1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
|
/* This file is part of the Intel(R) Cilk(TM) Plus support
It contains routines to handle Array Notation expression
handling routines in the C++ Compiler.
Copyright (C) 2013-2014 Free Software Foundation, Inc.
Contributed by Balaji V. Iyer <balaji.v.iyer@intel.com>,
Intel Corporation
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
/* The Array Notation Transformation Technique:
An array notation expression has 4 major components:
1. The array name
2. Start Index
3. Number of elements we need to acess (we call it length)
4. Stride
So, if we have something like A[0:5:2], we are accessing A[0], A[2], A[4],
A[6] and A[8]. The user is responsible to make sure the access length does
not step outside the array's size.
In this section, I highlight the overall method on how array notations are
broken up into C/C++ code. Almost all the functions follows this step:
Let's say the user has used the array notation in a statement like this:
A[St1:Ln:Str1] = B[St2:Ln:Str2] + <NON ARRAY_NOT STMT>
where St{1,2} = Starting index, Ln = Number of elements we need to access,
and Str{1,2} = the stride.
Note: The length of both the array notation expressions must be the same.
The above expression is broken into the following:
for (Tmp_Var = 0; Tmp_Var < Ln; Tmp_Var++)
A[St1 + Tmp_Var * Str1] = B[St1 + Tmp_Var * Str2] + <NON_ARRAY_NOT_STMT>;
*/
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tree.h"
#include "cp-tree.h"
#include "c-family/c-common.h"
#include "diagnostic.h"
#include "tree-iterator.h"
#include "vec.h"
/* Creates a FOR_STMT with INIT, COND, INCR and BODY as the initializer,
condition, increment expression and the loop-body, respectively. */
static void
create_an_loop (tree init, tree cond, tree incr, tree body)
{
tree for_stmt;
finish_expr_stmt (init);
for_stmt = begin_for_stmt (NULL_TREE, NULL_TREE);
finish_for_init_stmt (for_stmt);
finish_for_cond (cond, for_stmt, false);
finish_for_expr (incr, for_stmt);
finish_expr_stmt (body);
finish_for_stmt (for_stmt);
}
/* If *VALUE is not a constant integer, then this function replaces it with
a variable to make it loop invariant for array notations. */
static inline void
make_triplet_val_inv (tree *value)
{
if (TREE_CODE (*value) != INTEGER_CST
&& TREE_CODE (*value) != PARM_DECL
&& TREE_CODE (*value) != VAR_DECL)
*value = get_temp_regvar (ptrdiff_type_node, *value);
}
/* Returns a vector of size RANK that contains an ARRAY_REF. This vector is
created using array notation-triplet information stored in AN_INFO. The
induction var is taken from AN_LOOP_INFO.
For example: For an array notation A[5:10:2], the vector start will be
of size 1 holding '5', stride of same size as start but holding the value of
as 2, and is_vector as true. Let's assume VAR is 'x'
This function returns a vector of size 1 with the following data:
A[5 + (x * 2)] .
*/
static vec<tree, va_gc> *
create_array_refs (location_t loc, vec<vec<an_parts> > an_info,
vec<an_loop_parts> an_loop_info, size_t size, size_t rank)
{
tree ind_mult, ind_incr;
vec<tree, va_gc> *array_operand = NULL;
for (size_t ii = 0; ii < size; ii++)
if (an_info[ii][0].is_vector)
{
tree array_opr = an_info[ii][rank - 1].value;
for (int s_jj = rank -1; s_jj >= 0; s_jj--)
{
tree start = cp_fold_convert (ptrdiff_type_node,
an_info[ii][s_jj].start);
tree stride = cp_fold_convert (ptrdiff_type_node,
an_info[ii][s_jj].stride);
tree var = cp_fold_convert (ptrdiff_type_node,
an_loop_info[s_jj].var);
ind_mult = build2 (MULT_EXPR, TREE_TYPE (var), var, stride);
ind_incr = build2 (PLUS_EXPR, TREE_TYPE (var), start, ind_mult);
/* Array [ start_index + (induction_var * stride)] */
array_opr = grok_array_decl (loc, array_opr, ind_incr, false);
}
vec_safe_push (array_operand, array_opr);
}
else
vec_safe_push (array_operand, integer_one_node);
return array_operand;
}
/* Populates the INCR and CMP fields in *NODE with the increment
(of type POSTINCREMENT) and comparison (of TYPE LT_EXPR) expressions, using
data from AN_INFO. */
void
create_cmp_incr (location_t loc, vec <an_loop_parts> *node, size_t rank,
vec<vec<an_parts> > an_info, tsubst_flags_t complain)
{
for (size_t ii = 0; ii < rank; ii++)
{
(*node)[ii].incr = build_x_unary_op (loc, POSTINCREMENT_EXPR,
(*node)[ii].var, complain);
(*node)[ii].cmp = build_x_binary_op (loc, LT_EXPR, (*node)[ii].var,
TREE_CODE ((*node)[ii].var),
an_info[0][ii].length,
TREE_CODE (an_info[0][ii].length),
NULL, complain);
}
}
/* Replaces all the scalar expressions in *NODE. Returns a STATEMENT LIST that
holds the NODE along with the variables that hold the results of the
invariant expressions. */
static tree
replace_invariant_exprs (tree *node)
{
size_t ix = 0;
tree node_list = NULL_TREE;
tree t = NULL_TREE, new_var = NULL_TREE;
struct inv_list data;
data.list_values = NULL;
data.replacement = NULL;
data.additional_tcodes = NULL;
cp_walk_tree (node, find_inv_trees, (void *) &data, NULL);
if (vec_safe_length (data.list_values))
{
node_list = push_stmt_list ();
for (ix = 0; vec_safe_iterate (data.list_values, ix, &t); ix++)
{
/* Sometimes, when comma_expr has a function call in it, it will
typecast it to void. Find_inv_trees finds those nodes and so
if it void type, then don't bother creating a new var to hold
the return value. */
if (VOID_TYPE_P (TREE_TYPE (t)))
{
finish_expr_stmt (t);
