1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
|
/* Dwarf2 Call Frame Information helper routines.
Copyright (C) 1992-2021 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "target.h"
#include "function.h"
#include "rtl.h"
#include "tree.h"
#include "tree-pass.h"
#include "memmodel.h"
#include "tm_p.h"
#include "emit-rtl.h"
#include "stor-layout.h"
#include "cfgbuild.h"
#include "dwarf2out.h"
#include "dwarf2asm.h"
#include "common/common-target.h"
#include "except.h" /* expand_builtin_dwarf_sp_column */
#include "profile-count.h" /* For expr.h */
#include "expr.h" /* init_return_column_size */
#include "output.h" /* asm_out_file */
#include "debug.h" /* dwarf2out_do_frame, dwarf2out_do_cfi_asm */
#include "flags.h" /* dwarf_debuginfo_p */
/* ??? Poison these here until it can be done generically. They've been
totally replaced in this file; make sure it stays that way. */
#undef DWARF2_UNWIND_INFO
#undef DWARF2_FRAME_INFO
#if (GCC_VERSION >= 3000)
#pragma GCC poison DWARF2_UNWIND_INFO DWARF2_FRAME_INFO
#endif
#ifndef INCOMING_RETURN_ADDR_RTX
#define INCOMING_RETURN_ADDR_RTX (gcc_unreachable (), NULL_RTX)
#endif
#ifndef DEFAULT_INCOMING_FRAME_SP_OFFSET
#define DEFAULT_INCOMING_FRAME_SP_OFFSET INCOMING_FRAME_SP_OFFSET
#endif
/* A collected description of an entire row of the abstract CFI table. */
struct GTY(()) dw_cfi_row
{
/* The expression that computes the CFA, expressed in two different ways.
The CFA member for the simple cases, and the full CFI expression for
the complex cases. The later will be a DW_CFA_cfa_expression. */
dw_cfa_location cfa;
dw_cfi_ref cfa_cfi;
/* The expressions for any register column that is saved. */
cfi_vec reg_save;
/* True if the register window is saved. */
bool window_save;
/* True if the return address is in a mangled state. */
bool ra_mangled;
};
/* The caller's ORIG_REG is saved in SAVED_IN_REG. */
struct GTY(()) reg_saved_in_data {
rtx orig_reg;
rtx saved_in_reg;
};
/* Since we no longer have a proper CFG, we're going to create a facsimile
of one on the fly while processing the frame-related insns.
We create dw_trace_info structures for each extended basic block beginning
and ending at a "save point". Save points are labels, barriers, certain
notes, and of course the beginning and end of the function.
As we encounter control transfer insns, we propagate the "current"
row state across the edges to the starts of traces. When checking is
enabled, we validate that we propagate the same data from all sources.
All traces are members of the TRACE_INFO array, in the order in which
they appear in the instruction stream.
All save points are present in the TRACE_INDEX hash, mapping the insn
starting a trace to the dw_trace_info describing the trace. */
struct dw_trace_info
{
/* The insn that begins the trace. */
rtx_insn *head;
/* The row state at the beginning and end of the trace. */
dw_cfi_row *beg_row, *end_row;
/* Tracking for DW_CFA_GNU_args_size. The "true" sizes are those we find
while scanning insns. However, the args_size value is irrelevant at
any point except can_throw_internal_p insns. Therefore the "delay"
sizes the values that must actually be emitted for this trace. */
poly_int64_pod beg_true_args_size, end_true_args_size;
poly_int64_pod beg_delay_args_size, end_delay_args_size;
/* The first EH insn in the trace, where beg_delay_args_size must be set. */
rtx_insn *eh_head;
/* The following variables contain data used in interpreting frame related
expressions. These are not part of the "real" row state as defined by
Dwarf, but it seems like they need to be propagated into a trace in case
frame related expressions have been sunk. */
/* ??? This seems fragile. These variables are fragments of a larger
expression. If we do not keep the entire expression together, we risk
not being able to put it together properly. Consider forcing targets
to generate self-contained expressions and dropping all of the magic
interpretation code in this file. Or at least refusing to shrink wrap
any frame related insn that doesn't contain a complete expression. */
/* The register used for saving registers to the stack, and its offset
from the CFA. */
dw_cfa_location cfa_store;
/* A temporary register holding an integral value used in adjusting SP
or setting up the store_reg. The "offset" field holds the integer
value, not an offset. */
dw_cfa_location cfa_temp;
/* A set of registers saved in other registers. This is the inverse of
the row->reg_save info, if the entry is a DW_CFA_register. This is
implemented as a flat array because it normally contains zero or 1
entry, depending on the target. IA-64 is the big spender here, using
a maximum of 5 entries. */
vec<reg_saved_in_data> regs_saved_in_regs;
/* An identifier for this trace. Used only for debugging dumps. */
unsigned id;
/* True if this trace immediately follows NOTE_INSN_SWITCH_TEXT_SECTIONS. */
bool switch_sections;
/* True if we've seen different values incoming to beg_true_args_size. */
bool args_size_undefined;
/* True if we've seen an insn with a REG_ARGS_SIZE note before EH_HEAD. */
bool args_size_defined_for_eh;
};
/* Hashtable helpers. */
struct trace_info_hasher : nofree_ptr_hash <dw_trace_info>
{
static inline hashval_t hash (const dw_trace_info *);
static inline bool equal (const dw_trace_info *, const dw_trace_info *);
};
inline hashval_t
trace_info_hasher::hash (const dw_trace_info *ti)
{
return INSN_UID (ti->head);
}
inline bool
trace_info_hasher::equal (const dw_trace_info *a, const dw_trace_info *b)
{
return a->head == b->head;
}
/* The variables making up the pseudo-cfg, as described above. */
static vec<dw_trace_info> trace_info;
static vec<dw_trace_info *> trace_work_list;
static hash_table<trace_info_hasher> *trace_index;
/* A vector of call frame insns for the CIE. */
cfi_vec cie_cfi_vec;
/* The state of the first row of the FDE table, which includes the
state provided by the CIE. */
static GTY(()) dw_cfi_row *cie_cfi_row;
static GTY(()) reg_saved_in_data *cie_return_save;
static GTY(()) unsigned long dwarf2out_cfi_label_num;
/* The insn after which a new CFI note should be emitted. */
static rtx_insn *add_cfi_insn;
/* When non-null, add_cfi will add the CFI to this vector. */
static cfi_vec *add_cfi_vec;
/* The current instruction trace. */
static dw_trace_info *cur_trace;
/* The current, i.e. most recently generated, row of the CFI table. */
static dw_cfi_row *cur_row;
/* A copy of the current CFA, for use during the processing of a
single insn. */
static dw_cfa_location *cur_cfa;
/* We delay emitting a register save until either (a) we reach the end
of the prologue or (b) the register is clobbered. This clusters
register saves so that there are fewer pc advances. */
struct queued_reg_save {
rtx reg;
rtx saved_reg;
poly_int64_pod cfa_offset;
};
static vec<queued_reg_save> queued_reg_saves;
/* True if any CFI directives were emitted at the current insn. */
static bool any_cfis_emitted;
/* Short-hand for commonly used register numbers. */
static unsigned dw_stack_pointer_regnum;
static unsigned dw_frame_pointer_regnum;
/* Hook used by __throw. */
rtx
expand_builtin_dwarf_sp_column (void)
{
unsigned int dwarf_regnum = DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM);
return GEN_INT (DWARF2_FRAME_REG_OUT (dwarf_regnum, 1));
}
/* MEM is a memory reference for the register size table, each element of
which has mode MODE. Initialize column C as a return address column. */
static void
init_return_column_size (scalar_int_mode mode, rtx mem, unsigned int c)
{
HOST_WIDE_INT offset = c * GET_MODE_SIZE (mode);
HOST_WIDE_INT size = GET_MODE_SIZE (Pmode);
emit_move_insn (adjust_address (mem, mode, offset),
gen_int_mode (size, mode));
}
/* Datastructure used by expand_builtin_init_dwarf_reg_sizes and
init_one_dwarf_reg_size to communicate on what has been done by the
latter. */
struct init_one_dwarf_reg_state
{
/* Whether the dwarf return column was initialized. */
bool wrote_return_column;
/* For each hard register REGNO, whether init_one_dwarf_reg_size
was given REGNO to process already. */
bool processed_regno [FIRST_PSEUDO_REGISTER];
};
/* Helper for expand_builtin_init_dwarf_reg_sizes. Generate code to
initialize the dwarf register size table entry corresponding to register
REGNO in REGMODE. TABLE is the table base address, SLOTMODE is the mode to
use for the size entry to initialize, and INIT_STATE is the communication
datastructure conveying what we're doing to our caller. */
static
void init_one_dwarf_reg_size (int regno, machine_mode regmode,
rtx table, machine_mode slotmode,
init_one_dwarf_reg_state *init_state)
{
const unsigned int dnum = DWARF_FRAME_REGNUM (regno);
const unsigned int rnum = DWARF2_FRAME_REG_OUT (dnum, 1);
const unsigned int dcol = DWARF_REG_TO_UNWIND_COLUMN (rnum);
poly_int64 slotoffset = dcol * GET_MODE_SIZE (slotmode);
poly_int64 regsize = GET_MODE_SIZE (regmode);
init_state->processed_regno[regno] = true;
if (rnum >= DWARF_FRAME_REGISTERS)
return;
if (dnum == DWARF_FRAME_RETURN_COLUMN)
{
if (regmode == VOIDmode)
return;
init_state->wrote_return_column = true;
}
/* ??? When is this true? Should it be a test based on DCOL instead? */
if (maybe_lt (slotoffset, 0))
return;
emit_move_insn (adjust_address (table, slotmode, slotoffset),
gen_int_mode (regsize, slotmode));
}
/* Generate code to initialize the dwarf register size table located
at the provided ADDRESS. */
void
expand_builtin_init_dwarf_reg_sizes (tree address)
{
unsigned int i;
scalar_int_mode mode = SCALAR_INT_TYPE_MODE (char_type_node);
rtx addr = expand_normal (address);
rtx mem = gen_rtx_MEM (BLKmode, addr);
init_one_dwarf_reg_state init_state;
memset ((char *)&init_state, 0, sizeof (init_state));
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
{
machine_mode save_mode;
rtx span;
/* No point in processing a register multiple times. This could happen
with register spans, e.g. when a reg is first processed as a piece of
a span, then as a register on its own later on. */
if (init_state.processed_regno[i])
continue;
save_mode = targetm.dwarf_frame_reg_mode (i);
span = targetm.dwarf_register_span (gen_rtx_REG (save_mode, i));
if (!span)
init_one_dwarf_reg_size (i, save_mode, mem, mode, &init_state);
else
{
for (int si = 0; si < XVECLEN (span, 0); si++)
{
rtx reg = XVECEXP (span, 0, si);
init_one_dwarf_reg_size
(REGNO (reg), GET_MODE (reg), mem, mode, &init_state);
}
}
}
if (!init_state.wrote_return_column)
init_return_column_size (mode, mem, DWARF_FRAME_RETURN_COLUMN);
#ifdef DWARF_ALT_FRAME_RETURN_COLUMN
init_return_column_size (mode, mem, DWARF_ALT_FRAME_RETURN_COLUMN);
#endif
targetm.init_dwarf_reg_sizes_extra (address);
}
static dw_trace_info *
get_trace_info (rtx_insn *insn)
{
dw_trace_info dummy;
dummy.head = insn;
return trace_index->find_with_hash (&dummy, INSN_UID (insn));
}
static bool
save_point_p (rtx_insn *insn)
{
/* Labels, except those that are really jump tables. */
if (LABEL_P (insn))
return inside_basic_block_p (insn);
/* We split traces at the prologue/epilogue notes because those
are points at which the unwind info is usually stable. This
makes it easier to find spots with identical unwind info so
that we can use remember/restore_state opcodes. */
if (NOTE_P (insn))
switch (NOTE_KIND (insn))
{
case NOTE_INSN_PROLOGUE_END:
case NOTE_INSN_EPILOGUE_BEG:
return true;
}
return false;
}
/* Divide OFF by DWARF_CIE_DATA_ALIGNMENT, asserting no remainder. */
static inline HOST_WIDE_INT
div_data_align (HOST_WIDE_INT off)
