summaryrefslogtreecommitdiff
path: root/gcc/config/tilegx/tilegx.c
blob: d20476f16106a5cb9fcb50aa3e70e0abc36eb8d0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
/* Subroutines used for code generation on the Tilera TILE-Gx.
   Copyright (C) 2011-2013 Free Software Foundation, Inc.
   Contributed by Walter Lee (walt@tilera.com)

   This file is part of GCC.

   GCC is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published
   by the Free Software Foundation; either version 3, or (at your
   option) any later version.

   GCC is distributed in the hope that it will be useful, but WITHOUT
   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
   or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
   License for more details.

   You should have received a copy of the GNU General Public License
   along with GCC; see the file COPYING3.  If not see
   <http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "rtl.h"
#include "regs.h"
#include "insn-config.h"
#include "output.h"
#include "insn-attr.h"
#include "recog.h"
#include "expr.h"
#include "langhooks.h"
#include "optabs.h"
#include "sched-int.h"
#include "tm_p.h"
#include "tm-constrs.h"
#include "target.h"
#include "target-def.h"
#include "function.h"
#include "dwarf2.h"
#include "timevar.h"
#include "tree.h"
#include "gimplify.h"
#include "cfgloop.h"
#include "tilegx-builtins.h"
#include "tilegx-multiply.h"
#include "diagnostic.h"

/* SYMBOL_REF for GOT */
static GTY(()) rtx g_got_symbol = NULL;

/* In case of a POST_INC or POST_DEC memory reference, we must report
   the mode of the memory reference from TARGET_PRINT_OPERAND to
   TARGET_PRINT_OPERAND_ADDRESS.  */
static enum machine_mode output_memory_reference_mode;

/* Report whether we're printing out the first address fragment of a
   POST_INC or POST_DEC memory reference, from TARGET_PRINT_OPERAND to
   TARGET_PRINT_OPERAND_ADDRESS.  */
static bool output_memory_autoinc_first;



/* Option handling  */

/* Implement TARGET_OPTION_OVERRIDE.  */
static void
tilegx_option_override (void)
{
  if (global_options_set.x_tilegx_cmodel)
    {
      switch (tilegx_cmodel)
	{
	case CM_SMALL:
	case CM_SMALL_PIC:
	  if (flag_pic)
	    tilegx_cmodel = CM_SMALL_PIC;
	  break;

	case CM_LARGE:
	case CM_LARGE_PIC:
	  if (flag_pic)
	    tilegx_cmodel = CM_LARGE_PIC;
	  break;

	default:
	  gcc_unreachable ();
	}
    }
  else
    tilegx_cmodel = flag_pic ? CM_SMALL_PIC : CM_SMALL;

  /* When modulo scheduling is enabled, we still rely on regular
     scheduler for bundling.  */
  if (flag_modulo_sched)
    flag_resched_modulo_sched = 1;
}



/* Implement TARGET_SCALAR_MODE_SUPPORTED_P.  */
static bool
tilegx_scalar_mode_supported_p (enum machine_mode mode)
{
  switch (mode)
    {
    case QImode:
    case HImode:
    case SImode:
    case DImode:
    case TImode:
      return true;

    case SFmode:
    case DFmode:
      return true;

    default:
      return false;
    }
}


/* Implement TARGET_VECTOR_MODE_SUPPORTED_P.  */
static bool
tilegx_vector_mode_supported_p (enum machine_mode mode)
{
  return mode == V8QImode || mode == V4HImode || mode == V2SImode;
}


/* Implement TARGET_CANNOT_FORCE_CONST_MEM.  */
static bool
tilegx_cannot_force_const_mem (enum machine_mode mode ATTRIBUTE_UNUSED,
			       rtx x ATTRIBUTE_UNUSED)
{
  return true;
}


/* Implement TARGET_FUNCTION_OK_FOR_SIBCALL.  */
static bool
tilegx_function_ok_for_sibcall (tree decl, tree exp ATTRIBUTE_UNUSED)
{
  return (tilegx_cmodel != CM_LARGE && tilegx_cmodel != CM_LARGE_PIC
	  && (decl != NULL));
}


/* Implement TARGET_PASS_BY_REFERENCE.  Variable sized types are
   passed by reference.  */
static bool
tilegx_pass_by_reference (cumulative_args_t cum ATTRIBUTE_UNUSED,
			  enum machine_mode mode ATTRIBUTE_UNUSED,
			  const_tree type, bool named ATTRIBUTE_UNUSED)
{
  return (type && TYPE_SIZE (type)
	  && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST);
}


/* Implement TARGET_RETURN_IN_MEMORY.  */
static bool
tilegx_return_in_memory (const_tree type, const_tree fndecl ATTRIBUTE_UNUSED)
{
  return !IN_RANGE (int_size_in_bytes (type),
		    0, TILEGX_NUM_RETURN_REGS * UNITS_PER_WORD);
}


/* Implement TARGET_MODE_REP_EXTENDED.  */
static int
tilegx_mode_rep_extended (enum machine_mode mode, enum machine_mode mode_rep)
{
  /* SImode register values are sign-extended to DImode.  */
  if (mode == SImode && mode_rep == DImode)
    return SIGN_EXTEND;

  return UNKNOWN;
}


/* Implement TARGET_FUNCTION_ARG_BOUNDARY.  */
static unsigned int
tilegx_function_arg_boundary (enum machine_mode mode, const_tree type)
{
  unsigned int alignment;

  alignment = type ? TYPE_ALIGN (type) : GET_MODE_ALIGNMENT (mode);
  if (alignment < PARM_BOUNDARY)
    alignment = PARM_BOUNDARY;
  if (alignment > STACK_BOUNDARY)
    alignment = STACK_BOUNDARY;
  return alignment;
}


/* Implement TARGET_FUNCTION_ARG.  */
static rtx
tilegx_function_arg (cumulative_args_t cum_v,
		     enum machine_mode mode,
		     const_tree type, bool named ATTRIBUTE_UNUSED)
{
  CUMULATIVE_ARGS cum = *get_cumulative_args (cum_v);
  int byte_size = ((mode == BLKmode)
		   ? int_size_in_bytes (type) : GET_MODE_SIZE (mode));

  if (cum >= TILEGX_NUM_ARG_REGS)
    return NULL_RTX;

  /* The ABI does not allow parameters to be passed partially in reg
     and partially in stack.  */
  if ((cum + (byte_size + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
      > TILEGX_NUM_ARG_REGS)
    return NULL_RTX;

  return gen_rtx_REG (mode, cum);
}


/* Implement TARGET_FUNCTION_ARG_ADVANCE.  */
static void
tilegx_function_arg_advance (cumulative_args_t cum_v,
			     enum machine_mode mode,
			     const_tree type, bool named ATTRIBUTE_UNUSED)
{
  CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);

  int byte_size = ((mode == BLKmode)
		   ? int_size_in_bytes (type) : GET_MODE_SIZE (mode));
  int word_size = (byte_size + UNITS_PER_WORD - 1) / UNITS_PER_WORD;

  /* If the current argument does not fit in the pretend_args space,
     skip over it.  */
  if (*cum < TILEGX_NUM_ARG_REGS
      && *cum + word_size > TILEGX_NUM_ARG_REGS)
    *cum = TILEGX_NUM_ARG_REGS;

  *cum += word_size;
}


/* Implement TARGET_FUNCTION_VALUE.  */
static rtx
tilegx_function_value (const_tree valtype, const_tree fn_decl_or_type,
		       bool outgoing ATTRIBUTE_UNUSED)
{
  enum machine_mode mode;
  int unsigned_p;

  mode = TYPE_MODE (valtype);
  unsigned_p = TYPE_UNSIGNED (valtype);

  mode = promote_function_mode (valtype, mode, &unsigned_p,
				fn_decl_or_type, 1);

  return gen_rtx_REG (mode, 0);
}


/* Implement TARGET_LIBCALL_VALUE.  */
static rtx
tilegx_libcall_value (enum machine_mode mode,
		       const_rtx fun ATTRIBUTE_UNUSED)
{
  return gen_rtx_REG (mode, 0);
}


/* Implement FUNCTION_VALUE_REGNO_P.  */
static bool
tilegx_function_value_regno_p (const unsigned int regno)
{
  return regno < TILEGX_NUM_RETURN_REGS;
}


/* Implement TARGET_BUILD_BUILTIN_VA_LIST.  */
static tree
tilegx_build_builtin_va_list (void)
{
  tree f_args, f_skip, record, type_decl;
  bool owp;

  record = lang_hooks.types.make_type (RECORD_TYPE);

  type_decl = build_decl (BUILTINS_LOCATION, TYPE_DECL,
			  get_identifier ("__va_list_tag"), record);

  f_args = build_decl (BUILTINS_LOCATION, FIELD_DECL,
		       get_identifier ("__args"), ptr_type_node);
  f_skip = build_decl (BUILTINS_LOCATION, FIELD_DECL,
		       get_identifier ("__skip"), ptr_type_node);

  DECL_FIELD_CONTEXT (f_args) = record;

  DECL_FIELD_CONTEXT (f_skip) = record;

  TREE_CHAIN (record) = type_decl;
  TYPE_NAME (record) = type_decl;
  TYPE_FIELDS (record) = f_args;
  TREE_CHAIN (f_args) = f_skip;

  /* We know this is being padded and we want it too.  It is an
     internal type so hide the warnings from the user.  */
  owp = warn_padded;
  warn_padded = false;

  layout_type (record);

  warn_padded = owp;

  /* The correct type is an array type of one element.  */
  return record;
}


/* Implement TARGET_EXPAND_BUILTIN_VA_START.  */
static void
tilegx_va_start (tree valist, rtx nextarg ATTRIBUTE_UNUSED)
{
  tree f_args, f_skip;
  tree args, skip, t;

  f_args = TYPE_FIELDS (TREE_TYPE (valist));
  f_skip = TREE_CHAIN (f_args);

  args =
    build3 (COMPONENT_REF, TREE_TYPE (f_args), valist, f_args, NULL_TREE);
  skip =
    build3 (COMPONENT_REF, TREE_TYPE (f_skip), valist, f_skip, NULL_TREE);

  /* Find the __args area.  */
  t = make_tree (TREE_TYPE (args), virtual_incoming_args_rtx);
  t = fold_build_pointer_plus_hwi (t,
				   UNITS_PER_WORD *
				   (crtl->args.info - TILEGX_NUM_ARG_REGS));

  if (crtl->args.pretend_args_size > 0)
    t = fold_build_pointer_plus_hwi (t, -STACK_POINTER_OFFSET);

  t = build2 (MODIFY_EXPR, TREE_TYPE (args), args, t);
  TREE_SIDE_EFFECTS (t) = 1;
  expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);

  /* Find the __skip area.  */
  t = make_tree (TREE_TYPE (skip), virtual_incoming_args_rtx);
  t = fold_build_pointer_plus_hwi (t, -STACK_POINTER_OFFSET);
  t = build2 (MODIFY_EXPR, TREE_TYPE (skip), skip, t);
  TREE_SIDE_EFFECTS (t) = 1;
  expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
}


/* Implement TARGET_SETUP_INCOMING_VARARGS.  */
static void
tilegx_setup_incoming_varargs (cumulative_args_t cum,
			       enum machine_mode mode,
			       tree type, int *pretend_args, int no_rtl)
{
  CUMULATIVE_ARGS local_cum = *get_cumulative_args (cum);
  int first_reg;

  /* The caller has advanced CUM up to, but not beyond, the last named
     argument.  Advance a local copy of CUM past the last "real" named
     argument, to find out how many registers are left over.  */
  targetm.calls.function_arg_advance (pack_cumulative_args (&local_cum),
				      mode, type, true);
  first_reg = local_cum;

  if (local_cum < TILEGX_NUM_ARG_REGS)
    {
      *pretend_args = UNITS_PER_WORD * (TILEGX_NUM_ARG_REGS - first_reg);

      if (!no_rtl)
	{
	  alias_set_type set = get_varargs_alias_set ();
	  rtx tmp =
	    gen_rtx_MEM (BLKmode, plus_constant (Pmode,
						 virtual_incoming_args_rtx,
						 -STACK_POINTER_OFFSET -
						 UNITS_PER_WORD *
						 (TILEGX_NUM_ARG_REGS -
						  first_reg)));
	  MEM_NOTRAP_P (tmp) = 1;
	  set_mem_alias_set (tmp, set);
	  move_block_from_reg (first_reg, tmp,
			       TILEGX_NUM_ARG_REGS - first_reg);
	}
    }
  else
    *pretend_args = 0;
}


/* Implement TARGET_GIMPLIFY_VA_ARG_EXPR.  Gimplify va_arg by updating
   the va_list structure VALIST as required to retrieve an argument of
   type TYPE, and returning that argument.
   
   ret = va_arg(VALIST, TYPE);

   generates code equivalent to:
  
    paddedsize = (sizeof(TYPE) + 3) & -4;
    if (  (VALIST.__args + paddedsize > VALIST.__skip)
	& (VALIST.__args <= VALIST.__skip))
      addr = VALIST.__skip + STACK_POINTER_OFFSET;
    else
      addr = VALIST.__args;
    VALIST.__args = addr + paddedsize;
    ret = *(TYPE *)addr;
 */
static tree
tilegx_gimplify_va_arg_expr (tree valist, tree type, gimple_seq *pre_p,
			     gimple_seq *post_p ATTRIBUTE_UNUSED)
{
  tree f_args, f_skip;
  tree args, skip;
  HOST_WIDE_INT size, rsize;
  tree addr, tmp;
  bool pass_by_reference_p;

  f_args = TYPE_FIELDS (va_list_type_node);
  f_skip = TREE_CHAIN (f_args);

  args =
    build3 (COMPONENT_REF, TREE_TYPE (f_args), valist, f_args, NULL_TREE);
  skip =
    build3 (COMPONENT_REF, TREE_TYPE (f_skip), valist, f_skip, NULL_TREE);

  addr = create_tmp_var (ptr_type_node, "va_arg");

  /* If an object is dynamically sized, a pointer to it is passed
     instead of the object itself.  */
  pass_by_reference_p = pass_by_reference (NULL, TYPE_MODE (type), type,
					   false);

  if (pass_by_reference_p)
    type = build_pointer_type (type);

  size = int_size_in_bytes (type);
  rsize = ((size + UNITS_PER_WORD - 1) / UNITS_PER_WORD) * UNITS_PER_WORD;

  /* Assert alignment assumption.  */
  gcc_assert (STACK_BOUNDARY == PARM_BOUNDARY);

  /* Build conditional expression to calculate addr. The expression
     will be gimplified later.  */
  tmp = fold_build_pointer_plus_hwi (unshare_expr (args), rsize);
  tmp = build2 (TRUTH_AND_EXPR, boolean_type_node,
		build2 (GT_EXPR, boolean_type_node, tmp, unshare_expr (skip)),
		build2 (LE_EXPR, boolean_type_node, unshare_expr (args),
			unshare_expr (skip)));

  tmp = build3 (COND_EXPR, ptr_type_node, tmp,
		build2 (POINTER_PLUS_EXPR, ptr_type_node, unshare_expr (skip),
			size_int (STACK_POINTER_OFFSET)),
		unshare_expr (args));

  gimplify_assign (addr, tmp, pre_p);

  /* Update VALIST.__args.  */
  tmp = fold_build_pointer_plus_hwi (addr, rsize);
  gimplify_assign (unshare_expr (args), tmp, pre_p);

  addr = fold_convert (build_pointer_type (type), addr);

  if (pass_by_reference_p)
    addr = build_va_arg_indirect_ref (addr);

  return build_va_arg_indirect_ref (addr);
}



/* Implement TARGET_RTX_COSTS.  */
static bool
tilegx_rtx_costs (rtx x, int code, int outer_code, int opno, int *total,
		  bool speed)
{
  switch (code)
    {
    case CONST_INT:
      /* If this is an 8-bit constant, return zero since it can be
	 used nearly anywhere with no cost.  If it is a valid operand
	 for an ADD or AND, likewise return 0 if we know it will be
	 used in that context.  Otherwise, return 2 since it might be
	 used there later.  All other constants take at least two
	 insns.  */
      if (satisfies_constraint_I (x))
	{
	  *total = 0;
	  return true;
	}
      else if (outer_code == PLUS && add_operand (x, VOIDmode))
	{
	  /* Slightly penalize large constants even though we can add
	     them in one instruction, because it forces the use of
	     2-wide bundling mode.  */
	  *total = 1;
	  return true;
	}
      else if (move_operand (x, SImode))
	{
	  /* We can materialize in one move.  */
	  *total = COSTS_N_INSNS (1);
	  return true;
	}
      else
	{
	  /* We can materialize in two moves.  */
	  *total = COSTS_N_INSNS (2);
	  return true;
	}

      return false;

    case CONST:
    case LABEL_REF:
    case SYMBOL_REF:
      *total = COSTS_N_INSNS (2);
      return true;

    case CONST_DOUBLE:
      *total = COSTS_N_INSNS (4);
      return true;

    case HIGH:
      *total = 0;
      return true;

    case MEM:
      /* If outer-code was a sign or zero extension, a cost of
	 COSTS_N_INSNS (1) was already added in, so account for
	 that.  */
      if (outer_code == ZERO_EXTEND || outer_code == SIGN_EXTEND)
	*total = COSTS_N_INSNS (1);
      else
	*total = COSTS_N_INSNS (2);
      return true;

    case PLUS:
      /* Convey that shl[123]add are efficient.  */
      if (GET_CODE (XEXP (x, 0)) == MULT
	  && cint_248_operand (XEXP (XEXP (x, 0), 1), VOIDmode))
	{
	  *total = (rtx_cost (XEXP (XEXP (x, 0), 0),
			      (enum rtx_code) outer_code, opno, speed)
		    + rtx_cost (XEXP (x, 1),
				(enum rtx_code) outer_code, opno, speed)
		    + COSTS_N_INSNS (1));
	  return true;
	}
      return false;

    case MULT:
      *total = COSTS_N_INSNS (2);
      return false;

    case DIV:
    case UDIV:
    case MOD:
    case UMOD:
      /* These are handled by software and are very expensive.  */
      *total = COSTS_N_INSNS (100);
      return false;

    case UNSPEC:
    case UNSPEC_VOLATILE:
      {
	int num = XINT (x, 1);

	if (num <= TILEGX_LAST_LATENCY_1_INSN)
	  *total = COSTS_N_INSNS (1);
	else if (num <= TILEGX_LAST_LATENCY_2_INSN)
	  *total = COSTS_N_INSNS (2);
	else if (num > TILEGX_LAST_LATENCY_INSN)
	  {
	    if (num == UNSPEC_NON_TEMPORAL)
	      {
		/* These are basically loads.  */
		if (outer_code == ZERO_EXTEND || outer_code == SIGN_EXTEND)
		  *total = COSTS_N_INSNS (1);
		else
		  *total = COSTS_N_INSNS (2);
	      }
	    else
	      {
		if (outer_code == PLUS)
		  *total = 0;
		else
		  *total = COSTS_N_INSNS (1);
	      }
	  }
	else
	  {
	    switch (num)
	      {
	      case UNSPEC_BLOCKAGE:
	      case UNSPEC_NETWORK_BARRIER:
	      case UNSPEC_ATOMIC:
		*total = 0;
		break;

	      case UNSPEC_LNK_AND_LABEL:
	      case UNSPEC_MF:
	      case UNSPEC_MOV_PCREL_STEP3:
	      case UNSPEC_NETWORK_RECEIVE:
	      case UNSPEC_NETWORK_SEND:
	      case UNSPEC_SPR_MOVE:
	      case UNSPEC_TLS_GD_ADD:
		*total = COSTS_N_INSNS (1);
		break;

	      case UNSPEC_TLS_IE_LOAD:
	      case UNSPEC_XCHG:
		*total = COSTS_N_INSNS (2);
		break;

	      case UNSPEC_SP_SET:
		*total = COSTS_N_INSNS (3);
		break;

	      case UNSPEC_SP_TEST:
		*total = COSTS_N_INSNS (4);
		break;

	      case UNSPEC_CMPXCHG:
	      case UNSPEC_INSN_CMPEXCH:
	      case UNSPEC_LATENCY_L2:
		*total = COSTS_N_INSNS (11);
		break;

	      case UNSPEC_TLS_GD_CALL:
		*total = COSTS_N_INSNS (30);
		break;

	      case UNSPEC_LATENCY_MISS:
		*total = COSTS_N_INSNS (80);
		break;

	      default:
		*total = COSTS_N_INSNS (1);
	      }
	  }
	return true;
      }

    default:
      return false;
    }
}



/* Rtl lowering.  */

/* Create a temporary variable to hold a partial result, to enable
   CSE.  */
static rtx
create_temp_reg_if_possible (enum machine_mode mode, rtx default_reg)
{
  return can_create_pseudo_p () ? gen_reg_rtx (mode) : default_reg;
}


/* Functions to save and restore machine-specific function data.  */
static struct machine_function *
tilegx_init_machine_status (void)
{
  return ggc_alloc_cleared_machine_function ();
}


/* Do anything needed before RTL is emitted for each function.  */
void
tilegx_init_expanders (void)
{
  /* Arrange to initialize and mark the machine per-function
     status.  */
  init_machine_status = tilegx_init_machine_status;

  if (cfun && cfun->machine && flag_pic)
    {
      static int label_num = 0;

      char text_label_name[32];

      struct machine_function *machine = cfun->machine;

      ASM_GENERATE_INTERNAL_LABEL (text_label_name, "L_PICLNK", label_num++);

      machine->text_label_symbol =
	gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (text_label_name));

      machine->text_label_rtx =
	gen_rtx_REG (Pmode, TILEGX_PIC_TEXT_LABEL_REGNUM);

      machine->got_rtx = gen_rtx_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);

      machine->calls_tls_get_addr = false;
    }
}


/* Implement TARGET_SHIFT_TRUNCATION_MASK.  DImode shifts use the mode
   matching insns and therefore guarantee that the shift count is
   modulo 64.  SImode shifts sometimes use the 64 bit version so do
   not hold such guarantee.  */
static unsigned HOST_WIDE_INT
tilegx_shift_truncation_mask (enum machine_mode mode)
{
  return mode == DImode ? 63 : 0;
}


/* Implement TARGET_INIT_LIBFUNCS.  */
static void
tilegx_init_libfuncs (void)
{
  /* We need to explicitly generate these libfunc's to support
     conversion of divide by constant to multiply (the divide stubs in
     tilegx.md exist also for this reason).  Normally we'd expect gcc
     to lazily generate them when they are needed, but for some reason
     it's set up to only generate them if the mode is the word
     mode.  */
  set_optab_libfunc (sdiv_optab, SImode, "__divsi3");
  set_optab_libfunc (udiv_optab, SImode, "__udivsi3");
  set_optab_libfunc (smod_optab, SImode, "__modsi3");
  set_optab_libfunc (umod_optab, SImode, "__umodsi3");
}


/* Return true if X contains a thread-local symbol.  */
static bool
tilegx_tls_referenced_p (rtx x)
{
  if (GET_CODE (x) == CONST && GET_CODE (XEXP (x, 0)) == PLUS)
    x = XEXP (XEXP (x, 0), 0);

  if (GET_CODE (x) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (x))
    return true;

  /* That's all we handle in tilegx_legitimize_tls_address for
     now.  */
  return false;
}


/* Return true if X requires a scratch register.  It is given that
   flag_pic is on and that X satisfies CONSTANT_P.  */
static int
tilegx_pic_address_needs_scratch (rtx x)
{
  if (GET_CODE (x) == CONST
      && GET_CODE (XEXP (x, 0)) == PLUS
      && (GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
	  || GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF)
      && (CONST_INT_P (XEXP (XEXP (x, 0), 1))))
    return true;

  return false;
}


/* Implement TARGET_LEGITIMATE_CONSTANT_P.  This is all constants for
   which we are willing to load the value into a register via a move
   pattern.  TLS cannot be treated as a constant because it can
   include a function call.  */
static bool
tilegx_legitimate_constant_p (enum machine_mode mode ATTRIBUTE_UNUSED, rtx x)
{
  switch (GET_CODE (x))
    {
    case CONST:
    case SYMBOL_REF:
      return !tilegx_tls_referenced_p (x);

    default:
      return true;
    }
}


/* Return true if the constant value X is a legitimate general operand
   when generating PIC code.  It is given that flag_pic is on and that
   X satisfies CONSTANT_P.  */
bool
tilegx_legitimate_pic_operand_p (rtx x)
{
  if (tilegx_pic_address_needs_scratch (x))
    return false;

  if (tilegx_tls_referenced_p (x))
    return false;

  return true;
}


/* Return true if the rtx X can be used as an address operand.  */
static bool
tilegx_legitimate_address_p (enum machine_mode ARG_UNUSED (mode), rtx x,
			     bool strict)
{
  if (GET_CODE (x) == SUBREG)
    x = SUBREG_REG (x);

  switch (GET_CODE (x))
    {
    case POST_INC:
    case POST_DEC:
      if (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD)
	return false;

      x = XEXP (x, 0);
      break;

    case POST_MODIFY:
      if (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD)
	return false;

      if (GET_CODE (XEXP (x, 1)) != PLUS)
	return false;

      if (!rtx_equal_p (XEXP (x, 0), XEXP (XEXP (x, 1), 0)))
	return false;

      if (!satisfies_constraint_I (XEXP (XEXP (x, 1), 1)))
	return false;

      x = XEXP (x, 0);
      break;

    case REG:
      break;

    default:
      return false;
    }

  /* Check if x is a valid reg.  */
  if (!REG_P (x))
    return false;

  if (strict)
    return REGNO_OK_FOR_BASE_P (REGNO (x));
  else
    return true;
}


/* Return the rtx containing SYMBOL_REF to the text label.  */
static rtx
tilegx_text_label_symbol (void)
{
  return cfun->machine->text_label_symbol;
}


/* Return the register storing the value of the text label.  */
static rtx
tilegx_text_label_rtx (void)
{
  return cfun->machine->text_label_rtx;
}


/* Return the register storing the value of the global offset
   table.  */
static rtx
tilegx_got_rtx (void)
{
  return cfun->machine->got_rtx;
}