new_var = void_zero_node;
}
else
new_var = get_temp_regvar (TREE_TYPE (t), t);
vec_safe_push (data.replacement, new_var);
}
cp_walk_tree (node, replace_inv_trees, (void *) &data, NULL);
node_list = pop_stmt_list (node_list);
}
return node_list;
}
/* Replace array notation's built-in function passed in AN_BUILTIN_FN with
the appropriate loop and computation (all stored in variable LOOP of type
tree node). The output of the function function is always a scalar and that
result is returned in *NEW_VAR. *NEW_VAR is NULL_TREE if the function is
__sec_reduce_mutating. */
static tree
expand_sec_reduce_builtin (tree an_builtin_fn, tree *new_var)
{
tree new_var_type = NULL_TREE, func_parm, new_yes_expr, new_no_expr;
tree array_ind_value = NULL_TREE, new_no_ind, new_yes_ind, new_no_list;
tree new_yes_list, new_cond_expr, new_expr = NULL_TREE;
vec<tree, va_gc> *array_list = NULL, *array_operand = NULL;
size_t list_size = 0, rank = 0, ii = 0;
tree body, an_init, loop_with_init = alloc_stmt_list ();
tree array_op0, comp_node = NULL_TREE;
tree call_fn = NULL_TREE, identity_value = NULL_TREE;
tree init = NULL_TREE, cond_init = NULL_TREE;
enum tree_code code = NOP_EXPR;
location_t location = UNKNOWN_LOCATION;
vec<vec<an_parts> > an_info = vNULL;
vec<an_loop_parts> an_loop_info = vNULL;
enum built_in_function an_type =
is_cilkplus_reduce_builtin (CALL_EXPR_FN (an_builtin_fn));
vec <tree, va_gc> *func_args;
if (an_type == BUILT_IN_NONE)
return NULL_TREE;
if (an_type != BUILT_IN_CILKPLUS_SEC_REDUCE
&& an_type != BUILT_IN_CILKPLUS_SEC_REDUCE_MUTATING)
func_parm = CALL_EXPR_ARG (an_builtin_fn, 0);
else
{
call_fn = CALL_EXPR_ARG (an_builtin_fn, 2);
/* We need to do this because we are "faking" the builtin function types,
so the compiler does a bunch of typecasts and this will get rid of
all that! */
STRIP_NOPS (call_fn);
if (TREE_CODE (call_fn) != OVERLOAD
&& TREE_CODE (call_fn) != FUNCTION_DECL)
call_fn = TREE_OPERAND (call_fn, 0);
identity_value = CALL_EXPR_ARG (an_builtin_fn, 0);
func_parm = CALL_EXPR_ARG (an_builtin_fn, 1);
STRIP_NOPS (identity_value);
}
STRIP_NOPS (func_parm);
location = EXPR_LOCATION (an_builtin_fn);
/* Note about using find_rank (): If find_rank returns false, then it must
have already reported an error, thus we just return an error_mark_node
without any doing any error emission. */
if (!find_rank (location, an_builtin_fn, an_builtin_fn, true, &rank))
return error_mark_node;
if (rank == 0)
return an_builtin_fn;
else if (rank > 1
&& (an_type == BUILT_IN_CILKPLUS_SEC_REDUCE_MAX_IND
|| an_type == BUILT_IN_CILKPLUS_SEC_REDUCE_MIN_IND))
{
error_at (location, "__sec_reduce_min_ind or __sec_reduce_max_ind cannot "
"have arrays with dimension greater than 1");
return error_mark_node;
}
extract_array_notation_exprs (func_parm, true, &array_list);
list_size = vec_safe_length (array_list);
switch (an_type)
{
case BUILT_IN_CILKPLUS_SEC_REDUCE_ADD:
case BUILT_IN_CILKPLUS_SEC_REDUCE_MUL:
case BUILT_IN_CILKPLUS_SEC_REDUCE_MAX:
case BUILT_IN_CILKPLUS_SEC_REDUCE_MIN:
new_var_type = TREE_TYPE ((*array_list)[0]);
break;
case BUILT_IN_CILKPLUS_SEC_REDUCE_ALL_ZERO:
case BUILT_IN_CILKPLUS_SEC_REDUCE_ANY_ZERO:
case BUILT_IN_CILKPLUS_SEC_REDUCE_ANY_NONZERO:
case BUILT_IN_CILKPLUS_SEC_REDUCE_ALL_NONZERO:
new_var_type = boolean_type_node;
break;
case BUILT_IN_CILKPLUS_SEC_REDUCE_MAX_IND:
case BUILT_IN_CILKPLUS_SEC_REDUCE_MIN_IND:
new_var_type = size_type_node;
break;
case BUILT_IN_CILKPLUS_SEC_REDUCE:
if (call_fn && identity_value)
new_var_type = TREE_TYPE ((*array_list)[0]);
break;
case BUILT_IN_CILKPLUS_SEC_REDUCE_MUTATING:
new_var_type = NULL_TREE;
break;
default:
gcc_unreachable ();
}
if (new_var_type && TREE_CODE (new_var_type) == ARRAY_TYPE)
new_var_type = TREE_TYPE (new_var_type);
an_loop_info.safe_grow_cleared (rank);
an_init = push_stmt_list ();
/* Assign the array notation components to variable so that they can satisfy
the exec-once rule. */
for (ii = 0; ii < list_size; ii++)
if (TREE_CODE ((*array_list)[ii]) == ARRAY_NOTATION_REF)
{
tree anode = (*array_list)[ii];
make_triplet_val_inv (&ARRAY_NOTATION_START (anode));
make_triplet_val_inv (&ARRAY_NOTATION_LENGTH (anode));
make_triplet_val_inv (&ARRAY_NOTATION_STRIDE (anode));
}
cilkplus_extract_an_triplets (array_list, list_size, rank, &an_info);
for (ii = 0; ii < rank; ii++)
{
tree typ = ptrdiff_type_node;
/* In this place, we are using get_temp_regvar instead of
create_temporary_var if an_type is SEC_REDUCE_MAX/MIN_IND because
the array_ind_value depends on this value being initalized to 0. */
if (an_type == BUILT_IN_CILKPLUS_SEC_REDUCE_MAX_IND
|| an_type == BUILT_IN_CILKPLUS_SEC_REDUCE_MIN_IND)
an_loop_info[ii].var = get_temp_regvar (typ, build_zero_cst (typ));
else
{
an_loop_info[ii].var = create_temporary_var (typ);
add_decl_expr (an_loop_info[ii].var);
}
an_loop_info[ii].ind_init =
build_x_modify_expr (location, an_loop_info[ii].var, INIT_EXPR,
build_zero_cst (typ), tf_warning_or_error);
}
array_operand = create_array_refs (location, an_info, an_loop_info,
list_size, rank);
replace_array_notations (&func_parm, true, array_list, array_operand);
if (!TREE_TYPE (func_parm))
TREE_TYPE (func_parm) = TREE_TYPE ((*array_list)[0]);
create_cmp_incr (location, &an_loop_info, rank, an_info, tf_warning_or_error);
if (an_type == BUILT_IN_CILKPLUS_SEC_REDUCE_MAX_IND
|| an_type == BUILT_IN_CILKPLUS_SEC_REDUCE_MIN_IND)
