summaryrefslogtreecommitdiff
path: root/gcc/extend.texi
blob: be217a35c8ccef435142fcc757511458002935ef (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
@c Copyright (C) 1988,89,92,93,94,96,98, 99 Free Software Foundation, Inc.
@c This is part of the GCC manual.
@c For copying conditions, see the file gcc.texi.

@node C Extensions
@chapter Extensions to the C Language Family
@cindex extensions, C language
@cindex C language extensions

GNU C provides several language features not found in ANSI standard C.
(The @samp{-pedantic} option directs GNU CC to print a warning message if
any of these features is used.)  To test for the availability of these
features in conditional compilation, check for a predefined macro
@code{__GNUC__}, which is always defined under GNU CC.

These extensions are available in C and Objective C.  Most of them are
also available in C++.  @xref{C++ Extensions,,Extensions to the
C++ Language}, for extensions that apply @emph{only} to C++.

@c The only difference between the two versions of this menu is that the
@c version for clear INTERNALS has an extra node, "Constraints" (which
@c appears in a separate chapter in the other version of the manual).
@ifset INTERNALS
@menu
* Statement Exprs::     Putting statements and declarations inside expressions.
* Local Labels::        Labels local to a statement-expression.
* Labels as Values::    Getting pointers to labels, and computed gotos.
* Nested Functions::    As in Algol and Pascal, lexical scoping of functions.
* Constructing Calls::	Dispatching a call to another function.
* Naming Types::        Giving a name to the type of some expression.
* Typeof::              @code{typeof}: referring to the type of an expression.
* Lvalues::             Using @samp{?:}, @samp{,} and casts in lvalues.
* Conditionals::        Omitting the middle operand of a @samp{?:} expression.
* Long Long::		Double-word integers---@code{long long int}.
* Complex::             Data types for complex numbers.
* Hex Floats::          Hexadecimal floating-point constants.
* Zero Length::         Zero-length arrays.
* Variable Length::     Arrays whose length is computed at run time.
* Macro Varargs::	Macros with variable number of arguments.
* Subscripting::        Any array can be subscripted, even if not an lvalue.
* Pointer Arith::       Arithmetic on @code{void}-pointers and function pointers.
* Initializers::        Non-constant initializers.
* Constructors::        Constructor expressions give structures, unions
                         or arrays as values.
* Labeled Elements::	Labeling elements of initializers.
* Cast to Union::       Casting to union type from any member of the union.
* Case Ranges::		`case 1 ... 9' and such.
* Function Attributes:: Declaring that functions have no side effects,
                         or that they can never return.
* Function Prototypes:: Prototype declarations and old-style definitions.
* C++ Comments::        C++ comments are recognized.
* Dollar Signs::        Dollar sign is allowed in identifiers.
* Character Escapes::   @samp{\e} stands for the character @key{ESC}.
* Variable Attributes::	Specifying attributes of variables.
* Type Attributes::	Specifying attributes of types.
* Alignment::           Inquiring about the alignment of a type or variable.
* Inline::              Defining inline functions (as fast as macros).
* Extended Asm::        Assembler instructions with C expressions as operands.
                         (With them you can define ``built-in'' functions.)
* Asm Labels::          Specifying the assembler name to use for a C symbol.
* Explicit Reg Vars::   Defining variables residing in specified registers.
* Alternate Keywords::  @code{__const__}, @code{__asm__}, etc., for header files.
* Incomplete Enums::    @code{enum foo;}, with details to follow.
* Function Names::	Printable strings which are the name of the current
			 function.
* Return Address::      Getting the return or frame address of a function.
* Other Builtins::      Other built-in functions.
* Deprecated Features:: Things might disappear from g++.
@end menu
@end ifset
@ifclear INTERNALS
@menu
* Statement Exprs::     Putting statements and declarations inside expressions.
* Local Labels::        Labels local to a statement-expression.
* Labels as Values::    Getting pointers to labels, and computed gotos.
* Nested Functions::    As in Algol and Pascal, lexical scoping of functions.
* Constructing Calls::	Dispatching a call to another function.
* Naming Types::        Giving a name to the type of some expression.
* Typeof::              @code{typeof}: referring to the type of an expression.
* Lvalues::             Using @samp{?:}, @samp{,} and casts in lvalues.
* Conditionals::        Omitting the middle operand of a @samp{?:} expression.
* Long Long::		Double-word integers---@code{long long int}.
* Complex::             Data types for complex numbers.
* Hex Floats::          Hexadecimal floating-point constants.
* Zero Length::         Zero-length arrays.
* Variable Length::     Arrays whose length is computed at run time.
* Macro Varargs::	Macros with variable number of arguments.
* Subscripting::        Any array can be subscripted, even if not an lvalue.
* Pointer Arith::       Arithmetic on @code{void}-pointers and function pointers.
* Initializers::        Non-constant initializers.
* Constructors::        Constructor expressions give structures, unions
                         or arrays as values.
* Labeled Elements::	Labeling elements of initializers.
* Cast to Union::       Casting to union type from any member of the union.
* Case Ranges::		`case 1 ... 9' and such.
* Function Attributes:: Declaring that functions have no side effects,
                         or that they can never return.
* Function Prototypes:: Prototype declarations and old-style definitions.
* C++ Comments::        C++ comments are recognized.
* Dollar Signs::        Dollar sign is allowed in identifiers.
* Character Escapes::   @samp{\e} stands for the character @key{ESC}.
* Variable Attributes::	Specifying attributes of variables.
* Type Attributes::	Specifying attributes of types.
* Alignment::           Inquiring about the alignment of a type or variable.
* Inline::              Defining inline functions (as fast as macros).
* Extended Asm::        Assembler instructions with C expressions as operands.
                         (With them you can define ``built-in'' functions.)
* Constraints::         Constraints for asm operands
* Asm Labels::          Specifying the assembler name to use for a C symbol.
* Explicit Reg Vars::   Defining variables residing in specified registers.
* Alternate Keywords::  @code{__const__}, @code{__asm__}, etc., for header files.
* Incomplete Enums::    @code{enum foo;}, with details to follow.
* Function Names::	Printable strings which are the name of the current
			 function.
* Return Address::      Getting the return or frame address of a function.
* Deprecated Features:: Things might disappear from g++.
* Other Builtins::      Other built-in functions.
@end menu
@end ifclear

@node Statement Exprs
@section Statements and Declarations in Expressions
@cindex statements inside expressions
@cindex declarations inside expressions
@cindex expressions containing statements
@cindex macros, statements in expressions

@c the above section title wrapped and causes an underfull hbox.. i
@c changed it from "within" to "in". --mew 4feb93

A compound statement enclosed in parentheses may appear as an expression
in GNU C.  This allows you to use loops, switches, and local variables
within an expression.

Recall that a compound statement is a sequence of statements surrounded
by braces; in this construct, parentheses go around the braces.  For
example:

@example
(@{ int y = foo (); int z;
   if (y > 0) z = y;
   else z = - y;
   z; @})
@end example

@noindent
is a valid (though slightly more complex than necessary) expression
for the absolute value of @code{foo ()}.

The last thing in the compound statement should be an expression
followed by a semicolon; the value of this subexpression serves as the
value of the entire construct.  (If you use some other kind of statement
last within the braces, the construct has type @code{void}, and thus
effectively no value.)

This feature is especially useful in making macro definitions ``safe'' (so
that they evaluate each operand exactly once).  For example, the
``maximum'' function is commonly defined as a macro in standard C as
follows:

@example
#define max(a,b) ((a) > (b) ? (a) : (b))
@end example

@noindent
@cindex side effects, macro argument
But this definition computes either @var{a} or @var{b} twice, with bad
results if the operand has side effects.  In GNU C, if you know the
type of the operands (here let's assume @code{int}), you can define
the macro safely as follows:

@example
#define maxint(a,b) \
  (@{int _a = (a), _b = (b); _a > _b ? _a : _b; @})
@end example

Embedded statements are not allowed in constant expressions, such as
the value of an enumeration constant, the width of a bit field, or
the initial value of a static variable.

If you don't know the type of the operand, you can still do this, but you
must use @code{typeof} (@pxref{Typeof}) or type naming (@pxref{Naming
Types}).

@node Local Labels
@section Locally Declared Labels
@cindex local labels
@cindex macros, local labels

Each statement expression is a scope in which @dfn{local labels} can be
declared.  A local label is simply an identifier; you can jump to it
with an ordinary @code{goto} statement, but only from within the
statement expression it belongs to.

A local label declaration looks like this:

@example
__label__ @var{label};
@end example

@noindent
or

@example
__label__ @var{label1}, @var{label2}, @dots{};
@end example

Local label declarations must come at the beginning of the statement
expression, right after the @samp{(@{}, before any ordinary
declarations.

The label declaration defines the label @emph{name}, but does not define
the label itself.  You must do this in the usual way, with
@code{@var{label}:}, within the statements of the statement expression.

The local label feature is useful because statement expressions are
often used in macros.  If the macro contains nested loops, a @code{goto}
can be useful for breaking out of them.  However, an ordinary label
whose scope is the whole function cannot be used: if the macro can be
expanded several times in one function, the label will be multiply
defined in that function.  A local label avoids this problem.  For
example:

@example
#define SEARCH(array, target)                     \
(@{                                               \
  __label__ found;                                \
  typeof (target) _SEARCH_target = (target);      \
  typeof (*(array)) *_SEARCH_array = (array);     \
  int i, j;                                       \
  int value;                                      \
  for (i = 0; i < max; i++)                       \
    for (j = 0; j < max; j++)                     \
      if (_SEARCH_array[i][j] == _SEARCH_target)  \
        @{ value = i; goto found; @}              \
  value = -1;                                     \
 found:                                           \
  value;                                          \
@})
@end example

@node Labels as Values
@section Labels as Values
@cindex labels as values
@cindex computed gotos
@cindex goto with computed label
@cindex address of a label

You can get the address of a label defined in the current function
(or a containing function) with the unary operator @samp{&&}.  The
value has type @code{void *}.  This value is a constant and can be used
wherever a constant of that type is valid.  For example:

@example
void *ptr;
@dots{}
ptr = &&foo;
@end example

To use these values, you need to be able to jump to one.  This is done
with the computed goto statement@footnote{The analogous feature in
Fortran is called an assigned goto, but that name seems inappropriate in
C, where one can do more than simply store label addresses in label
variables.}, @code{goto *@var{exp};}.  For example,

@example
goto *ptr;
@end example

@noindent
Any expression of type @code{void *} is allowed.

One way of using these constants is in initializing a static array that
will serve as a jump table:

@example
static void *array[] = @{ &&foo, &&bar, &&hack @};
@end example

Then you can select a label with indexing, like this:

@example
goto *array[i];
@end example

@noindent
Note that this does not check whether the subscript is in bounds---array
indexing in C never does that.

Such an array of label values serves a purpose much like that of the
@code{switch} statement.  The @code{switch} statement is cleaner, so
use that rather than an array unless the problem does not fit a
@code{switch} statement very well.

Another use of label values is in an interpreter for threaded code.
The labels within the interpreter function can be stored in the
threaded code for super-fast dispatching.

You may not use this mechanism to jump to code in a different function. 
If you do that, totally unpredictable things will happen.  The best way to
avoid this is to store the label address only in automatic variables and
never pass it as an argument.

An alternate way to write the above example is

@example
static const int array[] = @{ &&foo - &&foo, &&bar - &&foo, &&hack - &&foo @};
goto *(&&foo + array[i]);
@end example

@noindent
This is more friendly to code living in shared libraries, as it reduces
the number of dynamic relocations that are needed, and by consequence,
allows the data to be read-only.

@node Nested Functions
@section Nested Functions
@cindex nested functions
@cindex downward funargs
@cindex thunks

A @dfn{nested function} is a function defined inside another function.
(Nested functions are not supported for GNU C++.)  The nested function's
name is local to the block where it is defined.  For example, here we
define a nested function named @code{square}, and call it twice:

@example
@group
foo (double a, double b)
@{
  double square (double z) @{ return z * z; @}

  return square (a) + square (b);
@}
@end group
@end example

The nested function can access all the variables of the containing
function that are visible at the point of its definition.  This is
called @dfn{lexical scoping}.  For example, here we show a nested
function which uses an inherited variable named @code{offset}:

@example
bar (int *array, int offset, int size)
@{
  int access (int *array, int index)
    @{ return array[index + offset]; @}
  int i;
  @dots{}
  for (i = 0; i < size; i++)
    @dots{} access (array, i) @dots{}
@}
@end example

Nested function definitions are permitted within functions in the places
where variable definitions are allowed; that is, in any block, before
the first statement in the block.

It is possible to call the nested function from outside the scope of its
name by storing its address or passing the address to another function:

@example
hack (int *array, int size)
@{
  void store (int index, int value)
    @{ array[index] = value; @}

  intermediate (store, size);
@}
@end example

Here, the function @code{intermediate} receives the address of
@code{store} as an argument.  If @code{intermediate} calls @code{store},
the arguments given to @code{store} are used to store into @code{array}.
But this technique works only so long as the containing function
(@code{hack}, in this example) does not exit.

If you try to call the nested function through its address after the
containing function has exited, all hell will break loose.  If you try
to call it after a containing scope level has exited, and if it refers
to some of the variables that are no longer in scope, you may be lucky,
but it's not wise to take the risk.  If, however, the nested function
does not refer to anything that has gone out of scope, you should be
safe.

GNU CC implements taking the address of a nested function using a
technique called @dfn{trampolines}.   A paper describing them is
available as @samp{http://master.debian.org/~karlheg/Usenix88-lexic.pdf}.

A nested function can jump to a label inherited from a containing
function, provided the label was explicitly declared in the containing
function (@pxref{Local Labels}).  Such a jump returns instantly to the
containing function, exiting the nested function which did the
@code{goto} and any intermediate functions as well.  Here is an example:

@example
@group
bar (int *array, int offset, int size)
@{
  __label__ failure;
  int access (int *array, int index)
    @{
      if (index > size)
        goto failure;
      return array[index + offset];
    @}
  int i;
  @dots{}
  for (i = 0; i < size; i++)
    @dots{} access (array, i) @dots{}
  @dots{}
  return 0;

 /* @r{Control comes here from @code{access}
    if it detects an error.}  */
 failure:
  return -1;
@}
@end group
@end example

A nested function always has internal linkage.  Declaring one with
@code{extern} is erroneous.  If you need to declare the nested function
before its definition, use @code{auto} (which is otherwise meaningless
for function declarations).

@example
bar (int *array, int offset, int size)
@{
  __label__ failure;
  auto int access (int *, int);
  @dots{}
  int access (int *array, int index)
    @{
      if (index > size)
        goto failure;
      return array[index + offset];
    @}
  @dots{}
@}
@end example

@node Constructing Calls
@section Constructing Function Calls
@cindex constructing calls
@cindex forwarding calls

Using the built-in functions described below, you can record
the arguments a function received, and call another function
with the same arguments, without knowing the number or types
of the arguments.

You can also record the return value of that function call,
and later return that value, without knowing what data type
the function tried to return (as long as your caller expects
that data type).

@table @code
@findex __builtin_apply_args
@item __builtin_apply_args ()
This built-in function returns a pointer of type @code{void *} to data
describing how to perform a call with the same arguments as were passed
to the current function.

The function saves the arg pointer register, structure value address,
and all registers that might be used to pass arguments to a function
into a block of memory allocated on the stack.  Then it returns the
address of that block.

@findex __builtin_apply
@item __builtin_apply (@var{function}, @var{arguments}, @var{size})
This built-in function invokes @var{function} (type @code{void (*)()})
with a copy of the parameters described by @var{arguments} (type
@code{void *}) and @var{size} (type @code{int}).

