointer isn't fixed, there will be a USE for
		 it, so we can treat it normally). */
	      || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
#endif
	      || (needed[offset] & bit) != 0)
	    return 0;

	  /* If this is a hard register, verify that subsequent words are
	     not needed.  */
	  if (regno < FIRST_PSEUDO_REGISTER)
	    {
	      int n = HARD_REGNO_NREGS (regno, GET_MODE (r));

	      while (--n > 0)
		if ((needed[(regno + n) / REGSET_ELT_BITS]
		     & 1 << ((regno + n) % REGSET_ELT_BITS)) != 0)
		  return 0;
	    }

	  return 1;
	}
    }
  /* If performing several activities,
     insn is dead if each activity is individually dead.
     Also, CLOBBERs and USEs can be ignored; a CLOBBER or USE
     that's inside a PARALLEL doesn't make the insn worth keeping.  */
  else if (code == PARALLEL)
    {
      register int i = XVECLEN (x, 0);
      for (i--; i >= 0; i--)
	{
	  rtx elt = XVECEXP (x, 0, i);
	  if (!insn_dead_p (elt, needed, call_ok)
	      && GET_CODE (elt) != CLOBBER
	      && GET_CODE (elt) != USE)
	    return 0;
	}
      return 1;
    }
  /* We do not check CLOBBER or USE here.
     An insn consisting of just a CLOBBER or just a USE
     should not be deleted.  */
  return 0;
}

/* If X is the pattern of the last insn in a libcall, and assuming X is dead,
   return 1 if the entire library call is dead.
   This is true if X copies a register (hard or pseudo)
   and if the hard return  reg of the call insn is dead.
   (The caller should have tested the destination of X already for death.)

   If this insn doesn't just copy a register, then we don't
   have an ordinary libcall.  In that case, cse could not have
   managed to substitute the source for the dest later on,
   so we can assume the libcall is dead.

   NEEDED is the bit vector of pseudoregs live before this insn.
   NOTE is the REG_RETVAL note of the insn.  INSN is the insn itself.  */

static int
libcall_dead_p (x, needed, note, insn)
     rtx x;
     regset needed;
     rtx note;
     rtx insn;
{
  register RTX_CODE code = GET_CODE (x);

  if (code == SET)
    {
      register rtx r = SET_SRC (x);
      if (GET_CODE (r) == REG)
	{
	  rtx call = XEXP (note, 0);
	  register int i;

	  /* Find the call insn.  */
	  while (call != insn && GET_CODE (call) != CALL_INSN)
	    call = NEXT_INSN (call);

	  /* If there is none, do nothing special,
	     since ordinary death handling can understand these insns.  */
	  if (call == insn)
	    return 0;

	  /* See if the hard reg holding the value is dead.
	     If this is a PARALLEL, find the call within it.  */
	  call = PATTERN (call);
	  if (GET_CODE (call) == PARALLEL)
	    {
	      for (i = XVECLEN (call, 0) - 1; i >= 0; i--)
		if (GET_CODE (XVECEXP (call, 0, i)) == SET
		    && GET_CODE (SET_SRC (XVECEXP (call, 0, i))) == CALL)
		  break;

	      if (i < 0)
		abort ();

	      call = XVECEXP (call, 0, i);
	    }

	  return insn_dead_p (call, needed, 1);
	}
    }
  return 1;
}

/* Return 1 if register REGNO was used before it was set.
   In other words, if it is live at function entry.  */

int
regno_uninitialized (regno)
     int regno;
{
  if (n_basic_blocks == 0)
    return 0;

  return (basic_block_live_at_start[0][regno / REGSET_ELT_BITS]
	  & (1 << (regno % REGSET_ELT_BITS)));
}

/* 1 if register REGNO was alive at a place where `setjmp' was called
   and was set more than once or is an argument.
   Such regs may be clobbered by `longjmp'.  */

int
regno_clobbered_at_setjmp (regno)
     int regno;
{
  if (n_basic_blocks == 0)
    return 0;

  return ((reg_n_sets[regno] > 1
	   || (basic_block_live_at_start[0][regno / REGSET_ELT_BITS]
	       & (1 << (regno % REGSET_ELT_BITS))))
	  && (regs_live_at_setjmp[regno / REGSET_ELT_BITS]
	      & (1 << (regno % REGSET_ELT_BITS))));
}

/* Process the registers that are set within X.
   Their bits are set to 1 in the regset DEAD,
   because they are dead prior to this insn.

