summaryrefslogtreecommitdiff
path: root/gcc/cp/search.c
blob: 0367e49521380aa12912ea0888e5db1a2d5dd812 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
/* Breadth-first and depth-first routines for
   searching multiple-inheritance lattice for GNU C++.
   Copyright (C) 1987-2019 Free Software Foundation, Inc.
   Contributed by Michael Tiemann (tiemann@cygnus.com)

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.

GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

/* High-level class interface.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "cp-tree.h"
#include "intl.h"
#include "toplev.h"
#include "spellcheck-tree.h"
#include "stringpool.h"
#include "attribs.h"

static int is_subobject_of_p (tree, tree);
static tree dfs_lookup_base (tree, void *);
static tree dfs_dcast_hint_pre (tree, void *);
static tree dfs_dcast_hint_post (tree, void *);
static tree dfs_debug_mark (tree, void *);
static int check_hidden_convs (tree, int, int, tree, tree, tree);
static tree split_conversions (tree, tree, tree, tree);
static int lookup_conversions_r (tree, int, int, tree, tree, tree *);
static int look_for_overrides_r (tree, tree);
static tree lookup_field_r (tree, void *);
static tree dfs_accessible_post (tree, void *);
static tree dfs_walk_once_accessible (tree, bool,
				      tree (*pre_fn) (tree, void *),
				      tree (*post_fn) (tree, void *),
				      void *data);
static tree dfs_access_in_type (tree, void *);
static access_kind access_in_type (tree, tree);
static tree dfs_get_pure_virtuals (tree, void *);


/* Data for lookup_base and its workers.  */

struct lookup_base_data_s
{
  tree t;		/* type being searched.  */
  tree base;		/* The base type we're looking for.  */
  tree binfo;		/* Found binfo.  */
  bool via_virtual;	/* Found via a virtual path.  */
  bool ambiguous;	/* Found multiply ambiguous */
  bool repeated_base;	/* Whether there are repeated bases in the
			    hierarchy.  */
  bool want_any;	/* Whether we want any matching binfo.  */
};

/* Worker function for lookup_base.  See if we've found the desired
   base and update DATA_ (a pointer to LOOKUP_BASE_DATA_S).  */

static tree
dfs_lookup_base (tree binfo, void *data_)
{
  struct lookup_base_data_s *data = (struct lookup_base_data_s *) data_;

  if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), data->base))
    {
      if (!data->binfo)
	{
	  data->binfo = binfo;
	  data->via_virtual
	    = binfo_via_virtual (data->binfo, data->t) != NULL_TREE;

	  if (!data->repeated_base)
	    /* If there are no repeated bases, we can stop now.  */
	    return binfo;

	  if (data->want_any && !data->via_virtual)
	    /* If this is a non-virtual base, then we can't do
	       better.  */
	    return binfo;

	  return dfs_skip_bases;
	}
      else
	{
	  gcc_assert (binfo != data->binfo);

	  /* We've found more than one matching binfo.  */
	  if (!data->want_any)
	    {
	      /* This is immediately ambiguous.  */
	      data->binfo = NULL_TREE;
	      data->ambiguous = true;
	      return error_mark_node;
	    }

	  /* Prefer one via a non-virtual path.  */
	  if (!binfo_via_virtual (binfo, data->t))
	    {
	      data->binfo = binfo;
	      data->via_virtual = false;
	      return binfo;
	    }

	  /* There must be repeated bases, otherwise we'd have stopped
	     on the first base we found.  */
	  return dfs_skip_bases;
	}
    }

  return NULL_TREE;
}

/* Returns true if type BASE is accessible in T.  (BASE is known to be
   a (possibly non-proper) base class of T.)  If CONSIDER_LOCAL_P is
   true, consider any special access of the current scope, or access
   bestowed by friendship.  */

bool
accessible_base_p (tree t, tree base, bool consider_local_p)
{
  tree decl;

  /* [class.access.base]

     A base class is said to be accessible if an invented public
     member of the base class is accessible.

     If BASE is a non-proper base, this condition is trivially
     true.  */
  if (same_type_p (t, base))
    return true;
  /* Rather than inventing a public member, we use the implicit
     public typedef created in the scope of every class.  */
  decl = TYPE_FIELDS (base);
  while (!DECL_SELF_REFERENCE_P (decl))
    decl = DECL_CHAIN (decl);
  while (ANON_AGGR_TYPE_P (t))
    t = TYPE_CONTEXT (t);
  return accessible_p (t, decl, consider_local_p);
}

/* Lookup BASE in the hierarchy dominated by T.  Do access checking as
   ACCESS specifies.  Return the binfo we discover.  If KIND_PTR is
   non-NULL, fill with information about what kind of base we
   discovered.

   If the base is inaccessible, or ambiguous, then error_mark_node is
   returned.  If the tf_error bit of COMPLAIN is not set, no error
   is issued.  */

tree
lookup_base (tree t, tree base, base_access access,
	     base_kind *kind_ptr, tsubst_flags_t complain)
{
  tree binfo;
  tree t_binfo;
  base_kind bk;

  /* "Nothing" is definitely not derived from Base.  */
  if (t == NULL_TREE)
    {
      if (kind_ptr)
	*kind_ptr = bk_not_base;
      return NULL_TREE;
    }

  if (t == error_mark_node || base == error_mark_node)
    {
      if (kind_ptr)
	*kind_ptr = bk_not_base;
      return error_mark_node;
    }
  gcc_assert (TYPE_P (base));

  if (!TYPE_P (t))
    {
      t_binfo = t;
      t = BINFO_TYPE (t);
    }
  else
    {
      t = complete_type (TYPE_MAIN_VARIANT (t));
      if (dependent_type_p (t))
	if (tree open = currently_open_class (t))
	  t = open;
      t_binfo = TYPE_BINFO (t);
    }

  base = TYPE_MAIN_VARIANT (base);

  /* If BASE is incomplete, it can't be a base of T--and instantiating it
     might cause an error.  */
  if (t_binfo && CLASS_TYPE_P (base) && COMPLETE_OR_OPEN_TYPE_P (base))
    {
      struct lookup_base_data_s data;

      data.t = t;
      data.base = base;
      data.binfo = NULL_TREE;
      data.ambiguous = data.via_virtual = false;
      data.repeated_base = CLASSTYPE_REPEATED_BASE_P (t);
      data.want_any = access == ba_any;

      dfs_walk_once (t_binfo, dfs_lookup_base, NULL, &data);
      binfo = data.binfo;

      if (!binfo)
	bk = data.ambiguous ? bk_ambig : bk_not_base;
      else if (binfo == t_binfo)
	bk = bk_same_type;
      else if (data.via_virtual)
	bk = bk_via_virtual;
      else
	bk = bk_proper_base;
    }
  else
    {
      binfo = NULL_TREE;
      bk = bk_not_base;
    }

  /* Check that the base is unambiguous and accessible.  */
  if (access != ba_any)
    switch (bk)
      {
      case bk_not_base:
	break;

      case bk_ambig:
	if (complain & tf_error)
	  error ("%qT is an ambiguous base of %qT", base, t);
	binfo = error_mark_node;
	break;

      default:
	if ((access & ba_check_bit)
	    /* If BASE is incomplete, then BASE and TYPE are probably
	       the same, in which case BASE is accessible.  If they
	       are not the same, then TYPE is invalid.  In that case,
	       there's no need to issue another error here, and
	       there's no implicit typedef to use in the code that
	       follows, so we skip the check.  */
	    && COMPLETE_TYPE_P (base)
	    && !accessible_base_p (t, base, !(access & ba_ignore_scope)))
	  {
	    if (complain & tf_error)
	      error ("%qT is an inaccessible base of %qT", base, t);
	    binfo = error_mark_node;
	    bk = bk_inaccessible;
	  }
	break;
      }

  if (kind_ptr)
    *kind_ptr = bk;

  return binfo;
}

/* Data for dcast_base_hint walker.  */

struct dcast_data_s
{
  tree subtype;   /* The base type we're looking for.  */
  int virt_depth; /* Number of virtual bases encountered from most
		     derived.  */
  tree offset;    /* Best hint offset discovered so far.  */
  bool repeated_base;  /* Whether there are repeated bases in the
			  hierarchy.  */
};

/* Worker for dcast_base_hint.  Search for the base type being cast
   from.  */

static tree
dfs_dcast_hint_pre (tree binfo, void *data_)
{
  struct dcast_data_s *data = (struct dcast_data_s *) data_;

  if (BINFO_VIRTUAL_P (binfo))
    data->virt_depth++;

  if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), data->subtype))
    {
      if (data->virt_depth)
	{
	  data->offset = ssize_int (-1);
	  return data->offset;
	}
      if (data->offset)
	data->offset = ssize_int (-3);
      else
	data->offset = BINFO_OFFSET (binfo);

      return data->repeated_base ? dfs_skip_bases : data->offset;
    }

  return NULL_TREE;
}

/* Worker for dcast_base_hint.  Track the virtual depth.  */

static tree
dfs_dcast_hint_post (tree binfo, void *data_)
{
  struct dcast_data_s *data = (struct dcast_data_s *) data_;

  if (BINFO_VIRTUAL_P (binfo))
    data->virt_depth--;

  return NULL_TREE;
}

/* The dynamic cast runtime needs a hint about how the static SUBTYPE type
   started from is related to the required TARGET type, in order to optimize
   the inheritance graph search. This information is independent of the
   current context, and ignores private paths, hence get_base_distance is
   inappropriate. Return a TREE specifying the base offset, BOFF.
   BOFF >= 0, there is only one public non-virtual SUBTYPE base at offset BOFF,
      and there are no public virtual SUBTYPE bases.
   BOFF == -1, SUBTYPE occurs as multiple public virtual or non-virtual bases.
   BOFF == -2, SUBTYPE is not a public base.
   BOFF == -3, SUBTYPE occurs as multiple public non-virtual bases.  */

tree
dcast_base_hint (tree subtype, tree target)
{
  struct dcast_data_s data;

  data.subtype = subtype;
  data.virt_depth = 0;
  data.offset = NULL_TREE;
  data.repeated_base = CLASSTYPE_REPEATED_BASE_P (target);

  dfs_walk_once_accessible (TYPE_BINFO (target), /*friends=*/false,
			    dfs_dcast_hint_pre, dfs_dcast_hint_post, &data);
  return data.offset ? data.offset : ssize_int (-2);
}