The value of @var{arguments} should be the value returned by
@code{__builtin_apply_args}.  The argument @var{size} specifies the size
of the stack argument data, in bytes.

This function returns a pointer of type @code{void *} to data describing
how to return whatever value was returned by @var{function}.  The data
is saved in a block of memory allocated on the stack.

It is not always simple to compute the proper value for @var{size}.  The
value is used by @code{__builtin_apply} to compute the amount of data
that should be pushed on the stack and copied from the incoming argument
area.

@findex __builtin_return
@item __builtin_return (@var{result})
This built-in function returns the value described by @var{result} from
the containing function.  You should specify, for @var{result}, a value
returned by @code{__builtin_apply}.
@end table

@node Naming Types
@section Naming an Expression's Type
@cindex naming types

You can give a name to the type of an expression using a @code{typedef}
declaration with an initializer.  Here is how to define @var{name} as a
type name for the type of @var{exp}:

@example
typedef @var{name} = @var{exp};
@end example

This is useful in conjunction with the statements-within-expressions
feature.  Here is how the two together can be used to define a safe
``maximum'' macro that operates on any arithmetic type:

@example
#define max(a,b) \
  (@{typedef _ta = (a), _tb = (b);  \
    _ta _a = (a); _tb _b = (b);     \
    _a > _b ? _a : _b; @})
@end example

@cindex underscores in variables in macros
@cindex @samp{_} in variables in macros
@cindex local variables in macros
@cindex variables, local, in macros
@cindex macros, local variables in

The reason for using names that start with underscores for the local
variables is to avoid conflicts with variable names that occur within the
expressions that are substituted for @code{a} and @code{b}.  Eventually we
hope to design a new form of declaration syntax that allows you to declare
variables whose scopes start only after their initializers; this will be a
more reliable way to prevent such conflicts.

@node Typeof
@section Referring to a Type with @code{typeof}
@findex typeof
@findex sizeof
@cindex macros, types of arguments

Another way to refer to the type of an expression is with @code{typeof}.
The syntax of using of this keyword looks like @code{sizeof}, but the
construct acts semantically like a type name defined with @code{typedef}.

There are two ways of writing the argument to @code{typeof}: with an
expression or with a type.  Here is an example with an expression:

@example
typeof (x[0](1))
@end example

@noindent
This assumes that @code{x} is an array of functions; the type described
is that of the values of the functions.

Here is an example with a typename as the argument:

@example
typeof (int *)
@end example

@noindent
Here the type described is that of pointers to @code{int}.

If you are writing a header file that must work when included in ANSI C
programs, write @code{__typeof__} instead of @code{typeof}.
@xref{Alternate Keywords}.

A @code{typeof}-construct can be used anywhere a typedef name could be
used.  For example, you can use it in a declaration, in a cast, or inside
of @code{sizeof} or @code{typeof}.

@itemize @bullet
@item
This declares @code{y} with the type of what @code{x} points to.

@example
typeof (*x) y;
@end example

@item
This declares @code{y} as an array of such values.

@example
typeof (*x) y[4];
@end example

@item
This declares @code{y} as an array of pointers to characters:

@example
typeof (typeof (char *)[4]) y;
@end example

@noindent
It is equivalent to the following traditional C declaration:

@example
char *y[4];
@end example

To see the meaning of the declaration using @code{typeof}, and why it
might be a useful way to write, let's rewrite it with these macros:

@example
#define pointer(T)  typeof(T *)
#define array(T, N) typeof(T [N])
@end example

@noindent
Now the declaration can be rewritten this way:

@example
array (pointer (char), 4) y;
@end example

@noindent
Thus, @code{array (pointer (char), 4)} is the type of arrays of 4
pointers to @code{char}.
@end itemize

@node Lvalues
@section Generalized Lvalues
@cindex compound expressions as lvalues
@cindex expressions, compound, as lvalues
@cindex conditional expressions as lvalues
@cindex expressions, conditional, as lvalues
@cindex casts as lvalues
@cindex generalized lvalues
@cindex lvalues, generalized
@cindex extensions, @code{?:}
@cindex @code{?:} extensions
Compound expressions, conditional expressions and casts are allowed as
lvalues provided their operands are lvalues.  This means that you can take
their addresses or store values into them.

Standard C++ allows compound expressions and conditional expressions as
lvalues, and permits casts to reference type, so use of this extension
is deprecated for C++ code.

For example, a compound expression can be assigned, provided the last
expression in the sequence is an lvalue.  These two expressions are
equivalent:

@example
(a, b) += 5
a, (b += 5)
@end example

Similarly, the address of the compound expression can be taken.  These two
expressions are equivalent:

@example
&(a, b)
a, &b
@end example

A conditional expression is a valid lvalue if its type is not void and the
true and false branches are both valid lvalues.  For example, these two
expressions are equivalent:

@example
(a ? b : c) = 5
(a ? b = 5 : (c = 5))
@end example

A cast is a valid lvalue if its operand is an lvalue.  A simple
assignment whose left-hand side is a cast works by converting the
right-hand side first to the specified type, then to the type of the
inner left-hand side expression.  After this is stored, the value is
converted back to the specified type to become the value of the
assignment.  Thus, if @code{a} has type @code{char *}, the following two
expressions are equivalent:

@example
(int)a = 5
(int)(a = (char *)(int)5)
@end example

An assignment-with-arithmetic operation such as @samp{+=} applied to a cast
performs the arithmetic using the type resulting from the cast, and then
continues as in the previous case.  Therefore, these two expressions are
equivalent:

@example
(int)a += 5
(int)(a = (char *)(int) ((int)a + 5))
@end example

You cannot take the address of an lvalue cast, because the use of its
address would not work out coherently.  Suppose that @code{&(int)f} were
permitted, where @code{f} has type @code{float}.  Then the following
statement would try to store an integer bit-pattern where a floating
point number belongs:

@example
*&(int)f = 1;
@end example

This is quite different from what @code{(int)f = 1} would do---that
would convert 1 to floating point and store it.  Rather than cause this
inconsistency, we think it is better to prohibit use of @samp{&} on a cast.

If you really do want an @code{int *} pointer with the address of
@code{f}, you can simply write @code{(int *)&f}.

@node Conditionals
@section Conditionals with Omitted Operands
@cindex conditional expressions, extensions
@cindex omitted middle-operands
@cindex middle-operands, omitted
@cindex extensions, @code{?:}
@cindex @code{?:} extensions

The middle operand in a conditional expression may be omitted.  Then
if the first operand is nonzero, its value is the value of the conditional
expression.

Therefore, the expression

@example
x ? : y
@end example

@noindent
has the value of @code{x} if that is nonzero; otherwise, the value of
@code{y}.

This example is perfectly equivalent to

@example
x ? x : y
@end example

@cindex side effect in ?:
@cindex ?: side effect
@noindent
In this simple case, the ability to omit the middle operand is not
especially useful.  When it becomes useful is when the first operand does,
or may (if it is a macro argument), contain a side effect.  Then repeating
the operand in the middle would perform the side effect twice.  Omitting
the middle operand uses the value already computed without the undesirable
effects of recomputing it.

@node Long Long
@section Double-Word Integers
@cindex @code{long long} data types
@cindex double-word arithmetic
@cindex multiprecision arithmetic

GNU C supports data types for integers that are twice as long as
@code{int}.  Simply write @code{long long int} for a signed integer, or
@code{unsigned long long int} for an unsigned integer.  To make an
integer constant of type @code{long long int}, add the suffix @code{LL}
to the integer.  To make an integer constant of type @code{unsigned long
long int}, add the suffix @code{ULL} to the integer.

You can use these types in arithmetic like any other integer types.
Addition, subtraction, and bitwise boolean operations on these types
are open-coded on all types of machines.  Multiplication is open-coded
if the machine supports fullword-to-doubleword a widening multiply
instruction.  Division and shifts are open-coded only on machines that
provide special support.  The operations that are not open-coded use
special library routines that come with GNU CC.

There may be pitfalls when you use @code{long long} types for function
arguments, unless you declare function prototypes.  If a function
expects type @code{int} for its argument, and you pass a value of type
@code{long long int}, confusion will result because the caller and the
subroutine will disagree about the number of bytes for the argument.
Likewise, if the function expects @code{long long int} and you pass
@code{int}.  The best way to avoid such problems is to use prototypes.

@node Complex
@section Complex Numbers
@cindex complex numbers

GNU C supports complex data types.  You can declare both complex integer
types and complex floating types, using the keyword @code{__complex__}.

For example, @samp{__complex__ double x;} declares @code{x} as a
variable whose real part and imaginary part are both of type
@code{double}.  @samp{__complex__ short int y;} declares @code{y} to
have real and imaginary parts of type @code{short int}; this is not
likely to be useful, but it shows that the set of complex types is
complete.

To write a constant with a complex data type, use the suffix @samp{i} or
@samp{j} (either one; they are equivalent).  For example, @code{2.5fi}
has type @code{__complex__ float} and @code{3i} has type
@code{__complex__ int}.  Such a constant always has a pure imaginary
value, but you can form any complex value you like by adding one to a
real constant.

To extract the real part of a complex-valued expression @var{exp}, write
@code{__real__ @var{exp}}.  Likewise, use @code{__imag__} to
extract the imaginary part.

The operator @samp{~} performs complex conjugation when used on a value
with a complex type.

GNU CC can allocate complex automatic variables in a noncontiguous
fashion; it's even possible for the real part to be in a register while
the imaginary part is on the stack (or vice-versa).  None of the
supported debugging info formats has a way to represent noncontiguous
allocation like this, so GNU CC describes a noncontiguous complex
variable as if it were two separate variables of noncomplex type.
If the variable's actual name is @code{foo}, the two fictitious
variables are named @code{foo$real} and @code{foo$imag}.  You can
examine and set these two fictitious variables with your debugger.

A future version of GDB will know how to recognize such pairs and treat
them as a single variable with a complex type.

@node Hex Floats
@section Hex Floats
@cindex hex floats

GNU CC recognizes floating-point numbers writen not only in the usual
decimal notation, such as @code{1.55e1}, but also numbers such as
@code{0x1.fp3} written in hexadecimal format.  In that format the
@code{0x} hex introducer and the @code{p} or @code{P} exponent field are
mandatory.  The exponent is a decimal number that indicates the power of
2 by which the significand part will be multiplied.  Thus @code{0x1.f} is
1 15/16, @code{p3} multiplies it by 8, and the value of @code{0x1.fp3}
is the same as @code{1.55e1}.

Unlike for floating-point numbers in the decimal notation the exponent
is always required in the hexadecimal notation.  Otherwise the compiler
would not be able to resolve the ambiguity of, e.g., @code{0x1.f}.  This
could mean @code{1.0f} or @code{1.9375} since @code{f} is also the
extension for floating-point constants of type @code{float}.

@node Zero Length
@section Arrays of Length Zero
@cindex arrays of length zero
@cindex zero-length arrays
@cindex length-zero arrays

Zero-length arrays are allowed in GNU C.  They are very useful as the last
element of a structure which is really a header for a variable-length
object:

@example
struct line @{
  int length;
  char contents[0];
@};

@{
  struct line *thisline = (struct line *)
    malloc (sizeof (struct line) + this_length);
  thisline->length = this_length;
@}
@end example

In standard C, you would have to give @code{contents} a length of 1, which
means either you waste space or complicate the argument to @code{malloc}.

@node Variable Length
@section Arrays of Variable Length
@cindex variable-length arrays
@cindex arrays of variable length

Variable-length automatic arrays are allowed in GNU C.  These arrays are
declared like any other automatic arrays, but with a length that is not
a constant expression.  The storage is allocated at the point of
declaration and deallocated when the brace-level is exited.  For
example:

@example
FILE *
concat_fopen (char *s1, char *s2, char *mode)
@{
  char str[strlen (s1) + strlen (s2) + 1];
  strcpy (str, s1);
  strcat (str, s2);
  return fopen (str, mode);
@}
@end example

@cindex scope of a variable length array
@cindex variable-length array scope
@cindex deallocating variable length arrays
Jumping or breaking out of the scope of the array name deallocates the
storage.  Jumping into the scope is not allowed; you get an error
message for it.

@cindex @code{alloca} vs variable-length arrays
You can use the function @code{alloca} to get an effect much like
variable-length arrays.  The function @code{alloca} is available in
many other C implementations (but not in all).  On the other hand,
variable-length arrays are more elegant.

There are other differences between these two methods.  Space allocated
with @code{alloca} exists until the containing @emph{function} returns.
The space for a variable-length array is deallocated as soon as the array
name's scope ends.  (If you use both variable-length arrays and
@code{alloca} in the same function, deallocation of a variable-length array
will also deallocate anything more recently allocated with @code{alloca}.)

You can also use variable-length arrays as arguments to functions:

@example
struct entry
tester (int len, char data[len][len])
@{
  @dots{}
@}
@end example

The length of an array is computed once when the storage is allocated
and is remembered for the scope of the array in case you access it with
@code{sizeof}.

If you want to pass the array first and the length afterward, you can
use a forward declaration in the parameter list---another GNU extension.

@example
struct entry
tester (int len; char data[len][len], int len)
@{
  @dots{}
@}
@end example

@cindex parameter forward declaration
The @samp{int len} before the semicolon is a @dfn{parameter forward
declaration}, and it serves the purpose of making the name @code{len}
known when the declaration of @code{data} is parsed.

You can write any number of such parameter forward declarations in the
parameter list.  They can be separated by commas or semicolons, but the
last one must end with a semicolon, which is followed by the ``real''
parameter declarations.  Each forward declaration must match a ``real''
declaration in parameter name and data type.

@node Macro Varargs
@section Macros with Variable Numbers of Arguments
@cindex variable number of arguments
@cindex macro with variable arguments
@cindex rest argument (in macro)

In GNU C, a macro can accept a variable number of arguments, much as a
function can.  The syntax for defining the macro looks much like that
used for a function.  Here is an example:

@example
#define eprintf(format, args...)  \
 fprintf (stderr, format , ## args)
@end example

Here @code{args} is a @dfn{rest argument}: it takes in zero or more
arguments, as many as the call contains.  All of them plus the commas
between them form the value of @code{args}, which is substituted into
the macro body where @code{args} is used.  Thus, we have this expansion:

@example
eprintf ("%s:%d: ", input_file_name, line_number)
@expansion{}
fprintf (stderr, "%s:%d: " , input_file_name, line_number)
@end example

@noindent
Note that the comma after the string constant comes from the definition
of @code{eprintf}, whereas the last comma comes from the value of
@code{args}.

The reason for using @samp{##} is to handle the case when @code{args}
matches no arguments at all.  In this case, @code{args} has an empty
value.  In this case, the second comma in the definition becomes an
embarrassment: if it got through to the expansion of the macro, we would
get something like this:

@example
fprintf (stderr, "success!\n" , )
@end example

@noindent
which is invalid C syntax.  @samp{##} gets rid of the comma, so we get
the following instead:

@example
fprintf (stderr, "success!\n")
@end example

This is a special feature of the GNU C preprocessor: @samp{##} before a
rest argument that is empty discards the preceding sequence of
non-whitespace characters from the macro definition.  (If another macro
argument precedes, none of it is discarded.)

It might be better to discard the last preprocessor token instead of the
last preceding sequence of non-whitespace characters; in fact, we may
someday change this feature to do so.  We advise you to write the macro
definition so that the preceding sequence of non-whitespace characters
is just a single token, so that the meaning will not change if we change
the definition of this feature.