{
HOST_WIDE_INT r = off / DWARF_CIE_DATA_ALIGNMENT;
gcc_assert (r * DWARF_CIE_DATA_ALIGNMENT == off);
return r;
}
/* Return true if we need a signed version of a given opcode
(e.g. DW_CFA_offset_extended_sf vs DW_CFA_offset_extended). */
static inline bool
need_data_align_sf_opcode (HOST_WIDE_INT off)
{
return DWARF_CIE_DATA_ALIGNMENT < 0 ? off > 0 : off < 0;
}
/* Return a pointer to a newly allocated Call Frame Instruction. */
static inline dw_cfi_ref
new_cfi (void)
{
dw_cfi_ref cfi = ggc_alloc<dw_cfi_node> ();
cfi->dw_cfi_oprnd1.dw_cfi_reg_num = 0;
cfi->dw_cfi_oprnd2.dw_cfi_reg_num = 0;
return cfi;
}
/* Return a newly allocated CFI row, with no defined data. */
static dw_cfi_row *
new_cfi_row (void)
{
dw_cfi_row *row = ggc_cleared_alloc<dw_cfi_row> ();
row->cfa.reg = INVALID_REGNUM;
return row;
}
/* Return a copy of an existing CFI row. */
static dw_cfi_row *
copy_cfi_row (dw_cfi_row *src)
{
dw_cfi_row *dst = ggc_alloc<dw_cfi_row> ();
*dst = *src;
dst->reg_save = vec_safe_copy (src->reg_save);
return dst;
}
/* Return a copy of an existing CFA location. */
static dw_cfa_location *
copy_cfa (dw_cfa_location *src)
{
dw_cfa_location *dst = ggc_alloc<dw_cfa_location> ();
*dst = *src;
return dst;
}
/* Generate a new label for the CFI info to refer to. */
static char *
dwarf2out_cfi_label (void)
{
int num = dwarf2out_cfi_label_num++;
char label[20];
ASM_GENERATE_INTERNAL_LABEL (label, "LCFI", num);
return xstrdup (label);
}
/* Add CFI either to the current insn stream or to a vector, or both. */
static void
add_cfi (dw_cfi_ref cfi)
{
any_cfis_emitted = true;
if (add_cfi_insn != NULL)
{
add_cfi_insn = emit_note_after (NOTE_INSN_CFI, add_cfi_insn);
NOTE_CFI (add_cfi_insn) = cfi;
}
if (add_cfi_vec != NULL)
vec_safe_push (*add_cfi_vec, cfi);
}
static void
add_cfi_args_size (poly_int64 size)
{
/* We don't yet have a representation for polynomial sizes. */
HOST_WIDE_INT const_size = size.to_constant ();
dw_cfi_ref cfi = new_cfi ();
/* While we can occasionally have args_size < 0 internally, this state
should not persist at a point we actually need an opcode. */
gcc_assert (const_size >= 0);
cfi->dw_cfi_opc = DW_CFA_GNU_args_size;
cfi->dw_cfi_oprnd1.dw_cfi_offset = const_size;
add_cfi (cfi);
}
static void
add_cfi_restore (unsigned reg)
{
dw_cfi_ref cfi = new_cfi ();
cfi->dw_cfi_opc = (reg & ~0x3f ? DW_CFA_restore_extended : DW_CFA_restore);
cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
add_cfi (cfi);
}
/* Perform ROW->REG_SAVE[COLUMN] = CFI. CFI may be null, indicating
that the register column is no longer saved. */
static void
update_row_reg_save (dw_cfi_row *row, unsigned column, dw_cfi_ref cfi)
{
if (vec_safe_length (row->reg_save) <= column)
vec_safe_grow_cleared (row->reg_save, column + 1, true);
(*row->reg_save)[column] = cfi;
}
/* This function fills in aa dw_cfa_location structure from a dwarf location
descriptor sequence. */
static void
get_cfa_from_loc_descr (dw_cfa_location *cfa, struct dw_loc_descr_node *loc)
{
struct dw_loc_descr_node *ptr;
cfa->offset = 0;
cfa->base_offset = 0;
cfa->indirect = 0;
cfa->reg = -1;
for (ptr = loc; ptr != NULL; ptr = ptr->dw_loc_next)
{
enum dwarf_location_atom op = ptr->dw_loc_opc;
switch (op)
{
case DW_OP_reg0:
case DW_OP_reg1:
case DW_OP_reg2:
case DW_OP_reg3:
case DW_OP_reg4:
case DW_OP_reg5:
case DW_OP_reg6:
case DW_OP_reg7:
case DW_OP_reg8:
case DW_OP_reg9:
case DW_OP_reg10:
case DW_OP_reg11:
case DW_OP_reg12:
case DW_OP_reg13:
case DW_OP_reg14:
case DW_OP_reg15:
case DW_OP_reg16:
case DW_OP_reg17:
case DW_OP_reg18:
case DW_OP_reg19:
case DW_OP_reg20:
case DW_OP_reg21:
case DW_OP_reg22:
case DW_OP_reg23:
case DW_OP_reg24:
case DW_OP_reg25:
case DW_OP_reg26:
case DW_OP_reg27:
case DW_OP_reg28:
case DW_OP_reg29:
case DW_OP_reg30:
case DW_OP_reg31:
cfa->reg = op - DW_OP_reg0;
break;
case DW_OP_regx:
cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
break;
case DW_OP_breg0:
case DW_OP_breg1:
case DW_OP_breg2:
case DW_OP_breg3:
case DW_OP_breg4:
case DW_OP_breg5:
case DW_OP_breg6:
case DW_OP_breg7:
case DW_OP_breg8:
case DW_OP_breg9:
case DW_OP_breg10:
case DW_OP_breg11:
case DW_OP_breg12:
case DW_OP_breg13:
case DW_OP_breg14:
case DW_OP_breg15:
case DW_OP_breg16:
case DW_OP_breg17:
case DW_OP_breg18:
case DW_OP_breg19:
case DW_OP_breg20:
case DW_OP_breg21:
case DW_OP_breg22:
case DW_OP_breg23:
case DW_OP_breg24:
case DW_OP_breg25:
case DW_OP_breg26:
case DW_OP_breg27:
case DW_OP_breg28:
case DW_OP_breg29:
case DW_OP_breg30:
case DW_OP_breg31:
cfa->reg = op - DW_OP_breg0;
cfa->base_offset = ptr->dw_loc_oprnd1.v.val_int;
break;
case DW_OP_bregx:
cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
cfa->base_offset = ptr->dw_loc_oprnd2.v.val_int;
break;
case DW_OP_deref:
cfa->indirect = 1;
break;
case DW_OP_plus_uconst:
cfa->offset = ptr->dw_loc_oprnd1.v.val_unsigned;
break;
default:
gcc_unreachable ();
}
}
}
/* Find the previous value for the CFA, iteratively. CFI is the opcode
to interpret, *LOC will be updated as necessary, *REMEMBER is used for
one level of remember/restore state processing. */
void
lookup_cfa_1 (dw_cfi_ref cfi, dw_cfa_location *loc, dw_cfa_location *remember)
{
switch (cfi->dw_cfi_opc)
{
case DW_CFA_def_cfa_offset:
case DW_CFA_def_cfa_offset_sf:
loc->offset = cfi->dw_cfi_oprnd1.dw_cfi_offset;
break;
case DW_CFA_def_cfa_register:
loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
break;
case DW_CFA_def_cfa:
case DW_CFA_def_cfa_sf:
loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
loc->offset = cfi->dw_cfi_oprnd2.dw_cfi_offset;
break;
case DW_CFA_def_cfa_expression:
if (cfi->dw_cfi_oprnd2.dw_cfi_cfa_loc)
*loc = *cfi->dw_cfi_oprnd2.dw_cfi_cfa_loc;
else
get_cfa_from_loc_descr (loc, cfi->dw_cfi_oprnd1.dw_cfi_loc);
break;
case DW_CFA_remember_state:
gcc_assert (!remember->in_use);
*remember = *loc;
remember->in_use = 1;
break;
case DW_CFA_restore_state:
gcc_assert (remember->in_use);
*loc = *remember;
remember->in_use = 0;
break;
default:
break;
}
}
/* Determine if two dw_cfa_location structures define the same data. */
bool
cfa_equal_p (const dw_cfa_location *loc1, const dw_cfa_location *loc2)
{
return (loc1->reg == loc2->reg
&& known_eq (loc1->offset, loc2->offset)
&& loc1->indirect == loc2->indirect
&& (loc1->indirect == 0
|| known_eq (loc1->base_offset, loc2->base_offset)));
}
/* Determine if two CFI operands are identical. */
static bool
cfi_oprnd_equal_p (enum dw_cfi_oprnd_type t, dw_cfi_oprnd *a, dw_cfi_oprnd *b)
{
switch (t)
{
case dw_cfi_oprnd_unused:
return true;
case dw_cfi_oprnd_reg_num:
return a->dw_cfi_reg_num == b->dw_cfi_reg_num;
case dw_cfi_oprnd_offset:
return a->dw_cfi_offset == b->dw_cfi_offset;
case dw_cfi_oprnd_addr:
return (a->dw_cfi_addr == b->dw_cfi_addr
|| strcmp (a->dw_cfi_addr, b->dw_cfi_addr) == 0);
case dw_cfi_oprnd_loc:
return loc_descr_equal_p (a->dw_cfi_loc, b->dw_cfi_loc);
case dw_cfi_oprnd_cfa_loc:
return cfa_equal_p (a->dw_cfi_cfa_loc, b->dw_cfi_cfa_loc);
}
gcc_unreachable ();
}
/* Determine if two CFI entries are identical. */
static bool
cfi_equal_p (dw_cfi_ref a, dw_cfi_ref b)
{
enum dwarf_call_frame_info opc;
/* Make things easier for our callers, including missing operands. */
if (a == b)
return true;
if (a == NULL || b == NULL)
return false;
/* Obviously, the opcodes must match. */
opc = a->dw_cfi_opc;
if (opc != b->dw_cfi_opc)
return false;
/* Compare the two operands, re-using the type of the operands as
already exposed elsewhere. */
return (cfi_oprnd_equal_p (dw_cfi_oprnd1_desc (opc),
&a->dw_cfi_oprnd1, &b->dw_cfi_oprnd1)
&& cfi_oprnd_equal_p (dw_cfi_oprnd2_desc (opc),
&a->dw_cfi_oprnd2, &b->dw_cfi_oprnd2));
}
/* Determine if two CFI_ROW structures are identical. */
static bool
cfi_row_equal_p (dw_cfi_row *a, dw_cfi_row *b)
{
size_t i, n_a, n_b, n_max;
if (a->cfa_cfi)
{
if (!cfi_equal_p (a->cfa_cfi, b->cfa_cfi))
return false;
}
else if (!cfa_equal_p (&a->cfa, &b->cfa))
return false;
n_a = vec_safe_length (a->reg_save);
n_b = vec_safe_length (b->reg_save);
n_max = MAX (n_a, n_b);
for (i = 0; i < n_max; ++i)
{
dw_cfi_ref r_a = NULL, r_b = NULL;
if (i < n_a)
r_a = (*a->reg_save)[i];
if (i < n_b)
r_b = (*b->reg_save)[i];
if (!cfi_equal_p (r_a, r_b))
return false;
}
if (a->window_save != b->window_save)
return false;
if (a->ra_mangled != b->ra_mangled)
return false;
return true;
}
/* The CFA is now calculated from NEW_CFA. Consider OLD_CFA in determining
what opcode to emit. Returns the CFI opcode to effect the change, or
NULL if NEW_CFA == OLD_CFA. */
static dw_cfi_ref
def_cfa_0 (dw_cfa_location *old_cfa, dw_cfa_location *new_cfa)
{
dw_cfi_ref cfi;
/* If nothing changed, no need to issue any call frame instructions. */
if (cfa_equal_p (old_cfa, new_cfa))
return NULL;
cfi = new_cfi ();
HOST_WIDE_INT const_offset;
if (new_cfa->reg == old_cfa->reg
&& !new_cfa->indirect
&& !old_cfa->indirect
&& new_cfa->offset.is_constant (&const_offset))
{
/* Construct a "DW_CFA_def_cfa_offset <offset>" instruction, indicating
the CFA register did not change but the offset did. The data
factoring for DW_CFA_def_cfa_offset_sf happens in output_cfi, or
in the assembler via the .cfi_def_cfa_offset directive. */
if (const_offset < 0)
cfi->dw_cfi_opc = DW_CFA_def_cfa_offset_sf;
else
cfi->dw_cfi_opc = DW_CFA_def_cfa_offset;
cfi->dw_cfi_oprnd1.dw_cfi_offset = const_offset;
}
else if (new_cfa->offset.is_constant ()
&& known_eq (new_cfa->offset, old_cfa->offset)
&& old_cfa->reg != INVALID_REGNUM
&& !new_cfa->indirect
&& !old_cfa->indirect)
{
/* Construct a "DW_CFA_def_cfa_register <register>" instruction,
indicating the CFA register has changed to <register> but the
offset has not changed. This requires the old CFA to have
been set as a register plus offset rather than a general
DW_CFA_def_cfa_expression. */
cfi->dw_cfi_opc = DW_CFA_def_cfa_register;
cfi->dw_cfi_oprnd1.dw_cfi_reg_num = new_cfa->reg;
}
else if (new_cfa->indirect == 0
&& new_cfa->offset.is_constant (&const_offset))
{
/* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
indicating the CFA register has changed to <register> with
the specified offset. The data factoring for DW_CFA_def_cfa_sf
happens in output_cfi, or in the assembler via the .cfi_def_cfa
directive. */
if (const_offset < 0)
cfi->dw_cfi_opc = DW_CFA_def_cfa_sf;
else
cfi->dw_cfi_opc = DW_CFA_def_cfa;
cfi->dw_cfi_oprnd1.dw_cfi_reg_num = new_cfa->reg;
cfi->dw_cfi_oprnd2.dw_cfi_offset = const_offset;
}
else
{
/* Construct a DW_CFA_def_cfa_expression instruction to
calculate the CFA using a full location expression since no
register-offset pair is available. */
struct dw_loc_descr_node *loc_list;
cfi->dw_cfi_opc = DW_CFA_def_cfa_expression;
loc_list = build_cfa_loc (new_cfa, 0);
cfi->dw_cfi_oprnd1.dw_cfi_loc = loc_list;
if (!new_cfa->offset.is_constant ()
|| !new_cfa->base_offset.is_constant ())
/* It's hard to reconstruct the CFA location for a polynomial
expression, so just cache it instead. */
cfi->dw_cfi_oprnd2.dw_cfi_cfa_loc = copy_cfa (new_cfa);
else
cfi->dw_cfi_oprnd2.dw_cfi_cfa_loc = NULL;
}
return cfi;
}
/* Similarly, but take OLD_CFA from CUR_ROW, and update it after the fact. */
static void
def_cfa_1 (dw_cfa_location *new_cfa)
{
dw_cfi_ref cfi;
if (cur_trace->cfa_store.reg == new_cfa->reg && new_cfa->indirect == 0)
cur_trace->cfa_store.offset = new_cfa->offset;
cfi = def_cfa_0 (&cur_row->cfa, new_cfa);
if (cfi)
{
cur_row->cfa = *new_cfa;
cur_row->cfa_cfi = (cfi->dw_cfi_opc == DW_CFA_def_cfa_expression
? cfi : NULL);
add_cfi (cfi);
}
}
/* Add the CFI for saving a register. REG is the CFA column number.