   If INSN is nonzero, it is the insn being processed
   and the fact that it is nonzero implies this is the FINAL pass
   in propagate_block.  In this case, various info about register
   usage is stored, LOG_LINKS fields of insns are set up.  */

static void mark_set_1 ();

static void
mark_set_regs (needed, dead, x, insn, significant)
     regset needed;
     regset dead;
     rtx x;
     rtx insn;
     regset significant;
{
  register RTX_CODE code = GET_CODE (x);

  if (code == SET || code == CLOBBER)
    mark_set_1 (needed, dead, x, insn, significant);
  else if (code == PARALLEL)
    {
      register int i;
      for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
	{
	  code = GET_CODE (XVECEXP (x, 0, i));
	  if (code == SET || code == CLOBBER)
	    mark_set_1 (needed, dead, XVECEXP (x, 0, i), insn, significant);
	}
    }
}

/* Process a single SET rtx, X.  */

static void
mark_set_1 (needed, dead, x, insn, significant)
     regset needed;
     regset dead;
     rtx x;
     rtx insn;
     regset significant;
{
  register int regno;
  register rtx reg = SET_DEST (x);

  /* Modifying just one hardware register of a multi-reg value
     or just a byte field of a register
     does not mean the value from before this insn is now dead.
     But it does mean liveness of that register at the end of the block
     is significant.

     Within mark_set_1, however, we treat it as if the register is
     indeed modified.  mark_used_regs will, however, also treat this
     register as being used.  Thus, we treat these insns as setting a
     new value for the register as a function of its old value.  This
     cases LOG_LINKS to be made appropriately and this will help combine.  */

  while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
	 || GET_CODE (reg) == SIGN_EXTRACT
	 || GET_CODE (reg) == STRICT_LOW_PART)
    reg = XEXP (reg, 0);

  /* If we are writing into memory or into a register mentioned in the
     address of the last thing stored into memory, show we don't know
     what the last store was.  If we are writing memory, save the address
     unless it is volatile.  */
  if (GET_CODE (reg) == MEM
      || (GET_CODE (reg) == REG
	  && last_mem_set != 0 && reg_overlap_mentioned_p (reg, last_mem_set)))
    last_mem_set = 0;
    
  if (GET_CODE (reg) == MEM && ! side_effects_p (reg)
      /* There are no REG_INC notes for SP, so we can't assume we'll see 
	 everything that invalidates it.  To be safe, don't eliminate any
	 stores though SP; none of them should be redundant anyway.  */
      && ! reg_mentioned_p (stack_pointer_rtx, reg))
    last_mem_set = reg;

  if (GET_CODE (reg) == REG
      && (regno = REGNO (reg), regno != FRAME_POINTER_REGNUM)
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
      && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
#endif
      && ! (regno < FIRST_PSEUDO_REGISTER && global_regs[regno]))
    /* && regno != STACK_POINTER_REGNUM) -- let's try without this.  */
    {
      register int offset = regno / REGSET_ELT_BITS;
      register int bit = 1 << (regno % REGSET_ELT_BITS);
      int all_needed = (needed[offset] & bit) != 0;
      int some_needed = (needed[offset] & bit) != 0;

      /* Mark it as a significant register for this basic block.  */
      if (significant)
	significant[offset] |= bit;

      /* Mark it as as dead before this insn.  */
      dead[offset] |= bit;

      /* A hard reg in a wide mode may really be multiple registers.
	 If so, mark all of them just like the first.  */
      if (regno < FIRST_PSEUDO_REGISTER)
	{
	  int n;

	  /* Nothing below is needed for the stack pointer; get out asap.
	     Eg, log links aren't needed, since combine won't use them.  */
	  if (regno == STACK_POINTER_REGNUM)
	    return;

	  n = HARD_REGNO_NREGS (regno, GET_MODE (reg));
	  while (--n > 0)
	    {
	      if (significant)
		significant[(regno + n) / REGSET_ELT_BITS]
		  |= 1 << ((regno + n) % REGSET_ELT_BITS);
	      dead[(regno + n) / REGSET_ELT_BITS]
		|= 1 << ((regno + n) % REGSET_ELT_BITS);
	      some_needed |= (needed[(regno + n) / REGSET_ELT_BITS]
			      & 1 << ((regno + n) % REGSET_ELT_BITS));
	      all_needed &= (needed[(regno + n) / REGSET_ELT_BITS]
			     & 1 << ((regno + n) % REGSET_ELT_BITS));
	    }
	}
      /* Additional data to record if this is the final pass.  */
      if (insn)
	{
	  register rtx y = reg_next_use[regno];
	  register int blocknum = BLOCK_NUM (insn);