@node Subscripting
@section Non-Lvalue Arrays May Have Subscripts
@cindex subscripting
@cindex arrays, non-lvalue

@cindex subscripting and function values
Subscripting is allowed on arrays that are not lvalues, even though the
unary @samp{&} operator is not.  For example, this is valid in GNU C though
not valid in other C dialects:

@example
@group
struct foo @{int a[4];@};

struct foo f();

bar (int index)
@{
  return f().a[index];
@}
@end group
@end example

@node Pointer Arith
@section Arithmetic on @code{void}- and Function-Pointers
@cindex void pointers, arithmetic
@cindex void, size of pointer to
@cindex function pointers, arithmetic
@cindex function, size of pointer to

In GNU C, addition and subtraction operations are supported on pointers to
@code{void} and on pointers to functions.  This is done by treating the
size of a @code{void} or of a function as 1.

A consequence of this is that @code{sizeof} is also allowed on @code{void}
and on function types, and returns 1.

The option @samp{-Wpointer-arith} requests a warning if these extensions
are used.

@node Initializers
@section Non-Constant Initializers
@cindex initializers, non-constant
@cindex non-constant initializers

As in standard C++, the elements of an aggregate initializer for an
automatic variable are not required to be constant expressions in GNU C.
Here is an example of an initializer with run-time varying elements:

@example
foo (float f, float g)
@{
  float beat_freqs[2] = @{ f-g, f+g @};
  @dots{}
@}
@end example

@node Constructors
@section Constructor Expressions
@cindex constructor expressions
@cindex initializations in expressions
@cindex structures, constructor expression
@cindex expressions, constructor

GNU C supports constructor expressions.  A constructor looks like
a cast containing an initializer.  Its value is an object of the
type specified in the cast, containing the elements specified in
the initializer.

Usually, the specified type is a structure.  Assume that
@code{struct foo} and @code{structure} are declared as shown:

@example
struct foo @{int a; char b[2];@} structure;
@end example

@noindent
Here is an example of constructing a @code{struct foo} with a constructor:

@example
structure = ((struct foo) @{x + y, 'a', 0@});
@end example

@noindent
This is equivalent to writing the following:

@example
@{
  struct foo temp = @{x + y, 'a', 0@};
  structure = temp;
@}
@end example

You can also construct an array.  If all the elements of the constructor
are (made up of) simple constant expressions, suitable for use in
initializers, then the constructor is an lvalue and can be coerced to a
pointer to its first element, as shown here:

@example
char **foo = (char *[]) @{ "x", "y", "z" @};
@end example

Array constructors whose elements are not simple constants are
not very useful, because the constructor is not an lvalue.  There
are only two valid ways to use it: to subscript it, or initialize
an array variable with it.  The former is probably slower than a
@code{switch} statement, while the latter does the same thing an
ordinary C initializer would do.  Here is an example of
subscripting an array constructor:

@example
output = ((int[]) @{ 2, x, 28 @}) [input];
@end example

Constructor expressions for scalar types and union types are is
also allowed, but then the constructor expression is equivalent
to a cast.

@node Labeled Elements
@section Labeled Elements in Initializers
@cindex initializers with labeled elements
@cindex labeled elements in initializers
@cindex case labels in initializers

Standard C requires the elements of an initializer to appear in a fixed
order, the same as the order of the elements in the array or structure
being initialized.

In GNU C you can give the elements in any order, specifying the array
indices or structure field names they apply to.  This extension is not
implemented in GNU C++.

To specify an array index, write @samp{[@var{index}]} or
@samp{[@var{index}] =} before the element value.  For example,

@example
int a[6] = @{ [4] 29, [2] = 15 @};
@end example

@noindent
is equivalent to

@example
int a[6] = @{ 0, 0, 15, 0, 29, 0 @};
@end example

@noindent
The index values must be constant expressions, even if the array being
initialized is automatic.

To initialize a range of elements to the same value, write
@samp{[@var{first} ... @var{last}] = @var{value}}.  For example,

@example
int widths[] = @{ [0 ... 9] = 1, [10 ... 99] = 2, [100] = 3 @};
@end example

@noindent
Note that the length of the array is the highest value specified
plus one.

In a structure initializer, specify the name of a field to initialize
with @samp{@var{fieldname}:} before the element value.  For example,
given the following structure,

@example
struct point @{ int x, y; @};
@end example

@noindent
the following initialization

@example
struct point p = @{ y: yvalue, x: xvalue @};
@end example

@noindent
is equivalent to

@example
struct point p = @{ xvalue, yvalue @};
@end example

Another syntax which has the same meaning is @samp{.@var{fieldname} =}.,
as shown here:

@example
struct point p = @{ .y = yvalue, .x = xvalue @};
@end example

You can also use an element label (with either the colon syntax or the
period-equal syntax) when initializing a union, to specify which element
of the union should be used.  For example,

@example
union foo @{ int i; double d; @};

union foo f = @{ d: 4 @};
@end example

@noindent
will convert 4 to a @code{double} to store it in the union using
the second element.  By contrast, casting 4 to type @code{union foo}
would store it into the union as the integer @code{i}, since it is
an integer.  (@xref{Cast to Union}.)

You can combine this technique of naming elements with ordinary C
initialization of successive elements.  Each initializer element that
does not have a label applies to the next consecutive element of the
array or structure.  For example,

@example
int a[6] = @{ [1] = v1, v2, [4] = v4 @};
@end example

@noindent
is equivalent to

@example
int a[6] = @{ 0, v1, v2, 0, v4, 0 @};
@end example

Labeling the elements of an array initializer is especially useful
when the indices are characters or belong to an @code{enum} type.
For example:

@example
int whitespace[256]
  = @{ [' '] = 1, ['\t'] = 1, ['\h'] = 1,
      ['\f'] = 1, ['\n'] = 1, ['\r'] = 1 @};
@end example

@node Case Ranges
@section Case Ranges
@cindex case ranges
@cindex ranges in case statements

You can specify a range of consecutive values in a single @code{case} label,
like this:

@example
case @var{low} ... @var{high}:
@end example

@noindent
This has the same effect as the proper number of individual @code{case}
labels, one for each integer value from @var{low} to @var{high}, inclusive.

This feature is especially useful for ranges of ASCII character codes:

@example
case 'A' ... 'Z':
@end example

@strong{Be careful:} Write spaces around the @code{...}, for otherwise
it may be parsed wrong when you use it with integer values.  For example,
write this:

@example
case 1 ... 5:
@end example

@noindent
rather than this:

@example
case 1...5:
@end example

@node Cast to Union
@section Cast to a Union Type
@cindex cast to a union
@cindex union, casting to a

A cast to union type is similar to other casts, except that the type
specified is a union type.  You can specify the type either with
@code{union @var{tag}} or with a typedef name.  A cast to union is actually
a constructor though, not a cast, and hence does not yield an lvalue like
normal casts.  (@xref{Constructors}.)

The types that may be cast to the union type are those of the members
of the union.  Thus, given the following union and variables:

@example
union foo @{ int i; double d; @};
int x;
double y;
@end example

@noindent
both @code{x} and @code{y} can be cast to type @code{union} foo.

Using the cast as the right-hand side of an assignment to a variable of
union type is equivalent to storing in a member of the union:

@example
union foo u;
@dots{}
u = (union foo) x  @equiv{}  u.i = x
u = (union foo) y  @equiv{}  u.d = y
@end example

You can also use the union cast as a function argument:

@example
void hack (union foo);
@dots{}
hack ((union foo) x);
@end example

@node Function Attributes
@section Declaring Attributes of Functions
@cindex function attributes
@cindex declaring attributes of functions
@cindex functions that never return
@cindex functions that have no side effects
@cindex functions in arbitrary sections
@cindex functions that bahave like malloc
@cindex @code{volatile} applied to function
@cindex @code{const} applied to function
@cindex functions with @code{printf}, @code{scanf} or @code{strftime} style arguments
@cindex functions that are passed arguments in registers on the 386
@cindex functions that pop the argument stack on the 386
@cindex functions that do not pop the argument stack on the 386

In GNU C, you declare certain things about functions called in your program
which help the compiler optimize function calls and check your code more
carefully.

The keyword @code{__attribute__} allows you to specify special
attributes when making a declaration.  This keyword is followed by an
attribute specification inside double parentheses.  Ten attributes,
@code{noreturn}, @code{const}, @code{format},
@code{no_instrument_function}, @code{section}, @code{constructor},
@code{destructor}, @code{unused}, @code{weak} and @code{malloc} are
currently defined for functions.  Other attributes, including
@code{section} are supported for variables declarations (@pxref{Variable
Attributes}) and for types (@pxref{Type Attributes}).

You may also specify attributes with @samp{__} preceding and following
each keyword.  This allows you to use them in header files without
being concerned about a possible macro of the same name.  For example,
you may use @code{__noreturn__} instead of @code{noreturn}.

@table @code
@cindex @code{noreturn} function attribute
@item noreturn
A few standard library functions, such as @code{abort} and @code{exit},
cannot return.  GNU CC knows this automatically.  Some programs define
their own functions that never return.  You can declare them
@code{noreturn} to tell the compiler this fact.  For example,

@smallexample
void fatal () __attribute__ ((noreturn));

void
fatal (@dots{})
@{
  @dots{} /* @r{Print error message.} */ @dots{}
  exit (1);
@}
@end smallexample

The @code{noreturn} keyword tells the compiler to assume that
@code{fatal} cannot return.  It can then optimize without regard to what
would happen if @code{fatal} ever did return.  This makes slightly
better code.  More importantly, it helps avoid spurious warnings of
uninitialized variables.

Do not assume that registers saved by the calling function are
restored before calling the @code{noreturn} function.

It does not make sense for a @code{noreturn} function to have a return
type other than @code{void}.

The attribute @code{noreturn} is not implemented in GNU C versions
earlier than 2.5.  An alternative way to declare that a function does
not return, which works in the current version and in some older
versions, is as follows:

@smallexample
typedef void voidfn ();

volatile voidfn fatal;
@end smallexample

@cindex @code{const} function attribute
@item const
Many functions do not examine any values except their arguments, and
have no effects except the return value.  Such a function can be subject
to common subexpression elimination and loop optimization just as an
arithmetic operator would be.  These functions should be declared
with the attribute @code{const}.  For example,

@smallexample
int square (int) __attribute__ ((const));
@end smallexample

@noindent
says that the hypothetical function @code{square} is safe to call
fewer times than the program says.

The attribute @code{const} is not implemented in GNU C versions earlier
than 2.5.  An alternative way to declare that a function has no side
effects, which works in the current version and in some older versions,
is as follows:

@smallexample
typedef int intfn ();

extern const intfn square;
@end smallexample

This approach does not work in GNU C++ from 2.6.0 on, since the language
specifies that the @samp{const} must be attached to the return value.

@cindex pointer arguments
Note that a function that has pointer arguments and examines the data
pointed to must @emph{not} be declared @code{const}.  Likewise, a
function that calls a non-@code{const} function usually must not be
@code{const}.  It does not make sense for a @code{const} function to
return @code{void}.

@item format (@var{archetype}, @var{string-index}, @var{first-to-check})
@cindex @code{format} function attribute
The @code{format} attribute specifies that a function takes @code{printf},
@code{scanf}, or @code{strftime} style arguments which should be type-checked
against a format string.  For example, the declaration:

@smallexample
extern int
my_printf (void *my_object, const char *my_format, ...)
      __attribute__ ((format (printf, 2, 3)));
@end smallexample

@noindent
causes the compiler to check the arguments in calls to @code{my_printf}
for consistency with the @code{printf} style format string argument
@code{my_format}.

The parameter @var{archetype} determines how the format string is
interpreted, and should be either @code{printf}, @code{scanf}, or
@code{strftime}.  The
parameter @var{string-index} specifies which argument is the format
string argument (starting from 1), while @var{first-to-check} is the
number of the first argument to check against the format string.  For
functions where the arguments are not available to be checked (such as
@code{vprintf}), specify the third parameter as zero.  In this case the
compiler only checks the format string for consistency.

In the example above, the format string (@code{my_format}) is the second
argument of the function @code{my_print}, and the arguments to check
start with the third argument, so the correct parameters for the format
attribute are 2 and 3.

The @code{format} attribute allows you to identify your own functions
which take format strings as arguments, so that GNU CC can check the
calls to these functions for errors.  The compiler always checks formats
for the ANSI library functions @code{printf}, @code{fprintf},
@code{sprintf}, @code{scanf}, @code{fscanf}, @code{sscanf}, @code{strftime},
@code{vprintf}, @code{vfprintf} and @code{vsprintf} whenever such
warnings are requested (using @samp{-Wformat}), so there is no need to
modify the header file @file{stdio.h}.

@item format_arg (@var{string-index})
@cindex @code{format_arg} function attribute
The @code{format_arg} attribute specifies that a function takes
@code{printf} or @code{scanf} style arguments, modifies it (for example,
to translate it into another language), and passes it to a @code{printf}
or @code{scanf} style function.  For example, the declaration:

@smallexample
extern char *
my_dgettext (char *my_domain, const char *my_format)
      __attribute__ ((format_arg (2)));
@end smallexample

@noindent
causes the compiler to check the arguments in calls to
@code{my_dgettext} whose result is passed to a @code{printf},
@code{scanf}, or @code{strftime} type function for consistency with the
@code{printf} style format string argument @code{my_format}.

The parameter @var{string-index} specifies which argument is the format
string argument (starting from 1).

The @code{format-arg} attribute allows you to identify your own
functions which modify format strings, so that GNU CC can check the
calls to @code{printf}, @code{scanf}, or @code{strftime} function whose
operands are a call to one of your own function.  The compiler always
treats @code{gettext}, @code{dgettext}, and @code{dcgettext} in this
manner.

@item no_instrument_function
@cindex @code{no_instrument_function} function attribute
If @samp{-finstrument-functions} is given, profiling function calls will
be generated at entry and exit of most user-compiled functions.
Functions with this attribute will not be so instrumented.

@item section ("section-name")
@cindex @code{section} function attribute
Normally, the compiler places the code it generates in the @code{text} section.
Sometimes, however, you need additional sections, or you need certain
particular functions to appear in special sections.  The @code{section}
attribute specifies that a function lives in a particular section.
For example, the declaration:

@smallexample
extern void foobar (void) __attribute__ ((section ("bar")));
@end smallexample

@noindent
puts the function @code{foobar} in the @code{bar} section.

Some file formats do not support arbitrary sections so the @code{section}
attribute is not available on all platforms.
If you need to map the entire contents of a module to a particular
section, consider using the facilities of the linker instead.

@item constructor
@itemx destructor
@cindex @code{constructor} function attribute
@cindex @code{destructor} function attribute
The @code{constructor} attribute causes the function to be called
automatically before execution enters @code{main ()}.  Similarly, the
@code{destructor} attribute causes the function to be called
automatically after @code{main ()} has completed or @code{exit ()} has
been called.  Functions with these attributes are useful for
initializing data that will be used implicitly during the execution of
the program.

These attributes are not currently implemented for Objective C.

@item unused
This attribute, attached to a function, means that the function is meant
to be possibly unused.  GNU CC will not produce a warning for this
function.  GNU C++ does not currently support this attribute as
definitions without parameters are valid in C++.

@item weak
@cindex @code{weak} attribute
The @code{weak} attribute causes the declaration to be emitted as a weak
symbol rather than a global.  This is primarily useful in defining
library functions which can be overridden in user code, though it can
also be used with non-function declarations.  Weak symbols are supported
for ELF targets, and also for a.out targets when using the GNU assembler
and linker.

@item malloc
@cindex @code{malloc} attribute
The @code{malloc} attribute is used to tell the compiler that a function
may be treated as if it were the malloc function.  The compiler assumes
that calls to malloc result in a pointers that cannot alias anything.
This will often improve optimization.

@item alias ("target")
@cindex @code{alias} attribute
The @code{alias} attribute causes the declaration to be emitted as an
alias for another symbol, which must be specified.  For instance,

@smallexample
void __f () @{ /* do something */; @}
void f () __attribute__ ((weak, alias ("__f")));
@end smallexample

declares @samp{f} to be a weak alias for @samp{__f}.  In C++, the
mangled name for the target must be used.