If SREG is -1, the register is saved at OFFSET from the CFA;
otherwise it is saved in SREG. */
static void
reg_save (unsigned int reg, unsigned int sreg, poly_int64 offset)
{
dw_fde_ref fde = cfun ? cfun->fde : NULL;
dw_cfi_ref cfi = new_cfi ();
cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
if (sreg == INVALID_REGNUM)
{
HOST_WIDE_INT const_offset;
/* When stack is aligned, store REG using DW_CFA_expression with FP. */
if (fde && fde->stack_realign)
{
cfi->dw_cfi_opc = DW_CFA_expression;
cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
cfi->dw_cfi_oprnd2.dw_cfi_loc
= build_cfa_aligned_loc (&cur_row->cfa, offset,
fde->stack_realignment);
}
else if (offset.is_constant (&const_offset))
{
if (need_data_align_sf_opcode (const_offset))
cfi->dw_cfi_opc = DW_CFA_offset_extended_sf;
else if (reg & ~0x3f)
cfi->dw_cfi_opc = DW_CFA_offset_extended;
else
cfi->dw_cfi_opc = DW_CFA_offset;
cfi->dw_cfi_oprnd2.dw_cfi_offset = const_offset;
}
else
{
cfi->dw_cfi_opc = DW_CFA_expression;
cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
cfi->dw_cfi_oprnd2.dw_cfi_loc
= build_cfa_loc (&cur_row->cfa, offset);
}
}
else if (sreg == reg)
{
/* While we could emit something like DW_CFA_same_value or
DW_CFA_restore, we never expect to see something like that
in a prologue. This is more likely to be a bug. A backend
can always bypass this by using REG_CFA_RESTORE directly. */
gcc_unreachable ();
}
else
{
cfi->dw_cfi_opc = DW_CFA_register;
cfi->dw_cfi_oprnd2.dw_cfi_reg_num = sreg;
}
add_cfi (cfi);
update_row_reg_save (cur_row, reg, cfi);
}
/* A subroutine of scan_trace. Check INSN for a REG_ARGS_SIZE note
and adjust data structures to match. */
static void
notice_args_size (rtx_insn *insn)
{
poly_int64 args_size, delta;
rtx note;
note = find_reg_note (insn, REG_ARGS_SIZE, NULL);
if (note == NULL)
return;
if (!cur_trace->eh_head)
cur_trace->args_size_defined_for_eh = true;
args_size = get_args_size (note);
delta = args_size - cur_trace->end_true_args_size;
if (known_eq (delta, 0))
return;
cur_trace->end_true_args_size = args_size;
/* If the CFA is computed off the stack pointer, then we must adjust
the computation of the CFA as well. */
if (cur_cfa->reg == dw_stack_pointer_regnum)
{
gcc_assert (!cur_cfa->indirect);
/* Convert a change in args_size (always a positive in the
direction of stack growth) to a change in stack pointer. */
if (!STACK_GROWS_DOWNWARD)
delta = -delta;
cur_cfa->offset += delta;
}
}
/* A subroutine of scan_trace. INSN is can_throw_internal. Update the
data within the trace related to EH insns and args_size. */
static void
notice_eh_throw (rtx_insn *insn)
{
poly_int64 args_size = cur_trace->end_true_args_size;
if (cur_trace->eh_head == NULL)
{
cur_trace->eh_head = insn;
cur_trace->beg_delay_args_size = args_size;
cur_trace->end_delay_args_size = args_size;
}
else if (maybe_ne (cur_trace->end_delay_args_size, args_size))
{
cur_trace->end_delay_args_size = args_size;
/* ??? If the CFA is the stack pointer, search backward for the last
CFI note and insert there. Given that the stack changed for the
args_size change, there *must* be such a note in between here and
the last eh insn. */
add_cfi_args_size (args_size);
}
}
/* Short-hand inline for the very common D_F_R (REGNO (x)) operation. */
/* ??? This ought to go into dwarf2out.h, except that dwarf2out.h is
used in places where rtl is prohibited. */
static inline unsigned
dwf_regno (const_rtx reg)
{
gcc_assert (REGNO (reg) < FIRST_PSEUDO_REGISTER);
return DWARF_FRAME_REGNUM (REGNO (reg));
}
/* Compare X and Y for equivalence. The inputs may be REGs or PC_RTX. */
static bool
compare_reg_or_pc (rtx x, rtx y)
{
if (REG_P (x) && REG_P (y))
return REGNO (x) == REGNO (y);
return x == y;
}
/* Record SRC as being saved in DEST. DEST may be null to delete an
existing entry. SRC may be a register or PC_RTX. */
static void
record_reg_saved_in_reg (rtx dest, rtx src)
{
reg_saved_in_data *elt;
size_t i;
FOR_EACH_VEC_ELT (cur_trace->regs_saved_in_regs, i, elt)
if (compare_reg_or_pc (elt->orig_reg, src))
{
if (dest == NULL)
cur_trace->regs_saved_in_regs.unordered_remove (i);
else
elt->saved_in_reg = dest;
return;
}
if (dest == NULL)
return;
reg_saved_in_data e = {src, dest};
cur_trace->regs_saved_in_regs.safe_push (e);
}
/* Add an entry to QUEUED_REG_SAVES saying that REG is now saved at
SREG, or if SREG is NULL then it is saved at OFFSET to the CFA. */
static void
queue_reg_save (rtx reg, rtx sreg, poly_int64 offset)
{
queued_reg_save *q;
queued_reg_save e = {reg, sreg, offset};
size_t i;
/* Duplicates waste space, but it's also necessary to remove them
for correctness, since the queue gets output in reverse order. */
FOR_EACH_VEC_ELT (queued_reg_saves, i, q)
if (compare_reg_or_pc (q->reg, reg))
{
*q = e;
return;
}
queued_reg_saves.safe_push (e);
}
/* Output all the entries in QUEUED_REG_SAVES. */
static void
dwarf2out_flush_queued_reg_saves (void)
{
queued_reg_save *q;
size_t i;
FOR_EACH_VEC_ELT (queued_reg_saves, i, q)
{
unsigned int reg, sreg;
record_reg_saved_in_reg (q->saved_reg, q->reg);
if (q->reg == pc_rtx)
reg = DWARF_FRAME_RETURN_COLUMN;
else
reg = dwf_regno (q->reg);
if (q->saved_reg)
sreg = dwf_regno (q->saved_reg);
else
sreg = INVALID_REGNUM;
reg_save (reg, sreg, q->cfa_offset);
}
queued_reg_saves.truncate (0);
}
/* Does INSN clobber any register which QUEUED_REG_SAVES lists a saved
location for? Or, does it clobber a register which we've previously
said that some other register is saved in, and for which we now
have a new location for? */
static bool
clobbers_queued_reg_save (const_rtx insn)
{
queued_reg_save *q;
size_t iq;
FOR_EACH_VEC_ELT (queued_reg_saves, iq, q)
{
size_t ir;
reg_saved_in_data *rir;
if (modified_in_p (q->reg, insn))
return true;
FOR_EACH_VEC_ELT (cur_trace->regs_saved_in_regs, ir, rir)
if (compare_reg_or_pc (q->reg, rir->orig_reg)
&& modified_in_p (rir->saved_in_reg, insn))
return true;
}
return false;
}
/* What register, if any, is currently saved in REG? */
static rtx
reg_saved_in (rtx reg)
{
unsigned int regn = REGNO (reg);
queued_reg_save *q;
reg_saved_in_data *rir;
size_t i;
FOR_EACH_VEC_ELT (queued_reg_saves, i, q)
if (q->saved_reg && regn == REGNO (q->saved_reg))
return q->reg;
FOR_EACH_VEC_ELT (cur_trace->regs_saved_in_regs, i, rir)
if (regn == REGNO (rir->saved_in_reg))
return rir->orig_reg;
return NULL_RTX;
}
/* A subroutine of dwarf2out_frame_debug, process a REG_DEF_CFA note. */
static void
dwarf2out_frame_debug_def_cfa (rtx pat)
{
memset (cur_cfa, 0, sizeof (*cur_cfa));
pat = strip_offset (pat, &cur_cfa->offset);
if (MEM_P (pat))
{
cur_cfa->indirect = 1;
pat = strip_offset (XEXP (pat, 0), &cur_cfa->base_offset);
}
/* ??? If this fails, we could be calling into the _loc functions to
define a full expression. So far no port does that. */
gcc_assert (REG_P (pat));
cur_cfa->reg = dwf_regno (pat);
}
/* A subroutine of dwarf2out_frame_debug, process a REG_ADJUST_CFA note. */
static void
dwarf2out_frame_debug_adjust_cfa (rtx pat)
{
rtx src, dest;
gcc_assert (GET_CODE (pat) == SET);
dest = XEXP (pat, 0);
src = XEXP (pat, 1);
switch (GET_CODE (src))
{
case PLUS:
gcc_assert (dwf_regno (XEXP (src, 0)) == cur_cfa->reg);
cur_cfa->offset -= rtx_to_poly_int64 (XEXP (src, 1));
break;
case REG:
break;
default:
gcc_unreachable ();
}
cur_cfa->reg = dwf_regno (dest);
gcc_assert (cur_cfa->indirect == 0);
}
/* A subroutine of dwarf2out_frame_debug, process a REG_CFA_OFFSET note. */
static void
dwarf2out_frame_debug_cfa_offset (rtx set)
{
poly_int64 offset;
rtx src, addr, span;
unsigned int sregno;
src = XEXP (set, 1);
addr = XEXP (set, 0);
gcc_assert (MEM_P (addr));
addr = XEXP (addr, 0);
/* As documented, only consider extremely simple addresses. */
switch (GET_CODE (addr))
{
case REG:
gcc_assert (dwf_regno (addr) == cur_cfa->reg);
offset = -cur_cfa->offset;
break;
case PLUS:
gcc_assert (dwf_regno (XEXP (addr, 0)) == cur_cfa->reg);
offset = rtx_to_poly_int64 (XEXP (addr, 1)) - cur_cfa->offset;
break;
default:
gcc_unreachable ();
}
if (src == pc_rtx)
{
span = NULL;
sregno = DWARF_FRAME_RETURN_COLUMN;
}
else
{
span = targetm.dwarf_register_span (src);
sregno = dwf_regno (src);
}
/* ??? We'd like to use queue_reg_save, but we need to come up with
a different flushing heuristic for epilogues. */
if (!span)
reg_save (sregno, INVALID_REGNUM, offset);
else
{
/* We have a PARALLEL describing where the contents of SRC live.
Adjust the offset for each piece of the PARALLEL. */
poly_int64 span_offset = offset;
gcc_assert (GET_CODE (span) == PARALLEL);
const int par_len = XVECLEN (span, 0);
for (int par_index = 0; par_index < par_len; par_index++)
{
rtx elem = XVECEXP (span, 0, par_index);
sregno = dwf_regno (src);
reg_save (sregno, INVALID_REGNUM, span_offset);
span_offset += GET_MODE_SIZE (GET_MODE (elem));
}
}
}
/* A subroutine of dwarf2out_frame_debug, process a REG_CFA_REGISTER note. */
static void
dwarf2out_frame_debug_cfa_register (rtx set)
{
rtx src, dest;
unsigned sregno, dregno;
src = XEXP (set, 1);
dest = XEXP (set, 0);
record_reg_saved_in_reg (dest, src);
if (src == pc_rtx)
sregno = DWARF_FRAME_RETURN_COLUMN;
else
sregno = dwf_regno (src);
dregno = dwf_regno (dest);
/* ??? We'd like to use queue_reg_save, but we need to come up with
a different flushing heuristic for epilogues. */
reg_save (sregno, dregno, 0);
}
/* A subroutine of dwarf2out_frame_debug, process a REG_CFA_EXPRESSION note. */
static void
dwarf2out_frame_debug_cfa_expression (rtx set)
{
rtx src, dest, span;
dw_cfi_ref cfi = new_cfi ();
unsigned regno;
dest = SET_DEST (set);
src = SET_SRC (set);
gcc_assert (REG_P (src));
gcc_assert (MEM_P (dest));
span = targetm.dwarf_register_span (src);
gcc_assert (!span);
regno = dwf_regno (src);
cfi->dw_cfi_opc = DW_CFA_expression;
cfi->dw_cfi_oprnd1.dw_cfi_reg_num = regno;
cfi->dw_cfi_oprnd2.dw_cfi_loc
= mem_loc_descriptor (XEXP (dest, 0), get_address_mode (dest),
GET_MODE (dest), VAR_INIT_STATUS_INITIALIZED);
/* ??? We'd like to use queue_reg_save, were the interface different,
and, as above, we could manage flushing for epilogues. */
add_cfi (cfi);
update_row_reg_save (cur_row, regno, cfi);
}
/* A subroutine of dwarf2out_frame_debug, process a REG_CFA_VAL_EXPRESSION
note. */
static void
dwarf2out_frame_debug_cfa_val_expression (rtx set)
{
rtx dest = SET_DEST (set);
gcc_assert (REG_P (dest));
rtx span = targetm.dwarf_register_span (dest);
gcc_assert (!span);
rtx src = SET_SRC (set);
dw_cfi_ref cfi = new_cfi ();
cfi->dw_cfi_opc = DW_CFA_val_expression;
cfi->dw_cfi_oprnd1.dw_cfi_reg_num = dwf_regno (dest);
cfi->dw_cfi_oprnd2.dw_cfi_loc
= mem_loc_descriptor (src, GET_MODE (src),
GET_MODE (dest), VAR_INIT_STATUS_INITIALIZED);
add_cfi (cfi);
update_row_reg_save (cur_row, dwf_regno (dest), cfi);
}
/* A subroutine of dwarf2out_frame_debug, process a REG_CFA_RESTORE note. */
static void
dwarf2out_frame_debug_cfa_restore (rtx reg)
{
gcc_assert (REG_P (reg));
rtx span = targetm.dwarf_register_span (reg);
if (!span)
{
unsigned int regno = dwf_regno (reg);
add_cfi_restore (regno);
update_row_reg_save (cur_row, regno, NULL);
}
else
{
/* We have a PARALLEL describing where the contents of REG live.