/* Return the SYMBOL_REF for _GLOBAL_OFFSET_TABLE_.  */
static rtx
tilegx_got_symbol (void)
{
  if (g_got_symbol == NULL)
    g_got_symbol = gen_rtx_SYMBOL_REF (Pmode, "_GLOBAL_OFFSET_TABLE_");

  return g_got_symbol;
}


/* Return a reference to the got to be used by tls references.  */
static rtx
tilegx_tls_got (void)
{
  rtx temp;
  if (flag_pic)
    {
      crtl->uses_pic_offset_table = 1;
      return tilegx_got_rtx ();
    }

  temp = gen_reg_rtx (Pmode);
  emit_move_insn (temp, tilegx_got_symbol ());

  return temp;
}


/* ADDR contains a thread-local SYMBOL_REF.  Generate code to compute
   this (thread-local) address.  */
static rtx
tilegx_legitimize_tls_address (rtx addr)
{
  rtx ret;

  gcc_assert (can_create_pseudo_p ());

  if (GET_CODE (addr) == SYMBOL_REF)
    switch (SYMBOL_REF_TLS_MODEL (addr))
      {
      case TLS_MODEL_GLOBAL_DYNAMIC:
      case TLS_MODEL_LOCAL_DYNAMIC:
	{
	  rtx r0, temp, temp2, temp3, got, last;

	  ret = gen_reg_rtx (Pmode);
	  r0 = gen_rtx_REG (Pmode, 0);
	  temp = gen_reg_rtx (Pmode);
	  temp2 = gen_reg_rtx (Pmode);
	  temp3 = gen_reg_rtx (Pmode);

	  got = tilegx_tls_got ();
	  if (TARGET_32BIT)
	    {
	      emit_insn (gen_mov_tls_gd_step1_32bit (temp, addr));
	      emit_insn (gen_mov_tls_gd_step2_32bit (temp2, temp, addr));
	      emit_insn (gen_tls_add_32bit (temp2, got, temp2, addr));
	    }
	  else
	    {
	      emit_insn (gen_mov_tls_gd_step1 (temp, addr));
	      emit_insn (gen_mov_tls_gd_step2 (temp2, temp, addr));
	      emit_insn (gen_tls_add (temp2, got, temp2, addr));
	    }

	  emit_move_insn (r0, temp2);

	  if (TARGET_32BIT)
	    {
	      emit_insn (gen_tls_gd_call_32bit (addr));
	    }
	  else
	    {
	      emit_insn (gen_tls_gd_call (addr));
	    }

	  emit_move_insn (temp3, r0);

	  if (TARGET_32BIT)
	    last = emit_insn (gen_tls_gd_add_32bit (ret, temp3, addr));
	  else
	    last = emit_insn (gen_tls_gd_add (ret, temp3, addr));

	  set_unique_reg_note (last, REG_EQUAL, copy_rtx (addr));
	  break;
	}
      case TLS_MODEL_INITIAL_EXEC:
	{
	  rtx temp, temp2, temp3, got, last;

	  ret = gen_reg_rtx (Pmode);
	  temp = gen_reg_rtx (Pmode);
	  temp2 = gen_reg_rtx (Pmode);
	  temp3 = gen_reg_rtx (Pmode);

	  got = tilegx_tls_got ();
	  if (TARGET_32BIT)
	    {
	      emit_insn (gen_mov_tls_ie_step1_32bit (temp, addr));
	      emit_insn (gen_mov_tls_ie_step2_32bit (temp2, temp, addr));
	      emit_insn (gen_tls_add_32bit (temp2, got, temp2, addr));
	      emit_insn (gen_tls_ie_load_32bit (temp3, temp2, addr));
	    }
	  else
	    {
	      emit_insn (gen_mov_tls_ie_step1 (temp, addr));
	      emit_insn (gen_mov_tls_ie_step2 (temp2, temp, addr));
	      emit_insn (gen_tls_add (temp2, got, temp2, addr));
	      emit_insn (gen_tls_ie_load (temp3, temp2, addr));
	    }

	  last =
	    emit_move_insn(ret,
			   gen_rtx_PLUS (Pmode,
					 gen_rtx_REG (Pmode,
						      THREAD_POINTER_REGNUM),
					 temp3));
	  set_unique_reg_note (last, REG_EQUAL, copy_rtx (addr));
	  break;
	}
      case TLS_MODEL_LOCAL_EXEC:
	{
	  rtx temp, temp2, last;

	  ret = gen_reg_rtx (Pmode);
	  temp = gen_reg_rtx (Pmode);
	  temp2 = gen_reg_rtx (Pmode);

	  if (TARGET_32BIT)
	    {
	      emit_insn (gen_mov_tls_le_step1_32bit (temp, addr));
	      emit_insn (gen_mov_tls_le_step2_32bit (temp2, temp, addr));
	    }
	  else
	    {
	      emit_insn (gen_mov_tls_le_step1 (temp, addr));
	      emit_insn (gen_mov_tls_le_step2 (temp2, temp, addr));
	    }

	  last =
	    emit_move_insn (ret,
			    gen_rtx_PLUS (Pmode,
					  gen_rtx_REG (Pmode,
						       THREAD_POINTER_REGNUM),
					  temp2));
	  set_unique_reg_note (last, REG_EQUAL, copy_rtx (addr));
	  break;
	}
      default:
	gcc_unreachable ();
      }
  else if (GET_CODE (addr) == CONST)
    {
      rtx base, offset;

      gcc_assert (GET_CODE (XEXP (addr, 0)) == PLUS);

      base = tilegx_legitimize_tls_address (XEXP (XEXP (addr, 0), 0));
      offset = XEXP (XEXP (addr, 0), 1);

      base = force_operand (base, NULL_RTX);
      ret = force_reg (Pmode, gen_rtx_PLUS (Pmode, base, offset));
    }
  else
    gcc_unreachable ();

  return ret;
}


/* Returns a register that points to ADDR, a symbolic address, by
   computing its address relative to tilegx_text_label_symbol.  */
void
tilegx_compute_pcrel_address (rtx result, rtx addr)
{
  rtx text_label_symbol = tilegx_text_label_symbol ();
  rtx text_label_rtx = tilegx_text_label_rtx ();
  rtx temp, temp2, temp3;

  temp = create_temp_reg_if_possible (Pmode, result);
  temp2 = create_temp_reg_if_possible (Pmode, result);

  if (TARGET_32BIT)
    {
      emit_insn (gen_mov_pcrel_step1_32bit (temp, addr, text_label_symbol));
      emit_insn (gen_mov_pcrel_step2_32bit (temp2, temp, addr,
					    text_label_symbol));
      emit_insn (gen_mov_pcrel_step3_32bit (result, temp2,
					    text_label_rtx,
					    addr, text_label_symbol));
    }
  else if (tilegx_cmodel == CM_LARGE_PIC)
    {
      temp3 = create_temp_reg_if_possible (Pmode, result);
      emit_insn (gen_mov_large_pcrel_step1 (temp, addr, text_label_symbol));
      emit_insn (gen_mov_large_pcrel_step2 (temp2, temp, addr,
					    text_label_symbol));
      emit_insn (gen_mov_large_pcrel_step3 (temp3, temp2, addr,
					    text_label_symbol));
      emit_insn (gen_mov_large_pcrel_step4 (result, temp3,
					    text_label_rtx,
					    addr, text_label_symbol));
    }
  else
    {
      emit_insn (gen_mov_pcrel_step1 (temp, addr, text_label_symbol));
      emit_insn (gen_mov_pcrel_step2 (temp2, temp, addr, text_label_symbol));
      emit_insn (gen_mov_pcrel_step3 (result, temp2,
				      text_label_rtx,
				      addr, text_label_symbol));
    }
}


/* Returns a register that points to the plt entry of ADDR, a symbolic
   address, by computing its address relative to
   tilegx_text_label_symbol.  */
void
tilegx_compute_pcrel_plt_address (rtx result, rtx addr)
{
  rtx text_label_symbol = tilegx_text_label_symbol ();
  rtx text_label_rtx = tilegx_text_label_rtx ();
  rtx temp, temp2, temp3;

  temp = create_temp_reg_if_possible (Pmode, result);
  temp2 = create_temp_reg_if_possible (Pmode, result);

  if (TARGET_32BIT)
    {
      emit_insn (gen_mov_plt_pcrel_step1_32bit (temp, addr,
						text_label_symbol));
      emit_insn (gen_mov_plt_pcrel_step2_32bit (temp2, temp, addr,
						text_label_symbol));
      emit_move_insn (result, gen_rtx_PLUS (Pmode, temp2, text_label_rtx));
    }
  else
    {
      temp3 = create_temp_reg_if_possible (Pmode, result);

      emit_insn (gen_mov_plt_pcrel_step1 (temp, addr, text_label_symbol));
      emit_insn (gen_mov_plt_pcrel_step2 (temp2, temp, addr,
					  text_label_symbol));
      emit_insn (gen_mov_plt_pcrel_step3 (temp3, temp2, addr,
					  text_label_symbol));
      emit_move_insn (result, gen_rtx_PLUS (Pmode, temp3, text_label_rtx));
    }
}


/* Legitimize PIC addresses.  If the address is already
   position-independent, we return ORIG.  Newly generated
   position-independent addresses go into a reg.  This is REG if
   nonzero, otherwise we allocate register(s) as necessary.  */
static rtx
tilegx_legitimize_pic_address (rtx orig,
			       enum machine_mode mode ATTRIBUTE_UNUSED,
			       rtx reg)
{
  if (GET_CODE (orig) == SYMBOL_REF)
    {
      rtx address, pic_ref;

      if (reg == 0)
	{
	  gcc_assert (can_create_pseudo_p ());
	  reg = gen_reg_rtx (Pmode);
	}

      if (SYMBOL_REF_LOCAL_P (orig))
	{
	  /* If not during reload, allocate another temp reg here for
	     loading in the address, so that these instructions can be
	     optimized properly.  */
	  rtx temp_reg = create_temp_reg_if_possible (Pmode, reg);
	  tilegx_compute_pcrel_address (temp_reg, orig);

	  /* Note: this is conservative.  We use the text_label but we
	     don't use the pic_offset_table.  However, in some cases
	     we may need the pic_offset_table (see
	     tilegx_fixup_pcrel_references).  */
	  crtl->uses_pic_offset_table = 1;

	  address = temp_reg;

	  emit_move_insn (reg, address);
	  return reg;
	}
      else
	{
	  /* If not during reload, allocate another temp reg here for
	     loading in the address, so that these instructions can be
	     optimized properly.  */
	  rtx temp_reg = create_temp_reg_if_possible (Pmode, reg);

	  gcc_assert (flag_pic);
	  if (flag_pic == 1)
	    {
	      if (TARGET_32BIT)
		{
		  emit_insn (gen_add_got16_32bit (temp_reg,
						  tilegx_got_rtx (),
						  orig));
		}
	      else
		{
		  emit_insn (gen_add_got16 (temp_reg,
					    tilegx_got_rtx (), orig));
		}
	    }
	  else
	    {
	      rtx temp_reg2 = create_temp_reg_if_possible (Pmode, reg);
	      rtx temp_reg3 = create_temp_reg_if_possible (Pmode, reg);
	      if (TARGET_32BIT)
		{
		  emit_insn (gen_mov_got32_step1_32bit (temp_reg3, orig));
		  emit_insn (gen_mov_got32_step2_32bit
			     (temp_reg2, temp_reg3, orig));
		}
	      else
		{
		  emit_insn (gen_mov_got32_step1 (temp_reg3, orig));
		  emit_insn (gen_mov_got32_step2 (temp_reg2, temp_reg3,
						  orig));
		}
	      emit_move_insn (temp_reg,
			      gen_rtx_PLUS (Pmode,
					    tilegx_got_rtx (), temp_reg2));
	    }

	  address = temp_reg;

	  pic_ref = gen_const_mem (Pmode, address);
	  crtl->uses_pic_offset_table = 1;
	  emit_move_insn (reg, pic_ref);
	  /* The following put a REG_EQUAL note on this insn, so that
	     it can be optimized by loop.  But it causes the label to
	     be optimized away.  */
	  /* set_unique_reg_note (insn, REG_EQUAL, orig); */
	  return reg;
	}
    }
  else if (GET_CODE (orig) == CONST)
    {
      rtx base, offset;

      if (GET_CODE (XEXP (orig, 0)) == PLUS
	  && XEXP (XEXP (orig, 0), 0) == tilegx_got_rtx ())
	return orig;

      if (reg == 0)
	{
	  gcc_assert (can_create_pseudo_p ());
	  reg = gen_reg_rtx (Pmode);
	}

      gcc_assert (GET_CODE (XEXP (orig, 0)) == PLUS);
      base = tilegx_legitimize_pic_address (XEXP (XEXP (orig, 0), 0),
					    Pmode, reg);
      offset = tilegx_legitimize_pic_address (XEXP (XEXP (orig, 0), 1), Pmode,
					      base == reg ? 0 : reg);

      if (CONST_INT_P (offset))
	{
	  if (can_create_pseudo_p ())
	    offset = force_reg (Pmode, offset);
	  else
	    /* If we reach here, then something is seriously wrong.  */
	    gcc_unreachable ();
	}

      if (can_create_pseudo_p ())
	return force_reg (Pmode, gen_rtx_PLUS (Pmode, base, offset));
      else
	gcc_unreachable ();
    }
  else if (GET_CODE (orig) == LABEL_REF)
    {
      rtx address;
      rtx temp_reg;

      if (reg == 0)
	{
	  gcc_assert (can_create_pseudo_p ());
	  reg = gen_reg_rtx (Pmode);
	}

      /* If not during reload, allocate another temp reg here for
	 loading in the address, so that these instructions can be
	 optimized properly.  */
      temp_reg = create_temp_reg_if_possible (Pmode, reg);
      tilegx_compute_pcrel_address (temp_reg, orig);

      /* Note: this is conservative.  We use the text_label but we
	 don't use the pic_offset_table.  */
      crtl->uses_pic_offset_table = 1;

      address = temp_reg;

      emit_move_insn (reg, address);

      return reg;
    }

  return orig;
}


/* Implement TARGET_LEGITIMIZE_ADDRESS.  */
static rtx
tilegx_legitimize_address (rtx x, rtx oldx ATTRIBUTE_UNUSED,
			   enum machine_mode mode)
{
  if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
      && symbolic_operand (x, Pmode) && tilegx_tls_referenced_p (x))
    {
      return tilegx_legitimize_tls_address (x);
    }
  else if (flag_pic)
    {
      return tilegx_legitimize_pic_address (x, mode, 0);
    }
  else
    return x;
}


/* Implement TARGET_DELEGITIMIZE_ADDRESS.  */
static rtx
tilegx_delegitimize_address (rtx x)
{
  x = delegitimize_mem_from_attrs (x);

  if (GET_CODE (x) == CONST && GET_CODE (XEXP (x, 0)) == UNSPEC)
    {
      switch (XINT (XEXP (x, 0), 1))
	{
	  case UNSPEC_HW0:
	  case UNSPEC_HW1:
	  case UNSPEC_HW2:
	  case UNSPEC_HW3:
	  case UNSPEC_HW0_LAST:
	  case UNSPEC_HW1_LAST:
	  case UNSPEC_HW2_LAST:
	  case UNSPEC_HW0_PCREL:
	  case UNSPEC_HW1_PCREL:
	  case UNSPEC_HW1_LAST_PCREL:
	  case UNSPEC_HW2_LAST_PCREL:
	  case UNSPEC_HW0_PLT_PCREL:
	  case UNSPEC_HW1_PLT_PCREL:
	  case UNSPEC_HW1_LAST_PLT_PCREL:
	  case UNSPEC_HW2_LAST_PLT_PCREL:
	  case UNSPEC_HW0_GOT:
	  case UNSPEC_HW0_LAST_GOT:
  	  case UNSPEC_HW1_LAST_GOT:
  	  case UNSPEC_HW0_TLS_GD:
  	  case UNSPEC_HW1_LAST_TLS_GD:
  	  case UNSPEC_HW0_TLS_IE:
  	  case UNSPEC_HW1_LAST_TLS_IE:
  	  case UNSPEC_HW0_TLS_LE:
  	  case UNSPEC_HW1_LAST_TLS_LE:
	    x = XVECEXP (XEXP (x, 0), 0, 0);
	  break;
	}
    }

  return x;
}


/* Emit code to load the PIC register.  */
static void
load_pic_register (bool delay_pic_helper ATTRIBUTE_UNUSED)
{
  int orig_flag_pic = flag_pic;

  rtx got_symbol = tilegx_got_symbol ();
  rtx text_label_symbol = tilegx_text_label_symbol ();
  rtx text_label_rtx = tilegx_text_label_rtx ();
  flag_pic = 0;

  if (TARGET_32BIT)
    {
      emit_insn (gen_insn_lnk_and_label_32bit (text_label_rtx,
					       text_label_symbol));
    }
  else
    {
      emit_insn (gen_insn_lnk_and_label (text_label_rtx, text_label_symbol));
    }

  tilegx_compute_pcrel_address (tilegx_got_rtx (), got_symbol);

  flag_pic = orig_flag_pic;

  /* Need to emit this whether or not we obey regdecls, since
     setjmp/longjmp can cause life info to screw up.  ??? In the case
     where we don't obey regdecls, this is not sufficient since we may
     not fall out the bottom.  */
  emit_use (tilegx_got_rtx ());
}


/* Return the simd variant of the constant NUM of mode MODE, by
   replicating it to fill an interger of mode DImode.  NUM is first
   truncated to fit in MODE.  */
rtx
tilegx_simd_int (rtx num, enum machine_mode mode)
{
  HOST_WIDE_INT n = 0;

  gcc_assert (CONST_INT_P (num));

  n = INTVAL (num);

  switch (mode)
    {
    case QImode:
      n = 0x0101010101010101LL * (n & 0x000000FF);
      break;
    case HImode:
      n = 0x0001000100010001LL * (n & 0x0000FFFF);
      break;
    case SImode:
      n = 0x0000000100000001LL * (n & 0xFFFFFFFF);
      break;
    case DImode:
      break;
    default:
      gcc_unreachable ();
    }

  return GEN_INT (n);
}


/* Returns true iff VAL can be moved into a register in one
   instruction.  And if it can, it emits the code to move the constant
   into DEST_REG.

   If THREE_WIDE_ONLY is true, this insists on an instruction that
   works in a bundle containing three instructions.  */
static bool
expand_set_cint64_one_inst (rtx dest_reg,
			    HOST_WIDE_INT val, bool three_wide_only)
{
  if (val == trunc_int_for_mode (val, QImode))
    {
      /* Success! */
      emit_move_insn (dest_reg, GEN_INT (val));
      return true;
    }
  else if (!three_wide_only)
    {
      /* Test for the following constraints: J, K, N, P.  We avoid
	 generating an rtx and using existing predicates because we
	 can be testing and rejecting a lot of constants, and GEN_INT
	 is O(N).  */
      if ((val >= -32768 && val <= 65535)
	  || ((val == (val & 0xFF) * 0x0101010101010101LL))
	  || (val == ((trunc_int_for_mode (val, QImode) & 0xFFFF)
		      * 0x0001000100010001LL)))
	{
	  emit_move_insn (dest_reg, GEN_INT (val));
	  return true;
	}
    }

  return false;
}


/* Implement DImode rotatert.  */
static HOST_WIDE_INT
rotate_right (HOST_WIDE_INT n, int count)
{
  unsigned HOST_WIDE_INT x = n & 0xFFFFFFFFFFFFFFFFULL;
  if (count == 0)
    return x;
  return ((x >> count) | (x << (64 - count))) & 0xFFFFFFFFFFFFFFFFULL;
}


/* Return true iff n contains exactly one contiguous sequence of 1
   bits, possibly wrapping around from high bits to low bits.  */
bool
tilegx_bitfield_operand_p (HOST_WIDE_INT n, int *first_bit, int *last_bit)
{
  int i;

  if (n == 0)
    return false;

  for (i = 0; i < 64; i++)
    {
      unsigned HOST_WIDE_INT x = rotate_right (n, i);
      if (!(x & 1))
	continue;

      /* See if x is a power of two minus one, i.e. only consecutive 1
	 bits starting from bit 0.  */
      if ((x & (x + 1)) == 0)
	{
	  if (first_bit != NULL)
	    *first_bit = i;
	  if (last_bit != NULL)
	    *last_bit = (i + exact_log2 (x ^ (x >> 1))) & 63;

	  return true;
	}
    }

  return false;
}


/* Create code to move the CONST_INT value in src_val to dest_reg.  */
static void
expand_set_cint64 (rtx dest_reg, rtx src_val)
{
  HOST_WIDE_INT val;
  int leading_zeroes, trailing_zeroes;
  int three_wide_only;
  int shift, ins_shift, zero_cluster_shift;
  rtx temp, subreg;

  gcc_assert (CONST_INT_P (src_val));
  val = trunc_int_for_mode (INTVAL (src_val), GET_MODE (dest_reg));

  /* See if we can generate the constant in one instruction.  */
  if (expand_set_cint64_one_inst (dest_reg, val, false))
    return;

  /* Force the destination to DImode so we can use DImode instructions
     to create it.  This both allows instructions like rotl, and
     certain efficient 3-wide instructions.  */
  subreg = simplify_gen_subreg (DImode, dest_reg, GET_MODE (dest_reg), 0);
  gcc_assert (subreg != NULL);
  dest_reg = subreg;

  temp = create_temp_reg_if_possible (DImode, dest_reg);

  leading_zeroes = 63 - floor_log2 (val & 0xFFFFFFFFFFFFFFFFULL);
  trailing_zeroes = exact_log2 (val & -val);

  /* First try all three-wide instructions that generate a constant
     (i.e. movei) followed by various shifts and rotates. If none of
     those work, try various two-wide ways of generating a constant
     followed by various shifts and rotates.  */
  for (three_wide_only = 1; three_wide_only >= 0; three_wide_only--)
    {
      int count;

      if (expand_set_cint64_one_inst (temp, val >> trailing_zeroes,
				      three_wide_only))
	{
	  /* 0xFFFFFFFFFFFFA500 becomes:
	     movei temp, 0xFFFFFFFFFFFFFFA5
	     shli dest, temp, 8  */
	  emit_move_insn (dest_reg,
			  gen_rtx_ASHIFT (DImode, temp,
					  GEN_INT (trailing_zeroes)));
	  return;
	}

      if (expand_set_cint64_one_inst (temp, val << leading_zeroes,
				      three_wide_only))
	{
	  /* 0x7FFFFFFFFFFFFFFF becomes:
	     movei temp, -2
	     shrui dest, temp, 1  */
	  emit_move_insn (dest_reg,
			  gen_rtx_LSHIFTRT (DImode, temp,
					    GEN_INT (leading_zeroes)));
	  return;
	}

      /* Try rotating a one-instruction immediate.  */
      for (count = 1; count < 64; count++)
	{
	  HOST_WIDE_INT r = rotate_right (val, count);
	  if (expand_set_cint64_one_inst (temp, r, three_wide_only))
	    {
	      /* 0xFFFFFFFFFFA5FFFF becomes:
		 movei temp, 0xFFFFFFFFFFFFFFA5
		 rotli dest, temp, 16  */
	      emit_move_insn (dest_reg,
			      gen_rtx_ROTATE (DImode, temp, GEN_INT (count)));
	      return;
	    }
	}
    }

  /* There are two cases here to produce a large constant.
     In the most general case, we do this:

     moveli x, hw3(NUM)
     shl16insli x, x, hw2(NUM)
     shl16insli x, x, hw1(NUM)
     shl16insli x, x, hw0(NUM)

     However, we can sometimes do better.  shl16insli is a poor way to
     insert 16 zero bits, because simply shifting left by 16 has more
     bundling freedom.  So if we see any contiguous aligned sequence
     of 16 or more zero bits (below the highest set bit), it is always
     more efficient to materialize the bits above the zero bits, then
     left shift to put in the zeroes, then insert whatever bits
     remain.  For example, we might end up with:

     movei x, NUM >> (37 + 16)
     shli x, x, 37
     shl16insli x, x, hw0(NUM)      */

  zero_cluster_shift = -1;

  for (shift = 0; shift < 48 - leading_zeroes; shift += 16)
    {
      HOST_WIDE_INT x = val >> shift;

      /* Find the least significant group of 16 aligned zero bits.  */
      if ((x & 0xFFFF) == 0x0000)
	{
	  /* Grab any following zero bits as well.  */
	  zero_cluster_shift = exact_log2 (x & -x);
	  shift += zero_cluster_shift;
	  break;
	}
    }

  if (zero_cluster_shift >= 0)
    {
      unsigned HOST_WIDE_INT leftover;

      /* Recursively create the constant above the lowest 16 zero
	 bits.  */
      expand_set_cint64 (temp, GEN_INT (val >> shift));

      /* See if we can easily insert the remaining bits, or if we need
	 to fall through to the more general case.  */
      leftover = val - ((val >> shift) << shift);
      if (leftover == 0)
	{
	  /* A simple left shift is enough.  */
	  emit_move_insn (dest_reg,
			  gen_rtx_ASHIFT (DImode, temp, GEN_INT (shift)));
	  return;
	}
      else if (leftover <= 32767)
	{
	  /* Left shift into position then add in the leftover.  */
	  rtx temp2 = create_temp_reg_if_possible (DImode, temp);
	  emit_move_insn (temp2,
			  gen_rtx_ASHIFT (DImode, temp, GEN_INT (shift)));
	  emit_move_insn (dest_reg,
			  gen_rtx_PLUS (DImode, temp2, GEN_INT (leftover)));
	  return;
	}
      else
	{
	  /* Shift in the batch of >= 16 zeroes we detected earlier.
	     After this, shift will be aligned mod 16 so the final
	     loop can use shl16insli.  */
	  rtx temp2 = create_temp_reg_if_possible (DImode, temp);
	  rtx shift_count_rtx = GEN_INT (zero_cluster_shift);

	  emit_move_insn (temp2,
			  gen_rtx_ASHIFT (DImode, temp, shift_count_rtx));

	  shift -= zero_cluster_shift;
	  temp = temp2;
	}
    }
  else
    {
      /* Set as many high 16-bit blocks as we can with a single
	 instruction.  We'll insert the remaining 16-bit blocks
	 below.  */
      for (shift = 16;; shift += 16)
	{
	  gcc_assert (shift < 64);
	  if (expand_set_cint64_one_inst (temp, val >> shift, false))
	    break;
	}
    }

  /* At this point, temp == val >> shift, shift % 16 == 0, and we
     still need to insert any bits of 'val' below 'shift'. Those bits
     are guaranteed to not have 16 contiguous zeroes.  */

  gcc_assert ((shift & 15) == 0);

  for (ins_shift = shift - 16; ins_shift >= 0; ins_shift -= 16)
    {
      rtx result;
      HOST_WIDE_INT bits = (val >> ins_shift) & 0xFFFF;
      gcc_assert (bits != 0);

      /* On the last iteration we need to store into dest_reg.  */
      if (ins_shift == 0)
	result = dest_reg;
      else
	result = create_temp_reg_if_possible (DImode, dest_reg);

      emit_insn (gen_insn_shl16insli (result, temp, GEN_INT (bits)));

      temp = result;
    }
}


/* Load OP1, a 64-bit constant, into OP0, a register.  We know it
   can't be done in one insn when we get here, the move expander
   guarantees this.  */
void
tilegx_expand_set_const64 (rtx op0, rtx op1)
{
  if (CONST_INT_P (op1))
    {
      /* TODO: I don't know if we want to split large constants
	 now, or wait until later (with a define_split).