Not all target machines support this attribute.

@item no_check_memory_usage
@cindex @code{no_check_memory_usage} function attribute
The @code{no_check_memory_usage} attribute causes GNU CC to omit checks
of memory references when it generates code for that function.  Normally
if you specify @samp{-fcheck-memory-usage} (see @pxref{Code Gen
Options}), GNU CC generates calls to support routines before most memory
accesses to permit support code to record usage and detect uses of
uninitialized or unallocated storage.  Since GNU CC cannot handle
@code{asm} statements properly they are not allowed in such functions.
If you declare a function with this attribute, GNU CC will not generate
memory checking code for that function, permitting the use of @code{asm}
statements without having to compile that function with different
options.  This also allows you to write support routines of your own if
you wish, without getting infinite recursion if they get compiled with
@code{-fcheck-memory-usage}.

@item regparm (@var{number})
@cindex functions that are passed arguments in registers on the 386
On the Intel 386, the @code{regparm} attribute causes the compiler to
pass up to @var{number} integer arguments in registers @var{EAX},
@var{EDX}, and @var{ECX} instead of on the stack.  Functions that take a
variable number of arguments will continue to be passed all of their
arguments on the stack.

@item stdcall
@cindex functions that pop the argument stack on the 386
On the Intel 386, the @code{stdcall} attribute causes the compiler to
assume that the called function will pop off the stack space used to
pass arguments, unless it takes a variable number of arguments.

The PowerPC compiler for Windows NT currently ignores the @code{stdcall}
attribute.

@item cdecl
@cindex functions that do pop the argument stack on the 386
On the Intel 386, the @code{cdecl} attribute causes the compiler to
assume that the calling function will pop off the stack space used to
pass arguments.  This is
useful to override the effects of the @samp{-mrtd} switch.

The PowerPC compiler for Windows NT currently ignores the @code{cdecl}
attribute.

@item longcall
@cindex functions called via pointer on the RS/6000 and PowerPC
On the RS/6000 and PowerPC, the @code{longcall} attribute causes the
compiler to always call the function via a pointer, so that functions
which reside further than 64 megabytes (67,108,864 bytes) from the
current location can be called.

@item dllimport
@cindex functions which are imported from a dll on PowerPC Windows NT
On the PowerPC running Windows NT, the @code{dllimport} attribute causes
the compiler to call the function via a global pointer to the function
pointer that is set up by the Windows NT dll library.  The pointer name
is formed by combining @code{__imp_} and the function name.

@item dllexport
@cindex functions which are exported from a dll on PowerPC Windows NT
On the PowerPC running Windows NT, the @code{dllexport} attribute causes
the compiler to provide a global pointer to the function pointer, so
that it can be called with the @code{dllimport} attribute.  The pointer
name is formed by combining @code{__imp_} and the function name.

@item exception (@var{except-func} [, @var{except-arg}])
@cindex functions which specify exception handling on PowerPC Windows NT
On the PowerPC running Windows NT, the @code{exception} attribute causes
the compiler to modify the structured exception table entry it emits for
the declared function.  The string or identifier @var{except-func} is
placed in the third entry of the structured exception table.  It
represents a function, which is called by the exception handling
mechanism if an exception occurs.  If it was specified, the string or
identifier @var{except-arg} is placed in the fourth entry of the
structured exception table.

@item function_vector
@cindex calling functions through the function vector on the H8/300 processors
Use this option on the H8/300 and H8/300H to indicate that the specified
function should be called through the function vector.  Calling a
function through the function vector will reduce code size, however;
the function vector has a limited size (maximum 128 entries on the H8/300
and 64 entries on the H8/300H) and shares space with the interrupt vector.

You must use GAS and GLD from GNU binutils version 2.7 or later for
this option to work correctly.

@item interrupt_handler
@cindex interrupt handler functions on the H8/300 processors
Use this option on the H8/300 and H8/300H to indicate that the specified
function is an interrupt handler.  The compiler will generate function
entry and exit sequences suitable for use in an interrupt handler when this
attribute is present.

@item eightbit_data
@cindex eight bit data on the H8/300 and H8/300H
Use this option on the H8/300 and H8/300H to indicate that the specified
variable should be placed into the eight bit data section.
The compiler will generate more efficient code for certain operations
on data in the eight bit data area.  Note the eight bit data area is limited to
256 bytes of data.

You must use GAS and GLD from GNU binutils version 2.7 or later for
this option to work correctly.

@item tiny_data
@cindex tiny data section on the H8/300H
Use this option on the H8/300H to indicate that the specified
variable should be placed into the tiny data section.
The compiler will generate more efficient code for loads and stores
on data in the tiny data section.  Note the tiny data area is limited to
slightly under 32kbytes of data.

@item interrupt
@cindex interrupt handlers on the M32R/D
Use this option on the M32R/D to indicate that the specified
function is an interrupt handler.  The compiler will generate function
entry and exit sequences suitable for use in an interrupt handler when this
attribute is present.

@item model (@var{model-name})
@cindex function addressability on the M32R/D
Use this attribute on the M32R/D to set the addressability of an object,
and the code generated for a function.
The identifier @var{model-name} is one of @code{small}, @code{medium},
or @code{large}, representing each of the code models.

Small model objects live in the lower 16MB of memory (so that their
addresses can be loaded with the @code{ld24} instruction), and are
callable with the @code{bl} instruction.

Medium model objects may live anywhere in the 32 bit address space (the
compiler will generate @code{seth/add3} instructions to load their addresses),
and are callable with the @code{bl} instruction.

Large model objects may live anywhere in the 32 bit address space (the
compiler will generate @code{seth/add3} instructions to load their addresses),
and may not be reachable with the @code{bl} instruction (the compiler will
generate the much slower @code{seth/add3/jl} instruction sequence).

@end table

You can specify multiple attributes in a declaration by separating them
by commas within the double parentheses or by immediately following an
attribute declaration with another attribute declaration.

@cindex @code{#pragma}, reason for not using
@cindex pragma, reason for not using
Some people object to the @code{__attribute__} feature, suggesting that ANSI C's
@code{#pragma} should be used instead.  There are two reasons for not
doing this.

@enumerate
@item
It is impossible to generate @code{#pragma} commands from a macro.

@item
There is no telling what the same @code{#pragma} might mean in another
compiler.
@end enumerate

These two reasons apply to almost any application that might be proposed
for @code{#pragma}.  It is basically a mistake to use @code{#pragma} for
@emph{anything}.

@node Function Prototypes
@section Prototypes and Old-Style Function Definitions
@cindex function prototype declarations
@cindex old-style function definitions
@cindex promotion of formal parameters

GNU C extends ANSI C to allow a function prototype to override a later
old-style non-prototype definition.  Consider the following example:

@example
/* @r{Use prototypes unless the compiler is old-fashioned.}  */
#ifdef __STDC__
#define P(x) x
#else
#define P(x) ()
#endif

/* @r{Prototype function declaration.}  */
int isroot P((uid_t));

/* @r{Old-style function definition.}  */
int
isroot (x)   /* ??? lossage here ??? */
     uid_t x;
@{
  return x == 0;
@}
@end example

Suppose the type @code{uid_t} happens to be @code{short}.  ANSI C does
not allow this example, because subword arguments in old-style
non-prototype definitions are promoted.  Therefore in this example the
function definition's argument is really an @code{int}, which does not
match the prototype argument type of @code{short}.

This restriction of ANSI C makes it hard to write code that is portable
to traditional C compilers, because the programmer does not know
whether the @code{uid_t} type is @code{short}, @code{int}, or
@code{long}.  Therefore, in cases like these GNU C allows a prototype
to override a later old-style definition.  More precisely, in GNU C, a
function prototype argument type overrides the argument type specified
by a later old-style definition if the former type is the same as the
latter type before promotion.  Thus in GNU C the above example is
equivalent to the following:

@example
int isroot (uid_t);

int
isroot (uid_t x)
@{
  return x == 0;
@}
@end example

GNU C++ does not support old-style function definitions, so this
extension is irrelevant.

@node C++ Comments
@section C++ Style Comments
@cindex //
@cindex C++ comments
@cindex comments, C++ style

In GNU C, you may use C++ style comments, which start with @samp{//} and
continue until the end of the line.  Many other C implementations allow
such comments, and they are likely to be in a future C standard.
However, C++ style comments are not recognized if you specify
@w{@samp{-ansi}} or @w{@samp{-traditional}}, since they are incompatible
with traditional constructs like @code{dividend//*comment*/divisor}.

@node Dollar Signs
@section Dollar Signs in Identifier Names
@cindex $
@cindex dollar signs in identifier names
@cindex identifier names, dollar signs in

In GNU C, you may normally use dollar signs in identifier names.
This is because many traditional C implementations allow such identifiers.
However, dollar signs in identifiers are not supported on a few target
machines, typically because the target assembler does not allow them.

@node Character Escapes
@section The Character @key{ESC} in Constants

You can use the sequence @samp{\e} in a string or character constant to
stand for the ASCII character @key{ESC}.

@node Alignment
@section Inquiring on Alignment of Types or Variables
@cindex alignment
@cindex type alignment
@cindex variable alignment

The keyword @code{__alignof__} allows you to inquire about how an object
is aligned, or the minimum alignment usually required by a type.  Its
syntax is just like @code{sizeof}.

For example, if the target machine requires a @code{double} value to be
aligned on an 8-byte boundary, then @code{__alignof__ (double)} is 8.
This is true on many RISC machines.  On more traditional machine
designs, @code{__alignof__ (double)} is 4 or even 2.

Some machines never actually require alignment; they allow reference to any
data type even at an odd addresses.  For these machines, @code{__alignof__}
reports the @emph{recommended} alignment of a type.

When the operand of @code{__alignof__} is an lvalue rather than a type, the
value is the largest alignment that the lvalue is known to have.  It may
have this alignment as a result of its data type, or because it is part of
a structure and inherits alignment from that structure.  For example, after
this declaration:

@example
struct foo @{ int x; char y; @} foo1;
@end example

@noindent
the value of @code{__alignof__ (foo1.y)} is probably 2 or 4, the same as
@code{__alignof__ (int)}, even though the data type of @code{foo1.y}
does not itself demand any alignment.@refill

A related feature which lets you specify the alignment of an object is
@code{__attribute__ ((aligned (@var{alignment})))}; see the following
section.

@node Variable Attributes
@section Specifying Attributes of Variables
@cindex attribute of variables
@cindex variable attributes

The keyword @code{__attribute__} allows you to specify special
attributes of variables or structure fields.  This keyword is followed
by an attribute specification inside double parentheses.  Eight
attributes are currently defined for variables: @code{aligned},
@code{mode}, @code{nocommon}, @code{packed}, @code{section},
@code{transparent_union}, @code{unused}, and @code{weak}.  Other
attributes are available for functions (@pxref{Function Attributes}) and
for types (@pxref{Type Attributes}).

You may also specify attributes with @samp{__} preceding and following
each keyword.  This allows you to use them in header files without
being concerned about a possible macro of the same name.  For example,
you may use @code{__aligned__} instead of @code{aligned}.

@table @code
@cindex @code{aligned} attribute
@item aligned (@var{alignment})
This attribute specifies a minimum alignment for the variable or
structure field, measured in bytes.  For example, the declaration:

@smallexample
int x __attribute__ ((aligned (16))) = 0;
@end smallexample

@noindent
causes the compiler to allocate the global variable @code{x} on a
16-byte boundary.  On a 68040, this could be used in conjunction with
an @code{asm} expression to access the @code{move16} instruction which
requires 16-byte aligned operands.

You can also specify the alignment of structure fields.  For example, to
create a double-word aligned @code{int} pair, you could write:

@smallexample
struct foo @{ int x[2] __attribute__ ((aligned (8))); @};
@end smallexample

@noindent
This is an alternative to creating a union with a @code{double} member
that forces the union to be double-word aligned.

It is not possible to specify the alignment of functions; the alignment
of functions is determined by the machine's requirements and cannot be
changed.  You cannot specify alignment for a typedef name because such a
name is just an alias, not a distinct type.

As in the preceding examples, you can explicitly specify the alignment
(in bytes) that you wish the compiler to use for a given variable or
structure field.  Alternatively, you can leave out the alignment factor
and just ask the compiler to align a variable or field to the maximum
useful alignment for the target machine you are compiling for.  For
example, you could write:

@smallexample
short array[3] __attribute__ ((aligned));
@end smallexample

Whenever you leave out the alignment factor in an @code{aligned} attribute
specification, the compiler automatically sets the alignment for the declared
variable or field to the largest alignment which is ever used for any data
type on the target machine you are compiling for.  Doing this can often make
copy operations more efficient, because the compiler can use whatever
instructions copy the biggest chunks of memory when performing copies to
or from the variables or fields that you have aligned this way.

The @code{aligned} attribute can only increase the alignment; but you
can decrease it by specifying @code{packed} as well.  See below.

Note that the effectiveness of @code{aligned} attributes may be limited
by inherent limitations in your linker.  On many systems, the linker is
only able to arrange for variables to be aligned up to a certain maximum
alignment.  (For some linkers, the maximum supported alignment may
be very very small.)  If your linker is only able to align variables
up to a maximum of 8 byte alignment, then specifying @code{aligned(16)}
in an @code{__attribute__} will still only provide you with 8 byte
alignment.  See your linker documentation for further information.

@item mode (@var{mode})
@cindex @code{mode} attribute
This attribute specifies the data type for the declaration---whichever
type corresponds to the mode @var{mode}.  This in effect lets you
request an integer or floating point type according to its width.

You may also specify a mode of @samp{byte} or @samp{__byte__} to
indicate the mode corresponding to a one-byte integer, @samp{word} or
@samp{__word__} for the mode of a one-word integer, and @samp{pointer}
or @samp{__pointer__} for the mode used to represent pointers.

@item nocommon
@cindex @code{nocommon} attribute
This attribute specifies requests GNU CC not to place a variable
``common'' but instead to allocate space for it directly.  If you
specify the @samp{-fno-common} flag, GNU CC will do this for all
variables.

Specifying the @code{nocommon} attribute for a variable provides an
initialization of zeros.  A variable may only be initialized in one
source file.

@item packed
@cindex @code{packed} attribute
The @code{packed} attribute specifies that a variable or structure field
should have the smallest possible alignment---one byte for a variable,
and one bit for a field, unless you specify a larger value with the
@code{aligned} attribute.

Here is a structure in which the field @code{x} is packed, so that it
immediately follows @code{a}:

@example
struct foo
@{
  char a;
  int x[2] __attribute__ ((packed));
@};
@end example

@item section ("section-name")
@cindex @code{section} variable attribute
Normally, the compiler places the objects it generates in sections like
@code{data} and @code{bss}.  Sometimes, however, you need additional sections,
or you need certain particular variables to appear in special sections,
for example to map to special hardware.  The @code{section}
attribute specifies that a variable (or function) lives in a particular
section.  For example, this small program uses several specific section names:

@smallexample
struct duart a __attribute__ ((section ("DUART_A"))) = @{ 0 @};
struct duart b __attribute__ ((section ("DUART_B"))) = @{ 0 @};
char stack[10000] __attribute__ ((section ("STACK"))) = @{ 0 @};
int init_data __attribute__ ((section ("INITDATA"))) = 0;

main()
@{
  /* Initialize stack pointer */
  init_sp (stack + sizeof (stack));

  /* Initialize initialized data */
  memcpy (&init_data, &data, &edata - &data);

  /* Turn on the serial ports */
  init_duart (&a);
  init_duart (&b);
@}
@end smallexample

@noindent
Use the @code{section} attribute with an @emph{initialized} definition
of a @emph{global} variable, as shown in the example.  GNU CC issues
a warning and otherwise ignores the @code{section} attribute in
uninitialized variable declarations.