	  /* If this is a hard reg, record this function uses the reg.  */

	  if (regno < FIRST_PSEUDO_REGISTER)
	    {
	      register int i;
	      int endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (reg));

	      for (i = regno; i < endregno; i++)
		{
		  regs_ever_live[i] = 1;
		  reg_n_sets[i]++;
		}
	    }
	  else
	    {
	      /* Keep track of which basic blocks each reg appears in.  */

	      if (reg_basic_block[regno] == REG_BLOCK_UNKNOWN)
		reg_basic_block[regno] = blocknum;
	      else if (reg_basic_block[regno] != blocknum)
		reg_basic_block[regno] = REG_BLOCK_GLOBAL;

	      /* Count (weighted) references, stores, etc.  This counts a
		 register twice if it is modified, but that is correct.  */
	      reg_n_sets[regno]++;

	      reg_n_refs[regno] += loop_depth;
		  
	      /* The insns where a reg is live are normally counted
		 elsewhere, but we want the count to include the insn
		 where the reg is set, and the normal counting mechanism
		 would not count it.  */
	      reg_live_length[regno]++;
	    }

	  /* The next use is no longer "next", since a store intervenes.  */
	  reg_next_use[regno] = 0;

	  if (all_needed)
	    {
	      /* Make a logical link from the next following insn
		 that uses this register, back to this insn.
		 The following insns have already been processed.

		 We don't build a LOG_LINK for hard registers containing
		 in ASM_OPERANDs.  If these registers get replaced,
		 we might wind up changing the semantics of the insn,
		 even if reload can make what appear to be valid assignments
		 later.  */
	      if (y && (BLOCK_NUM (y) == blocknum)
		  && (regno >= FIRST_PSEUDO_REGISTER
		      || asm_noperands (PATTERN (y)) < 0))
		LOG_LINKS (y)
		  = gen_rtx (INSN_LIST, VOIDmode, insn, LOG_LINKS (y));
	    }
	  else if (! some_needed)
	    {
	      /* Note that dead stores have already been deleted when possible
		 If we get here, we have found a dead store that cannot
		 be eliminated (because the same insn does something useful).
		 Indicate this by marking the reg being set as dying here.  */
	      REG_NOTES (insn)
		= gen_rtx (EXPR_LIST, REG_UNUSED, reg, REG_NOTES (insn));
	      reg_n_deaths[REGNO (reg)]++;
	    }
	  else
	    {
	      /* This is a case where we have a multi-word hard register
		 and some, but not all, of the words of the register are
		 needed in subsequent insns.  Write REG_UNUSED notes
		 for those parts that were not needed.  This case should
		 be rare.  */

	      int i;

	      for (i = HARD_REGNO_NREGS (regno, GET_MODE (reg)) - 1;
		   i >= 0; i--)
		if ((needed[(regno + i) / REGSET_ELT_BITS]
		     & 1 << ((regno + i) % REGSET_ELT_BITS)) == 0)
		  REG_NOTES (insn)
		    = gen_rtx (EXPR_LIST, REG_UNUSED,
			       gen_rtx (REG, word_mode, regno + i),
			       REG_NOTES (insn));
	    }
	}
    }

  /* If this is the last pass and this is a SCRATCH, show it will be dying
     here and count it.  */
  else if (GET_CODE (reg) == SCRATCH && insn != 0)
    {
      REG_NOTES (insn)
	= gen_rtx (EXPR_LIST, REG_UNUSED, reg, REG_NOTES (insn));
      num_scratch++;
    }
}

#ifdef AUTO_INC_DEC

/* X is a MEM found in INSN.  See if we can convert it into an auto-increment
   reference.  */

static void
find_auto_inc (needed, x, insn)
     regset needed;
     rtx x;
     rtx insn;
{
  rtx addr = XEXP (x, 0);
  int offset = 0;

  /* Here we detect use of an index register which might be good for
     postincrement, postdecrement, preincrement, or predecrement.  */

  if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
    offset = INTVAL (XEXP (addr, 1)), addr = XEXP (addr, 0);

  if (GET_CODE (addr) == REG)
    {
      register rtx y;
      register int size = GET_MODE_SIZE (GET_MODE (x));
      rtx use;
      rtx incr;
      int regno = REGNO (addr);