	 Does splitting early help CSE?  Does it harm other
	 optimizations that might fold loads?  */
      expand_set_cint64 (op0, op1);
    }
  else
    {
      rtx temp = create_temp_reg_if_possible (Pmode, op0);

      if (TARGET_32BIT)
	{
	  /* Generate the 2-insn sequence to materialize a symbolic
	     address.  */
	  emit_insn (gen_mov_address_32bit_step1 (temp, op1));
	  emit_insn (gen_mov_address_32bit_step2 (op0, temp, op1));
	}
      else
	{
	  /* Generate the 3-insn sequence to materialize a symbolic
	     address.  Note that this assumes that virtual addresses
	     fit in 48 signed bits, which is currently true.  */
	  rtx temp2 = create_temp_reg_if_possible (Pmode, op0);
	  emit_insn (gen_mov_address_step1 (temp, op1));
	  emit_insn (gen_mov_address_step2 (temp2, temp, op1));
	  emit_insn (gen_mov_address_step3 (op0, temp2, op1));
	}
    }
}


/* Expand a move instruction.  Return true if all work is done.  */
bool
tilegx_expand_mov (enum machine_mode mode, rtx *operands)
{
  /* Handle sets of MEM first.  */
  if (MEM_P (operands[0]))
    {
      if (can_create_pseudo_p ())
	operands[0] = validize_mem (operands[0]);

      if (reg_or_0_operand (operands[1], mode))
	return false;

      if (!reload_in_progress)
	operands[1] = force_reg (mode, operands[1]);
    }

  /* Fixup TLS cases.  */
  if (CONSTANT_P (operands[1]) && tilegx_tls_referenced_p (operands[1]))
    {
      operands[1] = tilegx_legitimize_tls_address (operands[1]);
      return false;
    }

  /* Fixup PIC cases.  */
  if (flag_pic && CONSTANT_P (operands[1]))
    {
      if (tilegx_pic_address_needs_scratch (operands[1]))
	operands[1] = tilegx_legitimize_pic_address (operands[1], mode, 0);

      if (symbolic_operand (operands[1], mode))
	{
	  operands[1] = tilegx_legitimize_pic_address (operands[1],
						       mode,
						       (reload_in_progress ?
							operands[0] :
							NULL_RTX));
	  return false;
	}
    }

  /* Accept non-constants and valid constants unmodified.  */
  if (!CONSTANT_P (operands[1]) || move_operand (operands[1], mode))
    return false;

  /* Split large integers.  */
  tilegx_expand_set_const64 (operands[0], operands[1]);
  return true;
}


/* Expand unaligned loads.  */
void
tilegx_expand_unaligned_load (rtx dest_reg, rtx mem, HOST_WIDE_INT bitsize,
			      HOST_WIDE_INT bit_offset, bool sign)
{
  enum machine_mode mode;
  rtx addr_lo, addr_hi;
  rtx mem_lo, mem_hi, hi;
  rtx mema, wide_result;
  int last_byte_offset;
  HOST_WIDE_INT byte_offset = bit_offset / BITS_PER_UNIT;

  mode = GET_MODE (dest_reg);

  hi = gen_reg_rtx (mode);

  if (bitsize == 2 * BITS_PER_UNIT && (bit_offset % BITS_PER_UNIT) == 0)
    {
      /* When just loading a two byte value, we can load the two bytes
	 individually and combine them efficiently.  */

      mem_lo = adjust_address (mem, QImode, byte_offset);
      mem_hi = adjust_address (mem, QImode, byte_offset + 1);

      if (sign)
	{
	  /* Do a signed load of the second byte and use bfins to set
	     the high bits of the result.  */
	  emit_insn (gen_zero_extendqidi2 (gen_lowpart (DImode, dest_reg),
					   mem_lo));
	  emit_insn (gen_extendqidi2 (gen_lowpart (DImode, hi), mem_hi));
	  emit_insn (gen_insv (gen_lowpart (DImode, dest_reg),
			       GEN_INT (64 - 8), GEN_INT (8),
			       gen_lowpart (DImode, hi)));
	}
      else
	{
	  /* Do two unsigned loads and use v1int_l to interleave
	     them.  */
	  rtx lo = gen_reg_rtx (mode);
	  emit_insn (gen_zero_extendqidi2 (gen_lowpart (DImode, lo),
					   mem_lo));
	  emit_insn (gen_zero_extendqidi2 (gen_lowpart (DImode, hi),
					   mem_hi));
	  emit_insn (gen_insn_v1int_l (gen_lowpart (DImode, dest_reg),
				       gen_lowpart (DImode, hi),
				       gen_lowpart (DImode, lo)));
	}

      return;
    }

  mema = XEXP (mem, 0);

  /* AND addresses cannot be in any alias set, since they may
     implicitly alias surrounding code.  Ideally we'd have some alias
     set that covered all types except those with alignment 8 or
     higher.  */
  addr_lo = force_reg (Pmode, plus_constant (Pmode, mema, byte_offset));
  mem_lo = change_address (mem, mode,
			   gen_rtx_AND (GET_MODE (mema), addr_lo,
					GEN_INT (-8)));
  set_mem_alias_set (mem_lo, 0);

  /* Load the high word at an address that will not fault if the low
     address is aligned and at the very end of a page.  */
  last_byte_offset = (bit_offset + bitsize - 1) / BITS_PER_UNIT;
  addr_hi = force_reg (Pmode, plus_constant (Pmode, mema, last_byte_offset));
  mem_hi = change_address (mem, mode,
			   gen_rtx_AND (GET_MODE (mema), addr_hi,
					GEN_INT (-8)));
  set_mem_alias_set (mem_hi, 0);

  if (bitsize == 64)
    {
      addr_lo = make_safe_from (addr_lo, dest_reg);
      wide_result = dest_reg;
    }
  else
    {
      wide_result = gen_reg_rtx (mode);
    }

  /* Load hi first in case dest_reg is used in mema.  */
  emit_move_insn (hi, mem_hi);
  emit_move_insn (wide_result, mem_lo);

  emit_insn (gen_insn_dblalign (gen_lowpart (DImode, wide_result),
				gen_lowpart (DImode, wide_result),
				gen_lowpart (DImode, hi), addr_lo));

  if (bitsize != 64)
    {
      rtx extracted =
	extract_bit_field (gen_lowpart (DImode, wide_result),
			   bitsize, bit_offset % BITS_PER_UNIT,
			   !sign, gen_lowpart (DImode, dest_reg),
			   DImode, DImode);

      if (extracted != dest_reg)
	emit_move_insn (dest_reg, gen_lowpart (DImode, extracted));
    }
}


/* Expand unaligned stores.  */
static void
tilegx_expand_unaligned_store (rtx mem, rtx src, HOST_WIDE_INT bitsize,
			       HOST_WIDE_INT bit_offset)
{
  HOST_WIDE_INT byte_offset = bit_offset / BITS_PER_UNIT;
  HOST_WIDE_INT bytesize = bitsize / BITS_PER_UNIT;
  HOST_WIDE_INT shift_amt;
  HOST_WIDE_INT i;
  rtx mem_addr;
  rtx store_val;

  for (i = 0, shift_amt = 0; i < bytesize; i++, shift_amt += BITS_PER_UNIT)
    {
      mem_addr = adjust_address (mem, QImode, byte_offset + i);

      if (shift_amt)
	{
	  store_val = expand_simple_binop (DImode, LSHIFTRT,
					   gen_lowpart (DImode, src),
					   GEN_INT (shift_amt), NULL, 1,
					   OPTAB_LIB_WIDEN);
	  store_val = gen_lowpart (QImode, store_val);
	}
      else
	{
	  store_val = gen_lowpart (QImode, src);
	}

      emit_move_insn (mem_addr, store_val);
    }
}


/* Implement the movmisalign patterns.  One of the operands is a
   memory that is not naturally aligned.  Emit instructions to load
   it.  */
void
tilegx_expand_movmisalign (enum machine_mode mode, rtx *operands)
{
  if (MEM_P (operands[1]))
    {
      rtx tmp;

      if (register_operand (operands[0], mode))
	tmp = operands[0];
      else
	tmp = gen_reg_rtx (mode);

      tilegx_expand_unaligned_load (tmp, operands[1], GET_MODE_BITSIZE (mode),
				    0, true);

      if (tmp != operands[0])
	emit_move_insn (operands[0], tmp);
    }
  else if (MEM_P (operands[0]))
    {
      if (!reg_or_0_operand (operands[1], mode))
	operands[1] = force_reg (mode, operands[1]);

      tilegx_expand_unaligned_store (operands[0], operands[1],
				     GET_MODE_BITSIZE (mode), 0);
    }
  else
    gcc_unreachable ();

}


/* Implement the allocate_stack pattern (alloca).  */
void
tilegx_allocate_stack (rtx op0, rtx op1)
{
  /* Technically the correct way to initialize chain_loc is with
   * gen_frame_mem() instead of gen_rtx_MEM(), but gen_frame_mem()
   * sets the alias_set to that of a frame reference.  Some of our
   * tests rely on some unsafe assumption about when the chaining
   * update is done, we need to be conservative about reordering the
   * chaining instructions.
   */
  rtx fp_addr = gen_reg_rtx (Pmode);
  rtx fp_value = gen_reg_rtx (Pmode);
  rtx fp_loc;

  emit_move_insn (fp_addr, gen_rtx_PLUS (Pmode, stack_pointer_rtx,
					 GEN_INT (UNITS_PER_WORD)));

  fp_loc = gen_frame_mem (Pmode, fp_addr);

  emit_move_insn (fp_value, fp_loc);

  op1 = force_reg (Pmode, op1);

  emit_move_insn (stack_pointer_rtx,
		  gen_rtx_MINUS (Pmode, stack_pointer_rtx, op1));

  emit_move_insn (fp_addr, gen_rtx_PLUS (Pmode, stack_pointer_rtx,
					 GEN_INT (UNITS_PER_WORD)));

  fp_loc = gen_frame_mem (Pmode, fp_addr);

  emit_move_insn (fp_loc, fp_value);

  emit_move_insn (op0, virtual_stack_dynamic_rtx);
}



/* Multiplies */


/* Returns the insn_code in ENTRY.  */
static enum insn_code
tilegx_multiply_get_opcode (const struct tilegx_multiply_insn_seq_entry
			    *entry)
{
  return tilegx_multiply_insn_seq_decode_opcode[entry->compressed_opcode];
}


/* Returns the length of the 'op' array.  */
static int
tilegx_multiply_get_num_ops (const struct tilegx_multiply_insn_seq *seq)
{
  /* The array either uses all of its allocated slots or is terminated
     by a bogus opcode. Either way, the array size is the index of the
     last valid opcode plus one.  */
  int i;
  for (i = tilegx_multiply_insn_seq_MAX_OPERATIONS - 1; i >= 0; i--)
    if (tilegx_multiply_get_opcode (&seq->op[i]) != CODE_FOR_nothing)
      return i + 1;

  /* An empty array is not allowed.  */
  gcc_unreachable ();
}


/* We precompute a number of expression trees for multiplying by
   constants.  This generates code for such an expression tree by
   walking through the nodes in the tree (which are conveniently
   pre-linearized) and emitting an instruction for each one.  */
static void
tilegx_expand_constant_multiply_given_sequence (rtx result, rtx src,
						const struct
						tilegx_multiply_insn_seq *seq)
{
  int i;
  int num_ops;

  /* Keep track of the subexpressions computed so far, so later
     instructions can refer to them.  We seed the array with zero and
     the value being multiplied.  */
  int num_subexprs = 2;
  rtx subexprs[tilegx_multiply_insn_seq_MAX_OPERATIONS + 2];
  subexprs[0] = const0_rtx;
  subexprs[1] = src;

  /* Determine how many instructions we are going to generate.  */
  num_ops = tilegx_multiply_get_num_ops (seq);
  gcc_assert (num_ops > 0
	      && num_ops <= tilegx_multiply_insn_seq_MAX_OPERATIONS);

  for (i = 0; i < num_ops; i++)
    {
      const struct tilegx_multiply_insn_seq_entry *entry = &seq->op[i];

      /* Figure out where to store the output of this instruction.  */
      const bool is_last_op = (i + 1 == num_ops);
      rtx out = is_last_op ? result : gen_reg_rtx (DImode);

      enum insn_code opcode = tilegx_multiply_get_opcode (entry);
      if (opcode == CODE_FOR_ashldi3)
	{
	  /* Handle shift by immediate. This is a special case because
	     the meaning of the second operand is a constant shift
	     count rather than an operand index.  */

	  /* Make sure the shift count is in range. Zero should not
	     happen.  */
	  const int shift_count = entry->rhs;
	  gcc_assert (shift_count > 0 && shift_count < 64);

	  /* Emit the actual instruction.  */
	  emit_insn (GEN_FCN (opcode)
		     (out, subexprs[entry->lhs],
		      gen_rtx_CONST_INT (DImode, shift_count)));
	}
      else
	{
	  /* Handle a normal two-operand instruction, such as add or
	     shl1add.  */

	  /* Make sure we are referring to a previously computed
	     subexpression.  */
	  gcc_assert (entry->rhs < num_subexprs);

	  /* Emit the actual instruction.  */
	  emit_insn (GEN_FCN (opcode)
		     (out, subexprs[entry->lhs], subexprs[entry->rhs]));
	}

      /* Record this subexpression for use by later expressions.  */
      subexprs[num_subexprs++] = out;
    }
}


/* bsearch helper function.  */
static int
tilegx_compare_multipliers (const void *key, const void *t)
{
  long long delta =
    (*(const long long *) key
     - ((const struct tilegx_multiply_insn_seq *) t)->multiplier);
  return (delta < 0) ? -1 : (delta > 0);
}


/* Returns the tilegx_multiply_insn_seq for multiplier, or NULL if none
   exists.  */
static const struct tilegx_multiply_insn_seq *
tilegx_find_multiply_insn_seq_for_constant (long long multiplier)
{
  return ((const struct tilegx_multiply_insn_seq *)
	  bsearch (&multiplier, tilegx_multiply_insn_seq_table,
		   tilegx_multiply_insn_seq_table_size,
		   sizeof tilegx_multiply_insn_seq_table[0],
		   tilegx_compare_multipliers));
}


/* Try to a expand constant multiply in DImode by looking it up in a
   precompiled table.  OP0 is the result operand, OP1 is the source
   operand, and MULTIPLIER is the value of the constant.  Return true
   if it succeeds.  */
static bool
tilegx_expand_const_muldi (rtx op0, rtx op1, long long multiplier)
{
  /* See if we have precomputed an efficient way to multiply by this
     constant.  */
  const struct tilegx_multiply_insn_seq *seq =
    tilegx_find_multiply_insn_seq_for_constant (multiplier);
  if (seq != NULL)
    {
      tilegx_expand_constant_multiply_given_sequence (op0, op1, seq);
      return true;
    }
  else
    return false;
}


/* Expand the muldi pattern.  */
bool
tilegx_expand_muldi (rtx op0, rtx op1, rtx op2)
{
  if (CONST_INT_P (op2))
    {
      HOST_WIDE_INT n = trunc_int_for_mode (INTVAL (op2), DImode);
      return tilegx_expand_const_muldi (op0, op1, n);
    }
  return false;
}


/* Expand a high multiply pattern in DImode.  RESULT, OP1, OP2 are the
   operands, and SIGN is true if it's a signed multiply, and false if
   it's an unsigned multiply.  */
static void
tilegx_expand_high_multiply (rtx result, rtx op1, rtx op2, bool sign)
{
  rtx tmp0 = gen_reg_rtx (DImode);
  rtx tmp1 = gen_reg_rtx (DImode);
  rtx tmp2 = gen_reg_rtx (DImode);
  rtx tmp3 = gen_reg_rtx (DImode);
  rtx tmp4 = gen_reg_rtx (DImode);
  rtx tmp5 = gen_reg_rtx (DImode);
  rtx tmp6 = gen_reg_rtx (DImode);
  rtx tmp7 = gen_reg_rtx (DImode);
  rtx tmp8 = gen_reg_rtx (DImode);
  rtx tmp9 = gen_reg_rtx (DImode);
  rtx tmp10 = gen_reg_rtx (DImode);
  rtx tmp11 = gen_reg_rtx (DImode);
  rtx tmp12 = gen_reg_rtx (DImode);
  rtx tmp13 = gen_reg_rtx (DImode);
  rtx result_lo = gen_reg_rtx (DImode);

  if (sign)
    {
      emit_insn (gen_insn_mul_hs_lu (tmp0, op1, op2));
      emit_insn (gen_insn_mul_hs_lu (tmp1, op2, op1));
      emit_insn (gen_insn_mul_lu_lu (tmp2, op1, op2));
      emit_insn (gen_insn_mul_hs_hs (tmp3, op1, op2));
    }
  else
    {
      emit_insn (gen_insn_mul_hu_lu (tmp0, op1, op2));
      emit_insn (gen_insn_mul_hu_lu (tmp1, op2, op1));
      emit_insn (gen_insn_mul_lu_lu (tmp2, op1, op2));
      emit_insn (gen_insn_mul_hu_hu (tmp3, op1, op2));
    }

  emit_move_insn (tmp4, (gen_rtx_ASHIFT (DImode, tmp0, GEN_INT (32))));

  emit_move_insn (tmp5, (gen_rtx_ASHIFT (DImode, tmp1, GEN_INT (32))));

  emit_move_insn (tmp6, (gen_rtx_PLUS (DImode, tmp4, tmp5)));
  emit_move_insn (result_lo, (gen_rtx_PLUS (DImode, tmp2, tmp6)));

  emit_move_insn (tmp7, gen_rtx_LTU (DImode, tmp6, tmp4));
  emit_move_insn (tmp8, gen_rtx_LTU (DImode, result_lo, tmp2));

  if (sign)
    {
      emit_move_insn (tmp9, (gen_rtx_ASHIFTRT (DImode, tmp0, GEN_INT (32))));
      emit_move_insn (tmp10, (gen_rtx_ASHIFTRT (DImode, tmp1, GEN_INT (32))));
    }
  else
    {
      emit_move_insn (tmp9, (gen_rtx_LSHIFTRT (DImode, tmp0, GEN_INT (32))));
      emit_move_insn (tmp10, (gen_rtx_LSHIFTRT (DImode, tmp1, GEN_INT (32))));
    }

  emit_move_insn (tmp11, (gen_rtx_PLUS (DImode, tmp3, tmp7)));
  emit_move_insn (tmp12, (gen_rtx_PLUS (DImode, tmp8, tmp9)));
  emit_move_insn (tmp13, (gen_rtx_PLUS (DImode, tmp11, tmp12)));
  emit_move_insn (result, (gen_rtx_PLUS (DImode, tmp13, tmp10)));
}


/* Implement smuldi3_highpart.  */
void
tilegx_expand_smuldi3_highpart (rtx op0, rtx op1, rtx op2)
{
  tilegx_expand_high_multiply (op0, op1, op2, true);
}


/* Implement umuldi3_highpart.  */
void
tilegx_expand_umuldi3_highpart (rtx op0, rtx op1, rtx op2)
{
  tilegx_expand_high_multiply (op0, op1, op2, false);
}



/* Compare and branches  */

/* Produce the rtx yielding a bool for a floating point
   comparison.  */
static bool
tilegx_emit_fp_setcc (rtx res, enum rtx_code code, enum machine_mode mode,
		      rtx op0, rtx op1)
{
  /* TODO: Certain compares again constants can be done using entirely
     integer operations. But you have to get the special cases right
     e.g. NaN, +0 == -0, etc.  */

  rtx flags;
  int flag_index;
  rtx a = force_reg (DImode, gen_lowpart (DImode, op0));
  rtx b = force_reg (DImode, gen_lowpart (DImode, op1));

  flags = gen_reg_rtx (DImode);

  if (mode == SFmode)
    {
      emit_insn (gen_insn_fsingle_add1 (flags, a, b));
    }
  else
    {
      gcc_assert (mode == DFmode);
      emit_insn (gen_insn_fdouble_add_flags (flags, a, b));
    }

  switch (code)
    {
    case EQ: flag_index = 30; break;
    case NE: flag_index = 31; break;
    case LE: flag_index = 27; break;
    case LT: flag_index = 26; break;
    case GE: flag_index = 29; break;
    case GT: flag_index = 28; break;
    default: gcc_unreachable ();
    }

  gcc_assert (GET_MODE (res) == DImode);
  emit_move_insn (res, gen_rtx_ZERO_EXTRACT (DImode, flags, GEN_INT (1),
					     GEN_INT (flag_index)));
  return true;
}


/* Certain simplifications can be done to make invalid setcc
   operations valid.  Return the final comparison, or NULL if we can't
   work.  */
static bool
tilegx_emit_setcc_internal (rtx res, enum rtx_code code, rtx op0, rtx op1,
			    enum machine_mode cmp_mode)
{
  rtx tmp;
  bool swap = false;

  if (cmp_mode == SFmode || cmp_mode == DFmode)
    return tilegx_emit_fp_setcc (res, code, cmp_mode, op0, op1);

  /* The general case: fold the comparison code to the types of
     compares that we have, choosing the branch as necessary.  */

  switch (code)
    {
    case EQ:
    case NE:
    case LE:
    case LT:
    case LEU:
    case LTU:
      /* We have these compares.  */
      break;

    case GE:
    case GT:
    case GEU:
    case GTU:
      /* We do not have these compares, so we reverse the
	 operands.  */
      swap = true;
      break;

    default:
      /* We should not have called this with any other code.  */
      gcc_unreachable ();
    }

  if (swap)
    {
      code = swap_condition (code);
      tmp = op0, op0 = op1, op1 = tmp;
    }

  if (!reg_or_0_operand (op0, cmp_mode))
    op0 = force_reg (cmp_mode, op0);

  if (!CONST_INT_P (op1) && !register_operand (op1, cmp_mode))
    op1 = force_reg (cmp_mode, op1);

  /* Return the setcc comparison.  */
  emit_insn (gen_rtx_SET (VOIDmode, res,
			  gen_rtx_fmt_ee (code, DImode, op0, op1)));

  return true;
}


/* Implement cstore patterns.  */
bool
tilegx_emit_setcc (rtx operands[], enum machine_mode cmp_mode)
{
  return
    tilegx_emit_setcc_internal (operands[0], GET_CODE (operands[1]),
				operands[2], operands[3], cmp_mode);
}


/* Return whether CODE is a signed comparison.  */
static bool
signed_compare_p (enum rtx_code code)
{
  return (code == EQ || code == NE || code == LT || code == LE
	  || code == GT || code == GE);
}


/* Generate the comparison for a DImode conditional branch.  */
static rtx
tilegx_emit_cc_test (enum rtx_code code, rtx op0, rtx op1,
		     enum machine_mode cmp_mode, bool eq_ne_only)
{
  enum rtx_code branch_code;
  rtx temp;

  if (cmp_mode == SFmode || cmp_mode == DFmode)
    {
      /* Compute a boolean saying whether the comparison is true.  */
      temp = gen_reg_rtx (DImode);
      tilegx_emit_setcc_internal (temp, code, op0, op1, cmp_mode);

      /* Test that flag.  */
      return gen_rtx_fmt_ee (NE, VOIDmode, temp, const0_rtx);
    }

  /* Check for a compare against zero using a comparison we can do
     directly.  */
  if (op1 == const0_rtx
      && (code == EQ || code == NE
	  || (!eq_ne_only && signed_compare_p (code))))
    {
      op0 = force_reg (cmp_mode, op0);
      return gen_rtx_fmt_ee (code, VOIDmode, op0, const0_rtx);
    }

  /* The general case: fold the comparison code to the types of
     compares that we have, choosing the branch as necessary.  */
  switch (code)
    {
    case EQ:
    case LE:
    case LT:
    case LEU:
    case LTU:
      /* We have these compares.  */
      branch_code = NE;
      break;

    case NE:
    case GE:
    case GT:
    case GEU:
    case GTU:
      /* These must be reversed (except NE, but let's
	 canonicalize).  */
      code = reverse_condition (code);
      branch_code = EQ;
      break;

    default:
      gcc_unreachable ();
    }

  if (CONST_INT_P (op1) && (!satisfies_constraint_I (op1) || code == LEU))
    {
      HOST_WIDE_INT n = INTVAL (op1);

      switch (code)
	{
	case EQ:
	  /* Subtract off the value we want to compare against and see
	     if we get zero.  This is cheaper than creating a constant
	     in a register. Except that subtracting -128 is more
	     expensive than seqi to -128, so we leave that alone.  */
	  /* ??? Don't do this when comparing against symbols,
	     otherwise we'll reduce (&x == 0x1234) to (&x-0x1234 ==
	     0), which will be declared false out of hand (at least
	     for non-weak).  */
	  if (n != -128
	      && add_operand (GEN_INT (-n), DImode)
	      && !(symbolic_operand (op0, VOIDmode)
		   || (REG_P (op0) && REG_POINTER (op0))))
	    {
	      /* TODO: Use a SIMD add immediate to hit zero for tiled
		 constants in a single instruction.  */
	      if (GET_MODE (op0) != DImode)
		{
		  /* Convert to DImode so we can use addli.  Note that
		     this will not actually generate any code because
		     sign extension from SI -> DI is a no-op.  I don't
		     know if it's safe just to make a paradoxical
		     subreg here though.  */
		  rtx temp2 = gen_reg_rtx (DImode);
		  emit_insn (gen_extendsidi2 (temp2, op0));
		  op0 = temp2;
		}
	      else
		{
		  op0 = force_reg (DImode, op0);
		}
	      temp = gen_reg_rtx (DImode);
	      emit_move_insn (temp, gen_rtx_PLUS (DImode, op0, GEN_INT (-n)));
	      return gen_rtx_fmt_ee (reverse_condition (branch_code),
				     VOIDmode, temp, const0_rtx);
	    }
	  break;

	case LEU:
	  if (n == -1)
	    break;
	  /* FALLTHRU */

	case LTU:
	  /* Change ((unsigned)x < 0x1000) into !((int)x >> 12), etc.
	     We use arithmetic shift right because it's a 3-wide op,
	     while logical shift right is not.  */
	  {
	    int first = exact_log2 (code == LTU ? n : n + 1);
	    if (first != -1)
	      {
		op0 = force_reg (cmp_mode, op0);
		temp = gen_reg_rtx (cmp_mode);
		emit_move_insn (temp,
				gen_rtx_ASHIFTRT (cmp_mode, op0,
						  GEN_INT (first)));
		return gen_rtx_fmt_ee (reverse_condition (branch_code),
				       VOIDmode, temp, const0_rtx);
	      }
	  }
	  break;

	default:
	  break;
	}
    }

  /* Compute a flag saying whether we should branch.  */
  temp = gen_reg_rtx (DImode);
  tilegx_emit_setcc_internal (temp, code, op0, op1, cmp_mode);

  /* Return the branch comparison.  */
  return gen_rtx_fmt_ee (branch_code, VOIDmode, temp, const0_rtx);
}


/* Generate the comparison for a conditional branch.  */
void
tilegx_emit_conditional_branch (rtx operands[], enum machine_mode cmp_mode)
{
  rtx cmp_rtx =
    tilegx_emit_cc_test (GET_CODE (operands[0]), operands[1], operands[2],
			 cmp_mode, false);
  rtx branch_rtx = gen_rtx_SET (VOIDmode, pc_rtx,
				gen_rtx_IF_THEN_ELSE (VOIDmode, cmp_rtx,
						      gen_rtx_LABEL_REF
						      (VOIDmode,
						       operands[3]),
						      pc_rtx));
  emit_jump_insn (branch_rtx);
}