Restore the register for each piece of the PARALLEL. */
gcc_assert (GET_CODE (span) == PARALLEL);
const int par_len = XVECLEN (span, 0);
for (int par_index = 0; par_index < par_len; par_index++)
{
reg = XVECEXP (span, 0, par_index);
gcc_assert (REG_P (reg));
unsigned int regno = dwf_regno (reg);
add_cfi_restore (regno);
update_row_reg_save (cur_row, regno, NULL);
}
}
}
/* A subroutine of dwarf2out_frame_debug, process a REG_CFA_WINDOW_SAVE.
??? Perhaps we should note in the CIE where windows are saved (instead
of assuming 0(cfa)) and what registers are in the window. */
static void
dwarf2out_frame_debug_cfa_window_save (void)
{
dw_cfi_ref cfi = new_cfi ();
cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
add_cfi (cfi);
cur_row->window_save = true;
}
/* A subroutine of dwarf2out_frame_debug, process a REG_CFA_TOGGLE_RA_MANGLE.
Note: DW_CFA_GNU_window_save dwarf opcode is reused for toggling RA mangle
state, this is a target specific operation on AArch64 and can only be used
on other targets if they don't use the window save operation otherwise. */
static void
dwarf2out_frame_debug_cfa_toggle_ra_mangle (void)
{
dw_cfi_ref cfi = new_cfi ();
cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
add_cfi (cfi);
cur_row->ra_mangled = !cur_row->ra_mangled;
}
/* Record call frame debugging information for an expression EXPR,
which either sets SP or FP (adjusting how we calculate the frame
address) or saves a register to the stack or another register.
LABEL indicates the address of EXPR.
This function encodes a state machine mapping rtxes to actions on
cfa, cfa_store, and cfa_temp.reg. We describe these rules so
users need not read the source code.
The High-Level Picture
Changes in the register we use to calculate the CFA: Currently we
assume that if you copy the CFA register into another register, we
should take the other one as the new CFA register; this seems to
work pretty well. If it's wrong for some target, it's simple
enough not to set RTX_FRAME_RELATED_P on the insn in question.
Changes in the register we use for saving registers to the stack:
This is usually SP, but not always. Again, we deduce that if you
copy SP into another register (and SP is not the CFA register),
then the new register is the one we will be using for register
saves. This also seems to work.
Register saves: There's not much guesswork about this one; if
RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
register save, and the register used to calculate the destination
had better be the one we think we're using for this purpose.
It's also assumed that a copy from a call-saved register to another
register is saving that register if RTX_FRAME_RELATED_P is set on
that instruction. If the copy is from a call-saved register to
the *same* register, that means that the register is now the same
value as in the caller.
Except: If the register being saved is the CFA register, and the
offset is nonzero, we are saving the CFA, so we assume we have to
use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
the intent is to save the value of SP from the previous frame.
In addition, if a register has previously been saved to a different
register,
Invariants / Summaries of Rules
cfa current rule for calculating the CFA. It usually
consists of a register and an offset. This is
actually stored in *cur_cfa, but abbreviated
for the purposes of this documentation.
cfa_store register used by prologue code to save things to the stack
cfa_store.offset is the offset from the value of
cfa_store.reg to the actual CFA
cfa_temp register holding an integral value. cfa_temp.offset
stores the value, which will be used to adjust the
stack pointer. cfa_temp is also used like cfa_store,
to track stores to the stack via fp or a temp reg.
Rules 1- 4: Setting a register's value to cfa.reg or an expression
with cfa.reg as the first operand changes the cfa.reg and its
cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
cfa_temp.offset.
Rules 6- 9: Set a non-cfa.reg register value to a constant or an
expression yielding a constant. This sets cfa_temp.reg
and cfa_temp.offset.
Rule 5: Create a new register cfa_store used to save items to the
stack.
Rules 10-14: Save a register to the stack. Define offset as the
difference of the original location and cfa_store's
location (or cfa_temp's location if cfa_temp is used).
Rules 16-20: If AND operation happens on sp in prologue, we assume
stack is realigned. We will use a group of DW_OP_XXX
expressions to represent the location of the stored
register instead of CFA+offset.
The Rules
"{a,b}" indicates a choice of a xor b.
"<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
Rule 1:
(set <reg1> <reg2>:cfa.reg)
effects: cfa.reg = <reg1>
cfa.offset unchanged
cfa_temp.reg = <reg1>
cfa_temp.offset = cfa.offset
Rule 2:
(set sp ({minus,plus,losum} {sp,fp}:cfa.reg
{<const_int>,<reg>:cfa_temp.reg}))
effects: cfa.reg = sp if fp used
cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
if cfa_store.reg==sp
Rule 3:
(set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
effects: cfa.reg = fp
cfa_offset += +/- <const_int>
Rule 4:
(set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
constraints: <reg1> != fp
<reg1> != sp
effects: cfa.reg = <reg1>
cfa_temp.reg = <reg1>
cfa_temp.offset = cfa.offset
Rule 5:
(set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
constraints: <reg1> != fp
<reg1> != sp
effects: cfa_store.reg = <reg1>
cfa_store.offset = cfa.offset - cfa_temp.offset
Rule 6:
(set <reg> <const_int>)
effects: cfa_temp.reg = <reg>
cfa_temp.offset = <const_int>
Rule 7:
(set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
effects: cfa_temp.reg = <reg1>
cfa_temp.offset |= <const_int>
Rule 8:
(set <reg> (high <exp>))
effects: none
Rule 9:
(set <reg> (lo_sum <exp> <const_int>))
effects: cfa_temp.reg = <reg>
cfa_temp.offset = <const_int>
Rule 10:
(set (mem ({pre,post}_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
effects: cfa_store.offset -= <const_int>
cfa.offset = cfa_store.offset if cfa.reg == sp
cfa.reg = sp
cfa.base_offset = -cfa_store.offset
Rule 11:
(set (mem ({pre_inc,pre_dec,post_dec} sp:cfa_store.reg)) <reg>)
effects: cfa_store.offset += -/+ mode_size(mem)
cfa.offset = cfa_store.offset if cfa.reg == sp
cfa.reg = sp
cfa.base_offset = -cfa_store.offset
Rule 12:
(set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
<reg2>)
effects: cfa.reg = <reg1>
cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
Rule 13:
(set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
effects: cfa.reg = <reg1>
cfa.base_offset = -{cfa_store,cfa_temp}.offset
Rule 14:
(set (mem (post_inc <reg1>:cfa_temp <const_int>)) <reg2>)
effects: cfa.reg = <reg1>
cfa.base_offset = -cfa_temp.offset
cfa_temp.offset -= mode_size(mem)
Rule 15:
(set <reg> {unspec, unspec_volatile})
effects: target-dependent
Rule 16:
(set sp (and: sp <const_int>))
constraints: cfa_store.reg == sp
effects: cfun->fde.stack_realign = 1
cfa_store.offset = 0
fde->drap_reg = cfa.reg if cfa.reg != sp and cfa.reg != fp
Rule 17:
(set (mem ({pre_inc, pre_dec} sp)) (mem (plus (cfa.reg) (const_int))))
effects: cfa_store.offset += -/+ mode_size(mem)
Rule 18:
(set (mem ({pre_inc, pre_dec} sp)) fp)
constraints: fde->stack_realign == 1
effects: cfa_store.offset = 0
cfa.reg != HARD_FRAME_POINTER_REGNUM
Rule 19:
(set (mem ({pre_inc, pre_dec} sp)) cfa.reg)
constraints: fde->stack_realign == 1
&& cfa.offset == 0
&& cfa.indirect == 0
&& cfa.reg != HARD_FRAME_POINTER_REGNUM
effects: Use DW_CFA_def_cfa_expression to define cfa
cfa.reg == fde->drap_reg */
static void
dwarf2out_frame_debug_expr (rtx expr)
{
rtx src, dest, span;
poly_int64 offset;
dw_fde_ref fde;
/* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
the PARALLEL independently. The first element is always processed if
it is a SET. This is for backward compatibility. Other elements
are processed only if they are SETs and the RTX_FRAME_RELATED_P
flag is set in them. */
if (GET_CODE (expr) == PARALLEL || GET_CODE (expr) == SEQUENCE)
{
int par_index;
int limit = XVECLEN (expr, 0);
rtx elem;
/* PARALLELs have strict read-modify-write semantics, so we
ought to evaluate every rvalue before changing any lvalue.
It's cumbersome to do that in general, but there's an
easy approximation that is enough for all current users:
handle register saves before register assignments. */
if (GET_CODE (expr) == PARALLEL)
for (par_index = 0; par_index < limit; par_index++)
{
elem = XVECEXP (expr, 0, par_index);
if (GET_CODE (elem) == SET
&& MEM_P (SET_DEST (elem))
&& (RTX_FRAME_RELATED_P (elem) || par_index == 0))
dwarf2out_frame_debug_expr (elem);
}
for (par_index = 0; par_index < limit; par_index++)
{
elem = XVECEXP (expr, 0, par_index);
if (GET_CODE (elem) == SET
&& (!MEM_P (SET_DEST (elem)) || GET_CODE (expr) == SEQUENCE)
&& (RTX_FRAME_RELATED_P (elem) || par_index == 0))
dwarf2out_frame_debug_expr (elem);
}
return;
}
gcc_assert (GET_CODE (expr) == SET);
src = SET_SRC (expr);
dest = SET_DEST (expr);
if (REG_P (src))
{
rtx rsi = reg_saved_in (src);
if (rsi)
src = rsi;
}
fde = cfun->fde;
switch (GET_CODE (dest))
{
case REG:
switch (GET_CODE (src))
{
/* Setting FP from SP. */
case REG:
if (cur_cfa->reg == dwf_regno (src))
{
/* Rule 1 */
/* Update the CFA rule wrt SP or FP. Make sure src is
relative to the current CFA register.
We used to require that dest be either SP or FP, but the
ARM copies SP to a temporary register, and from there to
FP. So we just rely on the backends to only set
RTX_FRAME_RELATED_P on appropriate insns. */
cur_cfa->reg = dwf_regno (dest);
cur_trace->cfa_temp.reg = cur_cfa->reg;
cur_trace->cfa_temp.offset = cur_cfa->offset;
}
else
{
/* Saving a register in a register. */
gcc_assert (!fixed_regs [REGNO (dest)]
/* For the SPARC and its register window. */
|| (dwf_regno (src) == DWARF_FRAME_RETURN_COLUMN));
/* After stack is aligned, we can only save SP in FP
if drap register is used. In this case, we have
to restore stack pointer with the CFA value and we
don't generate this DWARF information. */
if (fde
&& fde->stack_realign
&& REGNO (src) == STACK_POINTER_REGNUM)
{
gcc_assert (REGNO (dest) == HARD_FRAME_POINTER_REGNUM
&& fde->drap_reg != INVALID_REGNUM
&& cur_cfa->reg != dwf_regno (src)
&& fde->rule18);
fde->rule18 = 0;
/* The save of hard frame pointer has been deferred
until this point when Rule 18 applied. Emit it now. */
queue_reg_save (dest, NULL_RTX, 0);
/* And as the instruction modifies the hard frame pointer,
flush the queue as well. */
dwarf2out_flush_queued_reg_saves ();
}
else
queue_reg_save (src, dest, 0);
}
break;
case PLUS:
case MINUS:
case LO_SUM:
if (dest == stack_pointer_rtx)
{
/* Rule 2 */
/* Adjusting SP. */
if (REG_P (XEXP (src, 1)))
{
gcc_assert (dwf_regno (XEXP (src, 1))
== cur_trace->cfa_temp.reg);
offset = cur_trace->cfa_temp.offset;
}
else if (!poly_int_rtx_p (XEXP (src, 1), &offset))
gcc_unreachable ();
if (XEXP (src, 0) == hard_frame_pointer_rtx)
{
/* Restoring SP from FP in the epilogue. */
gcc_assert (cur_cfa->reg == dw_frame_pointer_regnum);
cur_cfa->reg = dw_stack_pointer_regnum;
}
else if (GET_CODE (src) == LO_SUM)
/* Assume we've set the source reg of the LO_SUM from sp. */
;
else
gcc_assert (XEXP (src, 0) == stack_pointer_rtx);
if (GET_CODE (src) != MINUS)
offset = -offset;
if (cur_cfa->reg == dw_stack_pointer_regnum)
cur_cfa->offset += offset;
if (cur_trace->cfa_store.reg == dw_stack_pointer_regnum)
cur_trace->cfa_store.offset += offset;
}
else if (dest == hard_frame_pointer_rtx)
{
/* Rule 3 */
/* Either setting the FP from an offset of the SP,
or adjusting the FP */
gcc_assert (frame_pointer_needed);
gcc_assert (REG_P (XEXP (src, 0))
&& dwf_regno (XEXP (src, 0)) == cur_cfa->reg);
offset = rtx_to_poly_int64 (XEXP (src, 1));
if (GET_CODE (src) != MINUS)
offset = -offset;
cur_cfa->offset += offset;
cur_cfa->reg = dw_frame_pointer_regnum;
}
else
{
gcc_assert (GET_CODE (src) != MINUS);
/* Rule 4 */
if (REG_P (XEXP (src, 0))
&& dwf_regno (XEXP (src, 0)) == cur_cfa->reg
&& poly_int_rtx_p (XEXP (src, 1), &offset))
{
/* Setting a temporary CFA register that will be copied
into the FP later on. */
offset = -offset;
cur_cfa->offset += offset;
cur_cfa->reg = dwf_regno (dest);
/* Or used to save regs to the stack. */
cur_trace->cfa_temp.reg = cur_cfa->reg;
cur_trace->cfa_temp.offset = cur_cfa->offset;
}
/* Rule 5 */
else if (REG_P (XEXP (src, 0))
&& dwf_regno (XEXP (src, 0)) == cur_trace->cfa_temp.reg
&& XEXP (src, 1) == stack_pointer_rtx)
{
/* Setting a scratch register that we will use instead
of SP for saving registers to the stack. */
gcc_assert (cur_cfa->reg == dw_stack_pointer_regnum);
cur_trace->cfa_store.reg = dwf_regno (dest);
cur_trace->cfa_store.offset
= cur_cfa->offset - cur_trace->cfa_temp.offset;
}
/* Rule 9 */
else if (GET_CODE (src) == LO_SUM
&& poly_int_rtx_p (XEXP (src, 1),
&cur_trace->cfa_temp.offset))
cur_trace->cfa_temp.reg = dwf_regno (dest);
else
gcc_unreachable ();
}
break;
/* Rule 6 */
case CONST_INT:
case CONST_POLY_INT:
cur_trace->cfa_temp.reg = dwf_regno (dest);
cur_trace->cfa_temp.offset = rtx_to_poly_int64 (src);
break;
/* Rule 7 */
case IOR:
gcc_assert (REG_P (XEXP (src, 0))
&& dwf_regno (XEXP (src, 0)) == cur_trace->cfa_temp.reg
&& CONST_INT_P (XEXP (src, 1)));
cur_trace->cfa_temp.reg = dwf_regno (dest);
if (!can_ior_p (cur_trace->cfa_temp.offset, INTVAL (XEXP (src, 1)),
&cur_trace->cfa_temp.offset))
/* The target shouldn't generate this kind of CFI note if we
can't represent it. */
gcc_unreachable ();
break;
/* Skip over HIGH, assuming it will be followed by a LO_SUM,
which will fill in all of the bits. */
/* Rule 8 */
case HIGH:
break;
/* Rule 15 */
case UNSPEC:
case UNSPEC_VOLATILE:
/* All unspecs should be represented by REG_CFA_* notes. */
gcc_unreachable ();
return;
/* Rule 16 */
case AND:
/* If this AND operation happens on stack pointer in prologue,
we assume the stack is realigned and we extract the
alignment. */
if (fde && XEXP (src, 0) == stack_pointer_rtx)
{
/* We interpret reg_save differently with stack_realign set.