/* Search for a member with name NAME in a multiple inheritance
   lattice specified by TYPE.  If it does not exist, return NULL_TREE.
   If the member is ambiguously referenced, return `error_mark_node'.
   Otherwise, return a DECL with the indicated name.  If WANT_TYPE is
   true, type declarations are preferred.  */

/* Return the FUNCTION_DECL, RECORD_TYPE, UNION_TYPE, or
   NAMESPACE_DECL corresponding to the innermost non-block scope.  */

tree
current_scope (void)
{
  /* There are a number of cases we need to be aware of here:
			 current_class_type	current_function_decl
     global			NULL			NULL
     fn-local			NULL			SET
     class-local		SET			NULL
     class->fn			SET			SET
     fn->class			SET			SET

     Those last two make life interesting.  If we're in a function which is
     itself inside a class, we need decls to go into the fn's decls (our
     second case below).  But if we're in a class and the class itself is
     inside a function, we need decls to go into the decls for the class.  To
     achieve this last goal, we must see if, when both current_class_ptr and
     current_function_decl are set, the class was declared inside that
     function.  If so, we know to put the decls into the class's scope.  */
  if (current_function_decl && current_class_type
      && ((DECL_FUNCTION_MEMBER_P (current_function_decl)
	   && same_type_p (DECL_CONTEXT (current_function_decl),
			   current_class_type))
	  || (DECL_FRIEND_CONTEXT (current_function_decl)
	      && same_type_p (DECL_FRIEND_CONTEXT (current_function_decl),
			      current_class_type))))
    return current_function_decl;

  if (current_class_type)
    return current_class_type;

  if (current_function_decl)
    return current_function_decl;

  return current_namespace;
}

/* Returns nonzero if we are currently in a function scope.  Note
   that this function returns zero if we are within a local class, but
   not within a member function body of the local class.  */

int
at_function_scope_p (void)
{
  tree cs = current_scope ();
  /* Also check cfun to make sure that we're really compiling
     this function (as opposed to having set current_function_decl
     for access checking or some such).  */
  return (cs && TREE_CODE (cs) == FUNCTION_DECL
	  && cfun && cfun->decl == current_function_decl);
}

/* Returns true if the innermost active scope is a class scope.  */

bool
at_class_scope_p (void)
{
  tree cs = current_scope ();
  return cs && TYPE_P (cs);
}

/* Returns true if the innermost active scope is a namespace scope.  */

bool
at_namespace_scope_p (void)
{
  tree cs = current_scope ();
  return cs && TREE_CODE (cs) == NAMESPACE_DECL;
}

/* Return the scope of DECL, as appropriate when doing name-lookup.  */

tree
context_for_name_lookup (tree decl)
{
  /* [class.union]

     For the purposes of name lookup, after the anonymous union
     definition, the members of the anonymous union are considered to
     have been defined in the scope in which the anonymous union is
     declared.  */
  tree context = DECL_CONTEXT (decl);

  while (context && TYPE_P (context)
	 && (ANON_AGGR_TYPE_P (context) || UNSCOPED_ENUM_P (context)))
    context = TYPE_CONTEXT (context);
  if (!context)
    context = global_namespace;

  return context;
}

/* Returns true iff DECL is declared in TYPE.  */

static bool
member_declared_in_type (tree decl, tree type)
{
  /* A normal declaration obviously counts.  */
  if (context_for_name_lookup (decl) == type)
    return true;
  /* So does a using or access declaration.  */
  if (DECL_LANG_SPECIFIC (decl) && !DECL_DISCRIMINATOR_P (decl)
      && purpose_member (type, DECL_ACCESS (decl)))
    return true;
  return false;
}

/* The accessibility routines use BINFO_ACCESS for scratch space
   during the computation of the accessibility of some declaration.  */

/* Avoid walking up past a declaration of the member.  */

static tree
dfs_access_in_type_pre (tree binfo, void *data)
{
  tree decl = (tree) data;
  tree type = BINFO_TYPE (binfo);
  if (member_declared_in_type (decl, type))
    return dfs_skip_bases;
  return NULL_TREE;
}

#define BINFO_ACCESS(NODE) \
  ((access_kind) ((TREE_PUBLIC (NODE) << 1) | TREE_PRIVATE (NODE)))

/* Set the access associated with NODE to ACCESS.  */

#define SET_BINFO_ACCESS(NODE, ACCESS)			\
  ((TREE_PUBLIC (NODE) = ((ACCESS) & 2) != 0),	\
   (TREE_PRIVATE (NODE) = ((ACCESS) & 1) != 0))

/* Called from access_in_type via dfs_walk.  Calculate the access to
   DATA (which is really a DECL) in BINFO.  */

static tree
dfs_access_in_type (tree binfo, void *data)
{
  tree decl = (tree) data;
  tree type = BINFO_TYPE (binfo);
  access_kind access = ak_none;

  if (context_for_name_lookup (decl) == type)
    {
      /* If we have descended to the scope of DECL, just note the
	 appropriate access.  */
      if (TREE_PRIVATE (decl))
	access = ak_private;
      else if (TREE_PROTECTED (decl))
	access = ak_protected;
      else
	access = ak_public;
    }
  else
    {
      /* First, check for an access-declaration that gives us more
	 access to the DECL.  */
      if (DECL_LANG_SPECIFIC (decl) && !DECL_DISCRIMINATOR_P (decl))
	{
	  tree decl_access = purpose_member (type, DECL_ACCESS (decl));

	  if (decl_access)
	    {
	      decl_access = TREE_VALUE (decl_access);

	      if (decl_access == access_public_node)
		access = ak_public;
	      else if (decl_access == access_protected_node)
		access = ak_protected;
	      else if (decl_access == access_private_node)
		access = ak_private;
	      else
		gcc_unreachable ();
	    }
	}

      if (!access)
	{
	  int i;
	  tree base_binfo;
	  vec<tree, va_gc> *accesses;

	  /* Otherwise, scan our baseclasses, and pick the most favorable
	     access.  */
	  accesses = BINFO_BASE_ACCESSES (binfo);
	  for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
	    {
	      tree base_access = (*accesses)[i];
	      access_kind base_access_now = BINFO_ACCESS (base_binfo);

	      if (base_access_now == ak_none || base_access_now == ak_private)
		/* If it was not accessible in the base, or only
		   accessible as a private member, we can't access it
		   all.  */
		base_access_now = ak_none;
	      else if (base_access == access_protected_node)
		/* Public and protected members in the base become
		   protected here.  */
		base_access_now = ak_protected;
	      else if (base_access == access_private_node)
		/* Public and protected members in the base become
		   private here.  */
		base_access_now = ak_private;

	      /* See if the new access, via this base, gives more
		 access than our previous best access.  */
	      if (base_access_now != ak_none
		  && (access == ak_none || base_access_now < access))
		{
		  access = base_access_now;

		  /* If the new access is public, we can't do better.  */
		  if (access == ak_public)
		    break;
		}
	    }
	}
    }

  /* Note the access to DECL in TYPE.  */
  SET_BINFO_ACCESS (binfo, access);

  return NULL_TREE;
}

/* Return the access to DECL in TYPE.  */

static access_kind
access_in_type (tree type, tree decl)
{
  tree binfo = TYPE_BINFO (type);

  /* We must take into account

       [class.paths]

       If a name can be reached by several paths through a multiple
       inheritance graph, the access is that of the path that gives
       most access.

    The algorithm we use is to make a post-order depth-first traversal
    of the base-class hierarchy.  As we come up the tree, we annotate
    each node with the most lenient access.  */
  dfs_walk_once (binfo, dfs_access_in_type_pre, dfs_access_in_type, decl);

  return BINFO_ACCESS (binfo);
}

/* Returns nonzero if it is OK to access DECL named in TYPE through an object
   of OTYPE in the context of DERIVED.  */

static int
protected_accessible_p (tree decl, tree derived, tree type, tree otype)
{
  /* We're checking this clause from [class.access.base]

       m as a member of N is protected, and the reference occurs in a
       member or friend of class N, or in a member or friend of a
       class P derived from N, where m as a member of P is public, private
       or protected.

    Here DERIVED is a possible P, DECL is m and TYPE is N.  */

  /* If DERIVED isn't derived from N, then it can't be a P.  */
  if (!DERIVED_FROM_P (type, derived))
    return 0;

  /* [class.protected]

     When a friend or a member function of a derived class references
     a protected nonstatic member of a base class, an access check
     applies in addition to those described earlier in clause
     _class.access_) Except when forming a pointer to member
     (_expr.unary.op_), the access must be through a pointer to,
     reference to, or object of the derived class itself (or any class
     derived from that class) (_expr.ref_).  If the access is to form
     a pointer to member, the nested-name-specifier shall name the
     derived class (or any class derived from that class).  */
  if (DECL_NONSTATIC_MEMBER_P (decl)
      && !DERIVED_FROM_P (derived, otype))
    return 0;

  return 1;
}

/* Returns nonzero if SCOPE is a type or a friend of a type which would be able
   to access DECL through TYPE.  OTYPE is the type of the object.  */

static int
friend_accessible_p (tree scope, tree decl, tree type, tree otype)
{
  /* We're checking this clause from [class.access.base]

       m as a member of N is protected, and the reference occurs in a
       member or friend of class N, or in a member or friend of a
       class P derived from N, where m as a member of P is public, private
       or protected.