      /* Is the next use an increment that might make auto-increment? */
      incr = reg_next_use[regno];
      if (incr && GET_CODE (PATTERN (incr)) == SET
	  && BLOCK_NUM (incr) == BLOCK_NUM (insn)
	  /* Can't add side effects to jumps; if reg is spilled and
	     reloaded, there's no way to store back the altered value.  */
	  && GET_CODE (insn) != JUMP_INSN
	  && (y = SET_SRC (PATTERN (incr)), GET_CODE (y) == PLUS)
	  && XEXP (y, 0) == addr
	  && GET_CODE (XEXP (y, 1)) == CONST_INT
	  && (0
#ifdef HAVE_POST_INCREMENT
	      || (INTVAL (XEXP (y, 1)) == size && offset == 0)
#endif
#ifdef HAVE_POST_DECREMENT
	      || (INTVAL (XEXP (y, 1)) == - size && offset == 0)
#endif
#ifdef HAVE_PRE_INCREMENT
	      || (INTVAL (XEXP (y, 1)) == size && offset == size)
#endif
#ifdef HAVE_PRE_DECREMENT
	      || (INTVAL (XEXP (y, 1)) == - size && offset == - size)
#endif
	      )
	  /* Make sure this reg appears only once in this insn.  */
	  && (use = find_use_as_address (PATTERN (insn), addr, offset),
	      use != 0 && use != (rtx) 1))
	{
	  int win = 0;
	  rtx q = SET_DEST (PATTERN (incr));

	  if (dead_or_set_p (incr, addr))
	    win = 1;
	  else if (GET_CODE (q) == REG && ! reg_used_between_p (q, insn, incr))
	    {
	      /* We have *p followed by q = p+size.
		 Both p and q must be live afterward,
		 and q must be dead before.
		 Change it to q = p, ...*q..., q = q+size.
		 Then fall into the usual case.  */
	      rtx insns, temp;

	      start_sequence ();
	      emit_move_insn (q, addr);
	      insns = get_insns ();
	      end_sequence ();

	      /* If anything in INSNS have UID's that don't fit within the
		 extra space we allocate earlier, we can't make this auto-inc.
		 This should never happen.  */
	      for (temp = insns; temp; temp = NEXT_INSN (temp))
		{
		  if (INSN_UID (temp) > max_uid_for_flow)
		    return;
		  BLOCK_NUM (temp) = BLOCK_NUM (insn);
		}

	      emit_insns_before (insns, insn);

	      if (basic_block_head[BLOCK_NUM (insn)] == insn)
		basic_block_head[BLOCK_NUM (insn)] = insns;

	      XEXP (x, 0) = q;
	      XEXP (y, 0) = q;

	      /* INCR will become a NOTE and INSN won't contain a
		 use of ADDR.  If a use of ADDR was just placed in
		 the insn before INSN, make that the next use. 
		 Otherwise, invalidate it.  */
	      if (GET_CODE (PREV_INSN (insn)) == INSN
		  && GET_CODE (PATTERN (PREV_INSN (insn))) == SET
		  && SET_SRC (PATTERN (PREV_INSN (insn))) == addr)
		reg_next_use[regno] = PREV_INSN (insn);
	      else
		reg_next_use[regno] = 0;

	      addr = q;
	      regno = REGNO (q);
	      win = 1;

	      /* REGNO is now used in INCR which is below INSN, but
		 it previously wasn't live here.  If we don't mark
		 it as needed, we'll put a REG_DEAD note for it
		 on this insn, which is incorrect.  */
	      needed[regno / REGSET_ELT_BITS]
		|= 1 << (regno % REGSET_ELT_BITS);

	      /* If there are any calls between INSN and INCR, show
		 that REGNO now crosses them.  */
	      for (temp = insn; temp != incr; temp = NEXT_INSN (temp))
		if (GET_CODE (temp) == CALL_INSN)
		  reg_n_calls_crossed[regno]++;
	    }

	  if (win)
	    {
	      /* We have found a suitable auto-increment: do POST_INC around
		 the register here, and patch out the increment instruction 
		 that follows. */
	      XEXP (x, 0) = gen_rtx ((INTVAL (XEXP (y, 1)) == size
				      ? (offset ? PRE_INC : POST_INC)
				      : (offset ? PRE_DEC : POST_DEC)),
				     Pmode, addr);

	      /* Record that this insn has an implicit side effect.  */
	      REG_NOTES (insn)
		= gen_rtx (EXPR_LIST, REG_INC, addr, REG_NOTES (insn));

	      /* Modify the old increment-insn to simply copy
		 the already-incremented value of our register.  */
	      SET_SRC (PATTERN (incr)) = addr;
	      /* Indicate insn must be re-recognized.  */
	      INSN_CODE (incr) = -1;

	      /* If that makes it a no-op (copying the register into itself)
		 then delete it so it won't appear to be a "use" and a "set"
		 of this register.  */
	      if (SET_DEST (PATTERN (incr)) == addr)
		{
		  PUT_CODE (incr, NOTE);
		  NOTE_LINE_NUMBER (incr) = NOTE_INSN_DELETED;
		  NOTE_SOURCE_FILE (incr) = 0;
		}

	      if (regno >= FIRST_PSEUDO_REGISTER)
		{
		  /* Count an extra reference to the reg.  When a reg is
		     incremented, spilling it is worse, so we want to make
		     that less likely.  */
		  reg_n_refs[regno] += loop_depth;
		  /* Count the increment as a setting of the register,
		     even though it isn't a SET in rtl.  */
		  reg_n_sets[regno]++;
		}
	    }
	}
    }
}
#endif /* AUTO_INC_DEC */

/* Scan expression X and store a 1-bit in LIVE for each reg it uses.
   This is done assuming the registers needed from X
   are those that have 1-bits in NEEDED.