Thus we must flush whatever we have queued first. */
dwarf2out_flush_queued_reg_saves ();
gcc_assert (cur_trace->cfa_store.reg
== dwf_regno (XEXP (src, 0)));
fde->stack_realign = 1;
fde->stack_realignment = INTVAL (XEXP (src, 1));
cur_trace->cfa_store.offset = 0;
if (cur_cfa->reg != dw_stack_pointer_regnum
&& cur_cfa->reg != dw_frame_pointer_regnum)
fde->drap_reg = cur_cfa->reg;
}
return;
default:
gcc_unreachable ();
}
break;
case MEM:
/* Saving a register to the stack. Make sure dest is relative to the
CFA register. */
switch (GET_CODE (XEXP (dest, 0)))
{
/* Rule 10 */
/* With a push. */
case PRE_MODIFY:
case POST_MODIFY:
/* We can't handle variable size modifications. */
offset = -rtx_to_poly_int64 (XEXP (XEXP (XEXP (dest, 0), 1), 1));
gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
&& cur_trace->cfa_store.reg == dw_stack_pointer_regnum);
cur_trace->cfa_store.offset += offset;
if (cur_cfa->reg == dw_stack_pointer_regnum)
cur_cfa->offset = cur_trace->cfa_store.offset;
if (GET_CODE (XEXP (dest, 0)) == POST_MODIFY)
offset -= cur_trace->cfa_store.offset;
else
offset = -cur_trace->cfa_store.offset;
break;
/* Rule 11 */
case PRE_INC:
case PRE_DEC:
case POST_DEC:
offset = GET_MODE_SIZE (GET_MODE (dest));
if (GET_CODE (XEXP (dest, 0)) == PRE_INC)
offset = -offset;
gcc_assert ((REGNO (XEXP (XEXP (dest, 0), 0))
== STACK_POINTER_REGNUM)
&& cur_trace->cfa_store.reg == dw_stack_pointer_regnum);
cur_trace->cfa_store.offset += offset;
/* Rule 18: If stack is aligned, we will use FP as a
reference to represent the address of the stored
regiser. */
if (fde
&& fde->stack_realign
&& REG_P (src)
&& REGNO (src) == HARD_FRAME_POINTER_REGNUM)
{
gcc_assert (cur_cfa->reg != dw_frame_pointer_regnum);
cur_trace->cfa_store.offset = 0;
fde->rule18 = 1;
}
if (cur_cfa->reg == dw_stack_pointer_regnum)
cur_cfa->offset = cur_trace->cfa_store.offset;
if (GET_CODE (XEXP (dest, 0)) == POST_DEC)
offset += -cur_trace->cfa_store.offset;
else
offset = -cur_trace->cfa_store.offset;
break;
/* Rule 12 */
/* With an offset. */
case PLUS:
case MINUS:
case LO_SUM:
{
unsigned int regno;
gcc_assert (REG_P (XEXP (XEXP (dest, 0), 0)));
offset = rtx_to_poly_int64 (XEXP (XEXP (dest, 0), 1));
if (GET_CODE (XEXP (dest, 0)) == MINUS)
offset = -offset;
regno = dwf_regno (XEXP (XEXP (dest, 0), 0));
if (cur_cfa->reg == regno)
offset -= cur_cfa->offset;
else if (cur_trace->cfa_store.reg == regno)
offset -= cur_trace->cfa_store.offset;
else
{
gcc_assert (cur_trace->cfa_temp.reg == regno);
offset -= cur_trace->cfa_temp.offset;
}
}
break;
/* Rule 13 */
/* Without an offset. */
case REG:
{
unsigned int regno = dwf_regno (XEXP (dest, 0));
if (cur_cfa->reg == regno)
offset = -cur_cfa->offset;
else if (cur_trace->cfa_store.reg == regno)
offset = -cur_trace->cfa_store.offset;
else
{
gcc_assert (cur_trace->cfa_temp.reg == regno);
offset = -cur_trace->cfa_temp.offset;
}
}
break;
/* Rule 14 */
case POST_INC:
gcc_assert (cur_trace->cfa_temp.reg
== dwf_regno (XEXP (XEXP (dest, 0), 0)));
offset = -cur_trace->cfa_temp.offset;
cur_trace->cfa_temp.offset -= GET_MODE_SIZE (GET_MODE (dest));
break;
default:
gcc_unreachable ();
}
/* Rule 17 */
/* If the source operand of this MEM operation is a memory,
we only care how much stack grew. */
if (MEM_P (src))
break;
if (REG_P (src)
&& REGNO (src) != STACK_POINTER_REGNUM
&& REGNO (src) != HARD_FRAME_POINTER_REGNUM
&& dwf_regno (src) == cur_cfa->reg)
{
/* We're storing the current CFA reg into the stack. */
if (known_eq (cur_cfa->offset, 0))
{
/* Rule 19 */
/* If stack is aligned, putting CFA reg into stack means
we can no longer use reg + offset to represent CFA.
Here we use DW_CFA_def_cfa_expression instead. The
result of this expression equals to the original CFA
value. */
if (fde
&& fde->stack_realign
&& cur_cfa->indirect == 0
&& cur_cfa->reg != dw_frame_pointer_regnum)
{
gcc_assert (fde->drap_reg == cur_cfa->reg);
cur_cfa->indirect = 1;
cur_cfa->reg = dw_frame_pointer_regnum;
cur_cfa->base_offset = offset;
cur_cfa->offset = 0;
fde->drap_reg_saved = 1;
break;
}
/* If the source register is exactly the CFA, assume
we're saving SP like any other register; this happens
on the ARM. */
queue_reg_save (stack_pointer_rtx, NULL_RTX, offset);
break;
}
else
{
/* Otherwise, we'll need to look in the stack to
calculate the CFA. */
rtx x = XEXP (dest, 0);
if (!REG_P (x))
x = XEXP (x, 0);
gcc_assert (REG_P (x));
cur_cfa->reg = dwf_regno (x);
cur_cfa->base_offset = offset;
cur_cfa->indirect = 1;
break;
}
}
if (REG_P (src))
span = targetm.dwarf_register_span (src);
else
span = NULL;
if (!span)
{
if (fde->rule18)
/* Just verify the hard frame pointer save when doing dynamic
realignment uses expected offset. The actual queue_reg_save
needs to be deferred until the instruction that sets
hard frame pointer to stack pointer, see PR99334 for
details. */
gcc_assert (known_eq (offset, 0));
else
queue_reg_save (src, NULL_RTX, offset);
}
else
{
/* We have a PARALLEL describing where the contents of SRC live.
Queue register saves for each piece of the PARALLEL. */
poly_int64 span_offset = offset;
gcc_assert (GET_CODE (span) == PARALLEL);
const int par_len = XVECLEN (span, 0);
for (int par_index = 0; par_index < par_len; par_index++)
{
rtx elem = XVECEXP (span, 0, par_index);
queue_reg_save (elem, NULL_RTX, span_offset);
span_offset += GET_MODE_SIZE (GET_MODE (elem));
}
}
break;
default:
gcc_unreachable ();
}
}
/* Record call frame debugging information for INSN, which either sets
SP or FP (adjusting how we calculate the frame address) or saves a
register to the stack. */
static void
dwarf2out_frame_debug (rtx_insn *insn)
{
rtx note, n, pat;
bool handled_one = false;
for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
switch (REG_NOTE_KIND (note))
{
case REG_FRAME_RELATED_EXPR:
pat = XEXP (note, 0);
goto do_frame_expr;
case REG_CFA_DEF_CFA:
dwarf2out_frame_debug_def_cfa (XEXP (note, 0));
handled_one = true;
break;
case REG_CFA_ADJUST_CFA:
n = XEXP (note, 0);
if (n == NULL)
{
n = PATTERN (insn);
if (GET_CODE (n) == PARALLEL)
n = XVECEXP (n, 0, 0);
}
dwarf2out_frame_debug_adjust_cfa (n);
handled_one = true;
break;
case REG_CFA_OFFSET:
n = XEXP (note, 0);
if (n == NULL)
n = single_set (insn);
dwarf2out_frame_debug_cfa_offset (n);
handled_one = true;
break;
case REG_CFA_REGISTER:
n = XEXP (note, 0);
if (n == NULL)
{
n = PATTERN (insn);
if (GET_CODE (n) == PARALLEL)
n = XVECEXP (n, 0, 0);
}
dwarf2out_frame_debug_cfa_register (n);
handled_one = true;
break;
case REG_CFA_EXPRESSION:
case REG_CFA_VAL_EXPRESSION:
n = XEXP (note, 0);
if (n == NULL)
n = single_set (insn);
if (REG_NOTE_KIND (note) == REG_CFA_EXPRESSION)
dwarf2out_frame_debug_cfa_expression (n);
else
dwarf2out_frame_debug_cfa_val_expression (n);
handled_one = true;
break;
case REG_CFA_RESTORE:
n = XEXP (note, 0);
if (n == NULL)
{
n = PATTERN (insn);
if (GET_CODE (n) == PARALLEL)
n = XVECEXP (n, 0, 0);
n = XEXP (n, 0);
}
dwarf2out_frame_debug_cfa_restore (n);
handled_one = true;
break;
case REG_CFA_SET_VDRAP:
n = XEXP (note, 0);
if (REG_P (n))
{
dw_fde_ref fde = cfun->fde;
if (fde)
{
gcc_assert (fde->vdrap_reg == INVALID_REGNUM);
if (REG_P (n))
fde->vdrap_reg = dwf_regno (n);
}
}
handled_one = true;
break;
case REG_CFA_TOGGLE_RA_MANGLE:
dwarf2out_frame_debug_cfa_toggle_ra_mangle ();
handled_one = true;
break;
case REG_CFA_WINDOW_SAVE:
dwarf2out_frame_debug_cfa_window_save ();
handled_one = true;
break;
case REG_CFA_FLUSH_QUEUE:
/* The actual flush happens elsewhere. */
handled_one = true;
break;
default:
break;
}
if (!handled_one)
{
pat = PATTERN (insn);
do_frame_expr:
dwarf2out_frame_debug_expr (pat);
/* Check again. A parallel can save and update the same register.