    Here DECL is m and TYPE is N.  SCOPE is the current context,
    and we check all its possible Ps.  */
  tree befriending_classes;
  tree t;

  if (!scope)
    return 0;

  if (is_global_friend (scope))
    return 1;

  /* Is SCOPE itself a suitable P?  */
  if (TYPE_P (scope) && protected_accessible_p (decl, scope, type, otype))
    return 1;

  if (DECL_DECLARES_FUNCTION_P (scope))
    befriending_classes = DECL_BEFRIENDING_CLASSES (scope);
  else if (TYPE_P (scope))
    befriending_classes = CLASSTYPE_BEFRIENDING_CLASSES (scope);
  else
    return 0;

  for (t = befriending_classes; t; t = TREE_CHAIN (t))
    if (protected_accessible_p (decl, TREE_VALUE (t), type, otype))
      return 1;

  /* Nested classes have the same access as their enclosing types, as
     per DR 45 (this is a change from C++98).  */
  if (TYPE_P (scope))
    if (friend_accessible_p (TYPE_CONTEXT (scope), decl, type, otype))
      return 1;

  if (DECL_DECLARES_FUNCTION_P (scope))
    {
      /* Perhaps this SCOPE is a member of a class which is a
	 friend.  */
      if (DECL_CLASS_SCOPE_P (scope)
	  && friend_accessible_p (DECL_CONTEXT (scope), decl, type, otype))
	return 1;
    }

  /* Maybe scope's template is a friend.  */
  if (tree tinfo = get_template_info (scope))
    {
      tree tmpl = TI_TEMPLATE (tinfo);
      if (DECL_CLASS_TEMPLATE_P (tmpl))
	tmpl = TREE_TYPE (tmpl);
      else
	tmpl = DECL_TEMPLATE_RESULT (tmpl);
      if (tmpl != scope)
	{
	  /* Increment processing_template_decl to make sure that
	     dependent_type_p works correctly.  */
	  ++processing_template_decl;
	  int ret = friend_accessible_p (tmpl, decl, type, otype);
	  --processing_template_decl;
	  if (ret)
	    return 1;
	}
    }

  /* If is_friend is true, we should have found a befriending class.  */
  gcc_checking_assert (!is_friend (type, scope));

  return 0;
}

struct dfs_accessible_data
{
  tree decl;
  tree object_type;
};

/* Avoid walking up past a declaration of the member.  */

static tree
dfs_accessible_pre (tree binfo, void *data)
{
  dfs_accessible_data *d = (dfs_accessible_data *)data;
  tree type = BINFO_TYPE (binfo);
  if (member_declared_in_type (d->decl, type))
    return dfs_skip_bases;
  return NULL_TREE;
}

/* Called via dfs_walk_once_accessible from accessible_p */

static tree
dfs_accessible_post (tree binfo, void *data)
{
  /* access_in_type already set BINFO_ACCESS for us.  */
  access_kind access = BINFO_ACCESS (binfo);
  tree N = BINFO_TYPE (binfo);
  dfs_accessible_data *d = (dfs_accessible_data *)data;
  tree decl = d->decl;
  tree scope = current_nonlambda_scope ();

  /* A member m is accessible at the point R when named in class N if */
  switch (access)
    {
    case ak_none:
      return NULL_TREE;

    case ak_public:
      /* m as a member of N is public, or */
      return binfo;

    case ak_private:
      {
	/* m as a member of N is private, and R occurs in a member or friend of
	   class N, or */
	if (scope && TREE_CODE (scope) != NAMESPACE_DECL
	    && is_friend (N, scope))
	  return binfo;
	return NULL_TREE;
      }

    case ak_protected:
      {
	/* m as a member of N is protected, and R occurs in a member or friend
	   of class N, or in a member or friend of a class P derived from N,
	   where m as a member of P is public, private, or protected  */
	if (friend_accessible_p (scope, decl, N, d->object_type))
	  return binfo;
	return NULL_TREE;
      }

    default:
      gcc_unreachable ();
    }
}

/* Like accessible_p below, but within a template returns true iff DECL is
   accessible in TYPE to all possible instantiations of the template.  */

int
accessible_in_template_p (tree type, tree decl)
{
  int save_ptd = processing_template_decl;
  processing_template_decl = 0;
  int val = accessible_p (type, decl, false);
  processing_template_decl = save_ptd;
  return val;
}

/* DECL is a declaration from a base class of TYPE, which was the
   class used to name DECL.  Return nonzero if, in the current
   context, DECL is accessible.  If TYPE is actually a BINFO node,
   then we can tell in what context the access is occurring by looking
   at the most derived class along the path indicated by BINFO.  If
   CONSIDER_LOCAL is true, do consider special access the current
   scope or friendship thereof we might have.  */

int
accessible_p (tree type, tree decl, bool consider_local_p)
{
  tree binfo;
  access_kind access;

  /* If this declaration is in a block or namespace scope, there's no
     access control.  */
  if (!TYPE_P (context_for_name_lookup (decl)))
    return 1;

  /* There is no need to perform access checks inside a thunk.  */
  if (current_function_decl && DECL_THUNK_P (current_function_decl))
    return 1;

  /* In a template declaration, we cannot be sure whether the
     particular specialization that is instantiated will be a friend
     or not.  Therefore, all access checks are deferred until
     instantiation.  However, PROCESSING_TEMPLATE_DECL is set in the
     parameter list for a template (because we may see dependent types
     in default arguments for template parameters), and access
     checking should be performed in the outermost parameter list.  */
  if (processing_template_decl
      && !expanding_concept ()
      && (!processing_template_parmlist || processing_template_decl > 1))
    return 1;

  tree otype = NULL_TREE;
  if (!TYPE_P (type))
    {
      /* When accessing a non-static member, the most derived type in the
	 binfo chain is the type of the object; remember that type for
	 protected_accessible_p.  */
      for (tree b = type; b; b = BINFO_INHERITANCE_CHAIN (b))
	otype = BINFO_TYPE (b);
      type = BINFO_TYPE (type);
    }
  else
    otype = type;

  /* [class.access.base]

     A member m is accessible when named in class N if

     --m as a member of N is public, or

     --m as a member of N is private, and the reference occurs in a
       member or friend of class N, or

     --m as a member of N is protected, and the reference occurs in a
       member or friend of class N, or in a member or friend of a
       class P derived from N, where m as a member of P is public, private or
       protected, or

     --there exists a base class B of N that is accessible at the point
       of reference, and m is accessible when named in class B.

    We walk the base class hierarchy, checking these conditions.  */

  /* We walk using TYPE_BINFO (type) because access_in_type will set
     BINFO_ACCESS on it and its bases.  */
  binfo = TYPE_BINFO (type);

  /* Compute the accessibility of DECL in the class hierarchy
     dominated by type.  */
  access = access_in_type (type, decl);
  if (access == ak_public)
    return 1;

  /* If we aren't considering the point of reference, only the first bullet
     applies.  */
  if (!consider_local_p)
    return 0;

  dfs_accessible_data d = { decl, otype };

  /* Walk the hierarchy again, looking for a base class that allows
     access.  */
  return dfs_walk_once_accessible (binfo, /*friends=*/true,
				   dfs_accessible_pre,
				   dfs_accessible_post, &d)
    != NULL_TREE;
}

struct lookup_field_info {
  /* The type in which we're looking.  */
  tree type;
  /* The name of the field for which we're looking.  */
  tree name;
  /* If non-NULL, the current result of the lookup.  */
  tree rval;
  /* The path to RVAL.  */
  tree rval_binfo;
  /* If non-NULL, the lookup was ambiguous, and this is a list of the
     candidates.  */
  tree ambiguous;
  /* If nonzero, we are looking for types, not data members.  */
  int want_type;
  /* If something went wrong, a message indicating what.  */
  const char *errstr;
};

/* Nonzero for a class member means that it is shared between all objects
   of that class.

   [class.member.lookup]:If the resulting set of declarations are not all
   from sub-objects of the same type, or the set has a  nonstatic  member
   and  includes members from distinct sub-objects, there is an ambiguity
   and the program is ill-formed.

   This function checks that T contains no nonstatic members.  */

int
shared_member_p (tree t)
{
  if (VAR_P (t) || TREE_CODE (t) == TYPE_DECL \
      || TREE_CODE (t) == CONST_DECL)
    return 1;
  if (is_overloaded_fn (t))
    {
      for (ovl_iterator iter (get_fns (t)); iter; ++iter)
	if (DECL_NONSTATIC_MEMBER_FUNCTION_P (*iter))
	  return 0;
      return 1;
    }
  return 0;
}

/* Routine to see if the sub-object denoted by the binfo PARENT can be
   found as a base class and sub-object of the object denoted by
   BINFO.  */

static int
is_subobject_of_p (tree parent, tree binfo)
{
  tree probe;

  for (probe = parent; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
    {
      if (probe == binfo)
	return 1;
      if (BINFO_VIRTUAL_P (probe))
	return (binfo_for_vbase (BINFO_TYPE (probe), BINFO_TYPE (binfo))
		!= NULL_TREE);
    }
  return 0;
}

/* DATA is really a struct lookup_field_info.  Look for a field with
   the name indicated there in BINFO.  If this function returns a
   non-NULL value it is the result of the lookup.  Called from
   lookup_field via breadth_first_search.  */

static tree
lookup_field_r (tree binfo, void *data)
{
  struct lookup_field_info *lfi = (struct lookup_field_info *) data;
  tree type = BINFO_TYPE (binfo);
  tree nval = NULL_TREE;

  /* If this is a dependent base, don't look in it.  */
  if (BINFO_DEPENDENT_BASE_P (binfo))
    return NULL_TREE;

  /* If this base class is hidden by the best-known value so far, we
     don't need to look.  */
  if (lfi->rval_binfo && BINFO_INHERITANCE_CHAIN (binfo) == lfi->rval_binfo
      && !BINFO_VIRTUAL_P (binfo))
    return dfs_skip_bases;

  nval = get_class_binding (type, lfi->name, lfi->want_type);

  /* If we're looking up a type (as with an elaborated type specifier)
     we ignore all non-types we find.  */
  if (lfi->want_type && nval && !DECL_DECLARES_TYPE_P (nval))
    {
      nval = NULL_TREE;
      if (CLASSTYPE_NESTED_UTDS (type))
	if (binding_entry e = binding_table_find (CLASSTYPE_NESTED_UTDS (type),
						  lfi->name))
	  nval = TYPE_MAIN_DECL (e->type);
    }

  /* If there is no declaration with the indicated name in this type,
     then there's nothing to do.  */
  if (!nval)
    goto done;

  /* If the lookup already found a match, and the new value doesn't
     hide the old one, we might have an ambiguity.  */
  if (lfi->rval_binfo
      && !is_subobject_of_p (lfi->rval_binfo, binfo))

    {
      if (nval == lfi->rval && shared_member_p (nval))
	/* The two things are really the same.  */
	;
      else if (is_subobject_of_p (binfo, lfi->rval_binfo))
	/* The previous value hides the new one.  */
	;
      else
	{
	  /* We have a real ambiguity.  We keep a chain of all the
	     candidates.  */
	  if (!lfi->ambiguous && lfi->rval)
	    {
	      /* This is the first time we noticed an ambiguity.  Add
		 what we previously thought was a reasonable candidate
		 to the list.  */
	      lfi->ambiguous = tree_cons (NULL_TREE, lfi->rval, NULL_TREE);
	      TREE_TYPE (lfi->ambiguous) = error_mark_node;
	    }