array_ind_value = get_temp_regvar (TREE_TYPE (func_parm), func_parm);
array_op0 = (*array_operand)[0];
switch (an_type)
{
case BUILT_IN_CILKPLUS_SEC_REDUCE_ADD:
code = PLUS_EXPR;
init = build_zero_cst (new_var_type);
break;
case BUILT_IN_CILKPLUS_SEC_REDUCE_MUL:
code = MULT_EXPR;
init = build_one_cst (new_var_type);
break;
case BUILT_IN_CILKPLUS_SEC_REDUCE_ANY_ZERO:
case BUILT_IN_CILKPLUS_SEC_REDUCE_ANY_NONZERO:
code = ((an_type == BUILT_IN_CILKPLUS_SEC_REDUCE_ANY_ZERO) ? EQ_EXPR
: NE_EXPR);
init = build_zero_cst (new_var_type);
cond_init = build_one_cst (new_var_type);
comp_node = build_zero_cst (TREE_TYPE (func_parm));
break;
case BUILT_IN_CILKPLUS_SEC_REDUCE_ALL_ZERO:
case BUILT_IN_CILKPLUS_SEC_REDUCE_ALL_NONZERO:
code = ((an_type == BUILT_IN_CILKPLUS_SEC_REDUCE_ALL_ZERO) ? NE_EXPR
: EQ_EXPR);
init = build_one_cst (new_var_type);
cond_init = build_zero_cst (new_var_type);
comp_node = build_zero_cst (TREE_TYPE (func_parm));
break;
case BUILT_IN_CILKPLUS_SEC_REDUCE_MAX:
code = MAX_EXPR;
init = (TYPE_MIN_VALUE (new_var_type) ? TYPE_MIN_VALUE (new_var_type)
: func_parm);
break;
case BUILT_IN_CILKPLUS_SEC_REDUCE_MIN:
code = MIN_EXPR;
init = (TYPE_MAX_VALUE (new_var_type) ? TYPE_MAX_VALUE (new_var_type)
: func_parm);
break;
case BUILT_IN_CILKPLUS_SEC_REDUCE_MIN_IND:
case BUILT_IN_CILKPLUS_SEC_REDUCE_MAX_IND:
code = (an_type == BUILT_IN_CILKPLUS_SEC_REDUCE_MAX_IND ? LE_EXPR
: GE_EXPR);
init = an_loop_info[0].var;
break;
case BUILT_IN_CILKPLUS_SEC_REDUCE:
init = identity_value;
break;
case BUILT_IN_CILKPLUS_SEC_REDUCE_MUTATING:
init = NULL_TREE;
break;
default:
gcc_unreachable ();
}
if (an_type != BUILT_IN_CILKPLUS_SEC_REDUCE_MUTATING)
*new_var = get_temp_regvar (new_var_type, init);
else
*new_var = NULL_TREE;
switch (an_type)
{
case BUILT_IN_CILKPLUS_SEC_REDUCE_ADD:
case BUILT_IN_CILKPLUS_SEC_REDUCE_MUL:
new_expr = build_x_modify_expr (location, *new_var, code, func_parm,
tf_warning_or_error);
break;
case BUILT_IN_CILKPLUS_SEC_REDUCE_ALL_ZERO:
case BUILT_IN_CILKPLUS_SEC_REDUCE_ALL_NONZERO:
case BUILT_IN_CILKPLUS_SEC_REDUCE_ANY_ZERO:
case BUILT_IN_CILKPLUS_SEC_REDUCE_ANY_NONZERO:
/* In all these cases, assume the false case is true and as soon as
we find a true case, set the true flag on and latch it in. */
new_yes_expr = build_x_modify_expr (location, *new_var, NOP_EXPR,
cond_init, tf_warning_or_error);
new_no_expr = build_x_modify_expr (location, *new_var, NOP_EXPR,
*new_var, tf_warning_or_error);
new_cond_expr = build_x_binary_op
(location, code, func_parm, TREE_CODE (func_parm), comp_node,
TREE_CODE (comp_node), NULL, tf_warning_or_error);
new_expr = build_x_conditional_expr (location, new_cond_expr,
new_yes_expr, new_no_expr,
tf_warning_or_error);
break;
case BUILT_IN_CILKPLUS_SEC_REDUCE_MAX:
case BUILT_IN_CILKPLUS_SEC_REDUCE_MIN:
new_cond_expr = build_x_binary_op
(location, code, *new_var, TREE_CODE (*new_var), func_parm,
TREE_CODE (func_parm), NULL, tf_warning_or_error);
new_expr = build_x_modify_expr (location, *new_var, NOP_EXPR, func_parm,
tf_warning_or_error);
break;
case BUILT_IN_CILKPLUS_SEC_REDUCE_MAX_IND:
case BUILT_IN_CILKPLUS_SEC_REDUCE_MIN_IND:
new_yes_expr = build_x_modify_expr (location, array_ind_value, NOP_EXPR,
func_parm, tf_warning_or_error);
new_no_expr = build_x_modify_expr (location, array_ind_value, NOP_EXPR,
array_ind_value, tf_warning_or_error);
if (list_size > 1)
new_yes_ind = build_x_modify_expr (location, *new_var, NOP_EXPR,
an_loop_info[0].var,
tf_warning_or_error);
else
new_yes_ind = build_x_modify_expr (location, *new_var, NOP_EXPR,
TREE_OPERAND (array_op0, 1),
tf_warning_or_error);
new_no_ind = build_x_modify_expr (location, *new_var, NOP_EXPR, *new_var,
tf_warning_or_error);
new_yes_list = alloc_stmt_list ();
append_to_statement_list (new_yes_ind, &new_yes_list);
append_to_statement_list (new_yes_expr, &new_yes_list);
new_no_list = alloc_stmt_list ();
append_to_statement_list (new_no_ind, &new_no_list);
append_to_statement_list (new_no_expr, &new_no_list);
new_cond_expr = build_x_binary_op (location, code, array_ind_value,
TREE_CODE (array_ind_value), func_parm,
TREE_CODE (func_parm), NULL,
tf_warning_or_error);
new_expr = build_x_conditional_expr (location, new_cond_expr,
new_yes_list, new_no_list,
tf_warning_or_error);
break;
case BUILT_IN_CILKPLUS_SEC_REDUCE:
case BUILT_IN_CILKPLUS_SEC_REDUCE_MUTATING:
func_args = make_tree_vector ();
if (an_type == BUILT_IN_CILKPLUS_SEC_REDUCE)
vec_safe_push (func_args, *new_var);
else
vec_safe_push (func_args, identity_value);
vec_safe_push (func_args, func_parm);
new_expr = finish_call_expr (call_fn, &func_args, false, true,
tf_warning_or_error);
if (an_type == BUILT_IN_CILKPLUS_SEC_REDUCE)
new_expr = build_x_modify_expr (location, *new_var, NOP_EXPR, new_expr,
tf_warning_or_error);
release_tree_vector (func_args);
break;
default:
gcc_unreachable ();
}
an_init = pop_stmt_list (an_init);
append_to_statement_list (an_init, &loop_with_init);
body = new_expr;
for (ii = 0; ii < rank; ii++)
{
tree new_loop = push_stmt_list ();
create_an_loop (an_loop_info[ii].ind_init, an_loop_info[ii].cmp,
an_loop_info[ii].incr, body);
body = pop_stmt_list (new_loop);
}
append_to_statement_list (body, &loop_with_init);
an_info.release ();
an_loop_info.release ();
return loop_with_init;
}
/* Returns a loop with ARRAY_REF inside it with an appropriate modify expr.