We could probably check just once, here, but this is safer than
removing the check at the start of the function. */
if (clobbers_queued_reg_save (pat))
dwarf2out_flush_queued_reg_saves ();
}
}
/* Emit CFI info to change the state from OLD_ROW to NEW_ROW. */
static void
change_cfi_row (dw_cfi_row *old_row, dw_cfi_row *new_row)
{
size_t i, n_old, n_new, n_max;
dw_cfi_ref cfi;
if (new_row->cfa_cfi && !cfi_equal_p (old_row->cfa_cfi, new_row->cfa_cfi))
add_cfi (new_row->cfa_cfi);
else
{
cfi = def_cfa_0 (&old_row->cfa, &new_row->cfa);
if (cfi)
add_cfi (cfi);
}
n_old = vec_safe_length (old_row->reg_save);
n_new = vec_safe_length (new_row->reg_save);
n_max = MAX (n_old, n_new);
for (i = 0; i < n_max; ++i)
{
dw_cfi_ref r_old = NULL, r_new = NULL;
if (i < n_old)
r_old = (*old_row->reg_save)[i];
if (i < n_new)
r_new = (*new_row->reg_save)[i];
if (r_old == r_new)
;
else if (r_new == NULL)
add_cfi_restore (i);
else if (!cfi_equal_p (r_old, r_new))
add_cfi (r_new);
}
if (!old_row->window_save && new_row->window_save)
{
dw_cfi_ref cfi = new_cfi ();
gcc_assert (!old_row->ra_mangled && !new_row->ra_mangled);
cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
add_cfi (cfi);
}
if (old_row->ra_mangled != new_row->ra_mangled)
{
dw_cfi_ref cfi = new_cfi ();
gcc_assert (!old_row->window_save && !new_row->window_save);
/* DW_CFA_GNU_window_save is reused for toggling RA mangle state. */
cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
add_cfi (cfi);
}
}
/* Examine CFI and return true if a cfi label and set_loc is needed
beforehand. Even when generating CFI assembler instructions, we
still have to add the cfi to the list so that lookup_cfa_1 works
later on. When -g2 and above we even need to force emitting of
CFI labels and add to list a DW_CFA_set_loc for convert_cfa_to_fb_loc_list
purposes. If we're generating DWARF3 output we use DW_OP_call_frame_cfa
and so don't use convert_cfa_to_fb_loc_list. */
static bool
cfi_label_required_p (dw_cfi_ref cfi)
{
if (!dwarf2out_do_cfi_asm ())
return true;
if (dwarf_version == 2
&& debug_info_level > DINFO_LEVEL_TERSE
&& dwarf_debuginfo_p ())
{
switch (cfi->dw_cfi_opc)
{
case DW_CFA_def_cfa_offset:
case DW_CFA_def_cfa_offset_sf:
case DW_CFA_def_cfa_register:
case DW_CFA_def_cfa:
case DW_CFA_def_cfa_sf:
case DW_CFA_def_cfa_expression:
case DW_CFA_restore_state:
return true;
default:
return false;
}
}
return false;
}
/* Walk the function, looking for NOTE_INSN_CFI notes. Add the CFIs to the
function's FDE, adding CFI labels and set_loc/advance_loc opcodes as
necessary. */
static void
add_cfis_to_fde (void)
{
dw_fde_ref fde = cfun->fde;
rtx_insn *insn, *next;
for (insn = get_insns (); insn; insn = next)
{
next = NEXT_INSN (insn);
if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_SWITCH_TEXT_SECTIONS)
fde->dw_fde_switch_cfi_index = vec_safe_length (fde->dw_fde_cfi);
if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_CFI)
{
bool required = cfi_label_required_p (NOTE_CFI (insn));
while (next)
if (NOTE_P (next) && NOTE_KIND (next) == NOTE_INSN_CFI)
{
required |= cfi_label_required_p (NOTE_CFI (next));
next = NEXT_INSN (next);
}
else if (active_insn_p (next)
|| (NOTE_P (next) && (NOTE_KIND (next)
== NOTE_INSN_SWITCH_TEXT_SECTIONS)))
break;
else
next = NEXT_INSN (next);
if (required)
{
int num = dwarf2out_cfi_label_num;
const char *label = dwarf2out_cfi_label ();
dw_cfi_ref xcfi;
/* Set the location counter to the new label. */
xcfi = new_cfi ();
xcfi->dw_cfi_opc = DW_CFA_advance_loc4;
xcfi->dw_cfi_oprnd1.dw_cfi_addr = label;
vec_safe_push (fde->dw_fde_cfi, xcfi);
rtx_note *tmp = emit_note_before (NOTE_INSN_CFI_LABEL, insn);
NOTE_LABEL_NUMBER (tmp) = num;
}
do
{
if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_CFI)
vec_safe_push (fde->dw_fde_cfi, NOTE_CFI (insn));
insn = NEXT_INSN (insn);
}
while (insn != next);
}
}
}
static void dump_cfi_row (FILE *f, dw_cfi_row *row);
/* If LABEL is the start of a trace, then initialize the state of that
trace from CUR_TRACE and CUR_ROW. */
static void
maybe_record_trace_start (rtx_insn *start, rtx_insn *origin)
{
dw_trace_info *ti;
ti = get_trace_info (start);
gcc_assert (ti != NULL);
if (dump_file)
{
fprintf (dump_file, " saw edge from trace %u to %u (via %s %d)\n",
cur_trace->id, ti->id,
(origin ? rtx_name[(int) GET_CODE (origin)] : "fallthru"),
(origin ? INSN_UID (origin) : 0));
}
poly_int64 args_size = cur_trace->end_true_args_size;
if (ti->beg_row == NULL)
{
/* This is the first time we've encountered this trace. Propagate
state across the edge and push the trace onto the work list. */
ti->beg_row = copy_cfi_row (cur_row);
ti->beg_true_args_size = args_size;
ti->cfa_store = cur_trace->cfa_store;
ti->cfa_temp = cur_trace->cfa_temp;
ti->regs_saved_in_regs = cur_trace->regs_saved_in_regs.copy ();
trace_work_list.safe_push (ti);
if (dump_file)
fprintf (dump_file, "\tpush trace %u to worklist\n", ti->id);
}
else
{
/* We ought to have the same state incoming to a given trace no
matter how we arrive at the trace. Anything else means we've
got some kind of optimization error. */
#if CHECKING_P
if (!cfi_row_equal_p (cur_row, ti->beg_row))
{
if (dump_file)
{
fprintf (dump_file, "Inconsistent CFI state!\n");
fprintf (dump_file, "SHOULD have:\n");
dump_cfi_row (dump_file, ti->beg_row);
fprintf (dump_file, "DO have:\n");
dump_cfi_row (dump_file, cur_row);
}
gcc_unreachable ();
}
#endif
/* The args_size is allowed to conflict if it isn't actually used. */
if (maybe_ne (ti->beg_true_args_size, args_size))
ti->args_size_undefined = true;
}
}
/* Similarly, but handle the args_size and CFA reset across EH
and non-local goto edges. */
static void
maybe_record_trace_start_abnormal (rtx_insn *start, rtx_insn *origin)
{
poly_int64 save_args_size, delta;
dw_cfa_location save_cfa;
save_args_size = cur_trace->end_true_args_size;
if (known_eq (save_args_size, 0))
{
maybe_record_trace_start (start, origin);
return;
}
delta = -save_args_size;
cur_trace->end_true_args_size = 0;
save_cfa = cur_row->cfa;
if (cur_row->cfa.reg == dw_stack_pointer_regnum)
{
/* Convert a change in args_size (always a positive in the
direction of stack growth) to a change in stack pointer. */
if (!STACK_GROWS_DOWNWARD)
delta = -delta;
cur_row->cfa.offset += delta;
}
maybe_record_trace_start (start, origin);
cur_trace->end_true_args_size = save_args_size;
cur_row->cfa = save_cfa;
}
/* Propagate CUR_TRACE state to the destinations implied by INSN. */
/* ??? Sadly, this is in large part a duplicate of make_edges. */
static void
create_trace_edges (rtx_insn *insn)
{
rtx tmp;
int i, n;
if (JUMP_P (insn))
{
rtx_jump_table_data *table;
if (find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
return;
if (tablejump_p (insn, NULL, &table))
{
rtvec vec = table->get_labels ();
n = GET_NUM_ELEM (vec);
for (i = 0; i < n; ++i)
{
rtx_insn *lab = as_a <rtx_insn *> (XEXP (RTVEC_ELT (vec, i), 0));
maybe_record_trace_start (lab, insn);
}
/* Handle casesi dispatch insns. */
if ((tmp = tablejump_casesi_pattern (insn)) != NULL_RTX)
{
rtx_insn * lab = label_ref_label (XEXP (SET_SRC (tmp), 2));
maybe_record_trace_start (lab, insn);
}
}
else if (computed_jump_p (insn))
{
rtx_insn *temp;
unsigned int i;
FOR_EACH_VEC_SAFE_ELT (forced_labels, i, temp)
maybe_record_trace_start (temp, insn);
}
else if (returnjump_p (insn))
;
else if ((tmp = extract_asm_operands (PATTERN (insn))) != NULL)
{
n = ASM_OPERANDS_LABEL_LENGTH (tmp);
for (i = 0; i < n; ++i)
{
rtx_insn *lab =
as_a <rtx_insn *> (XEXP (ASM_OPERANDS_LABEL (tmp, i), 0));
maybe_record_trace_start (lab, insn);
}
}
else
{
rtx_insn *lab = JUMP_LABEL_AS_INSN (insn);
gcc_assert (lab != NULL);
maybe_record_trace_start (lab, insn);
}
}
else if (CALL_P (insn))
{
/* Sibling calls don't have edges inside this function. */
if (SIBLING_CALL_P (insn))
return;
/* Process non-local goto edges. */
if (can_nonlocal_goto (insn))
for (rtx_insn_list *lab = nonlocal_goto_handler_labels;
lab;
lab = lab->next ())
maybe_record_trace_start_abnormal (lab->insn (), insn);
}
else if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn)))
{
int i, n = seq->len ();
for (i = 0; i < n; ++i)
create_trace_edges (seq->insn (i));
return;
}
/* Process EH edges. */
if (CALL_P (insn) || cfun->can_throw_non_call_exceptions)
{
eh_landing_pad lp = get_eh_landing_pad_from_rtx (insn);
if (lp)
maybe_record_trace_start_abnormal (lp->landing_pad, insn);
}
}
/* A subroutine of scan_trace. Do what needs to be done "after" INSN. */
static void
scan_insn_after (rtx_insn *insn)
{
if (RTX_FRAME_RELATED_P (insn))
dwarf2out_frame_debug (insn);
notice_args_size (insn);
}
/* Scan the trace beginning at INSN and create the CFI notes for the
instructions therein. */
static void
scan_trace (dw_trace_info *trace, bool entry)
{
rtx_insn *prev, *insn = trace->head;
dw_cfa_location this_cfa;
if (dump_file)
fprintf (dump_file, "Processing trace %u : start at %s %d\n",
trace->id, rtx_name[(int) GET_CODE (insn)],
INSN_UID (insn));
trace->end_row = copy_cfi_row (trace->beg_row);
trace->end_true_args_size = trace->beg_true_args_size;
cur_trace = trace;
cur_row = trace->end_row;
this_cfa = cur_row->cfa;
cur_cfa = &this_cfa;
/* If the current function starts with a non-standard incoming frame
sp offset, emit a note before the first instruction. */
if (entry
&& DEFAULT_INCOMING_FRAME_SP_OFFSET != INCOMING_FRAME_SP_OFFSET)
{
add_cfi_insn = insn;
gcc_assert (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_DELETED);
this_cfa.offset = INCOMING_FRAME_SP_OFFSET;
def_cfa_1 (&this_cfa);
}
for (prev = insn, insn = NEXT_INSN (insn);
insn;
prev = insn, insn = NEXT_INSN (insn))
{
rtx_insn *control;
/* Do everything that happens "before" the insn. */
add_cfi_insn = prev;
/* Notice the end of a trace. */
if (BARRIER_P (insn))
{
/* Don't bother saving the unneeded queued registers at all. */
queued_reg_saves.truncate (0);
break;
}
if (save_point_p (insn))
{
/* Propagate across fallthru edges. */
dwarf2out_flush_queued_reg_saves ();
maybe_record_trace_start (insn, NULL);
break;
}
if (DEBUG_INSN_P (insn) || !inside_basic_block_p (insn))
continue;
/* Handle all changes to the row state. Sequences require special
handling for the positioning of the notes. */
if (rtx_sequence *pat = dyn_cast <rtx_sequence *> (PATTERN (insn)))
{
rtx_insn *elt;
int i, n = pat->len ();
control = pat->insn (0);
if (can_throw_internal (control))
notice_eh_throw (control);
dwarf2out_flush_queued_reg_saves ();
if (JUMP_P (control) && INSN_ANNULLED_BRANCH_P (control))
{
/* ??? Hopefully multiple delay slots are not annulled. */
gcc_assert (n == 2);
gcc_assert (!RTX_FRAME_RELATED_P (control));
gcc_assert (!find_reg_note (control, REG_ARGS_SIZE, NULL));
elt = pat->insn (1);
if (INSN_FROM_TARGET_P (elt))
{
cfi_vec save_row_reg_save;
/* If ELT is an instruction from target of an annulled
branch, the effects are for the target only and so
the args_size and CFA along the current path
shouldn't change. */
add_cfi_insn = NULL;
poly_int64 restore_args_size = cur_trace->end_true_args_size;
cur_cfa = &cur_row->cfa;
save_row_reg_save = vec_safe_copy (cur_row->reg_save);
scan_insn_after (elt);
/* ??? Should we instead save the entire row state? */
gcc_assert (!queued_reg_saves.length ());
create_trace_edges (control);
cur_trace->end_true_args_size = restore_args_size;
cur_row->cfa = this_cfa;
cur_row->reg_save = save_row_reg_save;
cur_cfa = &this_cfa;
}
else
{
/* If ELT is a annulled branch-taken instruction (i.e.
executed only when branch is not taken), the args_size
and CFA should not change through the jump. */
create_trace_edges (control);
/* Update and continue with the trace. */
add_cfi_insn = insn;
scan_insn_after (elt);
def_cfa_1 (&this_cfa);
}
continue;
}
/* The insns in the delay slot should all be considered to happen
"before" a call insn. Consider a call with a stack pointer
adjustment in the delay slot. The backtrace from the callee
should include the sp adjustment. Unfortunately, that leaves
us with an unavoidable unwinding error exactly at the call insn
itself. For jump insns we'd prefer to avoid this error by
placing the notes after the sequence. */
if (JUMP_P (control))
add_cfi_insn = insn;
for (i = 1; i < n; ++i)
{
elt = pat->insn (i);
scan_insn_after (elt);
}
/* Make sure any register saves are visible at the jump target. */
dwarf2out_flush_queued_reg_saves ();
any_cfis_emitted = false;
/* However, if there is some adjustment on the call itself, e.g.
