1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
|
/* ET-trees datastructure implementation.
Contributed by Pavel Nejedly
Copyright (C) 2002 Free Software Foundation, Inc.
This file is part of the libiberty library.
Libiberty is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
Libiberty is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public
License along with libiberty; see the file COPYING.LIB. If
not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.
The ET-forest structure is described in:
D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees.
J. G'omput. System Sci., 26(3):362 381, 1983.
*/
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "et-forest.h"
#include "alloc-pool.h"
struct et_forest_occurrence;
typedef struct et_forest_occurrence* et_forest_occurrence_t;
/* The ET-forest type. */
struct et_forest
{
/* Linked list of nodes is used to destroy the structure. */
int nnodes;
alloc_pool node_pool;
alloc_pool occur_pool;
};
/* Single occurrence of node in ET-forest.
A single node may have multiple occurrences.
*/
struct et_forest_occurrence
{
/* Parent in the splay-tree. */
et_forest_occurrence_t parent;
/* Children in the splay-tree. */
et_forest_occurrence_t left, right;
/* Counts of vertices in the two splay-subtrees. */
int count_left, count_right;
/* Next occurrence of this node in the sequence. */
et_forest_occurrence_t next;
/* The node, which this occurrence is of. */
et_forest_node_t node;
};
/* ET-forest node. */
struct et_forest_node
{
et_forest_t forest;
void *value;
/* First and last occurrence of this node in the sequence. */
et_forest_occurrence_t first, last;
};
static et_forest_occurrence_t splay PARAMS ((et_forest_occurrence_t));
static void remove_all_occurrences PARAMS ((et_forest_t, et_forest_node_t));
static inline et_forest_occurrence_t find_leftmost_node
PARAMS ((et_forest_occurrence_t));
static inline et_forest_occurrence_t find_rightmost_node
PARAMS ((et_forest_occurrence_t));
static int calculate_value PARAMS ((et_forest_occurrence_t));
/* Return leftmost node present in the tree roted by OCC. */
static inline et_forest_occurrence_t
find_leftmost_node (occ)
et_forest_occurrence_t occ;
{
while (occ->left)
occ = occ->left;
return occ;
}
/* Return rightmost node present in the tree roted by OCC. */
static inline et_forest_occurrence_t
find_rightmost_node (occ)
et_forest_occurrence_t occ;
{
while (occ->right)
occ = occ->right;
return occ;
}
/* Operation splay for splay tree structure representing occurrences. */
static et_forest_occurrence_t
splay (node)
et_forest_occurrence_t node;
{
et_forest_occurrence_t parent;
et_forest_occurrence_t grandparent;
while (1)
{
parent = node->parent;
if (! parent)
return node; /* node == root. */
grandparent = parent->parent;
if (! grandparent)
break;
/* Now there are four possible combinations: */
if (node == parent->left)
{
if (parent == grandparent->left)
{
et_forest_occurrence_t node1, node2;
int count1, count2;
node1 = node->right;
count1 = node->count_right;
node2 = parent->right;
count2 = parent->count_right;
grandparent->left = node2;
grandparent->count_left = count2;
if (node2)
node2->parent = grandparent;
parent->left = node1;
parent->count_left = count1;
if (node1)
node1->parent = parent;
parent->right = grandparent;
parent->count_right = count2 + grandparent->count_right + 1;
node->right = parent;
node->count_right = count1 + parent->count_right + 1;
node->parent = grandparent->parent;
parent->parent = node;
grandparent->parent = parent;
if (node->parent)
{
if (node->parent->left == grandparent)
node->parent->left = node;
else
node->parent->right = node;
}
}
else
{