The LHS and/or RHS will be array notation expressions that have a
MODIFYCODE. The location of the variable is specified by LOCATION. */
static tree
expand_an_in_modify_expr (location_t location, tree lhs,
enum tree_code modifycode, tree rhs,
tsubst_flags_t complain)
{
tree array_expr_lhs = NULL_TREE, array_expr_rhs = NULL_TREE;
tree array_expr = NULL_TREE;
tree body = NULL_TREE;
vec<tree> cond_expr = vNULL;
vec<tree, va_gc> *lhs_array_operand = NULL, *rhs_array_operand = NULL;
size_t lhs_rank = 0, rhs_rank = 0, ii = 0;
vec<tree, va_gc> *rhs_list = NULL, *lhs_list = NULL;
size_t rhs_list_size = 0, lhs_list_size = 0;
tree new_modify_expr, new_var = NULL_TREE, builtin_loop, scalar_mods;
bool found_builtin_fn = false;
tree an_init, loop_with_init = alloc_stmt_list ();
vec<vec<an_parts> > lhs_an_info = vNULL, rhs_an_info = vNULL;
vec<an_loop_parts> lhs_an_loop_info = vNULL, rhs_an_loop_info = vNULL;
if (!find_rank (location, rhs, rhs, false, &rhs_rank))
return error_mark_node;
extract_array_notation_exprs (rhs, false, &rhs_list);
rhs_list_size = vec_safe_length (rhs_list);
an_init = push_stmt_list ();
if (rhs_rank)
{
scalar_mods = replace_invariant_exprs (&rhs);
if (scalar_mods)
finish_expr_stmt (scalar_mods);
}
for (ii = 0; ii < rhs_list_size; ii++)
{
tree rhs_node = (*rhs_list)[ii];
if (TREE_CODE (rhs_node) == CALL_EXPR)
{
builtin_loop = expand_sec_reduce_builtin (rhs_node, &new_var);
if (builtin_loop == error_mark_node)
return error_mark_node;
else if (builtin_loop)
{
finish_expr_stmt (builtin_loop);
found_builtin_fn = true;
if (new_var)
{
vec <tree, va_gc> *rhs_sub_list = NULL, *new_var_list = NULL;
vec_safe_push (rhs_sub_list, rhs_node);
vec_safe_push (new_var_list, new_var);
replace_array_notations (&rhs, false, rhs_sub_list,
new_var_list);
}
}
}
}
lhs_rank = 0;
rhs_rank = 0;
if (!find_rank (location, lhs, lhs, true, &lhs_rank)
|| !find_rank (location, rhs, rhs, true, &rhs_rank))
{
pop_stmt_list (an_init);
return error_mark_node;
}
/* If both are scalar, then the only reason why we will get this far is if
there is some array notations inside it and was using a builtin array
notation functions. If so, we have already broken those guys up and now
a simple build_x_modify_expr would do. */
if (lhs_rank == 0 && rhs_rank == 0)
{
if (found_builtin_fn)
{
new_modify_expr = build_x_modify_expr (location, lhs,
modifycode, rhs, complain);
finish_expr_stmt (new_modify_expr);
pop_stmt_list (an_init);
return an_init;
}
else
gcc_unreachable ();
}
/* If for some reason location is not set, then find if LHS or RHS has
location info. If so, then use that so we atleast have an idea. */
if (location == UNKNOWN_LOCATION)
{
if (EXPR_LOCATION (lhs) != UNKNOWN_LOCATION)
location = EXPR_LOCATION (lhs);
else if (EXPR_LOCATION (rhs) != UNKNOWN_LOCATION)
location = EXPR_LOCATION (rhs);
}
/* We need this when we have a scatter issue. */
extract_array_notation_exprs (lhs, true, &lhs_list);
rhs_list = NULL;
extract_array_notation_exprs (rhs, true, &rhs_list);
rhs_list_size = vec_safe_length (rhs_list);
lhs_list_size = vec_safe_length (lhs_list);
if (lhs_rank == 0 && rhs_rank != 0)
{
error_at (location, "%qD cannot be scalar when %qD is not", lhs, rhs);
return error_mark_node;
}
if (lhs_rank != 0 && rhs_rank != 0 && lhs_rank != rhs_rank)
{
error_at (location, "rank mismatch between %qE and %qE", lhs, rhs);
return error_mark_node;
}
/* Assign the array notation components to variable so that they can satisfy
the execute-once rule. */
for (ii = 0; ii < lhs_list_size; ii++)
{
tree anode = (*lhs_list)[ii];
make_triplet_val_inv (&ARRAY_NOTATION_START (anode));
make_triplet_val_inv (&ARRAY_NOTATION_LENGTH (anode));
make_triplet_val_inv (&ARRAY_NOTATION_STRIDE (anode));
}
for (ii = 0; ii < rhs_list_size; ii++)
if ((*rhs_list)[ii] && TREE_CODE ((*rhs_list)[ii]) == ARRAY_NOTATION_REF)
{
tree aa = (*rhs_list)[ii];
make_triplet_val_inv (&ARRAY_NOTATION_START (aa));
make_triplet_val_inv (&ARRAY_NOTATION_LENGTH (aa));
make_triplet_val_inv (&ARRAY_NOTATION_STRIDE (aa));
}
lhs_an_loop_info.safe_grow_cleared (lhs_rank);
if (rhs_rank)
rhs_an_loop_info.safe_grow_cleared (rhs_rank);
cond_expr.safe_grow_cleared (MAX (lhs_rank, rhs_rank));
cilkplus_extract_an_triplets (lhs_list, lhs_list_size, lhs_rank,
&lhs_an_info);
if (rhs_list)
cilkplus_extract_an_triplets (rhs_list, rhs_list_size, rhs_rank,
&rhs_an_info);
if (length_mismatch_in_expr_p (EXPR_LOCATION (lhs), lhs_an_info)
|| (rhs_list && length_mismatch_in_expr_p (EXPR_LOCATION (rhs),
rhs_an_info)))
{
pop_stmt_list (an_init);
return error_mark_node;
}
tree rhs_len = ((rhs_list_size > 0 && rhs_rank > 0) ?
rhs_an_info[0][0].length : NULL_TREE);
tree lhs_len = ((lhs_list_size > 0 && lhs_rank > 0) ?
