summaryrefslogtreecommitdiff
path: root/gcc/config/spu/spu.c
blob: 3c8f69787194619f3108f2eeed6cd710b149a497 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
/* Copyright (C) 2006, 2007, 2008, 2009, 2010, 2011
   Free Software Foundation, Inc.

   This file is free software; you can redistribute it and/or modify it under
   the terms of the GNU General Public License as published by the Free
   Software Foundation; either version 3 of the License, or (at your option) 
   any later version.

   This file is distributed in the hope that it will be useful, but WITHOUT
   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
   for more details.

   You should have received a copy of the GNU General Public License
   along with GCC; see the file COPYING3.  If not see
   <http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "rtl.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "insn-config.h"
#include "conditions.h"
#include "insn-attr.h"
#include "flags.h"
#include "recog.h"
#include "obstack.h"
#include "tree.h"
#include "expr.h"
#include "optabs.h"
#include "except.h"
#include "function.h"
#include "output.h"
#include "basic-block.h"
#include "diagnostic-core.h"
#include "ggc.h"
#include "hashtab.h"
#include "tm_p.h"
#include "target.h"
#include "target-def.h"
#include "langhooks.h"
#include "reload.h"
#include "sched-int.h"
#include "params.h"
#include "machmode.h"
#include "gimple.h"
#include "tm-constrs.h"
#include "ddg.h"
#include "sbitmap.h"
#include "timevar.h"
#include "df.h"
#include "dumpfile.h"

/* Builtin types, data and prototypes. */

enum spu_builtin_type_index
{
  SPU_BTI_END_OF_PARAMS,

  /* We create new type nodes for these. */
  SPU_BTI_V16QI,
  SPU_BTI_V8HI,
  SPU_BTI_V4SI,
  SPU_BTI_V2DI,
  SPU_BTI_V4SF,
  SPU_BTI_V2DF,
  SPU_BTI_UV16QI,
  SPU_BTI_UV8HI,
  SPU_BTI_UV4SI,
  SPU_BTI_UV2DI,

  /* A 16-byte type. (Implemented with V16QI_type_node) */
  SPU_BTI_QUADWORD,

  /* These all correspond to intSI_type_node */
  SPU_BTI_7,
  SPU_BTI_S7,
  SPU_BTI_U7,
  SPU_BTI_S10,
  SPU_BTI_S10_4,
  SPU_BTI_U14,
  SPU_BTI_16,
  SPU_BTI_S16,
  SPU_BTI_S16_2,
  SPU_BTI_U16,
  SPU_BTI_U16_2,
  SPU_BTI_U18,

  /* These correspond to the standard types */
  SPU_BTI_INTQI, 
  SPU_BTI_INTHI, 
  SPU_BTI_INTSI, 
  SPU_BTI_INTDI, 

  SPU_BTI_UINTQI,
  SPU_BTI_UINTHI,
  SPU_BTI_UINTSI,
  SPU_BTI_UINTDI,

  SPU_BTI_FLOAT, 
  SPU_BTI_DOUBLE,

  SPU_BTI_VOID,   
  SPU_BTI_PTR,   

  SPU_BTI_MAX
};

#define V16QI_type_node               (spu_builtin_types[SPU_BTI_V16QI])
#define V8HI_type_node                (spu_builtin_types[SPU_BTI_V8HI])
#define V4SI_type_node                (spu_builtin_types[SPU_BTI_V4SI])
#define V2DI_type_node                (spu_builtin_types[SPU_BTI_V2DI])
#define V4SF_type_node                (spu_builtin_types[SPU_BTI_V4SF])
#define V2DF_type_node                (spu_builtin_types[SPU_BTI_V2DF])
#define unsigned_V16QI_type_node      (spu_builtin_types[SPU_BTI_UV16QI])
#define unsigned_V8HI_type_node       (spu_builtin_types[SPU_BTI_UV8HI])
#define unsigned_V4SI_type_node       (spu_builtin_types[SPU_BTI_UV4SI])
#define unsigned_V2DI_type_node       (spu_builtin_types[SPU_BTI_UV2DI])

static GTY(()) tree spu_builtin_types[SPU_BTI_MAX];

struct spu_builtin_range
{
  int low, high;
};

static struct spu_builtin_range spu_builtin_range[] = {
  {-0x40ll, 0x7fll},		/* SPU_BTI_7     */
  {-0x40ll, 0x3fll},		/* SPU_BTI_S7    */
  {0ll, 0x7fll},		/* SPU_BTI_U7    */
  {-0x200ll, 0x1ffll},		/* SPU_BTI_S10   */
  {-0x2000ll, 0x1fffll},	/* SPU_BTI_S10_4 */
  {0ll, 0x3fffll},		/* SPU_BTI_U14   */
  {-0x8000ll, 0xffffll},	/* SPU_BTI_16    */
  {-0x8000ll, 0x7fffll},	/* SPU_BTI_S16   */
  {-0x20000ll, 0x1ffffll},	/* SPU_BTI_S16_2 */
  {0ll, 0xffffll},		/* SPU_BTI_U16   */
  {0ll, 0x3ffffll},		/* SPU_BTI_U16_2 */
  {0ll, 0x3ffffll},		/* SPU_BTI_U18   */
};


/*  Target specific attribute specifications.  */
char regs_ever_allocated[FIRST_PSEUDO_REGISTER];

/*  Prototypes and external defs.  */
static void spu_option_override (void);
static void spu_init_builtins (void);
static tree spu_builtin_decl (unsigned, bool);
static bool spu_scalar_mode_supported_p (enum machine_mode mode);
static bool spu_vector_mode_supported_p (enum machine_mode mode);
static bool spu_legitimate_address_p (enum machine_mode, rtx, bool);
static bool spu_addr_space_legitimate_address_p (enum machine_mode, rtx,
						 bool, addr_space_t);
static rtx adjust_operand (rtx op, HOST_WIDE_INT * start);
static rtx get_pic_reg (void);
static int need_to_save_reg (int regno, int saving);
static rtx frame_emit_store (int regno, rtx addr, HOST_WIDE_INT offset);
static rtx frame_emit_load (int regno, rtx addr, HOST_WIDE_INT offset);
static rtx frame_emit_add_imm (rtx dst, rtx src, HOST_WIDE_INT imm,
			       rtx scratch);
static void emit_nop_for_insn (rtx insn);
static bool insn_clobbers_hbr (rtx insn);
static void spu_emit_branch_hint (rtx before, rtx branch, rtx target,
				  int distance, sbitmap blocks);
static rtx spu_emit_vector_compare (enum rtx_code rcode, rtx op0, rtx op1,
	                            enum machine_mode dmode);
static rtx get_branch_target (rtx branch);
static void spu_machine_dependent_reorg (void);
static int spu_sched_issue_rate (void);
static int spu_sched_variable_issue (FILE * dump, int verbose, rtx insn,
				     int can_issue_more);
static int get_pipe (rtx insn);
static int spu_sched_adjust_cost (rtx insn, rtx link, rtx dep_insn, int cost);
static void spu_sched_init_global (FILE *, int, int);
static void spu_sched_init (FILE *, int, int);
static int spu_sched_reorder (FILE *, int, rtx *, int *, int);
static tree spu_handle_fndecl_attribute (tree * node, tree name, tree args,
					 int flags,
					 bool *no_add_attrs);
static tree spu_handle_vector_attribute (tree * node, tree name, tree args,
					 int flags,
					 bool *no_add_attrs);
static int spu_naked_function_p (tree func);
static bool spu_pass_by_reference (cumulative_args_t cum,
				   enum machine_mode mode,
				   const_tree type, bool named);
static rtx spu_function_arg (cumulative_args_t cum, enum machine_mode mode,
			     const_tree type, bool named);
static void spu_function_arg_advance (cumulative_args_t cum,
				      enum machine_mode mode,
				      const_tree type, bool named);
static tree spu_build_builtin_va_list (void);
static void spu_va_start (tree, rtx);
static tree spu_gimplify_va_arg_expr (tree valist, tree type,
				      gimple_seq * pre_p, gimple_seq * post_p);
static int store_with_one_insn_p (rtx mem);
static int mem_is_padded_component_ref (rtx x);
static int reg_aligned_for_addr (rtx x);
static bool spu_assemble_integer (rtx x, unsigned int size, int aligned_p);
static void spu_asm_globalize_label (FILE * file, const char *name);
static bool spu_rtx_costs (rtx x, int code, int outer_code, int opno,
			   int *total, bool speed);
static bool spu_function_ok_for_sibcall (tree decl, tree exp);
static void spu_init_libfuncs (void);
static bool spu_return_in_memory (const_tree type, const_tree fntype);
static void fix_range (const char *);
static void spu_encode_section_info (tree, rtx, int);
static rtx spu_legitimize_address (rtx, rtx, enum machine_mode);
static rtx spu_addr_space_legitimize_address (rtx, rtx, enum machine_mode,
					      addr_space_t);
static tree spu_builtin_mask_for_load (void);
static int spu_builtin_vectorization_cost (enum vect_cost_for_stmt, tree, int);
static bool spu_vector_alignment_reachable (const_tree, bool);
static enum machine_mode spu_addr_space_pointer_mode (addr_space_t);
static enum machine_mode spu_addr_space_address_mode (addr_space_t);
static bool spu_addr_space_subset_p (addr_space_t, addr_space_t);
static rtx spu_addr_space_convert (rtx, tree, tree);
static int spu_sms_res_mii (struct ddg *g);
static unsigned int spu_section_type_flags (tree, const char *, int);
static section *spu_select_section (tree, int, unsigned HOST_WIDE_INT);
static void spu_unique_section (tree, int);
static rtx spu_expand_load (rtx, rtx, rtx, int);
static void spu_trampoline_init (rtx, tree, rtx);
static void spu_conditional_register_usage (void);
static bool spu_ref_may_alias_errno (ao_ref *);
static void spu_output_mi_thunk (FILE *, tree, HOST_WIDE_INT,
				 HOST_WIDE_INT, tree);

/* Which instruction set architecture to use.  */
int spu_arch;
/* Which cpu are we tuning for.  */
int spu_tune;

/* The hardware requires 8 insns between a hint and the branch it
   effects.  This variable describes how many rtl instructions the
   compiler needs to see before inserting a hint, and then the compiler
   will insert enough nops to make it at least 8 insns.  The default is
   for the compiler to allow up to 2 nops be emitted.  The nops are
   inserted in pairs, so we round down. */
int spu_hint_dist = (8*4) - (2*4);

enum spu_immediate {
  SPU_NONE,
  SPU_IL,
  SPU_ILA,
  SPU_ILH,
  SPU_ILHU,
  SPU_ORI,
  SPU_ORHI,
  SPU_ORBI,
  SPU_IOHL
};
enum immediate_class
{
  IC_POOL,			/* constant pool */
  IC_IL1,			/* one il* instruction */
  IC_IL2,			/* both ilhu and iohl instructions */
  IC_IL1s,			/* one il* instruction */
  IC_IL2s,			/* both ilhu and iohl instructions */
  IC_FSMBI,			/* the fsmbi instruction */
  IC_CPAT,			/* one of the c*d instructions */
  IC_FSMBI2			/* fsmbi plus 1 other instruction */
};

static enum spu_immediate which_immediate_load (HOST_WIDE_INT val);
static enum spu_immediate which_logical_immediate (HOST_WIDE_INT val);
static int cpat_info(unsigned char *arr, int size, int *prun, int *pstart);
static enum immediate_class classify_immediate (rtx op,
						enum machine_mode mode);

static enum machine_mode spu_unwind_word_mode (void);

static enum machine_mode
spu_libgcc_cmp_return_mode (void);

static enum machine_mode
spu_libgcc_shift_count_mode (void);

/* Pointer mode for __ea references.  */
#define EAmode (spu_ea_model != 32 ? DImode : SImode)


/*  Table of machine attributes.  */
static const struct attribute_spec spu_attribute_table[] =
{
  /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler,
       affects_type_identity } */
  { "naked",          0, 0, true,  false, false, spu_handle_fndecl_attribute,
    false },
  { "spu_vector",     0, 0, false, true,  false, spu_handle_vector_attribute,
    false },
  { NULL,             0, 0, false, false, false, NULL, false }
};

/*  TARGET overrides.  */

#undef TARGET_ADDR_SPACE_POINTER_MODE
#define TARGET_ADDR_SPACE_POINTER_MODE spu_addr_space_pointer_mode

#undef TARGET_ADDR_SPACE_ADDRESS_MODE
#define TARGET_ADDR_SPACE_ADDRESS_MODE spu_addr_space_address_mode

#undef TARGET_ADDR_SPACE_LEGITIMATE_ADDRESS_P
#define TARGET_ADDR_SPACE_LEGITIMATE_ADDRESS_P \
  spu_addr_space_legitimate_address_p

#undef TARGET_ADDR_SPACE_LEGITIMIZE_ADDRESS
#define TARGET_ADDR_SPACE_LEGITIMIZE_ADDRESS spu_addr_space_legitimize_address

#undef TARGET_ADDR_SPACE_SUBSET_P
#define TARGET_ADDR_SPACE_SUBSET_P spu_addr_space_subset_p

#undef TARGET_ADDR_SPACE_CONVERT
#define TARGET_ADDR_SPACE_CONVERT spu_addr_space_convert

#undef TARGET_INIT_BUILTINS
#define TARGET_INIT_BUILTINS spu_init_builtins
#undef TARGET_BUILTIN_DECL
#define TARGET_BUILTIN_DECL spu_builtin_decl

#undef TARGET_EXPAND_BUILTIN
#define TARGET_EXPAND_BUILTIN spu_expand_builtin

#undef TARGET_UNWIND_WORD_MODE
#define TARGET_UNWIND_WORD_MODE spu_unwind_word_mode

#undef TARGET_LEGITIMIZE_ADDRESS
#define TARGET_LEGITIMIZE_ADDRESS spu_legitimize_address

/* The current assembler doesn't like .4byte foo@ppu, so use the normal .long
   and .quad for the debugger.  When it is known that the assembler is fixed,
   these can be removed.  */
#undef TARGET_ASM_UNALIGNED_SI_OP
#define TARGET_ASM_UNALIGNED_SI_OP	"\t.long\t"

#undef TARGET_ASM_ALIGNED_DI_OP
#define TARGET_ASM_ALIGNED_DI_OP	"\t.quad\t"

/* The .8byte directive doesn't seem to work well for a 32 bit
   architecture. */
#undef TARGET_ASM_UNALIGNED_DI_OP
#define TARGET_ASM_UNALIGNED_DI_OP NULL

#undef TARGET_RTX_COSTS
#define TARGET_RTX_COSTS spu_rtx_costs

#undef TARGET_ADDRESS_COST
#define TARGET_ADDRESS_COST hook_int_rtx_bool_0

#undef TARGET_SCHED_ISSUE_RATE
#define TARGET_SCHED_ISSUE_RATE spu_sched_issue_rate

#undef TARGET_SCHED_INIT_GLOBAL
#define TARGET_SCHED_INIT_GLOBAL spu_sched_init_global

#undef TARGET_SCHED_INIT
#define TARGET_SCHED_INIT spu_sched_init

#undef TARGET_SCHED_VARIABLE_ISSUE
#define TARGET_SCHED_VARIABLE_ISSUE spu_sched_variable_issue

#undef TARGET_SCHED_REORDER
#define TARGET_SCHED_REORDER spu_sched_reorder

#undef TARGET_SCHED_REORDER2
#define TARGET_SCHED_REORDER2 spu_sched_reorder

#undef TARGET_SCHED_ADJUST_COST
#define TARGET_SCHED_ADJUST_COST spu_sched_adjust_cost

#undef  TARGET_ATTRIBUTE_TABLE
#define TARGET_ATTRIBUTE_TABLE spu_attribute_table

#undef TARGET_ASM_INTEGER
#define TARGET_ASM_INTEGER spu_assemble_integer

#undef TARGET_SCALAR_MODE_SUPPORTED_P
#define TARGET_SCALAR_MODE_SUPPORTED_P	spu_scalar_mode_supported_p

#undef TARGET_VECTOR_MODE_SUPPORTED_P
#define TARGET_VECTOR_MODE_SUPPORTED_P	spu_vector_mode_supported_p

#undef TARGET_FUNCTION_OK_FOR_SIBCALL
#define TARGET_FUNCTION_OK_FOR_SIBCALL spu_function_ok_for_sibcall

#undef TARGET_ASM_GLOBALIZE_LABEL
#define TARGET_ASM_GLOBALIZE_LABEL spu_asm_globalize_label

#undef TARGET_PASS_BY_REFERENCE
#define TARGET_PASS_BY_REFERENCE spu_pass_by_reference

#undef TARGET_FUNCTION_ARG
#define TARGET_FUNCTION_ARG spu_function_arg

#undef TARGET_FUNCTION_ARG_ADVANCE
#define TARGET_FUNCTION_ARG_ADVANCE spu_function_arg_advance

#undef TARGET_MUST_PASS_IN_STACK
#define TARGET_MUST_PASS_IN_STACK must_pass_in_stack_var_size

#undef TARGET_BUILD_BUILTIN_VA_LIST
#define TARGET_BUILD_BUILTIN_VA_LIST spu_build_builtin_va_list

#undef TARGET_EXPAND_BUILTIN_VA_START
#define TARGET_EXPAND_BUILTIN_VA_START spu_va_start

static void spu_setup_incoming_varargs (cumulative_args_t cum,
					enum machine_mode mode,
					tree type, int *pretend_size,
					int no_rtl);
#undef TARGET_SETUP_INCOMING_VARARGS
#define TARGET_SETUP_INCOMING_VARARGS spu_setup_incoming_varargs

#undef TARGET_MACHINE_DEPENDENT_REORG
#define TARGET_MACHINE_DEPENDENT_REORG spu_machine_dependent_reorg

#undef TARGET_GIMPLIFY_VA_ARG_EXPR
#define TARGET_GIMPLIFY_VA_ARG_EXPR spu_gimplify_va_arg_expr

#undef TARGET_INIT_LIBFUNCS
#define TARGET_INIT_LIBFUNCS spu_init_libfuncs

#undef TARGET_RETURN_IN_MEMORY
#define TARGET_RETURN_IN_MEMORY spu_return_in_memory

#undef  TARGET_ENCODE_SECTION_INFO
#define TARGET_ENCODE_SECTION_INFO spu_encode_section_info

#undef TARGET_VECTORIZE_BUILTIN_MASK_FOR_LOAD
#define TARGET_VECTORIZE_BUILTIN_MASK_FOR_LOAD spu_builtin_mask_for_load

#undef TARGET_VECTORIZE_BUILTIN_VECTORIZATION_COST
#define TARGET_VECTORIZE_BUILTIN_VECTORIZATION_COST spu_builtin_vectorization_cost

#undef TARGET_VECTORIZE_INIT_COST
#define TARGET_VECTORIZE_INIT_COST spu_init_cost

#undef TARGET_VECTORIZE_ADD_STMT_COST
#define TARGET_VECTORIZE_ADD_STMT_COST spu_add_stmt_cost

#undef TARGET_VECTORIZE_FINISH_COST
#define TARGET_VECTORIZE_FINISH_COST spu_finish_cost

#undef TARGET_VECTORIZE_DESTROY_COST_DATA
#define TARGET_VECTORIZE_DESTROY_COST_DATA spu_destroy_cost_data

#undef TARGET_VECTORIZE_VECTOR_ALIGNMENT_REACHABLE
#define TARGET_VECTORIZE_VECTOR_ALIGNMENT_REACHABLE spu_vector_alignment_reachable

#undef TARGET_LIBGCC_CMP_RETURN_MODE
#define TARGET_LIBGCC_CMP_RETURN_MODE spu_libgcc_cmp_return_mode

#undef TARGET_LIBGCC_SHIFT_COUNT_MODE
#define TARGET_LIBGCC_SHIFT_COUNT_MODE spu_libgcc_shift_count_mode

#undef TARGET_SCHED_SMS_RES_MII
#define TARGET_SCHED_SMS_RES_MII spu_sms_res_mii

#undef TARGET_SECTION_TYPE_FLAGS
#define TARGET_SECTION_TYPE_FLAGS spu_section_type_flags

#undef TARGET_ASM_SELECT_SECTION
#define TARGET_ASM_SELECT_SECTION  spu_select_section

#undef TARGET_ASM_UNIQUE_SECTION
#define TARGET_ASM_UNIQUE_SECTION  spu_unique_section

#undef TARGET_LEGITIMATE_ADDRESS_P
#define TARGET_LEGITIMATE_ADDRESS_P spu_legitimate_address_p

#undef TARGET_LEGITIMATE_CONSTANT_P
#define TARGET_LEGITIMATE_CONSTANT_P spu_legitimate_constant_p

#undef TARGET_TRAMPOLINE_INIT
#define TARGET_TRAMPOLINE_INIT spu_trampoline_init

#undef TARGET_OPTION_OVERRIDE
#define TARGET_OPTION_OVERRIDE spu_option_override

#undef TARGET_CONDITIONAL_REGISTER_USAGE
#define TARGET_CONDITIONAL_REGISTER_USAGE spu_conditional_register_usage

#undef TARGET_REF_MAY_ALIAS_ERRNO
#define TARGET_REF_MAY_ALIAS_ERRNO spu_ref_may_alias_errno

#undef TARGET_ASM_OUTPUT_MI_THUNK
#define TARGET_ASM_OUTPUT_MI_THUNK spu_output_mi_thunk
#undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
#define TARGET_ASM_CAN_OUTPUT_MI_THUNK hook_bool_const_tree_hwi_hwi_const_tree_true

/* Variable tracking should be run after all optimizations which
   change order of insns.  It also needs a valid CFG.  */
#undef TARGET_DELAY_VARTRACK
#define TARGET_DELAY_VARTRACK true

struct gcc_target targetm = TARGET_INITIALIZER;

/* Define the structure for the machine field in struct function.  */
struct GTY(()) machine_function
{
  /* Register to use for PIC accesses.  */
  rtx pic_reg;
};

/* How to allocate a 'struct machine_function'.  */
static struct machine_function *
spu_init_machine_status (void)
{
  return ggc_alloc_cleared_machine_function ();
}

/* Implement TARGET_OPTION_OVERRIDE.  */
static void
spu_option_override (void)
{
  /* Set up function hooks.  */
  init_machine_status = spu_init_machine_status;

  /* Small loops will be unpeeled at -O3.  For SPU it is more important
     to keep code small by default.  */
  if (!flag_unroll_loops && !flag_peel_loops)
    maybe_set_param_value (PARAM_MAX_COMPLETELY_PEEL_TIMES, 4,
			   global_options.x_param_values,
			   global_options_set.x_param_values);

  flag_omit_frame_pointer = 1;

  /* Functions must be 8 byte aligned so we correctly handle dual issue */
  if (align_functions < 8)
    align_functions = 8;

  spu_hint_dist = 8*4 - spu_max_nops*4;
  if (spu_hint_dist < 0) 
    spu_hint_dist = 0;

  if (spu_fixed_range_string)
    fix_range (spu_fixed_range_string);

  /* Determine processor architectural level.  */
  if (spu_arch_string)
    {
      if (strcmp (&spu_arch_string[0], "cell") == 0)
        spu_arch = PROCESSOR_CELL;
      else if (strcmp (&spu_arch_string[0], "celledp") == 0)
        spu_arch = PROCESSOR_CELLEDP;
      else
        error ("bad value (%s) for -march= switch", spu_arch_string);
    }

  /* Determine processor to tune for.  */
  if (spu_tune_string)
    {
      if (strcmp (&spu_tune_string[0], "cell") == 0)
        spu_tune = PROCESSOR_CELL;
      else if (strcmp (&spu_tune_string[0], "celledp") == 0)
        spu_tune = PROCESSOR_CELLEDP;
      else
        error ("bad value (%s) for -mtune= switch", spu_tune_string);
    }

  /* Change defaults according to the processor architecture.  */
  if (spu_arch == PROCESSOR_CELLEDP)
    {
      /* If no command line option has been otherwise specified, change
	 the default to -mno-safe-hints on celledp -- only the original
	 Cell/B.E. processors require this workaround.  */
      if (!(target_flags_explicit & MASK_SAFE_HINTS))
	target_flags &= ~MASK_SAFE_HINTS;
    }

  REAL_MODE_FORMAT (SFmode) = &spu_single_format;
}

/* Handle an attribute requiring a FUNCTION_DECL; arguments as in
   struct attribute_spec.handler.  */

/* True if MODE is valid for the target.  By "valid", we mean able to
   be manipulated in non-trivial ways.  In particular, this means all
   the arithmetic is supported.  */
static bool
spu_scalar_mode_supported_p (enum machine_mode mode)
{
  switch (mode)
    {
    case QImode:
    case HImode:
    case SImode:
    case SFmode:
    case DImode:
    case TImode:
    case DFmode:
      return true;

    default:
      return false;
    }
}

/* Similarly for vector modes.  "Supported" here is less strict.  At
   least some operations are supported; need to check optabs or builtins
   for further details.  */
static bool
spu_vector_mode_supported_p (enum machine_mode mode)
{
  switch (mode)
    {
    case V16QImode:
    case V8HImode:
    case V4SImode:
    case V2DImode:
    case V4SFmode:
    case V2DFmode:
      return true;

    default:
      return false;
    }
}

/* GCC assumes that in a paradoxical SUBREG the inner mode occupies the
   least significant bytes of the outer mode.  This function returns
   TRUE for the SUBREG's where this is correct.  */
int
valid_subreg (rtx op)
{
  enum machine_mode om = GET_MODE (op);
  enum machine_mode im = GET_MODE (SUBREG_REG (op));
  return om != VOIDmode && im != VOIDmode
    && (GET_MODE_SIZE (im) == GET_MODE_SIZE (om)
	|| (GET_MODE_SIZE (im) <= 4 && GET_MODE_SIZE (om) <= 4)
	|| (GET_MODE_SIZE (im) >= 16 && GET_MODE_SIZE (om) >= 16));
}

/* When insv and ext[sz]v ar passed a TI SUBREG, we want to strip it off
   and adjust the start offset.  */
static rtx
adjust_operand (rtx op, HOST_WIDE_INT * start)
{
  enum machine_mode mode;
  int op_size;
  /* Strip any paradoxical SUBREG.  */
  if (GET_CODE (op) == SUBREG
      && (GET_MODE_BITSIZE (GET_MODE (op))
	  > GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op)))))
    {
      if (start)
	*start -=
	  GET_MODE_BITSIZE (GET_MODE (op)) -
	  GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op)));
      op = SUBREG_REG (op);
    }
  /* If it is smaller than SI, assure a SUBREG */
  op_size = GET_MODE_BITSIZE (GET_MODE (op));
  if (op_size < 32)
    {
      if (start)
	*start += 32 - op_size;
      op_size = 32;
    }
  /* If it is not a MODE_INT (and/or it is smaller than SI) add a SUBREG. */
  mode = mode_for_size (op_size, MODE_INT, 0);
  if (mode != GET_MODE (op))
    op = gen_rtx_SUBREG (mode, op, 0);
  return op;
}

void
spu_expand_extv (rtx ops[], int unsignedp)
{
  rtx dst = ops[0], src = ops[1];
  HOST_WIDE_INT width = INTVAL (ops[2]);
  HOST_WIDE_INT start = INTVAL (ops[3]);
  HOST_WIDE_INT align_mask;
  rtx s0, s1, mask, r0;

  gcc_assert (REG_P (dst) && GET_MODE (dst) == TImode);

  if (MEM_P (src))
    {
      /* First, determine if we need 1 TImode load or 2.  We need only 1
         if the bits being extracted do not cross the alignment boundary
         as determined by the MEM and its address. */

      align_mask = -MEM_ALIGN (src);
      if ((start & align_mask) == ((start + width - 1) & align_mask))
	{
	  /* Alignment is sufficient for 1 load. */
	  s0 = gen_reg_rtx (TImode);
	  r0 = spu_expand_load (s0, 0, src, start / 8);
	  start &= 7;
	  if (r0)
	    emit_insn (gen_rotqby_ti (s0, s0, r0));
	}
      else
	{
	  /* Need 2 loads. */
	  s0 = gen_reg_rtx (TImode);
	  s1 = gen_reg_rtx (TImode);
	  r0 = spu_expand_load (s0, s1, src, start / 8);
	  start &= 7;

	  gcc_assert (start + width <= 128);
	  if (r0)
	    {
	      rtx r1 = gen_reg_rtx (SImode);
	      mask = gen_reg_rtx (TImode);
	      emit_move_insn (mask, GEN_INT (-1));
	      emit_insn (gen_rotqby_ti (s0, s0, r0));
	      emit_insn (gen_rotqby_ti (s1, s1, r0));
	      if (GET_CODE (r0) == CONST_INT)
		r1 = GEN_INT (INTVAL (r0) & 15);
	      else
		emit_insn (gen_andsi3 (r1, r0, GEN_INT (15)));
	      emit_insn (gen_shlqby_ti (mask, mask, r1));
	      emit_insn (gen_selb (s0, s1, s0, mask));
	    }
	}

    }
  else if (GET_CODE (src) == SUBREG)
    {
      rtx r = SUBREG_REG (src);
      gcc_assert (REG_P (r) && SCALAR_INT_MODE_P (GET_MODE (r)));
      s0 = gen_reg_rtx (TImode);
      if (GET_MODE_SIZE (GET_MODE (r)) < GET_MODE_SIZE (TImode))
	emit_insn (gen_rtx_SET (VOIDmode, s0, gen_rtx_ZERO_EXTEND (TImode, r)));
      else
	emit_move_insn (s0, src);
    }
  else 
    {
      gcc_assert (REG_P (src) && GET_MODE (src) == TImode);
      s0 = gen_reg_rtx (TImode);
      emit_move_insn (s0, src);
    }

  /* Now s0 is TImode and contains the bits to extract at start. */

  if (start)
    emit_insn (gen_rotlti3 (s0, s0, GEN_INT (start)));

  if (128 - width)
    s0 = expand_shift (RSHIFT_EXPR, TImode, s0, 128 - width, s0, unsignedp);

  emit_move_insn (dst, s0);
}

void
spu_expand_insv (rtx ops[])
{
  HOST_WIDE_INT width = INTVAL (ops[1]);
  HOST_WIDE_INT start = INTVAL (ops[2]);
  HOST_WIDE_INT maskbits;
  enum machine_mode dst_mode;
  rtx dst = ops[0], src = ops[3];
  int dst_size;
  rtx mask;
  rtx shift_reg;
  int shift;


  if (GET_CODE (ops[0]) == MEM)
    dst = gen_reg_rtx (TImode);
  else
    dst = adjust_operand (dst, &start);
  dst_mode = GET_MODE (dst);
  dst_size = GET_MODE_BITSIZE (GET_MODE (dst));

  if (CONSTANT_P (src))
    {
      enum machine_mode m =
	(width <= 32 ? SImode : width <= 64 ? DImode : TImode);
      src = force_reg (m, convert_to_mode (m, src, 0));
    }
  src = adjust_operand (src, 0);

  mask = gen_reg_rtx (dst_mode);
  shift_reg = gen_reg_rtx (dst_mode);
  shift = dst_size - start - width;

