summaryrefslogtreecommitdiff
path: root/gcc/diagnostic-path.h
blob: 3bd89d65a7341cc2bbc24858ded229d2175c6144 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
/* Paths through the code associated with a diagnostic.
   Copyright (C) 2019-2022 Free Software Foundation, Inc.
   Contributed by David Malcolm <dmalcolm@redhat.com>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#ifndef GCC_DIAGNOSTIC_PATH_H
#define GCC_DIAGNOSTIC_PATH_H

#include "diagnostic.h" /* for ATTRIBUTE_GCC_DIAG.  */
#include "diagnostic-event-id.h"

/* A diagnostic_path is an optional additional piece of metadata associated
   with a diagnostic (via its rich_location).

   It describes a sequence of events predicted by the compiler that
   lead to the problem occurring, with their locations in the user's source,
   and text descriptions.

   For example, the following error has a 3-event path:

     test.c: In function 'demo':
     test.c:29:5: error: passing NULL as argument 1 to 'PyList_Append' which
       requires a non-NULL parameter
        29 |     PyList_Append(list, item);
           |     ^~~~~~~~~~~~~~~~~~~~~~~~~
       'demo': events 1-3
          |
          |   25 |   list = PyList_New(0);
          |      |          ^~~~~~~~~~~~~
          |      |          |
          |      |          (1) when 'PyList_New' fails, returning NULL
          |   26 |
          |   27 |   for (i = 0; i < count; i++) {
          |      |   ~~~
          |      |   |
          |      |   (2) when 'i < count'
          |   28 |     item = PyLong_FromLong(random());
          |   29 |     PyList_Append(list, item);
          |      |     ~~~~~~~~~~~~~~~~~~~~~~~~~
          |      |     |
          |      |     (3) when calling 'PyList_Append', passing NULL from (1) as argument 1
          |

    The diagnostic-printing code has consolidated the path into a single
    run of events, since all the events are near each other and within the same
    function; more complicated examples (such as interprocedural paths)
    might be printed as multiple runs of events.  */

/* Abstract base classes, describing events within a path, and the paths
   themselves.  */

/* One event within a diagnostic_path.  */

class diagnostic_event
{
 public:
  virtual ~diagnostic_event () {}

  virtual location_t get_location () const = 0;

  virtual tree get_fndecl () const = 0;

  /* Stack depth, so that consumers can visualizes the interprocedural
     calls, returns, and frame nesting.  */
  virtual int get_stack_depth () const = 0;

  /* Get a localized (and possibly colorized) description of this event.  */
  virtual label_text get_desc (bool can_colorize) const = 0;
};

/* Abstract base class for getting at a sequence of events.  */

class diagnostic_path
{
 public:
  virtual ~diagnostic_path () {}
  virtual unsigned num_events () const = 0;
  virtual const diagnostic_event & get_event (int idx) const = 0;

  bool interprocedural_p () const;
};

/* Concrete subclasses.  */

/* A simple implementation of diagnostic_event.  */

class simple_diagnostic_event : public diagnostic_event
{
 public:
  simple_diagnostic_event (location_t loc, tree fndecl, int depth,
			   const char *desc);
  ~simple_diagnostic_event ();

  location_t get_location () const FINAL OVERRIDE { return m_loc; }
  tree get_fndecl () const FINAL OVERRIDE { return m_fndecl; }
  int get_stack_depth () const FINAL OVERRIDE { return m_depth; }
  label_text get_desc (bool) const FINAL OVERRIDE
  {
    return label_text::borrow (m_desc);
  }

 private:
  location_t m_loc;
  tree m_fndecl;
  int m_depth;
  char *m_desc; // has been i18n-ed and formatted
};

/* A simple implementation of diagnostic_path, as a vector of
   simple_diagnostic_event instances.  */

class simple_diagnostic_path : public diagnostic_path
{
 public:
  simple_diagnostic_path (pretty_printer *event_pp)
  : m_event_pp (event_pp) {}

  unsigned num_events () const FINAL OVERRIDE;
  const diagnostic_event & get_event (int idx) const FINAL OVERRIDE;

  diagnostic_event_id_t add_event (location_t loc, tree fndecl, int depth,
				   const char *fmt, ...)
    ATTRIBUTE_GCC_DIAG(5,6);

 private:
  auto_delete_vec<simple_diagnostic_event> m_events;

  /* (for use by add_event).  */
  pretty_printer *m_event_pp;
};

extern void debug (diagnostic_path *path);

#endif /* ! GCC_DIAGNOSTIC_PATH_H */