lhs_an_info[0][0].length : NULL_TREE);
if (lhs_list_size > 0 && rhs_list_size > 0 && lhs_rank > 0 && rhs_rank > 0
&& TREE_CODE (lhs_len) == INTEGER_CST && rhs_len
&& TREE_CODE (rhs_len) == INTEGER_CST
&& !tree_int_cst_equal (rhs_len, lhs_len))
{
error_at (location, "length mismatch between LHS and RHS");
pop_stmt_list (an_init);
return error_mark_node;
}
for (ii = 0; ii < lhs_rank; ii++)
{
tree typ = ptrdiff_type_node;
lhs_an_loop_info[ii].var = create_temporary_var (typ);
add_decl_expr (lhs_an_loop_info[ii].var);
lhs_an_loop_info[ii].ind_init = build_x_modify_expr
(location, lhs_an_loop_info[ii].var, INIT_EXPR, build_zero_cst (typ),
complain);
}
if (rhs_list_size > 0)
{
rhs_array_operand = fix_sec_implicit_args (location, rhs_list,
lhs_an_loop_info, lhs_rank,
lhs);
if (!rhs_array_operand)
return error_mark_node;
}
replace_array_notations (&rhs, true, rhs_list, rhs_array_operand);
rhs_list_size = 0;
rhs_list = NULL;
extract_array_notation_exprs (rhs, true, &rhs_list);
rhs_list_size = vec_safe_length (rhs_list);
for (ii = 0; ii < rhs_rank; ii++)
{
tree typ = ptrdiff_type_node;
rhs_an_loop_info[ii].var = create_temporary_var (typ);
add_decl_expr (rhs_an_loop_info[ii].var);
rhs_an_loop_info[ii].ind_init = build_x_modify_expr
(location, rhs_an_loop_info[ii].var, INIT_EXPR, build_zero_cst (typ),
complain);
}
if (lhs_rank)
{
lhs_array_operand =
create_array_refs (location, lhs_an_info, lhs_an_loop_info,
lhs_list_size, lhs_rank);
replace_array_notations (&lhs, true, lhs_list, lhs_array_operand);
}
if (rhs_array_operand)
vec_safe_truncate (rhs_array_operand, 0);
if (rhs_rank)
{
rhs_array_operand = create_array_refs (location, rhs_an_info,
rhs_an_loop_info, rhs_list_size,
rhs_rank);
/* Replace all the array refs created by the above function because this
variable is blown away by the fix_sec_implicit_args function below. */
replace_array_notations (&rhs, true, rhs_list, rhs_array_operand);
vec_safe_truncate (rhs_array_operand , 0);
rhs_array_operand = fix_sec_implicit_args (location, rhs_list,
rhs_an_loop_info, rhs_rank,
rhs);
if (!rhs_array_operand)
return error_mark_node;
replace_array_notations (&rhs, true, rhs_list, rhs_array_operand);
}
array_expr_rhs = rhs;
array_expr_lhs = lhs;
array_expr = build_x_modify_expr (location, array_expr_lhs, modifycode,
array_expr_rhs, complain);
create_cmp_incr (location, &lhs_an_loop_info, lhs_rank, lhs_an_info,
complain);
if (rhs_rank)
create_cmp_incr (location, &rhs_an_loop_info, rhs_rank, rhs_an_info,
complain);
for (ii = 0; ii < MAX (rhs_rank, lhs_rank); ii++)
if (ii < lhs_rank && ii < rhs_rank)
cond_expr[ii] = build_x_binary_op
(location, TRUTH_ANDIF_EXPR, lhs_an_loop_info[ii].cmp,
TREE_CODE (lhs_an_loop_info[ii].cmp), rhs_an_loop_info[ii].cmp,
TREE_CODE (rhs_an_loop_info[ii].cmp), NULL, complain);
else if (ii < lhs_rank && ii >= rhs_rank)
cond_expr[ii] = lhs_an_loop_info[ii].cmp;
else
/* No need to compare ii < rhs_rank && ii >= lhs_rank because in a valid
Array notation expression, rank of RHS cannot be greater than LHS. */
gcc_unreachable ();
an_init = pop_stmt_list (an_init);
append_to_statement_list (an_init, &loop_with_init);
body = array_expr;
for (ii = 0; ii < MAX (lhs_rank, rhs_rank); ii++)
{
tree incr_list = alloc_stmt_list ();
tree init_list = alloc_stmt_list ();
tree new_loop = push_stmt_list ();
if (lhs_rank)
{
append_to_statement_list (lhs_an_loop_info[ii].ind_init, &init_list);
append_to_statement_list (lhs_an_loop_info[ii].incr, &incr_list);
}
if (rhs_rank)
{
append_to_statement_list (rhs_an_loop_info[ii].ind_init, &init_list);
append_to_statement_list (rhs_an_loop_info[ii].incr, &incr_list);
}
create_an_loop (init_list, cond_expr[ii], incr_list, body);
body = pop_stmt_list (new_loop);
}
append_to_statement_list (body, &loop_with_init);
lhs_an_info.release ();
lhs_an_loop_info.release ();
if (rhs_rank)
{
rhs_an_info.release ();
rhs_an_loop_info.release ();
}
cond_expr.release ();
return loop_with_init;
}
/* Helper function for expand_conditonal_array_notations. Encloses the
conditional statement passed in ORIG_STMT with a loop around it and
replaces the condition in STMT with a ARRAY_REF tree-node to the array.
The condition must have a ARRAY_NOTATION_REF tree. */
static tree
cp_expand_cond_array_notations (tree orig_stmt)
{
vec<tree, va_gc> *array_list = NULL, *array_operand = NULL;
size_t list_size = 0;
size_t rank = 0, ii = 0;
tree an_init, body, stmt = NULL_TREE;
tree builtin_loop, new_var = NULL_TREE;
tree loop_with_init = alloc_stmt_list ();
location_t location = UNKNOWN_LOCATION;
vec<vec<an_parts> > an_info = vNULL;
vec<an_loop_parts> an_loop_info = vNULL;
if (TREE_CODE (orig_stmt) == COND_EXPR)
{
size_t cond_rank = 0, yes_rank = 0, no_rank = 0;
tree yes_expr = COND_EXPR_THEN (orig_stmt);
tree no_expr = COND_EXPR_ELSE (orig_stmt);
tree cond = COND_EXPR_COND (orig_stmt);
if (!find_rank (EXPR_LOCATION (cond), cond, cond, true, &cond_rank)
|| !find_rank (EXPR_LOCATION (yes_expr), yes_expr, yes_expr, true,
&yes_rank)
|| find_rank (EXPR_LOCATION (no_expr), no_expr, no_expr, true,
&no_rank))
return error_mark_node;
/* If the condition has a zero rank, then handle array notations in body
separately. */
if (cond_rank == 0)
return orig_stmt;
if (cond_rank != yes_rank && yes_rank != 0)
{
error_at (EXPR_LOCATION (yes_expr), "rank mismatch with controlling"
" expression of parent if-statement");
return error_mark_node;
}
else if (cond_rank != no_rank && no_rank != 0)
{
error_at (EXPR_LOCATION (no_expr), "rank mismatch with controlling "
"expression of parent if-statement");
return error_mark_node;
}
}
else if (TREE_CODE (orig_stmt) == IF_STMT)
{
size_t cond_rank = 0, yes_rank = 0, no_rank = 0;
tree yes_expr = THEN_CLAUSE (orig_stmt);
tree no_expr = ELSE_CLAUSE (orig_stmt);