  /* It's not safe to use subreg here because the compiler assumes
     that the SUBREG_REG is right justified in the SUBREG. */
  convert_move (shift_reg, src, 1);

  if (shift > 0)
    {
      switch (dst_mode)
	{
	case SImode:
	  emit_insn (gen_ashlsi3 (shift_reg, shift_reg, GEN_INT (shift)));
	  break;
	case DImode:
	  emit_insn (gen_ashldi3 (shift_reg, shift_reg, GEN_INT (shift)));
	  break;
	case TImode:
	  emit_insn (gen_ashlti3 (shift_reg, shift_reg, GEN_INT (shift)));
	  break;
	default:
	  abort ();
	}
    }
  else if (shift < 0)
    abort ();

  switch (dst_size)
    {
    case 32:
      maskbits = (-1ll << (32 - width - start));
      if (start)
	maskbits += (1ll << (32 - start));
      emit_move_insn (mask, GEN_INT (maskbits));
      break;
    case 64:
      maskbits = (-1ll << (64 - width - start));
      if (start)
	maskbits += (1ll << (64 - start));
      emit_move_insn (mask, GEN_INT (maskbits));
      break;
    case 128:
      {
	unsigned char arr[16];
	int i = start / 8;
	memset (arr, 0, sizeof (arr));
	arr[i] = 0xff >> (start & 7);
	for (i++; i <= (start + width - 1) / 8; i++)
	  arr[i] = 0xff;
	arr[i - 1] &= 0xff << (7 - ((start + width - 1) & 7));
	emit_move_insn (mask, array_to_constant (TImode, arr));
      }
      break;
    default:
      abort ();
    }
  if (GET_CODE (ops[0]) == MEM)
    {
      rtx low = gen_reg_rtx (SImode);
      rtx rotl = gen_reg_rtx (SImode);
      rtx mask0 = gen_reg_rtx (TImode);
      rtx addr;
      rtx addr0;
      rtx addr1;
      rtx mem;

      addr = force_reg (Pmode, XEXP (ops[0], 0));
      addr0 = gen_rtx_AND (Pmode, addr, GEN_INT (-16));
      emit_insn (gen_andsi3 (low, addr, GEN_INT (15)));
      emit_insn (gen_negsi2 (rotl, low));
      emit_insn (gen_rotqby_ti (shift_reg, shift_reg, rotl));
      emit_insn (gen_rotqmby_ti (mask0, mask, rotl));
      mem = change_address (ops[0], TImode, addr0);
      set_mem_alias_set (mem, 0);
      emit_move_insn (dst, mem);
      emit_insn (gen_selb (dst, dst, shift_reg, mask0));
      if (start + width > MEM_ALIGN (ops[0]))
	{
	  rtx shl = gen_reg_rtx (SImode);
	  rtx mask1 = gen_reg_rtx (TImode);
	  rtx dst1 = gen_reg_rtx (TImode);
	  rtx mem1;
	  addr1 = plus_constant (Pmode, addr, 16);
	  addr1 = gen_rtx_AND (Pmode, addr1, GEN_INT (-16));
	  emit_insn (gen_subsi3 (shl, GEN_INT (16), low));
	  emit_insn (gen_shlqby_ti (mask1, mask, shl));
	  mem1 = change_address (ops[0], TImode, addr1);
	  set_mem_alias_set (mem1, 0);
	  emit_move_insn (dst1, mem1);
	  emit_insn (gen_selb (dst1, dst1, shift_reg, mask1));
	  emit_move_insn (mem1, dst1);
	}
      emit_move_insn (mem, dst);
    }
  else
    emit_insn (gen_selb (dst, copy_rtx (dst), shift_reg, mask));
}


int
spu_expand_block_move (rtx ops[])
{
  HOST_WIDE_INT bytes, align, offset;
  rtx src, dst, sreg, dreg, target;
  int i;
  if (GET_CODE (ops[2]) != CONST_INT
      || GET_CODE (ops[3]) != CONST_INT
      || INTVAL (ops[2]) > (HOST_WIDE_INT) (MOVE_RATIO (optimize_insn_for_speed_p ()) * 8))
    return 0;

  bytes = INTVAL (ops[2]);
  align = INTVAL (ops[3]);

  if (bytes <= 0)
    return 1;

  dst = ops[0];
  src = ops[1];

  if (align == 16)
    {
      for (offset = 0; offset + 16 <= bytes; offset += 16)
	{
	  dst = adjust_address (ops[0], V16QImode, offset);
	  src = adjust_address (ops[1], V16QImode, offset);
	  emit_move_insn (dst, src);
	}
      if (offset < bytes)
	{
	  rtx mask;
	  unsigned char arr[16] = { 0 };
	  for (i = 0; i < bytes - offset; i++)
	    arr[i] = 0xff;
	  dst = adjust_address (ops[0], V16QImode, offset);
	  src = adjust_address (ops[1], V16QImode, offset);
	  mask = gen_reg_rtx (V16QImode);
	  sreg = gen_reg_rtx (V16QImode);
	  dreg = gen_reg_rtx (V16QImode);
	  target = gen_reg_rtx (V16QImode);
	  emit_move_insn (mask, array_to_constant (V16QImode, arr));
	  emit_move_insn (dreg, dst);
	  emit_move_insn (sreg, src);
	  emit_insn (gen_selb (target, dreg, sreg, mask));
	  emit_move_insn (dst, target);
	}
      return 1;
    }
  return 0;
}

enum spu_comp_code
{ SPU_EQ, SPU_GT, SPU_GTU };

int spu_comp_icode[12][3] = {
 {CODE_FOR_ceq_qi, CODE_FOR_cgt_qi, CODE_FOR_clgt_qi},
 {CODE_FOR_ceq_hi, CODE_FOR_cgt_hi, CODE_FOR_clgt_hi},
 {CODE_FOR_ceq_si, CODE_FOR_cgt_si, CODE_FOR_clgt_si},
 {CODE_FOR_ceq_di, CODE_FOR_cgt_di, CODE_FOR_clgt_di},
 {CODE_FOR_ceq_ti, CODE_FOR_cgt_ti, CODE_FOR_clgt_ti},
 {CODE_FOR_ceq_sf, CODE_FOR_cgt_sf, 0},
 {CODE_FOR_ceq_df, CODE_FOR_cgt_df, 0},
 {CODE_FOR_ceq_v16qi, CODE_FOR_cgt_v16qi, CODE_FOR_clgt_v16qi},
 {CODE_FOR_ceq_v8hi,  CODE_FOR_cgt_v8hi,  CODE_FOR_clgt_v8hi},
 {CODE_FOR_ceq_v4si,  CODE_FOR_cgt_v4si,  CODE_FOR_clgt_v4si},
 {CODE_FOR_ceq_v4sf,  CODE_FOR_cgt_v4sf, 0},
 {CODE_FOR_ceq_v2df,  CODE_FOR_cgt_v2df, 0},
};

/* Generate a compare for CODE.  Return a brand-new rtx that represents
   the result of the compare.   GCC can figure this out too if we don't
   provide all variations of compares, but GCC always wants to use
   WORD_MODE, we can generate better code in most cases if we do it
   ourselves.  */
void
spu_emit_branch_or_set (int is_set, rtx cmp, rtx operands[])
{
  int reverse_compare = 0;
  int reverse_test = 0;
  rtx compare_result, eq_result;
  rtx comp_rtx, eq_rtx;
  enum machine_mode comp_mode;
  enum machine_mode op_mode;
  enum spu_comp_code scode, eq_code;
  enum insn_code ior_code;
  enum rtx_code code = GET_CODE (cmp);
  rtx op0 = XEXP (cmp, 0);
  rtx op1 = XEXP (cmp, 1);
  int index;
  int eq_test = 0;

  /* When op1 is a CONST_INT change (X >= C) to (X > C-1),
     and so on, to keep the constant in operand 1. */
  if (GET_CODE (op1) == CONST_INT)
    {
      HOST_WIDE_INT val = INTVAL (op1) - 1;
      if (trunc_int_for_mode (val, GET_MODE (op0)) == val)
	switch (code)
	  {
	  case GE:
	    op1 = GEN_INT (val);
	    code = GT;
	    break;
	  case LT:
	    op1 = GEN_INT (val);
	    code = LE;
	    break;
	  case GEU:
	    op1 = GEN_INT (val);
	    code = GTU;
	    break;
	  case LTU:
	    op1 = GEN_INT (val);
	    code = LEU;
	    break;
	  default:
	    break;
	  }
    }

  /* However, if we generate an integer result, performing a reverse test
     would require an extra negation, so avoid that where possible.  */
  if (GET_CODE (op1) == CONST_INT && is_set == 1)
    {
      HOST_WIDE_INT val = INTVAL (op1) + 1;
      if (trunc_int_for_mode (val, GET_MODE (op0)) == val)
	switch (code)
	  {
	  case LE:
	    op1 = GEN_INT (val);
	    code = LT;
	    break;
	  case LEU:
	    op1 = GEN_INT (val);
	    code = LTU;
	    break;
	  default:
	    break;
	  }
    }

  comp_mode = SImode;
  op_mode = GET_MODE (op0);

  switch (code)
    {
    case GE:
      scode = SPU_GT;
      if (HONOR_NANS (op_mode))
	{
	  reverse_compare = 0;
	  reverse_test = 0;
	  eq_test = 1;
	  eq_code = SPU_EQ;
	}
      else
	{
	  reverse_compare = 1;
	  reverse_test = 1;
	}
      break;
    case LE:
      scode = SPU_GT;
      if (HONOR_NANS (op_mode))
	{
	  reverse_compare = 1;
	  reverse_test = 0;
	  eq_test = 1;
	  eq_code = SPU_EQ;
	}
      else
	{
	  reverse_compare = 0;
	  reverse_test = 1;
	}
      break;
    case LT:
      reverse_compare = 1;
      reverse_test = 0;
      scode = SPU_GT;
      break;
    case GEU:
      reverse_compare = 1;
      reverse_test = 1;
      scode = SPU_GTU;
      break;
    case LEU:
      reverse_compare = 0;
      reverse_test = 1;
      scode = SPU_GTU;
      break;
    case LTU:
      reverse_compare = 1;
      reverse_test = 0;
      scode = SPU_GTU;
      break;
    case NE:
      reverse_compare = 0;
      reverse_test = 1;
      scode = SPU_EQ;
      break;

    case EQ:
      scode = SPU_EQ;
      break;
    case GT:
      scode = SPU_GT;
      break;
    case GTU:
      scode = SPU_GTU;
      break;
    default:
      scode = SPU_EQ;
      break;
    }

  switch (op_mode)
    {
    case QImode:
      index = 0;
      comp_mode = QImode;
      break;
    case HImode:
      index = 1;
      comp_mode = HImode;
      break;
    case SImode:
      index = 2;
      break;
    case DImode:
      index = 3;
      break;
    case TImode:
      index = 4;
      break;
    case SFmode:
      index = 5;
      break;
    case DFmode:
      index = 6;
      break;
    case V16QImode:
      index = 7;
      comp_mode = op_mode;
      break;
    case V8HImode:
      index = 8;
      comp_mode = op_mode;
      break;
    case V4SImode:
      index = 9;
      comp_mode = op_mode;
      break;
    case V4SFmode:
      index = 10;
      comp_mode = V4SImode;
      break;
    case V2DFmode:
      index = 11;
      comp_mode = V2DImode;
      break;
    case V2DImode:
    default:
      abort ();
    }

  if (GET_MODE (op1) == DFmode
      && (scode != SPU_GT && scode != SPU_EQ))
    abort ();

  if (is_set == 0 && op1 == const0_rtx
      && (GET_MODE (op0) == SImode
	  || GET_MODE (op0) == HImode
	  || GET_MODE (op0) == QImode) && scode == SPU_EQ)
    {
      /* Don't need to set a register with the result when we are 
         comparing against zero and branching. */
      reverse_test = !reverse_test;
      compare_result = op0;
    }
  else
    {
      compare_result = gen_reg_rtx (comp_mode);

      if (reverse_compare)
	{
	  rtx t = op1;
	  op1 = op0;
	  op0 = t;
	}

      if (spu_comp_icode[index][scode] == 0)
	abort ();

      if (!(*insn_data[spu_comp_icode[index][scode]].operand[1].predicate)
	  (op0, op_mode))
	op0 = force_reg (op_mode, op0);
      if (!(*insn_data[spu_comp_icode[index][scode]].operand[2].predicate)
	  (op1, op_mode))
	op1 = force_reg (op_mode, op1);
      comp_rtx = GEN_FCN (spu_comp_icode[index][scode]) (compare_result,
							 op0, op1);
      if (comp_rtx == 0)
	abort ();
      emit_insn (comp_rtx);

      if (eq_test)
        {
          eq_result = gen_reg_rtx (comp_mode);
          eq_rtx = GEN_FCN (spu_comp_icode[index][eq_code]) (eq_result,
							     op0, op1);
          if (eq_rtx == 0)
	    abort ();
          emit_insn (eq_rtx);
          ior_code = optab_handler (ior_optab, comp_mode);
          gcc_assert (ior_code != CODE_FOR_nothing);
          emit_insn (GEN_FCN (ior_code)
		     (compare_result, compare_result, eq_result));
        }
    }

  if (is_set == 0)
    {
      rtx bcomp;
      rtx loc_ref;

      /* We don't have branch on QI compare insns, so we convert the
         QI compare result to a HI result. */
      if (comp_mode == QImode)
	{
	  rtx old_res = compare_result;
	  compare_result = gen_reg_rtx (HImode);
	  comp_mode = HImode;
	  emit_insn (gen_extendqihi2 (compare_result, old_res));
	}

      if (reverse_test)
	bcomp = gen_rtx_EQ (comp_mode, compare_result, const0_rtx);
      else
	bcomp = gen_rtx_NE (comp_mode, compare_result, const0_rtx);

      loc_ref = gen_rtx_LABEL_REF (VOIDmode, operands[3]);
      emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx,
				   gen_rtx_IF_THEN_ELSE (VOIDmode, bcomp,
							 loc_ref, pc_rtx)));
    }
  else if (is_set == 2)
    {
      rtx target = operands[0];
      int compare_size = GET_MODE_BITSIZE (comp_mode);
      int target_size = GET_MODE_BITSIZE (GET_MODE (target));
      enum machine_mode mode = mode_for_size (target_size, MODE_INT, 0);
      rtx select_mask;
      rtx op_t = operands[2];
      rtx op_f = operands[3];

      /* The result of the comparison can be SI, HI or QI mode.  Create a
         mask based on that result. */
      if (target_size > compare_size)
	{
	  select_mask = gen_reg_rtx (mode);
	  emit_insn (gen_extend_compare (select_mask, compare_result));
	}
      else if (target_size < compare_size)
	select_mask =
	  gen_rtx_SUBREG (mode, compare_result,
			  (compare_size - target_size) / BITS_PER_UNIT);
      else if (comp_mode != mode)
	select_mask = gen_rtx_SUBREG (mode, compare_result, 0);
      else
	select_mask = compare_result;

      if (GET_MODE (target) != GET_MODE (op_t)
	  || GET_MODE (target) != GET_MODE (op_f))
	abort ();

      if (reverse_test)
	emit_insn (gen_selb (target, op_t, op_f, select_mask));
      else
	emit_insn (gen_selb (target, op_f, op_t, select_mask));
    }
  else
    {
      rtx target = operands[0];
      if (reverse_test)
	emit_insn (gen_rtx_SET (VOIDmode, compare_result,
				gen_rtx_NOT (comp_mode, compare_result)));
      if (GET_MODE (target) == SImode && GET_MODE (compare_result) == HImode)
	emit_insn (gen_extendhisi2 (target, compare_result));
      else if (GET_MODE (target) == SImode
	       && GET_MODE (compare_result) == QImode)
	emit_insn (gen_extend_compare (target, compare_result));
      else
	emit_move_insn (target, compare_result);
    }
}

HOST_WIDE_INT
const_double_to_hwint (rtx x)
{
  HOST_WIDE_INT val;
  REAL_VALUE_TYPE rv;
  if (GET_MODE (x) == SFmode)
    {
      REAL_VALUE_FROM_CONST_DOUBLE (rv, x);
      REAL_VALUE_TO_TARGET_SINGLE (rv, val);
    }
  else if (GET_MODE (x) == DFmode)
    {
      long l[2];
      REAL_VALUE_FROM_CONST_DOUBLE (rv, x);
      REAL_VALUE_TO_TARGET_DOUBLE (rv, l);
      val = l[0];
      val = (val << 32) | (l[1] & 0xffffffff);
    }
  else
    abort ();
  return val;
}

rtx
hwint_to_const_double (enum machine_mode mode, HOST_WIDE_INT v)
{
  long tv[2];
  REAL_VALUE_TYPE rv;
  gcc_assert (mode == SFmode || mode == DFmode);

  if (mode == SFmode)
    tv[0] = (v << 32) >> 32;
  else if (mode == DFmode)
    {
      tv[1] = (v << 32) >> 32;
      tv[0] = v >> 32;
    }
  real_from_target (&rv, tv, mode);
  return CONST_DOUBLE_FROM_REAL_VALUE (rv, mode);
}

void
print_operand_address (FILE * file, register rtx addr)
{
  rtx reg;
  rtx offset;

  if (GET_CODE (addr) == AND
      && GET_CODE (XEXP (addr, 1)) == CONST_INT
      && INTVAL (XEXP (addr, 1)) == -16)
    addr = XEXP (addr, 0);

  switch (GET_CODE (addr))
    {
    case REG:
      fprintf (file, "0(%s)", reg_names[REGNO (addr)]);
      break;

    case PLUS:
      reg = XEXP (addr, 0);
      offset = XEXP (addr, 1);
      if (GET_CODE (offset) == REG)
	{
	  fprintf (file, "%s,%s", reg_names[REGNO (reg)],
		   reg_names[REGNO (offset)]);
	}
      else if (GET_CODE (offset) == CONST_INT)
	{
	  fprintf (file, HOST_WIDE_INT_PRINT_DEC "(%s)",
		   INTVAL (offset), reg_names[REGNO (reg)]);
	}
      else
	abort ();
      break;

    case CONST:
    case LABEL_REF:
    case SYMBOL_REF:
    case CONST_INT:
      output_addr_const (file, addr);
      break;

    default:
      debug_rtx (addr);
      abort ();
    }
}

void
print_operand (FILE * file, rtx x, int code)
{
  enum machine_mode mode = GET_MODE (x);
  HOST_WIDE_INT val;
  unsigned char arr[16];
  int xcode = GET_CODE (x);
  int i, info;
  if (GET_MODE (x) == VOIDmode)
    switch (code)
      {
      case 'L':			/* 128 bits, signed */
      case 'm':			/* 128 bits, signed */
      case 'T':			/* 128 bits, signed */
      case 't':			/* 128 bits, signed */
	mode = TImode;
	break;
      case 'K':			/* 64 bits, signed */
      case 'k':			/* 64 bits, signed */
      case 'D':			/* 64 bits, signed */
      case 'd':			/* 64 bits, signed */
	mode = DImode;
	break;
      case 'J':			/* 32 bits, signed */
      case 'j':			/* 32 bits, signed */
      case 's':			/* 32 bits, signed */
      case 'S':			/* 32 bits, signed */
	mode = SImode;
	break;
      }
  switch (code)
    {

    case 'j':			/* 32 bits, signed */
    case 'k':			/* 64 bits, signed */
    case 'm':			/* 128 bits, signed */
      if (xcode == CONST_INT
	  || xcode == CONST_DOUBLE || xcode == CONST_VECTOR)
	{
	  gcc_assert (logical_immediate_p (x, mode));
	  constant_to_array (mode, x, arr);
	  val = (arr[0] << 24) | (arr[1] << 16) | (arr[2] << 8) | arr[3];
	  val = trunc_int_for_mode (val, SImode);
	  switch (which_logical_immediate (val))
	  {
	  case SPU_ORI:
	    break;
	  case SPU_ORHI:
	    fprintf (file, "h");
	    break;
	  case SPU_ORBI:
	    fprintf (file, "b");
	    break;
	  default:
	    gcc_unreachable();
	  }
	}
      else
	gcc_unreachable();
      return;

    case 'J':			/* 32 bits, signed */
    case 'K':			/* 64 bits, signed */
    case 'L':			/* 128 bits, signed */
      if (xcode == CONST_INT
	  || xcode == CONST_DOUBLE || xcode == CONST_VECTOR)
	{
	  gcc_assert (logical_immediate_p (x, mode)
		      || iohl_immediate_p (x, mode));
	  constant_to_array (mode, x, arr);
	  val = (arr[0] << 24) | (arr[1] << 16) | (arr[2] << 8) | arr[3];
	  val = trunc_int_for_mode (val, SImode);
	  switch (which_logical_immediate (val))
	  {
	  case SPU_ORI:
	  case SPU_IOHL:
	    break;
	  case SPU_ORHI:
	    val = trunc_int_for_mode (val, HImode);
	    break;
	  case SPU_ORBI:
	    val = trunc_int_for_mode (val, QImode);
	    break;
	  default:
	    gcc_unreachable();
	  }
	  fprintf (file, HOST_WIDE_INT_PRINT_DEC, val);
	}
      else
	gcc_unreachable();
      return;

    case 't':			/* 128 bits, signed */
    case 'd':			/* 64 bits, signed */
    case 's':			/* 32 bits, signed */
      if (CONSTANT_P (x))
	{
	  enum immediate_class c = classify_immediate (x, mode);
	  switch (c)
	    {
	    case IC_IL1:
	      constant_to_array (mode, x, arr);
	      val = (arr[0] << 24) | (arr[1] << 16) | (arr[2] << 8) | arr[3];
	      val = trunc_int_for_mode (val, SImode);
	      switch (which_immediate_load (val))
		{
		case SPU_IL:
		  break;
		case SPU_ILA:
		  fprintf (file, "a");
		  break;
		case SPU_ILH:
		  fprintf (file, "h");
		  break;
		case SPU_ILHU:
		  fprintf (file, "hu");
		  break;
		default:
		  gcc_unreachable ();
		}
	      break;
	    case IC_CPAT:
	      constant_to_array (mode, x, arr);
	      cpat_info (arr, GET_MODE_SIZE (mode), &info, 0);
	      if (info == 1)
		fprintf (file, "b");
	      else if (info == 2)
		fprintf (file, "h");
	      else if (info == 4)
		fprintf (file, "w");
	      else if (info == 8)
		fprintf (file, "d");
	      break;
	    case IC_IL1s:
	      if (xcode == CONST_VECTOR)
		{
		  x = CONST_VECTOR_ELT (x, 0);
		  xcode = GET_CODE (x);
		}
	      if (xcode == SYMBOL_REF || xcode == LABEL_REF || xcode == CONST)
		fprintf (file, "a");
	      else if (xcode == HIGH)
		fprintf (file, "hu");
	      break;
	    case IC_FSMBI:
	    case IC_FSMBI2:
	    case IC_IL2:
	    case IC_IL2s:
	    case IC_POOL:
	      abort ();
	    }
	}
      else
	gcc_unreachable ();
      return;

    case 'T':			/* 128 bits, signed */
    case 'D':			/* 64 bits, signed */
    case 'S':			/* 32 bits, signed */
      if (CONSTANT_P (x))
	{
	  enum immediate_class c = classify_immediate (x, mode);
	  switch (c)
	    {
	    case IC_IL1:
	      constant_to_array (mode, x, arr);
	      val = (arr[0] << 24) | (arr[1] << 16) | (arr[2] << 8) | arr[3];
	      val = trunc_int_for_mode (val, SImode);
	      switch (which_immediate_load (val))
		{
		case SPU_IL:
		case SPU_ILA:
		  break;
		case SPU_ILH:
		case SPU_ILHU:
		  val = trunc_int_for_mode (((arr[0] << 8) | arr[1]), HImode);
		  break;
		default:
		  gcc_unreachable ();
		}
	      fprintf (file, HOST_WIDE_INT_PRINT_DEC, val);
	      break;
	    case IC_FSMBI:
	      constant_to_array (mode, x, arr);
	      val = 0;
	      for (i = 0; i < 16; i++)
		{
		  val <<= 1;
		  val |= arr[i] & 1;
		}
	      print_operand (file, GEN_INT (val), 0);
	      break;
	    case IC_CPAT:
	      constant_to_array (mode, x, arr);
	      cpat_info (arr, GET_MODE_SIZE (mode), 0, &info);
	      fprintf (file, HOST_WIDE_INT_PRINT_DEC, (HOST_WIDE_INT)info);
	      break;
	    case IC_IL1s:
	      if (xcode == HIGH)
		x = XEXP (x, 0);
	      if (GET_CODE (x) == CONST_VECTOR)
		x = CONST_VECTOR_ELT (x, 0);
	      output_addr_const (file, x);
	      if (xcode == HIGH)
		fprintf (file, "@h");
	      break;
	    case IC_IL2:
	    case IC_IL2s:
	    case IC_FSMBI2:
	    case IC_POOL:
	      abort ();
	    }
	}
      else
	gcc_unreachable ();
      return;

    case 'C':
      if (xcode == CONST_INT)
	{
	  /* Only 4 least significant bits are relevant for generate
	     control word instructions. */
	  fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x) & 15);
	  return;
	}
      break;

    case 'M':			/* print code for c*d */
      if (GET_CODE (x) == CONST_INT)
	switch (INTVAL (x))
	  {
	  case 1:
	    fprintf (file, "b");
	    break;
	  case 2:
	    fprintf (file, "h");
	    break;
	  case 4:
	    fprintf (file, "w");
	    break;
	  case 8:
	    fprintf (file, "d");
	    break;
	  default:
	    gcc_unreachable();
	  }
      else
	gcc_unreachable();
      return;

    case 'N':			/* Negate the operand */
      if (xcode == CONST_INT)
	fprintf (file, HOST_WIDE_INT_PRINT_DEC, -INTVAL (x));
      else if (xcode == CONST_VECTOR)
	fprintf (file, HOST_WIDE_INT_PRINT_DEC,
		 -INTVAL (CONST_VECTOR_ELT (x, 0)));
      return;

    case 'I':			/* enable/disable interrupts */
      if (xcode == CONST_INT)
	fprintf (file, "%s",  INTVAL (x) == 0 ? "d" : "e");
      return;

    case 'b':			/* branch modifiers */
      if (xcode == REG)
	fprintf (file, "%s", GET_MODE (x) == HImode ? "h" : "");
      else if (COMPARISON_P (x))
	fprintf (file, "%s", xcode == NE ? "n" : "");
      return;

    case 'i':			/* indirect call */
      if (xcode == MEM)
	{
	  if (GET_CODE (XEXP (x, 0)) == REG)
	    /* Used in indirect function calls. */
	    fprintf (file, "%s", reg_names[REGNO (XEXP (x, 0))]);
	  else
	    output_address (XEXP (x, 0));
	}
      return;

    case 'p':			/* load/store */
      if (xcode == MEM)
	{
	  x = XEXP (x, 0);
	  xcode = GET_CODE (x);
	}
      if (xcode == AND)
	{
	  x = XEXP (x, 0);
	  xcode = GET_CODE (x);
	}
      if (xcode == REG)
	fprintf (file, "d");
      else if (xcode == CONST_INT)
	fprintf (file, "a");
      else if (xcode == CONST || xcode == SYMBOL_REF || xcode == LABEL_REF)
	fprintf (file, "r");
      else if (xcode == PLUS || xcode == LO_SUM)
	{
	  if (GET_CODE (XEXP (x, 1)) == REG)
	    fprintf (file, "x");
	  else
	    fprintf (file, "d");
	}
      return;

    case 'e':
      val = xcode == CONST_INT ? INTVAL (x) : INTVAL (CONST_VECTOR_ELT (x, 0));
      val &= 0x7;
      output_addr_const (file, GEN_INT (val));
      return;

    case 'f':
      val = xcode == CONST_INT ? INTVAL (x) : INTVAL (CONST_VECTOR_ELT (x, 0));
      val &= 0x1f;
      output_addr_const (file, GEN_INT (val));
      return;

    case 'g':
      val = xcode == CONST_INT ? INTVAL (x) : INTVAL (CONST_VECTOR_ELT (x, 0));
      val &= 0x3f;
      output_addr_const (file, GEN_INT (val));
      return;

    case 'h':
      val = xcode == CONST_INT ? INTVAL (x) : INTVAL (CONST_VECTOR_ELT (x, 0));
      val = (val >> 3) & 0x1f;
      output_addr_const (file, GEN_INT (val));
      return;

    case 'E':
      val = xcode == CONST_INT ? INTVAL (x) : INTVAL (CONST_VECTOR_ELT (x, 0));
      val = -val;
      val &= 0x7;
      output_addr_const (file, GEN_INT (val));
      return;

    case 'F':
      val = xcode == CONST_INT ? INTVAL (x) : INTVAL (CONST_VECTOR_ELT (x, 0));
      val = -val;
      val &= 0x1f;
      output_addr_const (file, GEN_INT (val));
      return;

    case 'G':
      val = xcode == CONST_INT ? INTVAL (x) : INTVAL (CONST_VECTOR_ELT (x, 0));
      val = -val;
      val &= 0x3f;
      output_addr_const (file, GEN_INT (val));
      return;

    case 'H':
      val = xcode == CONST_INT ? INTVAL (x) : INTVAL (CONST_VECTOR_ELT (x, 0));
      val = -(val & -8ll);
      val = (val >> 3) & 0x1f;
      output_addr_const (file, GEN_INT (val));
      return;

    case 'v':
    case 'w':
      constant_to_array (mode, x, arr);
      val = (((arr[0] << 1) + (arr[1] >> 7)) & 0xff) - 127;
      output_addr_const (file, GEN_INT (code == 'w' ? -val : val));
      return;

    case 0:
      if (xcode == REG)
	fprintf (file, "%s", reg_names[REGNO (x)]);
      else if (xcode == MEM)
	output_address (XEXP (x, 0));
      else if (xcode == CONST_VECTOR)
	print_operand (file, CONST_VECTOR_ELT (x, 0), 0);
      else
	output_addr_const (file, x);
      return;

      /* unused letters
	              o qr  u   yz
	AB            OPQR  UVWXYZ */
    default:
      output_operand_lossage ("invalid %%xn code");
    }
  gcc_unreachable ();
}

/* For PIC mode we've reserved PIC_OFFSET_TABLE_REGNUM, which is a
   caller saved register.  For leaf functions it is more efficient to
   use a volatile register because we won't need to save and restore the
   pic register.  This routine is only valid after register allocation
   is completed, so we can pick an unused register.  */
static rtx
get_pic_reg (void)
{
  if (!reload_completed && !reload_in_progress)
    abort ();