/* parent == grandparent->right && node == parent->left*/
et_forest_occurrence_t node1, node2;
int count1, count2;
node1 = node->left;
count1 = node->count_left;
node2 = node->right;
count2 = node->count_right;
grandparent->right = node1;
grandparent->count_right = count1;
if (node1)
node1->parent = grandparent;
parent->left = node2;
parent->count_left = count2;
if (node2)
node2->parent = parent;
node->left = grandparent;
node->count_left = grandparent->count_left + count1 + 1;
node->right = parent;
node->count_right = parent->count_right + count2 + 1;
node->parent = grandparent->parent;
parent->parent = node;
grandparent->parent = node;
if (node->parent)
{
if (node->parent->left == grandparent)
node->parent->left = node;
else
node->parent->right = node;
}
}
}
else
{
/* node == parent->right. */
if (parent == grandparent->left)
{
et_forest_occurrence_t node1, node2;
int count1, count2;
node1 = node->left;
count1 = node->count_left;
node2 = node->right;
count2 = node->count_right;
parent->right = node1;
parent->count_right = count1;
if (node1)
node1->parent = parent;
grandparent->left = node2;
grandparent->count_left = count2;
if (node2)
node2->parent = grandparent;
node->left = parent;
node->count_left = parent->count_left + count1 + 1;
node->right = grandparent;
node->count_right = grandparent->count_right + count2 + 1;
node->parent = grandparent->parent;
parent->parent = node;
grandparent->parent = node;
if (node->parent)
{
if (node->parent->left == grandparent)
node->parent->left = node;
else
node->parent->right = node;
}
}
else
{
/* parent == grandparent->right && node == parent->right*/
et_forest_occurrence_t node1, node2;
int count1, count2;
node1 = node->left;
count1 = node->count_left;
node2 = parent->left;
count2 = parent->count_left;
grandparent->right = node2;
grandparent->count_right = count2;
if (node2)
node2->parent = grandparent;
parent->right = node1;
parent->count_right = count1;
if (node1)
node1->parent = parent;
parent->left = grandparent;
parent->count_left = count2 + grandparent->count_left + 1;
node->left = parent;
node->count_left = count1 + parent->count_left + 1;
node->parent = grandparent->parent;
parent->parent = node;
grandparent->parent = parent;
if (node->parent)
{
if (node->parent->left == grandparent)
node->parent->left = node;
else
node->parent->right = node;
}
}
}
}
/* parent == root. */
/* There are two possible combinations: */
if (node == parent->left)
{
et_forest_occurrence_t node1;
int count1;
node1 = node->right;
count1 = node->count_right;
parent->left = node1;
parent->count_left = count1;
if (node1)
node1->parent = parent;
node->right = parent;
node->count_right = parent->count_right + 1 + count1;
node->parent = parent->parent; /* the same as = 0; */
parent->parent = node;
if (node->parent)
{
if (node->parent->left == parent)
node->parent->left = node;
else
node->parent->right = node;
}
}
else
{
/* node == parent->right. */
et_forest_occurrence_t node1;
int count1;
node1 = node->left;
count1 = node->count_left;
parent->right = node1;
parent->count_right = count1;
if (node1)
node1->parent = parent;
node->left = parent;
node->count_left = parent->count_left + 1 + count1;
node->parent = parent->parent; /* the same as = 0; */
parent->parent = node;
if (node->parent)
{
if (node->parent->left == parent)
node->parent->left = node;
else
node->parent->right = node;
}
}
return node;
}
/* Remove all occurrences of the given node before destroying the node. */
static void
remove_all_occurrences (forest, forest_node)
et_forest_t forest;
et_forest_node_t forest_node;
{
et_forest_occurrence_t first = forest_node->first;
et_forest_occurrence_t last = forest_node->last;