tree cond = IF_COND (orig_stmt);
if (!find_rank (EXPR_LOCATION (cond), cond, cond, true, &cond_rank)
|| (yes_expr
&& !find_rank (EXPR_LOCATION (yes_expr), yes_expr, yes_expr, true,
&yes_rank))
|| (no_expr
&& !find_rank (EXPR_LOCATION (no_expr), no_expr, no_expr, true,
&no_rank)))
return error_mark_node;
/* Same reasoning as for COND_EXPR. */
if (cond_rank == 0)
return orig_stmt;
else if (cond_rank != yes_rank && yes_rank != 0)
{
error_at (EXPR_LOCATION (yes_expr), "rank mismatch with controlling"
" expression of parent if-statement");
return error_mark_node;
}
else if (cond_rank != no_rank && no_rank != 0)
{
error_at (EXPR_LOCATION (no_expr), "rank mismatch with controlling "
"expression of parent if-statement");
return error_mark_node;
}
}
else if (truth_value_p (TREE_CODE (orig_stmt)))
{
size_t left_rank = 0, right_rank = 0;
tree left_expr = TREE_OPERAND (orig_stmt, 0);
tree right_expr = TREE_OPERAND (orig_stmt, 1);
if (!find_rank (EXPR_LOCATION (left_expr), left_expr, left_expr, true,
&left_rank)
|| !find_rank (EXPR_LOCATION (right_expr), right_expr, right_expr,
true, &right_rank))
return error_mark_node;
if (right_rank == 0 && left_rank == 0)
return orig_stmt;
}
if (!find_rank (EXPR_LOCATION (orig_stmt), orig_stmt, orig_stmt, true,
&rank))
return error_mark_node;
if (rank == 0)
return orig_stmt;
extract_array_notation_exprs (orig_stmt, false, &array_list);
stmt = alloc_stmt_list ();
for (ii = 0; ii < vec_safe_length (array_list); ii++)
{
tree array_node = (*array_list)[ii];
if (TREE_CODE (array_node) == CALL_EXPR
|| TREE_CODE (array_node) == AGGR_INIT_EXPR)
{
builtin_loop = expand_sec_reduce_builtin (array_node, &new_var);
if (builtin_loop == error_mark_node)
finish_expr_stmt (error_mark_node);
else if (new_var)
{
vec<tree, va_gc> *sub_list = NULL, *new_var_list = NULL;
vec_safe_push (sub_list, array_node);
vec_safe_push (new_var_list, new_var);
replace_array_notations (&orig_stmt, false, sub_list,
new_var_list);
append_to_statement_list (builtin_loop, &stmt);
}
}
}
append_to_statement_list (orig_stmt, &stmt);
rank = 0;
array_list = NULL;
if (!find_rank (EXPR_LOCATION (stmt), stmt, stmt, true, &rank))
return error_mark_node;
if (rank == 0)
return stmt;
extract_array_notation_exprs (stmt, true, &array_list);
list_size = vec_safe_length (array_list);
if (list_size == 0)
return stmt;
location = EXPR_LOCATION (orig_stmt);
list_size = vec_safe_length (array_list);
an_loop_info.safe_grow_cleared (rank);
an_init = push_stmt_list ();
/* Assign the array notation components to variable so that they can
satisfy the exec-once rule. */
for (ii = 0; ii < list_size; ii++)
{
tree anode = (*array_list)[ii];
make_triplet_val_inv (&ARRAY_NOTATION_START (anode));
make_triplet_val_inv (&ARRAY_NOTATION_LENGTH (anode));
make_triplet_val_inv (&ARRAY_NOTATION_STRIDE (anode));
}
cilkplus_extract_an_triplets (array_list, list_size, rank, &an_info);
for (ii = 0; ii < rank; ii++)
{
tree typ = ptrdiff_type_node;
an_loop_info[ii].var = create_temporary_var (typ);
add_decl_expr (an_loop_info[ii].var);
an_loop_info[ii].ind_init =
build_x_modify_expr (location, an_loop_info[ii].var, INIT_EXPR,
build_zero_cst (typ), tf_warning_or_error);
}
array_operand = create_array_refs (location, an_info, an_loop_info,
list_size, rank);
replace_array_notations (&stmt, true, array_list, array_operand);
create_cmp_incr (location, &an_loop_info, rank, an_info, tf_warning_or_error);
an_init = pop_stmt_list (an_init);
append_to_statement_list (an_init, &loop_with_init);
body = stmt;
for (ii = 0; ii < rank; ii++)
{
tree new_loop = push_stmt_list ();
create_an_loop (an_loop_info[ii].ind_init, an_loop_info[ii].cmp,
an_loop_info[ii].incr, body);
body = pop_stmt_list (new_loop);
}
append_to_statement_list (body, &loop_with_init);
an_info.release ();
an_loop_info.release ();
return loop_with_init;
}
/* Transforms array notations inside unary expression ORIG_STMT with an
appropriate loop and ARRAY_REF (and returns all this as a super-tree called
LOOP). */
static tree
expand_unary_array_notation_exprs (tree orig_stmt)
{
vec<tree, va_gc> *array_list = NULL, *array_operand = NULL;
size_t list_size = 0, rank = 0, ii = 0;
tree body;
tree builtin_loop, stmt = NULL_TREE, new_var = NULL_TREE;
location_t location = EXPR_LOCATION (orig_stmt);
tree an_init, loop_with_init = alloc_stmt_list ();
vec<vec<an_parts> > an_info = vNULL;
vec<an_loop_parts> an_loop_info = vNULL;
if (!find_rank (location, orig_stmt, orig_stmt, true, &rank))
return error_mark_node;
if (rank == 0)
return orig_stmt;
extract_array_notation_exprs (orig_stmt, false, &array_list);
list_size = vec_safe_length (array_list);
location = EXPR_LOCATION (orig_stmt);
stmt = NULL_TREE;
for (ii = 0; ii < list_size; ii++)
if (TREE_CODE ((*array_list)[ii]) == CALL_EXPR
|| TREE_CODE ((*array_list)[ii]) == AGGR_INIT_EXPR)
{
tree list_node = (*array_list)[ii];
builtin_loop = expand_sec_reduce_builtin (list_node, &new_var);
if (builtin_loop == error_mark_node)
return error_mark_node;
else if (builtin_loop)
{
vec<tree, va_gc> *sub_list = NULL, *new_var_list = NULL;
stmt = alloc_stmt_list ();
append_to_statement_list (builtin_loop, &stmt);
vec_safe_push (sub_list, list_node);
vec_safe_push (new_var_list, new_var);
replace_array_notations (&orig_stmt, false, sub_list, new_var_list);
}
}
if (stmt != NULL_TREE)
append_to_statement_list (finish_expr_stmt (orig_stmt), &stmt);
else
stmt = orig_stmt;
rank = 0;
list_size = 0;
array_list = NULL;
extract_array_notation_exprs (stmt, true, &array_list);
list_size = vec_safe_length (array_list);
if (!find_rank (EXPR_LOCATION (stmt), stmt, stmt, true, &rank))
return error_mark_node;
if (rank == 0 || list_size == 0)
return stmt;
an_loop_info.safe_grow_cleared (rank);