/* Implement the mov<mode>cc pattern.  */
rtx
tilegx_emit_conditional_move (rtx cmp)
{
  return
    tilegx_emit_cc_test (GET_CODE (cmp), XEXP (cmp, 0), XEXP (cmp, 1),
			 GET_MODE (XEXP (cmp, 0)), true);
}


/* Return true if INSN is annotated with a REG_BR_PROB note that
   indicates it's a branch that's predicted taken.  */
static bool
cbranch_predicted_p (rtx insn)
{
  rtx x = find_reg_note (insn, REG_BR_PROB, 0);

  if (x)
    {
      int pred_val = XINT (x, 0);

      return pred_val >= REG_BR_PROB_BASE / 2;
    }

  return false;
}


/* Output assembly code for a specific branch instruction, appending
   the branch prediction flag to the opcode if appropriate.  */
static const char *
tilegx_output_simple_cbranch_with_opcode (rtx insn, const char *opcode,
					  int regop, bool reverse_predicted)
{
  static char buf[64];
  sprintf (buf, "%s%s\t%%r%d, %%l0", opcode,
	   (cbranch_predicted_p (insn) ^ reverse_predicted) ? "t" : "",
	   regop);
  return buf;
}


/* Output assembly code for a specific branch instruction, appending
   the branch prediction flag to the opcode if appropriate.  */
const char *
tilegx_output_cbranch_with_opcode (rtx insn, rtx *operands,
				   const char *opcode,
				   const char *rev_opcode, int regop)
{
  const char *branch_if_false;
  rtx taken, not_taken;
  bool is_simple_branch;

  gcc_assert (LABEL_P (operands[0]));

  is_simple_branch = true;
  if (INSN_ADDRESSES_SET_P ())
    {
      int from_addr = INSN_ADDRESSES (INSN_UID (insn));
      int to_addr = INSN_ADDRESSES (INSN_UID (operands[0]));
      int delta = to_addr - from_addr;
      is_simple_branch = IN_RANGE (delta, -524288, 524280);
    }

  if (is_simple_branch)
    {
      /* Just a simple conditional branch.  */
      return
	tilegx_output_simple_cbranch_with_opcode (insn, opcode, regop, false);
    }

  /* Generate a reversed branch around a direct jump.  This fallback
     does not use branch-likely instructions.  */
  not_taken = gen_label_rtx ();
  taken = operands[0];

  /* Generate the reversed branch to NOT_TAKEN.  */
  operands[0] = not_taken;
  branch_if_false =
    tilegx_output_simple_cbranch_with_opcode (insn, rev_opcode, regop, true);
  output_asm_insn (branch_if_false, operands);

  output_asm_insn ("j\t%l0", &taken);

  /* Output NOT_TAKEN.  */
  targetm.asm_out.internal_label (asm_out_file, "L",
				  CODE_LABEL_NUMBER (not_taken));
  return "";
}


/* Output assembly code for a conditional branch instruction.  */
const char *
tilegx_output_cbranch (rtx insn, rtx *operands, bool reversed)
{
  enum rtx_code code = GET_CODE (operands[1]);
  const char *opcode;
  const char *rev_opcode;

  if (reversed)
    code = reverse_condition (code);

  switch (code)
    {
    case NE:
      opcode = "bnez";
      rev_opcode = "beqz";
      break;
    case EQ:
      opcode = "beqz";
      rev_opcode = "bnez";
      break;
    case GE:
      opcode = "bgez";
      rev_opcode = "bltz";
      break;
    case GT:
      opcode = "bgtz";
      rev_opcode = "blez";
      break;
    case LE:
      opcode = "blez";
      rev_opcode = "bgtz";
      break;
    case LT:
      opcode = "bltz";
      rev_opcode = "bgez";
      break;
    default:
      gcc_unreachable ();
    }

  return tilegx_output_cbranch_with_opcode (insn, operands, opcode,
					    rev_opcode, 2);
}


/* Implement the tablejump pattern.  */
void
tilegx_expand_tablejump (rtx op0, rtx op1)
{
  if (flag_pic)
    {
      rtx temp = gen_reg_rtx (Pmode);
      rtx temp2 = gen_reg_rtx (Pmode);

      tilegx_compute_pcrel_address (temp, gen_rtx_LABEL_REF (Pmode, op1));
      emit_move_insn (temp2,
		      gen_rtx_PLUS (Pmode,
				    convert_to_mode (Pmode, op0, false),
				    temp));
      op0 = temp2;
    }

  emit_jump_insn (gen_tablejump_aux (op0, op1));
}


/* Emit barrier before an atomic, as needed for the memory MODEL.  */
void
tilegx_pre_atomic_barrier (enum memmodel model)
{
  if (need_atomic_barrier_p (model, true))
    emit_insn (gen_memory_barrier ());
}


/* Emit barrier after an atomic, as needed for the memory MODEL.  */
void
tilegx_post_atomic_barrier (enum memmodel model)
{
  if (need_atomic_barrier_p (model, false))
    emit_insn (gen_memory_barrier ());
}



/* Expand a builtin vector binary op, by calling gen function GEN with
   operands in the proper modes.  DEST is converted to DEST_MODE, and
   src0 and src1 (if DO_SRC1 is true) is converted to SRC_MODE.  */
void
tilegx_expand_builtin_vector_binop (rtx (*gen) (rtx, rtx, rtx),
				    enum machine_mode dest_mode,
				    rtx dest,
				    enum machine_mode src_mode,
				    rtx src0, rtx src1, bool do_src1)
{
  dest = gen_lowpart (dest_mode, dest);

  if (src0 == const0_rtx)
    src0 = CONST0_RTX (src_mode);
  else
    src0 = gen_lowpart (src_mode, src0);

  if (do_src1)
    {
      if (src1 == const0_rtx)
	src1 = CONST0_RTX (src_mode);
      else
	src1 = gen_lowpart (src_mode, src1);
    }

  emit_insn ((*gen) (dest, src0, src1));
}



/* Intrinsics  */


struct tile_builtin_info
{
  enum insn_code icode;
  tree fndecl;
};

static struct tile_builtin_info tilegx_builtin_info[TILEGX_BUILTIN_max] = {
  { CODE_FOR_adddi3,                    NULL }, /* add */
  { CODE_FOR_addsi3,                    NULL }, /* addx */
  { CODE_FOR_ssaddsi3,                  NULL }, /* addxsc */
  { CODE_FOR_anddi3,                    NULL }, /* and */
  { CODE_FOR_insn_bfexts,               NULL }, /* bfexts */
  { CODE_FOR_insn_bfextu,               NULL }, /* bfextu */
  { CODE_FOR_insn_bfins,                NULL }, /* bfins */
  { CODE_FOR_clzdi2,                    NULL }, /* clz */
  { CODE_FOR_insn_cmoveqz,              NULL }, /* cmoveqz */
  { CODE_FOR_insn_cmovnez,              NULL }, /* cmovnez */
  { CODE_FOR_insn_cmpeq_didi,           NULL }, /* cmpeq */
  { CODE_FOR_insn_cmpexch,              NULL }, /* cmpexch */
  { CODE_FOR_insn_cmpexch4,             NULL }, /* cmpexch4 */
  { CODE_FOR_insn_cmples_didi,          NULL }, /* cmples */
  { CODE_FOR_insn_cmpleu_didi,          NULL }, /* cmpleu */
  { CODE_FOR_insn_cmplts_didi,          NULL }, /* cmplts */
  { CODE_FOR_insn_cmpltu_didi,          NULL }, /* cmpltu */
  { CODE_FOR_insn_cmpne_didi,           NULL }, /* cmpne */
  { CODE_FOR_insn_cmul,                 NULL }, /* cmul */
  { CODE_FOR_insn_cmula,                NULL }, /* cmula */
  { CODE_FOR_insn_cmulaf,               NULL }, /* cmulaf */
  { CODE_FOR_insn_cmulf,                NULL }, /* cmulf */
  { CODE_FOR_insn_cmulfr,               NULL }, /* cmulfr */
  { CODE_FOR_insn_cmulh,                NULL }, /* cmulh */
  { CODE_FOR_insn_cmulhr,               NULL }, /* cmulhr */
  { CODE_FOR_insn_crc32_32,             NULL }, /* crc32_32 */
  { CODE_FOR_insn_crc32_8,              NULL }, /* crc32_8 */
  { CODE_FOR_ctzdi2,                    NULL }, /* ctz */
  { CODE_FOR_insn_dblalign,             NULL }, /* dblalign */
  { CODE_FOR_insn_dblalign2,            NULL }, /* dblalign2 */
  { CODE_FOR_insn_dblalign4,            NULL }, /* dblalign4 */
  { CODE_FOR_insn_dblalign6,            NULL }, /* dblalign6 */
  { CODE_FOR_insn_drain,                NULL }, /* drain */
  { CODE_FOR_insn_dtlbpr,               NULL }, /* dtlbpr */
  { CODE_FOR_insn_exch,                 NULL }, /* exch */
  { CODE_FOR_insn_exch4,                NULL }, /* exch4 */
  { CODE_FOR_insn_fdouble_add_flags,    NULL }, /* fdouble_add_flags */
  { CODE_FOR_insn_fdouble_addsub,       NULL }, /* fdouble_addsub */
  { CODE_FOR_insn_fdouble_mul_flags,    NULL }, /* fdouble_mul_flags */
  { CODE_FOR_insn_fdouble_pack1,        NULL }, /* fdouble_pack1 */
  { CODE_FOR_insn_fdouble_pack2,        NULL }, /* fdouble_pack2 */
  { CODE_FOR_insn_fdouble_sub_flags,    NULL }, /* fdouble_sub_flags */
  { CODE_FOR_insn_fdouble_unpack_max,   NULL }, /* fdouble_unpack_max */
  { CODE_FOR_insn_fdouble_unpack_min,   NULL }, /* fdouble_unpack_min */
  { CODE_FOR_insn_fetchadd,             NULL }, /* fetchadd */
  { CODE_FOR_insn_fetchadd4,            NULL }, /* fetchadd4 */
  { CODE_FOR_insn_fetchaddgez,          NULL }, /* fetchaddgez */
  { CODE_FOR_insn_fetchaddgez4,         NULL }, /* fetchaddgez4 */
  { CODE_FOR_insn_fetchand,             NULL }, /* fetchand */
  { CODE_FOR_insn_fetchand4,            NULL }, /* fetchand4 */
  { CODE_FOR_insn_fetchor,              NULL }, /* fetchor */
  { CODE_FOR_insn_fetchor4,             NULL }, /* fetchor4 */
  { CODE_FOR_insn_finv,                 NULL }, /* finv */
  { CODE_FOR_insn_flush,                NULL }, /* flush */
  { CODE_FOR_insn_flushwb,              NULL }, /* flushwb */
  { CODE_FOR_insn_fnop,                 NULL }, /* fnop */
  { CODE_FOR_insn_fsingle_add1,         NULL }, /* fsingle_add1 */
  { CODE_FOR_insn_fsingle_addsub2,      NULL }, /* fsingle_addsub2 */
  { CODE_FOR_insn_fsingle_mul1,         NULL }, /* fsingle_mul1 */
  { CODE_FOR_insn_fsingle_mul2,         NULL }, /* fsingle_mul2 */
  { CODE_FOR_insn_fsingle_pack1,        NULL }, /* fsingle_pack1 */
  { CODE_FOR_insn_fsingle_pack2,        NULL }, /* fsingle_pack2 */
  { CODE_FOR_insn_fsingle_sub1,         NULL }, /* fsingle_sub1 */
  { CODE_FOR_insn_icoh,                 NULL }, /* icoh */
  { CODE_FOR_insn_ill,                  NULL }, /* ill */
  { CODE_FOR_insn_info,                 NULL }, /* info */
  { CODE_FOR_insn_infol,                NULL }, /* infol */
  { CODE_FOR_insn_inv,                  NULL }, /* inv */
  { CODE_FOR_insn_ld,                   NULL }, /* ld */
  { CODE_FOR_insn_ld1s,                 NULL }, /* ld1s */
  { CODE_FOR_insn_ld1u,                 NULL }, /* ld1u */
  { CODE_FOR_insn_ld2s,                 NULL }, /* ld2s */
  { CODE_FOR_insn_ld2u,                 NULL }, /* ld2u */
  { CODE_FOR_insn_ld4s,                 NULL }, /* ld4s */
  { CODE_FOR_insn_ld4u,                 NULL }, /* ld4u */
  { CODE_FOR_insn_ldna,                 NULL }, /* ldna */
  { CODE_FOR_insn_ldnt,                 NULL }, /* ldnt */
  { CODE_FOR_insn_ldnt1s,               NULL }, /* ldnt1s */
  { CODE_FOR_insn_ldnt1u,               NULL }, /* ldnt1u */
  { CODE_FOR_insn_ldnt2s,               NULL }, /* ldnt2s */
  { CODE_FOR_insn_ldnt2u,               NULL }, /* ldnt2u */
  { CODE_FOR_insn_ldnt4s,               NULL }, /* ldnt4s */
  { CODE_FOR_insn_ldnt4u,               NULL }, /* ldnt4u */
  { CODE_FOR_insn_ld_L2,                NULL }, /* ld_L2 */
  { CODE_FOR_insn_ld1s_L2,              NULL }, /* ld1s_L2 */
  { CODE_FOR_insn_ld1u_L2,              NULL }, /* ld1u_L2 */
  { CODE_FOR_insn_ld2s_L2,              NULL }, /* ld2s_L2 */
  { CODE_FOR_insn_ld2u_L2,              NULL }, /* ld2u_L2 */
  { CODE_FOR_insn_ld4s_L2,              NULL }, /* ld4s_L2 */
  { CODE_FOR_insn_ld4u_L2,              NULL }, /* ld4u_L2 */
  { CODE_FOR_insn_ldna_L2,              NULL }, /* ldna_L2 */
  { CODE_FOR_insn_ldnt_L2,              NULL }, /* ldnt_L2 */
  { CODE_FOR_insn_ldnt1s_L2,            NULL }, /* ldnt1s_L2 */
  { CODE_FOR_insn_ldnt1u_L2,            NULL }, /* ldnt1u_L2 */
  { CODE_FOR_insn_ldnt2s_L2,            NULL }, /* ldnt2s_L2 */
  { CODE_FOR_insn_ldnt2u_L2,            NULL }, /* ldnt2u_L2 */
  { CODE_FOR_insn_ldnt4s_L2,            NULL }, /* ldnt4s_L2 */
  { CODE_FOR_insn_ldnt4u_L2,            NULL }, /* ldnt4u_L2 */
  { CODE_FOR_insn_ld_miss,              NULL }, /* ld_miss */
  { CODE_FOR_insn_ld1s_miss,            NULL }, /* ld1s_miss */
  { CODE_FOR_insn_ld1u_miss,            NULL }, /* ld1u_miss */
  { CODE_FOR_insn_ld2s_miss,            NULL }, /* ld2s_miss */
  { CODE_FOR_insn_ld2u_miss,            NULL }, /* ld2u_miss */
  { CODE_FOR_insn_ld4s_miss,            NULL }, /* ld4s_miss */
  { CODE_FOR_insn_ld4u_miss,            NULL }, /* ld4u_miss */
  { CODE_FOR_insn_ldna_miss,            NULL }, /* ldna_miss */
  { CODE_FOR_insn_ldnt_miss,            NULL }, /* ldnt_miss */
  { CODE_FOR_insn_ldnt1s_miss,          NULL }, /* ldnt1s_miss */
  { CODE_FOR_insn_ldnt1u_miss,          NULL }, /* ldnt1u_miss */
  { CODE_FOR_insn_ldnt2s_miss,          NULL }, /* ldnt2s_miss */
  { CODE_FOR_insn_ldnt2u_miss,          NULL }, /* ldnt2u_miss */
  { CODE_FOR_insn_ldnt4s_miss,          NULL }, /* ldnt4s_miss */
  { CODE_FOR_insn_ldnt4u_miss,          NULL }, /* ldnt4u_miss */
  { CODE_FOR_insn_lnk,                  NULL }, /* lnk */
  { CODE_FOR_memory_barrier,            NULL }, /* mf */
  { CODE_FOR_insn_mfspr,                NULL }, /* mfspr */
  { CODE_FOR_insn_mm,                   NULL }, /* mm */
  { CODE_FOR_insn_mnz,                  NULL }, /* mnz */
  { CODE_FOR_movdi,                     NULL }, /* move */
  { CODE_FOR_insn_mtspr,                NULL }, /* mtspr */
  { CODE_FOR_insn_mul_hs_hs,            NULL }, /* mul_hs_hs */
  { CODE_FOR_insn_mul_hs_hu,            NULL }, /* mul_hs_hu */
  { CODE_FOR_insn_mul_hs_ls,            NULL }, /* mul_hs_ls */
  { CODE_FOR_insn_mul_hs_lu,            NULL }, /* mul_hs_lu */
  { CODE_FOR_insn_mul_hu_hu,            NULL }, /* mul_hu_hu */
  { CODE_FOR_insn_mul_hu_ls,            NULL }, /* mul_hu_ls */
  { CODE_FOR_insn_mul_hu_lu,            NULL }, /* mul_hu_lu */
  { CODE_FOR_insn_mul_ls_ls,            NULL }, /* mul_ls_ls */
  { CODE_FOR_insn_mul_ls_lu,            NULL }, /* mul_ls_lu */
  { CODE_FOR_insn_mul_lu_lu,            NULL }, /* mul_lu_lu */
  { CODE_FOR_insn_mula_hs_hs,           NULL }, /* mula_hs_hs */
  { CODE_FOR_insn_mula_hs_hu,           NULL }, /* mula_hs_hu */
  { CODE_FOR_insn_mula_hs_ls,           NULL }, /* mula_hs_ls */
  { CODE_FOR_insn_mula_hs_lu,           NULL }, /* mula_hs_lu */
  { CODE_FOR_insn_mula_hu_hu,           NULL }, /* mula_hu_hu */
  { CODE_FOR_insn_mula_hu_ls,           NULL }, /* mula_hu_ls */
  { CODE_FOR_insn_mula_hu_lu,           NULL }, /* mula_hu_lu */
  { CODE_FOR_insn_mula_ls_ls,           NULL }, /* mula_ls_ls */
  { CODE_FOR_insn_mula_ls_lu,           NULL }, /* mula_ls_lu */
  { CODE_FOR_insn_mula_lu_lu,           NULL }, /* mula_lu_lu */
  { CODE_FOR_insn_mulax,                NULL }, /* mulax */
  { CODE_FOR_mulsi3,                    NULL }, /* mulx */
  { CODE_FOR_insn_mz,                   NULL }, /* mz */
  { CODE_FOR_insn_nap,                  NULL }, /* nap */
  { CODE_FOR_nop,                       NULL }, /* nop */
  { CODE_FOR_insn_nor_di,               NULL }, /* nor */
  { CODE_FOR_iordi3,                    NULL }, /* or */
  { CODE_FOR_popcountdi2,               NULL }, /* pcnt */
  { CODE_FOR_insn_prefetch_l1,          NULL }, /* prefetch_l1 */
  { CODE_FOR_insn_prefetch_l1_fault,    NULL }, /* prefetch_l1_fault */
  { CODE_FOR_insn_prefetch_l2,          NULL }, /* prefetch_l2 */
  { CODE_FOR_insn_prefetch_l2_fault,    NULL }, /* prefetch_l2_fault */
  { CODE_FOR_insn_prefetch_l3,          NULL }, /* prefetch_l3 */
  { CODE_FOR_insn_prefetch_l3_fault,    NULL }, /* prefetch_l3_fault */
  { CODE_FOR_insn_revbits,              NULL }, /* revbits */
  { CODE_FOR_bswapdi2,                  NULL }, /* revbytes */
  { CODE_FOR_rotldi3,                   NULL }, /* rotl */
  { CODE_FOR_ashldi3,                   NULL }, /* shl */
  { CODE_FOR_insn_shl16insli,           NULL }, /* shl16insli */
  { CODE_FOR_insn_shl1add,              NULL }, /* shl1add */
  { CODE_FOR_insn_shl1addx,             NULL }, /* shl1addx */
  { CODE_FOR_insn_shl2add,              NULL }, /* shl2add */
  { CODE_FOR_insn_shl2addx,             NULL }, /* shl2addx */
  { CODE_FOR_insn_shl3add,              NULL }, /* shl3add */
  { CODE_FOR_insn_shl3addx,             NULL }, /* shl3addx */
  { CODE_FOR_ashlsi3,                   NULL }, /* shlx */
  { CODE_FOR_ashrdi3,                   NULL }, /* shrs */
  { CODE_FOR_lshrdi3,                   NULL }, /* shru */
  { CODE_FOR_lshrsi3,                   NULL }, /* shrux */
  { CODE_FOR_insn_shufflebytes,         NULL }, /* shufflebytes */
  { CODE_FOR_insn_shufflebytes1,        NULL }, /* shufflebytes1 */
  { CODE_FOR_insn_st,                   NULL }, /* st */
  { CODE_FOR_insn_st1,                  NULL }, /* st1 */
  { CODE_FOR_insn_st2,                  NULL }, /* st2 */
  { CODE_FOR_insn_st4,                  NULL }, /* st4 */
  { CODE_FOR_insn_stnt,                 NULL }, /* stnt */
  { CODE_FOR_insn_stnt1,                NULL }, /* stnt1 */
  { CODE_FOR_insn_stnt2,                NULL }, /* stnt2 */
  { CODE_FOR_insn_stnt4,                NULL }, /* stnt4 */
  { CODE_FOR_subdi3,                    NULL }, /* sub */
  { CODE_FOR_subsi3,                    NULL }, /* subx */
  { CODE_FOR_sssubsi3,                  NULL }, /* subxsc */
  { CODE_FOR_insn_tblidxb0,             NULL }, /* tblidxb0 */
  { CODE_FOR_insn_tblidxb1,             NULL }, /* tblidxb1 */
  { CODE_FOR_insn_tblidxb2,             NULL }, /* tblidxb2 */
  { CODE_FOR_insn_tblidxb3,             NULL }, /* tblidxb3 */
  { CODE_FOR_insn_v1add,                NULL }, /* v1add */
  { CODE_FOR_insn_v1addi,               NULL }, /* v1addi */
  { CODE_FOR_insn_v1adduc,              NULL }, /* v1adduc */
  { CODE_FOR_insn_v1adiffu,             NULL }, /* v1adiffu */
  { CODE_FOR_insn_v1avgu,               NULL }, /* v1avgu */
  { CODE_FOR_insn_v1cmpeq,              NULL }, /* v1cmpeq */
  { CODE_FOR_insn_v1cmpeqi,             NULL }, /* v1cmpeqi */
  { CODE_FOR_insn_v1cmples,             NULL }, /* v1cmples */
  { CODE_FOR_insn_v1cmpleu,             NULL }, /* v1cmpleu */
  { CODE_FOR_insn_v1cmplts,             NULL }, /* v1cmplts */
  { CODE_FOR_insn_v1cmpltsi,            NULL }, /* v1cmpltsi */
  { CODE_FOR_insn_v1cmpltu,             NULL }, /* v1cmpltu */
  { CODE_FOR_insn_v1cmpltui,            NULL }, /* v1cmpltui */
  { CODE_FOR_insn_v1cmpne,              NULL }, /* v1cmpne */
  { CODE_FOR_insn_v1ddotpu,             NULL }, /* v1ddotpu */
  { CODE_FOR_insn_v1ddotpua,            NULL }, /* v1ddotpua */
  { CODE_FOR_insn_v1ddotpus,            NULL }, /* v1ddotpus */
  { CODE_FOR_insn_v1ddotpusa,           NULL }, /* v1ddotpusa */
  { CODE_FOR_insn_v1dotp,               NULL }, /* v1dotp */
  { CODE_FOR_insn_v1dotpa,              NULL }, /* v1dotpa */
  { CODE_FOR_insn_v1dotpu,              NULL }, /* v1dotpu */
  { CODE_FOR_insn_v1dotpua,             NULL }, /* v1dotpua */
  { CODE_FOR_insn_v1dotpus,             NULL }, /* v1dotpus */
  { CODE_FOR_insn_v1dotpusa,            NULL }, /* v1dotpusa */
  { CODE_FOR_insn_v1int_h,              NULL }, /* v1int_h */
  { CODE_FOR_insn_v1int_l,              NULL }, /* v1int_l */
  { CODE_FOR_insn_v1maxu,               NULL }, /* v1maxu */
  { CODE_FOR_insn_v1maxui,              NULL }, /* v1maxui */
  { CODE_FOR_insn_v1minu,               NULL }, /* v1minu */
  { CODE_FOR_insn_v1minui,              NULL }, /* v1minui */
  { CODE_FOR_insn_v1mnz,                NULL }, /* v1mnz */
  { CODE_FOR_insn_v1multu,              NULL }, /* v1multu */
  { CODE_FOR_insn_v1mulu,               NULL }, /* v1mulu */
  { CODE_FOR_insn_v1mulus,              NULL }, /* v1mulus */
  { CODE_FOR_insn_v1mz,                 NULL }, /* v1mz */
  { CODE_FOR_insn_v1sadau,              NULL }, /* v1sadau */
  { CODE_FOR_insn_v1sadu,               NULL }, /* v1sadu */
  { CODE_FOR_insn_v1shl,                NULL }, /* v1shl */
  { CODE_FOR_insn_v1shl,                NULL }, /* v1shli */
  { CODE_FOR_insn_v1shrs,               NULL }, /* v1shrs */
  { CODE_FOR_insn_v1shrs,               NULL }, /* v1shrsi */
  { CODE_FOR_insn_v1shru,               NULL }, /* v1shru */
  { CODE_FOR_insn_v1shru,               NULL }, /* v1shrui */
  { CODE_FOR_insn_v1sub,                NULL }, /* v1sub */
  { CODE_FOR_insn_v1subuc,              NULL }, /* v1subuc */
  { CODE_FOR_insn_v2add,                NULL }, /* v2add */
  { CODE_FOR_insn_v2addi,               NULL }, /* v2addi */
  { CODE_FOR_insn_v2addsc,              NULL }, /* v2addsc */
  { CODE_FOR_insn_v2adiffs,             NULL }, /* v2adiffs */
  { CODE_FOR_insn_v2avgs,               NULL }, /* v2avgs */
  { CODE_FOR_insn_v2cmpeq,              NULL }, /* v2cmpeq */
  { CODE_FOR_insn_v2cmpeqi,             NULL }, /* v2cmpeqi */
  { CODE_FOR_insn_v2cmples,             NULL }, /* v2cmples */
  { CODE_FOR_insn_v2cmpleu,             NULL }, /* v2cmpleu */
  { CODE_FOR_insn_v2cmplts,             NULL }, /* v2cmplts */
  { CODE_FOR_insn_v2cmpltsi,            NULL }, /* v2cmpltsi */
  { CODE_FOR_insn_v2cmpltu,             NULL }, /* v2cmpltu */
  { CODE_FOR_insn_v2cmpltui,            NULL }, /* v2cmpltui */
  { CODE_FOR_insn_v2cmpne,              NULL }, /* v2cmpne */
  { CODE_FOR_insn_v2dotp,               NULL }, /* v2dotp */
  { CODE_FOR_insn_v2dotpa,              NULL }, /* v2dotpa */
  { CODE_FOR_insn_v2int_h,              NULL }, /* v2int_h */
  { CODE_FOR_insn_v2int_l,              NULL }, /* v2int_l */
  { CODE_FOR_insn_v2maxs,               NULL }, /* v2maxs */
  { CODE_FOR_insn_v2maxsi,              NULL }, /* v2maxsi */
  { CODE_FOR_insn_v2mins,               NULL }, /* v2mins */
  { CODE_FOR_insn_v2minsi,              NULL }, /* v2minsi */
  { CODE_FOR_insn_v2mnz,                NULL }, /* v2mnz */
  { CODE_FOR_insn_v2mulfsc,             NULL }, /* v2mulfsc */
  { CODE_FOR_insn_v2muls,               NULL }, /* v2muls */
  { CODE_FOR_insn_v2mults,              NULL }, /* v2mults */
  { CODE_FOR_insn_v2mz,                 NULL }, /* v2mz */
  { CODE_FOR_insn_v2packh,              NULL }, /* v2packh */
  { CODE_FOR_insn_v2packl,              NULL }, /* v2packl */
  { CODE_FOR_insn_v2packuc,             NULL }, /* v2packuc */
  { CODE_FOR_insn_v2sadas,              NULL }, /* v2sadas */
  { CODE_FOR_insn_v2sadau,              NULL }, /* v2sadau */
  { CODE_FOR_insn_v2sads,               NULL }, /* v2sads */
  { CODE_FOR_insn_v2sadu,               NULL }, /* v2sadu */
  { CODE_FOR_insn_v2shl,                NULL }, /* v2shl */
  { CODE_FOR_insn_v2shl,                NULL }, /* v2shli */
  { CODE_FOR_insn_v2shlsc,              NULL }, /* v2shlsc */
  { CODE_FOR_insn_v2shrs,               NULL }, /* v2shrs */
  { CODE_FOR_insn_v2shrs,               NULL }, /* v2shrsi */
  { CODE_FOR_insn_v2shru,               NULL }, /* v2shru */
  { CODE_FOR_insn_v2shru,               NULL }, /* v2shrui */
  { CODE_FOR_insn_v2sub,                NULL }, /* v2sub */
  { CODE_FOR_insn_v2subsc,              NULL }, /* v2subsc */
  { CODE_FOR_insn_v4add,                NULL }, /* v4add */
  { CODE_FOR_insn_v4addsc,              NULL }, /* v4addsc */
  { CODE_FOR_insn_v4int_h,              NULL }, /* v4int_h */
  { CODE_FOR_insn_v4int_l,              NULL }, /* v4int_l */
  { CODE_FOR_insn_v4packsc,             NULL }, /* v4packsc */
  { CODE_FOR_insn_v4shl,                NULL }, /* v4shl */
  { CODE_FOR_insn_v4shlsc,              NULL }, /* v4shlsc */
  { CODE_FOR_insn_v4shrs,               NULL }, /* v4shrs */
  { CODE_FOR_insn_v4shru,               NULL }, /* v4shru */
  { CODE_FOR_insn_v4sub,                NULL }, /* v4sub */
  { CODE_FOR_insn_v4subsc,              NULL }, /* v4subsc */
  { CODE_FOR_insn_wh64,                 NULL }, /* wh64 */
  { CODE_FOR_xordi3,                    NULL }, /* xor */
  { CODE_FOR_tilegx_network_barrier,    NULL }, /* network_barrier */
  { CODE_FOR_tilegx_idn0_receive,       NULL }, /* idn0_receive */
  { CODE_FOR_tilegx_idn1_receive,       NULL }, /* idn1_receive */
  { CODE_FOR_tilegx_idn_send,           NULL }, /* idn_send */
  { CODE_FOR_tilegx_udn0_receive,       NULL }, /* udn0_receive */
  { CODE_FOR_tilegx_udn1_receive,       NULL }, /* udn1_receive */
  { CODE_FOR_tilegx_udn2_receive,       NULL }, /* udn2_receive */
  { CODE_FOR_tilegx_udn3_receive,       NULL }, /* udn3_receive */
  { CODE_FOR_tilegx_udn_send,           NULL }, /* udn_send */
};