  /* If we've already made the decision, we need to keep with it.  Once we've
     decided to use LAST_ARG_REGNUM, future calls to df_regs_ever_live_p may
     return true since the register is now live; this should not cause us to
     "switch back" to using pic_offset_table_rtx.  */
  if (!cfun->machine->pic_reg)
    {
      if (crtl->is_leaf && !df_regs_ever_live_p (LAST_ARG_REGNUM))
	cfun->machine->pic_reg = gen_rtx_REG (SImode, LAST_ARG_REGNUM);
      else
	cfun->machine->pic_reg = pic_offset_table_rtx;
    }

  return cfun->machine->pic_reg;
}

/* Split constant addresses to handle cases that are too large. 
   Add in the pic register when in PIC mode.
   Split immediates that require more than 1 instruction. */
int
spu_split_immediate (rtx * ops)
{
  enum machine_mode mode = GET_MODE (ops[0]);
  enum immediate_class c = classify_immediate (ops[1], mode);

  switch (c)
    {
    case IC_IL2:
      {
	unsigned char arrhi[16];
	unsigned char arrlo[16];
	rtx to, temp, hi, lo;
	int i;
	enum machine_mode imode = mode;
	/* We need to do reals as ints because the constant used in the
	   IOR might not be a legitimate real constant. */
	imode = int_mode_for_mode (mode);
	constant_to_array (mode, ops[1], arrhi);
	if (imode != mode)
	  to = simplify_gen_subreg (imode, ops[0], mode, 0);
	else
	  to = ops[0];
	temp = !can_create_pseudo_p () ? to : gen_reg_rtx (imode);
	for (i = 0; i < 16; i += 4)
	  {
	    arrlo[i + 2] = arrhi[i + 2];
	    arrlo[i + 3] = arrhi[i + 3];
	    arrlo[i + 0] = arrlo[i + 1] = 0;
	    arrhi[i + 2] = arrhi[i + 3] = 0;
	  }
	hi = array_to_constant (imode, arrhi);
	lo = array_to_constant (imode, arrlo);
	emit_move_insn (temp, hi);
	emit_insn (gen_rtx_SET
		   (VOIDmode, to, gen_rtx_IOR (imode, temp, lo)));
	return 1;
      }
    case IC_FSMBI2:
      {
	unsigned char arr_fsmbi[16];
	unsigned char arr_andbi[16];
	rtx to, reg_fsmbi, reg_and;
	int i;
	enum machine_mode imode = mode;
	/* We need to do reals as ints because the constant used in the
	 * AND might not be a legitimate real constant. */
	imode = int_mode_for_mode (mode);
	constant_to_array (mode, ops[1], arr_fsmbi);
	if (imode != mode)
	  to = simplify_gen_subreg(imode, ops[0], GET_MODE (ops[0]), 0);
	else
	  to = ops[0];
	for (i = 0; i < 16; i++)
	  if (arr_fsmbi[i] != 0)
	    {
	      arr_andbi[0] = arr_fsmbi[i];
	      arr_fsmbi[i] = 0xff;
	    }
	for (i = 1; i < 16; i++)
	  arr_andbi[i] = arr_andbi[0];
	reg_fsmbi = array_to_constant (imode, arr_fsmbi);
	reg_and = array_to_constant (imode, arr_andbi);
	emit_move_insn (to, reg_fsmbi);
	emit_insn (gen_rtx_SET
		   (VOIDmode, to, gen_rtx_AND (imode, to, reg_and)));
	return 1;
      }
    case IC_POOL:
      if (reload_in_progress || reload_completed)
	{
	  rtx mem = force_const_mem (mode, ops[1]);
	  if (TARGET_LARGE_MEM)
	    {
	      rtx addr = gen_rtx_REG (Pmode, REGNO (ops[0]));
	      emit_move_insn (addr, XEXP (mem, 0));
	      mem = replace_equiv_address (mem, addr);
	    }
	  emit_move_insn (ops[0], mem);
	  return 1;
	}
      break;
    case IC_IL1s:
    case IC_IL2s:
      if (reload_completed && GET_CODE (ops[1]) != HIGH)
	{
	  if (c == IC_IL2s)
	    {
	      emit_move_insn (ops[0], gen_rtx_HIGH (mode, ops[1]));
	      emit_move_insn (ops[0], gen_rtx_LO_SUM (mode, ops[0], ops[1]));
	    }
	  else if (flag_pic)
	    emit_insn (gen_pic (ops[0], ops[1]));
	  if (flag_pic)
	    {
	      rtx pic_reg = get_pic_reg ();
	      emit_insn (gen_addsi3 (ops[0], ops[0], pic_reg));
	    }
	  return flag_pic || c == IC_IL2s;
	}
      break;
    case IC_IL1:
    case IC_FSMBI:
    case IC_CPAT:
      break;
    }
  return 0;
}

/* SAVING is TRUE when we are generating the actual load and store
   instructions for REGNO.  When determining the size of the stack
   needed for saving register we must allocate enough space for the
   worst case, because we don't always have the information early enough
   to not allocate it.  But we can at least eliminate the actual loads
   and stores during the prologue/epilogue.  */
static int
need_to_save_reg (int regno, int saving)
{
  if (df_regs_ever_live_p (regno) && !call_used_regs[regno])
    return 1;
  if (flag_pic
      && regno == PIC_OFFSET_TABLE_REGNUM
      && (!saving || cfun->machine->pic_reg == pic_offset_table_rtx))
    return 1;
  return 0;
}

/* This function is only correct starting with local register
   allocation */
int
spu_saved_regs_size (void)
{
  int reg_save_size = 0;
  int regno;

  for (regno = FIRST_PSEUDO_REGISTER - 1; regno >= 0; --regno)
    if (need_to_save_reg (regno, 0))
      reg_save_size += 0x10;
  return reg_save_size;
}

static rtx
frame_emit_store (int regno, rtx addr, HOST_WIDE_INT offset)
{
  rtx reg = gen_rtx_REG (V4SImode, regno);
  rtx mem =
    gen_frame_mem (V4SImode, gen_rtx_PLUS (Pmode, addr, GEN_INT (offset)));
  return emit_insn (gen_movv4si (mem, reg));
}

static rtx
frame_emit_load (int regno, rtx addr, HOST_WIDE_INT offset)
{
  rtx reg = gen_rtx_REG (V4SImode, regno);
  rtx mem =
    gen_frame_mem (V4SImode, gen_rtx_PLUS (Pmode, addr, GEN_INT (offset)));
  return emit_insn (gen_movv4si (reg, mem));
}

/* This happens after reload, so we need to expand it.  */
static rtx
frame_emit_add_imm (rtx dst, rtx src, HOST_WIDE_INT imm, rtx scratch)
{
  rtx insn;
  if (satisfies_constraint_K (GEN_INT (imm)))
    {
      insn = emit_insn (gen_addsi3 (dst, src, GEN_INT (imm)));
    }
  else
    {
      emit_insn (gen_movsi (scratch, gen_int_mode (imm, SImode)));
      insn = emit_insn (gen_addsi3 (dst, src, scratch));
      if (REGNO (src) == REGNO (scratch))
	abort ();
    }
  return insn;
}

/* Return nonzero if this function is known to have a null epilogue.  */

int
direct_return (void)
{
  if (reload_completed)
    {
      if (cfun->static_chain_decl == 0
	  && (spu_saved_regs_size ()
	      + get_frame_size ()
	      + crtl->outgoing_args_size
	      + crtl->args.pretend_args_size == 0)
	  && crtl->is_leaf)
	return 1;
    }
  return 0;
}

/*
   The stack frame looks like this:
         +-------------+
         |  incoming   | 
         |    args     | 
   AP -> +-------------+
         | $lr save    |
         +-------------+
 prev SP | back chain  | 
         +-------------+
         |  var args   | 
         |  reg save   | crtl->args.pretend_args_size bytes
         +-------------+
         |    ...      | 
         | saved regs  | spu_saved_regs_size() bytes
   FP -> +-------------+
         |    ...      | 
         |   vars      | get_frame_size()  bytes
  HFP -> +-------------+
         |    ...      | 
         |  outgoing   | 
         |    args     | crtl->outgoing_args_size bytes
         +-------------+
         | $lr of next |
         |   frame     | 
         +-------------+
         | back chain  | 
   SP -> +-------------+

*/
void
spu_expand_prologue (void)
{
  HOST_WIDE_INT size = get_frame_size (), offset, regno;
  HOST_WIDE_INT total_size;
  HOST_WIDE_INT saved_regs_size;
  rtx sp_reg = gen_rtx_REG (Pmode, STACK_POINTER_REGNUM);
  rtx scratch_reg_0, scratch_reg_1;
  rtx insn, real;

  if (flag_pic && optimize == 0 && !cfun->machine->pic_reg)
    cfun->machine->pic_reg = pic_offset_table_rtx;

  if (spu_naked_function_p (current_function_decl))
    return;

  scratch_reg_0 = gen_rtx_REG (SImode, LAST_ARG_REGNUM + 1);
  scratch_reg_1 = gen_rtx_REG (SImode, LAST_ARG_REGNUM + 2);

  saved_regs_size = spu_saved_regs_size ();
  total_size = size + saved_regs_size
    + crtl->outgoing_args_size
    + crtl->args.pretend_args_size;

  if (!crtl->is_leaf
      || cfun->calls_alloca || total_size > 0)
    total_size += STACK_POINTER_OFFSET;

  /* Save this first because code after this might use the link
     register as a scratch register. */
  if (!crtl->is_leaf)
    {
      insn = frame_emit_store (LINK_REGISTER_REGNUM, sp_reg, 16);
      RTX_FRAME_RELATED_P (insn) = 1;
    }

  if (total_size > 0)
    {
      offset = -crtl->args.pretend_args_size;
      for (regno = 0; regno < FIRST_PSEUDO_REGISTER; ++regno)
	if (need_to_save_reg (regno, 1))
	  {
	    offset -= 16;
	    insn = frame_emit_store (regno, sp_reg, offset);
	    RTX_FRAME_RELATED_P (insn) = 1;
	  }
    }

  if (flag_pic && cfun->machine->pic_reg)
    {
      rtx pic_reg = cfun->machine->pic_reg;
      insn = emit_insn (gen_load_pic_offset (pic_reg, scratch_reg_0));
      insn = emit_insn (gen_subsi3 (pic_reg, pic_reg, scratch_reg_0));
    }

  if (total_size > 0)
    {
      if (flag_stack_check)
	{
	  /* We compare against total_size-1 because
	     ($sp >= total_size) <=> ($sp > total_size-1) */
	  rtx scratch_v4si = gen_rtx_REG (V4SImode, REGNO (scratch_reg_0));
	  rtx sp_v4si = gen_rtx_REG (V4SImode, STACK_POINTER_REGNUM);
	  rtx size_v4si = spu_const (V4SImode, total_size - 1);
	  if (!satisfies_constraint_K (GEN_INT (total_size - 1)))
	    {
	      emit_move_insn (scratch_v4si, size_v4si);
	      size_v4si = scratch_v4si;
	    }
	  emit_insn (gen_cgt_v4si (scratch_v4si, sp_v4si, size_v4si));
	  emit_insn (gen_vec_extractv4si
		     (scratch_reg_0, scratch_v4si, GEN_INT (1)));
	  emit_insn (gen_spu_heq (scratch_reg_0, GEN_INT (0)));
	}

      /* Adjust the stack pointer, and make sure scratch_reg_0 contains
         the value of the previous $sp because we save it as the back
         chain. */
      if (total_size <= 2000)
	{
	  /* In this case we save the back chain first. */
	  insn = frame_emit_store (STACK_POINTER_REGNUM, sp_reg, -total_size);
	  insn =
	    frame_emit_add_imm (sp_reg, sp_reg, -total_size, scratch_reg_0);
	}
      else
	{
	  insn = emit_move_insn (scratch_reg_0, sp_reg);
	  insn =
	    frame_emit_add_imm (sp_reg, sp_reg, -total_size, scratch_reg_1);
	}
      RTX_FRAME_RELATED_P (insn) = 1;
      real = gen_addsi3 (sp_reg, sp_reg, GEN_INT (-total_size));
      add_reg_note (insn, REG_FRAME_RELATED_EXPR, real);

      if (total_size > 2000)
	{
	  /* Save the back chain ptr */
	  insn = frame_emit_store (REGNO (scratch_reg_0), sp_reg, 0);
	}

      if (frame_pointer_needed)
	{
	  rtx fp_reg = gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
	  HOST_WIDE_INT fp_offset = STACK_POINTER_OFFSET
	    + crtl->outgoing_args_size;
	  /* Set the new frame_pointer */
	  insn = frame_emit_add_imm (fp_reg, sp_reg, fp_offset, scratch_reg_0);
	  RTX_FRAME_RELATED_P (insn) = 1;
	  real = gen_addsi3 (fp_reg, sp_reg, GEN_INT (fp_offset));
	  add_reg_note (insn, REG_FRAME_RELATED_EXPR, real);
          REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
	}
    }

  if (flag_stack_usage_info)
    current_function_static_stack_size = total_size;
}

void
spu_expand_epilogue (bool sibcall_p)
{
  int size = get_frame_size (), offset, regno;
  HOST_WIDE_INT saved_regs_size, total_size;
  rtx sp_reg = gen_rtx_REG (Pmode, STACK_POINTER_REGNUM);
  rtx scratch_reg_0;

  if (spu_naked_function_p (current_function_decl))
    return;

  scratch_reg_0 = gen_rtx_REG (SImode, LAST_ARG_REGNUM + 1);

  saved_regs_size = spu_saved_regs_size ();
  total_size = size + saved_regs_size
    + crtl->outgoing_args_size
    + crtl->args.pretend_args_size;

  if (!crtl->is_leaf
      || cfun->calls_alloca || total_size > 0)
    total_size += STACK_POINTER_OFFSET;

  if (total_size > 0)
    {
      if (cfun->calls_alloca)
	frame_emit_load (STACK_POINTER_REGNUM, sp_reg, 0);
      else
	frame_emit_add_imm (sp_reg, sp_reg, total_size, scratch_reg_0);


      if (saved_regs_size > 0)
	{
	  offset = -crtl->args.pretend_args_size;
	  for (regno = 0; regno < FIRST_PSEUDO_REGISTER; ++regno)
	    if (need_to_save_reg (regno, 1))
	      {
		offset -= 0x10;
		frame_emit_load (regno, sp_reg, offset);
	      }
	}
    }

  if (!crtl->is_leaf)
    frame_emit_load (LINK_REGISTER_REGNUM, sp_reg, 16);

  if (!sibcall_p)
    {
      emit_use (gen_rtx_REG (SImode, LINK_REGISTER_REGNUM));
      emit_jump_insn (gen__return ());
    }
}

rtx
spu_return_addr (int count, rtx frame ATTRIBUTE_UNUSED)
{
  if (count != 0)
    return 0;
  /* This is inefficient because it ends up copying to a save-register
     which then gets saved even though $lr has already been saved.  But
     it does generate better code for leaf functions and we don't need
     to use RETURN_ADDRESS_POINTER_REGNUM to get it working.  It's only
     used for __builtin_return_address anyway, so maybe we don't care if
     it's inefficient. */
  return get_hard_reg_initial_val (Pmode, LINK_REGISTER_REGNUM);
}


/* Given VAL, generate a constant appropriate for MODE.
   If MODE is a vector mode, every element will be VAL.
   For TImode, VAL will be zero extended to 128 bits. */
rtx
spu_const (enum machine_mode mode, HOST_WIDE_INT val)
{
  rtx inner;
  rtvec v;
  int units, i;

  gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
	      || GET_MODE_CLASS (mode) == MODE_FLOAT
	      || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
	      || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT);

  if (GET_MODE_CLASS (mode) == MODE_INT)
    return immed_double_const (val, 0, mode);

  /* val is the bit representation of the float */
  if (GET_MODE_CLASS (mode) == MODE_FLOAT)
    return hwint_to_const_double (mode, val);

  if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT)
    inner = immed_double_const (val, 0, GET_MODE_INNER (mode));
  else 
    inner = hwint_to_const_double (GET_MODE_INNER (mode), val);

  units = GET_MODE_NUNITS (mode);

  v = rtvec_alloc (units);

  for (i = 0; i < units; ++i)
    RTVEC_ELT (v, i) = inner;

  return gen_rtx_CONST_VECTOR (mode, v);
}

/* Create a MODE vector constant from 4 ints. */
rtx
spu_const_from_ints(enum machine_mode mode, int a, int b, int c, int d)
{
  unsigned char arr[16];
  arr[0] = (a >> 24) & 0xff;
  arr[1] = (a >> 16) & 0xff;
  arr[2] = (a >> 8) & 0xff;
  arr[3] = (a >> 0) & 0xff;
  arr[4] = (b >> 24) & 0xff;
  arr[5] = (b >> 16) & 0xff;
  arr[6] = (b >> 8) & 0xff;
  arr[7] = (b >> 0) & 0xff;
  arr[8] = (c >> 24) & 0xff;
  arr[9] = (c >> 16) & 0xff;
  arr[10] = (c >> 8) & 0xff;
  arr[11] = (c >> 0) & 0xff;
  arr[12] = (d >> 24) & 0xff;
  arr[13] = (d >> 16) & 0xff;
  arr[14] = (d >> 8) & 0xff;
  arr[15] = (d >> 0) & 0xff;
  return array_to_constant(mode, arr);
}

/* branch hint stuff */

/* An array of these is used to propagate hints to predecessor blocks. */
struct spu_bb_info
{
  rtx prop_jump; /* propagated from another block */
  int bb_index;  /* the original block. */
};
static struct spu_bb_info *spu_bb_info;

#define STOP_HINT_P(INSN) \
		(GET_CODE(INSN) == CALL_INSN \
		 || INSN_CODE(INSN) == CODE_FOR_divmodsi4 \
		 || INSN_CODE(INSN) == CODE_FOR_udivmodsi4)

/* 1 when RTX is a hinted branch or its target.  We keep track of
   what has been hinted so the safe-hint code can test it easily.  */
#define HINTED_P(RTX)						\
  (RTL_FLAG_CHECK3("HINTED_P", (RTX), CODE_LABEL, JUMP_INSN, CALL_INSN)->unchanging)

/* 1 when RTX is an insn that must be scheduled on an even boundary. */
#define SCHED_ON_EVEN_P(RTX)						\
  (RTL_FLAG_CHECK2("SCHED_ON_EVEN_P", (RTX), JUMP_INSN, CALL_INSN)->in_struct)

/* Emit a nop for INSN such that the two will dual issue.  This assumes
   INSN is 8-byte aligned.  When INSN is inline asm we emit an lnop.
   We check for TImode to handle a MULTI1 insn which has dual issued its
   first instruction.  get_pipe returns -1 for MULTI0, inline asm, or
   ADDR_VEC insns. */
static void
emit_nop_for_insn (rtx insn)
{
  int p;
  rtx new_insn;
  p = get_pipe (insn);
  if ((CALL_P (insn) || JUMP_P (insn)) && SCHED_ON_EVEN_P (insn))
    new_insn = emit_insn_after (gen_lnop (), insn);
  else if (p == 1 && GET_MODE (insn) == TImode)
    {
      new_insn = emit_insn_before (gen_nopn (GEN_INT (127)), insn);
      PUT_MODE (new_insn, TImode);
      PUT_MODE (insn, VOIDmode);
    }
  else
    new_insn = emit_insn_after (gen_lnop (), insn);
  recog_memoized (new_insn);
  INSN_LOCATOR (new_insn) = INSN_LOCATOR (insn);
}

/* Insert nops in basic blocks to meet dual issue alignment
   requirements.  Also make sure hbrp and hint instructions are at least
   one cycle apart, possibly inserting a nop.  */
static void
pad_bb(void)
{
  rtx insn, next_insn, prev_insn, hbr_insn = 0;
  int length;
  int addr;

  /* This sets up INSN_ADDRESSES. */
  shorten_branches (get_insns ());

  /* Keep track of length added by nops. */
  length = 0;

  prev_insn = 0;
  insn = get_insns ();
  if (!active_insn_p (insn))
    insn = next_active_insn (insn);
  for (; insn; insn = next_insn)
    {
      next_insn = next_active_insn (insn);
      if (INSN_CODE (insn) == CODE_FOR_iprefetch
	  || INSN_CODE (insn) == CODE_FOR_hbr)
	{
	  if (hbr_insn)
	    {
	      int a0 = INSN_ADDRESSES (INSN_UID (hbr_insn));
	      int a1 = INSN_ADDRESSES (INSN_UID (insn));
	      if ((a1 - a0 == 8 && GET_MODE (insn) != TImode)
		  || (a1 - a0 == 4))
		{
		  prev_insn = emit_insn_before (gen_lnop (), insn);
		  PUT_MODE (prev_insn, GET_MODE (insn));
		  PUT_MODE (insn, TImode);
		  INSN_LOCATOR (prev_insn) = INSN_LOCATOR (insn);
		  length += 4;
		}
	    }
	  hbr_insn = insn;
	}
      if (INSN_CODE (insn) == CODE_FOR_blockage)
	{
	  if (GET_MODE (insn) == TImode)
	    PUT_MODE (next_insn, TImode);
	  insn = next_insn;
	  next_insn = next_active_insn (insn);
	}
      addr = INSN_ADDRESSES (INSN_UID (insn));
      if ((CALL_P (insn) || JUMP_P (insn)) && SCHED_ON_EVEN_P (insn))
	{
	  if (((addr + length) & 7) != 0)
	    {
	      emit_nop_for_insn (prev_insn);
	      length += 4;
	    }
	}
      else if (GET_MODE (insn) == TImode
	       && ((next_insn && GET_MODE (next_insn) != TImode)
		   || get_attr_type (insn) == TYPE_MULTI0)
	       && ((addr + length) & 7) != 0)
	{
	  /* prev_insn will always be set because the first insn is
	     always 8-byte aligned. */
	  emit_nop_for_insn (prev_insn);
	  length += 4;
	}
      prev_insn = insn;
    }
}


/* Routines for branch hints. */

static void
spu_emit_branch_hint (rtx before, rtx branch, rtx target,
		      int distance, sbitmap blocks)
{
  rtx branch_label = 0;
  rtx hint;
  rtx insn;
  rtx table;

  if (before == 0 || branch == 0 || target == 0)
    return;

  /* While scheduling we require hints to be no further than 600, so
     we need to enforce that here too */
  if (distance > 600)
    return;

  /* If we have a Basic block note, emit it after the basic block note.  */
  if (NOTE_INSN_BASIC_BLOCK_P (before))
    before = NEXT_INSN (before);

  branch_label = gen_label_rtx ();
  LABEL_NUSES (branch_label)++;
  LABEL_PRESERVE_P (branch_label) = 1;
  insn = emit_label_before (branch_label, branch);
  branch_label = gen_rtx_LABEL_REF (VOIDmode, branch_label);
  SET_BIT (blocks, BLOCK_FOR_INSN (branch)->index);

  hint = emit_insn_before (gen_hbr (branch_label, target), before);
  recog_memoized (hint);
  INSN_LOCATOR (hint) = INSN_LOCATOR (branch);
  HINTED_P (branch) = 1;

  if (GET_CODE (target) == LABEL_REF)
    HINTED_P (XEXP (target, 0)) = 1;
  else if (tablejump_p (branch, 0, &table))
    {
      rtvec vec;
      int j;
      if (GET_CODE (PATTERN (table)) == ADDR_VEC)
	vec = XVEC (PATTERN (table), 0);
      else
	vec = XVEC (PATTERN (table), 1);
      for (j = GET_NUM_ELEM (vec) - 1; j >= 0; --j)
	HINTED_P (XEXP (RTVEC_ELT (vec, j), 0)) = 1;
    }

  if (distance >= 588)
    {
      /* Make sure the hint isn't scheduled any earlier than this point,
         which could make it too far for the branch offest to fit */
      insn = emit_insn_before (gen_blockage (), hint);
      recog_memoized (insn);
      INSN_LOCATOR (insn) = INSN_LOCATOR (hint);
    }
  else if (distance <= 8 * 4)
    {
      /* To guarantee at least 8 insns between the hint and branch we
         insert nops. */
      int d;
      for (d = distance; d < 8 * 4; d += 4)
	{
	  insn =
	    emit_insn_after (gen_nopn_nv (gen_rtx_REG (SImode, 127)), hint);
	  recog_memoized (insn);
	  INSN_LOCATOR (insn) = INSN_LOCATOR (hint);
	}

      /* Make sure any nops inserted aren't scheduled before the hint. */
      insn = emit_insn_after (gen_blockage (), hint);
      recog_memoized (insn);
      INSN_LOCATOR (insn) = INSN_LOCATOR (hint);

      /* Make sure any nops inserted aren't scheduled after the call. */
      if (CALL_P (branch) && distance < 8 * 4)
	{
	  insn = emit_insn_before (gen_blockage (), branch);
	  recog_memoized (insn);
	  INSN_LOCATOR (insn) = INSN_LOCATOR (branch);
	}
    }
}

/* Returns 0 if we don't want a hint for this branch.  Otherwise return
   the rtx for the branch target. */
static rtx
get_branch_target (rtx branch)
{
  if (GET_CODE (branch) == JUMP_INSN)
    {
      rtx set, src;

      /* Return statements */
      if (GET_CODE (PATTERN (branch)) == RETURN)
	return gen_rtx_REG (SImode, LINK_REGISTER_REGNUM);

      /* jump table */
      if (GET_CODE (PATTERN (branch)) == ADDR_VEC
	  || GET_CODE (PATTERN (branch)) == ADDR_DIFF_VEC)
	return 0;

     /* ASM GOTOs. */
     if (extract_asm_operands (PATTERN (branch)) != NULL)
	return NULL;

      set = single_set (branch);
      src = SET_SRC (set);
      if (GET_CODE (SET_DEST (set)) != PC)
	abort ();

      if (GET_CODE (src) == IF_THEN_ELSE)
	{
	  rtx lab = 0;
	  rtx note = find_reg_note (branch, REG_BR_PROB, 0);
	  if (note)
	    {
	      /* If the more probable case is not a fall through, then
	         try a branch hint.  */
	      HOST_WIDE_INT prob = INTVAL (XEXP (note, 0));
	      if (prob > (REG_BR_PROB_BASE * 6 / 10)
		  && GET_CODE (XEXP (src, 1)) != PC)
		lab = XEXP (src, 1);
	      else if (prob < (REG_BR_PROB_BASE * 4 / 10)
		       && GET_CODE (XEXP (src, 2)) != PC)
		lab = XEXP (src, 2);
	    }
	  if (lab)
	    {
	      if (GET_CODE (lab) == RETURN)
		return gen_rtx_REG (SImode, LINK_REGISTER_REGNUM);
	      return lab;
	    }
	  return 0;
	}

      return src;
    }
  else if (GET_CODE (branch) == CALL_INSN)
    {
      rtx call;
      /* All of our call patterns are in a PARALLEL and the CALL is
         the first pattern in the PARALLEL. */
      if (GET_CODE (PATTERN (branch)) != PARALLEL)
	abort ();
      call = XVECEXP (PATTERN (branch), 0, 0);
      if (GET_CODE (call) == SET)
	call = SET_SRC (call);
      if (GET_CODE (call) != CALL)
	abort ();
      return XEXP (XEXP (call, 0), 0);
    }
  return 0;
}

/* The special $hbr register is used to prevent the insn scheduler from
   moving hbr insns across instructions which invalidate them.  It
   should only be used in a clobber, and this function searches for
   insns which clobber it.  */
static bool
insn_clobbers_hbr (rtx insn)
{
  if (INSN_P (insn)
      && GET_CODE (PATTERN (insn)) == PARALLEL)
    {
      rtx parallel = PATTERN (insn);
      rtx clobber;
      int j;
      for (j = XVECLEN (parallel, 0) - 1; j >= 0; j--)
	{
	  clobber = XVECEXP (parallel, 0, j);
	  if (GET_CODE (clobber) == CLOBBER
	      && GET_CODE (XEXP (clobber, 0)) == REG
	      && REGNO (XEXP (clobber, 0)) == HBR_REGNUM)
	    return 1;
	}
    }
  return 0;
}

/* Search up to 32 insns starting at FIRST:
   - at any kind of hinted branch, just return
   - at any unconditional branch in the first 15 insns, just return
   - at a call or indirect branch, after the first 15 insns, force it to
     an even address and return
   - at any unconditional branch, after the first 15 insns, force it to
     an even address. 
   At then end of the search, insert an hbrp within 4 insns of FIRST,
   and an hbrp within 16 instructions of FIRST.
 */
static void
insert_hbrp_for_ilb_runout (rtx first)
{
  rtx insn, before_4 = 0, before_16 = 0;
  int addr = 0, length, first_addr = -1;
  int hbrp_addr0 = 128 * 4, hbrp_addr1 = 128 * 4;
  int insert_lnop_after = 0;
  for (insn = first; insn; insn = NEXT_INSN (insn))
    if (INSN_P (insn))
      {
	if (first_addr == -1)
	  first_addr = INSN_ADDRESSES (INSN_UID (insn));
	addr = INSN_ADDRESSES (INSN_UID (insn)) - first_addr;
	length = get_attr_length (insn);

	if (before_4 == 0 && addr + length >= 4 * 4)
	  before_4 = insn;
	/* We test for 14 instructions because the first hbrp will add
	   up to 2 instructions. */
	if (before_16 == 0 && addr + length >= 14 * 4)
	  before_16 = insn;

	if (INSN_CODE (insn) == CODE_FOR_hbr)
	  {
	    /* Make sure an hbrp is at least 2 cycles away from a hint. 
	       Insert an lnop after the hbrp when necessary. */
	    if (before_4 == 0 && addr > 0)
	      {
		before_4 = insn;
		insert_lnop_after |= 1;
	      }
	    else if (before_4 && addr <= 4 * 4)
	      insert_lnop_after |= 1;
	    if (before_16 == 0 && addr > 10 * 4)
	      {
		before_16 = insn;
		insert_lnop_after |= 2;
	      }
	    else if (before_16 && addr <= 14 * 4)
	      insert_lnop_after |= 2;
	  }

	if (INSN_CODE (insn) == CODE_FOR_iprefetch)
	  {
	    if (addr < hbrp_addr0)
	      hbrp_addr0 = addr;
	    else if (addr < hbrp_addr1)
	      hbrp_addr1 = addr;
	  }

	if (CALL_P (insn) || JUMP_P (insn))
	  {
	    if (HINTED_P (insn))
	      return;

	    /* Any branch after the first 15 insns should be on an even
	       address to avoid a special case branch.  There might be
	       some nops and/or hbrps inserted, so we test after 10
	       insns. */
	    if (addr > 10 * 4)
	      SCHED_ON_EVEN_P (insn) = 1;
	  }

	if (CALL_P (insn) || tablejump_p (insn, 0, 0))
	  return;


	if (addr + length >= 32 * 4)
	  {
	    gcc_assert (before_4 && before_16);
	    if (hbrp_addr0 > 4 * 4)
	      {
		insn =
		  emit_insn_before (gen_iprefetch (GEN_INT (1)), before_4);
		recog_memoized (insn);
		INSN_LOCATOR (insn) = INSN_LOCATOR (before_4);
		INSN_ADDRESSES_NEW (insn,
				    INSN_ADDRESSES (INSN_UID (before_4)));
		PUT_MODE (insn, GET_MODE (before_4));
		PUT_MODE (before_4, TImode);
		if (insert_lnop_after & 1)
		  {
		    insn = emit_insn_before (gen_lnop (), before_4);
		    recog_memoized (insn);
		    INSN_LOCATOR (insn) = INSN_LOCATOR (before_4);
		    INSN_ADDRESSES_NEW (insn,
					INSN_ADDRESSES (INSN_UID (before_4)));
		    PUT_MODE (insn, TImode);
		  }
	      }
	    if ((hbrp_addr0 <= 4 * 4 || hbrp_addr0 > 16 * 4)
		&& hbrp_addr1 > 16 * 4)
	      {
		insn =
		  emit_insn_before (gen_iprefetch (GEN_INT (2)), before_16);
		recog_memoized (insn);
		INSN_LOCATOR (insn) = INSN_LOCATOR (before_16);
		INSN_ADDRESSES_NEW (insn,
				    INSN_ADDRESSES (INSN_UID (before_16)));
		PUT_MODE (insn, GET_MODE (before_16));
		PUT_MODE (before_16, TImode);
		if (insert_lnop_after & 2)
		  {
		    insn = emit_insn_before (gen_lnop (), before_16);
		    recog_memoized (insn);
		    INSN_LOCATOR (insn) = INSN_LOCATOR (before_16);
		    INSN_ADDRESSES_NEW (insn,
					INSN_ADDRESSES (INSN_UID
							(before_16)));
		    PUT_MODE (insn, TImode);
		  }
	      }
	    return;
	  }
      }
    else if (BARRIER_P (insn))
      return;