   On the final pass, FINAL is 1.  This means try for autoincrement
   and count the uses and deaths of each pseudo-reg.

   INSN is the containing instruction.  If INSN is dead, this function is not
   called.  */

static void
mark_used_regs (needed, live, x, final, insn)
     regset needed;
     regset live;
     rtx x;
     rtx insn;
     int final;
{
  register RTX_CODE code;
  register int regno;
  int i;

 retry:
  code = GET_CODE (x);
  switch (code)
    {
    case LABEL_REF:
    case SYMBOL_REF:
    case CONST_INT:
    case CONST:
    case CONST_DOUBLE:
    case PC:
    case CLOBBER:
    case ADDR_VEC:
    case ADDR_DIFF_VEC:
    case ASM_INPUT:
      return;

#ifdef HAVE_cc0
    case CC0:
      cc0_live = 1;
      return;
#endif

    case MEM:
      /* Invalidate the data for the last MEM stored.  We could do this only
	 if the addresses conflict, but this doesn't seem worthwhile.  */
      last_mem_set = 0;

#ifdef AUTO_INC_DEC
      if (final)
	find_auto_inc (needed, x, insn);
#endif
      break;

    case REG:
      /* See a register other than being set
	 => mark it as needed.  */

      regno = REGNO (x);
      {
	register int offset = regno / REGSET_ELT_BITS;
	register int bit = 1 << (regno % REGSET_ELT_BITS);
	int all_needed = (needed[offset] & bit) != 0;
	int some_needed = (needed[offset] & bit) != 0;

	live[offset] |= bit;
	/* A hard reg in a wide mode may really be multiple registers.
	   If so, mark all of them just like the first.  */
	if (regno < FIRST_PSEUDO_REGISTER)
	  {
	    int n;

	    /* For stack ptr or fixed arg pointer,
	       nothing below can be necessary, so waste no more time.  */
	    if (regno == STACK_POINTER_REGNUM
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
		|| (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
#endif
		|| regno == FRAME_POINTER_REGNUM)
	      {
		/* If this is a register we are going to try to eliminate,
		   don't mark it live here.  If we are successful in
		   eliminating it, it need not be live unless it is used for
		   pseudos, in which case it will have been set live when
		   it was allocated to the pseudos.  If the register will not
		   be eliminated, reload will set it live at that point.  */

		if (! TEST_HARD_REG_BIT (elim_reg_set, regno))
		  regs_ever_live[regno] = 1;
		return;
	      }
	    /* No death notes for global register variables;
	       their values are live after this function exits.  */
	    if (global_regs[regno])
	      return;

	    n = HARD_REGNO_NREGS (regno, GET_MODE (x));
	    while (--n > 0)
	      {
		live[(regno + n) / REGSET_ELT_BITS]
		  |= 1 << ((regno + n) % REGSET_ELT_BITS);
		some_needed |= (needed[(regno + n) / REGSET_ELT_BITS]
				& 1 << ((regno + n) % REGSET_ELT_BITS));
		all_needed &= (needed[(regno + n) / REGSET_ELT_BITS]
			       & 1 << ((regno + n) % REGSET_ELT_BITS));
	      }
	  }
	if (final)
	  {
	    /* Record where each reg is used, so when the reg
	       is set we know the next insn that uses it.  */

	    reg_next_use[regno] = insn;

	    if (regno < FIRST_PSEUDO_REGISTER)
	      {
		/* If a hard reg is being used,
		   record that this function does use it.  */

		i = HARD_REGNO_NREGS (regno, GET_MODE (x));
		if (i == 0)
		  i = 1;
		do
		  regs_ever_live[regno + --i] = 1;
		while (i > 0);
	      }
	    else
	      {
		/* Keep track of which basic block each reg appears in.  */

		register int blocknum = BLOCK_NUM (insn);

		if (reg_basic_block[regno] == REG_BLOCK_UNKNOWN)
		  reg_basic_block[regno] = blocknum;
		else if (reg_basic_block[regno] != blocknum)
		  reg_basic_block[regno] = REG_BLOCK_GLOBAL;