struct tilegx_builtin_def
{
  const char *name;
  enum tilegx_builtin code;
  bool is_const;
  /* The first character is the return type.  Subsequent characters
     are the argument types. See char_to_type.  */
  const char *type;
};


static const struct tilegx_builtin_def tilegx_builtins[] = {
  { "__insn_add",                TILEGX_INSN_ADD,                true,  "lll"  },
  { "__insn_addi",               TILEGX_INSN_ADD,                true,  "lll"  },
  { "__insn_addli",              TILEGX_INSN_ADD,                true,  "lll"  },
  { "__insn_addx",               TILEGX_INSN_ADDX,               true,  "iii"  },
  { "__insn_addxi",              TILEGX_INSN_ADDX,               true,  "iii"  },
  { "__insn_addxli",             TILEGX_INSN_ADDX,               true,  "iii"  },
  { "__insn_addxsc",             TILEGX_INSN_ADDXSC,             true,  "iii"  },
  { "__insn_and",                TILEGX_INSN_AND,                true,  "lll"  },
  { "__insn_andi",               TILEGX_INSN_AND,                true,  "lll"  },
  { "__insn_bfexts",             TILEGX_INSN_BFEXTS,             true,  "llll" },
  { "__insn_bfextu",             TILEGX_INSN_BFEXTU,             true,  "llll" },
  { "__insn_bfins",              TILEGX_INSN_BFINS,              true,  "lllll"},
  { "__insn_clz",                TILEGX_INSN_CLZ,                true,  "ll"   },
  { "__insn_cmoveqz",            TILEGX_INSN_CMOVEQZ,            true,  "llll" },
  { "__insn_cmovnez",            TILEGX_INSN_CMOVNEZ,            true,  "llll" },
  { "__insn_cmpeq",              TILEGX_INSN_CMPEQ,              true,  "lll"  },
  { "__insn_cmpeqi",             TILEGX_INSN_CMPEQ,              true,  "lll"  },
  { "__insn_cmpexch",            TILEGX_INSN_CMPEXCH,            false, "lpl"  },
  { "__insn_cmpexch4",           TILEGX_INSN_CMPEXCH4,           false, "ipi"  },
  { "__insn_cmples",             TILEGX_INSN_CMPLES,             true,  "lll"  },
  { "__insn_cmpleu",             TILEGX_INSN_CMPLEU,             true,  "lll"  },
  { "__insn_cmplts",             TILEGX_INSN_CMPLTS,             true,  "lll"  },
  { "__insn_cmpltsi",            TILEGX_INSN_CMPLTS,             true,  "lll"  },
  { "__insn_cmpltu",             TILEGX_INSN_CMPLTU,             true,  "lll"  },
  { "__insn_cmpltui",            TILEGX_INSN_CMPLTU,             true,  "lll"  },
  { "__insn_cmpne",              TILEGX_INSN_CMPNE,              true,  "lll"  },
  { "__insn_cmul",               TILEGX_INSN_CMUL,               true,  "lll"  },
  { "__insn_cmula",              TILEGX_INSN_CMULA,              true,  "llll" },
  { "__insn_cmulaf",             TILEGX_INSN_CMULAF,             true,  "llll" },
  { "__insn_cmulf",              TILEGX_INSN_CMULF,              true,  "lll"  },
  { "__insn_cmulfr",             TILEGX_INSN_CMULFR,             true,  "lll"  },
  { "__insn_cmulh",              TILEGX_INSN_CMULH,              true,  "lll"  },
  { "__insn_cmulhr",             TILEGX_INSN_CMULHR,             true,  "lll"  },
  { "__insn_crc32_32",           TILEGX_INSN_CRC32_32,           true,  "lll"  },
  { "__insn_crc32_8",            TILEGX_INSN_CRC32_8,            true,  "lll"  },
  { "__insn_ctz",                TILEGX_INSN_CTZ,                true,  "ll"   },
  { "__insn_dblalign",           TILEGX_INSN_DBLALIGN,           true,  "lllk" },
  { "__insn_dblalign2",          TILEGX_INSN_DBLALIGN2,          true,  "lll"  },
  { "__insn_dblalign4",          TILEGX_INSN_DBLALIGN4,          true,  "lll"  },
  { "__insn_dblalign6",          TILEGX_INSN_DBLALIGN6,          true,  "lll"  },
  { "__insn_drain",              TILEGX_INSN_DRAIN,              false, "v"    },
  { "__insn_dtlbpr",             TILEGX_INSN_DTLBPR,             false, "vl"   },
  { "__insn_exch",               TILEGX_INSN_EXCH,               false, "lpl"  },
  { "__insn_exch4",              TILEGX_INSN_EXCH4,              false, "ipi"  },
  { "__insn_fdouble_add_flags",  TILEGX_INSN_FDOUBLE_ADD_FLAGS,  true,  "lll"  },
  { "__insn_fdouble_addsub",     TILEGX_INSN_FDOUBLE_ADDSUB,     true,  "llll" },
  { "__insn_fdouble_mul_flags",  TILEGX_INSN_FDOUBLE_MUL_FLAGS,  true,  "lll"  },
  { "__insn_fdouble_pack1",      TILEGX_INSN_FDOUBLE_PACK1,      true,  "lll"  },
  { "__insn_fdouble_pack2",      TILEGX_INSN_FDOUBLE_PACK2,      true,  "llll" },
  { "__insn_fdouble_sub_flags",  TILEGX_INSN_FDOUBLE_SUB_FLAGS,  true,  "lll"  },
  { "__insn_fdouble_unpack_max", TILEGX_INSN_FDOUBLE_UNPACK_MAX, true,  "lll"  },
  { "__insn_fdouble_unpack_min", TILEGX_INSN_FDOUBLE_UNPACK_MIN, true,  "lll"  },
  { "__insn_fetchadd",           TILEGX_INSN_FETCHADD,           false, "lpl"  },
  { "__insn_fetchadd4",          TILEGX_INSN_FETCHADD4,          false, "ipi"  },
  { "__insn_fetchaddgez",        TILEGX_INSN_FETCHADDGEZ,        false, "lpl"  },
  { "__insn_fetchaddgez4",       TILEGX_INSN_FETCHADDGEZ4,       false, "ipi"  },
  { "__insn_fetchand",           TILEGX_INSN_FETCHAND,           false, "lpl"  },
  { "__insn_fetchand4",          TILEGX_INSN_FETCHAND4,          false, "ipi"  },
  { "__insn_fetchor",            TILEGX_INSN_FETCHOR,            false, "lpl"  },
  { "__insn_fetchor4",           TILEGX_INSN_FETCHOR4,           false, "ipi"  },
  { "__insn_finv",               TILEGX_INSN_FINV,               false, "vk"   },
  { "__insn_flush",              TILEGX_INSN_FLUSH,              false, "vk"   },
  { "__insn_flushwb",            TILEGX_INSN_FLUSHWB,            false, "v"    },
  { "__insn_fnop",               TILEGX_INSN_FNOP,               false, "v"    },
  { "__insn_fsingle_add1",       TILEGX_INSN_FSINGLE_ADD1,       true,  "lll"  },
  { "__insn_fsingle_addsub2",    TILEGX_INSN_FSINGLE_ADDSUB2,    true,  "llll" },
  { "__insn_fsingle_mul1",       TILEGX_INSN_FSINGLE_MUL1,       true,  "lll"  },
  { "__insn_fsingle_mul2",       TILEGX_INSN_FSINGLE_MUL2,       true,  "lll"  },
  { "__insn_fsingle_pack1",      TILEGX_INSN_FSINGLE_PACK1,      true,  "ll"   },
  { "__insn_fsingle_pack2",      TILEGX_INSN_FSINGLE_PACK2,      true,  "lll"  },
  { "__insn_fsingle_sub1",       TILEGX_INSN_FSINGLE_SUB1,       true,  "lll"  },
  { "__insn_icoh",               TILEGX_INSN_ICOH,               false, "vk"   },
  { "__insn_ill",                TILEGX_INSN_ILL,                false, "v"    },
  { "__insn_info",               TILEGX_INSN_INFO,               false, "vl"   },
  { "__insn_infol",              TILEGX_INSN_INFOL,              false, "vl"   },
  { "__insn_inv",                TILEGX_INSN_INV,                false, "vp"   },
  { "__insn_ld",                 TILEGX_INSN_LD,                 false, "lk"   },
  { "__insn_ld1s",               TILEGX_INSN_LD1S,               false, "lk"   },
  { "__insn_ld1u",               TILEGX_INSN_LD1U,               false, "lk"   },
  { "__insn_ld2s",               TILEGX_INSN_LD2S,               false, "lk"   },
  { "__insn_ld2u",               TILEGX_INSN_LD2U,               false, "lk"   },
  { "__insn_ld4s",               TILEGX_INSN_LD4S,               false, "lk"   },
  { "__insn_ld4u",               TILEGX_INSN_LD4U,               false, "lk"   },
  { "__insn_ldna",               TILEGX_INSN_LDNA,               false, "lk"   },
  { "__insn_ldnt",               TILEGX_INSN_LDNT,               false, "lk"   },
  { "__insn_ldnt1s",             TILEGX_INSN_LDNT1S,             false, "lk"   },
  { "__insn_ldnt1u",             TILEGX_INSN_LDNT1U,             false, "lk"   },
  { "__insn_ldnt2s",             TILEGX_INSN_LDNT2S,             false, "lk"   },
  { "__insn_ldnt2u",             TILEGX_INSN_LDNT2U,             false, "lk"   },
  { "__insn_ldnt4s",             TILEGX_INSN_LDNT4S,             false, "lk"   },
  { "__insn_ldnt4u",             TILEGX_INSN_LDNT4U,             false, "lk"   },
  { "__insn_ld_L2",              TILEGX_INSN_LD_L2,              false, "lk"   },
  { "__insn_ld1s_L2",            TILEGX_INSN_LD1S_L2,            false, "lk"   },
  { "__insn_ld1u_L2",            TILEGX_INSN_LD1U_L2,            false, "lk"   },
  { "__insn_ld2s_L2",            TILEGX_INSN_LD2S_L2,            false, "lk"   },
  { "__insn_ld2u_L2",            TILEGX_INSN_LD2U_L2,            false, "lk"   },
  { "__insn_ld4s_L2",            TILEGX_INSN_LD4S_L2,            false, "lk"   },
  { "__insn_ld4u_L2",            TILEGX_INSN_LD4U_L2,            false, "lk"   },
  { "__insn_ldna_L2",            TILEGX_INSN_LDNA_L2,            false, "lk"   },
  { "__insn_ldnt_L2",            TILEGX_INSN_LDNT_L2,            false, "lk"   },
  { "__insn_ldnt1s_L2",          TILEGX_INSN_LDNT1S_L2,          false, "lk"   },
  { "__insn_ldnt1u_L2",          TILEGX_INSN_LDNT1U_L2,          false, "lk"   },
  { "__insn_ldnt2s_L2",          TILEGX_INSN_LDNT2S_L2,          false, "lk"   },
  { "__insn_ldnt2u_L2",          TILEGX_INSN_LDNT2U_L2,          false, "lk"   },
  { "__insn_ldnt4s_L2",          TILEGX_INSN_LDNT4S_L2,          false, "lk"   },
  { "__insn_ldnt4u_L2",          TILEGX_INSN_LDNT4U_L2,          false, "lk"   },
  { "__insn_ld_miss",            TILEGX_INSN_LD_MISS,            false, "lk"   },
  { "__insn_ld1s_miss",          TILEGX_INSN_LD1S_MISS,          false, "lk"   },
  { "__insn_ld1u_miss",          TILEGX_INSN_LD1U_MISS,          false, "lk"   },
  { "__insn_ld2s_miss",          TILEGX_INSN_LD2S_MISS,          false, "lk"   },
  { "__insn_ld2u_miss",          TILEGX_INSN_LD2U_MISS,          false, "lk"   },
  { "__insn_ld4s_miss",          TILEGX_INSN_LD4S_MISS,          false, "lk"   },
  { "__insn_ld4u_miss",          TILEGX_INSN_LD4U_MISS,          false, "lk"   },
  { "__insn_ldna_miss",          TILEGX_INSN_LDNA_MISS,          false, "lk"   },
  { "__insn_ldnt_miss",          TILEGX_INSN_LDNT_MISS,          false, "lk"   },
  { "__insn_ldnt1s_miss",        TILEGX_INSN_LDNT1S_MISS,        false, "lk"   },
  { "__insn_ldnt1u_miss",        TILEGX_INSN_LDNT1U_MISS,        false, "lk"   },
  { "__insn_ldnt2s_miss",        TILEGX_INSN_LDNT2S_MISS,        false, "lk"   },
  { "__insn_ldnt2u_miss",        TILEGX_INSN_LDNT2U_MISS,        false, "lk"   },
  { "__insn_ldnt4s_miss",        TILEGX_INSN_LDNT4S_MISS,        false, "lk"   },
  { "__insn_ldnt4u_miss",        TILEGX_INSN_LDNT4U_MISS,        false, "lk"   },
  { "__insn_lnk",                TILEGX_INSN_LNK,                true,  "l"    },
  { "__insn_mf",                 TILEGX_INSN_MF,                 false, "v"    },
  { "__insn_mfspr",              TILEGX_INSN_MFSPR,              false, "ll"   },
  { "__insn_mm",                 TILEGX_INSN_MM,                 true,  "lllll"},
  { "__insn_mnz",                TILEGX_INSN_MNZ,                true,  "lll"  },
  { "__insn_move",               TILEGX_INSN_MOVE,               true,  "ll"   },
  { "__insn_movei",              TILEGX_INSN_MOVE,               true,  "ll"   },
  { "__insn_moveli",             TILEGX_INSN_MOVE,               true,  "ll"   },
  { "__insn_mtspr",              TILEGX_INSN_MTSPR,              false, "vll"  },
  { "__insn_mul_hs_hs",          TILEGX_INSN_MUL_HS_HS,          true,  "lll"  },
  { "__insn_mul_hs_hu",          TILEGX_INSN_MUL_HS_HU,          true,  "lll"  },
  { "__insn_mul_hs_ls",          TILEGX_INSN_MUL_HS_LS,          true,  "lll"  },
  { "__insn_mul_hs_lu",          TILEGX_INSN_MUL_HS_LU,          true,  "lll"  },
  { "__insn_mul_hu_hu",          TILEGX_INSN_MUL_HU_HU,          true,  "lll"  },
  { "__insn_mul_hu_ls",          TILEGX_INSN_MUL_HU_LS,          true,  "lll"  },
  { "__insn_mul_hu_lu",          TILEGX_INSN_MUL_HU_LU,          true,  "lll"  },
  { "__insn_mul_ls_ls",          TILEGX_INSN_MUL_LS_LS,          true,  "lll"  },
  { "__insn_mul_ls_lu",          TILEGX_INSN_MUL_LS_LU,          true,  "lll"  },
  { "__insn_mul_lu_lu",          TILEGX_INSN_MUL_LU_LU,          true,  "lll"  },
  { "__insn_mula_hs_hs",         TILEGX_INSN_MULA_HS_HS,         true,  "llll" },
  { "__insn_mula_hs_hu",         TILEGX_INSN_MULA_HS_HU,         true,  "llll" },
  { "__insn_mula_hs_ls",         TILEGX_INSN_MULA_HS_LS,         true,  "llll" },
  { "__insn_mula_hs_lu",         TILEGX_INSN_MULA_HS_LU,         true,  "llll" },
  { "__insn_mula_hu_hu",         TILEGX_INSN_MULA_HU_HU,         true,  "llll" },
  { "__insn_mula_hu_ls",         TILEGX_INSN_MULA_HU_LS,         true,  "llll" },
  { "__insn_mula_hu_lu",         TILEGX_INSN_MULA_HU_LU,         true,  "llll" },
  { "__insn_mula_ls_ls",         TILEGX_INSN_MULA_LS_LS,         true,  "llll" },
  { "__insn_mula_ls_lu",         TILEGX_INSN_MULA_LS_LU,         true,  "llll" },
  { "__insn_mula_lu_lu",         TILEGX_INSN_MULA_LU_LU,         true,  "llll" },
  { "__insn_mulax",              TILEGX_INSN_MULAX,              true,  "iiii" },
  { "__insn_mulx",               TILEGX_INSN_MULX,               true,  "iii"  },
  { "__insn_mz",                 TILEGX_INSN_MZ,                 true,  "lll"  },
  { "__insn_nap",                TILEGX_INSN_NAP,                false, "v"    },
  { "__insn_nop",                TILEGX_INSN_NOP,                true,  "v"    },
  { "__insn_nor",                TILEGX_INSN_NOR,                true,  "lll"  },
  { "__insn_or",                 TILEGX_INSN_OR,                 true,  "lll"  },
  { "__insn_ori",                TILEGX_INSN_OR,                 true,  "lll"  },
  { "__insn_pcnt",               TILEGX_INSN_PCNT,               true,  "ll"   },
  { "__insn_prefetch",           TILEGX_INSN_PREFETCH_L1,        false, "vk"   },
  { "__insn_prefetch_l1",        TILEGX_INSN_PREFETCH_L1,        false, "vk"   },
  { "__insn_prefetch_l1_fault",  TILEGX_INSN_PREFETCH_L1_FAULT,  false, "vk"   },
  { "__insn_prefetch_l2",        TILEGX_INSN_PREFETCH_L2,        false, "vk"   },
  { "__insn_prefetch_l2_fault",  TILEGX_INSN_PREFETCH_L2_FAULT,  false, "vk"   },
  { "__insn_prefetch_l3",        TILEGX_INSN_PREFETCH_L3,        false, "vk"   },
  { "__insn_prefetch_l3_fault",  TILEGX_INSN_PREFETCH_L3_FAULT,  false, "vk"   },
  { "__insn_revbits",            TILEGX_INSN_REVBITS,            true,  "ll"   },
  { "__insn_revbytes",           TILEGX_INSN_REVBYTES,           true,  "ll"   },
  { "__insn_rotl",               TILEGX_INSN_ROTL,               true,  "lli"  },
  { "__insn_rotli",              TILEGX_INSN_ROTL,               true,  "lli"  },
  { "__insn_shl",                TILEGX_INSN_SHL,                true,  "lli"  },
  { "__insn_shl16insli",         TILEGX_INSN_SHL16INSLI,         true,  "lll"  },
  { "__insn_shl1add",            TILEGX_INSN_SHL1ADD,            true,  "lll"  },
  { "__insn_shl1addx",           TILEGX_INSN_SHL1ADDX,           true,  "iii"  },
  { "__insn_shl2add",            TILEGX_INSN_SHL2ADD,            true,  "lll"  },
  { "__insn_shl2addx",           TILEGX_INSN_SHL2ADDX,           true,  "iii"  },
  { "__insn_shl3add",            TILEGX_INSN_SHL3ADD,            true,  "lll"  },
  { "__insn_shl3addx",           TILEGX_INSN_SHL3ADDX,           true,  "iii"  },
  { "__insn_shli",               TILEGX_INSN_SHL,                true,  "lli"  },
  { "__insn_shlx",               TILEGX_INSN_SHLX,               true,  "iii"  },
  { "__insn_shlxi",              TILEGX_INSN_SHLX,               true,  "iii"  },
  { "__insn_shrs",               TILEGX_INSN_SHRS,               true,  "lli"  },
  { "__insn_shrsi",              TILEGX_INSN_SHRS,               true,  "lli"  },
  { "__insn_shru",               TILEGX_INSN_SHRU,               true,  "lli"  },
  { "__insn_shrui",              TILEGX_INSN_SHRU,               true,  "lli"  },
  { "__insn_shrux",              TILEGX_INSN_SHRUX,              true,  "iii"  },
  { "__insn_shruxi",             TILEGX_INSN_SHRUX,              true,  "iii"  },
  { "__insn_shufflebytes",       TILEGX_INSN_SHUFFLEBYTES,       true,  "llll" },
  { "__insn_shufflebytes1",      TILEGX_INSN_SHUFFLEBYTES1,      true,  "lll"  },
  { "__insn_st",                 TILEGX_INSN_ST,                 false, "vpl"  },
  { "__insn_st1",                TILEGX_INSN_ST1,                false, "vpl"  },
  { "__insn_st2",                TILEGX_INSN_ST2,                false, "vpl"  },
  { "__insn_st4",                TILEGX_INSN_ST4,                false, "vpl"  },
  { "__insn_stnt",               TILEGX_INSN_STNT,               false, "vpl"  },
  { "__insn_stnt1",              TILEGX_INSN_STNT1,              false, "vpl"  },
  { "__insn_stnt2",              TILEGX_INSN_STNT2,              false, "vpl"  },
  { "__insn_stnt4",              TILEGX_INSN_STNT4,              false, "vpl"  },
  { "__insn_sub",                TILEGX_INSN_SUB,                true,  "lll"  },
  { "__insn_subx",               TILEGX_INSN_SUBX,               true,  "iii"  },
  { "__insn_subxsc",             TILEGX_INSN_SUBXSC,             true,  "iii"  },
  { "__insn_tblidxb0",           TILEGX_INSN_TBLIDXB0,           true,  "lll"  },
  { "__insn_tblidxb1",           TILEGX_INSN_TBLIDXB1,           true,  "lll"  },
  { "__insn_tblidxb2",           TILEGX_INSN_TBLIDXB2,           true,  "lll"  },
  { "__insn_tblidxb3",           TILEGX_INSN_TBLIDXB3,           true,  "lll"  },
  { "__insn_v1add",              TILEGX_INSN_V1ADD,              true,  "lll"  },
  { "__insn_v1addi",             TILEGX_INSN_V1ADDI,             true,  "lll"  },
  { "__insn_v1adduc",            TILEGX_INSN_V1ADDUC,            true,  "lll"  },
  { "__insn_v1adiffu",           TILEGX_INSN_V1ADIFFU,           true,  "lll"  },
  { "__insn_v1avgu",             TILEGX_INSN_V1AVGU,             true,  "lll"  },
  { "__insn_v1cmpeq",            TILEGX_INSN_V1CMPEQ,            true,  "lll"  },
  { "__insn_v1cmpeqi",           TILEGX_INSN_V1CMPEQI,           true,  "lll"  },
  { "__insn_v1cmples",           TILEGX_INSN_V1CMPLES,           true,  "lll"  },
  { "__insn_v1cmpleu",           TILEGX_INSN_V1CMPLEU,           true,  "lll"  },
  { "__insn_v1cmplts",           TILEGX_INSN_V1CMPLTS,           true,  "lll"  },
  { "__insn_v1cmpltsi",          TILEGX_INSN_V1CMPLTSI,          true,  "lll"  },
  { "__insn_v1cmpltu",           TILEGX_INSN_V1CMPLTU,           true,  "lll"  },
  { "__insn_v1cmpltui",          TILEGX_INSN_V1CMPLTUI,          true,  "lll"  },
  { "__insn_v1cmpne",            TILEGX_INSN_V1CMPNE,            true,  "lll"  },
  { "__insn_v1ddotpu",           TILEGX_INSN_V1DDOTPU,           true,  "lll"  },
  { "__insn_v1ddotpua",          TILEGX_INSN_V1DDOTPUA,          true,  "llll" },
  { "__insn_v1ddotpus",          TILEGX_INSN_V1DDOTPUS,          true,  "lll"  },
  { "__insn_v1ddotpusa",         TILEGX_INSN_V1DDOTPUSA,         true,  "llll" },
  { "__insn_v1dotp",             TILEGX_INSN_V1DOTP,             true,  "lll"  },
  { "__insn_v1dotpa",            TILEGX_INSN_V1DOTPA,            true,  "llll" },
  { "__insn_v1dotpu",            TILEGX_INSN_V1DOTPU,            true,  "lll"  },
  { "__insn_v1dotpua",           TILEGX_INSN_V1DOTPUA,           true,  "llll" },
  { "__insn_v1dotpus",           TILEGX_INSN_V1DOTPUS,           true,  "lll"  },
  { "__insn_v1dotpusa",          TILEGX_INSN_V1DOTPUSA,          true,  "llll" },
  { "__insn_v1int_h",            TILEGX_INSN_V1INT_H,            true,  "lll"  },
  { "__insn_v1int_l",            TILEGX_INSN_V1INT_L,            true,  "lll"  },
  { "__insn_v1maxu",             TILEGX_INSN_V1MAXU,             true,  "lll"  },
  { "__insn_v1maxui",            TILEGX_INSN_V1MAXUI,            true,  "lll"  },
  { "__insn_v1minu",             TILEGX_INSN_V1MINU,             true,  "lll"  },
  { "__insn_v1minui",            TILEGX_INSN_V1MINUI,            true,  "lll"  },
  { "__insn_v1mnz",              TILEGX_INSN_V1MNZ,              true,  "lll"  },
  { "__insn_v1multu",            TILEGX_INSN_V1MULTU,            true,  "lll"  },
  { "__insn_v1mulu",             TILEGX_INSN_V1MULU,             true,  "lll"  },
  { "__insn_v1mulus",            TILEGX_INSN_V1MULUS,            true,  "lll"  },
  { "__insn_v1mz",               TILEGX_INSN_V1MZ,               true,  "lll"  },
  { "__insn_v1sadau",            TILEGX_INSN_V1SADAU,            true,  "llll" },
  { "__insn_v1sadu",             TILEGX_INSN_V1SADU,             true,  "lll"  },
  { "__insn_v1shl",              TILEGX_INSN_V1SHL,              true,  "lll"  },
  { "__insn_v1shli",             TILEGX_INSN_V1SHLI,             true,  "lll"  },
  { "__insn_v1shrs",             TILEGX_INSN_V1SHRS,             true,  "lll"  },
  { "__insn_v1shrsi",            TILEGX_INSN_V1SHRSI,            true,  "lll"  },
  { "__insn_v1shru",             TILEGX_INSN_V1SHRU,             true,  "lll"  },
  { "__insn_v1shrui",            TILEGX_INSN_V1SHRUI,            true,  "lll"  },
  { "__insn_v1sub",              TILEGX_INSN_V1SUB,              true,  "lll"  },
  { "__insn_v1subuc",            TILEGX_INSN_V1SUBUC,            true,  "lll"  },
  { "__insn_v2add",              TILEGX_INSN_V2ADD,              true,  "lll"  },
  { "__insn_v2addi",             TILEGX_INSN_V2ADDI,             true,  "lll"  },
  { "__insn_v2addsc",            TILEGX_INSN_V2ADDSC,            true,  "lll"  },
  { "__insn_v2adiffs",           TILEGX_INSN_V2ADIFFS,           true,  "lll"  },
  { "__insn_v2avgs",             TILEGX_INSN_V2AVGS,             true,  "lll"  },
  { "__insn_v2cmpeq",            TILEGX_INSN_V2CMPEQ,            true,  "lll"  },
  { "__insn_v2cmpeqi",           TILEGX_INSN_V2CMPEQI,           true,  "lll"  },
  { "__insn_v2cmples",           TILEGX_INSN_V2CMPLES,           true,  "lll"  },
  { "__insn_v2cmpleu",           TILEGX_INSN_V2CMPLEU,           true,  "lll"  },
  { "__insn_v2cmplts",           TILEGX_INSN_V2CMPLTS,           true,  "lll"  },
  { "__insn_v2cmpltsi",          TILEGX_INSN_V2CMPLTSI,          true,  "lll"  },
  { "__insn_v2cmpltu",           TILEGX_INSN_V2CMPLTU,           true,  "lll"  },
  { "__insn_v2cmpltui",          TILEGX_INSN_V2CMPLTUI,          true,  "lll"  },
  { "__insn_v2cmpne",            TILEGX_INSN_V2CMPNE,            true,  "lll"  },
  { "__insn_v2dotp",             TILEGX_INSN_V2DOTP,             true,  "lll"  },
  { "__insn_v2dotpa",            TILEGX_INSN_V2DOTPA,            true,  "llll" },
  { "__insn_v2int_h",            TILEGX_INSN_V2INT_H,            true,  "lll"  },
  { "__insn_v2int_l",            TILEGX_INSN_V2INT_L,            true,  "lll"  },
  { "__insn_v2maxs",             TILEGX_INSN_V2MAXS,             true,  "lll"  },
  { "__insn_v2maxsi",            TILEGX_INSN_V2MAXSI,            true,  "lll"  },
  { "__insn_v2mins",             TILEGX_INSN_V2MINS,             true,  "lll"  },
  { "__insn_v2minsi",            TILEGX_INSN_V2MINSI,            true,  "lll"  },
  { "__insn_v2mnz",              TILEGX_INSN_V2MNZ,              true,  "lll"  },
  { "__insn_v2mulfsc",           TILEGX_INSN_V2MULFSC,           true,  "lll"  },
  { "__insn_v2muls",             TILEGX_INSN_V2MULS,             true,  "lll"  },
  { "__insn_v2mults",            TILEGX_INSN_V2MULTS,            true,  "lll"  },
  { "__insn_v2mz",               TILEGX_INSN_V2MZ,               true,  "lll"  },
  { "__insn_v2packh",            TILEGX_INSN_V2PACKH,            true,  "lll"  },
  { "__insn_v2packl",            TILEGX_INSN_V2PACKL,            true,  "lll"  },
  { "__insn_v2packuc",           TILEGX_INSN_V2PACKUC,           true,  "lll"  },
  { "__insn_v2sadas",            TILEGX_INSN_V2SADAS,            true,  "llll" },
  { "__insn_v2sadau",            TILEGX_INSN_V2SADAU,            true,  "llll" },
  { "__insn_v2sads",             TILEGX_INSN_V2SADS,             true,  "lll"  },
  { "__insn_v2sadu",             TILEGX_INSN_V2SADU,             true,  "lll"  },
  { "__insn_v2shl",              TILEGX_INSN_V2SHL,              true,  "lll"  },
  { "__insn_v2shli",             TILEGX_INSN_V2SHLI,             true,  "lll"  },
  { "__insn_v2shlsc",            TILEGX_INSN_V2SHLSC,            true,  "lll"  },
  { "__insn_v2shrs",             TILEGX_INSN_V2SHRS,             true,  "lll"  },
  { "__insn_v2shrsi",            TILEGX_INSN_V2SHRSI,            true,  "lll"  },
  { "__insn_v2shru",             TILEGX_INSN_V2SHRU,             true,  "lll"  },
  { "__insn_v2shrui",            TILEGX_INSN_V2SHRUI,            true,  "lll"  },
  { "__insn_v2sub",              TILEGX_INSN_V2SUB,              true,  "lll"  },
  { "__insn_v2subsc",            TILEGX_INSN_V2SUBSC,            true,  "lll"  },
  { "__insn_v4add",              TILEGX_INSN_V4ADD,              true,  "lll"  },
  { "__insn_v4addsc",            TILEGX_INSN_V4ADDSC,            true,  "lll"  },
  { "__insn_v4int_h",            TILEGX_INSN_V4INT_H,            true,  "lll"  },
  { "__insn_v4int_l",            TILEGX_INSN_V4INT_L,            true,  "lll"  },
  { "__insn_v4packsc",           TILEGX_INSN_V4PACKSC,           true,  "lll"  },
  { "__insn_v4shl",              TILEGX_INSN_V4SHL,              true,  "lll"  },
  { "__insn_v4shlsc",            TILEGX_INSN_V4SHLSC,            true,  "lll"  },
  { "__insn_v4shrs",             TILEGX_INSN_V4SHRS,             true,  "lll"  },
  { "__insn_v4shru",             TILEGX_INSN_V4SHRU,             true,  "lll"  },
  { "__insn_v4sub",              TILEGX_INSN_V4SUB,              true,  "lll"  },
  { "__insn_v4subsc",            TILEGX_INSN_V4SUBSC,            true,  "lll"  },
  { "__insn_wh64",               TILEGX_INSN_WH64,               false, "vp"   },
  { "__insn_xor",                TILEGX_INSN_XOR,                true,  "lll"  },
  { "__insn_xori",               TILEGX_INSN_XOR,                true,  "lll"  },
  { "__tile_network_barrier",    TILEGX_NETWORK_BARRIER,         false, "v"    },
  { "__tile_idn0_receive",       TILEGX_IDN0_RECEIVE,            false, "l"    },
  { "__tile_idn1_receive",       TILEGX_IDN1_RECEIVE,            false, "l"    },
  { "__tile_idn_send",           TILEGX_IDN_SEND,                false, "vl"   },
  { "__tile_udn0_receive",       TILEGX_UDN0_RECEIVE,            false, "l"    },
  { "__tile_udn1_receive",       TILEGX_UDN1_RECEIVE,            false, "l"    },
  { "__tile_udn2_receive",       TILEGX_UDN2_RECEIVE,            false, "l"    },
  { "__tile_udn3_receive",       TILEGX_UDN3_RECEIVE,            false, "l"    },
  { "__tile_udn_send",           TILEGX_UDN_SEND,                false, "vl"   },
};