	  /* Add the new value.  */
	  lfi->ambiguous = tree_cons (NULL_TREE, nval, lfi->ambiguous);
	  TREE_TYPE (lfi->ambiguous) = error_mark_node;
	  lfi->errstr = G_("request for member %qD is ambiguous");
	}
    }
  else
    {
      lfi->rval = nval;
      lfi->rval_binfo = binfo;
    }

 done:
  /* Don't look for constructors or destructors in base classes.  */
  if (IDENTIFIER_CDTOR_P (lfi->name))
    return dfs_skip_bases;
  return NULL_TREE;
}

/* Return a "baselink" with BASELINK_BINFO, BASELINK_ACCESS_BINFO,
   BASELINK_FUNCTIONS, and BASELINK_OPTYPE set to BINFO, ACCESS_BINFO,
   FUNCTIONS, and OPTYPE respectively.  */

tree
build_baselink (tree binfo, tree access_binfo, tree functions, tree optype)
{
  tree baselink;

  gcc_assert (TREE_CODE (functions) == FUNCTION_DECL
	      || TREE_CODE (functions) == TEMPLATE_DECL
	      || TREE_CODE (functions) == TEMPLATE_ID_EXPR
	      || TREE_CODE (functions) == OVERLOAD);
  gcc_assert (!optype || TYPE_P (optype));
  gcc_assert (TREE_TYPE (functions));

  baselink = make_node (BASELINK);
  TREE_TYPE (baselink) = TREE_TYPE (functions);
  BASELINK_BINFO (baselink) = binfo;
  BASELINK_ACCESS_BINFO (baselink) = access_binfo;
  BASELINK_FUNCTIONS (baselink) = functions;
  BASELINK_OPTYPE (baselink) = optype;

  return baselink;
}

/* Look for a member named NAME in an inheritance lattice dominated by
   XBASETYPE.  If PROTECT is 0 or two, we do not check access.  If it
   is 1, we enforce accessibility.  If PROTECT is zero, then, for an
   ambiguous lookup, we return NULL.  If PROTECT is 1, we issue error
   messages about inaccessible or ambiguous lookup.  If PROTECT is 2,
   we return a TREE_LIST whose TREE_TYPE is error_mark_node and whose
   TREE_VALUEs are the list of ambiguous candidates.

   WANT_TYPE is 1 when we should only return TYPE_DECLs.

   If nothing can be found return NULL_TREE and do not issue an error.

   If non-NULL, failure information is written back to AFI.  */

tree
lookup_member (tree xbasetype, tree name, int protect, bool want_type,
	       tsubst_flags_t complain, access_failure_info *afi)
{
  tree rval, rval_binfo = NULL_TREE;
  tree type = NULL_TREE, basetype_path = NULL_TREE;
  struct lookup_field_info lfi;

  /* rval_binfo is the binfo associated with the found member, note,
     this can be set with useful information, even when rval is not
     set, because it must deal with ALL members, not just non-function
     members.  It is used for ambiguity checking and the hidden
     checks.  Whereas rval is only set if a proper (not hidden)
     non-function member is found.  */

  const char *errstr = 0;

  if (name == error_mark_node
      || xbasetype == NULL_TREE
      || xbasetype == error_mark_node)
    return NULL_TREE;

  gcc_assert (identifier_p (name));

  if (TREE_CODE (xbasetype) == TREE_BINFO)
    {
      type = BINFO_TYPE (xbasetype);
      basetype_path = xbasetype;
    }
  else
    {
      if (!RECORD_OR_UNION_CODE_P (TREE_CODE (xbasetype)))
	return NULL_TREE;
      type = xbasetype;
      xbasetype = NULL_TREE;
    }

  type = complete_type (type);

  /* Make sure we're looking for a member of the current instantiation in the
     right partial specialization.  */
  if (dependent_type_p (type))
    if (tree t = currently_open_class (type))
      type = t;

  if (!basetype_path)
    basetype_path = TYPE_BINFO (type);

  if (!basetype_path)
    return NULL_TREE;

  memset (&lfi, 0, sizeof (lfi));
  lfi.type = type;
  lfi.name = name;
  lfi.want_type = want_type;
  dfs_walk_all (basetype_path, &lookup_field_r, NULL, &lfi);
  rval = lfi.rval;
  rval_binfo = lfi.rval_binfo;
  if (rval_binfo)
    type = BINFO_TYPE (rval_binfo);
  errstr = lfi.errstr;

  /* If we are not interested in ambiguities, don't report them;
     just return NULL_TREE.  */
  if (!protect && lfi.ambiguous)
    return NULL_TREE;

  if (protect == 2)
    {
      if (lfi.ambiguous)
	return lfi.ambiguous;
      else
	protect = 0;
    }

  /* [class.access]

     In the case of overloaded function names, access control is
     applied to the function selected by overloaded resolution.  

     We cannot check here, even if RVAL is only a single non-static
     member function, since we do not know what the "this" pointer
     will be.  For:

        class A { protected: void f(); };
        class B : public A { 
          void g(A *p) {
            f(); // OK
            p->f(); // Not OK.
          }
        };

    only the first call to "f" is valid.  However, if the function is
    static, we can check.  */
  if (rval && protect 
      && !really_overloaded_fn (rval))
    {
      tree decl = is_overloaded_fn (rval) ? get_first_fn (rval) : rval;
      if (!DECL_NONSTATIC_MEMBER_FUNCTION_P (decl)
	  && !perform_or_defer_access_check (basetype_path, decl, decl,
					     complain, afi))
	rval = error_mark_node;
    }

  if (errstr && protect)
    {
      if (complain & tf_error)
	{
	  error (errstr, name, type);
	  if (lfi.ambiguous)
	    print_candidates (lfi.ambiguous);
	}
      rval = error_mark_node;
    }

  if (rval && is_overloaded_fn (rval))
    rval = build_baselink (rval_binfo, basetype_path, rval,
			   (IDENTIFIER_CONV_OP_P (name)
			   ? TREE_TYPE (name): NULL_TREE));
  return rval;
}

/* Helper class for lookup_member_fuzzy.  */

class lookup_field_fuzzy_info
{
 public:
  lookup_field_fuzzy_info (bool want_type_p) :
    m_want_type_p (want_type_p), m_candidates () {}

  void fuzzy_lookup_field (tree type);

  /* If true, we are looking for types, not data members.  */
  bool m_want_type_p;
  /* The result: a vec of identifiers.  */
  auto_vec<tree> m_candidates;
};

/* Locate all fields within TYPE, append them to m_candidates.  */

void
lookup_field_fuzzy_info::fuzzy_lookup_field (tree type)
{
  if (!CLASS_TYPE_P (type))
    return;

  for (tree field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
    {
      if (m_want_type_p && !DECL_DECLARES_TYPE_P (field))
	continue;

      if (!DECL_NAME (field))
	continue;

      if (is_lambda_ignored_entity (field))
	continue;

      m_candidates.safe_push (DECL_NAME (field));
    }
}


/* Helper function for lookup_member_fuzzy, called via dfs_walk_all
   DATA is really a lookup_field_fuzzy_info.  Look for a field with
   the name indicated there in BINFO.  Gathers pertinent identifiers into
   m_candidates.  */

static tree
lookup_field_fuzzy_r (tree binfo, void *data)
{
  lookup_field_fuzzy_info *lffi = (lookup_field_fuzzy_info *) data;
  tree type = BINFO_TYPE (binfo);

  lffi->fuzzy_lookup_field (type);

  return NULL_TREE;
}

/* Like lookup_member, but try to find the closest match for NAME,
   rather than an exact match, and return an identifier (or NULL_TREE).
   Do not complain.  */

tree
lookup_member_fuzzy (tree xbasetype, tree name, bool want_type_p)
{
  tree type = NULL_TREE, basetype_path = NULL_TREE;
  struct lookup_field_fuzzy_info lffi (want_type_p);

  /* rval_binfo is the binfo associated with the found member, note,
     this can be set with useful information, even when rval is not
     set, because it must deal with ALL members, not just non-function
     members.  It is used for ambiguity checking and the hidden
     checks.  Whereas rval is only set if a proper (not hidden)
     non-function member is found.  */

  if (name == error_mark_node
      || xbasetype == NULL_TREE
      || xbasetype == error_mark_node)
    return NULL_TREE;

  gcc_assert (identifier_p (name));

  if (TREE_CODE (xbasetype) == TREE_BINFO)
    {
      type = BINFO_TYPE (xbasetype);
      basetype_path = xbasetype;
    }
  else
    {
      if (!RECORD_OR_UNION_CODE_P (TREE_CODE (xbasetype)))
	return NULL_TREE;
      type = xbasetype;
      xbasetype = NULL_TREE;
    }

  type = complete_type (type);

  /* Make sure we're looking for a member of the current instantiation in the
     right partial specialization.  */
  if (flag_concepts && dependent_type_p (type))
    type = currently_open_class (type);

  if (!basetype_path)
    basetype_path = TYPE_BINFO (type);

  if (!basetype_path)
    return NULL_TREE;

  /* Populate lffi.m_candidates.  */
  dfs_walk_all (basetype_path, &lookup_field_fuzzy_r, NULL, &lffi);

  return find_closest_identifier (name, &lffi.m_candidates);
}

/* Like lookup_member, except that if we find a function member we
   return NULL_TREE.  */

tree
lookup_field (tree xbasetype, tree name, int protect, bool want_type)
{
  tree rval = lookup_member (xbasetype, name, protect, want_type,
			     tf_warning_or_error);

  /* Ignore functions, but propagate the ambiguity list.  */
  if (!error_operand_p (rval)
      && (rval && BASELINK_P (rval)))
    return NULL_TREE;

  return rval;
}

/* Like lookup_member, except that if we find a non-function member we
   return NULL_TREE.  */

tree
lookup_fnfields (tree xbasetype, tree name, int protect)
{
  tree rval = lookup_member (xbasetype, name, protect, /*want_type=*/false,
			     tf_warning_or_error);

  /* Ignore non-functions, but propagate the ambiguity list.  */
  if (!error_operand_p (rval)
      && (rval && !BASELINK_P (rval)))
    return NULL_TREE;

  return rval;
}

/* DECL is the result of a qualified name lookup.  QUALIFYING_SCOPE is
   the class or namespace used to qualify the name.  CONTEXT_CLASS is
   the class corresponding to the object in which DECL will be used.
   Return a possibly modified version of DECL that takes into account
   the CONTEXT_CLASS.