an_init = push_stmt_list ();
/* Assign the array notation components to variable so that they can satisfy
the exec-once rule. */
for (ii = 0; ii < list_size; ii++)
{
tree array_node = (*array_list)[ii];
make_triplet_val_inv (&ARRAY_NOTATION_START (array_node));
make_triplet_val_inv (&ARRAY_NOTATION_LENGTH (array_node));
make_triplet_val_inv (&ARRAY_NOTATION_STRIDE (array_node));
}
cilkplus_extract_an_triplets (array_list, list_size, rank, &an_info);
for (ii = 0; ii < rank; ii++)
{
tree typ = ptrdiff_type_node;
an_loop_info[ii].var = create_temporary_var (typ);
add_decl_expr (an_loop_info[ii].var);
an_loop_info[ii].ind_init = build_x_modify_expr
(location, an_loop_info[ii].var, INIT_EXPR, build_zero_cst (typ),
tf_warning_or_error);
}
array_operand = create_array_refs (location, an_info, an_loop_info,
list_size, rank);
replace_array_notations (&stmt, true, array_list, array_operand);
create_cmp_incr (location, &an_loop_info, rank, an_info, tf_warning_or_error);
an_init = pop_stmt_list (an_init);
append_to_statement_list (an_init, &loop_with_init);
body = stmt;
for (ii = 0; ii < rank; ii++)
{
tree new_loop = push_stmt_list ();
create_an_loop (an_loop_info[ii].ind_init, an_loop_info[ii].cmp,
an_loop_info[ii].incr, body);
body = pop_stmt_list (new_loop);
}
append_to_statement_list (body, &loop_with_init);
an_info.release ();
an_loop_info.release ();
return loop_with_init;
}
/* Expands the array notation's builtin reduction function in EXPR
(of type RETURN_EXPR) and returns a STATEMENT_LIST that contains a loop
with the builtin function expansion and a return statement at the end. */
static tree
expand_return_expr (tree expr)
{
tree new_mod_list, new_var, new_mod, retval_expr;
size_t rank = 0;
location_t loc = EXPR_LOCATION (expr);
if (TREE_CODE (expr) != RETURN_EXPR)
return expr;
if (!find_rank (loc, expr, expr, false, &rank))
return error_mark_node;
/* If the return expression contains array notations, then flag it as
error. */
if (rank >= 1)
{
error_at (loc, "array notation expression cannot be used as a return "
"value");
return error_mark_node;
}
new_mod_list = push_stmt_list ();
retval_expr = TREE_OPERAND (expr, 0);
new_var = create_temporary_var (TREE_TYPE (retval_expr));
add_decl_expr (new_var);
new_mod = expand_an_in_modify_expr (loc, new_var, NOP_EXPR,
TREE_OPERAND (retval_expr, 1),
tf_warning_or_error);
TREE_OPERAND (retval_expr, 1) = new_var;
TREE_OPERAND (expr, 0) = retval_expr;
add_stmt (new_mod);
add_stmt (expr);
new_mod_list = pop_stmt_list (new_mod_list);
return new_mod_list;
}
/* Expands ARRAY_NOTATION_REF and builtin functions in a compound statement,
STMT. Returns the STMT with expanded array notations. */
tree
expand_array_notation_exprs (tree t)
{
enum tree_code code;
bool is_expr;
location_t loc = UNKNOWN_LOCATION;
if (!t)
return t;
loc = EXPR_LOCATION (t);
code = TREE_CODE (t);
is_expr = IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code));
switch (code)
{
case ERROR_MARK:
case IDENTIFIER_NODE:
case INTEGER_CST:
case REAL_CST:
case FIXED_CST:
case STRING_CST:
case BLOCK:
case PLACEHOLDER_EXPR:
case FIELD_DECL:
case VOID_TYPE:
case REAL_TYPE:
case SSA_NAME:
case LABEL_DECL:
case RESULT_DECL:
case VAR_DECL:
case PARM_DECL:
case NON_LVALUE_EXPR:
case NOP_EXPR:
case INIT_EXPR:
case ADDR_EXPR:
case ARRAY_REF:
case BIT_FIELD_REF:
case VECTOR_CST:
case COMPLEX_CST:
return t;
case MODIFY_EXPR:
if (contains_array_notation_expr (t))
t = expand_an_in_modify_expr (loc, TREE_OPERAND (t, 0), NOP_EXPR,
TREE_OPERAND (t, 1),
tf_warning_or_error);
return t;
case MODOP_EXPR:
if (contains_array_notation_expr (t) && !processing_template_decl)
t = expand_an_in_modify_expr
(loc, TREE_OPERAND (t, 0), TREE_CODE (TREE_OPERAND (t, 1)),
TREE_OPERAND (t, 2), tf_warning_or_error);
return t;
case CONSTRUCTOR:
return t;
case BIND_EXPR:
{
BIND_EXPR_BODY (t) =
expand_array_notation_exprs (BIND_EXPR_BODY (t));
return t;
}
case DECL_EXPR:
{
tree x = DECL_EXPR_DECL (t);
if (t && TREE_CODE (x) != FUNCTION_DECL)
if (DECL_INITIAL (x))
t = expand_unary_array_notation_exprs (t);
return t;
}
case STATEMENT_LIST:
{
tree_stmt_iterator i;
for (i = tsi_start (t); !tsi_end_p (i); tsi_next (&i))
*tsi_stmt_ptr (i) =
expand_array_notation_exprs (*tsi_stmt_ptr (i));
return t;
}
case OMP_PARALLEL:
case OMP_TASK:
case OMP_FOR:
case OMP_SINGLE:
case OMP_SECTION:
case OMP_SECTIONS:
case OMP_MASTER:
case OMP_TASKGROUP:
case OMP_ORDERED:
case OMP_CRITICAL:
case OMP_ATOMIC:
case OMP_CLAUSE:
case TARGET_EXPR:
case INTEGER_TYPE:
case ENUMERAL_TYPE:
case BOOLEAN_TYPE:
case POINTER_TYPE:
case ARRAY_TYPE:
case RECORD_TYPE:
case METHOD_TYPE:
return t;
case RETURN_EXPR:
if (contains_array_notation_expr (t))
t = expand_return_expr (t);
return t;
case PREDECREMENT_EXPR:
case PREINCREMENT_EXPR:
case POSTDECREMENT_EXPR:
case POSTINCREMENT_EXPR:
case AGGR_INIT_EXPR:
case CALL_EXPR:
t = expand_unary_array_notation_exprs (t);
return t;
case CONVERT_EXPR:
case CLEANUP_POINT_EXPR:
case EXPR_STMT:
TREE_OPERAND (t, 0) = expand_array_notation_exprs (TREE_OPERAND (t, 0));
/* It is not necessary to wrap error_mark_node in EXPR_STMT. */
if (TREE_OPERAND (t, 0) == error_mark_node)
return TREE_OPERAND (t, 0);
return t;
case TRUTH_ANDIF_EXPR:
case TRUTH_ORIF_EXPR:
case TRUTH_AND_EXPR:
case TRUTH_OR_EXPR:
case TRUTH_XOR_EXPR:
case TRUTH_NOT_EXPR:
case COND_EXPR:
t = cp_expand_cond_array_notations (t);
if (TREE_CODE (t) == COND_EXPR)
{
COND_EXPR_THEN (t) =
expand_array_notation_exprs (COND_EXPR_THEN (t));
COND_EXPR_ELSE (t) =
expand_array_notation_exprs (COND_EXPR_ELSE (t));
}
return t;
case FOR_STMT:
if (contains_array_notation_expr (FOR_COND (t)))
{
error_at (EXPR_LOCATION (FOR_COND (t)),
"array notation cannot be used in a condition for "
"a for-loop");
return error_mark_node;