/* Convert a character in a builtin type string to a tree type.  */
static tree
char_to_type (char c)
{
  static tree volatile_ptr_type_node = NULL;
  static tree volatile_const_ptr_type_node = NULL;

  if (volatile_ptr_type_node == NULL)
    {
      volatile_ptr_type_node =
	build_pointer_type (build_qualified_type (void_type_node,
						  TYPE_QUAL_VOLATILE));
      volatile_const_ptr_type_node =
	build_pointer_type (build_qualified_type (void_type_node,
						  TYPE_QUAL_CONST
						  | TYPE_QUAL_VOLATILE));
    }

  switch (c)
    {
    case 'v':
      return void_type_node;
    case 'i':
      return unsigned_type_node;
    case 'l':
      return long_long_unsigned_type_node;
    case 'p':
      return volatile_ptr_type_node;
    case 'k':
      return volatile_const_ptr_type_node;
    default:
      gcc_unreachable ();
    }
}


/* Implement TARGET_INIT_BUILTINS.  */
static void
tilegx_init_builtins (void)
{
  size_t i;

  for (i = 0; i < ARRAY_SIZE (tilegx_builtins); i++)
    {
      const struct tilegx_builtin_def *p = &tilegx_builtins[i];
      tree ftype, ret_type, arg_type_list = void_list_node;
      tree decl;
      int j;

      for (j = strlen (p->type) - 1; j > 0; j--)
	{
	  arg_type_list =
	    tree_cons (NULL_TREE, char_to_type (p->type[j]), arg_type_list);
	}

      ret_type = char_to_type (p->type[0]);

      ftype = build_function_type (ret_type, arg_type_list);

      decl = add_builtin_function (p->name, ftype, p->code, BUILT_IN_MD,
				   NULL, NULL);

      if (p->is_const)
	TREE_READONLY (decl) = 1;
      TREE_NOTHROW (decl) = 1;

      if (tilegx_builtin_info[p->code].fndecl == NULL)
	tilegx_builtin_info[p->code].fndecl = decl;
    }
}


/* Implement TARGET_EXPAND_BUILTIN.  */
static rtx
tilegx_expand_builtin (tree exp,
		       rtx target,
		       rtx subtarget ATTRIBUTE_UNUSED,
		       enum machine_mode mode ATTRIBUTE_UNUSED,
		       int ignore ATTRIBUTE_UNUSED)
{
#define MAX_BUILTIN_ARGS 4

  tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
  unsigned int fcode = DECL_FUNCTION_CODE (fndecl);
  tree arg;
  call_expr_arg_iterator iter;
  enum insn_code icode;
  rtx op[MAX_BUILTIN_ARGS + 1], pat;
  int opnum;
  bool nonvoid;
  insn_gen_fn fn;

  if (fcode >= TILEGX_BUILTIN_max)
    internal_error ("bad builtin fcode");
  icode = tilegx_builtin_info[fcode].icode;
  if (icode == 0)
    internal_error ("bad builtin icode");

  nonvoid = TREE_TYPE (TREE_TYPE (fndecl)) != void_type_node;

  opnum = nonvoid;
  FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
    {
      const struct insn_operand_data *insn_op;

      if (arg == error_mark_node)
	return NULL_RTX;
      if (opnum > MAX_BUILTIN_ARGS)
	return NULL_RTX;

      insn_op = &insn_data[icode].operand[opnum];

      op[opnum] = expand_expr (arg, NULL_RTX, insn_op->mode, EXPAND_NORMAL);

      if (!(*insn_op->predicate) (op[opnum], insn_op->mode))
	{
	  enum machine_mode opmode = insn_op->mode;

	  /* pointer_operand and pmode_register_operand operands do
	     not specify a mode, so use the operand's mode instead
	     (which should always be right by the time we get here,
	     except for constants, which are VOIDmode).  */
	  if (opmode == VOIDmode)
	    {
	      enum machine_mode m = GET_MODE (op[opnum]);
	      gcc_assert (m == Pmode || m == VOIDmode);
	      opmode = Pmode;
	    }

	  op[opnum] = copy_to_mode_reg (opmode, op[opnum]);
	}

      if (!(*insn_op->predicate) (op[opnum], insn_op->mode))
	{
	  /* We still failed to meet the predicate even after moving
	     into a register. Assume we needed an immediate.  */
	  error_at (EXPR_LOCATION (exp),
		    "operand must be an immediate of the right size");
	  return const0_rtx;
	}

      opnum++;
    }

  if (nonvoid)
    {
      enum machine_mode tmode = insn_data[icode].operand[0].mode;
      if (!target
	  || GET_MODE (target) != tmode
	  || !(*insn_data[icode].operand[0].predicate) (target, tmode))
	{
	  if (tmode == VOIDmode)
	    {
	      /* get the mode from the return type.  */
	      tmode = TYPE_MODE (TREE_TYPE (TREE_TYPE (fndecl)));
	    }
	  target = gen_reg_rtx (tmode);
	}
      op[0] = target;
    }

  fn = GEN_FCN (icode);
  switch (opnum)
    {
    case 0:
      pat = fn (NULL_RTX);
      break;
    case 1:
      pat = fn (op[0]);
      break;
    case 2:
      pat = fn (op[0], op[1]);
      break;
    case 3:
      pat = fn (op[0], op[1], op[2]);
      break;
    case 4:
      pat = fn (op[0], op[1], op[2], op[3]);
      break;
    case 5:
      pat = fn (op[0], op[1], op[2], op[3], op[4]);
      break;
    default:
      gcc_unreachable ();
    }
  if (!pat)
    return NULL_RTX;
  emit_insn (pat);

  if (nonvoid)
    return target;
  else
    return const0_rtx;
}


/* Implement TARGET_BUILTIN_DECL.  */
static tree
tilegx_builtin_decl (unsigned code, bool initialize_p ATTRIBUTE_UNUSED)
{
  if (code >= TILEGX_BUILTIN_max)
    return error_mark_node;

  return tilegx_builtin_info[code].fndecl;
}



/* Stack frames  */

/* Return whether REGNO needs to be saved in the stack frame.  */
static bool
need_to_save_reg (unsigned int regno)
{
  if (!fixed_regs[regno] && !call_used_regs[regno]
      && df_regs_ever_live_p (regno))
    return true;

  if (flag_pic
      && (regno == PIC_OFFSET_TABLE_REGNUM
	  || regno == TILEGX_PIC_TEXT_LABEL_REGNUM)
      && (crtl->uses_pic_offset_table || crtl->saves_all_registers))
    return true;

  if (crtl->calls_eh_return)
    {
      unsigned i;
      for (i = 0; EH_RETURN_DATA_REGNO (i) != INVALID_REGNUM; i++)
	{
	  if (regno == EH_RETURN_DATA_REGNO (i))
	    return true;
	}
    }

  return false;
}


/* Return the size of the register savev area.  This function is only
   correct starting with local register allocation */
static int
tilegx_saved_regs_size (void)
{
  int reg_save_size = 0;
  int regno;
  int offset_to_frame;
  int align_mask;

  for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
    if (need_to_save_reg (regno))
      reg_save_size += UNITS_PER_WORD;

  /* Pad out the register save area if necessary to make
     frame_pointer_rtx be as aligned as the stack pointer.  */
  offset_to_frame = crtl->args.pretend_args_size + reg_save_size;
  align_mask = (STACK_BOUNDARY / BITS_PER_UNIT) - 1;
  reg_save_size += (-offset_to_frame) & align_mask;

  return reg_save_size;
}


/* Round up frame size SIZE.  */
static int
round_frame_size (int size)
{
  return ((size + STACK_BOUNDARY / BITS_PER_UNIT - 1)
	  & -STACK_BOUNDARY / BITS_PER_UNIT);
}


/* Emit a store in the stack frame to save REGNO at address ADDR, and
   emit the corresponding REG_CFA_OFFSET note described by CFA and
   CFA_OFFSET.  Return the emitted insn.  */
static rtx
frame_emit_store (int regno, int regno_note, rtx addr, rtx cfa,
		  int cfa_offset)
{
  rtx reg = gen_rtx_REG (DImode, regno);
  rtx mem = gen_frame_mem (DImode, addr);
  rtx mov = gen_movdi (mem, reg);

  /* Describe what just happened in a way that dwarf understands.  We
     use temporary registers to hold the address to make scheduling
     easier, and use the REG_CFA_OFFSET to describe the address as an
     offset from the CFA.  */
  rtx reg_note = gen_rtx_REG (DImode, regno_note);
  rtx cfa_relative_addr = gen_rtx_PLUS (Pmode, cfa, GEN_INT (cfa_offset));
  rtx cfa_relative_mem = gen_frame_mem (DImode, cfa_relative_addr);
  rtx real = gen_rtx_SET (VOIDmode, cfa_relative_mem, reg_note);
  add_reg_note (mov, REG_CFA_OFFSET, real);

  return emit_insn (mov);
}


/* Emit a load in the stack frame to load REGNO from address ADDR.
   Add a REG_CFA_RESTORE note to CFA_RESTORES if CFA_RESTORES is
   non-null.  Return the emitted insn.  */
static rtx
frame_emit_load (int regno, rtx addr, rtx *cfa_restores)
{
  rtx reg = gen_rtx_REG (DImode, regno);
  rtx mem = gen_frame_mem (DImode, addr);
  if (cfa_restores)
    *cfa_restores = alloc_reg_note (REG_CFA_RESTORE, reg, *cfa_restores);
  return emit_insn (gen_movdi (reg, mem));
}


/* Helper function to set RTX_FRAME_RELATED_P on instructions,
   including sequences.  */
static rtx
set_frame_related_p (void)
{
  rtx seq = get_insns ();
  rtx insn;

  end_sequence ();

  if (!seq)
    return NULL_RTX;

  if (INSN_P (seq))
    {
      insn = seq;
      while (insn != NULL_RTX)
	{
	  RTX_FRAME_RELATED_P (insn) = 1;
	  insn = NEXT_INSN (insn);
	}
      seq = emit_insn (seq);
    }
  else
    {
      seq = emit_insn (seq);
      RTX_FRAME_RELATED_P (seq) = 1;
    }
  return seq;
}


#define FRP(exp)  (start_sequence (), exp, set_frame_related_p ())

/* This emits code for 'sp += offset'.
   
   The ABI only allows us to modify 'sp' in a single 'addi' or
   'addli', so the backtracer understands it. Larger amounts cannot
   use those instructions, so are added by placing the offset into a
   large register and using 'add'.

   This happens after reload, so we need to expand it ourselves.  */
static rtx
emit_sp_adjust (int offset, int *next_scratch_regno, bool frame_related,
		rtx reg_notes)
{
  rtx to_add;
  rtx imm_rtx = GEN_INT (offset);

  rtx insn;
  if (satisfies_constraint_J (imm_rtx))
    {
      /* We can add this using a single immediate add.  */
      to_add = imm_rtx;
    }
  else
    {
      rtx tmp = gen_rtx_REG (Pmode, (*next_scratch_regno)--);
      tilegx_expand_set_const64 (tmp, imm_rtx);
      to_add = tmp;
    }

  /* Actually adjust the stack pointer.  */
  if (TARGET_32BIT)
    insn = gen_sp_adjust_32bit (stack_pointer_rtx, stack_pointer_rtx, to_add);
  else
    insn = gen_sp_adjust (stack_pointer_rtx, stack_pointer_rtx, to_add);

  insn = emit_insn (insn);
  REG_NOTES (insn) = reg_notes;

  /* Describe what just happened in a way that dwarf understands.  */
  if (frame_related)
    {
      rtx real = gen_rtx_SET (VOIDmode, stack_pointer_rtx,
			      gen_rtx_PLUS (Pmode, stack_pointer_rtx,
					    imm_rtx));
      RTX_FRAME_RELATED_P (insn) = 1;
      add_reg_note (insn, REG_CFA_ADJUST_CFA, real);
    }

  return insn;
}


/* Return whether the current function is leaf.  This takes into
   account whether the function calls tls_get_addr.  */
static bool
tilegx_current_function_is_leaf (void)
{
  return crtl->is_leaf && !cfun->machine->calls_tls_get_addr;
}


/* Return the frame size.  */
static int
compute_total_frame_size (void)
{
  int total_size = (get_frame_size () + tilegx_saved_regs_size ()
		    + crtl->outgoing_args_size
		    + crtl->args.pretend_args_size);

  if (!tilegx_current_function_is_leaf () || cfun->calls_alloca)
    {
      /* Make room for save area in callee.  */
      total_size += STACK_POINTER_OFFSET;
    }

  return round_frame_size (total_size);
}


/* Return nonzero if this function is known to have a null epilogue.
   This allows the optimizer to omit jumps to jumps if no stack was
   created.  */
bool
tilegx_can_use_return_insn_p (void)
{
  return (reload_completed
	  && cfun->static_chain_decl == 0
	  && compute_total_frame_size () == 0
	  && tilegx_current_function_is_leaf ()
	  && !crtl->profile && !df_regs_ever_live_p (TILEGX_LINK_REGNUM));
}


/* Returns an rtx for a stack slot at 'FP + offset_from_fp'.  If there
   is a frame pointer, it computes the value relative to
   that. Otherwise it uses the stack pointer.  */
static rtx
compute_frame_addr (int offset_from_fp, int *next_scratch_regno)
{
  rtx base_reg_rtx, tmp_reg_rtx, offset_rtx;
  int offset_from_base;

  if (frame_pointer_needed)
    {
      base_reg_rtx = hard_frame_pointer_rtx;
      offset_from_base = offset_from_fp;
    }
  else
    {
      int offset_from_sp = compute_total_frame_size () + offset_from_fp;
      offset_from_base = offset_from_sp;
      base_reg_rtx = stack_pointer_rtx;
    }

  if (offset_from_base == 0)
    return base_reg_rtx;

  /* Compute the new value of the stack pointer.  */
  tmp_reg_rtx = gen_rtx_REG (Pmode, (*next_scratch_regno)--);
  offset_rtx = GEN_INT (offset_from_base);

  if (!add_operand (offset_rtx, Pmode))
    {
      expand_set_cint64 (tmp_reg_rtx, offset_rtx);
      offset_rtx = tmp_reg_rtx;
    }

  emit_insn (gen_rtx_SET (VOIDmode, tmp_reg_rtx,
			  gen_rtx_PLUS (Pmode, base_reg_rtx, offset_rtx)));

  return tmp_reg_rtx;
}


/* The stack frame looks like this:
         +-------------+
         |    ...      | 
         |  incoming   | 
         | stack args  | 
   AP -> +-------------+
         | caller's HFP|
         +-------------+
         | lr save     |
  HFP -> +-------------+
         |  var args   | 
         |  reg save   | crtl->args.pretend_args_size bytes
         +-------------+
         |    ...      | 
         | saved regs  | tilegx_saved_regs_size() bytes
   FP -> +-------------+
         |    ...      | 
         |   vars      | get_frame_size() bytes
         +-------------+
         |    ...      | 
         |  outgoing   | 
         |  stack args | crtl->outgoing_args_size bytes
         +-------------+
         | HFP         | ptr_size bytes (only here if nonleaf / alloca)
         +-------------+
         | callee lr   | ptr_size bytes (only here if nonleaf / alloca)
         | save        | 
   SP -> +-------------+

  HFP == incoming SP.

  For functions with a frame larger than 32767 bytes, or which use
  alloca (), r52 is used as a frame pointer.  Otherwise there is no
  frame pointer.