}

/* The SPU might hang when it executes 48 inline instructions after a
   hinted branch jumps to its hinted target.  The beginning of a
   function and the return from a call might have been hinted, and
   must be handled as well.  To prevent a hang we insert 2 hbrps.  The
   first should be within 6 insns of the branch target.  The second
   should be within 22 insns of the branch target.  When determining
   if hbrps are necessary, we look for only 32 inline instructions,
   because up to 12 nops and 4 hbrps could be inserted.  Similarily,
   when inserting new hbrps, we insert them within 4 and 16 insns of
   the target.  */
static void
insert_hbrp (void)
{
  rtx insn;
  if (TARGET_SAFE_HINTS)
    {
      shorten_branches (get_insns ());
      /* Insert hbrp at beginning of function */
      insn = next_active_insn (get_insns ());
      if (insn)
	insert_hbrp_for_ilb_runout (insn);
      /* Insert hbrp after hinted targets. */
      for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
	if ((LABEL_P (insn) && HINTED_P (insn)) || CALL_P (insn))
	  insert_hbrp_for_ilb_runout (next_active_insn (insn));
    }
}

static int in_spu_reorg;

static void
spu_var_tracking (void)
{
  if (flag_var_tracking)
    {
      df_analyze ();
      timevar_push (TV_VAR_TRACKING);
      variable_tracking_main ();
      timevar_pop (TV_VAR_TRACKING);
      df_finish_pass (false);
    }
}

/* Insert branch hints.  There are no branch optimizations after this
   pass, so it's safe to set our branch hints now. */
static void
spu_machine_dependent_reorg (void)
{
  sbitmap blocks;
  basic_block bb;
  rtx branch, insn;
  rtx branch_target = 0;
  int branch_addr = 0, insn_addr, required_dist = 0;
  int i;
  unsigned int j;

  if (!TARGET_BRANCH_HINTS || optimize == 0)
    {
      /* We still do it for unoptimized code because an external
         function might have hinted a call or return. */
      compute_bb_for_insn ();
      insert_hbrp ();
      pad_bb ();
      spu_var_tracking ();
      free_bb_for_insn ();
      return;
    }

  blocks = sbitmap_alloc (last_basic_block);
  sbitmap_zero (blocks);

  in_spu_reorg = 1;
  compute_bb_for_insn ();

  compact_blocks ();

  spu_bb_info =
    (struct spu_bb_info *) xcalloc (n_basic_blocks,
				    sizeof (struct spu_bb_info));

  /* We need exact insn addresses and lengths.  */
  shorten_branches (get_insns ());

  for (i = n_basic_blocks - 1; i >= 0; i--)
    {
      bb = BASIC_BLOCK (i);
      branch = 0;
      if (spu_bb_info[i].prop_jump)
	{
	  branch = spu_bb_info[i].prop_jump;
	  branch_target = get_branch_target (branch);
	  branch_addr = INSN_ADDRESSES (INSN_UID (branch));
	  required_dist = spu_hint_dist;
	}
      /* Search from end of a block to beginning.   In this loop, find
         jumps which need a branch and emit them only when:
         - it's an indirect branch and we're at the insn which sets
         the register  
         - we're at an insn that will invalidate the hint. e.g., a
         call, another hint insn, inline asm that clobbers $hbr, and
         some inlined operations (divmodsi4).  Don't consider jumps
         because they are only at the end of a block and are
         considered when we are deciding whether to propagate
         - we're getting too far away from the branch.  The hbr insns
         only have a signed 10 bit offset
         We go back as far as possible so the branch will be considered
         for propagation when we get to the beginning of the block.  */
      for (insn = BB_END (bb); insn; insn = PREV_INSN (insn))
	{
	  if (INSN_P (insn))
	    {
	      insn_addr = INSN_ADDRESSES (INSN_UID (insn));
	      if (branch
		  && ((GET_CODE (branch_target) == REG
		       && set_of (branch_target, insn) != NULL_RTX)
		      || insn_clobbers_hbr (insn)
		      || branch_addr - insn_addr > 600))
		{
		  rtx next = NEXT_INSN (insn);
		  int next_addr = INSN_ADDRESSES (INSN_UID (next));
		  if (insn != BB_END (bb)
		      && branch_addr - next_addr >= required_dist)
		    {
		      if (dump_file)
			fprintf (dump_file,
				 "hint for %i in block %i before %i\n",
				 INSN_UID (branch), bb->index,
				 INSN_UID (next));
		      spu_emit_branch_hint (next, branch, branch_target,
					    branch_addr - next_addr, blocks);
		    }
		  branch = 0;
		}

	      /* JUMP_P will only be true at the end of a block.  When
	         branch is already set it means we've previously decided
	         to propagate a hint for that branch into this block. */
	      if (CALL_P (insn) || (JUMP_P (insn) && !branch))
		{
		  branch = 0;
		  if ((branch_target = get_branch_target (insn)))
		    {
		      branch = insn;
		      branch_addr = insn_addr;
		      required_dist = spu_hint_dist;
		    }
		}
	    }
	  if (insn == BB_HEAD (bb))
	    break;
	}

      if (branch)
	{
	  /* If we haven't emitted a hint for this branch yet, it might
	     be profitable to emit it in one of the predecessor blocks,
	     especially for loops.  */
	  rtx bbend;
	  basic_block prev = 0, prop = 0, prev2 = 0;
	  int loop_exit = 0, simple_loop = 0;
	  int next_addr = INSN_ADDRESSES (INSN_UID (NEXT_INSN (insn)));

	  for (j = 0; j < EDGE_COUNT (bb->preds); j++)
	    if (EDGE_PRED (bb, j)->flags & EDGE_FALLTHRU)
	      prev = EDGE_PRED (bb, j)->src;
	    else
	      prev2 = EDGE_PRED (bb, j)->src;

	  for (j = 0; j < EDGE_COUNT (bb->succs); j++)
	    if (EDGE_SUCC (bb, j)->flags & EDGE_LOOP_EXIT)
	      loop_exit = 1;
	    else if (EDGE_SUCC (bb, j)->dest == bb)
	      simple_loop = 1;

	  /* If this branch is a loop exit then propagate to previous
	     fallthru block. This catches the cases when it is a simple
	     loop or when there is an initial branch into the loop. */
	  if (prev && (loop_exit || simple_loop)
	      && prev->loop_depth <= bb->loop_depth)
	    prop = prev;

	  /* If there is only one adjacent predecessor.  Don't propagate
	     outside this loop.  This loop_depth test isn't perfect, but
	     I'm not sure the loop_father member is valid at this point.  */
	  else if (prev && single_pred_p (bb)
		   && prev->loop_depth == bb->loop_depth)
	    prop = prev;

	  /* If this is the JOIN block of a simple IF-THEN then
	     propagate the hint to the HEADER block. */
	  else if (prev && prev2
		   && EDGE_COUNT (bb->preds) == 2
		   && EDGE_COUNT (prev->preds) == 1
		   && EDGE_PRED (prev, 0)->src == prev2
		   && prev2->loop_depth == bb->loop_depth
		   && GET_CODE (branch_target) != REG)
	    prop = prev;

	  /* Don't propagate when:
	     - this is a simple loop and the hint would be too far
	     - this is not a simple loop and there are 16 insns in
	     this block already
	     - the predecessor block ends in a branch that will be
	     hinted
	     - the predecessor block ends in an insn that invalidates
	     the hint */
	  if (prop
	      && prop->index >= 0
	      && (bbend = BB_END (prop))
	      && branch_addr - INSN_ADDRESSES (INSN_UID (bbend)) <
	      (simple_loop ? 600 : 16 * 4) && get_branch_target (bbend) == 0
	      && (JUMP_P (bbend) || !insn_clobbers_hbr (bbend)))
	    {
	      if (dump_file)
		fprintf (dump_file, "propagate from %i to %i (loop depth %i) "
			 "for %i (loop_exit %i simple_loop %i dist %i)\n",
			 bb->index, prop->index, bb->loop_depth,
			 INSN_UID (branch), loop_exit, simple_loop,
			 branch_addr - INSN_ADDRESSES (INSN_UID (bbend)));

	      spu_bb_info[prop->index].prop_jump = branch;
	      spu_bb_info[prop->index].bb_index = i;
	    }
	  else if (branch_addr - next_addr >= required_dist)
	    {
	      if (dump_file)
		fprintf (dump_file, "hint for %i in block %i before %i\n",
			 INSN_UID (branch), bb->index,
			 INSN_UID (NEXT_INSN (insn)));
	      spu_emit_branch_hint (NEXT_INSN (insn), branch, branch_target,
				    branch_addr - next_addr, blocks);
	    }
	  branch = 0;
	}
    }
  free (spu_bb_info);

  if (!sbitmap_empty_p (blocks))
    find_many_sub_basic_blocks (blocks);

  /* We have to schedule to make sure alignment is ok. */
  FOR_EACH_BB (bb) bb->flags &= ~BB_DISABLE_SCHEDULE;

  /* The hints need to be scheduled, so call it again. */
  schedule_insns ();
  df_finish_pass (true);

  insert_hbrp ();

  pad_bb ();

  for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
    if (NONJUMP_INSN_P (insn) && INSN_CODE (insn) == CODE_FOR_hbr)
      {
	/* Adjust the LABEL_REF in a hint when we have inserted a nop
	   between its branch label and the branch .  We don't move the
	   label because GCC expects it at the beginning of the block. */
	rtx unspec = SET_SRC (XVECEXP (PATTERN (insn), 0, 0));
	rtx label_ref = XVECEXP (unspec, 0, 0);
	rtx label = XEXP (label_ref, 0);
	rtx branch;
	int offset = 0;
	for (branch = NEXT_INSN (label);
	     !JUMP_P (branch) && !CALL_P (branch);
	     branch = NEXT_INSN (branch))
	  if (NONJUMP_INSN_P (branch))
	    offset += get_attr_length (branch);
	if (offset > 0)
	  XVECEXP (unspec, 0, 0) = plus_constant (Pmode, label_ref, offset);
      }

  spu_var_tracking ();

  free_bb_for_insn ();

  in_spu_reorg = 0;
}


/* Insn scheduling routines, primarily for dual issue. */
static int
spu_sched_issue_rate (void)
{
  return 2;
}

static int
uses_ls_unit(rtx insn)
{
  rtx set = single_set (insn);
  if (set != 0
      && (GET_CODE (SET_DEST (set)) == MEM
	  || GET_CODE (SET_SRC (set)) == MEM))
    return 1;
  return 0;
}

static int
get_pipe (rtx insn)
{
  enum attr_type t;
  /* Handle inline asm */
  if (INSN_CODE (insn) == -1)
    return -1;
  t = get_attr_type (insn);
  switch (t)
    {
    case TYPE_CONVERT:
      return -2;
    case TYPE_MULTI0:
      return -1;

    case TYPE_FX2:
    case TYPE_FX3:
    case TYPE_SPR:
    case TYPE_NOP:
    case TYPE_FXB:
    case TYPE_FPD:
    case TYPE_FP6:
    case TYPE_FP7:
      return 0;

    case TYPE_LNOP:
    case TYPE_SHUF:
    case TYPE_LOAD:
    case TYPE_STORE:
    case TYPE_BR:
    case TYPE_MULTI1:
    case TYPE_HBR:
    case TYPE_IPREFETCH:
      return 1;
    default:
      abort ();
    }
}


/* haifa-sched.c has a static variable that keeps track of the current
   cycle.  It is passed to spu_sched_reorder, and we record it here for
   use by spu_sched_variable_issue.  It won't be accurate if the
   scheduler updates it's clock_var between the two calls. */
static int clock_var;

/* This is used to keep track of insn alignment.  Set to 0 at the
   beginning of each block and increased by the "length" attr of each
   insn scheduled. */
static int spu_sched_length;

/* Record when we've issued pipe0 and pipe1 insns so we can reorder the
   ready list appropriately in spu_sched_reorder(). */
static int pipe0_clock;
static int pipe1_clock;

static int prev_clock_var;

static int prev_priority;

/* The SPU needs to load the next ilb sometime during the execution of
   the previous ilb.  There is a potential conflict if every cycle has a
   load or store.  To avoid the conflict we make sure the load/store
   unit is free for at least one cycle during the execution of insns in
   the previous ilb. */
static int spu_ls_first;
static int prev_ls_clock;

static void
spu_sched_init_global (FILE *file ATTRIBUTE_UNUSED, int verbose ATTRIBUTE_UNUSED,
		       int max_ready ATTRIBUTE_UNUSED)
{
  spu_sched_length = 0;
}

static void
spu_sched_init (FILE *file ATTRIBUTE_UNUSED, int verbose ATTRIBUTE_UNUSED,
		int max_ready ATTRIBUTE_UNUSED)
{
  if (align_labels > 4 || align_loops > 4 || align_jumps > 4)
    {
      /* When any block might be at least 8-byte aligned, assume they
         will all be at least 8-byte aligned to make sure dual issue
         works out correctly. */
      spu_sched_length = 0;
    }
  spu_ls_first = INT_MAX;
  clock_var = -1;
  prev_ls_clock = -1;
  pipe0_clock = -1;
  pipe1_clock = -1;
  prev_clock_var = -1;
  prev_priority = -1;
}

static int
spu_sched_variable_issue (FILE *file ATTRIBUTE_UNUSED,
			  int verbose ATTRIBUTE_UNUSED, rtx insn, int more)
{
  int len;
  int p;
  if (GET_CODE (PATTERN (insn)) == USE
      || GET_CODE (PATTERN (insn)) == CLOBBER
      || (len = get_attr_length (insn)) == 0)
    return more;

  spu_sched_length += len;

  /* Reset on inline asm */
  if (INSN_CODE (insn) == -1)
    {
      spu_ls_first = INT_MAX;
      pipe0_clock = -1;
      pipe1_clock = -1;
      return 0;
    }
  p = get_pipe (insn);
  if (p == 0)
    pipe0_clock = clock_var;
  else
    pipe1_clock = clock_var;

  if (in_spu_reorg)
    {
      if (clock_var - prev_ls_clock > 1
	  || INSN_CODE (insn) == CODE_FOR_iprefetch)
	spu_ls_first = INT_MAX;
      if (uses_ls_unit (insn))
	{
	  if (spu_ls_first == INT_MAX)
	    spu_ls_first = spu_sched_length;
	  prev_ls_clock = clock_var;
	}

      /* The scheduler hasn't inserted the nop, but we will later on.
         Include those nops in spu_sched_length. */
      if (prev_clock_var == clock_var && (spu_sched_length & 7))
	spu_sched_length += 4;
      prev_clock_var = clock_var;

      /* more is -1 when called from spu_sched_reorder for new insns
         that don't have INSN_PRIORITY */
      if (more >= 0)
	prev_priority = INSN_PRIORITY (insn);
    }

  /* Always try issuing more insns.  spu_sched_reorder will decide 
     when the cycle should be advanced. */
  return 1;
}

/* This function is called for both TARGET_SCHED_REORDER and
   TARGET_SCHED_REORDER2.  */
static int
spu_sched_reorder (FILE *file ATTRIBUTE_UNUSED, int verbose ATTRIBUTE_UNUSED,
		   rtx *ready, int *nreadyp, int clock)
{
  int i, nready = *nreadyp;
  int pipe_0, pipe_1, pipe_hbrp, pipe_ls, schedule_i;
  rtx insn;

  clock_var = clock;

  if (nready <= 0 || pipe1_clock >= clock)
    return 0;

  /* Find any rtl insns that don't generate assembly insns and schedule
     them first. */
  for (i = nready - 1; i >= 0; i--)
    {
      insn = ready[i];
      if (INSN_CODE (insn) == -1
	  || INSN_CODE (insn) == CODE_FOR_blockage
	  || (INSN_P (insn) && get_attr_length (insn) == 0))
	{
	  ready[i] = ready[nready - 1];
	  ready[nready - 1] = insn;
	  return 1;
	}
    }

  pipe_0 = pipe_1 = pipe_hbrp = pipe_ls = schedule_i = -1;
  for (i = 0; i < nready; i++)
    if (INSN_CODE (ready[i]) != -1)
      {
	insn = ready[i];
	switch (get_attr_type (insn))
	  {
	  default:
	  case TYPE_MULTI0:
	  case TYPE_CONVERT:
	  case TYPE_FX2:
	  case TYPE_FX3:
	  case TYPE_SPR:
	  case TYPE_NOP:
	  case TYPE_FXB:
	  case TYPE_FPD:
	  case TYPE_FP6:
	  case TYPE_FP7:
	    pipe_0 = i;
	    break;
	  case TYPE_LOAD:
	  case TYPE_STORE:
	    pipe_ls = i;
	  case TYPE_LNOP:
	  case TYPE_SHUF:
	  case TYPE_BR:
	  case TYPE_MULTI1:
	  case TYPE_HBR:
	    pipe_1 = i;
	    break;
	  case TYPE_IPREFETCH:
	    pipe_hbrp = i;
	    break;
	  }
      }

  /* In the first scheduling phase, schedule loads and stores together
     to increase the chance they will get merged during postreload CSE. */
  if (!reload_completed && pipe_ls >= 0)
    {
      insn = ready[pipe_ls];
      ready[pipe_ls] = ready[nready - 1];
      ready[nready - 1] = insn;
      return 1;
    }

  /* If there is an hbrp ready, prefer it over other pipe 1 insns. */
  if (pipe_hbrp >= 0)
    pipe_1 = pipe_hbrp;

  /* When we have loads/stores in every cycle of the last 15 insns and
     we are about to schedule another load/store, emit an hbrp insn
     instead. */
  if (in_spu_reorg
      && spu_sched_length - spu_ls_first >= 4 * 15
      && !(pipe0_clock < clock && pipe_0 >= 0) && pipe_1 == pipe_ls)
    {
      insn = sched_emit_insn (gen_iprefetch (GEN_INT (3)));
      recog_memoized (insn);
      if (pipe0_clock < clock)
	PUT_MODE (insn, TImode);
      spu_sched_variable_issue (file, verbose, insn, -1);
      return 0;
    }

  /* In general, we want to emit nops to increase dual issue, but dual
     issue isn't faster when one of the insns could be scheduled later
     without effecting the critical path.  We look at INSN_PRIORITY to
     make a good guess, but it isn't perfect so -mdual-nops=n can be
     used to effect it. */
  if (in_spu_reorg && spu_dual_nops < 10)
    {
      /* When we are at an even address and we are not issuing nops to
         improve scheduling then we need to advance the cycle.  */
      if ((spu_sched_length & 7) == 0 && prev_clock_var == clock
	  && (spu_dual_nops == 0
	      || (pipe_1 != -1
		  && prev_priority >
		  INSN_PRIORITY (ready[pipe_1]) + spu_dual_nops)))
	return 0;

      /* When at an odd address, schedule the highest priority insn
         without considering pipeline. */
      if ((spu_sched_length & 7) == 4 && prev_clock_var != clock
	  && (spu_dual_nops == 0
	      || (prev_priority >
		  INSN_PRIORITY (ready[nready - 1]) + spu_dual_nops)))
	return 1;
    }


  /* We haven't issued a pipe0 insn yet this cycle, if there is a
     pipe0 insn in the ready list, schedule it. */
  if (pipe0_clock < clock && pipe_0 >= 0)
    schedule_i = pipe_0;

  /* Either we've scheduled a pipe0 insn already or there is no pipe0
     insn to schedule.  Put a pipe1 insn at the front of the ready list. */
  else
    schedule_i = pipe_1;

  if (schedule_i > -1)
    {
      insn = ready[schedule_i];
      ready[schedule_i] = ready[nready - 1];
      ready[nready - 1] = insn;
      return 1;
    }
  return 0;
}

/* INSN is dependent on DEP_INSN. */
static int
spu_sched_adjust_cost (rtx insn, rtx link, rtx dep_insn, int cost)
{
  rtx set;

  /* The blockage pattern is used to prevent instructions from being
     moved across it and has no cost. */
  if (INSN_CODE (insn) == CODE_FOR_blockage
      || INSN_CODE (dep_insn) == CODE_FOR_blockage)
    return 0;

  if ((INSN_P (insn) && get_attr_length (insn) == 0)
      || (INSN_P (dep_insn) && get_attr_length (dep_insn) == 0))
    return 0;

  /* Make sure hbrps are spread out. */
  if (INSN_CODE (insn) == CODE_FOR_iprefetch
      && INSN_CODE (dep_insn) == CODE_FOR_iprefetch)
    return 8;

  /* Make sure hints and hbrps are 2 cycles apart. */
  if ((INSN_CODE (insn) == CODE_FOR_iprefetch
       || INSN_CODE (insn) == CODE_FOR_hbr)
       && (INSN_CODE (dep_insn) == CODE_FOR_iprefetch
	   || INSN_CODE (dep_insn) == CODE_FOR_hbr))
    return 2;

  /* An hbrp has no real dependency on other insns. */
  if (INSN_CODE (insn) == CODE_FOR_iprefetch
      || INSN_CODE (dep_insn) == CODE_FOR_iprefetch)
    return 0;

  /* Assuming that it is unlikely an argument register will be used in
     the first cycle of the called function, we reduce the cost for
     slightly better scheduling of dep_insn.  When not hinted, the
     mispredicted branch would hide the cost as well.  */
  if (CALL_P (insn))
  {
    rtx target = get_branch_target (insn);
    if (GET_CODE (target) != REG || !set_of (target, insn))
      return cost - 2;
    return cost;
  }

  /* And when returning from a function, let's assume the return values
     are completed sooner too. */
  if (CALL_P (dep_insn))
    return cost - 2;

  /* Make sure an instruction that loads from the back chain is schedule
     away from the return instruction so a hint is more likely to get
     issued. */
  if (INSN_CODE (insn) == CODE_FOR__return
      && (set = single_set (dep_insn))
      && GET_CODE (SET_DEST (set)) == REG
      && REGNO (SET_DEST (set)) == LINK_REGISTER_REGNUM)
    return 20;

  /* The dfa scheduler sets cost to 0 for all anti-dependencies and the
     scheduler makes every insn in a block anti-dependent on the final
     jump_insn.  We adjust here so higher cost insns will get scheduled
     earlier. */
  if (JUMP_P (insn) && REG_NOTE_KIND (link) == REG_DEP_ANTI)
    return insn_cost (dep_insn) - 3;

  return cost;
}

/* Create a CONST_DOUBLE from a string.  */
rtx
spu_float_const (const char *string, enum machine_mode mode)
{
  REAL_VALUE_TYPE value;
  value = REAL_VALUE_ATOF (string, mode);
  return CONST_DOUBLE_FROM_REAL_VALUE (value, mode);
}

int
spu_constant_address_p (rtx x)
{
  return (GET_CODE (x) == LABEL_REF || GET_CODE (x) == SYMBOL_REF
	  || GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST
	  || GET_CODE (x) == HIGH);
}

static enum spu_immediate
which_immediate_load (HOST_WIDE_INT val)
{
  gcc_assert (val == trunc_int_for_mode (val, SImode));

  if (val >= -0x8000 && val <= 0x7fff)
    return SPU_IL;
  if (val >= 0 && val <= 0x3ffff)
    return SPU_ILA;
  if ((val & 0xffff) == ((val >> 16) & 0xffff))
    return SPU_ILH;
  if ((val & 0xffff) == 0)
    return SPU_ILHU;

  return SPU_NONE;
}

/* Return true when OP can be loaded by one of the il instructions, or
   when flow2 is not completed and OP can be loaded using ilhu and iohl. */
int
immediate_load_p (rtx op, enum machine_mode mode)
{
  if (CONSTANT_P (op))
    {
      enum immediate_class c = classify_immediate (op, mode);
      return c == IC_IL1 || c == IC_IL1s
	     || (!epilogue_completed && (c == IC_IL2 || c == IC_IL2s));
    }
  return 0;
}

/* Return true if the first SIZE bytes of arr is a constant that can be
   generated with cbd, chd, cwd or cdd.  When non-NULL, PRUN and PSTART
   represent the size and offset of the instruction to use. */
static int
cpat_info(unsigned char *arr, int size, int *prun, int *pstart)
{
  int cpat, run, i, start;
  cpat = 1;
  run = 0;
  start = -1;
  for (i = 0; i < size && cpat; i++)
    if (arr[i] != i+16)
      { 
	if (!run)
	  {
	    start = i;
	    if (arr[i] == 3)
	      run = 1;
	    else if (arr[i] == 2 && arr[i+1] == 3)
	      run = 2;
	    else if (arr[i] == 0)
	      {
		while (arr[i+run] == run && i+run < 16)
		  run++;
		if (run != 4 && run != 8)
		  cpat = 0;
	      }
	    else
	      cpat = 0;
	    if ((i & (run-1)) != 0)
	      cpat = 0;
	    i += run;
	  }
	else
	  cpat = 0;
      }
  if (cpat && (run || size < 16))
    {
      if (run == 0)
	run = 1;
      if (prun)
	*prun = run;
      if (pstart)
	*pstart = start == -1 ? 16-run : start;
      return 1;
    }
  return 0;
}

/* OP is a CONSTANT_P.  Determine what instructions can be used to load
   it into a register.  MODE is only valid when OP is a CONST_INT. */
static enum immediate_class
classify_immediate (rtx op, enum machine_mode mode)
{
  HOST_WIDE_INT val;
  unsigned char arr[16];
  int i, j, repeated, fsmbi, repeat;

  gcc_assert (CONSTANT_P (op));

  if (GET_MODE (op) != VOIDmode)
    mode = GET_MODE (op);

  /* A V4SI const_vector with all identical symbols is ok. */
  if (!flag_pic
      && mode == V4SImode
      && GET_CODE (op) == CONST_VECTOR
      && GET_CODE (CONST_VECTOR_ELT (op, 0)) != CONST_INT
      && GET_CODE (CONST_VECTOR_ELT (op, 0)) != CONST_DOUBLE
      && CONST_VECTOR_ELT (op, 0) == CONST_VECTOR_ELT (op, 1)
      && CONST_VECTOR_ELT (op, 1) == CONST_VECTOR_ELT (op, 2)
      && CONST_VECTOR_ELT (op, 2) == CONST_VECTOR_ELT (op, 3))
    op = CONST_VECTOR_ELT (op, 0);

  switch (GET_CODE (op))
    {
    case SYMBOL_REF:
    case LABEL_REF:
      return TARGET_LARGE_MEM ? IC_IL2s : IC_IL1s;

    case CONST:
      /* We can never know if the resulting address fits in 18 bits and can be
	 loaded with ila.  For now, assume the address will not overflow if
	 the displacement is "small" (fits 'K' constraint).  */
      if (!TARGET_LARGE_MEM && GET_CODE (XEXP (op, 0)) == PLUS)
	{
	  rtx sym = XEXP (XEXP (op, 0), 0);
	  rtx cst = XEXP (XEXP (op, 0), 1);

	  if (GET_CODE (sym) == SYMBOL_REF
	      && GET_CODE (cst) == CONST_INT
	      && satisfies_constraint_K (cst))
	    return IC_IL1s;
	}
      return IC_IL2s;

    case HIGH:
      return IC_IL1s;

    case CONST_VECTOR:
      for (i = 0; i < GET_MODE_NUNITS (mode); i++)
	if (GET_CODE (CONST_VECTOR_ELT (op, i)) != CONST_INT
	    && GET_CODE (CONST_VECTOR_ELT (op, i)) != CONST_DOUBLE)
	  return IC_POOL;
      /* Fall through. */

    case CONST_INT:
    case CONST_DOUBLE:
      constant_to_array (mode, op, arr);

      /* Check that each 4-byte slot is identical. */
      repeated = 1;
      for (i = 4; i < 16; i += 4)
	for (j = 0; j < 4; j++)
	  if (arr[j] != arr[i + j])
	    repeated = 0;

      if (repeated)
	{
	  val = (arr[0] << 24) | (arr[1] << 16) | (arr[2] << 8) | arr[3];
	  val = trunc_int_for_mode (val, SImode);

	  if (which_immediate_load (val) != SPU_NONE)
	    return IC_IL1;
	}

      /* Any mode of 2 bytes or smaller can be loaded with an il
         instruction. */
      gcc_assert (GET_MODE_SIZE (mode) > 2);

      fsmbi = 1;
      repeat = 0;
      for (i = 0; i < 16 && fsmbi; i++)
	if (arr[i] != 0 && repeat == 0)
	  repeat = arr[i];
	else if (arr[i] != 0 && arr[i] != repeat)
	  fsmbi = 0;
      if (fsmbi)
	return repeat == 0xff ? IC_FSMBI : IC_FSMBI2;

      if (cpat_info (arr, GET_MODE_SIZE (mode), 0, 0))
	return IC_CPAT;

      if (repeated)
	return IC_IL2;

      return IC_POOL;
    default:
      break;
    }
  gcc_unreachable ();
}

static enum spu_immediate
which_logical_immediate (HOST_WIDE_INT val)
{
  gcc_assert (val == trunc_int_for_mode (val, SImode));

  if (val >= -0x200 && val <= 0x1ff)
    return SPU_ORI;
  if (val >= 0 && val <= 0xffff)
    return SPU_IOHL;
  if ((val & 0xffff) == ((val >> 16) & 0xffff))
    {
      val = trunc_int_for_mode (val, HImode);
      if (val >= -0x200 && val <= 0x1ff)
	return SPU_ORHI;
      if ((val & 0xff) == ((val >> 8) & 0xff))
	{
	  val = trunc_int_for_mode (val, QImode);
	  if (val >= -0x200 && val <= 0x1ff)
	    return SPU_ORBI;
	}
    }
  return SPU_NONE;
}