		/* Count (weighted) number of uses of each reg.  */

		reg_n_refs[regno] += loop_depth;
	      }

	    /* Record and count the insns in which a reg dies.
	       If it is used in this insn and was dead below the insn
	       then it dies in this insn.  If it was set in this insn,
	       we do not make a REG_DEAD note; likewise if we already
	       made such a note.  */

	    if (! all_needed
		&& ! dead_or_set_p (insn, x)
#if 0
		&& (regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
#endif
		)
	      {
		/* If none of the words in X is needed, make a REG_DEAD
		   note.  Otherwise, we must make partial REG_DEAD notes.  */
		if (! some_needed)
		  {
		    REG_NOTES (insn)
		      = gen_rtx (EXPR_LIST, REG_DEAD, x, REG_NOTES (insn));
		    reg_n_deaths[regno]++;
		  }
		else
		  {
		    int i;

		    /* Don't make a REG_DEAD note for a part of a register
		       that is set in the insn.  */

		    for (i = HARD_REGNO_NREGS (regno, GET_MODE (x)) - 1;
			 i >= 0; i--)
		      if ((needed[(regno + i) / REGSET_ELT_BITS]
			   & 1 << ((regno + i) % REGSET_ELT_BITS)) == 0
			  && ! dead_or_set_regno_p (insn, regno + i))
			REG_NOTES (insn)
			  = gen_rtx (EXPR_LIST, REG_DEAD,
				     gen_rtx (REG, word_mode, regno + i),
				     REG_NOTES (insn));
		  }
	      }
	  }
      }
      return;

    case SET:
      {
	register rtx testreg = SET_DEST (x);
	int mark_dest = 0;

	/* If storing into MEM, don't show it as being used.  But do
	   show the address as being used.  */
	if (GET_CODE (testreg) == MEM)
	  {
#ifdef AUTO_INC_DEC
	    if (final)
	      find_auto_inc (needed, testreg, insn);
#endif
	    mark_used_regs (needed, live, XEXP (testreg, 0), final, insn);
	    mark_used_regs (needed, live, SET_SRC (x), final, insn);
	    return;
	  }
	    
	/* Storing in STRICT_LOW_PART is like storing in a reg
	   in that this SET might be dead, so ignore it in TESTREG.
	   but in some other ways it is like using the reg.

	   Storing in a SUBREG or a bit field is like storing the entire
	   register in that if the register's value is not used
	   then this SET is not needed.  */
	while (GET_CODE (testreg) == STRICT_LOW_PART
	       || GET_CODE (testreg) == ZERO_EXTRACT
	       || GET_CODE (testreg) == SIGN_EXTRACT
	       || GET_CODE (testreg) == SUBREG)
	  {
	    /* Modifying a single register in an alternate mode
	       does not use any of the old value.  But these other
	       ways of storing in a register do use the old value.  */
	    if (GET_CODE (testreg) == SUBREG
		&& !(REG_SIZE (SUBREG_REG (testreg)) > REG_SIZE (testreg)))
	      ;
	    else
	      mark_dest = 1;

	    testreg = XEXP (testreg, 0);
	  }

	/* If this is a store into a register,
	   recursively scan the value being stored.  */

	if (GET_CODE (testreg) == REG
	    && (regno = REGNO (testreg), regno != FRAME_POINTER_REGNUM)
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
	    && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
#endif
	    && ! (regno < FIRST_PSEUDO_REGISTER && global_regs[regno]))
	  {
	    mark_used_regs (needed, live, SET_SRC (x), final, insn);
	    if (mark_dest)
	      mark_used_regs (needed, live, SET_DEST (x), final, insn);
	    return;
	  }
      }
      break;

    case RETURN:
      /* If exiting needs the right stack value, consider this insn as
	 using the stack pointer.  In any event, consider it as using
	 all global registers.  */

#ifdef EXIT_IGNORE_STACK
      if (! EXIT_IGNORE_STACK
	  || (! FRAME_POINTER_REQUIRED && flag_omit_frame_pointer))
#endif
	live[STACK_POINTER_REGNUM / REGSET_ELT_BITS]
	  |= 1 << (STACK_POINTER_REGNUM % REGSET_ELT_BITS);

      for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
	if (global_regs[i])
	  live[i / REGSET_ELT_BITS] |= 1 << (i % REGSET_ELT_BITS);
      break;
    }