a call_pop, that action should be considered to happen after
the call returns. */
add_cfi_insn = insn;
scan_insn_after (control);
}
else
{
/* Flush data before calls and jumps, and of course if necessary. */
if (can_throw_internal (insn))
{
notice_eh_throw (insn);
dwarf2out_flush_queued_reg_saves ();
}
else if (!NONJUMP_INSN_P (insn)
|| clobbers_queued_reg_save (insn)
|| find_reg_note (insn, REG_CFA_FLUSH_QUEUE, NULL))
dwarf2out_flush_queued_reg_saves ();
any_cfis_emitted = false;
add_cfi_insn = insn;
scan_insn_after (insn);
control = insn;
}
/* Between frame-related-p and args_size we might have otherwise
emitted two cfa adjustments. Do it now. */
def_cfa_1 (&this_cfa);
/* Minimize the number of advances by emitting the entire queue
once anything is emitted. */
if (any_cfis_emitted
|| find_reg_note (insn, REG_CFA_FLUSH_QUEUE, NULL))
dwarf2out_flush_queued_reg_saves ();
/* Note that a test for control_flow_insn_p does exactly the
same tests as are done to actually create the edges. So
always call the routine and let it not create edges for
non-control-flow insns. */
create_trace_edges (control);
}
gcc_assert (!cfun->fde || !cfun->fde->rule18);
add_cfi_insn = NULL;
cur_row = NULL;
cur_trace = NULL;
cur_cfa = NULL;
}
/* Scan the function and create the initial set of CFI notes. */
static void
create_cfi_notes (void)
{
dw_trace_info *ti;
gcc_checking_assert (!queued_reg_saves.exists ());
gcc_checking_assert (!trace_work_list.exists ());
/* Always begin at the entry trace. */
ti = &trace_info[0];
scan_trace (ti, true);
while (!trace_work_list.is_empty ())
{
ti = trace_work_list.pop ();
scan_trace (ti, false);
}
queued_reg_saves.release ();
trace_work_list.release ();
}
/* Return the insn before the first NOTE_INSN_CFI after START. */
static rtx_insn *
before_next_cfi_note (rtx_insn *start)
{
rtx_insn *prev = start;
while (start)
{
if (NOTE_P (start) && NOTE_KIND (start) == NOTE_INSN_CFI)
return prev;
prev = start;
start = NEXT_INSN (start);
}
gcc_unreachable ();
}
/* Insert CFI notes between traces to properly change state between them. */
static void
connect_traces (void)
{
unsigned i, n;
dw_trace_info *prev_ti, *ti;
/* ??? Ideally, we should have both queued and processed every trace.
However the current representation of constant pools on various targets
is indistinguishable from unreachable code. Assume for the moment that
we can simply skip over such traces. */
/* ??? Consider creating a DATA_INSN rtx code to indicate that
these are not "real" instructions, and should not be considered.
This could be generically useful for tablejump data as well. */
/* Remove all unprocessed traces from the list. */
unsigned ix, ix2;
VEC_ORDERED_REMOVE_IF_FROM_TO (trace_info, ix, ix2, ti, 1,
trace_info.length (), ti->beg_row == NULL);
FOR_EACH_VEC_ELT (trace_info, ix, ti)
gcc_assert (ti->end_row != NULL);
/* Work from the end back to the beginning. This lets us easily insert
remember/restore_state notes in the correct order wrt other notes. */
n = trace_info.length ();
prev_ti = &trace_info[n - 1];
for (i = n - 1; i > 0; --i)
{
dw_cfi_row *old_row;
ti = prev_ti;
prev_ti = &trace_info[i - 1];
add_cfi_insn = ti->head;
/* In dwarf2out_switch_text_section, we'll begin a new FDE
for the portion of the function in the alternate text
section. The row state at the very beginning of that
new FDE will be exactly the row state from the CIE. */
if (ti->switch_sections)
old_row = cie_cfi_row;
else
{
old_row = prev_ti->end_row;
/* If there's no change from the previous end state, fine. */
if (cfi_row_equal_p (old_row, ti->beg_row))
;
/* Otherwise check for the common case of sharing state with
the beginning of an epilogue, but not the end. Insert
remember/restore opcodes in that case. */
else if (cfi_row_equal_p (prev_ti->beg_row, ti->beg_row))
{
dw_cfi_ref cfi;
/* Note that if we blindly insert the remember at the
start of the trace, we can wind up increasing the
size of the unwind info due to extra advance opcodes.
Instead, put the remember immediately before the next
state change. We know there must be one, because the
state at the beginning and head of the trace differ. */
add_cfi_insn = before_next_cfi_note (prev_ti->head);
cfi = new_cfi ();
cfi->dw_cfi_opc = DW_CFA_remember_state;
add_cfi (cfi);
add_cfi_insn = ti->head;
cfi = new_cfi ();
cfi->dw_cfi_opc = DW_CFA_restore_state;
add_cfi (cfi);
/* If the target unwinder does not save the CFA as part of the
register state, we need to restore it separately. */
if (targetm.asm_out.should_restore_cfa_state ()
&& (cfi = def_cfa_0 (&old_row->cfa, &ti->beg_row->cfa)))
add_cfi (cfi);
old_row = prev_ti->beg_row;
}
/* Otherwise, we'll simply change state from the previous end. */
}
change_cfi_row (old_row, ti->beg_row);
if (dump_file && add_cfi_insn != ti->head)
{
rtx_insn *note;
fprintf (dump_file, "Fixup between trace %u and %u:\n",
prev_ti->id, ti->id);
note = ti->head;
do
{
note = NEXT_INSN (note);
gcc_assert (NOTE_P (note) && NOTE_KIND (note) == NOTE_INSN_CFI);
output_cfi_directive (dump_file, NOTE_CFI (note));
}
while (note != add_cfi_insn);
}
}
/* Connect args_size between traces that have can_throw_internal insns. */
if (cfun->eh->lp_array)
{
poly_int64 prev_args_size = 0;
for (i = 0; i < n; ++i)
{
ti = &trace_info[i];
if (ti->switch_sections)
prev_args_size = 0;
if (ti->eh_head == NULL)
continue;
/* We require either the incoming args_size values to match or the
presence of an insn setting it before the first EH insn. */
gcc_assert (!ti->args_size_undefined || ti->args_size_defined_for_eh);
/* In the latter case, we force the creation of a CFI note. */
if (ti->args_size_undefined
|| maybe_ne (ti->beg_delay_args_size, prev_args_size))
{
/* ??? Search back to previous CFI note. */
add_cfi_insn = PREV_INSN (ti->eh_head);
add_cfi_args_size (ti->beg_delay_args_size);
}
prev_args_size = ti->end_delay_args_size;
}
}
}
/* Set up the pseudo-cfg of instruction traces, as described at the
block comment at the top of the file. */
static void
create_pseudo_cfg (void)
{
bool saw_barrier, switch_sections;
dw_trace_info ti;
rtx_insn *insn;
unsigned i;
/* The first trace begins at the start of the function,
and begins with the CIE row state. */
trace_info.create (16);
memset (&ti, 0, sizeof (ti));
ti.head = get_insns ();
ti.beg_row = cie_cfi_row;
ti.cfa_store = cie_cfi_row->cfa;
ti.cfa_temp.reg = INVALID_REGNUM;
trace_info.quick_push (ti);
if (cie_return_save)
ti.regs_saved_in_regs.safe_push (*cie_return_save);
/* Walk all the insns, collecting start of trace locations. */
saw_barrier = false;
switch_sections = false;
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
{
if (BARRIER_P (insn))
saw_barrier = true;
else if (NOTE_P (insn)
&& NOTE_KIND (insn) == NOTE_INSN_SWITCH_TEXT_SECTIONS)
{
/* We should have just seen a barrier. */
gcc_assert (saw_barrier);
switch_sections = true;
}
/* Watch out for save_point notes between basic blocks.
In particular, a note after a barrier. Do not record these,
delaying trace creation until the label. */
else if (save_point_p (insn)
&& (LABEL_P (insn) || !saw_barrier))
{
memset (&ti, 0, sizeof (ti));
ti.head = insn;
ti.switch_sections = switch_sections;
ti.id = trace_info.length ();
trace_info.safe_push (ti);
saw_barrier = false;
switch_sections = false;
}
}
/* Create the trace index after we've finished building trace_info,
avoiding stale pointer problems due to reallocation. */
trace_index
= new hash_table<trace_info_hasher> (trace_info.length ());
dw_trace_info *tp;
FOR_EACH_VEC_ELT (trace_info, i, tp)
{
dw_trace_info **slot;
if (dump_file)
fprintf (dump_file, "Creating trace %u : start at %s %d%s\n", tp->id,
rtx_name[(int) GET_CODE (tp->head)], INSN_UID (tp->head),
tp->switch_sections ? " (section switch)" : "");
slot = trace_index->find_slot_with_hash (tp, INSN_UID (tp->head), INSERT);
gcc_assert (*slot == NULL);
*slot = tp;
}
}
/* Record the initial position of the return address. RTL is
INCOMING_RETURN_ADDR_RTX. */
static void
initial_return_save (rtx rtl)
{
unsigned int reg = INVALID_REGNUM;
poly_int64 offset = 0;
switch (GET_CODE (rtl))
{
case REG:
/* RA is in a register. */
reg = dwf_regno (rtl);
break;
case MEM:
/* RA is on the stack. */
rtl = XEXP (rtl, 0);
switch (GET_CODE (rtl))
{
case REG:
gcc_assert (REGNO (rtl) == STACK_POINTER_REGNUM);
offset = 0;
break;
case PLUS:
gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
offset = rtx_to_poly_int64 (XEXP (rtl, 1));
break;
case MINUS:
gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
offset = -rtx_to_poly_int64 (XEXP (rtl, 1));
break;
default:
gcc_unreachable ();
}
break;
case PLUS:
/* The return address is at some offset from any value we can
actually load. For instance, on the SPARC it is in %i7+8. Just
ignore the offset for now; it doesn't matter for unwinding frames. */
gcc_assert (CONST_INT_P (XEXP (rtl, 1)));
initial_return_save (XEXP (rtl, 0));
return;
default:
gcc_unreachable ();
}
if (reg != DWARF_FRAME_RETURN_COLUMN)
{
if (reg != INVALID_REGNUM)
record_reg_saved_in_reg (rtl, pc_rtx);
reg_save (DWARF_FRAME_RETURN_COLUMN, reg, offset - cur_row->cfa.offset);
}
}
static void
create_cie_data (void)
{
dw_cfa_location loc;
dw_trace_info cie_trace;
dw_stack_pointer_regnum = DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM);
memset (&cie_trace, 0, sizeof (cie_trace));
cur_trace = &cie_trace;
add_cfi_vec = &cie_cfi_vec;
cie_cfi_row = cur_row = new_cfi_row ();
/* On entry, the Canonical Frame Address is at SP. */
memset (&loc, 0, sizeof (loc));
loc.reg = dw_stack_pointer_regnum;
/* create_cie_data is called just once per TU, and when using .cfi_startproc
is even done by the assembler rather than the compiler. If the target
has different incoming frame sp offsets depending on what kind of
function it is, use a single constant offset for the target and
if needed, adjust before the first instruction in insn stream. */
loc.offset = DEFAULT_INCOMING_FRAME_SP_OFFSET;
def_cfa_1 (&loc);
if (targetm.debug_unwind_info () == UI_DWARF2
|| targetm_common.except_unwind_info (&global_options) == UI_DWARF2)
{
initial_return_save (INCOMING_RETURN_ADDR_RTX);
/* For a few targets, we have the return address incoming into a
register, but choose a different return column. This will result
in a DW_CFA_register for the return, and an entry in
regs_saved_in_regs to match. If the target later stores that
return address register to the stack, we want to be able to emit
the DW_CFA_offset against the return column, not the intermediate
save register. Save the contents of regs_saved_in_regs so that
we can re-initialize it at the start of each function. */
switch (cie_trace.regs_saved_in_regs.length ())
{
case 0:
break;
case 1:
cie_return_save = ggc_alloc<reg_saved_in_data> ();
*cie_return_save = cie_trace.regs_saved_in_regs[0];
cie_trace.regs_saved_in_regs.release ();
break;
default:
gcc_unreachable ();
}
}
add_cfi_vec = NULL;
cur_row = NULL;
cur_trace = NULL;
}
/* Annotate the function with NOTE_INSN_CFI notes to record the CFI
state at each location within the function. These notes will be
emitted during pass_final. */
static unsigned int
execute_dwarf2_frame (void)
{
/* Different HARD_FRAME_POINTER_REGNUM might coexist in the same file. */
dw_frame_pointer_regnum = DWARF_FRAME_REGNUM (HARD_FRAME_POINTER_REGNUM);
/* The first time we're called, compute the incoming frame state. */
if (cie_cfi_vec == NULL)
create_cie_data ();
dwarf2out_alloc_current_fde ();
create_pseudo_cfg ();
/* Do the work. */
create_cfi_notes ();
connect_traces ();
add_cfis_to_fde ();
/* Free all the data we allocated. */
{
size_t i;
dw_trace_info *ti;
FOR_EACH_VEC_ELT (trace_info, i, ti)
ti->regs_saved_in_regs.release ();
}
trace_info.release ();
delete trace_index;
trace_index = NULL;
return 0;
}
/* Convert a DWARF call frame info. operation to its string name */
static const char *
dwarf_cfi_name (unsigned int cfi_opc)
{
const char *name = get_DW_CFA_name (cfi_opc);
if (name != NULL)
return name;
return "DW_CFA_<unknown>";