   In particular, consider an expression like `B::m' in the context of
   a derived class `D'.  If `B::m' has been resolved to a BASELINK,
   then the most derived class indicated by the BASELINK_BINFO will be
   `B', not `D'.  This function makes that adjustment.  */

tree
adjust_result_of_qualified_name_lookup (tree decl,
					tree qualifying_scope,
					tree context_class)
{
  if (context_class && context_class != error_mark_node
      && CLASS_TYPE_P (context_class)
      && CLASS_TYPE_P (qualifying_scope)
      && DERIVED_FROM_P (qualifying_scope, context_class)
      && BASELINK_P (decl))
    {
      tree base;

      /* Look for the QUALIFYING_SCOPE as a base of the CONTEXT_CLASS.
	 Because we do not yet know which function will be chosen by
	 overload resolution, we cannot yet check either accessibility
	 or ambiguity -- in either case, the choice of a static member
	 function might make the usage valid.  */
      base = lookup_base (context_class, qualifying_scope,
			  ba_unique, NULL, tf_none);
      if (base && base != error_mark_node)
	{
	  BASELINK_ACCESS_BINFO (decl) = base;
	  tree decl_binfo
	    = lookup_base (base, BINFO_TYPE (BASELINK_BINFO (decl)),
			   ba_unique, NULL, tf_none);
	  if (decl_binfo && decl_binfo != error_mark_node)
	    BASELINK_BINFO (decl) = decl_binfo;
	}
    }

  if (BASELINK_P (decl))
    BASELINK_QUALIFIED_P (decl) = true;

  return decl;
}


/* Walk the class hierarchy within BINFO, in a depth-first traversal.
   PRE_FN is called in preorder, while POST_FN is called in postorder.
   If PRE_FN returns DFS_SKIP_BASES, child binfos will not be
   walked.  If PRE_FN or POST_FN returns a different non-NULL value,
   that value is immediately returned and the walk is terminated.  One
   of PRE_FN and POST_FN can be NULL.  At each node, PRE_FN and
   POST_FN are passed the binfo to examine and the caller's DATA
   value.  All paths are walked, thus virtual and morally virtual
   binfos can be multiply walked.  */

tree
dfs_walk_all (tree binfo, tree (*pre_fn) (tree, void *),
	      tree (*post_fn) (tree, void *), void *data)
{
  tree rval;
  unsigned ix;
  tree base_binfo;

  /* Call the pre-order walking function.  */
  if (pre_fn)
    {
      rval = pre_fn (binfo, data);
      if (rval)
	{
	  if (rval == dfs_skip_bases)
	    goto skip_bases;
	  return rval;
	}
    }

  /* Find the next child binfo to walk.  */
  for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
    {
      rval = dfs_walk_all (base_binfo, pre_fn, post_fn, data);
      if (rval)
	return rval;
    }

 skip_bases:
  /* Call the post-order walking function.  */
  if (post_fn)
    {
      rval = post_fn (binfo, data);
      gcc_assert (rval != dfs_skip_bases);
      return rval;
    }

  return NULL_TREE;
}

/* Worker for dfs_walk_once.  This behaves as dfs_walk_all, except
   that binfos are walked at most once.  */

static tree
dfs_walk_once_r (tree binfo, tree (*pre_fn) (tree, void *),
		 tree (*post_fn) (tree, void *), hash_set<tree> *pset,
		 void *data)
{
  tree rval;
  unsigned ix;
  tree base_binfo;

  /* Call the pre-order walking function.  */
  if (pre_fn)
    {
      rval = pre_fn (binfo, data);
      if (rval)
	{
	  if (rval == dfs_skip_bases)
	    goto skip_bases;

	  return rval;
	}
    }

  /* Find the next child binfo to walk.  */
  for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
    {
      if (BINFO_VIRTUAL_P (base_binfo))
	if (pset->add (base_binfo))
	  continue;

      rval = dfs_walk_once_r (base_binfo, pre_fn, post_fn, pset, data);
      if (rval)
	return rval;
    }

 skip_bases:
  /* Call the post-order walking function.  */
  if (post_fn)
    {
      rval = post_fn (binfo, data);
      gcc_assert (rval != dfs_skip_bases);
      return rval;
    }

  return NULL_TREE;
}

/* Like dfs_walk_all, except that binfos are not multiply walked.  For
   non-diamond shaped hierarchies this is the same as dfs_walk_all.
   For diamond shaped hierarchies we must mark the virtual bases, to
   avoid multiple walks.  */

tree
dfs_walk_once (tree binfo, tree (*pre_fn) (tree, void *),
	       tree (*post_fn) (tree, void *), void *data)
{
  static int active = 0;  /* We must not be called recursively. */
  tree rval;

  gcc_assert (pre_fn || post_fn);
  gcc_assert (!active);
  active++;

  if (!CLASSTYPE_DIAMOND_SHAPED_P (BINFO_TYPE (binfo)))
    /* We are not diamond shaped, and therefore cannot encounter the
       same binfo twice.  */
    rval = dfs_walk_all (binfo, pre_fn, post_fn, data);
  else
    {
      hash_set<tree> pset;
      rval = dfs_walk_once_r (binfo, pre_fn, post_fn, &pset, data);
    }

  active--;

  return rval;
}

/* Worker function for dfs_walk_once_accessible.  Behaves like
   dfs_walk_once_r, except (a) FRIENDS_P is true if special
   access given by the current context should be considered, (b) ONCE
   indicates whether bases should be marked during traversal.  */

static tree
dfs_walk_once_accessible_r (tree binfo, bool friends_p, hash_set<tree> *pset,
			    tree (*pre_fn) (tree, void *),
			    tree (*post_fn) (tree, void *), void *data)
{
  tree rval = NULL_TREE;
  unsigned ix;
  tree base_binfo;

  /* Call the pre-order walking function.  */
  if (pre_fn)
    {
      rval = pre_fn (binfo, data);
      if (rval)
	{
	  if (rval == dfs_skip_bases)
	    goto skip_bases;

	  return rval;
	}
    }

  /* Find the next child binfo to walk.  */
  for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
    {
      bool mark = pset && BINFO_VIRTUAL_P (base_binfo);

      if (mark && pset->contains (base_binfo))
	continue;

      /* If the base is inherited via private or protected
	 inheritance, then we can't see it, unless we are a friend of
	 the current binfo.  */
      if (BINFO_BASE_ACCESS (binfo, ix) != access_public_node)
	{
	  tree scope;
	  if (!friends_p)
	    continue;
	  scope = current_scope ();
	  if (!scope
	      || TREE_CODE (scope) == NAMESPACE_DECL
	      || !is_friend (BINFO_TYPE (binfo), scope))
	    continue;
	}

      if (mark)
	pset->add (base_binfo);

      rval = dfs_walk_once_accessible_r (base_binfo, friends_p, pset,
					 pre_fn, post_fn, data);
      if (rval)
	return rval;
    }

 skip_bases:
  /* Call the post-order walking function.  */
  if (post_fn)
    {
      rval = post_fn (binfo, data);
      gcc_assert (rval != dfs_skip_bases);
      return rval;
    }

  return NULL_TREE;
}

/* Like dfs_walk_once except that only accessible bases are walked.
   FRIENDS_P indicates whether friendship of the local context
   should be considered when determining accessibility.  */

static tree
dfs_walk_once_accessible (tree binfo, bool friends_p,
			    tree (*pre_fn) (tree, void *),
			    tree (*post_fn) (tree, void *), void *data)
{
  hash_set<tree> *pset = NULL;
  if (CLASSTYPE_DIAMOND_SHAPED_P (BINFO_TYPE (binfo)))
    pset = new hash_set<tree>;
  tree rval = dfs_walk_once_accessible_r (binfo, friends_p, pset,
					  pre_fn, post_fn, data);

  if (pset)
    delete pset;
  return rval;
}

/* Return true iff the code of T is CODE, and it has compatible
   type with TYPE.  */

static bool
matches_code_and_type_p (tree t, enum tree_code code, tree type)
{
  if (TREE_CODE (t) != code)
    return false;
  if (!cxx_types_compatible_p (TREE_TYPE (t), type))
    return false;
  return true;
}

/* Subroutine of direct_accessor_p and reference_accessor_p.
   Determine if COMPONENT_REF is a simple field lookup of this->FIELD_DECL.
   We expect a tree of the form:
	     <component_ref:
	       <indirect_ref:S>
		 <nop_expr:P*
		   <parm_decl (this)>
		 <field_decl (FIELD_DECL)>>>.  */

static bool
field_access_p (tree component_ref, tree field_decl, tree field_type)
{
  if (!matches_code_and_type_p (component_ref, COMPONENT_REF, field_type))
    return false;

  tree indirect_ref = TREE_OPERAND (component_ref, 0);
  if (!INDIRECT_REF_P (indirect_ref))
    return false;

  tree ptr = STRIP_NOPS (TREE_OPERAND (indirect_ref, 0));
  if (!is_this_parameter (ptr))
    return false;

  /* Must access the correct field.  */
  if (TREE_OPERAND (component_ref, 1) != field_decl)
    return false;
  return true;
}

/* Subroutine of field_accessor_p.

   Assuming that INIT_EXPR has already had its code and type checked,
   determine if it is a simple accessor for FIELD_DECL
   (of type FIELD_TYPE).

   Specifically, a simple accessor within struct S of the form:
       T get_field () { return m_field; }
   should have a constexpr_fn_retval (saved_tree) of the form:
	 <init_expr:T
	   <result_decl:T
	   <nop_expr:T
	     <component_ref:
	       <indirect_ref:S>
		 <nop_expr:P*
		   <parm_decl (this)>
		 <field_decl (FIELD_DECL)>>>>>.  */

static bool
direct_accessor_p (tree init_expr, tree field_decl, tree field_type)
{
  tree result_decl = TREE_OPERAND (init_expr, 0);
  if (!matches_code_and_type_p (result_decl, RESULT_DECL, field_type))
    return false;

  tree component_ref = STRIP_NOPS (TREE_OPERAND (init_expr, 1));
  if (!field_access_p (component_ref, field_decl, field_type))
    return false;

  return true;
}

/* Subroutine of field_accessor_p.