  /* Recursively scan the operands of this expression.  */

  {
    register char *fmt = GET_RTX_FORMAT (code);
    register int i;
    
    for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
      {
	if (fmt[i] == 'e')
	  {
	    /* Tail recursive case: save a function call level.  */
	    if (i == 0)
	      {
		x = XEXP (x, 0);
		goto retry;
	      }
	    mark_used_regs (needed, live, XEXP (x, i), final, insn);
	  }
	else if (fmt[i] == 'E')
	  {
	    register int j;
	    for (j = 0; j < XVECLEN (x, i); j++)
	      mark_used_regs (needed, live, XVECEXP (x, i, j), final, insn);
	  }
      }
  }
}

#ifdef AUTO_INC_DEC

static int
try_pre_increment_1 (insn)
     rtx insn;
{
  /* Find the next use of this reg.  If in same basic block,
     make it do pre-increment or pre-decrement if appropriate.  */
  rtx x = PATTERN (insn);
  int amount = ((GET_CODE (SET_SRC (x)) == PLUS ? 1 : -1)
		* INTVAL (XEXP (SET_SRC (x), 1)));
  int regno = REGNO (SET_DEST (x));
  rtx y = reg_next_use[regno];
  if (y != 0
      && BLOCK_NUM (y) == BLOCK_NUM (insn)
      && try_pre_increment (y, SET_DEST (PATTERN (insn)),
			    amount))
    {
      /* We have found a suitable auto-increment
	 and already changed insn Y to do it.
	 So flush this increment-instruction.  */
      PUT_CODE (insn, NOTE);
      NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
      NOTE_SOURCE_FILE (insn) = 0;
      /* Count a reference to this reg for the increment
	 insn we are deleting.  When a reg is incremented.
	 spilling it is worse, so we want to make that
	 less likely.  */
      if (regno >= FIRST_PSEUDO_REGISTER)
	{
	  reg_n_refs[regno] += loop_depth;
	  reg_n_sets[regno]++;
	}
      return 1;
    }
  return 0;
}

/* Try to change INSN so that it does pre-increment or pre-decrement
   addressing on register REG in order to add AMOUNT to REG.
   AMOUNT is negative for pre-decrement.
   Returns 1 if the change could be made.
   This checks all about the validity of the result of modifying INSN.  */

static int
try_pre_increment (insn, reg, amount)
     rtx insn, reg;
     int amount;
{
  register rtx use;

  /* Nonzero if we can try to make a pre-increment or pre-decrement.
     For example, addl $4,r1; movl (r1),... can become movl +(r1),...  */
  int pre_ok = 0;
  /* Nonzero if we can try to make a post-increment or post-decrement.
     For example, addl $4,r1; movl -4(r1),... can become movl (r1)+,...
     It is possible for both PRE_OK and POST_OK to be nonzero if the machine
     supports both pre-inc and post-inc, or both pre-dec and post-dec.  */
  int post_ok = 0;

  /* Nonzero if the opportunity actually requires post-inc or post-dec.  */
  int do_post = 0;

  /* From the sign of increment, see which possibilities are conceivable
     on this target machine.  */
#ifdef HAVE_PRE_INCREMENT
  if (amount > 0)
    pre_ok = 1;
#endif
#ifdef HAVE_POST_INCREMENT
  if (amount > 0)
    post_ok = 1;
#endif

#ifdef HAVE_PRE_DECREMENT
  if (amount < 0)
    pre_ok = 1;
#endif
#ifdef HAVE_POST_DECREMENT
  if (amount < 0)
    post_ok = 1;
#endif

  if (! (pre_ok || post_ok))
    return 0;

  /* It is not safe to add a side effect to a jump insn
     because if the incremented register is spilled and must be reloaded
     there would be no way to store the incremented value back in memory.  */

  if (GET_CODE (insn) == JUMP_INSN)
    return 0;

  use = 0;
  if (pre_ok)
    use = find_use_as_address (PATTERN (insn), reg, 0);
  if (post_ok && (use == 0 || use == (rtx) 1))
    {
      use = find_use_as_address (PATTERN (insn), reg, -amount);
      do_post = 1;
    }

  if (use == 0 || use == (rtx) 1)
    return 0;

  if (GET_MODE_SIZE (GET_MODE (use)) != (amount > 0 ? amount : - amount))
    return 0;

  XEXP (use, 0) = gen_rtx (amount > 0
			   ? (do_post ? POST_INC : PRE_INC)
			   : (do_post ? POST_DEC : PRE_DEC),
			   Pmode, reg);

  /* Record that this insn now has an implicit side effect on X.  */
  REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_INC, reg, REG_NOTES (insn));
  return 1;
}

#endif /* AUTO_INC_DEC */

/* Find the place in the rtx X where REG is used as a memory address.
   Return the MEM rtx that so uses it.
   If PLUSCONST is nonzero, search instead for a memory address equivalent to
   (plus REG (const_int PLUSCONST)).