et_forest_occurrence_t node;
splay (first);
if (first->left)
first->left->parent = 0;
if (first->right)
first->right->parent = 0;
if (last != first)
{
splay (last);
if (last->left)
last->left->parent = 0;
if (last->right)
last->right->parent = 0;
}
if (last->right && first->left) /* actually, first->left would suffice. */
{
/* Need to join them. */
et_forest_occurrence_t prev_node, next_node;
prev_node = splay (find_rightmost_node (first->left));
next_node = splay (find_leftmost_node (last->right));
/* prev_node and next_node are consecutive occurrences
of the same node. */
if (prev_node->next != next_node)
abort ();
prev_node->right = next_node->right;
prev_node->count_right = next_node->count_right;
prev_node->next = next_node->next;
if (prev_node->right)
prev_node->right->parent = prev_node;
if (prev_node->node->last == next_node)
prev_node->node->last = prev_node;
pool_free (forest->occur_pool, next_node);
}
if (first != last)
{
node = first->next;
while (node != last)
{
et_forest_occurrence_t next_node;
splay (node);
if (node->left)
node->left->parent = 0;
if (node->right)
node->right->parent = 0;
next_node = node->next;
pool_free (forest->occur_pool, node);
node = next_node;
}
}
pool_free (forest->occur_pool, first);
if (first != last)
pool_free (forest->occur_pool, last);
}
/* Calculate ET value of the given node. */
static inline int
calculate_value (node)
et_forest_occurrence_t node;
{
int value = node->count_left;
while (node->parent)
{
if (node == node->parent->right)
value += node->parent->count_left + 1;
node = node->parent;
}
return value;
}
/* Create ET-forest structure. */
et_forest_t
et_forest_create ()
{
et_forest_t forest = xmalloc (sizeof (struct et_forest));
forest->nnodes = 0;
forest->occur_pool = create_alloc_pool ("et_forest_occurrence pool", sizeof (struct et_forest_occurrence), 300);
forest->node_pool = create_alloc_pool ("et_forest_node pool", sizeof (struct et_forest_node), 300);
return forest;
}
/* Deallocate the structure. */
void
et_forest_delete (forest)
et_forest_t forest;
{
if (forest->nnodes)
abort ();
free_alloc_pool (forest->occur_pool);
free_alloc_pool (forest->node_pool);
free (forest);
}
/* Create new node with VALUE and return the edge.
Return NULL when memory allocation failed. */
et_forest_node_t
et_forest_add_node (forest, value)
et_forest_t forest;
void *value;
{
/* Create node with one occurrence. */
et_forest_node_t node;
et_forest_occurrence_t occ;
node = pool_alloc (forest->node_pool);
occ = pool_alloc (forest->occur_pool);
node->first = node->last = occ;
node->value = value;
forest->nnodes++;
occ->node = node;
occ->left = occ->right = occ->parent = 0;
occ->next = 0;
occ->count_left = occ->count_right = 0;
return node;
}
/* Add new edge to the tree, return 1 if successful.
0 indicates that creation of the edge will close the cycle in graph. */
int
et_forest_add_edge (forest, parent_node, child_node)
et_forest_t forest ATTRIBUTE_UNUSED;
et_forest_node_t parent_node;
et_forest_node_t child_node;
{
et_forest_occurrence_t new_occ, parent_occ, child_occ;
if (! parent_node || ! child_node)
abort ();
parent_occ = parent_node->first;
child_occ = child_node->first;
splay (parent_occ);
splay (child_occ);
if (parent_occ->parent)
return 0; /* Both child and parent are in the same tree. */
if (child_occ->left)
abort (); /* child must be root of its containing tree. */
new_occ = pool_alloc (forest->occur_pool);
new_occ->node = parent_node;
new_occ->left = child_occ;
new_occ->count_left = child_occ->count_right + 1; /* count_left is 0. */
new_occ->right = parent_occ->right;
new_occ->count_right = parent_occ->count_right;
new_occ->parent = parent_occ;