   Assuming that INIT_EXPR has already had its code and type checked,
   determine if it is a "reference" accessor for FIELD_DECL
   (of type FIELD_REFERENCE_TYPE).

   Specifically, a simple accessor within struct S of the form:
       T& get_field () { return m_field; }
   should have a constexpr_fn_retval (saved_tree) of the form:
	 <init_expr:T&
	   <result_decl:T&
	   <nop_expr: T&
	     <addr_expr: T*
	       <component_ref:T
		 <indirect_ref:S
		   <nop_expr
		     <parm_decl (this)>>
		   <field (FIELD_DECL)>>>>>>.  */
static bool
reference_accessor_p (tree init_expr, tree field_decl, tree field_type,
		      tree field_reference_type)
{
  tree result_decl = TREE_OPERAND (init_expr, 0);
  if (!matches_code_and_type_p (result_decl, RESULT_DECL, field_reference_type))
    return false;

  tree field_pointer_type = build_pointer_type (field_type);
  tree addr_expr = STRIP_NOPS (TREE_OPERAND (init_expr, 1));
  if (!matches_code_and_type_p (addr_expr, ADDR_EXPR, field_pointer_type))
    return false;

  tree component_ref = STRIP_NOPS (TREE_OPERAND (addr_expr, 0));

  if (!field_access_p (component_ref, field_decl, field_type))
    return false;

  return true;
}

/* Return true if FN is an accessor method for FIELD_DECL.
   i.e. a method of the form { return FIELD; }, with no
   conversions.

   If CONST_P, then additionally require that FN be a const
   method.  */

static bool
field_accessor_p (tree fn, tree field_decl, bool const_p)
{
  if (TREE_CODE (fn) != FUNCTION_DECL)
    return false;

  /* We don't yet support looking up static data, just fields.  */
  if (TREE_CODE (field_decl) != FIELD_DECL)
    return false;

  tree fntype = TREE_TYPE (fn);
  if (TREE_CODE (fntype) != METHOD_TYPE)
    return false;

  /* If the field is accessed via a const "this" argument, verify
     that the "this" parameter is const.  */
  if (const_p)
    {
      tree this_class = class_of_this_parm (fntype);
      if (!TYPE_READONLY (this_class))
	return false;
    }

  tree saved_tree = DECL_SAVED_TREE (fn);

  if (saved_tree == NULL_TREE)
    return false;

  /* Attempt to extract a single return value from the function,
     if it has one.  */
  tree retval = constexpr_fn_retval (saved_tree);
  if (retval == NULL_TREE || retval == error_mark_node)
    return false;
  /* Require an INIT_EXPR.  */
  if (TREE_CODE (retval) != INIT_EXPR)
    return false;
  tree init_expr = retval;

  /* Determine if this is a simple accessor within struct S of the form:
       T get_field () { return m_field; }.  */
  tree field_type = TREE_TYPE (field_decl);
  if (cxx_types_compatible_p (TREE_TYPE (init_expr), field_type))
    return direct_accessor_p (init_expr, field_decl, field_type);

  /* Failing that, determine if it is an accessor of the form:
       T& get_field () { return m_field; }.  */
  tree field_reference_type = cp_build_reference_type (field_type, false);
  if (cxx_types_compatible_p (TREE_TYPE (init_expr), field_reference_type))
    return reference_accessor_p (init_expr, field_decl, field_type,
				 field_reference_type);

  return false;
}

/* Callback data for dfs_locate_field_accessor_pre.  */

struct locate_field_data
{
  locate_field_data (tree field_decl_, bool const_p_)
  : field_decl (field_decl_), const_p (const_p_) {}

  tree field_decl;
  bool const_p;
};

/* Return a FUNCTION_DECL that is an "accessor" method for DATA, a FIELD_DECL,
   callable via binfo, if one exists, otherwise return NULL_TREE.

   Callback for dfs_walk_once_accessible for use within
   locate_field_accessor.  */

static tree
dfs_locate_field_accessor_pre (tree binfo, void *data)
{
  locate_field_data *lfd = (locate_field_data *)data;
  tree type = BINFO_TYPE (binfo);

  vec<tree, va_gc> *member_vec;
  tree fn;
  size_t i;

  if (!CLASS_TYPE_P (type))
    return NULL_TREE;

  member_vec = CLASSTYPE_MEMBER_VEC (type);
  if (!member_vec)
    return NULL_TREE;

  for (i = 0; vec_safe_iterate (member_vec, i, &fn); ++i)
    if (fn)
      if (field_accessor_p (fn, lfd->field_decl, lfd->const_p))
	return fn;

  return NULL_TREE;
}

/* Return a FUNCTION_DECL that is an "accessor" method for FIELD_DECL,
   callable via BASETYPE_PATH, if one exists, otherwise return NULL_TREE.  */

tree
locate_field_accessor (tree basetype_path, tree field_decl, bool const_p)
{
  if (TREE_CODE (basetype_path) != TREE_BINFO)
    return NULL_TREE;

  /* Walk the hierarchy, looking for a method of some base class that allows
     access to the field.  */
  locate_field_data lfd (field_decl, const_p);
  return dfs_walk_once_accessible (basetype_path, /*friends=*/true,
				   dfs_locate_field_accessor_pre,
				   NULL, &lfd);
}

/* Check that virtual overrider OVERRIDER is acceptable for base function
   BASEFN. Issue diagnostic, and return zero, if unacceptable.  */

static int
check_final_overrider (tree overrider, tree basefn)
{
  tree over_type = TREE_TYPE (overrider);
  tree base_type = TREE_TYPE (basefn);
  tree over_return = fndecl_declared_return_type (overrider);
  tree base_return = fndecl_declared_return_type (basefn);
  tree over_throw, base_throw;

  int fail = 0;

  if (DECL_INVALID_OVERRIDER_P (overrider))
    return 0;

  if (same_type_p (base_return, over_return))
    /* OK */;
  else if ((CLASS_TYPE_P (over_return) && CLASS_TYPE_P (base_return))
	   || (TREE_CODE (base_return) == TREE_CODE (over_return)
	       && INDIRECT_TYPE_P (base_return)))
    {
      /* Potentially covariant.  */
      unsigned base_quals, over_quals;

      fail = !INDIRECT_TYPE_P (base_return);
      if (!fail)
	{
	  fail = cp_type_quals (base_return) != cp_type_quals (over_return);

	  base_return = TREE_TYPE (base_return);
	  over_return = TREE_TYPE (over_return);
	}
      base_quals = cp_type_quals (base_return);
      over_quals = cp_type_quals (over_return);

      if ((base_quals & over_quals) != over_quals)
	fail = 1;

      if (CLASS_TYPE_P (base_return) && CLASS_TYPE_P (over_return))
	{
	  /* Strictly speaking, the standard requires the return type to be
	     complete even if it only differs in cv-quals, but that seems
	     like a bug in the wording.  */
	  if (!same_type_ignoring_top_level_qualifiers_p (base_return,
							  over_return))
	    {
	      tree binfo = lookup_base (over_return, base_return,
					ba_check, NULL, tf_none);

	      if (!binfo || binfo == error_mark_node)
		fail = 1;
	    }
	}
      else if (can_convert_standard (TREE_TYPE (base_type),
				     TREE_TYPE (over_type),
				     tf_warning_or_error))
	/* GNU extension, allow trivial pointer conversions such as
	   converting to void *, or qualification conversion.  */
	{
	  auto_diagnostic_group d;
	  if (pedwarn (DECL_SOURCE_LOCATION (overrider), 0,
		       "invalid covariant return type for %q#D", overrider))
	    inform (DECL_SOURCE_LOCATION (basefn),
		    "overridden function is %q#D", basefn);
	}
      else
	fail = 2;
    }
  else
    fail = 2;
  if (!fail)
    /* OK */;
  else
    {
      if (fail == 1)
	{
	  auto_diagnostic_group d;
	  error ("invalid covariant return type for %q+#D", overrider);
	  inform (DECL_SOURCE_LOCATION (basefn),
		  "overridden function is %q#D", basefn);
	}
      else
	{
	  auto_diagnostic_group d;
	  error ("conflicting return type specified for %q+#D", overrider);
	  inform (DECL_SOURCE_LOCATION (basefn),
		  "overridden function is %q#D", basefn);
	}
      DECL_INVALID_OVERRIDER_P (overrider) = 1;
      return 0;
    }

  /* Check throw specifier is at least as strict.  */
  maybe_instantiate_noexcept (basefn);
  maybe_instantiate_noexcept (overrider);
  base_throw = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (basefn));
  over_throw = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (overrider));

  if (!comp_except_specs (base_throw, over_throw, ce_derived))
    {
      auto_diagnostic_group d;
      error ("looser throw specifier for %q+#F", overrider);
      inform (DECL_SOURCE_LOCATION (basefn),
	      "overridden function is %q#F", basefn);
      DECL_INVALID_OVERRIDER_P (overrider) = 1;
      return 0;
    }

  /* Check for conflicting type attributes.  But leave transaction_safe for
     set_one_vmethod_tm_attributes.  */
  if (!comp_type_attributes (over_type, base_type)
      && !tx_safe_fn_type_p (base_type)
      && !tx_safe_fn_type_p (over_type))
    {
      auto_diagnostic_group d;
      error ("conflicting type attributes specified for %q+#D", overrider);
      inform (DECL_SOURCE_LOCATION (basefn),
	      "overridden function is %q#D", basefn);
      DECL_INVALID_OVERRIDER_P (overrider) = 1;
      return 0;
    }

  /* A function declared transaction_safe_dynamic that overrides a function
     declared transaction_safe (but not transaction_safe_dynamic) is
     ill-formed.  */
  if (tx_safe_fn_type_p (base_type)
      && lookup_attribute ("transaction_safe_dynamic",
			   DECL_ATTRIBUTES (overrider))
      && !lookup_attribute ("transaction_safe_dynamic",
			    DECL_ATTRIBUTES (basefn)))
    {
      auto_diagnostic_group d;
      error_at (DECL_SOURCE_LOCATION (overrider),
		"%qD declared %<transaction_safe_dynamic%>", overrider);
      inform (DECL_SOURCE_LOCATION (basefn),
	      "overriding %qD declared %<transaction_safe%>", basefn);
    }

  if (DECL_DELETED_FN (basefn) != DECL_DELETED_FN (overrider))
    {
      if (DECL_DELETED_FN (overrider))
	{
	  auto_diagnostic_group d;
	  error ("deleted function %q+D overriding non-deleted function",
		 overrider);
	  inform (DECL_SOURCE_LOCATION (basefn),
		  "overridden function is %qD", basefn);
	  maybe_explain_implicit_delete (overrider);
	}
      else
	{
	  auto_diagnostic_group d;
	  error ("non-deleted function %q+D overriding deleted function",
		 overrider);
	  inform (DECL_SOURCE_LOCATION (basefn),
		  "overridden function is %qD", basefn);
	}
      return 0;
    }
  if (DECL_FINAL_P (basefn))
    {
      auto_diagnostic_group d;
      error ("virtual function %q+D overriding final function", overrider);
      inform (DECL_SOURCE_LOCATION (basefn),
	      "overridden function is %qD", basefn);
      return 0;
    }
  return 1;
}

/* Given a class TYPE, and a function decl FNDECL, look for
   virtual functions in TYPE's hierarchy which FNDECL overrides.
   We do not look in TYPE itself, only its bases.