  FP is saved at SP+ptr_size before calling a subroutine so the callee
  can chain.  */
void
tilegx_expand_prologue (void)
{
#define ROUND_ROBIN_SIZE 4
  /* We round-robin through four scratch registers to hold temporary
     addresses for saving registers, to make instruction scheduling
     easier.  */
  rtx reg_save_addr[ROUND_ROBIN_SIZE] = {
    NULL_RTX, NULL_RTX, NULL_RTX, NULL_RTX
  };
  rtx insn, cfa;
  unsigned int which_scratch;
  int offset, start_offset, regno;

  /* A register that holds a copy of the incoming fp.  */
  int fp_copy_regno = -1;

  /* A register that holds a copy of the incoming sp.  */
  int sp_copy_regno = -1;

  /* Next scratch register number to hand out (postdecrementing).  */
  int next_scratch_regno = 29;

  int total_size = compute_total_frame_size ();

  if (flag_stack_usage_info)
    current_function_static_stack_size = total_size;

  /* Save lr first in its special location because code after this
     might use the link register as a scratch register.  */
  if (df_regs_ever_live_p (TILEGX_LINK_REGNUM) || crtl->calls_eh_return)
    FRP (frame_emit_store (TILEGX_LINK_REGNUM, TILEGX_LINK_REGNUM,
			   stack_pointer_rtx, stack_pointer_rtx, 0));

  if (total_size == 0)
    {
      /* Load the PIC register if needed.  */
      if (flag_pic && crtl->uses_pic_offset_table)
	load_pic_register (false);

      return;
    }

  cfa = stack_pointer_rtx;

  if (frame_pointer_needed)
    {
      fp_copy_regno = next_scratch_regno--;

      /* Copy the old frame pointer aside so we can save it later.  */
      insn =
	FRP (emit_move_insn (gen_rtx_REG (word_mode, fp_copy_regno),
			     gen_lowpart (word_mode, hard_frame_pointer_rtx)));
      add_reg_note (insn, REG_CFA_REGISTER, NULL_RTX);

      /* Set up the frame pointer.  */
      insn = FRP (emit_move_insn (hard_frame_pointer_rtx, stack_pointer_rtx));
      add_reg_note (insn, REG_CFA_DEF_CFA, hard_frame_pointer_rtx);
      cfa = hard_frame_pointer_rtx;
      REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;

      /* fp holds a copy of the incoming sp, in case we need to store
	 it.  */
      sp_copy_regno = HARD_FRAME_POINTER_REGNUM;
    }
  else if (!tilegx_current_function_is_leaf ())
    {
      /* Copy the old stack pointer aside so we can save it later.  */
      sp_copy_regno = next_scratch_regno--;
      emit_move_insn (gen_rtx_REG (Pmode, sp_copy_regno),
		      stack_pointer_rtx);
    }

  if (tilegx_current_function_is_leaf ())
    {
      /* No need to store chain pointer to caller's frame.  */
      emit_sp_adjust (-total_size, &next_scratch_regno,
		      !frame_pointer_needed, NULL_RTX);
    }
  else
    {
      /* Save the frame pointer (incoming sp value) to support
         backtracing.  First we need to create an rtx with the store
         address.  */
      rtx chain_addr = gen_rtx_REG (Pmode, next_scratch_regno--);
      rtx size_rtx = GEN_INT (-(total_size - UNITS_PER_WORD));

      if (add_operand (size_rtx, Pmode))
	{
	  /* Expose more parallelism by computing this value from the
	     original stack pointer, not the one after we have pushed
	     the frame.  */
	  rtx p = gen_rtx_PLUS (Pmode, stack_pointer_rtx, size_rtx);
	  emit_insn (gen_rtx_SET (VOIDmode, chain_addr, p));
	  emit_sp_adjust (-total_size, &next_scratch_regno,
			  !frame_pointer_needed, NULL_RTX);
	}
      else
	{
	  /* The stack frame is large, so just store the incoming sp
	     value at *(new_sp + UNITS_PER_WORD).  */
	  rtx p;
	  emit_sp_adjust (-total_size, &next_scratch_regno,
			  !frame_pointer_needed, NULL_RTX);
	  p = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
			    GEN_INT (UNITS_PER_WORD));
	  emit_insn (gen_rtx_SET (VOIDmode, chain_addr, p));
	}

      /* Save our frame pointer for backtrace chaining.  */
      emit_insn (gen_movdi (gen_frame_mem (DImode, chain_addr),
			    gen_rtx_REG (DImode, sp_copy_regno)));
    }

  /* Compute where to start storing registers we need to save.  */
  start_offset = -crtl->args.pretend_args_size - UNITS_PER_WORD;
  offset = start_offset;

  /* Store all registers that need saving.  */
  which_scratch = 0;
  for (regno = FIRST_PSEUDO_REGISTER - 1; regno >= 0; regno--)
    if (need_to_save_reg (regno))
      {
	rtx r = reg_save_addr[which_scratch];
	int from_regno;
	int cfa_offset = frame_pointer_needed ? offset : total_size + offset;

	if (r == NULL_RTX)
	  {
	    int prev_scratch_regno = next_scratch_regno;
	    r = compute_frame_addr (offset, &next_scratch_regno);
	    if (prev_scratch_regno != next_scratch_regno)
	      reg_save_addr[which_scratch] = r;
	  }
	else
	  {
	    /* Advance to the next stack slot to store this
	       register.  */
	    int stride = ROUND_ROBIN_SIZE * -UNITS_PER_WORD;
	    rtx p = gen_rtx_PLUS (Pmode, r, GEN_INT (stride));
	    emit_insn (gen_rtx_SET (VOIDmode, r, p));
	  }

	/* Save this register to the stack (but use the old fp value
	   we copied aside if appropriate).  */
	from_regno =
	  (fp_copy_regno >= 0 && regno == HARD_FRAME_POINTER_REGNUM)
	  ? fp_copy_regno : regno;
	FRP (frame_emit_store (from_regno, regno, r, cfa, cfa_offset));

	offset -= UNITS_PER_WORD;
	which_scratch = (which_scratch + 1) % ROUND_ROBIN_SIZE;
      }

  /* If profiling, force that to happen after the frame is set up.  */
  if (crtl->profile)
    emit_insn (gen_blockage ());

  /* Load the PIC register if needed.  */
  if (flag_pic && crtl->uses_pic_offset_table)
    load_pic_register (false);
}


/* Implement the epilogue and sibcall_epilogue patterns.  SIBCALL_P is
   true for a sibcall_epilogue pattern, and false for an epilogue
   pattern.  */
void
tilegx_expand_epilogue (bool sibcall_p)
{
  /* We round-robin through four scratch registers to hold temporary
     addresses for saving registers, to make instruction scheduling
     easier.  */
  rtx reg_save_addr[ROUND_ROBIN_SIZE] = {
    NULL_RTX, NULL_RTX, NULL_RTX, NULL_RTX
  };
  rtx last_insn, insn;
  unsigned int which_scratch;
  int offset, start_offset, regno;
  rtx cfa_restores = NULL_RTX;

  /* A register that holds a copy of the incoming fp.  */
  int fp_copy_regno = -1;

  /* Next scratch register number to hand out (postdecrementing).  */
  int next_scratch_regno = 29;

  int total_size = compute_total_frame_size ();

  last_insn = get_last_insn ();

  /* Load lr first since we are going to need it first.  */
  insn = NULL;
  if (df_regs_ever_live_p (TILEGX_LINK_REGNUM))
    {
      insn = frame_emit_load (TILEGX_LINK_REGNUM,
			      compute_frame_addr (0, &next_scratch_regno),
			      &cfa_restores);
    }

  if (total_size == 0)
    {
      if (insn)
	{
	  RTX_FRAME_RELATED_P (insn) = 1;
	  REG_NOTES (insn) = cfa_restores;
	}
      goto done;
    }

  /* Compute where to start restoring registers.  */
  start_offset = -crtl->args.pretend_args_size - UNITS_PER_WORD;
  offset = start_offset;

  if (frame_pointer_needed)
    fp_copy_regno = next_scratch_regno--;

  /* Restore all callee-saved registers.  */
  which_scratch = 0;
  for (regno = FIRST_PSEUDO_REGISTER - 1; regno >= 0; regno--)
    if (need_to_save_reg (regno))
      {
	rtx r = reg_save_addr[which_scratch];
	if (r == NULL_RTX)
	  {
	    r = compute_frame_addr (offset, &next_scratch_regno);
	    reg_save_addr[which_scratch] = r;
	  }
	else
	  {
	    /* Advance to the next stack slot to store this register.  */
	    int stride = ROUND_ROBIN_SIZE * -UNITS_PER_WORD;
	    rtx p = gen_rtx_PLUS (Pmode, r, GEN_INT (stride));
	    emit_insn (gen_rtx_SET (VOIDmode, r, p));
	  }

	if (fp_copy_regno >= 0 && regno == HARD_FRAME_POINTER_REGNUM)
	  frame_emit_load (fp_copy_regno, r, NULL);
	else
	  frame_emit_load (regno, r, &cfa_restores);

	offset -= UNITS_PER_WORD;
	which_scratch = (which_scratch + 1) % ROUND_ROBIN_SIZE;
      }

  if (!tilegx_current_function_is_leaf ())
    cfa_restores =
      alloc_reg_note (REG_CFA_RESTORE, stack_pointer_rtx, cfa_restores);

  emit_insn (gen_blockage ());

  if (frame_pointer_needed)
    {
      /* Restore the old stack pointer by copying from the frame
	 pointer.  */
      if (TARGET_32BIT)
	{
	  insn = emit_insn (gen_sp_restore_32bit (stack_pointer_rtx,
						  hard_frame_pointer_rtx));
	}
      else
	{
	  insn = emit_insn (gen_sp_restore (stack_pointer_rtx,
					    hard_frame_pointer_rtx));
	}
      RTX_FRAME_RELATED_P (insn) = 1;
      REG_NOTES (insn) = cfa_restores;
      add_reg_note (insn, REG_CFA_DEF_CFA, stack_pointer_rtx);
    }
  else
    {
      insn = emit_sp_adjust (total_size, &next_scratch_regno, true,
			     cfa_restores);
    }

  if (crtl->calls_eh_return)
    {
      if (TARGET_32BIT)
	emit_insn (gen_sp_adjust_32bit (stack_pointer_rtx, stack_pointer_rtx,
					EH_RETURN_STACKADJ_RTX));
      else
	emit_insn (gen_sp_adjust (stack_pointer_rtx, stack_pointer_rtx,
				  EH_RETURN_STACKADJ_RTX));
    }

  /* Restore the old frame pointer.  */
  if (frame_pointer_needed)
    {
      insn = emit_move_insn (gen_lowpart (DImode, hard_frame_pointer_rtx),
			     gen_rtx_REG (DImode, fp_copy_regno));
      add_reg_note (insn, REG_CFA_RESTORE, hard_frame_pointer_rtx);
    }

  /* Mark the pic registers as live outside of the function.  */
  if (flag_pic)
    {
      emit_use (cfun->machine->text_label_rtx);
      emit_use (cfun->machine->got_rtx);
    }

done:
  if (!sibcall_p)
    {
      emit_jump_insn (gen__return ());
    }
  else
    {
      emit_use (gen_rtx_REG (Pmode, TILEGX_LINK_REGNUM));
    }

  /* Mark all insns we just emitted as frame-related.  */
  for (; last_insn != NULL_RTX; last_insn = next_insn (last_insn))
    RTX_FRAME_RELATED_P (last_insn) = 1;
}

#undef ROUND_ROBIN_SIZE


/* Implement INITIAL_ELIMINATION_OFFSET.  */
int
tilegx_initial_elimination_offset (int from, int to)
{
  int total_size = compute_total_frame_size ();

  if (from == FRAME_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
    {
      return (total_size - crtl->args.pretend_args_size
	      - tilegx_saved_regs_size ());
    }
  else if (from == FRAME_POINTER_REGNUM && to == HARD_FRAME_POINTER_REGNUM)
    {
      return -(crtl->args.pretend_args_size + tilegx_saved_regs_size ());
    }
  else if (from == ARG_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
    {
      return STACK_POINTER_OFFSET + total_size;
    }
  else if (from == ARG_POINTER_REGNUM && to == HARD_FRAME_POINTER_REGNUM)
    {
      return STACK_POINTER_OFFSET;
    }
  else
    gcc_unreachable ();
}


/* Return an RTX indicating where the return address to the calling
   function can be found.  */
rtx
tilegx_return_addr (int count, rtx frame ATTRIBUTE_UNUSED)
{
  if (count != 0)
    return const0_rtx;

  return get_hard_reg_initial_val (Pmode, TILEGX_LINK_REGNUM);
}


/* Implement EH_RETURN_HANDLER_RTX.  The MEM needs to be volatile to
   prevent it from being deleted.  */
rtx
tilegx_eh_return_handler_rtx (void)
{
  rtx tmp = gen_frame_mem (Pmode, hard_frame_pointer_rtx);
  MEM_VOLATILE_P (tmp) = true;
  return tmp;
}



/* Registers  */

/* Implemnet TARGET_CONDITIONAL_REGISTER_USAGE.  */
static void
tilegx_conditional_register_usage (void)
{
  global_regs[TILEGX_NETORDER_REGNUM] = 1;
  /* TILEGX_PIC_TEXT_LABEL_REGNUM is conditionally used.  It is a
     member of fixed_regs, and therefore must be member of
     call_used_regs, but it is not a member of call_really_used_regs[]
     because it is not clobbered by a call.  */
  if (TILEGX_PIC_TEXT_LABEL_REGNUM != INVALID_REGNUM)
    {
      fixed_regs[TILEGX_PIC_TEXT_LABEL_REGNUM] = 1;
      call_used_regs[TILEGX_PIC_TEXT_LABEL_REGNUM] = 1;
    }
  if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
    {
      fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1;
      call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1;
    }
}


/* Implement TARGET_FRAME_POINTER_REQUIRED.  */
static bool
tilegx_frame_pointer_required (void)
{
  return crtl->calls_eh_return || cfun->calls_alloca;
}



/* Scheduling and reorg  */

/* Return the length of INSN.  LENGTH is the initial length computed
   by attributes in the machine-description file.  This is where we
   account for bundles.  */
int
tilegx_adjust_insn_length (rtx insn, int length)
{
  enum machine_mode mode = GET_MODE (insn);

  /* A non-termininating instruction in a bundle has length 0.  */
  if (mode == SImode)
    return 0;

  /* By default, there is not length adjustment.  */
  return length;
}


/* Implement TARGET_SCHED_ISSUE_RATE.  */
static int
tilegx_issue_rate (void)
{
  return 3;
}


/* Return the rtx for the jump target.  */
static rtx
get_jump_target (rtx branch)
{
  if (CALL_P (branch))
    {
      rtx call;
      call = PATTERN (branch);

      if (GET_CODE (call) == PARALLEL)
	call = XVECEXP (call, 0, 0);

      if (GET_CODE (call) == SET)
	call = SET_SRC (call);

      if (GET_CODE (call) == CALL)
	return XEXP (XEXP (call, 0), 0);
    }
  return 0;
}


/* Implement TARGET_SCHED_ADJUST_COST.  */
static int
tilegx_sched_adjust_cost (rtx insn, rtx link, rtx dep_insn, int cost)
{
  /* If we have a true dependence, INSN is a call, and DEP_INSN
     defines a register that is needed by the call (argument or stack
     pointer) , set its latency to 0 so that it can be bundled with
     the call.  Explicitly check for and exclude the case when
     DEP_INSN defines the target of the jump.  */
  if (CALL_P (insn) && REG_NOTE_KIND (link) == REG_DEP_TRUE)
    {
      rtx target = get_jump_target (insn);
      if (!REG_P (target) || !set_of (target, dep_insn))
	return 0;
    }

  return cost;
}


/* Skip over irrelevant NOTEs and such and look for the next insn we
   would consider bundling.  */
static rtx
next_insn_to_bundle (rtx r, rtx end)
{
  for (; r != end; r = NEXT_INSN (r))
    {
      if (NONDEBUG_INSN_P (r)
	  && GET_CODE (PATTERN (r)) != USE
	  && GET_CODE (PATTERN (r)) != CLOBBER)
	return r;
    }

  return NULL_RTX;
}


/* Go through all insns, and use the information generated during
   scheduling to generate SEQUENCEs to represent bundles of
   instructions issued simultaneously.  */
static void
tilegx_gen_bundles (void)
{
  basic_block bb;
  FOR_EACH_BB (bb)
    {
      rtx insn, next;
      rtx end = NEXT_INSN (BB_END (bb));

      for (insn = next_insn_to_bundle (BB_HEAD (bb), end); insn; insn = next)
	{
	  next = next_insn_to_bundle (NEXT_INSN (insn), end);

	  /* Never wrap {} around inline asm.  */
	  if (GET_CODE (PATTERN (insn)) != ASM_INPUT)
	    {
	      if (next == NULL_RTX || GET_MODE (next) == TImode
		  /* NOTE: The scheduler incorrectly believes a call
		     insn can execute in the same cycle as the insn
		     after the call.  This is of course impossible.
		     Really we need to fix the scheduler somehow, so
		     the code after the call gets scheduled
		     optimally.  */
		  || CALL_P (insn))
		{
		  /* Mark current insn as the end of a bundle.  */
		  PUT_MODE (insn, QImode);
		}
	      else
		{
		  /* Mark it as part of a bundle.  */
		  PUT_MODE (insn, SImode);
		}
	    }
	}
    }
}


/* Replace OLD_INSN with NEW_INSN.  */
static void
replace_insns (rtx old_insn, rtx new_insns)
{
  if (new_insns)
    emit_insn_before (new_insns, old_insn);

  delete_insn (old_insn);
}


/* Returns true if INSN is the first instruction of a pc-relative
   address compuatation.  */
static bool
match_pcrel_step1 (rtx insn)
{
  rtx pattern = PATTERN (insn);
  rtx src;

  if (GET_CODE (pattern) != SET)
    return false;

  src = SET_SRC (pattern);

  return (GET_CODE (src) == CONST
	  && GET_CODE (XEXP (src, 0)) == UNSPEC
	  && XINT (XEXP (src, 0), 1) == UNSPEC_HW1_LAST_PCREL);
}


/* Do the first replacement step in tilegx_fixup_pcrel_references.  */
static void
replace_mov_pcrel_step1 (rtx insn)
{
  rtx pattern = PATTERN (insn);
  rtx unspec;
  rtx opnds[2];
  rtx new_insns;

  gcc_assert (GET_CODE (pattern) == SET);
  opnds[0] = SET_DEST (pattern);

  gcc_assert (GET_CODE (SET_SRC (pattern)) == CONST);

  unspec = XEXP (SET_SRC (pattern), 0);
  gcc_assert (GET_CODE (unspec) == UNSPEC);
  gcc_assert (XINT (unspec, 1) == UNSPEC_HW1_LAST_PCREL);
  opnds[1] = XVECEXP (unspec, 0, 0);

  /* We only need to replace SYMBOL_REFs, not LABEL_REFs.  */
  if (GET_CODE (opnds[1]) != SYMBOL_REF)
    return;

  start_sequence ();

  if (flag_pic != 1)
    {
      if (TARGET_32BIT)
	emit_insn (gen_mov_got32_step1_32bit (opnds[0], opnds[1]));
      else
	emit_insn (gen_mov_got32_step1 (opnds[0], opnds[1]));
    }

  new_insns = get_insns ();
  end_sequence ();

  replace_insns (insn, new_insns);
}


/* Returns true if INSN is the second instruction of a pc-relative
   address compuatation.  */
static bool
match_pcrel_step2 (rtx insn)
{
  rtx unspec;
  rtx addr;

  if (TARGET_32BIT)
    {
      if (recog_memoized (insn) != CODE_FOR_insn_addr_shl16insli_32bit)
	return false;
    }
  else
    {
      if (recog_memoized (insn) != CODE_FOR_insn_addr_shl16insli)
	return false;
    }

  unspec = SET_SRC (PATTERN (insn));
  addr = XVECEXP (unspec, 0, 1);

  return (GET_CODE (addr) == CONST
	  && GET_CODE (XEXP (addr, 0)) == UNSPEC
	  && XINT (XEXP (addr, 0), 1) == UNSPEC_HW0_PCREL);
}


/* Do the second replacement step in tilegx_fixup_pcrel_references.  */
static void
replace_mov_pcrel_step2 (rtx insn)
{
  rtx pattern = PATTERN (insn);
  rtx unspec;
  rtx addr;
  rtx opnds[3];
  rtx new_insns;
  rtx got_rtx = tilegx_got_rtx ();

  gcc_assert (GET_CODE (pattern) == SET);
  opnds[0] = SET_DEST (pattern);

  unspec = SET_SRC (pattern);
  gcc_assert (GET_CODE (unspec) == UNSPEC);
  gcc_assert (XINT (unspec, 1) == UNSPEC_INSN_ADDR_SHL16INSLI);

  opnds[1] = XVECEXP (unspec, 0, 0);

  addr = XVECEXP (unspec, 0, 1);
  gcc_assert (GET_CODE (addr) == CONST);

  unspec = XEXP (addr, 0);
  gcc_assert (GET_CODE (unspec) == UNSPEC);
  gcc_assert (XINT (unspec, 1) == UNSPEC_HW0_PCREL);
  opnds[2] = XVECEXP (unspec, 0, 0);

  /* We only need to replace SYMBOL_REFs, not LABEL_REFs.  */
  if (GET_CODE (opnds[2]) != SYMBOL_REF)
    return;

  start_sequence ();

  if (flag_pic == 1)
    {
      if (TARGET_32BIT)
	emit_insn (gen_add_got16_32bit (opnds[0], got_rtx, opnds[2]));
      else
	emit_insn (gen_add_got16 (opnds[0], got_rtx, opnds[2]));
    }
  else
    {
      if (TARGET_32BIT)
	emit_insn (gen_mov_got32_step2_32bit
		   (opnds[0], opnds[1], opnds[2]));
      else
	emit_insn (gen_mov_got32_step2 (opnds[0], opnds[1], opnds[2]));
    }

  new_insns = get_insns ();
  end_sequence ();

  replace_insns (insn, new_insns);
}


/* Do the third replacement step in tilegx_fixup_pcrel_references.  */
static void
replace_mov_pcrel_step3 (rtx insn)
{
  rtx pattern = PATTERN (insn);
  rtx unspec;
  rtx opnds[4];
  rtx new_insns;
  rtx got_rtx = tilegx_got_rtx ();
  rtx text_label_rtx = tilegx_text_label_rtx ();

  gcc_assert (GET_CODE (pattern) == SET);
  opnds[0] = SET_DEST (pattern);

  unspec = SET_SRC (pattern);
  gcc_assert (GET_CODE (unspec) == UNSPEC);
  gcc_assert (XINT (unspec, 1) == UNSPEC_MOV_PCREL_STEP3);

  opnds[1] = got_rtx;

  if (XVECEXP (unspec, 0, 0) == text_label_rtx)
    opnds[2] = XVECEXP (unspec, 0, 1);
  else
    {
      gcc_assert (XVECEXP (unspec, 0, 1) == text_label_rtx);
      opnds[2] = XVECEXP (unspec, 0, 0);
    }

  opnds[3] = XVECEXP (unspec, 0, 2);

  /* We only need to replace SYMBOL_REFs, not LABEL_REFs.  */
  if (GET_CODE (opnds[3]) != SYMBOL_REF)
    return;

  start_sequence ();

  if (flag_pic == 1)
    {
      emit_move_insn (opnds[0], gen_const_mem (Pmode, opnds[2]));
    }
  else
    {
      emit_move_insn (opnds[0], gen_rtx_PLUS (Pmode, opnds[1], opnds[2]));
      emit_move_insn (opnds[0], gen_const_mem (Pmode, opnds[0]));
    }

  new_insns = get_insns ();
  end_sequence ();

  replace_insns (insn, new_insns);
}


/* We generate PC relative SYMBOL_REFs as an optimization, to avoid
   going through the GOT when the symbol is local to the compilation
   unit.  But such a symbol requires that the common text_label that
   we generate at the beginning of the function be in the same section
   as the reference to the SYMBOL_REF.  This may not be true if we
   generate hot/cold sections.  This function looks for such cases and
   replaces such references with the longer sequence going through the
   GOT.

   We expect following instruction sequence:
   moveli      tmp1, hw1_last(x-.L_PICLNK)          [1]
   shl16insli  tmp2, tmp1, hw0(x-.L_PICLNK)         [2]
   add<x>      tmp3, txt_label_reg, tmp2            [3]

   If we're compiling -fpic, we replace with the following sequence
   (the numbers in brackets match the instructions they're replacing
   above).

   add<x>li    tmp2, got_reg, hw0_last_got(x)       [2]
   ld<4>       tmp3, tmp2                           [3]

   If we're compiling -fPIC, we replace the first instruction with:

   moveli      tmp1, hw1_last_got(x)                [1]
   shl16insli  tmp2, tmp1, hw0_got(x)               [2]
   add<x>      tmp3, got_reg, tmp2                  [3]
   ld<4>       tmp3, tmp3                           [3]

   Note that we're careful to disturb the instruction sequence as
   little as possible, since it's very late in the compilation
   process.  */
static void
tilegx_fixup_pcrel_references (void)
{
  rtx insn, next_insn;
  bool same_section_as_entry = true;

  for (insn = get_insns (); insn; insn = next_insn)
    {
      next_insn = NEXT_INSN (insn);

      if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_SWITCH_TEXT_SECTIONS)
	{
	  same_section_as_entry = !same_section_as_entry;
	  continue;
	}

      if (same_section_as_entry)
	continue;

      if (!(INSN_P (insn)
	    && GET_CODE (PATTERN (insn)) != USE
	    && GET_CODE (PATTERN (insn)) != CLOBBER))
	continue;

      if (TARGET_32BIT)
	{
	  if (match_pcrel_step1 (insn))
	    replace_mov_pcrel_step1 (insn);
	  else if (match_pcrel_step2 (insn))
	    replace_mov_pcrel_step2 (insn);
	  else if (recog_memoized (insn) == CODE_FOR_mov_pcrel_step3_32bit)
	    replace_mov_pcrel_step3 (insn);
	}
      else
	{
	  if (match_pcrel_step1 (insn))
	    replace_mov_pcrel_step1 (insn);
	  else if (match_pcrel_step2 (insn))
	    replace_mov_pcrel_step2 (insn);
	  else if (recog_memoized (insn) == CODE_FOR_mov_pcrel_step3)
	    replace_mov_pcrel_step3 (insn);
	}
    }
}


/* Ensure that no var tracking notes are emitted in the middle of a
   three-instruction bundle.  */
static void
reorder_var_tracking_notes (void)
{
  basic_block bb;
  FOR_EACH_BB (bb)
  {
    rtx insn, next;
    rtx queue = NULL_RTX;
    bool in_bundle = false;

    for (insn = BB_HEAD (bb); insn != BB_END (bb); insn = next)
      {
	next = NEXT_INSN (insn);

	if (INSN_P (insn))
	  {
	    /* Emit queued up notes at the last instruction of a
	       bundle.  */
	    if (GET_MODE (insn) == QImode)
	      {
		while (queue)
		  {
		    rtx next_queue = PREV_INSN (queue);
		    PREV_INSN (NEXT_INSN (insn)) = queue;
		    NEXT_INSN (queue) = NEXT_INSN (insn);
		    NEXT_INSN (insn) = queue;
		    PREV_INSN (queue) = insn;
		    queue = next_queue;
		  }
		in_bundle = false;
	      }
	    else if (GET_MODE (insn) == SImode)
	      in_bundle = true;
	  }
	else if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION)
	  {
	    if (in_bundle)
	      {
		rtx prev = PREV_INSN (insn);
		PREV_INSN (next) = prev;
		NEXT_INSN (prev) = next;

		PREV_INSN (insn) = queue;
		queue = insn;
	      }
	  }
      }
  }
}


/* Perform machine dependent operations on the rtl chain INSNS.  */
static void
tilegx_reorg (void)
{
  /* We are freeing block_for_insn in the toplev to keep compatibility
     with old MDEP_REORGS that are not CFG based.  Recompute it
     now.  */
  compute_bb_for_insn ();

  if (flag_reorder_blocks_and_partition)
    {
      tilegx_fixup_pcrel_references ();
    }

  if (flag_schedule_insns_after_reload)
    {
      split_all_insns ();

      timevar_push (TV_SCHED2);
      schedule_insns ();
      timevar_pop (TV_SCHED2);

      /* Examine the schedule to group into bundles.  */
      tilegx_gen_bundles ();
    }

  df_analyze ();

  if (flag_var_tracking)
    {
      timevar_push (TV_VAR_TRACKING);
      variable_tracking_main ();
      reorder_var_tracking_notes ();
      timevar_pop (TV_VAR_TRACKING);
    }

  df_finish_pass (false);
}



/* Assembly  */

/* Select a format to encode pointers in exception handling data.
   CODE is 0 for data, 1 for code labels, 2 for function pointers.
   GLOBAL is true if the symbol may be affected by dynamic
   relocations.  */
int
tilegx_asm_preferred_eh_data_format (int code ATTRIBUTE_UNUSED, int global)
{
  int type = TARGET_32BIT ? DW_EH_PE_sdata4 : DW_EH_PE_sdata8;
  return (global ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | type;
}


/* Implement TARGET_ASM_OUTPUT_MI_THUNK.  */
static void
tilegx_output_mi_thunk (FILE *file, tree thunk_fndecl ATTRIBUTE_UNUSED,
			HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset,
			tree function)
{
  rtx this_rtx, insn, funexp, addend;

  /* Pretend to be a post-reload pass while generating rtl.  */
  reload_completed = 1;

  /* Mark the end of the (empty) prologue.  */
  emit_note (NOTE_INSN_PROLOGUE_END);

  /* Find the "this" pointer.  If the function returns a structure,
     the structure return pointer is in $1.  */
  if (aggregate_value_p (TREE_TYPE (TREE_TYPE (function)), function))
    this_rtx = gen_rtx_REG (Pmode, 1);
  else
    this_rtx = gen_rtx_REG (Pmode, 0);

  /* Add DELTA to THIS_RTX.  */
  if (!(delta >= -32868 && delta <= 32767))
    {
      addend = gen_rtx_REG (Pmode, 29);
      emit_move_insn (addend, GEN_INT (delta));
    }
  else
    addend = GEN_INT (delta);

  if (TARGET_32BIT)
    emit_insn (gen_addsi3 (this_rtx, this_rtx, addend));
  else
    emit_insn (gen_adddi3 (this_rtx, this_rtx, addend));

  /* If needed, add *(*THIS_RTX + VCALL_OFFSET) to THIS_RTX.  */
  if (vcall_offset)
    {
      rtx tmp;

      tmp = gen_rtx_REG (Pmode, 29);
      emit_move_insn (tmp, gen_rtx_MEM (Pmode, this_rtx));

      if (!(vcall_offset >= -32868 && vcall_offset <= 32767))
	{
	  addend = gen_rtx_REG (Pmode, 28);
	  emit_move_insn (addend, GEN_INT (vcall_offset));
	}
      else
	addend = GEN_INT (vcall_offset);

      if (TARGET_32BIT)
	emit_insn (gen_addsi3 (tmp, tmp, addend));
      else
	emit_insn (gen_adddi3 (tmp, tmp, addend));

      emit_move_insn (tmp, gen_rtx_MEM (Pmode, tmp));

      if (TARGET_32BIT)
	emit_insn (gen_addsi3 (this_rtx, this_rtx, tmp));
      else
	emit_insn (gen_adddi3 (this_rtx, this_rtx, tmp));
    }

  /* Generate a tail call to the target function.  */
  if (!TREE_USED (function))
    {
      assemble_external (function);
      TREE_USED (function) = 1;
    }
  funexp = XEXP (DECL_RTL (function), 0);
  funexp = gen_rtx_MEM (FUNCTION_MODE, funexp);
  insn = emit_call_insn (gen_sibcall (funexp, const0_rtx));
  SIBLING_CALL_P (insn) = 1;

  /* Run just enough of rest_of_compilation to get the insns emitted.
     There's not really enough bulk here to make other passes such as
     instruction scheduling worth while.  Note that use_thunk calls
     assemble_start_function and assemble_end_function.