new_occ->next = parent_occ->next;
child_occ->parent = new_occ;
parent_occ->right = new_occ;
parent_occ->count_right = new_occ->count_left + new_occ->count_right + 1;
parent_occ->next = new_occ;
if (new_occ->right)
new_occ->right->parent = new_occ;
if (parent_node->last == parent_occ)
parent_node->last = new_occ;
return 1;
}
/* Remove NODE from the tree and all connected edges. */
void
et_forest_remove_node (forest, node)
et_forest_t forest;
et_forest_node_t node;
{
remove_all_occurrences (forest, node);
forest->nnodes--;
pool_free (forest->node_pool, node);
}
/* Remove edge from the tree, return 1 if successful,
0 indicates nonexisting edge. */
int
et_forest_remove_edge (forest, parent_node, child_node)
et_forest_t forest ATTRIBUTE_UNUSED;
et_forest_node_t parent_node;
et_forest_node_t child_node;
{
et_forest_occurrence_t parent_pre_occ, parent_post_occ;
splay (child_node->first);
if (! child_node->first->left)
return 0;
parent_pre_occ = find_rightmost_node (child_node->first->left);
if (parent_pre_occ->node != parent_node)
abort ();
splay (parent_pre_occ);
parent_pre_occ->right->parent = 0;
parent_post_occ = parent_pre_occ->next;
splay (parent_post_occ);
parent_post_occ->left->parent = 0;
parent_pre_occ->right = parent_post_occ->right;
parent_pre_occ->count_right = parent_post_occ->count_right;
if (parent_post_occ->right)
parent_post_occ->right->parent = parent_pre_occ;
parent_pre_occ->next = parent_post_occ->next;
if (parent_post_occ == parent_node->last)
parent_node->last = parent_pre_occ;
pool_free (forest->occur_pool, parent_post_occ);
return 1;
}
/* Return the parent of the NODE if any, NULL otherwise. */
et_forest_node_t
et_forest_parent (forest, node)
et_forest_t forest ATTRIBUTE_UNUSED;
et_forest_node_t node;
{
splay (node->first);
if (node->first->left)
return find_rightmost_node (node->first->left)->node;
else
return 0;
}
/* Return nearest common ancestor of NODE1 and NODE2.
Return NULL of they are in different trees. */
et_forest_node_t
et_forest_common_ancestor (forest, node1, node2)
et_forest_t forest ATTRIBUTE_UNUSED;
et_forest_node_t node1;
et_forest_node_t node2;
{
int value1, value2, max_value;
et_forest_node_t ancestor;
if (node1 == node2)
return node1;
if (! node1 || ! node2)
abort ();
splay (node1->first);
splay (node2->first);
if (! node1->first->parent) /* The two vertices are in different trees. */
return 0;
value2 = calculate_value (node2->first);
value1 = calculate_value (node1->first);
if (value1 < value2)
{
ancestor = node1;
max_value = value2;
}
else
{
ancestor = node2;
max_value = value1;
}
while (calculate_value (ancestor->last) < max_value)
{
/* Find parent node. */
splay (ancestor->first);
ancestor = find_rightmost_node (ancestor->first->left) ->node;
}
return ancestor;
}
/* Return the value pointer of node set during it's creation. */
void *
et_forest_node_value (forest, node)
et_forest_t forest ATTRIBUTE_UNUSED;
et_forest_node_t node;
{
/* Alloc threading NULL as a special node of the forest. */
if (!node)
return NULL;
return node->value;
}
/* Find all sons of NODE and store them into ARRAY allocated by the caller.
Return number of nodes found. */
int
et_forest_enumerate_sons (forest, node, array)
et_forest_t forest ATTRIBUTE_UNUSED;
et_forest_node_t node;
et_forest_node_t *array;
{
int n = 0;
et_forest_occurrence_t occ = node->first, stop = node->last, occ1;
/* Parent is the rightmost node of the left successor.
Look for all occurrences having no right successor
and lookup the sons. */
while (occ != stop)
{
splay (occ);
if (occ->right)
{
occ1 = find_leftmost_node (occ->right);
if (occ1->node->first == occ1)
array[n++] = occ1->node;
}
occ = occ->next;
}
return n;
}
|