   Returns nonzero, if we find any. Set FNDECL's DECL_VIRTUAL_P, if we
   find that it overrides anything.

   We check that every function which is overridden, is correctly
   overridden.  */

int
look_for_overrides (tree type, tree fndecl)
{
  tree binfo = TYPE_BINFO (type);
  tree base_binfo;
  int ix;
  int found = 0;

  /* A constructor for a class T does not override a function T
     in a base class.  */
  if (DECL_CONSTRUCTOR_P (fndecl))
    return 0;

  for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
    {
      tree basetype = BINFO_TYPE (base_binfo);

      if (TYPE_POLYMORPHIC_P (basetype))
	found += look_for_overrides_r (basetype, fndecl);
    }
  return found;
}

/* Look in TYPE for virtual functions with the same signature as
   FNDECL.  */

tree
look_for_overrides_here (tree type, tree fndecl)
{
  tree ovl = get_class_binding (type, DECL_NAME (fndecl));

  for (ovl_iterator iter (ovl); iter; ++iter)
    {
      tree fn = *iter;

      if (!DECL_VIRTUAL_P (fn))
	/* Not a virtual.  */;
      else if (DECL_CONTEXT (fn) != type)
	/* Introduced with a using declaration.  */;
      else if (DECL_STATIC_FUNCTION_P (fndecl))
	{
	  tree btypes = TYPE_ARG_TYPES (TREE_TYPE (fn));
	  tree dtypes = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
	  if (compparms (TREE_CHAIN (btypes), dtypes))
	    return fn;
	}
      else if (same_signature_p (fndecl, fn))
	return fn;
    }

  return NULL_TREE;
}

/* Look in TYPE for virtual functions overridden by FNDECL. Check both
   TYPE itself and its bases.  */

static int
look_for_overrides_r (tree type, tree fndecl)
{
  tree fn = look_for_overrides_here (type, fndecl);
  if (fn)
    {
      if (DECL_STATIC_FUNCTION_P (fndecl))
	{
	  /* A static member function cannot match an inherited
	     virtual member function.  */
	  auto_diagnostic_group d;
	  error ("%q+#D cannot be declared", fndecl);
	  error ("  since %q+#D declared in base class", fn);
	}
      else
	{
	  /* It's definitely virtual, even if not explicitly set.  */
	  DECL_VIRTUAL_P (fndecl) = 1;
	  check_final_overrider (fndecl, fn);
	}
      return 1;
    }

  /* We failed to find one declared in this class. Look in its bases.  */
  return look_for_overrides (type, fndecl);
}

/* Called via dfs_walk from dfs_get_pure_virtuals.  */

static tree
dfs_get_pure_virtuals (tree binfo, void *data)
{
  tree type = (tree) data;

  /* We're not interested in primary base classes; the derived class
     of which they are a primary base will contain the information we
     need.  */
  if (!BINFO_PRIMARY_P (binfo))
    {
      tree virtuals;

      for (virtuals = BINFO_VIRTUALS (binfo);
	   virtuals;
	   virtuals = TREE_CHAIN (virtuals))
	if (DECL_PURE_VIRTUAL_P (BV_FN (virtuals)))
	  vec_safe_push (CLASSTYPE_PURE_VIRTUALS (type), BV_FN (virtuals));
    }

  return NULL_TREE;
}

/* Set CLASSTYPE_PURE_VIRTUALS for TYPE.  */

void
get_pure_virtuals (tree type)
{
  /* Clear the CLASSTYPE_PURE_VIRTUALS list; whatever is already there
     is going to be overridden.  */
  CLASSTYPE_PURE_VIRTUALS (type) = NULL;
  /* Now, run through all the bases which are not primary bases, and
     collect the pure virtual functions.  We look at the vtable in
     each class to determine what pure virtual functions are present.
     (A primary base is not interesting because the derived class of
     which it is a primary base will contain vtable entries for the
     pure virtuals in the base class.  */
  dfs_walk_once (TYPE_BINFO (type), NULL, dfs_get_pure_virtuals, type);
}

/* Debug info for C++ classes can get very large; try to avoid
   emitting it everywhere.

   Note that this optimization wins even when the target supports
   BINCL (if only slightly), and reduces the amount of work for the
   linker.  */

void
maybe_suppress_debug_info (tree t)
{
  if (write_symbols == NO_DEBUG)
    return;

  /* We might have set this earlier in cp_finish_decl.  */
  TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 0;

  /* Always emit the information for each class every time. */
  if (flag_emit_class_debug_always)
    return;

  /* If we already know how we're handling this class, handle debug info
     the same way.  */
  if (CLASSTYPE_INTERFACE_KNOWN (t))
    {
      if (CLASSTYPE_INTERFACE_ONLY (t))
	TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 1;
      /* else don't set it.  */
    }
  /* If the class has a vtable, write out the debug info along with
     the vtable.  */
  else if (TYPE_CONTAINS_VPTR_P (t))
    TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 1;

  /* Otherwise, just emit the debug info normally.  */
}

/* Note that we want debugging information for a base class of a class
   whose vtable is being emitted.  Normally, this would happen because
   calling the constructor for a derived class implies calling the
   constructors for all bases, which involve initializing the
   appropriate vptr with the vtable for the base class; but in the
   presence of optimization, this initialization may be optimized
   away, so we tell finish_vtable_vardecl that we want the debugging
   information anyway.  */

static tree
dfs_debug_mark (tree binfo, void * /*data*/)
{
  tree t = BINFO_TYPE (binfo);

  if (CLASSTYPE_DEBUG_REQUESTED (t))
    return dfs_skip_bases;

  CLASSTYPE_DEBUG_REQUESTED (t) = 1;

  return NULL_TREE;
}

/* Write out the debugging information for TYPE, whose vtable is being
   emitted.  Also walk through our bases and note that we want to
   write out information for them.  This avoids the problem of not
   writing any debug info for intermediate basetypes whose
   constructors, and thus the references to their vtables, and thus
   the vtables themselves, were optimized away.  */

void
note_debug_info_needed (tree type)
{
  if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_NAME (type)))
    {
      TYPE_DECL_SUPPRESS_DEBUG (TYPE_NAME (type)) = 0;
      rest_of_type_compilation (type, namespace_bindings_p ());
    }

  dfs_walk_all (TYPE_BINFO (type), dfs_debug_mark, NULL, 0);
}

/* Helper for lookup_conversions_r.  TO_TYPE is the type converted to
   by a conversion op in base BINFO.  VIRTUAL_DEPTH is nonzero if
   BINFO is morally virtual, and VIRTUALNESS is nonzero if virtual
   bases have been encountered already in the tree walk.  PARENT_CONVS
   is the list of lists of conversion functions that could hide CONV
   and OTHER_CONVS is the list of lists of conversion functions that
   could hide or be hidden by CONV, should virtualness be involved in
   the hierarchy.  Merely checking the conversion op's name is not
   enough because two conversion operators to the same type can have
   different names.  Return nonzero if we are visible.  */

static int
check_hidden_convs (tree binfo, int virtual_depth, int virtualness,
		    tree to_type, tree parent_convs, tree other_convs)
{
  tree level, probe;

  /* See if we are hidden by a parent conversion.  */
  for (level = parent_convs; level; level = TREE_CHAIN (level))
    for (probe = TREE_VALUE (level); probe; probe = TREE_CHAIN (probe))
      if (same_type_p (to_type, TREE_TYPE (probe)))
	return 0;

  if (virtual_depth || virtualness)
    {
     /* In a virtual hierarchy, we could be hidden, or could hide a
	conversion function on the other_convs list.  */
      for (level = other_convs; level; level = TREE_CHAIN (level))
	{
	  int we_hide_them;
	  int they_hide_us;
	  tree *prev, other;

	  if (!(virtual_depth || TREE_STATIC (level)))
	    /* Neither is morally virtual, so cannot hide each other.  */
	    continue;

	  if (!TREE_VALUE (level))
	    /* They evaporated away already.  */
	    continue;

	  they_hide_us = (virtual_depth
			  && original_binfo (binfo, TREE_PURPOSE (level)));
	  we_hide_them = (!they_hide_us && TREE_STATIC (level)
			  && original_binfo (TREE_PURPOSE (level), binfo));

	  if (!(we_hide_them || they_hide_us))
	    /* Neither is within the other, so no hiding can occur.  */
	    continue;

	  for (prev = &TREE_VALUE (level), other = *prev; other;)
	    {
	      if (same_type_p (to_type, TREE_TYPE (other)))
		{
		  if (they_hide_us)
		    /* We are hidden.  */
		    return 0;

		  if (we_hide_them)
		    {
		      /* We hide the other one.  */
		      other = TREE_CHAIN (other);
		      *prev = other;
		      continue;
		    }
		}
	      prev = &TREE_CHAIN (other);
	      other = *prev;
	    }
	}
    }
  return 1;
}

/* Helper for lookup_conversions_r.  PARENT_CONVS is a list of lists
   of conversion functions, the first slot will be for the current
   binfo, if MY_CONVS is non-NULL.  CHILD_CONVS is the list of lists
   of conversion functions from children of the current binfo,
   concatenated with conversions from elsewhere in the hierarchy --
   that list begins with OTHER_CONVS.  Return a single list of lists
   containing only conversions from the current binfo and its
   children.  */

static tree
split_conversions (tree my_convs, tree parent_convs,
		   tree child_convs, tree other_convs)
{
  tree t;
  tree prev;

  /* Remove the original other_convs portion from child_convs.  */
  for (prev = NULL, t = child_convs;
       t != other_convs; prev = t, t = TREE_CHAIN (t))
    continue;

  if (prev)
    TREE_CHAIN (prev) = NULL_TREE;
  else
    child_convs = NULL_TREE;

  /* Attach the child convs to any we had at this level.  */
  if (my_convs)
    {
      my_convs = parent_convs;
      TREE_CHAIN (my_convs) = child_convs;
    }
  else
    my_convs = child_convs;

  return my_convs;
}

/* Worker for lookup_conversions.  Lookup conversion functions in
   BINFO and its children.  VIRTUAL_DEPTH is nonzero, if BINFO is in a
   morally virtual base, and VIRTUALNESS is nonzero, if we've
   encountered virtual bases already in the tree walk.  PARENT_CONVS
   is a list of conversions within parent binfos.  OTHER_CONVS are
   conversions found elsewhere in the tree.  Return the conversions
   found within this portion of the graph in CONVS.  Return nonzero if
   we encountered virtualness.  We keep template and non-template
   conversions separate, to avoid unnecessary type comparisons.