You may only use the @code{section} attribute with a fully initialized
global definition because of the way linkers work.  The linker requires
each object be defined once, with the exception that uninitialized
variables tentatively go in the @code{common} (or @code{bss}) section
and can be multiply "defined".  You can force a variable to be
initialized with the @samp{-fno-common} flag or the @code{nocommon}
attribute.

Some file formats do not support arbitrary sections so the @code{section}
attribute is not available on all platforms.
If you need to map the entire contents of a module to a particular
section, consider using the facilities of the linker instead.

@item shared
@cindex @code{shared} variable attribute
On Windows NT, in addition to nputting variable definitions in a named 
section, the section can also be shared among all running copies of an 
executable or DLL. For example, this small program defines shared data 
by putting it in a named section "shared" and marking the section 
shareable:

@smallexample
int foo __attribute__((section ("shared"), shared)) = 0;

int
main()
@{
  /* Read and write foo. All running copies see the same value. */
  return 0;
@}
@end smallexample

@noindent
You may only use the @code{shared} attribute along with @code{section}
attribute with a fully initialized global definition because of the way 
linkers work.  See @code{section} attribute for more information.

The @code{shared} attribute is only available on Windows NT.

@item transparent_union
This attribute, attached to a function parameter which is a union, means
that the corresponding argument may have the type of any union member,
but the argument is passed as if its type were that of the first union
member.  For more details see @xref{Type Attributes}.  You can also use
this attribute on a @code{typedef} for a union data type; then it
applies to all function parameters with that type.

@item unused
This attribute, attached to a variable, means that the variable is meant
to be possibly unused.  GNU CC will not produce a warning for this
variable.

@item weak
The @code{weak} attribute is described in @xref{Function Attributes}.

@item model (@var{model-name})
@cindex variable addressability on the M32R/D
Use this attribute on the M32R/D to set the addressability of an object.
The identifier @var{model-name} is one of @code{small}, @code{medium},
or @code{large}, representing each of the code models.

Small model objects live in the lower 16MB of memory (so that their
addresses can be loaded with the @code{ld24} instruction).

Medium and large model objects may live anywhere in the 32 bit address space
(the compiler will generate @code{seth/add3} instructions to load their
addresses).

@end table

To specify multiple attributes, separate them by commas within the
double parentheses: for example, @samp{__attribute__ ((aligned (16),
packed))}.

@node Type Attributes
@section Specifying Attributes of Types
@cindex attribute of types
@cindex type attributes

The keyword @code{__attribute__} allows you to specify special
attributes of @code{struct} and @code{union} types when you define such
types.  This keyword is followed by an attribute specification inside
double parentheses.  Three attributes are currently defined for types:
@code{aligned}, @code{packed}, and @code{transparent_union}.  Other
attributes are defined for functions (@pxref{Function Attributes}) and
for variables (@pxref{Variable Attributes}).

You may also specify any one of these attributes with @samp{__}
preceding and following its keyword.  This allows you to use these
attributes in header files without being concerned about a possible
macro of the same name.  For example, you may use @code{__aligned__}
instead of @code{aligned}.

You may specify the @code{aligned} and @code{transparent_union}
attributes either in a @code{typedef} declaration or just past the
closing curly brace of a complete enum, struct or union type
@emph{definition} and the @code{packed} attribute only past the closing
brace of a definition.

You may also specify attributes between the enum, struct or union
tag and the name of the type rather than after the closing brace.

@table @code
@cindex @code{aligned} attribute
@item aligned (@var{alignment})
This attribute specifies a minimum alignment (in bytes) for variables
of the specified type.  For example, the declarations:

@smallexample
struct S @{ short f[3]; @} __attribute__ ((aligned (8)));
typedef int more_aligned_int __attribute__ ((aligned (8)));
@end smallexample

@noindent
force the compiler to insure (as far as it can) that each variable whose
type is @code{struct S} or @code{more_aligned_int} will be allocated and
aligned @emph{at least} on a 8-byte boundary.  On a Sparc, having all
variables of type @code{struct S} aligned to 8-byte boundaries allows
the compiler to use the @code{ldd} and @code{std} (doubleword load and
store) instructions when copying one variable of type @code{struct S} to
another, thus improving run-time efficiency.

Note that the alignment of any given @code{struct} or @code{union} type
is required by the ANSI C standard to be at least a perfect multiple of
the lowest common multiple of the alignments of all of the members of
the @code{struct} or @code{union} in question.  This means that you @emph{can}
effectively adjust the alignment of a @code{struct} or @code{union}
type by attaching an @code{aligned} attribute to any one of the members
of such a type, but the notation illustrated in the example above is a
more obvious, intuitive, and readable way to request the compiler to
adjust the alignment of an entire @code{struct} or @code{union} type.

As in the preceding example, you can explicitly specify the alignment
(in bytes) that you wish the compiler to use for a given @code{struct}
or @code{union} type.  Alternatively, you can leave out the alignment factor
and just ask the compiler to align a type to the maximum
useful alignment for the target machine you are compiling for.  For
example, you could write:

@smallexample
struct S @{ short f[3]; @} __attribute__ ((aligned));
@end smallexample

Whenever you leave out the alignment factor in an @code{aligned}
attribute specification, the compiler automatically sets the alignment
for the type to the largest alignment which is ever used for any data
type on the target machine you are compiling for.  Doing this can often
make copy operations more efficient, because the compiler can use
whatever instructions copy the biggest chunks of memory when performing
copies to or from the variables which have types that you have aligned
this way.

In the example above, if the size of each @code{short} is 2 bytes, then
the size of the entire @code{struct S} type is 6 bytes.  The smallest
power of two which is greater than or equal to that is 8, so the
compiler sets the alignment for the entire @code{struct S} type to 8
bytes.

Note that although you can ask the compiler to select a time-efficient
alignment for a given type and then declare only individual stand-alone
objects of that type, the compiler's ability to select a time-efficient
alignment is primarily useful only when you plan to create arrays of
variables having the relevant (efficiently aligned) type.  If you
declare or use arrays of variables of an efficiently-aligned type, then
it is likely that your program will also be doing pointer arithmetic (or
subscripting, which amounts to the same thing) on pointers to the
relevant type, and the code that the compiler generates for these
pointer arithmetic operations will often be more efficient for
efficiently-aligned types than for other types.

The @code{aligned} attribute can only increase the alignment; but you
can decrease it by specifying @code{packed} as well.  See below.

Note that the effectiveness of @code{aligned} attributes may be limited
by inherent limitations in your linker.  On many systems, the linker is
only able to arrange for variables to be aligned up to a certain maximum
alignment.  (For some linkers, the maximum supported alignment may
be very very small.)  If your linker is only able to align variables
up to a maximum of 8 byte alignment, then specifying @code{aligned(16)}
in an @code{__attribute__} will still only provide you with 8 byte
alignment.  See your linker documentation for further information.

@item packed
This attribute, attached to an @code{enum}, @code{struct}, or
@code{union} type definition, specified that the minimum required memory
be used to represent the type.

Specifying this attribute for @code{struct} and @code{union} types is
equivalent to specifying the @code{packed} attribute on each of the
structure or union members.  Specifying the @samp{-fshort-enums}
flag on the line is equivalent to specifying the @code{packed}
attribute on all @code{enum} definitions.

You may only specify this attribute after a closing curly brace on an
@code{enum} definition, not in a @code{typedef} declaration, unless that
declaration also contains the definition of the @code{enum}.

@item transparent_union
This attribute, attached to a @code{union} type definition, indicates
that any function parameter having that union type causes calls to that
function to be treated in a special way.

First, the argument corresponding to a transparent union type can be of
any type in the union; no cast is required.  Also, if the union contains
a pointer type, the corresponding argument can be a null pointer
constant or a void pointer expression; and if the union contains a void
pointer type, the corresponding argument can be any pointer expression.
If the union member type is a pointer, qualifiers like @code{const} on
the referenced type must be respected, just as with normal pointer
conversions.

Second, the argument is passed to the function using the calling
conventions of first member of the transparent union, not the calling
conventions of the union itself.  All members of the union must have the
same machine representation; this is necessary for this argument passing
to work properly.

Transparent unions are designed for library functions that have multiple
interfaces for compatibility reasons.  For example, suppose the
@code{wait} function must accept either a value of type @code{int *} to
comply with Posix, or a value of type @code{union wait *} to comply with
the 4.1BSD interface.  If @code{wait}'s parameter were @code{void *},
@code{wait} would accept both kinds of arguments, but it would also
accept any other pointer type and this would make argument type checking
less useful.  Instead, @code{<sys/wait.h>} might define the interface
as follows:

@smallexample
typedef union
  @{
    int *__ip;
    union wait *__up;
  @} wait_status_ptr_t __attribute__ ((__transparent_union__));

pid_t wait (wait_status_ptr_t);
@end smallexample

This interface allows either @code{int *} or @code{union wait *}
arguments to be passed, using the @code{int *} calling convention.
The program can call @code{wait} with arguments of either type:

@example
int w1 () @{ int w; return wait (&w); @}
int w2 () @{ union wait w; return wait (&w); @}
@end example

With this interface, @code{wait}'s implementation might look like this:

@example
pid_t wait (wait_status_ptr_t p)
@{
  return waitpid (-1, p.__ip, 0);
@}
@end example

@item unused
When attached to a type (including a @code{union} or a @code{struct}),
this attribute means that variables of that type are meant to appear
possibly unused.  GNU CC will not produce a warning for any variables of
that type, even if the variable appears to do nothing.  This is often
the case with lock or thread classes, which are usually defined and then
not referenced, but contain constructors and destructors that have
nontrivial bookkeeping functions.

@end table

To specify multiple attributes, separate them by commas within the
double parentheses: for example, @samp{__attribute__ ((aligned (16),
packed))}.

@node Inline
@section An Inline Function is As Fast As a Macro
@cindex inline functions
@cindex integrating function code
@cindex open coding
@cindex macros, inline alternative

By declaring a function @code{inline}, you can direct GNU CC to
integrate that function's code into the code for its callers.  This
makes execution faster by eliminating the function-call overhead; in
addition, if any of the actual argument values are constant, their known
values may permit simplifications at compile time so that not all of the
inline function's code needs to be included.  The effect on code size is
less predictable; object code may be larger or smaller with function
inlining, depending on the particular case.  Inlining of functions is an
optimization and it really ``works'' only in optimizing compilation.  If
you don't use @samp{-O}, no function is really inline.

To declare a function inline, use the @code{inline} keyword in its
declaration, like this:

@example
inline int
inc (int *a)
@{
  (*a)++;
@}
@end example

(If you are writing a header file to be included in ANSI C programs, write
@code{__inline__} instead of @code{inline}.  @xref{Alternate Keywords}.)
You can also make all ``simple enough'' functions inline with the option
@samp{-finline-functions}. 

Note that certain usages in a function definition can make it unsuitable
for inline substitution.  Among these usages are: use of varargs, use of
alloca, use of variable sized data types (@pxref{Variable Length}),
use of computed goto (@pxref{Labels as Values}), use of nonlocal goto,
and nested functions (@pxref{Nested Functions}).  Using @samp{-Winline}
will warn when a function marked @code{inline} could not be substituted,
and will give the reason for the failure.

Note that in C and Objective C, unlike C++, the @code{inline} keyword
does not affect the linkage of the function.

@cindex automatic @code{inline} for C++ member fns
@cindex @code{inline} automatic for C++ member fns
@cindex member fns, automatically @code{inline}
@cindex C++ member fns, automatically @code{inline}
GNU CC automatically inlines member functions defined within the class
body of C++ programs even if they are not explicitly declared
@code{inline}.  (You can override this with @samp{-fno-default-inline};
@pxref{C++ Dialect Options,,Options Controlling C++ Dialect}.)

@cindex inline functions, omission of
When a function is both inline and @code{static}, if all calls to the
function are integrated into the caller, and the function's address is
never used, then the function's own assembler code is never referenced.
In this case, GNU CC does not actually output assembler code for the
function, unless you specify the option @samp{-fkeep-inline-functions}.
Some calls cannot be integrated for various reasons (in particular,
calls that precede the function's definition cannot be integrated, and
neither can recursive calls within the definition).  If there is a
nonintegrated call, then the function is compiled to assembler code as
usual.  The function must also be compiled as usual if the program
refers to its address, because that can't be inlined.

@cindex non-static inline function
When an inline function is not @code{static}, then the compiler must assume
that there may be calls from other source files; since a global symbol can
be defined only once in any program, the function must not be defined in
the other source files, so the calls therein cannot be integrated.
Therefore, a non-@code{static} inline function is always compiled on its
own in the usual fashion.

If you specify both @code{inline} and @code{extern} in the function
definition, then the definition is used only for inlining.  In no case
is the function compiled on its own, not even if you refer to its
address explicitly.  Such an address becomes an external reference, as
if you had only declared the function, and had not defined it.

This combination of @code{inline} and @code{extern} has almost the
effect of a macro.  The way to use it is to put a function definition in
a header file with these keywords, and put another copy of the
definition (lacking @code{inline} and @code{extern}) in a library file.
The definition in the header file will cause most calls to the function
to be inlined.  If any uses of the function remain, they will refer to
the single copy in the library.

GNU C does not inline any functions when not optimizing.  It is not
clear whether it is better to inline or not, in this case, but we found
that a correct implementation when not optimizing was difficult.  So we
did the easy thing, and turned it off.

@node Extended Asm
@section Assembler Instructions with C Expression Operands
@cindex extended @code{asm}
@cindex @code{asm} expressions
@cindex assembler instructions
@cindex registers

In an assembler instruction using @code{asm}, you can specify the
operands of the instruction using C expressions.  This means you need not
guess which registers or memory locations will contain the data you want
to use.

You must specify an assembler instruction template much like what
appears in a machine description, plus an operand constraint string for
each operand.

For example, here is how to use the 68881's @code{fsinx} instruction:

@example
asm ("fsinx %1,%0" : "=f" (result) : "f" (angle));
@end example

@noindent
Here @code{angle} is the C expression for the input operand while
@code{result} is that of the output operand.  Each has @samp{"f"} as its
operand constraint, saying that a floating point register is required.
The @samp{=} in @samp{=f} indicates that the operand is an output; all
output operands' constraints must use @samp{=}.  The constraints use the
same language used in the machine description (@pxref{Constraints}).

Each operand is described by an operand-constraint string followed by
the C expression in parentheses.  A colon separates the assembler
template from the first output operand and another separates the last
output operand from the first input, if any.  Commas separate the
operands within each group.  The total number of operands is limited to
ten or to the maximum number of operands in any instruction pattern in
the machine description, whichever is greater.

If there are no output operands but there are input operands, you must
place two consecutive colons surrounding the place where the output
operands would go.

Output operand expressions must be lvalues; the compiler can check this.
The input operands need not be lvalues.  The compiler cannot check
whether the operands have data types that are reasonable for the
instruction being executed.  It does not parse the assembler instruction
template and does not know what it means or even whether it is valid
assembler input.  The extended @code{asm} feature is most often used for
machine instructions the compiler itself does not know exist.  If
the output expression cannot be directly addressed (for example, it is a
bit field), your constraint must allow a register.  In that case, GNU CC
will use the register as the output of the @code{asm}, and then store
that register into the output.

The ordinary output operands must be write-only; GNU CC will assume that
the values in these operands before the instruction are dead and need
not be generated.  Extended asm supports input-output or read-write
operands.  Use the constraint character @samp{+} to indicate such an
operand and list it with the output operands.