}
/* This routine will generate the correct assembly data for a location
description based on a cfi entry with a complex address. */
static void
output_cfa_loc (dw_cfi_ref cfi, int for_eh)
{
dw_loc_descr_ref loc;
unsigned long size;
if (cfi->dw_cfi_opc == DW_CFA_expression
|| cfi->dw_cfi_opc == DW_CFA_val_expression)
{
unsigned r =
DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
dw2_asm_output_data (1, r, NULL);
loc = cfi->dw_cfi_oprnd2.dw_cfi_loc;
}
else
loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
/* Output the size of the block. */
size = size_of_locs (loc);
dw2_asm_output_data_uleb128 (size, NULL);
/* Now output the operations themselves. */
output_loc_sequence (loc, for_eh);
}
/* Similar, but used for .cfi_escape. */
static void
output_cfa_loc_raw (dw_cfi_ref cfi)
{
dw_loc_descr_ref loc;
unsigned long size;
if (cfi->dw_cfi_opc == DW_CFA_expression
|| cfi->dw_cfi_opc == DW_CFA_val_expression)
{
unsigned r =
DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
fprintf (asm_out_file, "%#x,", r);
loc = cfi->dw_cfi_oprnd2.dw_cfi_loc;
}
else
loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
/* Output the size of the block. */
size = size_of_locs (loc);
dw2_asm_output_data_uleb128_raw (size);
fputc (',', asm_out_file);
/* Now output the operations themselves. */
output_loc_sequence_raw (loc);
}
/* Output a Call Frame Information opcode and its operand(s). */
void
output_cfi (dw_cfi_ref cfi, dw_fde_ref fde, int for_eh)
{
unsigned long r;
HOST_WIDE_INT off;
if (cfi->dw_cfi_opc == DW_CFA_advance_loc)
dw2_asm_output_data (1, (cfi->dw_cfi_opc
| (cfi->dw_cfi_oprnd1.dw_cfi_offset & 0x3f)),
"DW_CFA_advance_loc " HOST_WIDE_INT_PRINT_HEX,
((unsigned HOST_WIDE_INT)
cfi->dw_cfi_oprnd1.dw_cfi_offset));
else if (cfi->dw_cfi_opc == DW_CFA_offset)
{
r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
"DW_CFA_offset, column %#lx", r);
off = div_data_align (cfi->dw_cfi_oprnd2.dw_cfi_offset);
dw2_asm_output_data_uleb128 (off, NULL);
}
else if (cfi->dw_cfi_opc == DW_CFA_restore)
{
r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
"DW_CFA_restore, column %#lx", r);
}
else
{
dw2_asm_output_data (1, cfi->dw_cfi_opc,
"%s", dwarf_cfi_name (cfi->dw_cfi_opc));
switch (cfi->dw_cfi_opc)
{
case DW_CFA_set_loc:
if (for_eh)
dw2_asm_output_encoded_addr_rtx (
ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
gen_rtx_SYMBOL_REF (Pmode, cfi->dw_cfi_oprnd1.dw_cfi_addr),
false, NULL);
else
dw2_asm_output_addr (DWARF2_ADDR_SIZE,
cfi->dw_cfi_oprnd1.dw_cfi_addr, NULL);
fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
break;
case DW_CFA_advance_loc1:
dw2_asm_output_delta (1, cfi->dw_cfi_oprnd1.dw_cfi_addr,
fde->dw_fde_current_label, NULL);
fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
break;
case DW_CFA_advance_loc2:
dw2_asm_output_delta (2, cfi->dw_cfi_oprnd1.dw_cfi_addr,
fde->dw_fde_current_label, NULL);
fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
break;
case DW_CFA_advance_loc4:
dw2_asm_output_delta (4, cfi->dw_cfi_oprnd1.dw_cfi_addr,
fde->dw_fde_current_label, NULL);
fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
break;
case DW_CFA_MIPS_advance_loc8:
dw2_asm_output_delta (8, cfi->dw_cfi_oprnd1.dw_cfi_addr,
fde->dw_fde_current_label, NULL);
fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
break;
case DW_CFA_offset_extended:
r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
dw2_asm_output_data_uleb128 (r, NULL);
off = div_data_align (cfi->dw_cfi_oprnd2.dw_cfi_offset);
dw2_asm_output_data_uleb128 (off, NULL);
break;
case DW_CFA_def_cfa:
r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
dw2_asm_output_data_uleb128 (r, NULL);
dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
break;
case DW_CFA_offset_extended_sf:
r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
dw2_asm_output_data_uleb128 (r, NULL);
off = div_data_align (cfi->dw_cfi_oprnd2.dw_cfi_offset);
dw2_asm_output_data_sleb128 (off, NULL);
break;
case DW_CFA_def_cfa_sf:
r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
dw2_asm_output_data_uleb128 (r, NULL);
off = div_data_align (cfi->dw_cfi_oprnd2.dw_cfi_offset);
dw2_asm_output_data_sleb128 (off, NULL);
break;
case DW_CFA_restore_extended:
case DW_CFA_undefined:
case DW_CFA_same_value:
case DW_CFA_def_cfa_register:
r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
dw2_asm_output_data_uleb128 (r, NULL);
break;
case DW_CFA_register:
r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
dw2_asm_output_data_uleb128 (r, NULL);
r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd2.dw_cfi_reg_num, for_eh);
dw2_asm_output_data_uleb128 (r, NULL);
break;
case DW_CFA_def_cfa_offset:
case DW_CFA_GNU_args_size:
dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
break;
case DW_CFA_def_cfa_offset_sf:
off = div_data_align (cfi->dw_cfi_oprnd1.dw_cfi_offset);
dw2_asm_output_data_sleb128 (off, NULL);
break;
case DW_CFA_GNU_window_save:
break;
case DW_CFA_def_cfa_expression:
case DW_CFA_expression:
case DW_CFA_val_expression:
output_cfa_loc (cfi, for_eh);
break;
case DW_CFA_GNU_negative_offset_extended:
/* Obsoleted by DW_CFA_offset_extended_sf. */
gcc_unreachable ();
default:
break;
}
}
}
/* Similar, but do it via assembler directives instead. */
void
output_cfi_directive (FILE *f, dw_cfi_ref cfi)
{
unsigned long r, r2;
switch (cfi->dw_cfi_opc)
{
case DW_CFA_advance_loc:
case DW_CFA_advance_loc1:
case DW_CFA_advance_loc2:
case DW_CFA_advance_loc4:
case DW_CFA_MIPS_advance_loc8:
case DW_CFA_set_loc:
/* Should only be created in a code path not followed when emitting
via directives. The assembler is going to take care of this for
us. But this routines is also used for debugging dumps, so
print something. */
gcc_assert (f != asm_out_file);
fprintf (f, "\t.cfi_advance_loc\n");
break;
case DW_CFA_offset:
case DW_CFA_offset_extended:
case DW_CFA_offset_extended_sf:
r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
fprintf (f, "\t.cfi_offset %lu, " HOST_WIDE_INT_PRINT_DEC"\n",
r, cfi->dw_cfi_oprnd2.dw_cfi_offset);
break;
case DW_CFA_restore:
case DW_CFA_restore_extended:
r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
fprintf (f, "\t.cfi_restore %lu\n", r);
break;
case DW_CFA_undefined:
r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
fprintf (f, "\t.cfi_undefined %lu\n", r);
break;
case DW_CFA_same_value:
r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
fprintf (f, "\t.cfi_same_value %lu\n", r);
break;
case DW_CFA_def_cfa:
case DW_CFA_def_cfa_sf:
r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
fprintf (f, "\t.cfi_def_cfa %lu, " HOST_WIDE_INT_PRINT_DEC"\n",
r, cfi->dw_cfi_oprnd2.dw_cfi_offset);
break;
case DW_CFA_def_cfa_register:
r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
fprintf (f, "\t.cfi_def_cfa_register %lu\n", r);
break;
case DW_CFA_register:
r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
r2 = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd2.dw_cfi_reg_num, 1);
fprintf (f, "\t.cfi_register %lu, %lu\n", r, r2);
break;
case DW_CFA_def_cfa_offset:
case DW_CFA_def_cfa_offset_sf:
fprintf (f, "\t.cfi_def_cfa_offset "
HOST_WIDE_INT_PRINT_DEC"\n",
cfi->dw_cfi_oprnd1.dw_cfi_offset);
break;
case DW_CFA_remember_state:
fprintf (f, "\t.cfi_remember_state\n");
break;
case DW_CFA_restore_state:
fprintf (f, "\t.cfi_restore_state\n");
break;
case DW_CFA_GNU_args_size:
if (f == asm_out_file)
{
fprintf (f, "\t.cfi_escape %#x,", DW_CFA_GNU_args_size);
dw2_asm_output_data_uleb128_raw (cfi->dw_cfi_oprnd1.dw_cfi_offset);
if (flag_debug_asm)
fprintf (f, "\t%s args_size " HOST_WIDE_INT_PRINT_DEC,
ASM_COMMENT_START, cfi->dw_cfi_oprnd1.dw_cfi_offset);
fputc ('\n', f);
}
else
{
fprintf (f, "\t.cfi_GNU_args_size " HOST_WIDE_INT_PRINT_DEC "\n",
cfi->dw_cfi_oprnd1.dw_cfi_offset);
}
break;
case DW_CFA_GNU_window_save:
fprintf (f, "\t.cfi_window_save\n");
break;
case DW_CFA_def_cfa_expression:
case DW_CFA_expression:
case DW_CFA_val_expression:
if (f != asm_out_file)
{
fprintf (f, "\t.cfi_%scfa_%sexpression ...\n",
cfi->dw_cfi_opc == DW_CFA_def_cfa_expression ? "def_" : "",
cfi->dw_cfi_opc == DW_CFA_val_expression ? "val_" : "");
break;
}
fprintf (f, "\t.cfi_escape %#x,", cfi->dw_cfi_opc);
output_cfa_loc_raw (cfi);
fputc ('\n', f);
break;
default:
gcc_unreachable ();
}
}
void
dwarf2out_emit_cfi (dw_cfi_ref cfi)
{
if (dwarf2out_do_cfi_asm ())
output_cfi_directive (asm_out_file, cfi);
}
static void
dump_cfi_row (FILE *f, dw_cfi_row *row)
{
dw_cfi_ref cfi;
unsigned i;
cfi = row->cfa_cfi;
if (!cfi)
{
dw_cfa_location dummy;
memset (&dummy, 0, sizeof (dummy));
dummy.reg = INVALID_REGNUM;
cfi = def_cfa_0 (&dummy, &row->cfa);
}
output_cfi_directive (f, cfi);
FOR_EACH_VEC_SAFE_ELT (row->reg_save, i, cfi)
if (cfi)
output_cfi_directive (f, cfi);
}
void debug_cfi_row (dw_cfi_row *row);
void
debug_cfi_row (dw_cfi_row *row)
{
dump_cfi_row (stderr, row);
}
/* Save the result of dwarf2out_do_frame across PCH.
This variable is tri-state, with 0 unset, >0 true, <0 false. */
static GTY(()) signed char saved_do_cfi_asm = 0;
/* Decide whether to emit EH frame unwind information for the current
translation unit. */
bool
dwarf2out_do_eh_frame (void)
{
return
(flag_unwind_tables || flag_exceptions)
&& targetm_common.except_unwind_info (&global_options) == UI_DWARF2;
}
/* Decide whether we want to emit frame unwind information for the current
translation unit. */
bool
dwarf2out_do_frame (void)
{
/* We want to emit correct CFA location expressions or lists, so we
have to return true if we're going to generate debug info, even if
we're not going to output frame or unwind info. */
if (dwarf_debuginfo_p () || dwarf_based_debuginfo_p ())
return true;
if (saved_do_cfi_asm > 0)
return true;
if (targetm.debug_unwind_info () == UI_DWARF2)
return true;
if (dwarf2out_do_eh_frame ())
return true;
return false;
}
/* Decide whether to emit frame unwind via assembler directives. */
bool
dwarf2out_do_cfi_asm (void)
{
int enc;
if (saved_do_cfi_asm != 0)
return saved_do_cfi_asm > 0;
/* Assume failure for a moment. */
saved_do_cfi_asm = -1;
if (!flag_dwarf2_cfi_asm || !dwarf2out_do_frame ())
return false;
if (!HAVE_GAS_CFI_PERSONALITY_DIRECTIVE)
return false;
/* Make sure the personality encoding is one the assembler can support.
In particular, aligned addresses can't be handled. */
enc = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2,/*global=*/1);
if ((enc & 0x70) != 0 && (enc & 0x70) != DW_EH_PE_pcrel)
return false;
enc = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0,/*global=*/0);
if ((enc & 0x70) != 0 && (enc & 0x70) != DW_EH_PE_pcrel)
return false;
/* If we can't get the assembler to emit only .debug_frame, and we don't need
dwarf2 unwind info for exceptions, then emit .debug_frame by hand. */
if (!HAVE_GAS_CFI_SECTIONS_DIRECTIVE && !dwarf2out_do_eh_frame ())
return false;
/* Success! */
saved_do_cfi_asm = 1;
return true;
}
namespace {
const pass_data pass_data_dwarf2_frame =
{
RTL_PASS, /* type */
"dwarf2", /* name */
OPTGROUP_NONE, /* optinfo_flags */
TV_FINAL, /* tv_id */
0, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
0, /* todo_flags_finish */
};
class pass_dwarf2_frame : public rtl_opt_pass
{
public:
pass_dwarf2_frame (gcc::context *ctxt)
: rtl_opt_pass (pass_data_dwarf2_frame, ctxt)
{}
/* opt_pass methods: */
virtual bool gate (function *);
virtual unsigned int execute (function *) { return execute_dwarf2_frame (); }
}; // class pass_dwarf2_frame
bool
pass_dwarf2_frame::gate (function *)
{
/* Targets which still implement the prologue in assembler text
cannot use the generic dwarf2 unwinding. */
if (!targetm.have_prologue ())
return false;
/* ??? What to do for UI_TARGET unwinding? They might be able to benefit
from the optimized shrink-wrapping annotations that we will compute.
For now, only produce the CFI notes for dwarf2. */
return dwarf2out_do_frame ();
}
} // anon namespace
rtl_opt_pass *
make_pass_dwarf2_frame (gcc::context *ctxt)
{
return new pass_dwarf2_frame (ctxt);
}
#include "gt-dwarf2cfi.h"
|