   The located conversion functions are held in lists of lists.  The
   TREE_VALUE of the outer list is the list of conversion functions
   found in a particular binfo.  The TREE_PURPOSE of both the outer
   and inner lists is the binfo at which those conversions were
   found.  TREE_STATIC is set for those lists within of morally
   virtual binfos.  The TREE_VALUE of the inner list is the conversion
   function or overload itself.  The TREE_TYPE of each inner list node
   is the converted-to type.  */

static int
lookup_conversions_r (tree binfo, int virtual_depth, int virtualness,
		      tree parent_convs, tree other_convs, tree *convs)
{
  int my_virtualness = 0;
  tree my_convs = NULL_TREE;
  tree child_convs = NULL_TREE;

  /* If we have no conversion operators, then don't look.  */
  if (!TYPE_HAS_CONVERSION (BINFO_TYPE (binfo)))
    {
      *convs = NULL_TREE;

      return 0;
    }

  if (BINFO_VIRTUAL_P (binfo))
    virtual_depth++;

  /* First, locate the unhidden ones at this level.  */
  if (tree conv = get_class_binding (BINFO_TYPE (binfo), conv_op_identifier))
  for (ovl_iterator iter (conv); iter; ++iter)
    {
      tree fn = *iter;
      tree type = DECL_CONV_FN_TYPE (fn);

      if (TREE_CODE (fn) != TEMPLATE_DECL && type_uses_auto (type))
	{
	  mark_used (fn);
	  type = DECL_CONV_FN_TYPE (fn);
	}

      if (check_hidden_convs (binfo, virtual_depth, virtualness,
			      type, parent_convs, other_convs))
	{
	  my_convs = tree_cons (binfo, fn, my_convs);
	  TREE_TYPE (my_convs) = type;
	  if (virtual_depth)
	    {
	      TREE_STATIC (my_convs) = 1;
	      my_virtualness = 1;
	    }
	}
    }

  if (my_convs)
    {
      parent_convs = tree_cons (binfo, my_convs, parent_convs);
      if (virtual_depth)
	TREE_STATIC (parent_convs) = 1;
    }

  child_convs = other_convs;

  /* Now iterate over each base, looking for more conversions.  */
  unsigned i;
  tree base_binfo;
  for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
    {
      tree base_convs;
      unsigned base_virtualness;

      base_virtualness = lookup_conversions_r (base_binfo,
					       virtual_depth, virtualness,
					       parent_convs, child_convs,
					       &base_convs);
      if (base_virtualness)
	my_virtualness = virtualness = 1;
      child_convs = chainon (base_convs, child_convs);
    }

  *convs = split_conversions (my_convs, parent_convs,
			      child_convs, other_convs);

  return my_virtualness;
}

/* Return a TREE_LIST containing all the non-hidden user-defined
   conversion functions for TYPE (and its base-classes).  The
   TREE_VALUE of each node is the FUNCTION_DECL of the conversion
   function.  The TREE_PURPOSE is the BINFO from which the conversion
   functions in this node were selected.  This function is effectively
   performing a set of member lookups as lookup_fnfield does, but
   using the type being converted to as the unique key, rather than the
   field name.  */

tree
lookup_conversions (tree type)
{
  tree convs;

  complete_type (type);
  if (!CLASS_TYPE_P (type) || !TYPE_BINFO (type))
    return NULL_TREE;

  lookup_conversions_r (TYPE_BINFO (type), 0, 0, NULL_TREE, NULL_TREE, &convs);

  tree list = NULL_TREE;
  
  /* Flatten the list-of-lists */
  for (; convs; convs = TREE_CHAIN (convs))
    {
      tree probe, next;

      for (probe = TREE_VALUE (convs); probe; probe = next)
	{
	  next = TREE_CHAIN (probe);

	  TREE_CHAIN (probe) = list;
	  list = probe;
	}
    }

  return list;
}

/* Returns the binfo of the first direct or indirect virtual base derived
   from BINFO, or NULL if binfo is not via virtual.  */

tree
binfo_from_vbase (tree binfo)
{
  for (; binfo; binfo = BINFO_INHERITANCE_CHAIN (binfo))
    {
      if (BINFO_VIRTUAL_P (binfo))
	return binfo;
    }
  return NULL_TREE;
}

/* Returns the binfo of the first direct or indirect virtual base derived
   from BINFO up to the TREE_TYPE, LIMIT, or NULL if binfo is not
   via virtual.  */

tree
binfo_via_virtual (tree binfo, tree limit)
{
  if (limit && !CLASSTYPE_VBASECLASSES (limit))
    /* LIMIT has no virtual bases, so BINFO cannot be via one.  */
    return NULL_TREE;

  for (; binfo && !SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), limit);
       binfo = BINFO_INHERITANCE_CHAIN (binfo))
    {
      if (BINFO_VIRTUAL_P (binfo))
	return binfo;
    }
  return NULL_TREE;
}

/* BINFO is for a base class in some hierarchy.  Return true iff it is a
   direct base.  */

bool
binfo_direct_p (tree binfo)
{
  tree d_binfo = BINFO_INHERITANCE_CHAIN (binfo);
  if (BINFO_INHERITANCE_CHAIN (d_binfo))
    /* A second inheritance chain means indirect.  */
    return false;
  if (!BINFO_VIRTUAL_P (binfo))
    /* Non-virtual, so only one inheritance chain means direct.  */
    return true;
  /* A virtual base looks like a direct base, so we need to look through the
     direct bases to see if it's there.  */
  tree b_binfo;
  for (int i = 0; BINFO_BASE_ITERATE (d_binfo, i, b_binfo); ++i)
    if (b_binfo == binfo)
      return true;
  return false;
}

/* BINFO is a base binfo in the complete type BINFO_TYPE (HERE).
   Find the equivalent binfo within whatever graph HERE is located.
   This is the inverse of original_binfo.  */

tree
copied_binfo (tree binfo, tree here)
{
  tree result = NULL_TREE;

  if (BINFO_VIRTUAL_P (binfo))
    {
      tree t;

      for (t = here; BINFO_INHERITANCE_CHAIN (t);
	   t = BINFO_INHERITANCE_CHAIN (t))
	continue;

      result = binfo_for_vbase (BINFO_TYPE (binfo), BINFO_TYPE (t));
    }
  else if (BINFO_INHERITANCE_CHAIN (binfo))
    {
      tree cbinfo;
      tree base_binfo;
      int ix;

      cbinfo = copied_binfo (BINFO_INHERITANCE_CHAIN (binfo), here);
      for (ix = 0; BINFO_BASE_ITERATE (cbinfo, ix, base_binfo); ix++)
	if (SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo), BINFO_TYPE (binfo)))
	  {
	    result = base_binfo;
	    break;
	  }
    }
  else
    {
      gcc_assert (SAME_BINFO_TYPE_P (BINFO_TYPE (here), BINFO_TYPE (binfo)));
      result = here;
    }

  gcc_assert (result);
  return result;
}

tree
binfo_for_vbase (tree base, tree t)
{
  unsigned ix;
  tree binfo;
  vec<tree, va_gc> *vbases;

  for (vbases = CLASSTYPE_VBASECLASSES (t), ix = 0;
       vec_safe_iterate (vbases, ix, &binfo); ix++)
    if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), base))
      return binfo;
  return NULL;
}

/* BINFO is some base binfo of HERE, within some other
   hierarchy. Return the equivalent binfo, but in the hierarchy
   dominated by HERE.  This is the inverse of copied_binfo.  If BINFO
   is not a base binfo of HERE, returns NULL_TREE.  */

tree
original_binfo (tree binfo, tree here)
{
  tree result = NULL;

  if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), BINFO_TYPE (here)))
    result = here;
  else if (BINFO_VIRTUAL_P (binfo))
    result = (CLASSTYPE_VBASECLASSES (BINFO_TYPE (here))
	      ? binfo_for_vbase (BINFO_TYPE (binfo), BINFO_TYPE (here))
	      : NULL_TREE);
  else if (BINFO_INHERITANCE_CHAIN (binfo))
    {
      tree base_binfos;

      base_binfos = original_binfo (BINFO_INHERITANCE_CHAIN (binfo), here);
      if (base_binfos)
	{
	  int ix;
	  tree base_binfo;

	  for (ix = 0; (base_binfo = BINFO_BASE_BINFO (base_binfos, ix)); ix++)
	    if (SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo),
				   BINFO_TYPE (binfo)))
	      {
		result = base_binfo;
		break;
	      }
	}
    }

  return result;
}

/* True iff TYPE has any dependent bases (and therefore we can't say
   definitively that another class is not a base of an instantiation of
   TYPE).  */

bool
any_dependent_bases_p (tree type)
{
  if (!type || !CLASS_TYPE_P (type) || !uses_template_parms (type))
    return false;

  /* If we haven't set TYPE_BINFO yet, we don't know anything about the bases.
     Return false because in this situation we aren't actually looking up names
     in the scope of the class, so it doesn't matter whether it has dependent
     bases.  */
  if (!TYPE_BINFO (type))
    return false;

  unsigned i;
  tree base_binfo;
  FOR_EACH_VEC_SAFE_ELT (BINFO_BASE_BINFOS (TYPE_BINFO (type)), i, base_binfo)
    if (BINFO_DEPENDENT_BASE_P (base_binfo))
      return true;

  return false;
}