/* Return TRUE when X, a CONST_VECTOR, only contains CONST_INTs or
   CONST_DOUBLEs. */
static int
const_vector_immediate_p (rtx x)
{
  int i;
  gcc_assert (GET_CODE (x) == CONST_VECTOR);
  for (i = 0; i < GET_MODE_NUNITS (GET_MODE (x)); i++)
    if (GET_CODE (CONST_VECTOR_ELT (x, i)) != CONST_INT
	&& GET_CODE (CONST_VECTOR_ELT (x, i)) != CONST_DOUBLE)
      return 0;
  return 1;
}

int
logical_immediate_p (rtx op, enum machine_mode mode)
{
  HOST_WIDE_INT val;
  unsigned char arr[16];
  int i, j;

  gcc_assert (GET_CODE (op) == CONST_INT || GET_CODE (op) == CONST_DOUBLE
	      || GET_CODE (op) == CONST_VECTOR);

  if (GET_CODE (op) == CONST_VECTOR
      && !const_vector_immediate_p (op))
    return 0;

  if (GET_MODE (op) != VOIDmode)
    mode = GET_MODE (op);

  constant_to_array (mode, op, arr);

  /* Check that bytes are repeated. */
  for (i = 4; i < 16; i += 4)
    for (j = 0; j < 4; j++)
      if (arr[j] != arr[i + j])
	return 0;

  val = (arr[0] << 24) | (arr[1] << 16) | (arr[2] << 8) | arr[3];
  val = trunc_int_for_mode (val, SImode);

  i = which_logical_immediate (val);
  return i != SPU_NONE && i != SPU_IOHL;
}

int
iohl_immediate_p (rtx op, enum machine_mode mode)
{
  HOST_WIDE_INT val;
  unsigned char arr[16];
  int i, j;

  gcc_assert (GET_CODE (op) == CONST_INT || GET_CODE (op) == CONST_DOUBLE
	      || GET_CODE (op) == CONST_VECTOR);

  if (GET_CODE (op) == CONST_VECTOR
      && !const_vector_immediate_p (op))
    return 0;

  if (GET_MODE (op) != VOIDmode)
    mode = GET_MODE (op);

  constant_to_array (mode, op, arr);

  /* Check that bytes are repeated. */
  for (i = 4; i < 16; i += 4)
    for (j = 0; j < 4; j++)
      if (arr[j] != arr[i + j])
	return 0;

  val = (arr[0] << 24) | (arr[1] << 16) | (arr[2] << 8) | arr[3];
  val = trunc_int_for_mode (val, SImode);

  return val >= 0 && val <= 0xffff;
}

int
arith_immediate_p (rtx op, enum machine_mode mode,
		   HOST_WIDE_INT low, HOST_WIDE_INT high)
{
  HOST_WIDE_INT val;
  unsigned char arr[16];
  int bytes, i, j;

  gcc_assert (GET_CODE (op) == CONST_INT || GET_CODE (op) == CONST_DOUBLE
	      || GET_CODE (op) == CONST_VECTOR);

  if (GET_CODE (op) == CONST_VECTOR
      && !const_vector_immediate_p (op))
    return 0;

  if (GET_MODE (op) != VOIDmode)
    mode = GET_MODE (op);

  constant_to_array (mode, op, arr);

  if (VECTOR_MODE_P (mode))
    mode = GET_MODE_INNER (mode);

  bytes = GET_MODE_SIZE (mode);
  mode = mode_for_size (GET_MODE_BITSIZE (mode), MODE_INT, 0);

  /* Check that bytes are repeated. */
  for (i = bytes; i < 16; i += bytes)
    for (j = 0; j < bytes; j++)
      if (arr[j] != arr[i + j])
	return 0;

  val = arr[0];
  for (j = 1; j < bytes; j++)
    val = (val << 8) | arr[j];

  val = trunc_int_for_mode (val, mode);

  return val >= low && val <= high;
}

/* TRUE when op is an immediate and an exact power of 2, and given that
   OP is 2^scale, scale >= LOW && scale <= HIGH.  When OP is a vector,
   all entries must be the same. */
bool
exp2_immediate_p (rtx op, enum machine_mode mode, int low, int high)
{
  enum machine_mode int_mode;
  HOST_WIDE_INT val;
  unsigned char arr[16];
  int bytes, i, j;

  gcc_assert (GET_CODE (op) == CONST_INT || GET_CODE (op) == CONST_DOUBLE
	      || GET_CODE (op) == CONST_VECTOR);

  if (GET_CODE (op) == CONST_VECTOR
      && !const_vector_immediate_p (op))
    return 0;

  if (GET_MODE (op) != VOIDmode)
    mode = GET_MODE (op);

  constant_to_array (mode, op, arr);

  if (VECTOR_MODE_P (mode))
    mode = GET_MODE_INNER (mode);

  bytes = GET_MODE_SIZE (mode);
  int_mode = mode_for_size (GET_MODE_BITSIZE (mode), MODE_INT, 0);

  /* Check that bytes are repeated. */
  for (i = bytes; i < 16; i += bytes)
    for (j = 0; j < bytes; j++)
      if (arr[j] != arr[i + j])
	return 0;

  val = arr[0];
  for (j = 1; j < bytes; j++)
    val = (val << 8) | arr[j];

  val = trunc_int_for_mode (val, int_mode);

  /* Currently, we only handle SFmode */
  gcc_assert (mode == SFmode);
  if (mode == SFmode)
    {
      int exp = (val >> 23) - 127;
      return val > 0 && (val & 0x007fffff) == 0
	     &&  exp >= low && exp <= high;
    }
  return FALSE;
}

/* Return true if X is a SYMBOL_REF to an __ea qualified variable.  */

static int
ea_symbol_ref (rtx *px, void *data ATTRIBUTE_UNUSED)
{
  rtx x = *px;
  tree decl;

  if (GET_CODE (x) == CONST && GET_CODE (XEXP (x, 0)) == PLUS)
    {
      rtx plus = XEXP (x, 0);
      rtx op0 = XEXP (plus, 0);
      rtx op1 = XEXP (plus, 1);
      if (GET_CODE (op1) == CONST_INT)
	x = op0;
    }

  return (GET_CODE (x) == SYMBOL_REF
 	  && (decl = SYMBOL_REF_DECL (x)) != 0
 	  && TREE_CODE (decl) == VAR_DECL
 	  && TYPE_ADDR_SPACE (TREE_TYPE (decl)));
}

/* We accept:
   - any 32-bit constant (SImode, SFmode)
   - any constant that can be generated with fsmbi (any mode)
   - a 64-bit constant where the high and low bits are identical
     (DImode, DFmode)
   - a 128-bit constant where the four 32-bit words match.  */
bool
spu_legitimate_constant_p (enum machine_mode mode, rtx x)
{
  if (GET_CODE (x) == HIGH)
    x = XEXP (x, 0);

  /* Reject any __ea qualified reference.  These can't appear in
     instructions but must be forced to the constant pool.  */
  if (for_each_rtx (&x, ea_symbol_ref, 0))
    return 0;

  /* V4SI with all identical symbols is valid. */
  if (!flag_pic
      && mode == V4SImode
      && (GET_CODE (CONST_VECTOR_ELT (x, 0)) == SYMBOL_REF
	  || GET_CODE (CONST_VECTOR_ELT (x, 0)) == LABEL_REF
	  || GET_CODE (CONST_VECTOR_ELT (x, 0)) == CONST))
    return CONST_VECTOR_ELT (x, 0) == CONST_VECTOR_ELT (x, 1)
	   && CONST_VECTOR_ELT (x, 1) == CONST_VECTOR_ELT (x, 2)
	   && CONST_VECTOR_ELT (x, 2) == CONST_VECTOR_ELT (x, 3);

  if (GET_CODE (x) == CONST_VECTOR
      && !const_vector_immediate_p (x))
    return 0;
  return 1;
}

/* Valid address are:
   - symbol_ref, label_ref, const
   - reg
   - reg + const_int, where const_int is 16 byte aligned
   - reg + reg, alignment doesn't matter
  The alignment matters in the reg+const case because lqd and stqd
  ignore the 4 least significant bits of the const.  We only care about
  16 byte modes because the expand phase will change all smaller MEM
  references to TImode.  */
static bool
spu_legitimate_address_p (enum machine_mode mode,
			  rtx x, bool reg_ok_strict)
{
  int aligned = GET_MODE_SIZE (mode) >= 16;
  if (aligned
      && GET_CODE (x) == AND
      && GET_CODE (XEXP (x, 1)) == CONST_INT
      && INTVAL (XEXP (x, 1)) == (HOST_WIDE_INT) - 16)
    x = XEXP (x, 0);
  switch (GET_CODE (x))
    {
    case LABEL_REF:
      return !TARGET_LARGE_MEM;

    case SYMBOL_REF:
    case CONST:
      /* Keep __ea references until reload so that spu_expand_mov can see them
	 in MEMs.  */
      if (ea_symbol_ref (&x, 0))
	return !reload_in_progress && !reload_completed;
      return !TARGET_LARGE_MEM;

    case CONST_INT:
      return INTVAL (x) >= 0 && INTVAL (x) <= 0x3ffff;

    case SUBREG:
      x = XEXP (x, 0);
      if (REG_P (x))
	return 0;

    case REG:
      return INT_REG_OK_FOR_BASE_P (x, reg_ok_strict);

    case PLUS:
    case LO_SUM:
      {
	rtx op0 = XEXP (x, 0);
	rtx op1 = XEXP (x, 1);
	if (GET_CODE (op0) == SUBREG)
	  op0 = XEXP (op0, 0);
	if (GET_CODE (op1) == SUBREG)
	  op1 = XEXP (op1, 0);
	if (GET_CODE (op0) == REG
	    && INT_REG_OK_FOR_BASE_P (op0, reg_ok_strict)
	    && GET_CODE (op1) == CONST_INT
	    && ((INTVAL (op1) >= -0x2000 && INTVAL (op1) <= 0x1fff)
		/* If virtual registers are involved, the displacement will
		   change later on anyway, so checking would be premature.
		   Reload will make sure the final displacement after
		   register elimination is OK.  */
		|| op0 == arg_pointer_rtx
		|| op0 == frame_pointer_rtx
		|| op0 == virtual_stack_vars_rtx)
	    && (!aligned || (INTVAL (op1) & 15) == 0))
	  return TRUE;
	if (GET_CODE (op0) == REG
	    && INT_REG_OK_FOR_BASE_P (op0, reg_ok_strict)
	    && GET_CODE (op1) == REG
	    && INT_REG_OK_FOR_INDEX_P (op1, reg_ok_strict))
	  return TRUE;
      }
      break;

    default:
      break;
    }
  return FALSE;
}

/* Like spu_legitimate_address_p, except with named addresses.  */
static bool
spu_addr_space_legitimate_address_p (enum machine_mode mode, rtx x,
				     bool reg_ok_strict, addr_space_t as)
{
  if (as == ADDR_SPACE_EA)
    return (REG_P (x) && (GET_MODE (x) == EAmode));

  else if (as != ADDR_SPACE_GENERIC)
    gcc_unreachable ();

  return spu_legitimate_address_p (mode, x, reg_ok_strict);
}

/* When the address is reg + const_int, force the const_int into a
   register.  */
rtx
spu_legitimize_address (rtx x, rtx oldx ATTRIBUTE_UNUSED,
			enum machine_mode mode ATTRIBUTE_UNUSED)
{
  rtx op0, op1;
  /* Make sure both operands are registers.  */
  if (GET_CODE (x) == PLUS)
    {
      op0 = XEXP (x, 0);
      op1 = XEXP (x, 1);
      if (ALIGNED_SYMBOL_REF_P (op0))
	{
	  op0 = force_reg (Pmode, op0);
	  mark_reg_pointer (op0, 128);
	}
      else if (GET_CODE (op0) != REG)
	op0 = force_reg (Pmode, op0);
      if (ALIGNED_SYMBOL_REF_P (op1))
	{
	  op1 = force_reg (Pmode, op1);
	  mark_reg_pointer (op1, 128);
	}
      else if (GET_CODE (op1) != REG)
	op1 = force_reg (Pmode, op1);
      x = gen_rtx_PLUS (Pmode, op0, op1);
    }
  return x;
}

/* Like spu_legitimate_address, except with named address support.  */
static rtx
spu_addr_space_legitimize_address (rtx x, rtx oldx, enum machine_mode mode,
				   addr_space_t as)
{
  if (as != ADDR_SPACE_GENERIC)
    return x;

  return spu_legitimize_address (x, oldx, mode);
}

/* Reload reg + const_int for out-of-range displacements.  */
rtx
spu_legitimize_reload_address (rtx ad, enum machine_mode mode ATTRIBUTE_UNUSED,
			       int opnum, int type)
{
  bool removed_and = false;

  if (GET_CODE (ad) == AND
      && CONST_INT_P (XEXP (ad, 1))
      && INTVAL (XEXP (ad, 1)) == (HOST_WIDE_INT) - 16)
    {
      ad = XEXP (ad, 0);
      removed_and = true;
    }

  if (GET_CODE (ad) == PLUS
      && REG_P (XEXP (ad, 0))
      && CONST_INT_P (XEXP (ad, 1))
      && !(INTVAL (XEXP (ad, 1)) >= -0x2000
	   && INTVAL (XEXP (ad, 1)) <= 0x1fff))
    {
      /* Unshare the sum.  */
      ad = copy_rtx (ad);

      /* Reload the displacement.  */
      push_reload (XEXP (ad, 1), NULL_RTX, &XEXP (ad, 1), NULL,
		   BASE_REG_CLASS, GET_MODE (ad), VOIDmode, 0, 0,
		   opnum, (enum reload_type) type);

      /* Add back AND for alignment if we stripped it.  */
      if (removed_and)
	ad = gen_rtx_AND (GET_MODE (ad), ad, GEN_INT (-16));

      return ad;
    }

  return NULL_RTX;
}

/* Handle an attribute requiring a FUNCTION_DECL; arguments as in
   struct attribute_spec.handler.  */
static tree
spu_handle_fndecl_attribute (tree * node,
			     tree name,
			     tree args ATTRIBUTE_UNUSED,
			     int flags ATTRIBUTE_UNUSED, bool * no_add_attrs)
{
  if (TREE_CODE (*node) != FUNCTION_DECL)
    {
      warning (0, "%qE attribute only applies to functions",
	       name);
      *no_add_attrs = true;
    }

  return NULL_TREE;
}

/* Handle the "vector" attribute.  */
static tree
spu_handle_vector_attribute (tree * node, tree name,
			     tree args ATTRIBUTE_UNUSED,
			     int flags ATTRIBUTE_UNUSED, bool * no_add_attrs)
{
  tree type = *node, result = NULL_TREE;
  enum machine_mode mode;
  int unsigned_p;

  while (POINTER_TYPE_P (type)
	 || TREE_CODE (type) == FUNCTION_TYPE
	 || TREE_CODE (type) == METHOD_TYPE || TREE_CODE (type) == ARRAY_TYPE)
    type = TREE_TYPE (type);

  mode = TYPE_MODE (type);

  unsigned_p = TYPE_UNSIGNED (type);
  switch (mode)
    {
    case DImode:
      result = (unsigned_p ? unsigned_V2DI_type_node : V2DI_type_node);
      break;
    case SImode:
      result = (unsigned_p ? unsigned_V4SI_type_node : V4SI_type_node);
      break;
    case HImode:
      result = (unsigned_p ? unsigned_V8HI_type_node : V8HI_type_node);
      break;
    case QImode:
      result = (unsigned_p ? unsigned_V16QI_type_node : V16QI_type_node);
      break;
    case SFmode:
      result = V4SF_type_node;
      break;
    case DFmode:
      result = V2DF_type_node;
      break;
    default:
      break;
    }

  /* Propagate qualifiers attached to the element type
     onto the vector type.  */
  if (result && result != type && TYPE_QUALS (type))
    result = build_qualified_type (result, TYPE_QUALS (type));

  *no_add_attrs = true;		/* No need to hang on to the attribute.  */

  if (!result)
    warning (0, "%qE attribute ignored", name);
  else
    *node = lang_hooks.types.reconstruct_complex_type (*node, result);

  return NULL_TREE;
}

/* Return nonzero if FUNC is a naked function.  */
static int
spu_naked_function_p (tree func)
{
  tree a;

  if (TREE_CODE (func) != FUNCTION_DECL)
    abort ();

  a = lookup_attribute ("naked", DECL_ATTRIBUTES (func));
  return a != NULL_TREE;
}

int
spu_initial_elimination_offset (int from, int to)
{
  int saved_regs_size = spu_saved_regs_size ();
  int sp_offset = 0;
  if (!crtl->is_leaf || crtl->outgoing_args_size
      || get_frame_size () || saved_regs_size)
    sp_offset = STACK_POINTER_OFFSET;
  if (from == FRAME_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
    return get_frame_size () + crtl->outgoing_args_size + sp_offset;
  else if (from == FRAME_POINTER_REGNUM && to == HARD_FRAME_POINTER_REGNUM)
    return get_frame_size ();
  else if (from == ARG_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
    return sp_offset + crtl->outgoing_args_size
      + get_frame_size () + saved_regs_size + STACK_POINTER_OFFSET;
  else if (from == ARG_POINTER_REGNUM && to == HARD_FRAME_POINTER_REGNUM)
    return get_frame_size () + saved_regs_size + sp_offset;
  else
    gcc_unreachable ();
}

rtx
spu_function_value (const_tree type, const_tree func ATTRIBUTE_UNUSED)
{
  enum machine_mode mode = TYPE_MODE (type);
  int byte_size = ((mode == BLKmode)
		   ? int_size_in_bytes (type) : GET_MODE_SIZE (mode));

  /* Make sure small structs are left justified in a register. */
  if ((mode == BLKmode || (type && AGGREGATE_TYPE_P (type)))
      && byte_size <= UNITS_PER_WORD * MAX_REGISTER_RETURN && byte_size > 0)
    {
      enum machine_mode smode;
      rtvec v;
      int i;
      int nregs = (byte_size + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
      int n = byte_size / UNITS_PER_WORD;
      v = rtvec_alloc (nregs);
      for (i = 0; i < n; i++)
	{
	  RTVEC_ELT (v, i) = gen_rtx_EXPR_LIST (VOIDmode,
						gen_rtx_REG (TImode,
							     FIRST_RETURN_REGNUM
							     + i),
						GEN_INT (UNITS_PER_WORD * i));
	  byte_size -= UNITS_PER_WORD;
	}

      if (n < nregs)
	{
	  if (byte_size < 4)
	    byte_size = 4;
	  smode =
	    smallest_mode_for_size (byte_size * BITS_PER_UNIT, MODE_INT);
	  RTVEC_ELT (v, n) =
	    gen_rtx_EXPR_LIST (VOIDmode,
			       gen_rtx_REG (smode, FIRST_RETURN_REGNUM + n),
			       GEN_INT (UNITS_PER_WORD * n));
	}
      return gen_rtx_PARALLEL (mode, v);
    }
  return gen_rtx_REG (mode, FIRST_RETURN_REGNUM);
}

static rtx
spu_function_arg (cumulative_args_t cum_v,
		  enum machine_mode mode,
		  const_tree type, bool named ATTRIBUTE_UNUSED)
{
  CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
  int byte_size;

  if (*cum >= MAX_REGISTER_ARGS)
    return 0;

  byte_size = ((mode == BLKmode)
	       ? int_size_in_bytes (type) : GET_MODE_SIZE (mode));

  /* The ABI does not allow parameters to be passed partially in
     reg and partially in stack. */
  if ((*cum + (byte_size + 15) / 16) > MAX_REGISTER_ARGS)
    return 0;

  /* Make sure small structs are left justified in a register. */
  if ((mode == BLKmode || (type && AGGREGATE_TYPE_P (type)))
      && byte_size < UNITS_PER_WORD && byte_size > 0)
    {
      enum machine_mode smode;
      rtx gr_reg;
      if (byte_size < 4)
	byte_size = 4;
      smode = smallest_mode_for_size (byte_size * BITS_PER_UNIT, MODE_INT);
      gr_reg = gen_rtx_EXPR_LIST (VOIDmode,
				  gen_rtx_REG (smode, FIRST_ARG_REGNUM + *cum),
				  const0_rtx);
      return gen_rtx_PARALLEL (mode, gen_rtvec (1, gr_reg));
    }
  else
    return gen_rtx_REG (mode, FIRST_ARG_REGNUM + *cum);
}

static void
spu_function_arg_advance (cumulative_args_t cum_v, enum machine_mode mode,
			  const_tree type, bool named ATTRIBUTE_UNUSED)
{
  CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);

  *cum += (type && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST
	   ? 1
	   : mode == BLKmode
	   ? ((int_size_in_bytes (type) + 15) / 16)
	   : mode == VOIDmode
	   ? 1
	   : HARD_REGNO_NREGS (cum, mode));
}

/* Variable sized types are passed by reference.  */
static bool
spu_pass_by_reference (cumulative_args_t cum ATTRIBUTE_UNUSED,
		       enum machine_mode mode ATTRIBUTE_UNUSED,
		       const_tree type, bool named ATTRIBUTE_UNUSED)
{
  return type && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST;
}


/* Var args. */

/* Create and return the va_list datatype.

   On SPU, va_list is an array type equivalent to

      typedef struct __va_list_tag
        {
            void *__args __attribute__((__aligned(16)));
            void *__skip __attribute__((__aligned(16)));
            
        } va_list[1];

   where __args points to the arg that will be returned by the next
   va_arg(), and __skip points to the previous stack frame such that
   when __args == __skip we should advance __args by 32 bytes. */
static tree
spu_build_builtin_va_list (void)
{
  tree f_args, f_skip, record, type_decl;
  bool owp;

  record = (*lang_hooks.types.make_type) (RECORD_TYPE);

  type_decl =
    build_decl (BUILTINS_LOCATION,
		TYPE_DECL, get_identifier ("__va_list_tag"), record);

  f_args = build_decl (BUILTINS_LOCATION,
		       FIELD_DECL, get_identifier ("__args"), ptr_type_node);
  f_skip = build_decl (BUILTINS_LOCATION,
		       FIELD_DECL, get_identifier ("__skip"), ptr_type_node);

  DECL_FIELD_CONTEXT (f_args) = record;
  DECL_ALIGN (f_args) = 128;
  DECL_USER_ALIGN (f_args) = 1;

  DECL_FIELD_CONTEXT (f_skip) = record;
  DECL_ALIGN (f_skip) = 128;
  DECL_USER_ALIGN (f_skip) = 1;

  TYPE_STUB_DECL (record) = type_decl;
  TYPE_NAME (record) = type_decl;
  TYPE_FIELDS (record) = f_args;
  DECL_CHAIN (f_args) = f_skip;

  /* We know this is being padded and we want it too.  It is an internal
     type so hide the warnings from the user. */
  owp = warn_padded;
  warn_padded = false;

  layout_type (record);

  warn_padded = owp;

  /* The correct type is an array type of one element.  */
  return build_array_type (record, build_index_type (size_zero_node));
}

/* Implement va_start by filling the va_list structure VALIST.
   NEXTARG points to the first anonymous stack argument.

   The following global variables are used to initialize
   the va_list structure:

     crtl->args.info;
       the CUMULATIVE_ARGS for this function

     crtl->args.arg_offset_rtx:
       holds the offset of the first anonymous stack argument
       (relative to the virtual arg pointer).  */

static void
spu_va_start (tree valist, rtx nextarg)
{
  tree f_args, f_skip;
  tree args, skip, t;

  f_args = TYPE_FIELDS (TREE_TYPE (va_list_type_node));
  f_skip = DECL_CHAIN (f_args);

  valist = build_simple_mem_ref (valist);
  args =
    build3 (COMPONENT_REF, TREE_TYPE (f_args), valist, f_args, NULL_TREE);
  skip =
    build3 (COMPONENT_REF, TREE_TYPE (f_skip), valist, f_skip, NULL_TREE);

  /* Find the __args area.  */
  t = make_tree (TREE_TYPE (args), nextarg);
  if (crtl->args.pretend_args_size > 0)
    t = fold_build_pointer_plus_hwi (t, -STACK_POINTER_OFFSET);
  t = build2 (MODIFY_EXPR, TREE_TYPE (args), args, t);
  TREE_SIDE_EFFECTS (t) = 1;
  expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);

  /* Find the __skip area.  */
  t = make_tree (TREE_TYPE (skip), virtual_incoming_args_rtx);
  t = fold_build_pointer_plus_hwi (t, (crtl->args.pretend_args_size
				       - STACK_POINTER_OFFSET));
  t = build2 (MODIFY_EXPR, TREE_TYPE (skip), skip, t);
  TREE_SIDE_EFFECTS (t) = 1;
  expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
}

/* Gimplify va_arg by updating the va_list structure 
   VALIST as required to retrieve an argument of type
   TYPE, and returning that argument. 
   
   ret = va_arg(VALIST, TYPE);

   generates code equivalent to:
   
    paddedsize = (sizeof(TYPE) + 15) & -16;
    if (VALIST.__args + paddedsize > VALIST.__skip
	&& VALIST.__args <= VALIST.__skip)
      addr = VALIST.__skip + 32;
    else
      addr = VALIST.__args;
    VALIST.__args = addr + paddedsize;
    ret = *(TYPE *)addr;
 */
static tree
spu_gimplify_va_arg_expr (tree valist, tree type, gimple_seq * pre_p,
			  gimple_seq * post_p ATTRIBUTE_UNUSED)
{
  tree f_args, f_skip;
  tree args, skip;
  HOST_WIDE_INT size, rsize;
  tree addr, tmp;
  bool pass_by_reference_p;

  f_args = TYPE_FIELDS (TREE_TYPE (va_list_type_node));
  f_skip = DECL_CHAIN (f_args);

  valist = build_simple_mem_ref (valist);
  args =
    build3 (COMPONENT_REF, TREE_TYPE (f_args), valist, f_args, NULL_TREE);
  skip =
    build3 (COMPONENT_REF, TREE_TYPE (f_skip), valist, f_skip, NULL_TREE);

  addr = create_tmp_var (ptr_type_node, "va_arg");

  /* if an object is dynamically sized, a pointer to it is passed
     instead of the object itself. */
  pass_by_reference_p = pass_by_reference (NULL, TYPE_MODE (type), type,
					   false);
  if (pass_by_reference_p)
    type = build_pointer_type (type);
  size = int_size_in_bytes (type);
  rsize = ((size + UNITS_PER_WORD - 1) / UNITS_PER_WORD) * UNITS_PER_WORD;

  /* build conditional expression to calculate addr. The expression
     will be gimplified later. */
  tmp = fold_build_pointer_plus_hwi (unshare_expr (args), rsize);
  tmp = build2 (TRUTH_AND_EXPR, boolean_type_node,
		build2 (GT_EXPR, boolean_type_node, tmp, unshare_expr (skip)),
		build2 (LE_EXPR, boolean_type_node, unshare_expr (args),
		unshare_expr (skip)));

  tmp = build3 (COND_EXPR, ptr_type_node, tmp,
		fold_build_pointer_plus_hwi (unshare_expr (skip), 32),
		unshare_expr (args));

  gimplify_assign (addr, tmp, pre_p);

  /* update VALIST.__args */
  tmp = fold_build_pointer_plus_hwi (addr, rsize);
  gimplify_assign (unshare_expr (args), tmp, pre_p);

  addr = fold_convert (build_pointer_type_for_mode (type, ptr_mode, true),
		       addr);

  if (pass_by_reference_p)
    addr = build_va_arg_indirect_ref (addr);

  return build_va_arg_indirect_ref (addr);
}

/* Save parameter registers starting with the register that corresponds
   to the first unnamed parameters.  If the first unnamed parameter is
   in the stack then save no registers.  Set pretend_args_size to the
   amount of space needed to save the registers. */
static void
spu_setup_incoming_varargs (cumulative_args_t cum, enum machine_mode mode,
			    tree type, int *pretend_size, int no_rtl)
{
  if (!no_rtl)
    {
      rtx tmp;
      int regno;
      int offset;
      int ncum = *get_cumulative_args (cum);

      /* cum currently points to the last named argument, we want to
         start at the next argument. */
      spu_function_arg_advance (pack_cumulative_args (&ncum), mode, type, true);

      offset = -STACK_POINTER_OFFSET;
      for (regno = ncum; regno < MAX_REGISTER_ARGS; regno++)
	{
	  tmp = gen_frame_mem (V4SImode,
			       plus_constant (Pmode, virtual_incoming_args_rtx,
					      offset));
	  emit_move_insn (tmp,
			  gen_rtx_REG (V4SImode, FIRST_ARG_REGNUM + regno));
	  offset += 16;
	}
      *pretend_size = offset + STACK_POINTER_OFFSET;
    }
}

static void
spu_conditional_register_usage (void)
{
  if (flag_pic)
    {
      fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1;
      call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1;
    }
}

/* This is called any time we inspect the alignment of a register for
   addresses.  */
static int
reg_aligned_for_addr (rtx x)
{
  int regno =
    REGNO (x) < FIRST_PSEUDO_REGISTER ? ORIGINAL_REGNO (x) : REGNO (x);
  return REGNO_POINTER_ALIGN (regno) >= 128;
}

/* Encode symbol attributes (local vs. global, tls model) of a SYMBOL_REF
   into its SYMBOL_REF_FLAGS.  */
static void
spu_encode_section_info (tree decl, rtx rtl, int first)
{
  default_encode_section_info (decl, rtl, first);

  /* If a variable has a forced alignment to < 16 bytes, mark it with
     SYMBOL_FLAG_ALIGN1.  */
  if (TREE_CODE (decl) == VAR_DECL
      && DECL_USER_ALIGN (decl) && DECL_ALIGN (decl) < 128)
    SYMBOL_REF_FLAGS (XEXP (rtl, 0)) |= SYMBOL_FLAG_ALIGN1;
}

/* Return TRUE if we are certain the mem refers to a complete object
   which is both 16-byte aligned and padded to a 16-byte boundary.  This
   would make it safe to store with a single instruction. 
   We guarantee the alignment and padding for static objects by aligning
   all of them to 16-bytes. (DATA_ALIGNMENT and CONSTANT_ALIGNMENT.)
   FIXME: We currently cannot guarantee this for objects on the stack
   because assign_parm_setup_stack calls assign_stack_local with the
   alignment of the parameter mode and in that case the alignment never
   gets adjusted by LOCAL_ALIGNMENT. */
static int
store_with_one_insn_p (rtx mem)
{
  enum machine_mode mode = GET_MODE (mem);
  rtx addr = XEXP (mem, 0);
  if (mode == BLKmode)
    return 0;
  if (GET_MODE_SIZE (mode) >= 16)
    return 1;
  /* Only static objects. */
  if (GET_CODE (addr) == SYMBOL_REF)
    {
      /* We use the associated declaration to make sure the access is
         referring to the whole object.
         We check both MEM_EXPR and SYMBOL_REF_DECL.  I'm not sure
         if it is necessary.  Will there be cases where one exists, and
         the other does not?  Will there be cases where both exist, but
         have different types?  */
      tree decl = MEM_EXPR (mem);
      if (decl
	  && TREE_CODE (decl) == VAR_DECL
	  && GET_MODE (mem) == TYPE_MODE (TREE_TYPE (decl)))
	return 1;
      decl = SYMBOL_REF_DECL (addr);
      if (decl
	  && TREE_CODE (decl) == VAR_DECL
	  && GET_MODE (mem) == TYPE_MODE (TREE_TYPE (decl)))
	return 1;
    }
  return 0;
}

/* Return 1 when the address is not valid for a simple load and store as
   required by the '_mov*' patterns.   We could make this less strict
   for loads, but we prefer mem's to look the same so they are more
   likely to be merged.  */
static int
address_needs_split (rtx mem)
{
  if (GET_MODE_SIZE (GET_MODE (mem)) < 16
      && (GET_MODE_SIZE (GET_MODE (mem)) < 4
	  || !(store_with_one_insn_p (mem)
	       || mem_is_padded_component_ref (mem))))
    return 1;

  return 0;
}

static GTY(()) rtx cache_fetch;		  /* __cache_fetch function */
static GTY(()) rtx cache_fetch_dirty;	  /* __cache_fetch_dirty function */
static alias_set_type ea_alias_set = -1;  /* alias set for __ea memory */

/* MEM is known to be an __ea qualified memory access.  Emit a call to
   fetch the ppu memory to local store, and return its address in local
   store.  */

static void
ea_load_store (rtx mem, bool is_store, rtx ea_addr, rtx data_addr)
{
  if (is_store)
    {
      rtx ndirty = GEN_INT (GET_MODE_SIZE (GET_MODE (mem)));
      if (!cache_fetch_dirty)
	cache_fetch_dirty = init_one_libfunc ("__cache_fetch_dirty");
      emit_library_call_value (cache_fetch_dirty, data_addr, LCT_NORMAL, Pmode,
			       2, ea_addr, EAmode, ndirty, SImode);
    }
  else
    {
      if (!cache_fetch)
	cache_fetch = init_one_libfunc ("__cache_fetch");
      emit_library_call_value (cache_fetch, data_addr, LCT_NORMAL, Pmode,
			       1, ea_addr, EAmode);
    }
}

/* Like ea_load_store, but do the cache tag comparison and, for stores,
   dirty bit marking, inline.