   If such an address does not appear, return 0.
   If REG appears more than once, or is used other than in such an address,
   return (rtx)1.  */

static rtx
find_use_as_address (x, reg, plusconst)
     register rtx x;
     rtx reg;
     int plusconst;
{
  enum rtx_code code = GET_CODE (x);
  char *fmt = GET_RTX_FORMAT (code);
  register int i;
  register rtx value = 0;
  register rtx tem;

  if (code == MEM && XEXP (x, 0) == reg && plusconst == 0)
    return x;

  if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
      && XEXP (XEXP (x, 0), 0) == reg
      && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
      && INTVAL (XEXP (XEXP (x, 0), 1)) == plusconst)
    return x;

  if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
    {
      /* If REG occurs inside a MEM used in a bit-field reference,
	 that is unacceptable.  */
      if (find_use_as_address (XEXP (x, 0), reg, 0) != 0)
	return (rtx) 1;
    }

  if (x == reg)
    return (rtx) 1;

  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'e')
	{
	  tem = find_use_as_address (XEXP (x, i), reg, plusconst);
	  if (value == 0)
	    value = tem;
	  else if (tem != 0)
	    return (rtx) 1;
	}
      if (fmt[i] == 'E')
	{
	  register int j;
	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
	    {
	      tem = find_use_as_address (XVECEXP (x, i, j), reg, plusconst);
	      if (value == 0)
		value = tem;
	      else if (tem != 0)
		return (rtx) 1;
	    }
	}
    }

  return value;
}

/* Write information about registers and basic blocks into FILE.
   This is part of making a debugging dump.  */

void
dump_flow_info (file)
     FILE *file;
{
  register int i;
  static char *reg_class_names[] = REG_CLASS_NAMES;

  fprintf (file, "%d registers.\n", max_regno);

  for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
    if (reg_n_refs[i])
      {
	enum reg_class class;
	fprintf (file, "\nRegister %d used %d times across %d insns",
		 i, reg_n_refs[i], reg_live_length[i]);
	if (reg_basic_block[i] >= 0)
	  fprintf (file, " in block %d", reg_basic_block[i]);
	if (reg_n_deaths[i] != 1)
	  fprintf (file, "; dies in %d places", reg_n_deaths[i]);
	if (reg_n_calls_crossed[i] == 1)
	  fprintf (file, "; crosses 1 call");
	else if (reg_n_calls_crossed[i])
	  fprintf (file, "; crosses %d calls", reg_n_calls_crossed[i]);
	if (PSEUDO_REGNO_BYTES (i) != UNITS_PER_WORD)
	  fprintf (file, "; %d bytes", PSEUDO_REGNO_BYTES (i));
	class = reg_preferred_class (i);
	if (class != GENERAL_REGS)
	  {
	    if (reg_preferred_or_nothing (i))
	      fprintf (file, "; %s or none", reg_class_names[(int) class]);
	    else
	      fprintf (file, "; pref %s", reg_class_names[(int) class]);
	  }
	if (REGNO_POINTER_FLAG (i))
	  fprintf (file, "; pointer");
	fprintf (file, ".\n");
      }
  fprintf (file, "\n%d basic blocks.\n", n_basic_blocks);
  for (i = 0; i < n_basic_blocks; i++)
    {
      register rtx head, jump;
      register int regno;
      fprintf (file, "\nBasic block %d: first insn %d, last %d.\n",
	       i,
	       INSN_UID (basic_block_head[i]),
	       INSN_UID (basic_block_end[i]));
      /* The control flow graph's storage is freed
	 now when flow_analysis returns.
	 Don't try to print it if it is gone.  */
      if (basic_block_drops_in)
	{
	  fprintf (file, "Reached from blocks: ");
	  head = basic_block_head[i];
	  if (GET_CODE (head) == CODE_LABEL)
	    for (jump = LABEL_REFS (head);
		 jump != head;
		 jump = LABEL_NEXTREF (jump))
	      {
		register int from_block = BLOCK_NUM (CONTAINING_INSN (jump));
		fprintf (file, " %d", from_block);
	      }
	  if (basic_block_drops_in[i])
	    fprintf (file, " previous");
	}
      fprintf (file, "\nRegisters live at start:");
      for (regno = 0; regno < max_regno; regno++)
	{
	  register int offset = regno / REGSET_ELT_BITS;
	  register int bit = 1 << (regno % REGSET_ELT_BITS);
	  if (basic_block_live_at_start[i][offset] & bit)
	      fprintf (file, " %d", regno);
	}
      fprintf (file, "\n");
    }
  fprintf (file, "\n");
}