When the constraints for the read-write operand (or the operand in which
only some of the bits are to be changed) allows a register, you may, as
an alternative, logically split its function into two separate operands,
one input operand and one write-only output operand.  The connection
between them is expressed by constraints which say they need to be in
the same location when the instruction executes.  You can use the same C
expression for both operands, or different expressions.  For example,
here we write the (fictitious) @samp{combine} instruction with
@code{bar} as its read-only source operand and @code{foo} as its
read-write destination:

@example
asm ("combine %2,%0" : "=r" (foo) : "0" (foo), "g" (bar));
@end example

@noindent
The constraint @samp{"0"} for operand 1 says that it must occupy the
same location as operand 0.  A digit in constraint is allowed only in an
input operand and it must refer to an output operand.

Only a digit in the constraint can guarantee that one operand will be in
the same place as another.  The mere fact that @code{foo} is the value
of both operands is not enough to guarantee that they will be in the
same place in the generated assembler code.  The following would not
work reliably:

@example
asm ("combine %2,%0" : "=r" (foo) : "r" (foo), "g" (bar));
@end example

Various optimizations or reloading could cause operands 0 and 1 to be in
different registers; GNU CC knows no reason not to do so.  For example, the
compiler might find a copy of the value of @code{foo} in one register and
use it for operand 1, but generate the output operand 0 in a different
register (copying it afterward to @code{foo}'s own address).  Of course,
since the register for operand 1 is not even mentioned in the assembler
code, the result will not work, but GNU CC can't tell that.

Some instructions clobber specific hard registers.  To describe this,
write a third colon after the input operands, followed by the names of
the clobbered hard registers (given as strings).  Here is a realistic
example for the VAX:

@example
asm volatile ("movc3 %0,%1,%2"
              : /* no outputs */
              : "g" (from), "g" (to), "g" (count)
              : "r0", "r1", "r2", "r3", "r4", "r5");
@end example

You may not write a clobber description in a way that overlaps with an
input or output operand.  For example, you may not have an operand
describing a register class with one member if you mention that register
in the clobber list.  There is no way for you to specify that an input
operand is modified without also specifying it as an output
operand.  Note that if all the output operands you specify are for this
purpose (and hence unused), you will then also need to specify
@code{volatile} for the @code{asm} construct, as described below, to
prevent GNU CC from deleting the @code{asm} statement as unused.

If you refer to a particular hardware register from the assembler code,
you will probably have to list the register after the third colon to
tell the compiler the register's value is modified.  In some assemblers,
the register names begin with @samp{%}; to produce one @samp{%} in the
assembler code, you must write @samp{%%} in the input.

If your assembler instruction can alter the condition code register, add
@samp{cc} to the list of clobbered registers.  GNU CC on some machines
represents the condition codes as a specific hardware register;
@samp{cc} serves to name this register.  On other machines, the
condition code is handled differently, and specifying @samp{cc} has no
effect.  But it is valid no matter what the machine.

If your assembler instruction modifies memory in an unpredictable
fashion, add @samp{memory} to the list of clobbered registers.  This
will cause GNU CC to not keep memory values cached in registers across
the assembler instruction.

You can put multiple assembler instructions together in a single
@code{asm} template, separated either with newlines (written as
@samp{\n}) or with semicolons if the assembler allows such semicolons.
The GNU assembler allows semicolons and most Unix assemblers seem to do
so.  The input operands are guaranteed not to use any of the clobbered
registers, and neither will the output operands' addresses, so you can
read and write the clobbered registers as many times as you like.  Here
is an example of multiple instructions in a template; it assumes the
subroutine @code{_foo} accepts arguments in registers 9 and 10:

@example
asm ("movl %0,r9;movl %1,r10;call _foo"
     : /* no outputs */
     : "g" (from), "g" (to)
     : "r9", "r10");
@end example

Unless an output operand has the @samp{&} constraint modifier, GNU CC
may allocate it in the same register as an unrelated input operand, on
the assumption the inputs are consumed before the outputs are produced.
This assumption may be false if the assembler code actually consists of
more than one instruction.  In such a case, use @samp{&} for each output
operand that may not overlap an input.  @xref{Modifiers}.

If you want to test the condition code produced by an assembler
instruction, you must include a branch and a label in the @code{asm}
construct, as follows:

@example
asm ("clr %0;frob %1;beq 0f;mov #1,%0;0:"
     : "g" (result)
     : "g" (input));
@end example

@noindent
This assumes your assembler supports local labels, as the GNU assembler
and most Unix assemblers do.

Speaking of labels, jumps from one @code{asm} to another are not
supported.  The compiler's optimizers do not know about these jumps, and
therefore they cannot take account of them when deciding how to
optimize.

@cindex macros containing @code{asm}
Usually the most convenient way to use these @code{asm} instructions is to
encapsulate them in macros that look like functions.  For example,

@example
#define sin(x)       \
(@{ double __value, __arg = (x);   \
   asm ("fsinx %1,%0": "=f" (__value): "f" (__arg));  \
   __value; @})
@end example

@noindent
Here the variable @code{__arg} is used to make sure that the instruction
operates on a proper @code{double} value, and to accept only those
arguments @code{x} which can convert automatically to a @code{double}.

Another way to make sure the instruction operates on the correct data
type is to use a cast in the @code{asm}.  This is different from using a
variable @code{__arg} in that it converts more different types.  For
example, if the desired type were @code{int}, casting the argument to
@code{int} would accept a pointer with no complaint, while assigning the
argument to an @code{int} variable named @code{__arg} would warn about
using a pointer unless the caller explicitly casts it.

If an @code{asm} has output operands, GNU CC assumes for optimization
purposes the instruction has no side effects except to change the output
operands.  This does not mean instructions with a side effect cannot be
used, but you must be careful, because the compiler may eliminate them
if the output operands aren't used, or move them out of loops, or
replace two with one if they constitute a common subexpression.  Also,
if your instruction does have a side effect on a variable that otherwise
appears not to change, the old value of the variable may be reused later
if it happens to be found in a register.

You can prevent an @code{asm} instruction from being deleted, moved
significantly, or combined, by writing the keyword @code{volatile} after
the @code{asm}.  For example:

@example
#define get_and_set_priority(new)  \
(@{ int __old; \
   asm volatile ("get_and_set_priority %0, %1": "=g" (__old) : "g" (new)); \
   __old; @})
@end example

@noindent
If you write an @code{asm} instruction with no outputs, GNU CC will know
the instruction has side-effects and will not delete the instruction or
move it outside of loops.  If the side-effects of your instruction are
not purely external, but will affect variables in your program in ways
other than reading the inputs and clobbering the specified registers or
memory, you should write the @code{volatile} keyword to prevent future
versions of GNU CC from moving the instruction around within a core
region.

An @code{asm} instruction without any operands or clobbers (and ``old
style'' @code{asm}) will not be deleted or moved significantly,
regardless, unless it is unreachable, the same wasy as if you had
written a @code{volatile} keyword.

Note that even a volatile @code{asm} instruction can be moved in ways
that appear insignificant to the compiler, such as across jump
instructions.  You can't expect a sequence of volatile @code{asm}
instructions to remain perfectly consecutive.  If you want consecutive
output, use a single @code{asm}.

It is a natural idea to look for a way to give access to the condition
code left by the assembler instruction.  However, when we attempted to
implement this, we found no way to make it work reliably.  The problem
is that output operands might need reloading, which would result in
additional following ``store'' instructions.  On most machines, these
instructions would alter the condition code before there was time to
test it.  This problem doesn't arise for ordinary ``test'' and
``compare'' instructions because they don't have any output operands.

If you are writing a header file that should be includable in ANSI C
programs, write @code{__asm__} instead of @code{asm}.  @xref{Alternate
Keywords}.

@subsection i386 floating point asm operands

There are several rules on the usage of stack-like regs in
asm_operands insns.  These rules apply only to the operands that are
stack-like regs:

@enumerate
@item
Given a set of input regs that die in an asm_operands, it is
necessary to know which are implicitly popped by the asm, and
which must be explicitly popped by gcc.

An input reg that is implicitly popped by the asm must be
explicitly clobbered, unless it is constrained to match an
output operand.

@item
For any input reg that is implicitly popped by an asm, it is
necessary to know how to adjust the stack to compensate for the pop.
If any non-popped input is closer to the top of the reg-stack than
the implicitly popped reg, it would not be possible to know what the
stack looked like --- it's not clear how the rest of the stack ``slides
up''.

All implicitly popped input regs must be closer to the top of
the reg-stack than any input that is not implicitly popped.

It is possible that if an input dies in an insn, reload might
use the input reg for an output reload.  Consider this example:

@example
asm ("foo" : "=t" (a) : "f" (b));
@end example

This asm says that input B is not popped by the asm, and that
the asm pushes a result onto the reg-stack, ie, the stack is one
deeper after the asm than it was before.  But, it is possible that
reload will think that it can use the same reg for both the input and
the output, if input B dies in this insn.

If any input operand uses the @code{f} constraint, all output reg
constraints must use the @code{&} earlyclobber.

The asm above would be written as

@example
asm ("foo" : "=&t" (a) : "f" (b));
@end example

@item
Some operands need to be in particular places on the stack.  All
output operands fall in this category --- there is no other way to
know which regs the outputs appear in unless the user indicates
this in the constraints.

Output operands must specifically indicate which reg an output
appears in after an asm.  @code{=f} is not allowed: the operand
constraints must select a class with a single reg.

@item
Output operands may not be ``inserted'' between existing stack regs.
Since no 387 opcode uses a read/write operand, all output operands
are dead before the asm_operands, and are pushed by the asm_operands.
It makes no sense to push anywhere but the top of the reg-stack.

Output operands must start at the top of the reg-stack: output
operands may not ``skip'' a reg.

@item
Some asm statements may need extra stack space for internal
calculations.  This can be guaranteed by clobbering stack registers
unrelated to the inputs and outputs.

@end enumerate

Here are a couple of reasonable asms to want to write.  This asm
takes one input, which is internally popped, and produces two outputs.

@example
asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
@end example

This asm takes two inputs, which are popped by the @code{fyl2xp1} opcode,
and replaces them with one output.  The user must code the @code{st(1)}
clobber for reg-stack.c to know that @code{fyl2xp1} pops both inputs.

@example
asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
@end example

@ifclear INTERNALS
@c Show the details on constraints if they do not appear elsewhere in
@c the manual
@include md.texi
@end ifclear

@node Asm Labels
@section Controlling Names Used in Assembler Code
@cindex assembler names for identifiers
@cindex names used in assembler code
@cindex identifiers, names in assembler code

You can specify the name to be used in the assembler code for a C
function or variable by writing the @code{asm} (or @code{__asm__})
keyword after the declarator as follows:

@example
int foo asm ("myfoo") = 2;
@end example

@noindent
This specifies that the name to be used for the variable @code{foo} in
the assembler code should be @samp{myfoo} rather than the usual
@samp{_foo}.

On systems where an underscore is normally prepended to the name of a C
function or variable, this feature allows you to define names for the
linker that do not start with an underscore.

You cannot use @code{asm} in this way in a function @emph{definition}; but
you can get the same effect by writing a declaration for the function
before its definition and putting @code{asm} there, like this:

@example
extern func () asm ("FUNC");

func (x, y)
     int x, y;
@dots{}
@end example

It is up to you to make sure that the assembler names you choose do not
conflict with any other assembler symbols.  Also, you must not use a
register name; that would produce completely invalid assembler code.  GNU
CC does not as yet have the ability to store static variables in registers.
Perhaps that will be added.

@node Explicit Reg Vars
@section Variables in Specified Registers
@cindex explicit register variables
@cindex variables in specified registers
@cindex specified registers
@cindex registers, global allocation

GNU C allows you to put a few global variables into specified hardware
registers.  You can also specify the register in which an ordinary
register variable should be allocated.

@itemize @bullet
@item
Global register variables reserve registers throughout the program.
This may be useful in programs such as programming language
interpreters which have a couple of global variables that are accessed
very often.

@item
Local register variables in specific registers do not reserve the
registers.  The compiler's data flow analysis is capable of determining
where the specified registers contain live values, and where they are
available for other uses.  Stores into local register variables may be deleted
when they appear to be dead according to dataflow analysis.  References
to local register variables may be deleted or moved or simplified.

These local variables are sometimes convenient for use with the extended
@code{asm} feature (@pxref{Extended Asm}), if you want to write one
output of the assembler instruction directly into a particular register.
(This will work provided the register you specify fits the constraints
specified for that operand in the @code{asm}.)
@end itemize

@menu
* Global Reg Vars::
* Local Reg Vars::
@end menu

@node Global Reg Vars
@subsection Defining Global Register Variables
@cindex global register variables
@cindex registers, global variables in

You can define a global register variable in GNU C like this:

@example
register int *foo asm ("a5");
@end example

@noindent
Here @code{a5} is the name of the register which should be used.  Choose a
register which is normally saved and restored by function calls on your
machine, so that library routines will not clobber it.

Naturally the register name is cpu-dependent, so you would need to
conditionalize your program according to cpu type.  The register
@code{a5} would be a good choice on a 68000 for a variable of pointer
type.  On machines with register windows, be sure to choose a ``global''
register that is not affected magically by the function call mechanism.

In addition, operating systems on one type of cpu may differ in how they
name the registers; then you would need additional conditionals.  For
example, some 68000 operating systems call this register @code{%a5}.

Eventually there may be a way of asking the compiler to choose a register
automatically, but first we need to figure out how it should choose and
how to enable you to guide the choice.  No solution is evident.

Defining a global register variable in a certain register reserves that
register entirely for this use, at least within the current compilation.
The register will not be allocated for any other purpose in the functions
in the current compilation.  The register will not be saved and restored by
these functions.  Stores into this register are never deleted even if they
would appear to be dead, but references may be deleted or moved or
simplified.

It is not safe to access the global register variables from signal
handlers, or from more than one thread of control, because the system
library routines may temporarily use the register for other things (unless
you recompile them specially for the task at hand).

@cindex @code{qsort}, and global register variables
It is not safe for one function that uses a global register variable to
call another such function @code{foo} by way of a third function
@code{lose} that was compiled without knowledge of this variable (i.e. in a
different source file in which the variable wasn't declared).  This is
because @code{lose} might save the register and put some other value there.
For example, you can't expect a global register variable to be available in
the comparison-function that you pass to @code{qsort}, since @code{qsort}
might have put something else in that register.  (If you are prepared to
recompile @code{qsort} with the same global register variable, you can
solve this problem.)

If you want to recompile @code{qsort} or other source files which do not
actually use your global register variable, so that they will not use that
register for any other purpose, then it suffices to specify the compiler
option @samp{-ffixed-@var{reg}}.  You need not actually add a global
register declaration to their source code.

A function which can alter the value of a global register variable cannot
safely be called from a function compiled without this variable, because it
could clobber the value the caller expects to find there on return.
Therefore, the function which is the entry point into the part of the
program that uses the global register variable must explicitly save and
restore the value which belongs to its caller.

@cindex register variable after @code{longjmp}
@cindex global register after @code{longjmp}
@cindex value after @code{longjmp}
@findex longjmp
@findex setjmp
On most machines, @code{longjmp} will restore to each global register
variable the value it had at the time of the @code{setjmp}.  On some
machines, however, @code{longjmp} will not change the value of global
register variables.  To be portable, the function that called @code{setjmp}
should make other arrangements to save the values of the global register
variables, and to restore them in a @code{longjmp}.  This way, the same
thing will happen regardless of what @code{longjmp} does.

All global register variable declarations must precede all function
definitions.  If such a declaration could appear after function
definitions, the declaration would be too late to prevent the register from
being used for other purposes in the preceding functions.

Global register variables may not have initial values, because an
executable file has no means to supply initial contents for a register.

On the Sparc, there are reports that g3 @dots{} g7 are suitable
registers, but certain library functions, such as @code{getwd}, as well
as the subroutines for division and remainder, modify g3 and g4.  g1 and
g2 are local temporaries.