   The cache control data structure is an array of

   struct __cache_tag_array
     {
        unsigned int tag_lo[4];
        unsigned int tag_hi[4];
        void *data_pointer[4];
        int reserved[4];
        vector unsigned short dirty_bits[4];
     }  */

static void
ea_load_store_inline (rtx mem, bool is_store, rtx ea_addr, rtx data_addr)
{
  rtx ea_addr_si;
  HOST_WIDE_INT v;
  rtx tag_size_sym = gen_rtx_SYMBOL_REF (Pmode, "__cache_tag_array_size");
  rtx tag_arr_sym = gen_rtx_SYMBOL_REF (Pmode, "__cache_tag_array");
  rtx index_mask = gen_reg_rtx (SImode);
  rtx tag_arr = gen_reg_rtx (Pmode);
  rtx splat_mask = gen_reg_rtx (TImode);
  rtx splat = gen_reg_rtx (V4SImode);
  rtx splat_hi = NULL_RTX;
  rtx tag_index = gen_reg_rtx (Pmode);
  rtx block_off = gen_reg_rtx (SImode);
  rtx tag_addr = gen_reg_rtx (Pmode);
  rtx tag = gen_reg_rtx (V4SImode);
  rtx cache_tag = gen_reg_rtx (V4SImode);
  rtx cache_tag_hi = NULL_RTX;
  rtx cache_ptrs = gen_reg_rtx (TImode);
  rtx cache_ptrs_si = gen_reg_rtx (SImode);
  rtx tag_equal = gen_reg_rtx (V4SImode);
  rtx tag_equal_hi = NULL_RTX;
  rtx tag_eq_pack = gen_reg_rtx (V4SImode);
  rtx tag_eq_pack_si = gen_reg_rtx (SImode);
  rtx eq_index = gen_reg_rtx (SImode);
  rtx bcomp, hit_label, hit_ref, cont_label, insn;

  if (spu_ea_model != 32)
    {
      splat_hi = gen_reg_rtx (V4SImode);
      cache_tag_hi = gen_reg_rtx (V4SImode);
      tag_equal_hi = gen_reg_rtx (V4SImode);
    }

  emit_move_insn (index_mask, plus_constant (Pmode, tag_size_sym, -128));
  emit_move_insn (tag_arr, tag_arr_sym);
  v = 0x0001020300010203LL;
  emit_move_insn (splat_mask, immed_double_const (v, v, TImode));
  ea_addr_si = ea_addr;
  if (spu_ea_model != 32)
    ea_addr_si = convert_to_mode (SImode, ea_addr, 1);

  /* tag_index = ea_addr & (tag_array_size - 128)  */
  emit_insn (gen_andsi3 (tag_index, ea_addr_si, index_mask));

  /* splat ea_addr to all 4 slots.  */
  emit_insn (gen_shufb (splat, ea_addr_si, ea_addr_si, splat_mask));
  /* Similarly for high 32 bits of ea_addr.  */
  if (spu_ea_model != 32)
    emit_insn (gen_shufb (splat_hi, ea_addr, ea_addr, splat_mask));

  /* block_off = ea_addr & 127  */
  emit_insn (gen_andsi3 (block_off, ea_addr_si, spu_const (SImode, 127)));

  /* tag_addr = tag_arr + tag_index  */
  emit_insn (gen_addsi3 (tag_addr, tag_arr, tag_index));

  /* Read cache tags.  */
  emit_move_insn (cache_tag, gen_rtx_MEM (V4SImode, tag_addr));
  if (spu_ea_model != 32)
    emit_move_insn (cache_tag_hi, gen_rtx_MEM (V4SImode,
					       plus_constant (Pmode,
							      tag_addr, 16)));

  /* tag = ea_addr & -128  */
  emit_insn (gen_andv4si3 (tag, splat, spu_const (V4SImode, -128)));

  /* Read all four cache data pointers.  */
  emit_move_insn (cache_ptrs, gen_rtx_MEM (TImode,
					   plus_constant (Pmode,
							  tag_addr, 32)));

  /* Compare tags.  */
  emit_insn (gen_ceq_v4si (tag_equal, tag, cache_tag));
  if (spu_ea_model != 32)
    {
      emit_insn (gen_ceq_v4si (tag_equal_hi, splat_hi, cache_tag_hi));
      emit_insn (gen_andv4si3 (tag_equal, tag_equal, tag_equal_hi));
    }

  /* At most one of the tags compare equal, so tag_equal has one
     32-bit slot set to all 1's, with the other slots all zero.
     gbb picks off low bit from each byte in the 128-bit registers,
     so tag_eq_pack is one of 0xf000, 0x0f00, 0x00f0, 0x000f, assuming
     we have a hit.  */
  emit_insn (gen_spu_gbb (tag_eq_pack, spu_gen_subreg (V16QImode, tag_equal)));
  emit_insn (gen_spu_convert (tag_eq_pack_si, tag_eq_pack));

  /* So counting leading zeros will set eq_index to 16, 20, 24 or 28.  */
  emit_insn (gen_clzsi2 (eq_index, tag_eq_pack_si));

  /* Allowing us to rotate the corresponding cache data pointer to slot0.
     (rotating eq_index mod 16 bytes).  */
  emit_insn (gen_rotqby_ti (cache_ptrs, cache_ptrs, eq_index));
  emit_insn (gen_spu_convert (cache_ptrs_si, cache_ptrs));

  /* Add block offset to form final data address.  */
  emit_insn (gen_addsi3 (data_addr, cache_ptrs_si, block_off));

  /* Check that we did hit.  */
  hit_label = gen_label_rtx ();
  hit_ref = gen_rtx_LABEL_REF (VOIDmode, hit_label);
  bcomp = gen_rtx_NE (SImode, tag_eq_pack_si, const0_rtx);
  insn = emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx,
				      gen_rtx_IF_THEN_ELSE (VOIDmode, bcomp,
							    hit_ref, pc_rtx)));
  /* Say that this branch is very likely to happen.  */
  v = REG_BR_PROB_BASE - REG_BR_PROB_BASE / 100 - 1;
  add_reg_note (insn, REG_BR_PROB, GEN_INT (v));

  ea_load_store (mem, is_store, ea_addr, data_addr);
  cont_label = gen_label_rtx ();
  emit_jump_insn (gen_jump (cont_label));
  emit_barrier ();

  emit_label (hit_label);

  if (is_store)
    {
      HOST_WIDE_INT v_hi;
      rtx dirty_bits = gen_reg_rtx (TImode);
      rtx dirty_off = gen_reg_rtx (SImode);
      rtx dirty_128 = gen_reg_rtx (TImode);
      rtx neg_block_off = gen_reg_rtx (SImode);

      /* Set up mask with one dirty bit per byte of the mem we are
	 writing, starting from top bit.  */
      v_hi = v = -1;
      v <<= (128 - GET_MODE_SIZE (GET_MODE (mem))) & 63;
      if ((128 - GET_MODE_SIZE (GET_MODE (mem))) >= 64)
	{
	  v_hi = v;
	  v = 0;
	}
      emit_move_insn (dirty_bits, immed_double_const (v, v_hi, TImode));

      /* Form index into cache dirty_bits.  eq_index is one of
	 0x10, 0x14, 0x18 or 0x1c.  Multiplying by 4 gives us
	 0x40, 0x50, 0x60 or 0x70 which just happens to be the
	 offset to each of the four dirty_bits elements.  */
      emit_insn (gen_ashlsi3 (dirty_off, eq_index, spu_const (SImode, 2)));

      emit_insn (gen_spu_lqx (dirty_128, tag_addr, dirty_off));

      /* Rotate bit mask to proper bit.  */
      emit_insn (gen_negsi2 (neg_block_off, block_off));
      emit_insn (gen_rotqbybi_ti (dirty_bits, dirty_bits, neg_block_off));
      emit_insn (gen_rotqbi_ti (dirty_bits, dirty_bits, neg_block_off));

      /* Or in the new dirty bits.  */
      emit_insn (gen_iorti3 (dirty_128, dirty_bits, dirty_128));

      /* Store.  */
      emit_insn (gen_spu_stqx (dirty_128, tag_addr, dirty_off));
    }

  emit_label (cont_label);
}

static rtx
expand_ea_mem (rtx mem, bool is_store)
{
  rtx ea_addr;
  rtx data_addr = gen_reg_rtx (Pmode);
  rtx new_mem;

  ea_addr = force_reg (EAmode, XEXP (mem, 0));
  if (optimize_size || optimize == 0)
    ea_load_store (mem, is_store, ea_addr, data_addr);
  else
    ea_load_store_inline (mem, is_store, ea_addr, data_addr);

  if (ea_alias_set == -1)
    ea_alias_set = new_alias_set ();

  /* We generate a new MEM RTX to refer to the copy of the data
     in the cache.  We do not copy memory attributes (except the
     alignment) from the original MEM, as they may no longer apply
     to the cache copy.  */
  new_mem = gen_rtx_MEM (GET_MODE (mem), data_addr);
  set_mem_alias_set (new_mem, ea_alias_set);
  set_mem_align (new_mem, MIN (MEM_ALIGN (mem), 128 * 8));

  return new_mem;
}

int
spu_expand_mov (rtx * ops, enum machine_mode mode)
{
  if (GET_CODE (ops[0]) == SUBREG && !valid_subreg (ops[0]))
    {
      /* Perform the move in the destination SUBREG's inner mode.  */
      ops[0] = SUBREG_REG (ops[0]);
      mode = GET_MODE (ops[0]);
      ops[1] = gen_lowpart_common (mode, ops[1]);
      gcc_assert (ops[1]);
    }

  if (GET_CODE (ops[1]) == SUBREG && !valid_subreg (ops[1]))
    {
      rtx from = SUBREG_REG (ops[1]);
      enum machine_mode imode = int_mode_for_mode (GET_MODE (from));

      gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
		  && GET_MODE_CLASS (imode) == MODE_INT
		  && subreg_lowpart_p (ops[1]));

      if (GET_MODE_SIZE (imode) < 4)
	imode = SImode;
      if (imode != GET_MODE (from))
	from = gen_rtx_SUBREG (imode, from, 0);

      if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (imode))
	{
	  enum insn_code icode = convert_optab_handler (trunc_optab,
							mode, imode);
	  emit_insn (GEN_FCN (icode) (ops[0], from));
	}
      else
	emit_insn (gen_extend_insn (ops[0], from, mode, imode, 1));
      return 1;
    }

  /* At least one of the operands needs to be a register. */
  if ((reload_in_progress | reload_completed) == 0
      && !register_operand (ops[0], mode) && !register_operand (ops[1], mode))
    {
      rtx temp = force_reg (mode, ops[1]);
      emit_move_insn (ops[0], temp);
      return 1;
    }
  if (reload_in_progress || reload_completed)
    {
      if (CONSTANT_P (ops[1]))
	return spu_split_immediate (ops);
      return 0;
    }

  /* Catch the SImode immediates greater than 0x7fffffff, and sign
     extend them. */
  if (GET_CODE (ops[1]) == CONST_INT)
    {
      HOST_WIDE_INT val = trunc_int_for_mode (INTVAL (ops[1]), mode);
      if (val != INTVAL (ops[1]))
	{
	  emit_move_insn (ops[0], GEN_INT (val));
	  return 1;
	}
    }
  if (MEM_P (ops[0]))
    {
      if (MEM_ADDR_SPACE (ops[0]))
	ops[0] = expand_ea_mem (ops[0], true);
      return spu_split_store (ops);
    }
  if (MEM_P (ops[1]))
    {
      if (MEM_ADDR_SPACE (ops[1]))
	ops[1] = expand_ea_mem (ops[1], false);
      return spu_split_load (ops);
    }

  return 0;
}

static void
spu_convert_move (rtx dst, rtx src)
{
  enum machine_mode mode = GET_MODE (dst);
  enum machine_mode int_mode = mode_for_size (GET_MODE_BITSIZE (mode), MODE_INT, 0);
  rtx reg;
  gcc_assert (GET_MODE (src) == TImode);
  reg = int_mode != mode ? gen_reg_rtx (int_mode) : dst;
  emit_insn (gen_rtx_SET (VOIDmode, reg,
	       gen_rtx_TRUNCATE (int_mode,
		 gen_rtx_LSHIFTRT (TImode, src,
		   GEN_INT (int_mode == DImode ? 64 : 96)))));
  if (int_mode != mode)
    {
      reg = simplify_gen_subreg (mode, reg, int_mode, 0);
      emit_move_insn (dst, reg);
    }
}

/* Load TImode values into DST0 and DST1 (when it is non-NULL) using
   the address from SRC and SRC+16.  Return a REG or CONST_INT that 
   specifies how many bytes to rotate the loaded registers, plus any
   extra from EXTRA_ROTQBY.  The address and rotate amounts are
   normalized to improve merging of loads and rotate computations. */
static rtx
spu_expand_load (rtx dst0, rtx dst1, rtx src, int extra_rotby)
{
  rtx addr = XEXP (src, 0);
  rtx p0, p1, rot, addr0, addr1;
  int rot_amt;

  rot = 0;
  rot_amt = 0;

  if (MEM_ALIGN (src) >= 128)
    /* Address is already aligned; simply perform a TImode load.  */ ;
  else if (GET_CODE (addr) == PLUS)
    {
      /* 8 cases:
         aligned reg   + aligned reg     => lqx
         aligned reg   + unaligned reg   => lqx, rotqby
         aligned reg   + aligned const   => lqd
         aligned reg   + unaligned const => lqd, rotqbyi
         unaligned reg + aligned reg     => lqx, rotqby
         unaligned reg + unaligned reg   => lqx, a, rotqby (1 scratch)
         unaligned reg + aligned const   => lqd, rotqby
         unaligned reg + unaligned const -> not allowed by legitimate address
       */
      p0 = XEXP (addr, 0);
      p1 = XEXP (addr, 1);
      if (!reg_aligned_for_addr (p0))
	{
	  if (REG_P (p1) && !reg_aligned_for_addr (p1))
	    {
	      rot = gen_reg_rtx (SImode);
	      emit_insn (gen_addsi3 (rot, p0, p1));
	    }
	  else if (GET_CODE (p1) == CONST_INT && (INTVAL (p1) & 15))
	    {
	      if (INTVAL (p1) > 0
		  && REG_POINTER (p0)
		  && INTVAL (p1) * BITS_PER_UNIT
		     < REGNO_POINTER_ALIGN (REGNO (p0)))
		{
		  rot = gen_reg_rtx (SImode);
		  emit_insn (gen_addsi3 (rot, p0, p1));
		  addr = p0;
		}
	      else
		{
		  rtx x = gen_reg_rtx (SImode);
		  emit_move_insn (x, p1);
		  if (!spu_arith_operand (p1, SImode))
		    p1 = x;
		  rot = gen_reg_rtx (SImode);
		  emit_insn (gen_addsi3 (rot, p0, p1));
		  addr = gen_rtx_PLUS (Pmode, p0, x);
		}
	    }
	  else
	    rot = p0;
	}
      else
	{
	  if (GET_CODE (p1) == CONST_INT && (INTVAL (p1) & 15))
	    {
	      rot_amt = INTVAL (p1) & 15;
	      if (INTVAL (p1) & -16)
		{
		  p1 = GEN_INT (INTVAL (p1) & -16);
		  addr = gen_rtx_PLUS (SImode, p0, p1);
		}
	      else
		addr = p0;
	    }
	  else if (REG_P (p1) && !reg_aligned_for_addr (p1))
	    rot = p1;
	}
    }
  else if (REG_P (addr))
    {
      if (!reg_aligned_for_addr (addr))
	rot = addr;
    }
  else if (GET_CODE (addr) == CONST)
    {
      if (GET_CODE (XEXP (addr, 0)) == PLUS
	  && ALIGNED_SYMBOL_REF_P (XEXP (XEXP (addr, 0), 0))
	  && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST_INT)
	{
	  rot_amt = INTVAL (XEXP (XEXP (addr, 0), 1));
	  if (rot_amt & -16)
	    addr = gen_rtx_CONST (Pmode,
				  gen_rtx_PLUS (Pmode,
						XEXP (XEXP (addr, 0), 0),
						GEN_INT (rot_amt & -16)));
	  else
	    addr = XEXP (XEXP (addr, 0), 0);
	}
      else
	{
	  rot = gen_reg_rtx (Pmode);
	  emit_move_insn (rot, addr);
	}
    }
  else if (GET_CODE (addr) == CONST_INT)
    {
      rot_amt = INTVAL (addr);
      addr = GEN_INT (rot_amt & -16);
    }
  else if (!ALIGNED_SYMBOL_REF_P (addr))
    {
      rot = gen_reg_rtx (Pmode);
      emit_move_insn (rot, addr);
    }

  rot_amt += extra_rotby;

  rot_amt &= 15;

  if (rot && rot_amt)
    {
      rtx x = gen_reg_rtx (SImode);
      emit_insn (gen_addsi3 (x, rot, GEN_INT (rot_amt)));
      rot = x;
      rot_amt = 0;
    }
  if (!rot && rot_amt)
    rot = GEN_INT (rot_amt);

  addr0 = copy_rtx (addr);
  addr0 = gen_rtx_AND (SImode, copy_rtx (addr), GEN_INT (-16));
  emit_insn (gen__movti (dst0, change_address (src, TImode, addr0)));

  if (dst1)
    {
      addr1 = plus_constant (SImode, copy_rtx (addr), 16);
      addr1 = gen_rtx_AND (SImode, addr1, GEN_INT (-16));
      emit_insn (gen__movti (dst1, change_address (src, TImode, addr1)));
    }

  return rot;
}

int
spu_split_load (rtx * ops)
{
  enum machine_mode mode = GET_MODE (ops[0]);
  rtx addr, load, rot;
  int rot_amt;

  if (GET_MODE_SIZE (mode) >= 16)
    return 0;

  addr = XEXP (ops[1], 0);
  gcc_assert (GET_CODE (addr) != AND);

  if (!address_needs_split (ops[1]))
    {
      ops[1] = change_address (ops[1], TImode, addr);
      load = gen_reg_rtx (TImode);
      emit_insn (gen__movti (load, ops[1]));
      spu_convert_move (ops[0], load);
      return 1;
    }

  rot_amt = GET_MODE_SIZE (mode) < 4 ? GET_MODE_SIZE (mode) - 4 : 0;

  load = gen_reg_rtx (TImode);
  rot = spu_expand_load (load, 0, ops[1], rot_amt);

  if (rot)
    emit_insn (gen_rotqby_ti (load, load, rot));

  spu_convert_move (ops[0], load);
  return 1;
}

int
spu_split_store (rtx * ops)
{
  enum machine_mode mode = GET_MODE (ops[0]);
  rtx reg;
  rtx addr, p0, p1, p1_lo, smem;
  int aform;
  int scalar;

  if (GET_MODE_SIZE (mode) >= 16)
    return 0;

  addr = XEXP (ops[0], 0);
  gcc_assert (GET_CODE (addr) != AND);

  if (!address_needs_split (ops[0]))
    {
      reg = gen_reg_rtx (TImode);
      emit_insn (gen_spu_convert (reg, ops[1]));
      ops[0] = change_address (ops[0], TImode, addr);
      emit_move_insn (ops[0], reg);
      return 1;
    }

  if (GET_CODE (addr) == PLUS)
    {
      /* 8 cases:
         aligned reg   + aligned reg     => lqx, c?x, shuf, stqx
         aligned reg   + unaligned reg   => lqx, c?x, shuf, stqx
         aligned reg   + aligned const   => lqd, c?d, shuf, stqx
         aligned reg   + unaligned const => lqd, c?d, shuf, stqx
         unaligned reg + aligned reg     => lqx, c?x, shuf, stqx
         unaligned reg + unaligned reg   => lqx, c?x, shuf, stqx
         unaligned reg + aligned const   => lqd, c?d, shuf, stqx
         unaligned reg + unaligned const -> lqx, c?d, shuf, stqx
       */
      aform = 0;
      p0 = XEXP (addr, 0);
      p1 = p1_lo = XEXP (addr, 1);
      if (REG_P (p0) && GET_CODE (p1) == CONST_INT)
	{
	  p1_lo = GEN_INT (INTVAL (p1) & 15);
	  if (reg_aligned_for_addr (p0))
	    {
	      p1 = GEN_INT (INTVAL (p1) & -16);
	      if (p1 == const0_rtx)
		addr = p0;
	      else
		addr = gen_rtx_PLUS (SImode, p0, p1);
	    }
	  else
	    {
	      rtx x = gen_reg_rtx (SImode);
	      emit_move_insn (x, p1);
	      addr = gen_rtx_PLUS (SImode, p0, x);
	    }
	}
    }
  else if (REG_P (addr))
    {
      aform = 0;
      p0 = addr;
      p1 = p1_lo = const0_rtx;
    }
  else
    {
      aform = 1;
      p0 = gen_rtx_REG (SImode, STACK_POINTER_REGNUM);
      p1 = 0;			/* aform doesn't use p1 */
      p1_lo = addr;
      if (ALIGNED_SYMBOL_REF_P (addr))
	p1_lo = const0_rtx;
      else if (GET_CODE (addr) == CONST
	       && GET_CODE (XEXP (addr, 0)) == PLUS
	       && ALIGNED_SYMBOL_REF_P (XEXP (XEXP (addr, 0), 0))
	       && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST_INT)
	{
	  HOST_WIDE_INT v = INTVAL (XEXP (XEXP (addr, 0), 1));
	  if ((v & -16) != 0)
	    addr = gen_rtx_CONST (Pmode,
				  gen_rtx_PLUS (Pmode,
						XEXP (XEXP (addr, 0), 0),
						GEN_INT (v & -16)));
	  else
	    addr = XEXP (XEXP (addr, 0), 0);
	  p1_lo = GEN_INT (v & 15);
	}
      else if (GET_CODE (addr) == CONST_INT)
	{
	  p1_lo = GEN_INT (INTVAL (addr) & 15);
	  addr = GEN_INT (INTVAL (addr) & -16);
	}
      else
	{
	  p1_lo = gen_reg_rtx (SImode);
	  emit_move_insn (p1_lo, addr);
	}
    }

  gcc_assert (aform == 0 || aform == 1);
  reg = gen_reg_rtx (TImode);

  scalar = store_with_one_insn_p (ops[0]);
  if (!scalar)
    {
      /* We could copy the flags from the ops[0] MEM to mem here,
         We don't because we want this load to be optimized away if
         possible, and copying the flags will prevent that in certain
         cases, e.g. consider the volatile flag. */

      rtx pat = gen_reg_rtx (TImode);
      rtx lmem = change_address (ops[0], TImode, copy_rtx (addr));
      set_mem_alias_set (lmem, 0);
      emit_insn (gen_movti (reg, lmem));

      if (!p0 || reg_aligned_for_addr (p0))
	p0 = stack_pointer_rtx;
      if (!p1_lo)
	p1_lo = const0_rtx;

      emit_insn (gen_cpat (pat, p0, p1_lo, GEN_INT (GET_MODE_SIZE (mode))));
      emit_insn (gen_shufb (reg, ops[1], reg, pat));
    }
  else
    {
      if (GET_CODE (ops[1]) == REG)
	emit_insn (gen_spu_convert (reg, ops[1]));
      else if (GET_CODE (ops[1]) == SUBREG)
	emit_insn (gen_spu_convert (reg, SUBREG_REG (ops[1])));
      else
	abort ();
    }

  if (GET_MODE_SIZE (mode) < 4 && scalar)
    emit_insn (gen_ashlti3
	       (reg, reg, GEN_INT (32 - GET_MODE_BITSIZE (mode))));

  smem = change_address (ops[0], TImode, copy_rtx (addr));
  /* We can't use the previous alias set because the memory has changed
     size and can potentially overlap objects of other types.  */
  set_mem_alias_set (smem, 0);

  emit_insn (gen_movti (smem, reg));
  return 1;
}

/* Return TRUE if X is MEM which is a struct member reference
   and the member can safely be loaded and stored with a single
   instruction because it is padded. */
static int
mem_is_padded_component_ref (rtx x)
{
  tree t = MEM_EXPR (x);
  tree r;
  if (!t || TREE_CODE (t) != COMPONENT_REF)
    return 0;
  t = TREE_OPERAND (t, 1);
  if (!t || TREE_CODE (t) != FIELD_DECL
      || DECL_ALIGN (t) < 128 || AGGREGATE_TYPE_P (TREE_TYPE (t)))
    return 0;
  /* Only do this for RECORD_TYPEs, not UNION_TYPEs. */
  r = DECL_FIELD_CONTEXT (t);
  if (!r || TREE_CODE (r) != RECORD_TYPE)
    return 0;
  /* Make sure they are the same mode */
  if (GET_MODE (x) != TYPE_MODE (TREE_TYPE (t)))
    return 0;
  /* If there are no following fields then the field alignment assures
     the structure is padded to the alignment which means this field is
     padded too.  */
  if (TREE_CHAIN (t) == 0)
    return 1;
  /* If the following field is also aligned then this field will be
     padded. */
  t = TREE_CHAIN (t);
  if (TREE_CODE (t) == FIELD_DECL && DECL_ALIGN (t) >= 128)
    return 1;
  return 0;
}

/* Parse the -mfixed-range= option string.  */
static void
fix_range (const char *const_str)
{
  int i, first, last;
  char *str, *dash, *comma;
  
  /* str must be of the form REG1'-'REG2{,REG1'-'REG} where REG1 and
     REG2 are either register names or register numbers.  The effect
     of this option is to mark the registers in the range from REG1 to
     REG2 as ``fixed'' so they won't be used by the compiler.  */
  
  i = strlen (const_str);
  str = (char *) alloca (i + 1);
  memcpy (str, const_str, i + 1);
  
  while (1)
    {
      dash = strchr (str, '-');
      if (!dash)
	{
	  warning (0, "value of -mfixed-range must have form REG1-REG2");
	  return;
	}
      *dash = '\0';
      comma = strchr (dash + 1, ',');
      if (comma)
	*comma = '\0';
      
      first = decode_reg_name (str);
      if (first < 0)
	{
	  warning (0, "unknown register name: %s", str);
	  return;
	}
      
      last = decode_reg_name (dash + 1);
      if (last < 0)
	{
	  warning (0, "unknown register name: %s", dash + 1);
	  return;
	}
      
      *dash = '-';
      
      if (first > last)
	{
	  warning (0, "%s-%s is an empty range", str, dash + 1);
	  return;
	}
      
      for (i = first; i <= last; ++i)
	fixed_regs[i] = call_used_regs[i] = 1;

      if (!comma)
	break;

      *comma = ',';
      str = comma + 1;
    }
}

/* Return TRUE if x is a CONST_INT, CONST_DOUBLE or CONST_VECTOR that
   can be generated using the fsmbi instruction. */
int
fsmbi_const_p (rtx x)
{
  if (CONSTANT_P (x))
    {
      /* We can always choose TImode for CONST_INT because the high bits
         of an SImode will always be all 1s, i.e., valid for fsmbi. */
      enum immediate_class c = classify_immediate (x, TImode);
      return c == IC_FSMBI || (!epilogue_completed && c == IC_FSMBI2);
    }
  return 0;
}

/* Return TRUE if x is a CONST_INT, CONST_DOUBLE or CONST_VECTOR that
   can be generated using the cbd, chd, cwd or cdd instruction. */
int
cpat_const_p (rtx x, enum machine_mode mode)
{
  if (CONSTANT_P (x))
    {
      enum immediate_class c = classify_immediate (x, mode);
      return c == IC_CPAT;
    }
  return 0;
}

rtx
gen_cpat_const (rtx * ops)
{
  unsigned char dst[16];
  int i, offset, shift, isize;
  if (GET_CODE (ops[3]) != CONST_INT
      || GET_CODE (ops[2]) != CONST_INT
      || (GET_CODE (ops[1]) != CONST_INT
	  && GET_CODE (ops[1]) != REG))
    return 0;
  if (GET_CODE (ops[1]) == REG
      && (!REG_POINTER (ops[1])
	  || REGNO_POINTER_ALIGN (ORIGINAL_REGNO (ops[1])) < 128))
    return 0;

  for (i = 0; i < 16; i++)
    dst[i] = i + 16;
  isize = INTVAL (ops[3]);
  if (isize == 1)
    shift = 3;
  else if (isize == 2)
    shift = 2;
  else
    shift = 0;
  offset = (INTVAL (ops[2]) +
	    (GET_CODE (ops[1]) ==
	     CONST_INT ? INTVAL (ops[1]) : 0)) & 15;
  for (i = 0; i < isize; i++)
    dst[offset + i] = i + shift;
  return array_to_constant (TImode, dst);
}