}
/* FIXME: Add a check for CILK_FOR_STMT here when we add Cilk tasking
keywords. */
if (TREE_CODE (t) == FOR_STMT)
{
FOR_BODY (t) = expand_array_notation_exprs (FOR_BODY (t));
FOR_EXPR (t) = expand_array_notation_exprs (FOR_EXPR (t));
}
else
t = expand_array_notation_exprs (t);
return t;
case IF_STMT:
t = cp_expand_cond_array_notations (t);
/* If the above function added some extra instructions above the original
if statement, then we can't assume it is still IF_STMT so we have to
check again. */
if (TREE_CODE (t) == IF_STMT)
{
if (THEN_CLAUSE (t))
THEN_CLAUSE (t) = expand_array_notation_exprs (THEN_CLAUSE (t));
if (ELSE_CLAUSE (t))
ELSE_CLAUSE (t) = expand_array_notation_exprs (ELSE_CLAUSE (t));
}
else
t = expand_array_notation_exprs (t);
return t;
case SWITCH_STMT:
if (contains_array_notation_expr (SWITCH_STMT_COND (t)))
{
error_at (EXPR_LOCATION (SWITCH_STMT_COND (t)),
"array notation cannot be used as a condition for "
"switch statement");
return error_mark_node;
}
if (SWITCH_STMT_BODY (t))
SWITCH_STMT_BODY (t) =
expand_array_notation_exprs (SWITCH_STMT_BODY (t));
return t;
case WHILE_STMT:
if (contains_array_notation_expr (WHILE_COND (t)))
{
if (EXPR_LOCATION (WHILE_COND (t)) != UNKNOWN_LOCATION)
loc = EXPR_LOCATION (WHILE_COND (t));
error_at (loc, "array notation cannot be used as a condition for "
"while statement");
return error_mark_node;
}
if (WHILE_BODY (t))
WHILE_BODY (t) = expand_array_notation_exprs (WHILE_BODY (t));
return t;
case DO_STMT:
if (contains_array_notation_expr (DO_COND (t)))
{
error_at (EXPR_LOCATION (DO_COND (t)),
"array notation cannot be used as a condition for a "
"do-while statement");
return error_mark_node;
}
if (DO_BODY (t))
DO_BODY (t) = expand_array_notation_exprs (DO_BODY (t));
return t;
default:
if (is_expr)
{
int i, len;
/* Walk over all the sub-trees of this operand. */
len = TREE_CODE_LENGTH (code);
/* Go through the subtrees. We need to do this in forward order so
that the scope of a FOR_EXPR is handled properly. */
for (i = 0; i < len; ++i)
TREE_OPERAND (t, i) =
expand_array_notation_exprs (TREE_OPERAND (t, i));
}
return t;
}
return t;
}
/* Given the base of an array (ARRAY), the START (start_index), the number of
elements to be accessed (LENGTH) and the STRIDE, construct an
ARRAY_NOTATION_REF tree of type TYPE and return it. Restrictions on START,
LENGTH and STRIDE are the same as that of index field passed into ARRAY_REF.
The only additional restriction is that, unlike index in ARRAY_REF, stride,
length and start_index cannot contain array notations. */
tree
build_array_notation_ref (location_t loc, tree array, tree start, tree length,
tree stride, tree type)
{
tree array_ntn_expr = NULL_TREE;
/* If we enter the then-case of the if-statement below, we have hit a case
like this: ARRAY [:]. */
if (!start && !length)
{
if (TREE_CODE (type) != ARRAY_TYPE)
{
error_at (loc, "start-index and length fields necessary for "
"using array notation in pointers or records");
return error_mark_node;
}
tree domain = TYPE_DOMAIN (type);
if (!domain)
{
error_at (loc, "start-index and length fields necessary for "
"using array notation with array of unknown bound");
return error_mark_node;
}
start = cp_fold_convert (ptrdiff_type_node, TYPE_MINVAL (domain));
length = size_binop (PLUS_EXPR, TYPE_MAXVAL (domain), size_one_node);
length = cp_fold_convert (ptrdiff_type_node, length);
}
if (!stride)
stride = build_one_cst (ptrdiff_type_node);
/* When dealing with templates, triplet type-checking will be done in pt.c
after type substitution. */
if (processing_template_decl
&& (type_dependent_expression_p (array)
|| type_dependent_expression_p (length)
|| type_dependent_expression_p (start)
|| type_dependent_expression_p (stride)))
array_ntn_expr = build_min_nt_loc (loc, ARRAY_NOTATION_REF, array, start,
length, stride, NULL_TREE);
else
{
if (!cilkplus_an_triplet_types_ok_p (loc, start, length, stride, type))
return error_mark_node;
array_ntn_expr = build4 (ARRAY_NOTATION_REF, NULL_TREE, array, start,
length, stride);
}
if (TREE_CODE (type) == ARRAY_TYPE || TREE_CODE (type) == POINTER_TYPE)
TREE_TYPE (array_ntn_expr) = TREE_TYPE (type);
else
gcc_unreachable ();
SET_EXPR_LOCATION (array_ntn_expr, loc);
return array_ntn_expr;
}
/* Returns false if any of the Array notation triplet values: START_INDEX,
LENGTH and STRIDE, are not of integral type and have a rank greater than
zero. */
bool
cilkplus_an_triplet_types_ok_p (location_t loc, tree start_index, tree length,
tree stride, tree type)
{
size_t stride_rank = 0, length_rank = 0, start_rank = 0;
if (!TREE_TYPE (start_index) || !INTEGRAL_TYPE_P (TREE_TYPE (start_index)))
{
error_at (loc, "start-index of array notation triplet is not an integer");
return false;
}
if (!TREE_TYPE (length) || !INTEGRAL_TYPE_P (TREE_TYPE (length)))
{
error_at (loc, "length of array notation triplet is not an integer");
return false;
}
if (!TREE_TYPE (stride) || !INTEGRAL_TYPE_P (TREE_TYPE (stride)))
{
error_at (loc, "stride of array notation triplet is not an integer");
return false;
}
if (!TREE_CODE (type) == FUNCTION_TYPE)
{
error_at (loc, "array notation cannot be used with function type");
return false;
}
if (!find_rank (loc, start_index, start_index, false, &start_rank)
|| !find_rank (loc, length, length, false, &length_rank)
|| !find_rank (loc, stride, stride, false, &stride_rank))
return false;
if (start_rank != 0)
{
error_at (loc, "rank of an array notation triplet%'s start-index is not "
"zero");
return false;
}
if (length_rank != 0)
{
error_at (loc, "rank of an array notation triplet%'s length is not zero");
return false;
}
if (stride_rank != 0)
{
error_at (loc, "rank of array notation triplet%'s stride is not zero");
return false;
}
return true;
}
|