On the 68000, a2 @dots{} a5 should be suitable, as should d2 @dots{} d7.
Of course, it will not do to use more than a few of those.

@node Local Reg Vars
@subsection Specifying Registers for Local Variables
@cindex local variables, specifying registers
@cindex specifying registers for local variables
@cindex registers for local variables

You can define a local register variable with a specified register
like this:

@example
register int *foo asm ("a5");
@end example

@noindent
Here @code{a5} is the name of the register which should be used.  Note
that this is the same syntax used for defining global register
variables, but for a local variable it would appear within a function.

Naturally the register name is cpu-dependent, but this is not a
problem, since specific registers are most often useful with explicit
assembler instructions (@pxref{Extended Asm}).  Both of these things
generally require that you conditionalize your program according to
cpu type.

In addition, operating systems on one type of cpu may differ in how they
name the registers; then you would need additional conditionals.  For
example, some 68000 operating systems call this register @code{%a5}.

Defining such a register variable does not reserve the register; it
remains available for other uses in places where flow control determines
the variable's value is not live.  However, these registers are made
unavailable for use in the reload pass; excessive use of this feature
leaves the compiler too few available registers to compile certain
functions.

This option does not guarantee that GNU CC will generate code that has
this variable in the register you specify at all times.  You may not
code an explicit reference to this register in an @code{asm} statement
and assume it will always refer to this variable.

Stores into local register variables may be deleted when they appear to be dead
according to dataflow analysis.  References to local register variables may
be deleted or moved or simplified.

@node Alternate Keywords
@section Alternate Keywords
@cindex alternate keywords
@cindex keywords, alternate

The option @samp{-traditional} disables certain keywords; @samp{-ansi}
disables certain others.  This causes trouble when you want to use GNU C
extensions, or ANSI C features, in a general-purpose header file that
should be usable by all programs, including ANSI C programs and traditional
ones.  The keywords @code{asm}, @code{typeof} and @code{inline} cannot be
used since they won't work in a program compiled with @samp{-ansi}, while
the keywords @code{const}, @code{volatile}, @code{signed}, @code{typeof}
and @code{inline} won't work in a program compiled with
@samp{-traditional}.@refill

The way to solve these problems is to put @samp{__} at the beginning and
end of each problematical keyword.  For example, use @code{__asm__}
instead of @code{asm}, @code{__const__} instead of @code{const}, and
@code{__inline__} instead of @code{inline}.

Other C compilers won't accept these alternative keywords; if you want to
compile with another compiler, you can define the alternate keywords as
macros to replace them with the customary keywords.  It looks like this:

@example
#ifndef __GNUC__
#define __asm__ asm
#endif
@end example

@findex __extension__
@samp{-pedantic} and other options cause warnings for many GNU C extensions.
You can
prevent such warnings within one expression by writing
@code{__extension__} before the expression.  @code{__extension__} has no
effect aside from this.

@node Incomplete Enums
@section Incomplete @code{enum} Types

You can define an @code{enum} tag without specifying its possible values.
This results in an incomplete type, much like what you get if you write
@code{struct foo} without describing the elements.  A later declaration
which does specify the possible values completes the type.

You can't allocate variables or storage using the type while it is
incomplete.  However, you can work with pointers to that type.

This extension may not be very useful, but it makes the handling of
@code{enum} more consistent with the way @code{struct} and @code{union}
are handled.

This extension is not supported by GNU C++.

@node Function Names
@section Function Names as Strings

GNU CC predefines two magic identifiers to hold the name of the current
function. The identifier @code{__FUNCTION__} holds the name of the function
as it appears in the source. The identifier @code{__PRETTY_FUNCTION__}
holds the name of the function pretty printed in a language specific
fashion.

These names are always the same in a C function, but in a C++ function
they may be different.  For example, this program:

@smallexample
extern "C" @{
extern int printf (char *, ...);
@}

class a @{
 public:
  sub (int i)
    @{
      printf ("__FUNCTION__ = %s\n", __FUNCTION__);
      printf ("__PRETTY_FUNCTION__ = %s\n", __PRETTY_FUNCTION__);
    @}
@};

int
main (void)
@{
  a ax;
  ax.sub (0);
  return 0;
@}
@end smallexample

@noindent
gives this output:

@smallexample
__FUNCTION__ = sub
__PRETTY_FUNCTION__ = int  a::sub (int)
@end smallexample

The compiler automagically replaces the identifiers with a string
literal containing the appropriate name. Thus, they are neither
preprocessor macros, like @code{__FILE__} and @code{__LINE__}, nor
variables. This means that they catenate with other string literals, and
that they can be used to initialize char arrays. For example

@smallexample
char here[] = "Function " __FUNCTION__ " in " __FILE__;
@end smallexample

On the other hand, @samp{#ifdef __FUNCTION__} does not have any special
meaning inside a function, since the preprocessor does not do anything
special with the identifier @code{__FUNCTION__}.

GNU CC also supports the magic word @code{__func__}, defined by the
draft standard for C-99:

@display
The identifier @code{__func__} is implicitly declared by the translator
as if, immediately following the opening brace of each function
definition, the declaration

@smallexample
static const char __func__[] = "function-name";
@end smallexample

appeared, where function-name is the name of the lexically-enclosing
function. This name is the unadorned name of the function.
@end display

By this definition, @code{__func__} is a variable, not a string literal.
In particular, @code{__func__} does not catenate with other string
literals.

In @code{C++}, @code{__FUNCTION__} and @code{__PRETTY_FUNCTION__} are
variables, declared in the same way as @code{__func__}.

@node Return Address
@section Getting the Return or Frame Address of a Function

These functions may be used to get information about the callers of a
function.

@table @code
@findex __builtin_return_address
@item __builtin_return_address (@var{level})
This function returns the return address of the current function, or of
one of its callers.  The @var{level} argument is number of frames to
scan up the call stack.  A value of @code{0} yields the return address
of the current function, a value of @code{1} yields the return address
of the caller of the current function, and so forth.

The @var{level} argument must be a constant integer.

On some machines it may be impossible to determine the return address of
any function other than the current one; in such cases, or when the top
of the stack has been reached, this function will return @code{0}.

This function should only be used with a non-zero argument for debugging
purposes.

@findex __builtin_frame_address
@item __builtin_frame_address (@var{level})
This function is similar to @code{__builtin_return_address}, but it
returns the address of the function frame rather than the return address
of the function.  Calling @code{__builtin_frame_address} with a value of
@code{0} yields the frame address of the current function, a value of
@code{1} yields the frame address of the caller of the current function,
and so forth.

The frame is the area on the stack which holds local variables and saved
registers.  The frame address is normally the address of the first word
pushed on to the stack by the function.  However, the exact definition
depends upon the processor and the calling convention.  If the processor
has a dedicated frame pointer register, and the function has a frame,
then @code{__builtin_frame_address} will return the value of the frame
pointer register.

The caveats that apply to @code{__builtin_return_address} apply to this
function as well.
@end table

@node Other Builtins
@section Other built-in functions provided by GNU CC

GNU CC provides a large number of built-in functions other than the ones
mentioned above.  Some of these are for internal use in the processing
of exceptions or variable-length argument lists and will not be
documented here because they may change from time to time; we do not
recommend general use of these functions.

The remaining functions are provided for optimization purposes.

GNU CC includes builtin versions of many of the functions in the
standard C library.  These will always be treated as having the same
meaning as the C library function even if you specify the
@samp{-fno-builtin} (@pxref{C Dialect Options}) option.  These functions
correspond to the C library functions @code{abort}, @code{abs},
@code{alloca}, @code{cos}, @code{cosf}, @code{cosl}, @code{exit},
@code{_exit}, @code{fabs}, @code{fabsf}, @code{fabsl}, @code{ffs},
@code{labs}, @code{memcmp}, @code{memcpy}, @code{memset}, @code{sin},
@code{sinf}, @code{sinl}, @code{sqrt}, @code{sqrtf}, @code{sqrtl},
@code{strcmp}, @code{strcpy}, and @code{strlen}.

@findex __builtin_constant_p
You can use the builtin function @code{__builtin_constant_p} to
determine if a value is known to be constant at compile-time and hence
that GNU CC can perform constant-folding on expressions involving that
value.  The argument of the function is the value to test.  The function
returns the integer 1 if the argument is known to be a compile-time
constant and 0 if it is not known to be a compile-time constant.  A
return of 0 does not indicate that the value is @emph{not} a constant,
but merely that GNU CC cannot prove it is a constant with the specified
value of the @samp{-O} option.

You would typically use this function in an embedded application where
memory was a critical resource.  If you have some complex calculation,
you may want it to be folded if it involves constants, but need to call
a function if it does not.  For example:

@smallexample
#define Scale_Value(X)  \
  (__builtin_constant_p (X) ? ((X) * SCALE + OFFSET) : Scale (X))
@end smallexample

You may use this builtin function in either a macro or an inline
function.  However, if you use it in an inlined function and pass an
argument of the function as the argument to the builtin, GNU CC will
never return 1 when you call the inline function with a string constant
or constructor expression (@pxref{Constructors}) and will not return 1
when you pass a constant numeric value to the inline function unless you
specify the @samp{-O} option.

@node Deprecated Features
@section Deprecated Features

In the past, the GNU C++ compiler was extended to experiment with new
features, at a time when the C++ language was still evolving. Now that
the C++ standard is complete, some of those features are superseded by
superior alternatives. Using the old features might cause a warning in
some cases that the feature will be dropped in the future. In other
cases, the feature might be gone already.

While the list below is not exhaustive, it documents some of the options
that are now deprecated:

@table @code
@item -fthis-is-variable
In early versions of C++, assignment to this could be used to implement
application-defined memory allocation. Now, allocation functions
(@samp{operator new}) are the standard-conforming way to achieve the
same effect.

@item -fexternal-templates
@itemx -falt-external-templates
These are two of the many ways for g++ to implement template
instantiation. @xref{Template Instantiation}. The C++ standard clearly
defines how template definitions have to be organized across
implementation units. g++ has an implicit instantiation mechanism that
should work just fine for standard-conforming code.

@end table

@node C++ Extensions
@chapter Extensions to the C++ Language
@cindex extensions, C++ language
@cindex C++ language extensions

The GNU compiler provides these extensions to the C++ language (and you
can also use most of the C language extensions in your C++ programs).  If you
want to write code that checks whether these features are available, you can
test for the GNU compiler the same way as for C programs: check for a
predefined macro @code{__GNUC__}.  You can also use @code{__GNUG__} to
test specifically for GNU C++ (@pxref{Standard Predefined,,Standard
Predefined Macros,cpp.info,The C Preprocessor}).

@menu
* Naming Results::      Giving a name to C++ function return values.
* Min and Max::		C++ Minimum and maximum operators.
* Volatiles::		What constitutes an access to a volatile object.
* Restricted Pointers:: C9X restricted pointers and references.
* C++ Interface::       You can use a single C++ header file for both
                         declarations and definitions.
* Template Instantiation:: Methods for ensuring that exactly one copy of
                         each needed template instantiation is emitted.
* Bound member functions:: You can extract a function pointer to the
                        method denoted by a @samp{->*} or @samp{.*} expression.
@end menu

@node Naming Results
@section Named Return Values in C++

@cindex @code{return}, in C++ function header
@cindex return value, named, in C++
@cindex named return value in C++
@cindex C++ named return value
GNU C++ extends the function-definition syntax to allow you to specify a
name for the result of a function outside the body of the definition, in
C++ programs:

@example
@group
@var{type}
@var{functionname} (@var{args}) return @var{resultname};
@{
  @dots{}
  @var{body}
  @dots{}
@}
@end group
@end example

You can use this feature to avoid an extra constructor call when
a function result has a class type.  For example, consider a function
@code{m}, declared as @w{@samp{X v = m ();}}, whose result is of class
@code{X}:

@example
X
m ()
@{
  X b;
  b.a = 23;
  return b;
@}
@end example

@cindex implicit argument: return value
Although @code{m} appears to have no arguments, in fact it has one implicit
argument: the address of the return value.  At invocation, the address
of enough space to hold @code{v} is sent in as the implicit argument.
Then @code{b} is constructed and its @code{a} field is set to the value
23.  Finally, a copy constructor (a constructor of the form @samp{X(X&)})
is applied to @code{b}, with the (implicit) return value location as the
target, so that @code{v} is now bound to the return value.

But this is wasteful.  The local @code{b} is declared just to hold
something that will be copied right out.  While a compiler that
combined an ``elision'' algorithm with interprocedural data flow
analysis could conceivably eliminate all of this, it is much more
practical to allow you to assist the compiler in generating
efficient code by manipulating the return value explicitly,
thus avoiding the local variable and copy constructor altogether.

Using the extended GNU C++ function-definition syntax, you can avoid the
temporary allocation and copying by naming @code{r} as your return value
at the outset, and assigning to its @code{a} field directly:

@example
X
m () return r;
@{
  r.a = 23;
@}
@end example

@noindent
The declaration of @code{r} is a standard, proper declaration, whose effects
are executed @strong{before} any of the body of @code{m}.

Functions of this type impose no additional restrictions; in particular,
you can execute @code{return} statements, or return implicitly by
reaching the end of the function body (``falling off the edge'').
Cases like

@example
X
m () return r (23);
@{
  return;
@}
@end example

@noindent
(or even @w{@samp{X m () return r (23); @{ @}}}) are unambiguous, since
the return value @code{r} has been initialized in either case.  The
following code may be hard to read, but also works predictably:

@example
X
m () return r;
@{
  X b;
  return b;
@}
@end example

The return value slot denoted by @code{r} is initialized at the outset,
but the statement @samp{return b;} overrides this value.  The compiler
deals with this by destroying @code{r} (calling the destructor if there
is one, or doing nothing if there is not), and then reinitializing
@code{r} with @code{b}.

This extension is provided primarily to help people who use overloaded
operators, where there is a great need to control not just the
arguments, but the return values of functions.  For classes where the
copy constructor incurs a heavy performance penalty (especially in the
common case where there is a quick default constructor), this is a major
savings.  The disadvantage of this extension is that you do not control
when the default constructor for the return value is called: it is
always called at the beginning.

@node Min and Max
@section Minimum and Maximum Operators in C++

It is very convenient to have operators which return the ``minimum'' or the
``maximum'' of two arguments.  In GNU C++ (but not in GNU C),

@table @code
@item @var{a} <? @var{b}
@findex <?
@cindex minimum operator
is the @dfn{minimum}, returning the smaller of the numeric values
@var{a} and @var{b};

@item @var{a} >? @var{b}
@findex >?
@cindex maximum operator
is the @dfn{maximum}, returning the larger of the numeric values @var{a}
and @var{b}.
@end table

These operations are not primitive in ordinary C++, since you can
use a macro to return the minimum of two things in C++, as in the
following example.

@example
#define MIN(X,Y) ((X) < (Y) ? : (X) : (Y))
@end example

@noindent
You might then use @w{@samp{int min = MIN (i, j);}} to set @var{min} to
the minimum value of variables @var{i} and @var{j}.

However, side effects in @code{X} or @code{Y} may cause unintended
behavior.  For example, @code{MIN (i++, j++)} will fail, incrementing
the smaller counter twice.  A GNU C extension allows you to write safe
macros that avoid this kind of problem (@pxref{Naming Types,,Naming an
Expression's Type}).  However, writing @code{MIN} and @code{MAX} as
macros also forces you to use function-call notation for a
fundamental arithmetic operation.  Using GNU C++ extensions, you can
write @w{@samp{int min = i <? j;}} instead.

Since @code{<?} and @code{>?} are built into the compiler, they properly
handle expressions with side-effects;  @w{@samp{int min = i++ <? j++;}}
works correctly.