/* Convert a CONST_INT, CONST_DOUBLE, or CONST_VECTOR into a 16 byte
   array.  Use MODE for CONST_INT's.  When the constant's mode is smaller
   than 16 bytes, the value is repeated across the rest of the array. */
void
constant_to_array (enum machine_mode mode, rtx x, unsigned char arr[16])
{
  HOST_WIDE_INT val;
  int i, j, first;

  memset (arr, 0, 16);
  mode = GET_MODE (x) != VOIDmode ? GET_MODE (x) : mode;
  if (GET_CODE (x) == CONST_INT
      || (GET_CODE (x) == CONST_DOUBLE
	  && (mode == SFmode || mode == DFmode)))
    {
      gcc_assert (mode != VOIDmode && mode != BLKmode);

      if (GET_CODE (x) == CONST_DOUBLE)
	val = const_double_to_hwint (x);
      else
	val = INTVAL (x);
      first = GET_MODE_SIZE (mode) - 1;
      for (i = first; i >= 0; i--)
	{
	  arr[i] = val & 0xff;
	  val >>= 8;
	}
      /* Splat the constant across the whole array. */
      for (j = 0, i = first + 1; i < 16; i++)
	{
	  arr[i] = arr[j];
	  j = (j == first) ? 0 : j + 1;
	}
    }
  else if (GET_CODE (x) == CONST_DOUBLE)
    {
      val = CONST_DOUBLE_LOW (x);
      for (i = 15; i >= 8; i--)
	{
	  arr[i] = val & 0xff;
	  val >>= 8;
	}
      val = CONST_DOUBLE_HIGH (x);
      for (i = 7; i >= 0; i--)
	{
	  arr[i] = val & 0xff;
	  val >>= 8;
	}
    }
  else if (GET_CODE (x) == CONST_VECTOR)
    {
      int units;
      rtx elt;
      mode = GET_MODE_INNER (mode);
      units = CONST_VECTOR_NUNITS (x);
      for (i = 0; i < units; i++)
	{
	  elt = CONST_VECTOR_ELT (x, i);
	  if (GET_CODE (elt) == CONST_INT || GET_CODE (elt) == CONST_DOUBLE)
	    {
	      if (GET_CODE (elt) == CONST_DOUBLE)
		val = const_double_to_hwint (elt);
	      else
		val = INTVAL (elt);
	      first = GET_MODE_SIZE (mode) - 1;
	      if (first + i * GET_MODE_SIZE (mode) > 16)
		abort ();
	      for (j = first; j >= 0; j--)
		{
		  arr[j + i * GET_MODE_SIZE (mode)] = val & 0xff;
		  val >>= 8;
		}
	    }
	}
    }
  else
    gcc_unreachable();
}

/* Convert a 16 byte array to a constant of mode MODE.  When MODE is
   smaller than 16 bytes, use the bytes that would represent that value
   in a register, e.g., for QImode return the value of arr[3].  */
rtx
array_to_constant (enum machine_mode mode, const unsigned char arr[16])
{
  enum machine_mode inner_mode;
  rtvec v;
  int units, size, i, j, k;
  HOST_WIDE_INT val;

  if (GET_MODE_CLASS (mode) == MODE_INT
      && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
    {
      j = GET_MODE_SIZE (mode);
      i = j < 4 ? 4 - j : 0;
      for (val = 0; i < j; i++)
	val = (val << 8) | arr[i];
      val = trunc_int_for_mode (val, mode);
      return GEN_INT (val);
    }

  if (mode == TImode)
    {
      HOST_WIDE_INT high;
      for (i = high = 0; i < 8; i++)
	high = (high << 8) | arr[i];
      for (i = 8, val = 0; i < 16; i++)
	val = (val << 8) | arr[i];
      return immed_double_const (val, high, TImode);
    }
  if (mode == SFmode)
    {
      val = (arr[0] << 24) | (arr[1] << 16) | (arr[2] << 8) | arr[3];
      val = trunc_int_for_mode (val, SImode);
      return hwint_to_const_double (SFmode, val);
    }
  if (mode == DFmode)
    {
      for (i = 0, val = 0; i < 8; i++)
	val = (val << 8) | arr[i];
      return hwint_to_const_double (DFmode, val);
    }

  if (!VECTOR_MODE_P (mode))
    abort ();

  units = GET_MODE_NUNITS (mode);
  size = GET_MODE_UNIT_SIZE (mode);
  inner_mode = GET_MODE_INNER (mode);
  v = rtvec_alloc (units);

  for (k = i = 0; i < units; ++i)
    {
      val = 0;
      for (j = 0; j < size; j++, k++)
	val = (val << 8) | arr[k];

      if (GET_MODE_CLASS (inner_mode) == MODE_FLOAT)
	RTVEC_ELT (v, i) = hwint_to_const_double (inner_mode, val);
      else
	RTVEC_ELT (v, i) = GEN_INT (trunc_int_for_mode (val, inner_mode));
    }
  if (k > 16)
    abort ();

  return gen_rtx_CONST_VECTOR (mode, v);
}

static void
reloc_diagnostic (rtx x)
{
  tree decl = 0;
  if (!flag_pic || !(TARGET_WARN_RELOC || TARGET_ERROR_RELOC))
    return;

  if (GET_CODE (x) == SYMBOL_REF)
    decl = SYMBOL_REF_DECL (x);
  else if (GET_CODE (x) == CONST
	   && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF)
    decl = SYMBOL_REF_DECL (XEXP (XEXP (x, 0), 0));

  /* SYMBOL_REF_DECL is not necessarily a DECL. */
  if (decl && !DECL_P (decl))
    decl = 0;

  /* The decl could be a string constant.  */
  if (decl && DECL_P (decl))
    {
      location_t loc;
      /* We use last_assemble_variable_decl to get line information.  It's
	 not always going to be right and might not even be close, but will
	 be right for the more common cases. */
      if (!last_assemble_variable_decl || in_section == ctors_section)
	loc = DECL_SOURCE_LOCATION (decl);
      else
	loc = DECL_SOURCE_LOCATION (last_assemble_variable_decl);

      if (TARGET_WARN_RELOC)
	warning_at (loc, 0,
		    "creating run-time relocation for %qD", decl);
      else
	error_at (loc,
		  "creating run-time relocation for %qD", decl);
    }
  else 
    {
      if (TARGET_WARN_RELOC)
	warning_at (input_location, 0, "creating run-time relocation");
      else
	error_at (input_location, "creating run-time relocation");
    }
}

/* Hook into assemble_integer so we can generate an error for run-time
   relocations.  The SPU ABI disallows them. */
static bool
spu_assemble_integer (rtx x, unsigned int size, int aligned_p)
{
  /* By default run-time relocations aren't supported, but we allow them
     in case users support it in their own run-time loader.  And we provide
     a warning for those users that don't.  */
  if ((GET_CODE (x) == SYMBOL_REF)
      || GET_CODE (x) == LABEL_REF || GET_CODE (x) == CONST)
    reloc_diagnostic (x);

  return default_assemble_integer (x, size, aligned_p);
}

static void
spu_asm_globalize_label (FILE * file, const char *name)
{
  fputs ("\t.global\t", file);
  assemble_name (file, name);
  fputs ("\n", file);
}

static bool
spu_rtx_costs (rtx x, int code, int outer_code ATTRIBUTE_UNUSED,
	       int opno ATTRIBUTE_UNUSED, int *total,
	       bool speed ATTRIBUTE_UNUSED)
{
  enum machine_mode mode = GET_MODE (x);
  int cost = COSTS_N_INSNS (2);

  /* Folding to a CONST_VECTOR will use extra space but there might
     be only a small savings in cycles.  We'd like to use a CONST_VECTOR
     only if it allows us to fold away multiple insns.  Changing the cost
     of a CONST_VECTOR here (or in CONST_COSTS) doesn't help though
     because this cost will only be compared against a single insn. 
     if (code == CONST_VECTOR)
       return spu_legitimate_constant_p (mode, x) ? cost : COSTS_N_INSNS (6);
   */

  /* Use defaults for float operations.  Not accurate but good enough. */
  if (mode == DFmode)
    {
      *total = COSTS_N_INSNS (13);
      return true;
    }
  if (mode == SFmode)
    {
      *total = COSTS_N_INSNS (6);
      return true;
    }
  switch (code)
    {
    case CONST_INT:
      if (satisfies_constraint_K (x))
	*total = 0;
      else if (INTVAL (x) >= -0x80000000ll && INTVAL (x) <= 0xffffffffll)
	*total = COSTS_N_INSNS (1);
      else
	*total = COSTS_N_INSNS (3);
      return true;

    case CONST:
      *total = COSTS_N_INSNS (3);
      return true;

    case LABEL_REF:
    case SYMBOL_REF:
      *total = COSTS_N_INSNS (0);
      return true;

    case CONST_DOUBLE:
      *total = COSTS_N_INSNS (5);
      return true;

    case FLOAT_EXTEND:
    case FLOAT_TRUNCATE:
    case FLOAT:
    case UNSIGNED_FLOAT:
    case FIX:
    case UNSIGNED_FIX:
      *total = COSTS_N_INSNS (7);
      return true;

    case PLUS:
      if (mode == TImode)
	{
	  *total = COSTS_N_INSNS (9);
	  return true;
	}
      break;

    case MULT:
      cost =
	GET_CODE (XEXP (x, 0)) ==
	REG ? COSTS_N_INSNS (12) : COSTS_N_INSNS (7);
      if (mode == SImode && GET_CODE (XEXP (x, 0)) == REG)
	{
	  if (GET_CODE (XEXP (x, 1)) == CONST_INT)
	    {
	      HOST_WIDE_INT val = INTVAL (XEXP (x, 1));
	      cost = COSTS_N_INSNS (14);
	      if ((val & 0xffff) == 0)
		cost = COSTS_N_INSNS (9);
	      else if (val > 0 && val < 0x10000)
		cost = COSTS_N_INSNS (11);
	    }
	}
      *total = cost;
      return true;
    case DIV:
    case UDIV:
    case MOD:
    case UMOD:
      *total = COSTS_N_INSNS (20);
      return true;
    case ROTATE:
    case ROTATERT:
    case ASHIFT:
    case ASHIFTRT:
    case LSHIFTRT:
      *total = COSTS_N_INSNS (4);
      return true;
    case UNSPEC:
      if (XINT (x, 1) == UNSPEC_CONVERT)
	*total = COSTS_N_INSNS (0);
      else
	*total = COSTS_N_INSNS (4);
      return true;
    }
  /* Scale cost by mode size.  Except when initializing (cfun->decl == 0). */
  if (GET_MODE_CLASS (mode) == MODE_INT
      && GET_MODE_SIZE (mode) > GET_MODE_SIZE (SImode) && cfun && cfun->decl)
    cost = cost * (GET_MODE_SIZE (mode) / GET_MODE_SIZE (SImode))
      * (GET_MODE_SIZE (mode) / GET_MODE_SIZE (SImode));
  *total = cost;
  return true;
}

static enum machine_mode
spu_unwind_word_mode (void)
{
  return SImode;
}

/* Decide whether we can make a sibling call to a function.  DECL is the
   declaration of the function being targeted by the call and EXP is the
   CALL_EXPR representing the call.  */
static bool
spu_function_ok_for_sibcall (tree decl, tree exp ATTRIBUTE_UNUSED)
{
  return decl && !TARGET_LARGE_MEM;
}

/* We need to correctly update the back chain pointer and the Available
   Stack Size (which is in the second slot of the sp register.) */
void
spu_allocate_stack (rtx op0, rtx op1)
{
  HOST_WIDE_INT v;
  rtx chain = gen_reg_rtx (V4SImode);
  rtx stack_bot = gen_frame_mem (V4SImode, stack_pointer_rtx);
  rtx sp = gen_reg_rtx (V4SImode);
  rtx splatted = gen_reg_rtx (V4SImode);
  rtx pat = gen_reg_rtx (TImode);

  /* copy the back chain so we can save it back again. */
  emit_move_insn (chain, stack_bot);

  op1 = force_reg (SImode, op1);

  v = 0x1020300010203ll;
  emit_move_insn (pat, immed_double_const (v, v, TImode));
  emit_insn (gen_shufb (splatted, op1, op1, pat));

  emit_insn (gen_spu_convert (sp, stack_pointer_rtx));
  emit_insn (gen_subv4si3 (sp, sp, splatted));

  if (flag_stack_check)
    {
      rtx avail = gen_reg_rtx(SImode);
      rtx result = gen_reg_rtx(SImode);
      emit_insn (gen_vec_extractv4si (avail, sp, GEN_INT (1)));
      emit_insn (gen_cgt_si(result, avail, GEN_INT (-1)));
      emit_insn (gen_spu_heq (result, GEN_INT(0) ));
    }

  emit_insn (gen_spu_convert (stack_pointer_rtx, sp));

  emit_move_insn (stack_bot, chain);

  emit_move_insn (op0, virtual_stack_dynamic_rtx);
}

void
spu_restore_stack_nonlocal (rtx op0 ATTRIBUTE_UNUSED, rtx op1)
{
  static unsigned char arr[16] =
    { 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3 };
  rtx temp = gen_reg_rtx (SImode);
  rtx temp2 = gen_reg_rtx (SImode);
  rtx temp3 = gen_reg_rtx (V4SImode);
  rtx temp4 = gen_reg_rtx (V4SImode);
  rtx pat = gen_reg_rtx (TImode);
  rtx sp = gen_rtx_REG (V4SImode, STACK_POINTER_REGNUM);

  /* Restore the backchain from the first word, sp from the second.  */
  emit_move_insn (temp2, adjust_address_nv (op1, SImode, 0));
  emit_move_insn (temp, adjust_address_nv (op1, SImode, 4));

  emit_move_insn (pat, array_to_constant (TImode, arr));

  /* Compute Available Stack Size for sp */
  emit_insn (gen_subsi3 (temp, temp, stack_pointer_rtx));
  emit_insn (gen_shufb (temp3, temp, temp, pat));

  /* Compute Available Stack Size for back chain */
  emit_insn (gen_subsi3 (temp2, temp2, stack_pointer_rtx));
  emit_insn (gen_shufb (temp4, temp2, temp2, pat));
  emit_insn (gen_addv4si3 (temp4, sp, temp4));

  emit_insn (gen_addv4si3 (sp, sp, temp3));
  emit_move_insn (gen_frame_mem (V4SImode, stack_pointer_rtx), temp4);
}

static void
spu_init_libfuncs (void)
{
  set_optab_libfunc (smul_optab, DImode, "__muldi3");
  set_optab_libfunc (sdiv_optab, DImode, "__divdi3");
  set_optab_libfunc (smod_optab, DImode, "__moddi3");
  set_optab_libfunc (udiv_optab, DImode, "__udivdi3");
  set_optab_libfunc (umod_optab, DImode, "__umoddi3");
  set_optab_libfunc (udivmod_optab, DImode, "__udivmoddi4");
  set_optab_libfunc (ffs_optab, DImode, "__ffsdi2");
  set_optab_libfunc (clz_optab, DImode, "__clzdi2");
  set_optab_libfunc (ctz_optab, DImode, "__ctzdi2");
  set_optab_libfunc (clrsb_optab, DImode, "__clrsbdi2");
  set_optab_libfunc (popcount_optab, DImode, "__popcountdi2");
  set_optab_libfunc (parity_optab, DImode, "__paritydi2");

  set_conv_libfunc (ufloat_optab, DFmode, SImode, "__float_unssidf");
  set_conv_libfunc (ufloat_optab, DFmode, DImode, "__float_unsdidf");

  set_optab_libfunc (addv_optab, SImode, "__addvsi3");
  set_optab_libfunc (subv_optab, SImode, "__subvsi3");
  set_optab_libfunc (smulv_optab, SImode, "__mulvsi3");
  set_optab_libfunc (sdivv_optab, SImode, "__divvsi3");
  set_optab_libfunc (negv_optab, SImode, "__negvsi2");
  set_optab_libfunc (absv_optab, SImode, "__absvsi2");
  set_optab_libfunc (addv_optab, DImode, "__addvdi3");
  set_optab_libfunc (subv_optab, DImode, "__subvdi3");
  set_optab_libfunc (smulv_optab, DImode, "__mulvdi3");
  set_optab_libfunc (sdivv_optab, DImode, "__divvdi3");
  set_optab_libfunc (negv_optab, DImode, "__negvdi2");
  set_optab_libfunc (absv_optab, DImode, "__absvdi2");

  set_optab_libfunc (smul_optab, TImode, "__multi3");
  set_optab_libfunc (sdiv_optab, TImode, "__divti3");
  set_optab_libfunc (smod_optab, TImode, "__modti3");
  set_optab_libfunc (udiv_optab, TImode, "__udivti3");
  set_optab_libfunc (umod_optab, TImode, "__umodti3");
  set_optab_libfunc (udivmod_optab, TImode, "__udivmodti4");
}

/* Make a subreg, stripping any existing subreg.  We could possibly just
   call simplify_subreg, but in this case we know what we want. */
rtx
spu_gen_subreg (enum machine_mode mode, rtx x)
{
  if (GET_CODE (x) == SUBREG)
    x = SUBREG_REG (x);
  if (GET_MODE (x) == mode)
    return x;
  return gen_rtx_SUBREG (mode, x, 0);
}

static bool
spu_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED)
{
  return (TYPE_MODE (type) == BLKmode
	  && ((type) == 0
	      || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST
	      || int_size_in_bytes (type) >
	      (MAX_REGISTER_RETURN * UNITS_PER_WORD)));
}

/* Create the built-in types and functions */

enum spu_function_code
{
#define DEF_BUILTIN(fcode, icode, name, type, params) fcode,
#include "spu-builtins.def"
#undef DEF_BUILTIN
   NUM_SPU_BUILTINS
};

extern GTY(()) struct spu_builtin_description spu_builtins[NUM_SPU_BUILTINS];

struct spu_builtin_description spu_builtins[] = {
#define DEF_BUILTIN(fcode, icode, name, type, params) \
  {fcode, icode, name, type, params},
#include "spu-builtins.def"
#undef DEF_BUILTIN
};

static GTY(()) tree spu_builtin_decls[NUM_SPU_BUILTINS];

/* Returns the spu builtin decl for CODE.  */

static tree
spu_builtin_decl (unsigned code, bool initialize_p ATTRIBUTE_UNUSED)
{           
  if (code >= NUM_SPU_BUILTINS)
    return error_mark_node;
          
  return spu_builtin_decls[code];
}


static void
spu_init_builtins (void)
{
  struct spu_builtin_description *d;
  unsigned int i;

  V16QI_type_node = build_vector_type (intQI_type_node, 16);
  V8HI_type_node = build_vector_type (intHI_type_node, 8);
  V4SI_type_node = build_vector_type (intSI_type_node, 4);
  V2DI_type_node = build_vector_type (intDI_type_node, 2);
  V4SF_type_node = build_vector_type (float_type_node, 4);
  V2DF_type_node = build_vector_type (double_type_node, 2);

  unsigned_V16QI_type_node = build_vector_type (unsigned_intQI_type_node, 16);
  unsigned_V8HI_type_node = build_vector_type (unsigned_intHI_type_node, 8);
  unsigned_V4SI_type_node = build_vector_type (unsigned_intSI_type_node, 4);
  unsigned_V2DI_type_node = build_vector_type (unsigned_intDI_type_node, 2);

  spu_builtin_types[SPU_BTI_QUADWORD] = V16QI_type_node;

  spu_builtin_types[SPU_BTI_7] = global_trees[TI_INTSI_TYPE];
  spu_builtin_types[SPU_BTI_S7] = global_trees[TI_INTSI_TYPE];
  spu_builtin_types[SPU_BTI_U7] = global_trees[TI_INTSI_TYPE];
  spu_builtin_types[SPU_BTI_S10] = global_trees[TI_INTSI_TYPE];
  spu_builtin_types[SPU_BTI_S10_4] = global_trees[TI_INTSI_TYPE];
  spu_builtin_types[SPU_BTI_U14] = global_trees[TI_INTSI_TYPE];
  spu_builtin_types[SPU_BTI_16] = global_trees[TI_INTSI_TYPE];
  spu_builtin_types[SPU_BTI_S16] = global_trees[TI_INTSI_TYPE];
  spu_builtin_types[SPU_BTI_S16_2] = global_trees[TI_INTSI_TYPE];
  spu_builtin_types[SPU_BTI_U16] = global_trees[TI_INTSI_TYPE];
  spu_builtin_types[SPU_BTI_U16_2] = global_trees[TI_INTSI_TYPE];
  spu_builtin_types[SPU_BTI_U18] = global_trees[TI_INTSI_TYPE];

  spu_builtin_types[SPU_BTI_INTQI] = global_trees[TI_INTQI_TYPE];
  spu_builtin_types[SPU_BTI_INTHI] = global_trees[TI_INTHI_TYPE];
  spu_builtin_types[SPU_BTI_INTSI] = global_trees[TI_INTSI_TYPE];
  spu_builtin_types[SPU_BTI_INTDI] = global_trees[TI_INTDI_TYPE];
  spu_builtin_types[SPU_BTI_UINTQI] = global_trees[TI_UINTQI_TYPE];
  spu_builtin_types[SPU_BTI_UINTHI] = global_trees[TI_UINTHI_TYPE];
  spu_builtin_types[SPU_BTI_UINTSI] = global_trees[TI_UINTSI_TYPE];
  spu_builtin_types[SPU_BTI_UINTDI] = global_trees[TI_UINTDI_TYPE];

  spu_builtin_types[SPU_BTI_FLOAT] = global_trees[TI_FLOAT_TYPE];
  spu_builtin_types[SPU_BTI_DOUBLE] = global_trees[TI_DOUBLE_TYPE];

  spu_builtin_types[SPU_BTI_VOID] = global_trees[TI_VOID_TYPE];

  spu_builtin_types[SPU_BTI_PTR] =
    build_pointer_type (build_qualified_type
			(void_type_node,
			 TYPE_QUAL_CONST | TYPE_QUAL_VOLATILE));

  /* For each builtin we build a new prototype.  The tree code will make
     sure nodes are shared. */
  for (i = 0, d = spu_builtins; i < NUM_SPU_BUILTINS; i++, d++)
    {
      tree p;
      char name[64];		/* build_function will make a copy. */
      int parm;

      if (d->name == 0)
	continue;

      /* Find last parm.  */
      for (parm = 1; d->parm[parm] != SPU_BTI_END_OF_PARAMS; parm++)
	;

      p = void_list_node;
      while (parm > 1)
	p = tree_cons (NULL_TREE, spu_builtin_types[d->parm[--parm]], p);

      p = build_function_type (spu_builtin_types[d->parm[0]], p);

      sprintf (name, "__builtin_%s", d->name);
      spu_builtin_decls[i] =
	add_builtin_function (name, p, i, BUILT_IN_MD, NULL, NULL_TREE);
      if (d->fcode == SPU_MASK_FOR_LOAD)
	TREE_READONLY (spu_builtin_decls[i]) = 1;	

      /* These builtins don't throw.  */
      TREE_NOTHROW (spu_builtin_decls[i]) = 1;
    }
}

void
spu_restore_stack_block (rtx op0 ATTRIBUTE_UNUSED, rtx op1)
{
  static unsigned char arr[16] =
    { 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3 };

  rtx temp = gen_reg_rtx (Pmode);
  rtx temp2 = gen_reg_rtx (V4SImode);
  rtx temp3 = gen_reg_rtx (V4SImode);
  rtx pat = gen_reg_rtx (TImode);
  rtx sp = gen_rtx_REG (V4SImode, STACK_POINTER_REGNUM);

  emit_move_insn (pat, array_to_constant (TImode, arr));

  /* Restore the sp.  */
  emit_move_insn (temp, op1);
  emit_move_insn (temp2, gen_frame_mem (V4SImode, stack_pointer_rtx));

  /* Compute available stack size for sp.  */
  emit_insn (gen_subsi3 (temp, temp, stack_pointer_rtx));
  emit_insn (gen_shufb (temp3, temp, temp, pat));

  emit_insn (gen_addv4si3 (sp, sp, temp3));
  emit_move_insn (gen_frame_mem (V4SImode, stack_pointer_rtx), temp2);
}

int
spu_safe_dma (HOST_WIDE_INT channel)
{
  return TARGET_SAFE_DMA && channel >= 21 && channel <= 27;
}

void
spu_builtin_splats (rtx ops[])
{
  enum machine_mode mode = GET_MODE (ops[0]);
  if (GET_CODE (ops[1]) == CONST_INT || GET_CODE (ops[1]) == CONST_DOUBLE)
    {
      unsigned char arr[16];
      constant_to_array (GET_MODE_INNER (mode), ops[1], arr);
      emit_move_insn (ops[0], array_to_constant (mode, arr));
    }
  else
    {
      rtx reg = gen_reg_rtx (TImode);
      rtx shuf;
      if (GET_CODE (ops[1]) != REG
	  && GET_CODE (ops[1]) != SUBREG)
	ops[1] = force_reg (GET_MODE_INNER (mode), ops[1]);
      switch (mode)
	{
	case V2DImode:
	case V2DFmode:
	  shuf =
	    immed_double_const (0x0001020304050607ll, 0x1011121314151617ll,
				TImode);
	  break;
	case V4SImode:
	case V4SFmode:
	  shuf =
	    immed_double_const (0x0001020300010203ll, 0x0001020300010203ll,
				TImode);
	  break;
	case V8HImode:
	  shuf =
	    immed_double_const (0x0203020302030203ll, 0x0203020302030203ll,
				TImode);
	  break;
	case V16QImode:
	  shuf =
	    immed_double_const (0x0303030303030303ll, 0x0303030303030303ll,
				TImode);
	  break;
	default:
	  abort ();
	}
      emit_move_insn (reg, shuf);
      emit_insn (gen_shufb (ops[0], ops[1], ops[1], reg));
    }
}

void
spu_builtin_extract (rtx ops[])
{
  enum machine_mode mode;
  rtx rot, from, tmp;

  mode = GET_MODE (ops[1]);

  if (GET_CODE (ops[2]) == CONST_INT)
    {
      switch (mode)
	{
	case V16QImode:
	  emit_insn (gen_vec_extractv16qi (ops[0], ops[1], ops[2]));
	  break;
	case V8HImode:
	  emit_insn (gen_vec_extractv8hi (ops[0], ops[1], ops[2]));
	  break;
	case V4SFmode:
	  emit_insn (gen_vec_extractv4sf (ops[0], ops[1], ops[2]));
	  break;
	case V4SImode:
	  emit_insn (gen_vec_extractv4si (ops[0], ops[1], ops[2]));
	  break;
	case V2DImode:
	  emit_insn (gen_vec_extractv2di (ops[0], ops[1], ops[2]));
	  break;
	case V2DFmode:
	  emit_insn (gen_vec_extractv2df (ops[0], ops[1], ops[2]));
	  break;
	default:
	  abort ();
	}
      return;
    }

  from = spu_gen_subreg (TImode, ops[1]);
  rot = gen_reg_rtx (TImode);
  tmp = gen_reg_rtx (SImode);

  switch (mode)
    {
    case V16QImode:
      emit_insn (gen_addsi3 (tmp, ops[2], GEN_INT (-3)));
      break;
    case V8HImode:
      emit_insn (gen_addsi3 (tmp, ops[2], ops[2]));
      emit_insn (gen_addsi3 (tmp, tmp, GEN_INT (-2)));
      break;
    case V4SFmode:
    case V4SImode:
      emit_insn (gen_ashlsi3 (tmp, ops[2], GEN_INT (2)));
      break;
    case V2DImode:
    case V2DFmode:
      emit_insn (gen_ashlsi3 (tmp, ops[2], GEN_INT (3)));
      break;
    default:
      abort ();
    }
  emit_insn (gen_rotqby_ti (rot, from, tmp));

  emit_insn (gen_spu_convert (ops[0], rot));
}

void
spu_builtin_insert (rtx ops[])
{
  enum machine_mode mode = GET_MODE (ops[0]);
  enum machine_mode imode = GET_MODE_INNER (mode);
  rtx mask = gen_reg_rtx (TImode);
  rtx offset;

  if (GET_CODE (ops[3]) == CONST_INT)
    offset = GEN_INT (INTVAL (ops[3]) * GET_MODE_SIZE (imode));
  else
    {
      offset = gen_reg_rtx (SImode);
      emit_insn (gen_mulsi3
		 (offset, ops[3], GEN_INT (GET_MODE_SIZE (imode))));
    }
  emit_insn (gen_cpat
	     (mask, stack_pointer_rtx, offset,
	      GEN_INT (GET_MODE_SIZE (imode))));
  emit_insn (gen_shufb (ops[0], ops[1], ops[2], mask));
}

void
spu_builtin_promote (rtx ops[])
{
  enum machine_mode mode, imode;
  rtx rot, from, offset;
  HOST_WIDE_INT pos;

  mode = GET_MODE (ops[0]);
  imode = GET_MODE_INNER (mode);

  from = gen_reg_rtx (TImode);
  rot = spu_gen_subreg (TImode, ops[0]);

  emit_insn (gen_spu_convert (from, ops[1]));

  if (GET_CODE (ops[2]) == CONST_INT)
    {
      pos = -GET_MODE_SIZE (imode) * INTVAL (ops[2]);
      if (GET_MODE_SIZE (imode) < 4)
	pos += 4 - GET_MODE_SIZE (imode);
      offset = GEN_INT (pos & 15);
    }
  else
    {
      offset = gen_reg_rtx (SImode);
      switch (mode)
	{
	case V16QImode:
	  emit_insn (gen_subsi3 (offset, GEN_INT (3), ops[2]));
	  break;
	case V8HImode:
	  emit_insn (gen_subsi3 (offset, GEN_INT (1), ops[2]));
	  emit_insn (gen_addsi3 (offset, offset, offset));
	  break;
	case V4SFmode:
	case V4SImode:
	  emit_insn (gen_subsi3 (offset, GEN_INT (0), ops[2]));
	  emit_insn (gen_ashlsi3 (offset, offset, GEN_INT (2)));
	  break;
	case V2DImode:
	case V2DFmode:
	  emit_insn (gen_ashlsi3 (offset, ops[2], GEN_INT (3)));
	  break;
	default:
	  abort ();
	}
    }
  emit_insn (gen_rotqby_ti (rot, from, offset));
}

static void
spu_trampoline_init (rtx m_tramp, tree fndecl, rtx cxt)
{
  rtx fnaddr = XEXP (DECL_RTL (fndecl), 0);
  rtx shuf = gen_reg_rtx (V4SImode);
  rtx insn = gen_reg_rtx (V4SImode);
  rtx shufc;
  rtx insnc;
  rtx mem;

  fnaddr = force_reg (SImode, fnaddr);
  cxt = force_reg (SImode, cxt);

  if (TARGET_LARGE_MEM)
    {
      rtx rotl = gen_reg_rtx (V4SImode);
      rtx mask = gen_reg_rtx (V4SImode);
      rtx bi = gen_reg_rtx (SImode);
      static unsigned char const shufa[16] = {
	2, 3, 0, 1, 18, 19, 16, 17,
	0, 1, 2, 3, 16, 17, 18, 19
      };
      static unsigned char const insna[16] = {
	0x41, 0, 0, 79,
	0x41, 0, 0, STATIC_CHAIN_REGNUM,
	0x60, 0x80, 0, 79,
	0x60, 0x80, 0, STATIC_CHAIN_REGNUM
      };

      shufc = force_reg (TImode, array_to_constant (TImode, shufa));
      insnc = force_reg (V4SImode, array_to_constant (V4SImode, insna));

      emit_insn (gen_shufb (shuf, fnaddr, cxt, shufc));
      emit_insn (gen_vrotlv4si3 (rotl, shuf, spu_const (V4SImode, 7)));
      emit_insn (gen_movv4si (mask, spu_const (V4SImode, 0xffff << 7)));
      emit_insn (gen_selb (insn, insnc, rotl, mask));

      mem = adjust_address (m_tramp, V4SImode, 0);
      emit_move_insn (mem, insn);

      emit_move_insn (bi, GEN_INT (0x35000000 + (79 << 7)));
      mem = adjust_address (m_tramp, Pmode, 16);
      emit_move_insn (mem, bi);
    }
  else
    {
      rtx scxt = gen_reg_rtx (SImode);
      rtx sfnaddr = gen_reg_rtx (SImode);
      static unsigned char const insna[16] = {
	0x42, 0, 0, STATIC_CHAIN_REGNUM,
	0x30, 0, 0, 0,
	0, 0, 0, 0,
	0, 0, 0, 0
      };

      shufc = gen_reg_rtx (TImode);
      insnc = force_reg (V4SImode, array_to_constant (V4SImode, insna));