     We don't currently bundle, but the instruciton sequence is all
     serial except for the tail call, so we're only wasting one cycle.
   */
  insn = get_insns ();
  shorten_branches (insn);
  final_start_function (insn, file, 1);
  final (insn, file, 1);
  final_end_function ();

  /* Stop pretending to be a post-reload pass.  */
  reload_completed = 0;
}


/* Implement TARGET_ASM_TRAMPOLINE_TEMPLATE.  */
static void
tilegx_asm_trampoline_template (FILE *file)
{
  int ptr_mode_size = GET_MODE_SIZE (ptr_mode);
  if (TARGET_32BIT)
    {
      fprintf (file, "\tlnk      r10\n");
      fprintf (file, "\taddxi    r10, r10, 32\n");
      fprintf (file, "\tld4s_add r11, r10, %d\n", ptr_mode_size);
      fprintf (file, "\tld4s     r10, r10\n");
      fprintf (file, "\tjr       r11\n");
      fprintf (file, "\t.word 0 # <function address>\n");
      fprintf (file, "\t.word 0 # <static chain value>\n");
    }
  else
    {
      fprintf (file, "\tlnk      r10\n");
      fprintf (file, "\taddi     r10, r10, 32\n");
      fprintf (file, "\tld_add   r11, r10, %d\n", ptr_mode_size);
      fprintf (file, "\tld       r10, r10\n");
      fprintf (file, "\tjr       r11\n");
      fprintf (file, "\t.quad 0 # <function address>\n");
      fprintf (file, "\t.quad 0 # <static chain value>\n");
    }
}


/* Implement TARGET_TRAMPOLINE_INIT.  */
static void
tilegx_trampoline_init (rtx m_tramp, tree fndecl, rtx static_chain)
{
  rtx fnaddr, chaddr;
  rtx mem;
  rtx begin_addr, end_addr;
  int ptr_mode_size = GET_MODE_SIZE (ptr_mode);

  fnaddr = copy_to_reg (XEXP (DECL_RTL (fndecl), 0));
  chaddr = copy_to_reg (static_chain);

  emit_block_move (m_tramp, assemble_trampoline_template (),
		   GEN_INT (TRAMPOLINE_SIZE), BLOCK_OP_NORMAL);

  mem = adjust_address (m_tramp, ptr_mode,
			TRAMPOLINE_SIZE - 2 * ptr_mode_size);
  emit_move_insn (mem, fnaddr);
  mem = adjust_address (m_tramp, ptr_mode,
			TRAMPOLINE_SIZE - ptr_mode_size);
  emit_move_insn (mem, chaddr);

  /* Get pointers to the beginning and end of the code block.  */
  begin_addr = force_reg (Pmode, XEXP (m_tramp, 0));
  end_addr = force_reg (Pmode, plus_constant (Pmode, XEXP (m_tramp, 0),
					      TRAMPOLINE_SIZE));

  emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "__clear_cache"),
		     LCT_NORMAL, VOIDmode, 2, begin_addr, Pmode,
		     end_addr, Pmode);
}


/* Implement TARGET_PRINT_OPERAND.  */
static void
tilegx_print_operand (FILE *file, rtx x, int code)
{
  switch (code)
    {
    case 'c':
      /* Print the compare operator opcode for conditional moves.  */
      switch (GET_CODE (x))
	{
	case EQ:
	  fputs ("z", file);
	  break;
	case NE:
	  fputs ("nz", file);
	  break;
	default:
	  output_operand_lossage ("invalid %%c operand");
	}
      return;

    case 'C':
      /* Print the compare operator opcode for conditional moves.  */
      switch (GET_CODE (x))
	{
	case EQ:
	  fputs ("nz", file);
	  break;
	case NE:
	  fputs ("z", file);
	  break;
	default:
	  output_operand_lossage ("invalid %%C operand");
	}
      return;

    case 'd':
      {
	/* Print the compare operator opcode for conditional moves.  */
	switch (GET_CODE (x))
	  {
	  case EQ:
	    fputs ("eq", file);
	    break;
	  case NE:
	    fputs ("ne", file);
	    break;
	  default:
	    output_operand_lossage ("invalid %%d operand");
	  }
	return;
      }

    case 'D':
      {
	/* Print the compare operator opcode for conditional moves.  */
	switch (GET_CODE (x))
	  {
	  case EQ:
	    fputs ("ne", file);
	    break;
	  case NE:
	    fputs ("eq", file);
	    break;
	  default:
	    output_operand_lossage ("invalid %%D operand");
	  }
	return;
      }

    case 'H':
      {
      if (GET_CODE (x) == CONST
	  && GET_CODE (XEXP (x, 0)) == UNSPEC)
	{
	  rtx addr = XVECEXP (XEXP (x, 0), 0, 0);
	  int unspec = XINT (XEXP (x, 0), 1);
	  const char *opstr = NULL;
	  switch (unspec)
	    {
	    case UNSPEC_HW0:
	    case UNSPEC_HW0_PCREL:
	      opstr = "hw0";
	      break;
	    case UNSPEC_HW1:
	    case UNSPEC_HW1_PCREL:
	      opstr = "hw1";
	      break;
	    case UNSPEC_HW2:
	      opstr = "hw2";
	      break;
	    case UNSPEC_HW3:
	      opstr = "hw3";
	      break;
	    case UNSPEC_HW0_LAST:
	      opstr = "hw0_last";
	      break;
	    case UNSPEC_HW1_LAST:
	    case UNSPEC_HW1_LAST_PCREL:
	      opstr = "hw1_last";
	      break;
	    case UNSPEC_HW2_LAST:
	    case UNSPEC_HW2_LAST_PCREL:
	      opstr = "hw2_last";
	      break;
	    case UNSPEC_HW0_GOT:
	      opstr = "hw0_got";
	      break;
	    case UNSPEC_HW0_LAST_GOT:
	      opstr = "hw0_last_got";
	      break;
	    case UNSPEC_HW1_LAST_GOT:
	      opstr = "hw1_last_got";
	      break;
	    case UNSPEC_HW0_TLS_GD:
	      opstr = "hw0_tls_gd";
	      break;
	    case UNSPEC_HW1_LAST_TLS_GD:
	      opstr = "hw1_last_tls_gd";
	      break;
	    case UNSPEC_HW0_TLS_IE:
	      opstr = "hw0_tls_ie";
	      break;
	    case UNSPEC_HW1_LAST_TLS_IE:
	      opstr = "hw1_last_tls_ie";
	      break;
	    case UNSPEC_HW0_TLS_LE:
	      opstr = "hw0_tls_le";
	      break;
	    case UNSPEC_HW1_LAST_TLS_LE:
	      opstr = "hw1_last_tls_le";
	      break;
	    case UNSPEC_HW0_PLT_PCREL:
	      opstr = "hw0_plt";
	      break;
	    case UNSPEC_HW1_PLT_PCREL:
	      opstr = "hw1_plt";
	      break;
	    case UNSPEC_HW1_LAST_PLT_PCREL:
	      opstr = "hw1_last_plt";
	      break;
	    case UNSPEC_HW2_LAST_PLT_PCREL:
	      opstr = "hw2_last_plt";
	      break;
	    default:
	      output_operand_lossage ("invalid %%H specifier");
	    }

	  fputs (opstr, file);
	  fputc ('(', file);
	  output_addr_const (file, addr);

	  if (unspec == UNSPEC_HW0_PCREL
	      || unspec == UNSPEC_HW1_PCREL
	      || unspec == UNSPEC_HW1_LAST_PCREL
	      || unspec == UNSPEC_HW2_LAST_PCREL
	      || unspec == UNSPEC_HW0_PLT_PCREL
	      || unspec == UNSPEC_HW1_PLT_PCREL
	      || unspec == UNSPEC_HW1_LAST_PLT_PCREL
	      || unspec == UNSPEC_HW2_LAST_PLT_PCREL)
	    {
	      rtx addr2 = XVECEXP (XEXP (x, 0), 0, 1);
	      fputs (" - " , file);
	      output_addr_const (file, addr2);
	    }

	  fputc (')', file);
	  return;
	}
      else if (symbolic_operand (x, VOIDmode))
	{
	  output_addr_const (file, x);
	  return;
	}
      }
      /* FALLTHRU */

    case 'h':
      {
	/* Print the low 16 bits of a constant.  */
	HOST_WIDE_INT i;
	if (CONST_INT_P (x))
	  i = INTVAL (x);
	else if (GET_CODE (x) == CONST_DOUBLE)
	  i = CONST_DOUBLE_LOW (x);
	else
	  {
	    output_operand_lossage ("invalid %%h operand");
	    return;
	  }
	i = trunc_int_for_mode (i, HImode);
	fprintf (file, HOST_WIDE_INT_PRINT_DEC, i);
	return;
      }

    case 'I':
      /* Print an auto-inc memory operand.  */
      if (!MEM_P (x))
	{
	  output_operand_lossage ("invalid %%I operand");
	  return;
	}

      output_memory_reference_mode = GET_MODE (x);
      output_memory_autoinc_first = true;
      output_address (XEXP (x, 0));
      output_memory_reference_mode = VOIDmode;
      return;

    case 'i':
      /* Print an auto-inc memory operand.  */
      if (!MEM_P (x))
	{
	  output_operand_lossage ("invalid %%i operand");
	  return;
	}

      output_memory_reference_mode = GET_MODE (x);
      output_memory_autoinc_first = false;
      output_address (XEXP (x, 0));
      output_memory_reference_mode = VOIDmode;
      return;

    case 'j':
      {
	/* Print the low 8 bits of a constant.  */
	HOST_WIDE_INT i;
	if (CONST_INT_P (x))
	  i = INTVAL (x);
	else if (GET_CODE (x) == CONST_DOUBLE)
	  i = CONST_DOUBLE_LOW (x);
	else if (GET_CODE (x) == CONST_VECTOR
		 && CONST_INT_P (CONST_VECTOR_ELT (x, 0)))
	  i = INTVAL (CONST_VECTOR_ELT (x, 0));
	else
	  {
	    output_operand_lossage ("invalid %%j operand");
	    return;
	  }
	i = trunc_int_for_mode (i, QImode);
	fprintf (file, HOST_WIDE_INT_PRINT_DEC, i);
	return;
      }

    case 'P':
      {
	/* Print a constant plus one.  */
	if (!CONST_INT_P (x))
	  {
	    output_operand_lossage ("invalid %%P operand");
	    return;
	  }
	fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x) + 1);
	return;
      }

    case 'm':
    case 'M':
      {
	/* Print a bfextu-style bit range.  */
	int first_bit, last_bit;
	HOST_WIDE_INT flip = (code == 'm') ? ~0 : 0;

	if (!CONST_INT_P (x)
	    || !tilegx_bitfield_operand_p (INTVAL (x) ^ flip,
					   &first_bit, &last_bit))
	  {
	    output_operand_lossage ("invalid %%%c operand", code);
	    return;
	  }

	fprintf (file, "%d, %d", first_bit, last_bit);
	return;
      }

    case 'N':
      {
	const char *reg = NULL;

	/* Print a network register.  */
	if (!CONST_INT_P (x))
	  {
	    output_operand_lossage ("invalid %%N operand");
	    return;
	  }

	switch (INTVAL (x))
	  {
	  case TILEGX_NETREG_IDN0: reg = "idn0"; break;
	  case TILEGX_NETREG_IDN1: reg = "idn1"; break;
	  case TILEGX_NETREG_UDN0: reg = "udn0"; break;
	  case TILEGX_NETREG_UDN1: reg = "udn1"; break;
	  case TILEGX_NETREG_UDN2: reg = "udn2"; break;
	  case TILEGX_NETREG_UDN3: reg = "udn3"; break;
	  default:
	    gcc_unreachable ();
	  }

	fprintf (file, reg);
	return;
      }

    case 'p':
      if (GET_CODE (x) == SYMBOL_REF)
	{
	  if (flag_pic && !SYMBOL_REF_LOCAL_P (x))
	    fprintf (file, "plt(");
	  output_addr_const (file, x);
	  if (flag_pic && !SYMBOL_REF_LOCAL_P (x))
	    fprintf (file, ")");
	}
      else
	output_addr_const (file, x);
      return;

    case 'r':
      /* In this case we need a register.  Use 'zero' if the operand
	 is const0_rtx.  */
      if (x == const0_rtx
	  || (GET_MODE (x) != VOIDmode && x == CONST0_RTX (GET_MODE (x))))
	{
	  fputs ("zero", file);
	  return;
	}
      else if (!REG_P (x))
	{
	  output_operand_lossage ("invalid operand for 'r' specifier");
	  return;
	}
      /* FALLTHRU */

    case 0:
      if (REG_P (x))
	{
	  fprintf (file, "%s", reg_names[REGNO (x)]);
	  return;
	}
      else if (MEM_P (x))
	{
	  output_memory_reference_mode = VOIDmode;
	  output_address (XEXP (x, 0));
	  return;
	}
      else
	{
	  output_addr_const (file, x);
	  return;
	}
    }

  debug_rtx (x);
  output_operand_lossage ("unable to print out operand yet; code == %d (%c)",
			  code, code);
}


/* Implement TARGET_PRINT_OPERAND_ADDRESS.  */
static void
tilegx_print_operand_address (FILE *file, rtx addr)
{
  if (GET_CODE (addr) == POST_DEC
      || GET_CODE (addr) == POST_INC)
    {
      int offset = GET_MODE_SIZE (output_memory_reference_mode);

      gcc_assert (output_memory_reference_mode != VOIDmode);

      if (output_memory_autoinc_first)
	fprintf (file, "%s", reg_names[REGNO (XEXP (addr, 0))]);
      else
	fprintf (file, "%d",
		 GET_CODE (addr) == POST_DEC ? -offset : offset);
    }
  else if (GET_CODE (addr) == POST_MODIFY)
    {
      gcc_assert (output_memory_reference_mode != VOIDmode);

      gcc_assert (GET_CODE (XEXP (addr, 1)) == PLUS);

      if (output_memory_autoinc_first)
	fprintf (file, "%s", reg_names[REGNO (XEXP (addr, 0))]);
      else
	fprintf (file, HOST_WIDE_INT_PRINT_DEC,
		 INTVAL (XEXP (XEXP (addr, 1), 1)));
    }
  else
    tilegx_print_operand (file, addr, 'r');
}


/* Machine mode of current insn, for determining curly brace
   placement.  */
static enum machine_mode insn_mode;


/* Implement FINAL_PRESCAN_INSN.  This is used to emit bundles.  */
void
tilegx_final_prescan_insn (rtx insn)
{
  /* Record this for tilegx_asm_output_opcode to examine.  */
  insn_mode = GET_MODE (insn);
}


/* While emitting asm, are we currently inside '{' for a bundle?  */
static bool tilegx_in_bundle = false;

/* Implement ASM_OUTPUT_OPCODE.  Prepend/append curly braces as
   appropriate given the bundling information recorded by
   tilegx_gen_bundles.  */
const char *
tilegx_asm_output_opcode (FILE *stream, const char *code)
{
  bool pseudo = !strcmp (code, "pseudo");

  if (!tilegx_in_bundle && insn_mode == SImode)
    {
      /* Start a new bundle.  */
      fprintf (stream, "{\n\t");
      tilegx_in_bundle = true;
    }

  if (tilegx_in_bundle && insn_mode == QImode)
    {
      /* Close an existing bundle.  */
      static char buf[100];

      gcc_assert (strlen (code) + 3 + 1 < sizeof (buf));

      strcpy (buf, pseudo ? "" : code);
      strcat (buf, "\n\t}");
      tilegx_in_bundle = false;

      return buf;
    }
  else
    {
      return pseudo ? "" : code;
    }
}


/* Output assembler code to FILE to increment profiler label # LABELNO
   for profiling a function entry.  */
void
tilegx_function_profiler (FILE *file, int labelno ATTRIBUTE_UNUSED)
{
  if (tilegx_in_bundle)
    {
      fprintf (file, "\t}\n");
    }

  if (flag_pic)
    {
      fprintf (file,
	       "\t{\n"
	       "\tmove\tr10, lr\n"
	       "\tjal\tplt(%s)\n"
	       "\t}\n", MCOUNT_NAME);
    }
  else
    {
      fprintf (file,
	       "\t{\n"
	       "\tmove\tr10, lr\n"
	       "\tjal\t%s\n"
	       "\t}\n", MCOUNT_NAME);
    }

  tilegx_in_bundle = false;
}


/* Implement TARGET_ASM_FILE_END.  */
static void
tilegx_file_end (void)
{
  if (NEED_INDICATE_EXEC_STACK)
    file_end_indicate_exec_stack ();
}



#undef  TARGET_HAVE_TLS
#define TARGET_HAVE_TLS HAVE_AS_TLS

#undef  TARGET_OPTION_OVERRIDE
#define TARGET_OPTION_OVERRIDE tilegx_option_override

#undef  TARGET_SCALAR_MODE_SUPPORTED_P
#define TARGET_SCALAR_MODE_SUPPORTED_P tilegx_scalar_mode_supported_p

#undef  TARGET_VECTOR_MODE_SUPPORTED_P
#define TARGET_VECTOR_MODE_SUPPORTED_P tilegx_vector_mode_supported_p

#undef  TARGET_CANNOT_FORCE_CONST_MEM
#define TARGET_CANNOT_FORCE_CONST_MEM tilegx_cannot_force_const_mem

#undef  TARGET_FUNCTION_OK_FOR_SIBCALL
#define TARGET_FUNCTION_OK_FOR_SIBCALL tilegx_function_ok_for_sibcall

#undef  TARGET_PASS_BY_REFERENCE
#define TARGET_PASS_BY_REFERENCE tilegx_pass_by_reference

#undef  TARGET_RETURN_IN_MEMORY
#define TARGET_RETURN_IN_MEMORY tilegx_return_in_memory

#undef  TARGET_MODE_REP_EXTENDED
#define TARGET_MODE_REP_EXTENDED tilegx_mode_rep_extended

#undef  TARGET_FUNCTION_ARG_BOUNDARY
#define TARGET_FUNCTION_ARG_BOUNDARY tilegx_function_arg_boundary

#undef  TARGET_FUNCTION_ARG
#define TARGET_FUNCTION_ARG tilegx_function_arg

#undef  TARGET_FUNCTION_ARG_ADVANCE
#define TARGET_FUNCTION_ARG_ADVANCE tilegx_function_arg_advance

#undef  TARGET_FUNCTION_VALUE
#define TARGET_FUNCTION_VALUE tilegx_function_value

#undef  TARGET_LIBCALL_VALUE
#define TARGET_LIBCALL_VALUE tilegx_libcall_value

#undef  TARGET_FUNCTION_VALUE_REGNO_P
#define TARGET_FUNCTION_VALUE_REGNO_P tilegx_function_value_regno_p

#undef  TARGET_PROMOTE_FUNCTION_MODE
#define TARGET_PROMOTE_FUNCTION_MODE default_promote_function_mode_always_promote

#undef  TARGET_PROMOTE_PROTOTYPES
#define TARGET_PROMOTE_PROTOTYPES hook_bool_const_tree_false

#undef  TARGET_BUILD_BUILTIN_VA_LIST
#define TARGET_BUILD_BUILTIN_VA_LIST tilegx_build_builtin_va_list

#undef  TARGET_EXPAND_BUILTIN_VA_START
#define TARGET_EXPAND_BUILTIN_VA_START tilegx_va_start

#undef  TARGET_SETUP_INCOMING_VARARGS
#define TARGET_SETUP_INCOMING_VARARGS tilegx_setup_incoming_varargs

#undef  TARGET_GIMPLIFY_VA_ARG_EXPR
#define TARGET_GIMPLIFY_VA_ARG_EXPR tilegx_gimplify_va_arg_expr

#undef  TARGET_RTX_COSTS
#define TARGET_RTX_COSTS tilegx_rtx_costs

#undef  TARGET_SHIFT_TRUNCATION_MASK
#define TARGET_SHIFT_TRUNCATION_MASK tilegx_shift_truncation_mask

#undef  TARGET_INIT_LIBFUNCS
#define TARGET_INIT_LIBFUNCS tilegx_init_libfuncs

/* Limit to what we can reach in one addli.  */
#undef  TARGET_MIN_ANCHOR_OFFSET
#define TARGET_MIN_ANCHOR_OFFSET -32768
#undef  TARGET_MAX_ANCHOR_OFFSET
#define TARGET_MAX_ANCHOR_OFFSET 32767

#undef  TARGET_LEGITIMATE_CONSTANT_P
#define TARGET_LEGITIMATE_CONSTANT_P tilegx_legitimate_constant_p

#undef  TARGET_LEGITIMATE_ADDRESS_P
#define TARGET_LEGITIMATE_ADDRESS_P tilegx_legitimate_address_p

#undef  TARGET_LEGITIMIZE_ADDRESS
#define TARGET_LEGITIMIZE_ADDRESS tilegx_legitimize_address

#undef  TARGET_DELEGITIMIZE_ADDRESS
#define TARGET_DELEGITIMIZE_ADDRESS tilegx_delegitimize_address

#undef  TARGET_INIT_BUILTINS
#define TARGET_INIT_BUILTINS  tilegx_init_builtins

#undef  TARGET_BUILTIN_DECL
#define TARGET_BUILTIN_DECL tilegx_builtin_decl

#undef  TARGET_EXPAND_BUILTIN
#define TARGET_EXPAND_BUILTIN tilegx_expand_builtin

#undef  TARGET_CONDITIONAL_REGISTER_USAGE
#define TARGET_CONDITIONAL_REGISTER_USAGE tilegx_conditional_register_usage

#undef  TARGET_FRAME_POINTER_REQUIRED
#define TARGET_FRAME_POINTER_REQUIRED tilegx_frame_pointer_required

#undef  TARGET_DELAY_SCHED2
#define TARGET_DELAY_SCHED2 true

#undef  TARGET_DELAY_VARTRACK
#define TARGET_DELAY_VARTRACK true

#undef  TARGET_SCHED_ISSUE_RATE
#define TARGET_SCHED_ISSUE_RATE tilegx_issue_rate

#undef  TARGET_SCHED_ADJUST_COST
#define TARGET_SCHED_ADJUST_COST tilegx_sched_adjust_cost

#undef  TARGET_MACHINE_DEPENDENT_REORG
#define TARGET_MACHINE_DEPENDENT_REORG tilegx_reorg

#undef  TARGET_ASM_CAN_OUTPUT_MI_THUNK
#define TARGET_ASM_CAN_OUTPUT_MI_THUNK \
  hook_bool_const_tree_hwi_hwi_const_tree_true

#undef  TARGET_ASM_OUTPUT_MI_THUNK
#define TARGET_ASM_OUTPUT_MI_THUNK tilegx_output_mi_thunk

#undef  TARGET_ASM_TRAMPOLINE_TEMPLATE
#define TARGET_ASM_TRAMPOLINE_TEMPLATE tilegx_asm_trampoline_template

#undef  TARGET_TRAMPOLINE_INIT
#define TARGET_TRAMPOLINE_INIT tilegx_trampoline_init

#undef  TARGET_PRINT_OPERAND
#define TARGET_PRINT_OPERAND tilegx_print_operand

#undef  TARGET_PRINT_OPERAND_ADDRESS
#define TARGET_PRINT_OPERAND_ADDRESS tilegx_print_operand_address

#undef  TARGET_ASM_FILE_END
#define TARGET_ASM_FILE_END tilegx_file_end

#undef  TARGET_ASM_ALIGNED_DI_OP
#define TARGET_ASM_ALIGNED_DI_OP "\t.quad\t"

#undef  TARGET_CAN_USE_DOLOOP_P
#define TARGET_CAN_USE_DOLOOP_P can_use_doloop_if_innermost

struct gcc_target targetm = TARGET_INITIALIZER;

#include "gt-tilegx.h"