@node Volatiles
@section When is a Volatile Object Accessed?
@cindex accessing volatiles
@cindex volatile read
@cindex volatile write
@cindex volatile access

Both the C and C++ standard have the concept of volatile objects. These
are normally accessed by pointers and used for accessing hardware. The
standards encourage compilers to refrain from optimizations on
concerning accesses to volatile objects that it might perform on
non-volatile objects. The C standard leaves it implementation defined
as to what constitutes a volatile access. The C++ standard omits to
specify this, except to say that C++ should behave in a similar manner
to C with respect to volatiles, where possible. The minimum either
standard specifies is that at a sequence point all previous access to
volatile objects have stabilized and no subsequent accesses have
occurred. Thus an implementation is free to reorder and combine
volatile accesses which occur between sequence points, but cannot do so
for accesses across a sequence point. The use of volatiles does not
allow you to violate the restriction on updating objects multiple times
within a sequence point.

In most expressions, it is intuitively obvious what is a read and what is
a write. For instance

@example
volatile int *dst = <somevalue>;
volatile int *src = <someothervalue>;
*dst = *src;
@end example

@noindent
will cause a read of the volatile object pointed to by @var{src} and stores the
value into the volatile object pointed to by @var{dst}. There is no
guarantee that these reads and writes are atomic, especially for objects
larger than @code{int}.

Less obvious expressions are where something which looks like an access
is used in a void context. An example would be,

@example
volatile int *src = <somevalue>;
*src;
@end example

With C, such expressions are rvalues, and as rvalues cause a read of
the object, gcc interprets this as a read of the volatile being pointed
to. The C++ standard specifies that such expressions do not undergo
lvalue to rvalue conversion, and that the type of the dereferenced
object may be incomplete. The C++ standard does not specify explicitly
that it is this lvalue to rvalue conversion which is responsible for
causing an access. However, there is reason to believe that it is,
because otherwise certain simple expressions become undefined. However,
because it would surprise most programmers, g++ treats dereferencing a
pointer to volatile object of complete type in a void context as a read
of the object. When the object has incomplete type, g++ issues a
warning.

@example
struct S;
struct T @{int m;@};
volatile S *ptr1 = <somevalue>;
volatile T *ptr2 = <somevalue>;
*ptr1;
*ptr2;
@end example

In this example, a warning is issued for @code{*ptr1}, and @code{*ptr2}
causes a read of the object pointed to. If you wish to force an error on
the first case, you must force a conversion to rvalue with, for instance
a static cast, @code{static_cast<S>(*ptr1)}.

When using a reference to volatile, g++ does not treat equivalent
expressions as accesses to volatiles, but instead issues a warning that
no volatile is accessed. The rationale for this is that otherwise it
becomes difficult to determine where volatile access occur, and not
possible to ignore the return value from functions returning volatile
references. Again, if you wish to force a read, cast the reference to
an rvalue.

@node Restricted Pointers
@section Restricting Pointer Aliasing
@cindex restricted pointers
@cindex restricted references
@cindex restricted this pointer

As with gcc, g++ understands the C9X proposal of restricted pointers,
specified with the @code{__restrict__}, or @code{__restrict} type
qualifier. Because you cannot compile C++ by specifying the -flang-isoc9x
language flag, @code{restrict} is not a keyword in C++.

In addition to allowing restricted pointers, you can specify restricted
references, which indicate that the reference is not aliased in the local
context.

@example
void fn (int *__restrict__ rptr, int &__restrict__ rref)
@{
  @dots{}
@}
@end example

@noindent
In the body of @code{fn}, @var{rptr} points to an unaliased integer and
@var{rref} refers to a (different) unaliased integer.

You may also specify whether a member function's @var{this} pointer is
unaliased by using @code{__restrict__} as a member function qualifier.

@example
void T::fn () __restrict__
@{
  @dots{}
@}
@end example

@noindent
Within the body of @code{T::fn}, @var{this} will have the effective
definition @code{T *__restrict__ const this}. Notice that the
interpretation of a @code{__restrict__} member function qualifier is
different to that of @code{const} or @code{volatile} qualifier, in that it
is applied to the pointer rather than the object. This is consistent with
other compilers which implement restricted pointers.

As with all outermost parameter qualifiers, @code{__restrict__} is
ignored in function definition matching. This means you only need to
specify @code{__restrict__} in a function definition, rather than
in a function prototype as well.

@node C++ Interface
@section Declarations and Definitions in One Header

@cindex interface and implementation headers, C++
@cindex C++ interface and implementation headers
C++ object definitions can be quite complex.  In principle, your source
code will need two kinds of things for each object that you use across
more than one source file.  First, you need an @dfn{interface}
specification, describing its structure with type declarations and
function prototypes.  Second, you need the @dfn{implementation} itself.
It can be tedious to maintain a separate interface description in a
header file, in parallel to the actual implementation.  It is also
dangerous, since separate interface and implementation definitions may
not remain parallel.

@cindex pragmas, interface and implementation
With GNU C++, you can use a single header file for both purposes.

@quotation
@emph{Warning:} The mechanism to specify this is in transition.  For the
nonce, you must use one of two @code{#pragma} commands; in a future
release of GNU C++, an alternative mechanism will make these
@code{#pragma} commands unnecessary.
@end quotation

The header file contains the full definitions, but is marked with
@samp{#pragma interface} in the source code.  This allows the compiler
to use the header file only as an interface specification when ordinary
source files incorporate it with @code{#include}.  In the single source
file where the full implementation belongs, you can use either a naming
convention or @samp{#pragma implementation} to indicate this alternate
use of the header file.

@table @code
@item #pragma interface
@itemx #pragma interface "@var{subdir}/@var{objects}.h"
@kindex #pragma interface
Use this directive in @emph{header files} that define object classes, to save
space in most of the object files that use those classes.  Normally,
local copies of certain information (backup copies of inline member
functions, debugging information, and the internal tables that implement
virtual functions) must be kept in each object file that includes class
definitions.  You can use this pragma to avoid such duplication.  When a
header file containing @samp{#pragma interface} is included in a
compilation, this auxiliary information will not be generated (unless
the main input source file itself uses @samp{#pragma implementation}).
Instead, the object files will contain references to be resolved at link
time.

The second form of this directive is useful for the case where you have
multiple headers with the same name in different directories.  If you
use this form, you must specify the same string to @samp{#pragma
implementation}.

@item #pragma implementation
@itemx #pragma implementation "@var{objects}.h"
@kindex #pragma implementation
Use this pragma in a @emph{main input file}, when you want full output from
included header files to be generated (and made globally visible).  The
included header file, in turn, should use @samp{#pragma interface}.
Backup copies of inline member functions, debugging information, and the
internal tables used to implement virtual functions are all generated in
implementation files.

@cindex implied @code{#pragma implementation}
@cindex @code{#pragma implementation}, implied
@cindex naming convention, implementation headers
If you use @samp{#pragma implementation} with no argument, it applies to
an include file with the same basename@footnote{A file's @dfn{basename}
was the name stripped of all leading path information and of trailing
suffixes, such as @samp{.h} or @samp{.C} or @samp{.cc}.} as your source
file.  For example, in @file{allclass.cc}, giving just
@samp{#pragma implementation}
by itself is equivalent to @samp{#pragma implementation "allclass.h"}.

In versions of GNU C++ prior to 2.6.0 @file{allclass.h} was treated as
an implementation file whenever you would include it from
@file{allclass.cc} even if you never specified @samp{#pragma
implementation}.  This was deemed to be more trouble than it was worth,
however, and disabled.

If you use an explicit @samp{#pragma implementation}, it must appear in
your source file @emph{before} you include the affected header files.

Use the string argument if you want a single implementation file to
include code from multiple header files.  (You must also use
@samp{#include} to include the header file; @samp{#pragma
implementation} only specifies how to use the file---it doesn't actually
include it.)

There is no way to split up the contents of a single header file into
multiple implementation files.
@end table

@cindex inlining and C++ pragmas
@cindex C++ pragmas, effect on inlining
@cindex pragmas in C++, effect on inlining
@samp{#pragma implementation} and @samp{#pragma interface} also have an
effect on function inlining.

If you define a class in a header file marked with @samp{#pragma
interface}, the effect on a function defined in that class is similar to
an explicit @code{extern} declaration---the compiler emits no code at
all to define an independent version of the function.  Its definition
is used only for inlining with its callers.

Conversely, when you include the same header file in a main source file
that declares it as @samp{#pragma implementation}, the compiler emits
code for the function itself; this defines a version of the function
that can be found via pointers (or by callers compiled without
inlining).  If all calls to the function can be inlined, you can avoid
emitting the function by compiling with @samp{-fno-implement-inlines}.
If any calls were not inlined, you will get linker errors.

@node Template Instantiation
@section Where's the Template?

@cindex template instantiation

C++ templates are the first language feature to require more
intelligence from the environment than one usually finds on a UNIX
system.  Somehow the compiler and linker have to make sure that each
template instance occurs exactly once in the executable if it is needed,
and not at all otherwise.  There are two basic approaches to this
problem, which I will refer to as the Borland model and the Cfront model.

@table @asis
@item Borland model
Borland C++ solved the template instantiation problem by adding the code
equivalent of common blocks to their linker; the compiler emits template
instances in each translation unit that uses them, and the linker
collapses them together.  The advantage of this model is that the linker
only has to consider the object files themselves; there is no external
complexity to worry about.  This disadvantage is that compilation time
is increased because the template code is being compiled repeatedly.
Code written for this model tends to include definitions of all
templates in the header file, since they must be seen to be
instantiated.

@item Cfront model
The AT&T C++ translator, Cfront, solved the template instantiation
problem by creating the notion of a template repository, an
automatically maintained place where template instances are stored.  A
more modern version of the repository works as follows: As individual
object files are built, the compiler places any template definitions and
instantiations encountered in the repository.  At link time, the link
wrapper adds in the objects in the repository and compiles any needed
instances that were not previously emitted.  The advantages of this
model are more optimal compilation speed and the ability to use the
system linker; to implement the Borland model a compiler vendor also
needs to replace the linker.  The disadvantages are vastly increased
complexity, and thus potential for error; for some code this can be
just as transparent, but in practice it can been very difficult to build
multiple programs in one directory and one program in multiple
directories.  Code written for this model tends to separate definitions
of non-inline member templates into a separate file, which should be
compiled separately.
@end table

When used with GNU ld version 2.8 or later on an ELF system such as
Linux/GNU or Solaris 2, or on Microsoft Windows, g++ supports the
Borland model.  On other systems, g++ implements neither automatic
model.

A future version of g++ will support a hybrid model whereby the compiler
will emit any instantiations for which the template definition is
included in the compile, and store template definitions and
instantiation context information into the object file for the rest.
The link wrapper will extract that information as necessary and invoke
the compiler to produce the remaining instantiations.  The linker will
then combine duplicate instantiations.

In the mean time, you have the following options for dealing with
template instantiations:

@enumerate
@item
Compile your template-using code with @samp{-frepo}.  The compiler will
generate files with the extension @samp{.rpo} listing all of the
template instantiations used in the corresponding object files which
could be instantiated there; the link wrapper, @samp{collect2}, will
then update the @samp{.rpo} files to tell the compiler where to place
those instantiations and rebuild any affected object files.  The
link-time overhead is negligible after the first pass, as the compiler
will continue to place the instantiations in the same files.

This is your best option for application code written for the Borland
model, as it will just work.  Code written for the Cfront model will
need to be modified so that the template definitions are available at
one or more points of instantiation; usually this is as simple as adding
@code{#include <tmethods.cc>} to the end of each template header.

For library code, if you want the library to provide all of the template
instantiations it needs, just try to link all of its object files
together; the link will fail, but cause the instantiations to be
generated as a side effect.  Be warned, however, that this may cause
conflicts if multiple libraries try to provide the same instantiations.
For greater control, use explicit instantiation as described in the next
option.

@item
Compile your code with @samp{-fno-implicit-templates} to disable the
implicit generation of template instances, and explicitly instantiate
all the ones you use.  This approach requires more knowledge of exactly
which instances you need than do the others, but it's less
mysterious and allows greater control.  You can scatter the explicit
instantiations throughout your program, perhaps putting them in the
translation units where the instances are used or the translation units
that define the templates themselves; you can put all of the explicit
instantiations you need into one big file; or you can create small files
like

@example
#include "Foo.h"
#include "Foo.cc"

template class Foo<int>;
template ostream& operator <<
                (ostream&, const Foo<int>&);
@end example

for each of the instances you need, and create a template instantiation
library from those.

If you are using Cfront-model code, you can probably get away with not
using @samp{-fno-implicit-templates} when compiling files that don't
@samp{#include} the member template definitions.

If you use one big file to do the instantiations, you may want to
compile it without @samp{-fno-implicit-templates} so you get all of the
instances required by your explicit instantiations (but not by any
other files) without having to specify them as well.

g++ has extended the template instantiation syntax outlined in the
Working Paper to allow forward declaration of explicit instantiations
and instantiation of the compiler support data for a template class
(i.e. the vtable) without instantiating any of its members:

@example
extern template int max (int, int);
inline template class Foo<int>;
@end example

@item
Do nothing.  Pretend g++ does implement automatic instantiation
management.  Code written for the Borland model will work fine, but
each translation unit will contain instances of each of the templates it
uses.  In a large program, this can lead to an unacceptable amount of code
duplication.

@item
Add @samp{#pragma interface} to all files containing template
definitions.  For each of these files, add @samp{#pragma implementation
"@var{filename}"} to the top of some @samp{.C} file which
@samp{#include}s it.  Then compile everything with
@samp{-fexternal-templates}.  The templates will then only be expanded
in the translation unit which implements them (i.e. has a @samp{#pragma
implementation} line for the file where they live); all other files will
use external references.  If you're lucky, everything should work
properly.  If you get undefined symbol errors, you need to make sure
that each template instance which is used in the program is used in the
file which implements that template.  If you don't have any use for a
particular instance in that file, you can just instantiate it
explicitly, using the syntax from the latest C++ working paper:

@example
template class A<int>;
template ostream& operator << (ostream&, const A<int>&);
@end example

This strategy will work with code written for either model.  If you are
using code written for the Cfront model, the file containing a class
template and the file containing its member templates should be
implemented in the same translation unit.

A slight variation on this approach is to instead use the flag
@samp{-falt-external-templates}; this flag causes template
instances to be emitted in the translation unit that implements the
header where they are first instantiated, rather than the one which
implements the file where the templates are defined.  This header must
be the same in all translation units, or things are likely to break.

@xref{C++ Interface,,Declarations and Definitions in One Header}, for
more discussion of these pragmas.
@end enumerate

@node Bound member functions
@section Extracting the function pointer from a bound pointer to member function

@cindex pmf
@cindex pointer to member function
@cindex bound pointer to member function

In C++, pointer to member functions (PMFs) are implemented using a wide
pointer of sorts to handle all the possible call mechanisms; the PMF
needs to store information about how to adjust the @samp{this} pointer,
and if the function pointed to is virtual, where to find the vtable, and
where in the vtable to look for the member function.  If you are using
PMFs in an inner loop, you should really reconsider that decision.  If
that is not an option, you can extract the pointer to the function that
would be called for a given object/PMF pair and call it directly inside
the inner loop, to save a bit of time.

Note that you will still be paying the penalty for the call through a
function pointer; on most modern architectures, such a call defeats the
branch prediction features of the CPU.  This is also true of normal
virtual function calls.

The syntax for this extension is

@example
extern A a;
extern int (A::*fp)();
typedef int (*fptr)(A *);

fptr p = (fptr)(a.*fp);
@end example

For PMF constants (i.e. expressions of the form @samp{&Klasse::Member}),
no object is needed to obtain the address of the function. They can be
converted to function pointers directly:

@example
fptr p1 = (fptr)(&A::foo);
@end example

You must specify @samp{-Wno-pmf-conversions} to use this extension.