      /* By or'ing all of cxt with the ila opcode we are assuming cxt
	 fits 18 bits and the last 4 are zeros.  This will be true if
	 the stack pointer is initialized to 0x3fff0 at program start,
	 otherwise the ila instruction will be garbage. */

      emit_insn (gen_ashlsi3 (scxt, cxt, GEN_INT (7)));
      emit_insn (gen_ashlsi3 (sfnaddr, fnaddr, GEN_INT (5)));
      emit_insn (gen_cpat
		 (shufc, stack_pointer_rtx, GEN_INT (4), GEN_INT (4)));
      emit_insn (gen_shufb (shuf, sfnaddr, scxt, shufc));
      emit_insn (gen_iorv4si3 (insn, insnc, shuf));

      mem = adjust_address (m_tramp, V4SImode, 0);
      emit_move_insn (mem, insn);
    }
  emit_insn (gen_sync ());
}

void
spu_expand_sign_extend (rtx ops[])
{
  unsigned char arr[16];
  rtx pat = gen_reg_rtx (TImode);
  rtx sign, c;
  int i, last;
  last = GET_MODE (ops[0]) == DImode ? 7 : 15;
  if (GET_MODE (ops[1]) == QImode)
    {
      sign = gen_reg_rtx (HImode);
      emit_insn (gen_extendqihi2 (sign, ops[1]));
      for (i = 0; i < 16; i++)
	arr[i] = 0x12;
      arr[last] = 0x13;
    }
  else
    {
      for (i = 0; i < 16; i++)
	arr[i] = 0x10;
      switch (GET_MODE (ops[1]))
	{
	case HImode:
	  sign = gen_reg_rtx (SImode);
	  emit_insn (gen_extendhisi2 (sign, ops[1]));
	  arr[last] = 0x03;
	  arr[last - 1] = 0x02;
	  break;
	case SImode:
	  sign = gen_reg_rtx (SImode);
	  emit_insn (gen_ashrsi3 (sign, ops[1], GEN_INT (31)));
	  for (i = 0; i < 4; i++)
	    arr[last - i] = 3 - i;
	  break;
	case DImode:
	  sign = gen_reg_rtx (SImode);
	  c = gen_reg_rtx (SImode);
	  emit_insn (gen_spu_convert (c, ops[1]));
	  emit_insn (gen_ashrsi3 (sign, c, GEN_INT (31)));
	  for (i = 0; i < 8; i++)
	    arr[last - i] = 7 - i;
	  break;
	default:
	  abort ();
	}
    }
  emit_move_insn (pat, array_to_constant (TImode, arr));
  emit_insn (gen_shufb (ops[0], ops[1], sign, pat));
}

/* expand vector initialization. If there are any constant parts,
   load constant parts first. Then load any non-constant parts.  */
void
spu_expand_vector_init (rtx target, rtx vals)
{
  enum machine_mode mode = GET_MODE (target);
  int n_elts = GET_MODE_NUNITS (mode);
  int n_var = 0;
  bool all_same = true;
  rtx first, x = NULL_RTX, first_constant = NULL_RTX;
  int i;

  first = XVECEXP (vals, 0, 0); 
  for (i = 0; i < n_elts; ++i)
    {
      x = XVECEXP (vals, 0, i);
      if (!(CONST_INT_P (x)
	    || GET_CODE (x) == CONST_DOUBLE
	    || GET_CODE (x) == CONST_FIXED))
	++n_var;
      else
	{
	  if (first_constant == NULL_RTX)
	    first_constant = x;
	}
      if (i > 0 && !rtx_equal_p (x, first))
	all_same = false;
    }

  /* if all elements are the same, use splats to repeat elements */
  if (all_same)
    {
      if (!CONSTANT_P (first)
	  && !register_operand (first, GET_MODE (x)))
	first = force_reg (GET_MODE (first), first);
      emit_insn (gen_spu_splats (target, first));
      return;
    }

  /* load constant parts */
  if (n_var != n_elts)
    {
      if (n_var == 0)
	{
	  emit_move_insn (target,
			  gen_rtx_CONST_VECTOR (mode, XVEC (vals, 0)));
	}
      else
	{
	  rtx constant_parts_rtx = copy_rtx (vals);

	  gcc_assert (first_constant != NULL_RTX);
	  /* fill empty slots with the first constant, this increases
	     our chance of using splats in the recursive call below. */
	  for (i = 0; i < n_elts; ++i)
	    {
	      x = XVECEXP (constant_parts_rtx, 0, i);
	      if (!(CONST_INT_P (x)
		    || GET_CODE (x) == CONST_DOUBLE
		    || GET_CODE (x) == CONST_FIXED))
		XVECEXP (constant_parts_rtx, 0, i) = first_constant;
	    }

	  spu_expand_vector_init (target, constant_parts_rtx);
	}
    }

  /* load variable parts */
  if (n_var != 0)
    {
      rtx insert_operands[4];

      insert_operands[0] = target;
      insert_operands[2] = target;
      for (i = 0; i < n_elts; ++i)
	{
	  x = XVECEXP (vals, 0, i);
	  if (!(CONST_INT_P (x)
		|| GET_CODE (x) == CONST_DOUBLE
		|| GET_CODE (x) == CONST_FIXED))
	    {
	      if (!register_operand (x, GET_MODE (x)))
		x = force_reg (GET_MODE (x), x);
	      insert_operands[1] = x;
	      insert_operands[3] = GEN_INT (i);
	      spu_builtin_insert (insert_operands);
	    }
	}
    }
}

/* Return insn index for the vector compare instruction for given CODE,
   and DEST_MODE, OP_MODE. Return -1 if valid insn is not available.  */

static int
get_vec_cmp_insn (enum rtx_code code,
                  enum machine_mode dest_mode,
                  enum machine_mode op_mode)

{
  switch (code)
    {
    case EQ:
      if (dest_mode == V16QImode && op_mode == V16QImode)
        return CODE_FOR_ceq_v16qi;
      if (dest_mode == V8HImode && op_mode == V8HImode)
        return CODE_FOR_ceq_v8hi;
      if (dest_mode == V4SImode && op_mode == V4SImode)
        return CODE_FOR_ceq_v4si;
      if (dest_mode == V4SImode && op_mode == V4SFmode)
        return CODE_FOR_ceq_v4sf;
      if (dest_mode == V2DImode && op_mode == V2DFmode)
        return CODE_FOR_ceq_v2df;
      break;
    case GT:
      if (dest_mode == V16QImode && op_mode == V16QImode)
        return CODE_FOR_cgt_v16qi;
      if (dest_mode == V8HImode && op_mode == V8HImode)
        return CODE_FOR_cgt_v8hi;
      if (dest_mode == V4SImode && op_mode == V4SImode)
        return CODE_FOR_cgt_v4si;
      if (dest_mode == V4SImode && op_mode == V4SFmode)
        return CODE_FOR_cgt_v4sf;
      if (dest_mode == V2DImode && op_mode == V2DFmode)
        return CODE_FOR_cgt_v2df;
      break;
    case GTU:
      if (dest_mode == V16QImode && op_mode == V16QImode)
        return CODE_FOR_clgt_v16qi;
      if (dest_mode == V8HImode && op_mode == V8HImode)
        return CODE_FOR_clgt_v8hi;
      if (dest_mode == V4SImode && op_mode == V4SImode)
        return CODE_FOR_clgt_v4si;
      break;
    default:
      break;
    }
  return -1;
}

/* Emit vector compare for operands OP0 and OP1 using code RCODE.
   DMODE is expected destination mode. This is a recursive function.  */

static rtx
spu_emit_vector_compare (enum rtx_code rcode,
                         rtx op0, rtx op1,
                         enum machine_mode dmode)
{
  int vec_cmp_insn;
  rtx mask;
  enum machine_mode dest_mode;
  enum machine_mode op_mode = GET_MODE (op1);

  gcc_assert (GET_MODE (op0) == GET_MODE (op1));

  /* Floating point vector compare instructions uses destination V4SImode.
     Double floating point vector compare instructions uses destination V2DImode.
     Move destination to appropriate mode later.  */
  if (dmode == V4SFmode)
    dest_mode = V4SImode;
  else if (dmode == V2DFmode)
    dest_mode = V2DImode;
  else
    dest_mode = dmode;

  mask = gen_reg_rtx (dest_mode);
  vec_cmp_insn = get_vec_cmp_insn (rcode, dest_mode, op_mode);

  if (vec_cmp_insn == -1)
    {
      bool swap_operands = false;
      bool try_again = false;
      switch (rcode)
        {
        case LT:
          rcode = GT;
          swap_operands = true;
          try_again = true;
          break;
        case LTU:
          rcode = GTU;
          swap_operands = true;
          try_again = true;
          break;
        case NE:
	case UNEQ:
	case UNLE:
	case UNLT:
	case UNGE:
	case UNGT:
	case UNORDERED:
          /* Treat A != B as ~(A==B).  */
          {
	    enum rtx_code rev_code;
            enum insn_code nor_code;
	    rtx rev_mask;

	    rev_code = reverse_condition_maybe_unordered (rcode);
            rev_mask = spu_emit_vector_compare (rev_code, op0, op1, dest_mode);

            nor_code = optab_handler (one_cmpl_optab, dest_mode);
            gcc_assert (nor_code != CODE_FOR_nothing);
            emit_insn (GEN_FCN (nor_code) (mask, rev_mask));
            if (dmode != dest_mode)
              {
                rtx temp = gen_reg_rtx (dest_mode);
                convert_move (temp, mask, 0);
                return temp;
              }
            return mask;
          }
          break;
        case GE:
        case GEU:
        case LE:
        case LEU:
          /* Try GT/GTU/LT/LTU OR EQ */
          {
            rtx c_rtx, eq_rtx;
            enum insn_code ior_code;
            enum rtx_code new_code;

            switch (rcode)
              {
              case GE:  new_code = GT;  break;
              case GEU: new_code = GTU; break;
              case LE:  new_code = LT;  break;
              case LEU: new_code = LTU; break;
              default:
                gcc_unreachable ();
              }

            c_rtx = spu_emit_vector_compare (new_code, op0, op1, dest_mode);
            eq_rtx = spu_emit_vector_compare (EQ, op0, op1, dest_mode);

            ior_code = optab_handler (ior_optab, dest_mode);
            gcc_assert (ior_code != CODE_FOR_nothing);
            emit_insn (GEN_FCN (ior_code) (mask, c_rtx, eq_rtx));
            if (dmode != dest_mode)
              {
                rtx temp = gen_reg_rtx (dest_mode);
                convert_move (temp, mask, 0);
                return temp;
              }
            return mask;
          }
          break;
        case LTGT:
          /* Try LT OR GT */
          {
            rtx lt_rtx, gt_rtx;
            enum insn_code ior_code;

            lt_rtx = spu_emit_vector_compare (LT, op0, op1, dest_mode);
            gt_rtx = spu_emit_vector_compare (GT, op0, op1, dest_mode);

            ior_code = optab_handler (ior_optab, dest_mode);
            gcc_assert (ior_code != CODE_FOR_nothing);
            emit_insn (GEN_FCN (ior_code) (mask, lt_rtx, gt_rtx));
            if (dmode != dest_mode)
              {
                rtx temp = gen_reg_rtx (dest_mode);
                convert_move (temp, mask, 0);
                return temp;
              }
            return mask;
          }
          break;
        case ORDERED:
          /* Implement as (A==A) & (B==B) */
          {
            rtx a_rtx, b_rtx;
            enum insn_code and_code;

            a_rtx = spu_emit_vector_compare (EQ, op0, op0, dest_mode);
            b_rtx = spu_emit_vector_compare (EQ, op1, op1, dest_mode);

            and_code = optab_handler (and_optab, dest_mode);
            gcc_assert (and_code != CODE_FOR_nothing);
            emit_insn (GEN_FCN (and_code) (mask, a_rtx, b_rtx));
            if (dmode != dest_mode)
              {
                rtx temp = gen_reg_rtx (dest_mode);
                convert_move (temp, mask, 0);
                return temp;
              }
            return mask;
          }
          break;
        default:
          gcc_unreachable ();
        }

      /* You only get two chances.  */
      if (try_again)
          vec_cmp_insn = get_vec_cmp_insn (rcode, dest_mode, op_mode);

      gcc_assert (vec_cmp_insn != -1);

      if (swap_operands)
        {
          rtx tmp;
          tmp = op0;
          op0 = op1;
          op1 = tmp;
        }
    }

  emit_insn (GEN_FCN (vec_cmp_insn) (mask, op0, op1));
  if (dmode != dest_mode)
    {
      rtx temp = gen_reg_rtx (dest_mode);
      convert_move (temp, mask, 0);
      return temp;
    }
  return mask;
}


/* Emit vector conditional expression.
   DEST is destination. OP1 and OP2 are two VEC_COND_EXPR operands.
   CC_OP0 and CC_OP1 are the two operands for the relation operation COND.  */

int
spu_emit_vector_cond_expr (rtx dest, rtx op1, rtx op2,
                           rtx cond, rtx cc_op0, rtx cc_op1)
{   
  enum machine_mode dest_mode = GET_MODE (dest);
  enum rtx_code rcode = GET_CODE (cond);
  rtx mask;
    
  /* Get the vector mask for the given relational operations.  */
  mask = spu_emit_vector_compare (rcode, cc_op0, cc_op1, dest_mode);

  emit_insn(gen_selb (dest, op2, op1, mask));

  return 1;
}

static rtx
spu_force_reg (enum machine_mode mode, rtx op)
{
  rtx x, r;
  if (GET_MODE (op) == VOIDmode || GET_MODE (op) == BLKmode)
    {
      if ((SCALAR_INT_MODE_P (mode) && GET_CODE (op) == CONST_INT)
	  || GET_MODE (op) == BLKmode)
	return force_reg (mode, convert_to_mode (mode, op, 0));
      abort ();
    }

  r = force_reg (GET_MODE (op), op);
  if (GET_MODE_SIZE (GET_MODE (op)) == GET_MODE_SIZE (mode))
    {
      x = simplify_gen_subreg (mode, r, GET_MODE (op), 0);
      if (x)
	return x;
    }

  x = gen_reg_rtx (mode);
  emit_insn (gen_spu_convert (x, r));
  return x;
}

static void
spu_check_builtin_parm (struct spu_builtin_description *d, rtx op, int p)
{
  HOST_WIDE_INT v = 0;
  int lsbits;
  /* Check the range of immediate operands. */
  if (p >= SPU_BTI_7 && p <= SPU_BTI_U18)
    {
      int range = p - SPU_BTI_7;

      if (!CONSTANT_P (op))
	error ("%s expects an integer literal in the range [%d, %d]",
	       d->name,
	       spu_builtin_range[range].low, spu_builtin_range[range].high);

      if (GET_CODE (op) == CONST
	  && (GET_CODE (XEXP (op, 0)) == PLUS
	      || GET_CODE (XEXP (op, 0)) == MINUS))
	{
	  v = INTVAL (XEXP (XEXP (op, 0), 1));
	  op = XEXP (XEXP (op, 0), 0);
	}
      else if (GET_CODE (op) == CONST_INT)
	v = INTVAL (op);
      else if (GET_CODE (op) == CONST_VECTOR
	       && GET_CODE (CONST_VECTOR_ELT (op, 0)) == CONST_INT)
	v = INTVAL (CONST_VECTOR_ELT (op, 0));

      /* The default for v is 0 which is valid in every range. */
      if (v < spu_builtin_range[range].low
	  || v > spu_builtin_range[range].high)
	error ("%s expects an integer literal in the range [%d, %d]. (%wd)",
	       d->name,
	       spu_builtin_range[range].low, spu_builtin_range[range].high,
	       v);

      switch (p)
	{
	case SPU_BTI_S10_4:
	  lsbits = 4;
	  break;
	case SPU_BTI_U16_2:
	  /* This is only used in lqa, and stqa.  Even though the insns
	     encode 16 bits of the address (all but the 2 least
	     significant), only 14 bits are used because it is masked to
	     be 16 byte aligned. */
	  lsbits = 4;
	  break;
	case SPU_BTI_S16_2:
	  /* This is used for lqr and stqr. */
	  lsbits = 2;
	  break;
	default:
	  lsbits = 0;
	}

      if (GET_CODE (op) == LABEL_REF
	  || (GET_CODE (op) == SYMBOL_REF
	      && SYMBOL_REF_FUNCTION_P (op))
	  || (v & ((1 << lsbits) - 1)) != 0)
	warning (0, "%d least significant bits of %s are ignored", lsbits,
		 d->name);
    }
}


static int
expand_builtin_args (struct spu_builtin_description *d, tree exp,
		     rtx target, rtx ops[])
{
  enum insn_code icode = (enum insn_code) d->icode;
  int i = 0, a;

  /* Expand the arguments into rtl. */

  if (d->parm[0] != SPU_BTI_VOID)
    ops[i++] = target;

  for (a = 0; d->parm[a+1] != SPU_BTI_END_OF_PARAMS; i++, a++)
    {
      tree arg = CALL_EXPR_ARG (exp, a);
      if (arg == 0)
	abort ();
      ops[i] = expand_expr (arg, NULL_RTX, VOIDmode, EXPAND_NORMAL);
    }

  gcc_assert (i == insn_data[icode].n_generator_args);
  return i;
}

static rtx
spu_expand_builtin_1 (struct spu_builtin_description *d,
		      tree exp, rtx target)
{
  rtx pat;
  rtx ops[8];
  enum insn_code icode = (enum insn_code) d->icode;
  enum machine_mode mode, tmode;
  int i, p;
  int n_operands;
  tree return_type;

  /* Set up ops[] with values from arglist. */
  n_operands = expand_builtin_args (d, exp, target, ops);

  /* Handle the target operand which must be operand 0. */
  i = 0;
  if (d->parm[0] != SPU_BTI_VOID)
    {

      /* We prefer the mode specified for the match_operand otherwise
         use the mode from the builtin function prototype. */
      tmode = insn_data[d->icode].operand[0].mode;
      if (tmode == VOIDmode)
	tmode = TYPE_MODE (spu_builtin_types[d->parm[0]]);

      /* Try to use target because not using it can lead to extra copies
         and when we are using all of the registers extra copies leads
         to extra spills.  */
      if (target && GET_CODE (target) == REG && GET_MODE (target) == tmode)
	ops[0] = target;
      else
	target = ops[0] = gen_reg_rtx (tmode);

      if (!(*insn_data[icode].operand[0].predicate) (ops[0], tmode))
	abort ();

      i++;
    }

  if (d->fcode == SPU_MASK_FOR_LOAD)
    {
      enum machine_mode mode = insn_data[icode].operand[1].mode;
      tree arg;
      rtx addr, op, pat;

      /* get addr */
      arg = CALL_EXPR_ARG (exp, 0);
      gcc_assert (POINTER_TYPE_P (TREE_TYPE (arg)));
      op = expand_expr (arg, NULL_RTX, Pmode, EXPAND_NORMAL);
      addr = memory_address (mode, op);

      /* negate addr */
      op = gen_reg_rtx (GET_MODE (addr));
      emit_insn (gen_rtx_SET (VOIDmode, op,
                 gen_rtx_NEG (GET_MODE (addr), addr)));
      op = gen_rtx_MEM (mode, op);

      pat = GEN_FCN (icode) (target, op);
      if (!pat) 
        return 0;
      emit_insn (pat);
      return target;
    }   

  /* Ignore align_hint, but still expand it's args in case they have
     side effects. */
  if (icode == CODE_FOR_spu_align_hint)
    return 0;

  /* Handle the rest of the operands. */
  for (p = 1; i < n_operands; i++, p++)
    {
      if (insn_data[d->icode].operand[i].mode != VOIDmode)
	mode = insn_data[d->icode].operand[i].mode;
      else
	mode = TYPE_MODE (spu_builtin_types[d->parm[i]]);

      /* mode can be VOIDmode here for labels */

      /* For specific intrinsics with an immediate operand, e.g.,
         si_ai(), we sometimes need to convert the scalar argument to a
         vector argument by splatting the scalar. */
      if (VECTOR_MODE_P (mode)
	  && (GET_CODE (ops[i]) == CONST_INT
	      || GET_MODE_CLASS (GET_MODE (ops[i])) == MODE_INT
	      || GET_MODE_CLASS (GET_MODE (ops[i])) == MODE_FLOAT))
	{
	  if (GET_CODE (ops[i]) == CONST_INT)
	    ops[i] = spu_const (mode, INTVAL (ops[i]));
	  else
	    {
	      rtx reg = gen_reg_rtx (mode);
	      enum machine_mode imode = GET_MODE_INNER (mode);
	      if (!spu_nonmem_operand (ops[i], GET_MODE (ops[i])))
		ops[i] = force_reg (GET_MODE (ops[i]), ops[i]);
	      if (imode != GET_MODE (ops[i]))
		ops[i] = convert_to_mode (imode, ops[i],
					  TYPE_UNSIGNED (spu_builtin_types
							 [d->parm[i]]));
	      emit_insn (gen_spu_splats (reg, ops[i]));
	      ops[i] = reg;
	    }
	}

      spu_check_builtin_parm (d, ops[i], d->parm[p]);

      if (!(*insn_data[icode].operand[i].predicate) (ops[i], mode))
	ops[i] = spu_force_reg (mode, ops[i]);
    }

  switch (n_operands)
    {
    case 0:
      pat = GEN_FCN (icode) (0);
      break;
    case 1:
      pat = GEN_FCN (icode) (ops[0]);
      break;
    case 2:
      pat = GEN_FCN (icode) (ops[0], ops[1]);
      break;
    case 3:
      pat = GEN_FCN (icode) (ops[0], ops[1], ops[2]);
      break;
    case 4:
      pat = GEN_FCN (icode) (ops[0], ops[1], ops[2], ops[3]);
      break;
    case 5:
      pat = GEN_FCN (icode) (ops[0], ops[1], ops[2], ops[3], ops[4]);
      break;
    case 6:
      pat = GEN_FCN (icode) (ops[0], ops[1], ops[2], ops[3], ops[4], ops[5]);
      break;
    default:
      abort ();
    }

  if (!pat)
    abort ();

  if (d->type == B_CALL || d->type == B_BISLED)
    emit_call_insn (pat);
  else if (d->type == B_JUMP)
    {
      emit_jump_insn (pat);
      emit_barrier ();
    }
  else
    emit_insn (pat);

  return_type = spu_builtin_types[d->parm[0]];
  if (d->parm[0] != SPU_BTI_VOID
      && GET_MODE (target) != TYPE_MODE (return_type))
    {
      /* target is the return value.  It should always be the mode of
         the builtin function prototype. */
      target = spu_force_reg (TYPE_MODE (return_type), target);
    }

  return target;
}

rtx
spu_expand_builtin (tree exp,
		    rtx target,
		    rtx subtarget ATTRIBUTE_UNUSED,
		    enum machine_mode mode ATTRIBUTE_UNUSED,
		    int ignore ATTRIBUTE_UNUSED)
{
  tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
  unsigned int fcode = DECL_FUNCTION_CODE (fndecl);
  struct spu_builtin_description *d;

  if (fcode < NUM_SPU_BUILTINS)
    {
      d = &spu_builtins[fcode];

      return spu_expand_builtin_1 (d, exp, target);
    }
  abort ();
}

/* Implement targetm.vectorize.builtin_mask_for_load.  */
static tree
spu_builtin_mask_for_load (void)
{
  return spu_builtin_decls[SPU_MASK_FOR_LOAD];
}

/* Implement targetm.vectorize.builtin_vectorization_cost.  */
static int 
spu_builtin_vectorization_cost (enum vect_cost_for_stmt type_of_cost,
                                tree vectype,
                                int misalign ATTRIBUTE_UNUSED)
{
  unsigned elements;

  switch (type_of_cost)
    {
      case scalar_stmt:
      case vector_stmt:
      case vector_load:
      case vector_store:
      case vec_to_scalar:
      case scalar_to_vec:
      case cond_branch_not_taken:
      case vec_perm:
      case vec_promote_demote:
        return 1;

      case scalar_store:
        return 10;

      case scalar_load:
        /* Load + rotate.  */
        return 2;

      case unaligned_load:
        return 2;

      case cond_branch_taken:
        return 6;

      case vec_construct:
	elements = TYPE_VECTOR_SUBPARTS (vectype);
	return elements / 2 + 1;

      default:
        gcc_unreachable ();
    }
}

/* Implement targetm.vectorize.init_cost.  */

static void *
spu_init_cost (struct loop *loop_info ATTRIBUTE_UNUSED)
{
  unsigned *cost = XNEW (unsigned);
  *cost = 0;
  return cost;
}

/* Implement targetm.vectorize.add_stmt_cost.  */

static unsigned
spu_add_stmt_cost (void *data, int count, enum vect_cost_for_stmt kind,
		   struct _stmt_vec_info *stmt_info, int misalign)
{
  unsigned *cost = (unsigned *) data;
  unsigned retval = 0;

  if (flag_vect_cost_model)
    {
      tree vectype = stmt_vectype (stmt_info);
      int stmt_cost = spu_builtin_vectorization_cost (kind, vectype, misalign);

      /* Statements in an inner loop relative to the loop being
	 vectorized are weighted more heavily.  The value here is
	 arbitrary and could potentially be improved with analysis.  */
      if (stmt_in_inner_loop_p (stmt_info))
	count *= 50;  /* FIXME.  */

      retval = (unsigned) (count * stmt_cost);
      *cost += retval;
    }

  return retval;
}

/* Implement targetm.vectorize.finish_cost.  */

static unsigned
spu_finish_cost (void *data)
{
  return *((unsigned *) data);
}

/* Implement targetm.vectorize.destroy_cost_data.  */

static void
spu_destroy_cost_data (void *data)
{
  free (data);
}

/* Return true iff, data reference of TYPE can reach vector alignment (16)
   after applying N number of iterations.  This routine does not determine
   how may iterations are required to reach desired alignment.  */

static bool
spu_vector_alignment_reachable (const_tree type ATTRIBUTE_UNUSED, bool is_packed)
{
  if (is_packed)
    return false;

  /* All other types are naturally aligned.  */
  return true;
}

/* Return the appropriate mode for a named address pointer.  */
static enum machine_mode
spu_addr_space_pointer_mode (addr_space_t addrspace)
{
  switch (addrspace)
    {
    case ADDR_SPACE_GENERIC:
      return ptr_mode;
    case ADDR_SPACE_EA:
      return EAmode;
    default:
      gcc_unreachable ();
    }
}

/* Return the appropriate mode for a named address address.  */
static enum machine_mode
spu_addr_space_address_mode (addr_space_t addrspace)
{
  switch (addrspace)
    {
    case ADDR_SPACE_GENERIC:
      return Pmode;
    case ADDR_SPACE_EA:
      return EAmode;
    default:
      gcc_unreachable ();
    }
}

/* Determine if one named address space is a subset of another.  */

static bool
spu_addr_space_subset_p (addr_space_t subset, addr_space_t superset)
{
  gcc_assert (subset == ADDR_SPACE_GENERIC || subset == ADDR_SPACE_EA);
  gcc_assert (superset == ADDR_SPACE_GENERIC || superset == ADDR_SPACE_EA);

  if (subset == superset)
    return true;

  /* If we have -mno-address-space-conversion, treat __ea and generic as not
     being subsets but instead as disjoint address spaces.  */
  else if (!TARGET_ADDRESS_SPACE_CONVERSION)
    return false;

  else
    return (subset == ADDR_SPACE_GENERIC && superset == ADDR_SPACE_EA);
}

/* Convert from one address space to another.  */
static rtx
spu_addr_space_convert (rtx op, tree from_type, tree to_type)
{
  addr_space_t from_as = TYPE_ADDR_SPACE (TREE_TYPE (from_type));
  addr_space_t to_as = TYPE_ADDR_SPACE (TREE_TYPE (to_type));

  gcc_assert (from_as == ADDR_SPACE_GENERIC || from_as == ADDR_SPACE_EA);
  gcc_assert (to_as == ADDR_SPACE_GENERIC || to_as == ADDR_SPACE_EA);

  if (to_as == ADDR_SPACE_GENERIC && from_as == ADDR_SPACE_EA)
    {
      rtx result, ls;

      ls = gen_const_mem (DImode,
			  gen_rtx_SYMBOL_REF (Pmode, "__ea_local_store"));
      set_mem_align (ls, 128);

      result = gen_reg_rtx (Pmode);
      ls = force_reg (Pmode, convert_modes (Pmode, DImode, ls, 1));
      op = force_reg (Pmode, convert_modes (Pmode, EAmode, op, 1));
      ls = emit_conditional_move (ls, NE, op, const0_rtx, Pmode,
					  ls, const0_rtx, Pmode, 1);

      emit_insn (gen_subsi3 (result, op, ls));

      return result;
    }

  else if (to_as == ADDR_SPACE_EA && from_as == ADDR_SPACE_GENERIC)
    {
      rtx result, ls;

      ls = gen_const_mem (DImode,
			  gen_rtx_SYMBOL_REF (Pmode, "__ea_local_store"));
      set_mem_align (ls, 128);

      result = gen_reg_rtx (EAmode);
      ls = force_reg (EAmode, convert_modes (EAmode, DImode, ls, 1));
      op = force_reg (Pmode, op);
      ls = emit_conditional_move (ls, NE, op, const0_rtx, Pmode,
					  ls, const0_rtx, EAmode, 1);
      op = force_reg (EAmode, convert_modes (EAmode, Pmode, op, 1));

      if (EAmode == SImode)
	emit_insn (gen_addsi3 (result, op, ls));
      else
	emit_insn (gen_adddi3 (result, op, ls));

      return result;
    }

  else
    gcc_unreachable ();
}


/* Count the total number of instructions in each pipe and return the
   maximum, which is used as the Minimum Iteration Interval (MII)
   in the modulo scheduler.  get_pipe() will return -2, -1, 0, or 1.
   -2 are instructions that can go in pipe0 or pipe1.  */
static int
spu_sms_res_mii (struct ddg *g)
{
  int i;
  unsigned t[4] = {0, 0, 0, 0};

  for (i = 0; i < g->num_nodes; i++)
    {
      rtx insn = g->nodes[i].insn;
      int p = get_pipe (insn) + 2;

      gcc_assert (p >= 0);
      gcc_assert (p < 4);

      t[p]++;
      if (dump_file && INSN_P (insn))
            fprintf (dump_file, "i%d %s %d %d\n",
                     INSN_UID (insn),
                     insn_data[INSN_CODE(insn)].name,
                     p, t[p]);
    }
  if (dump_file)
    fprintf (dump_file, "%d %d %d %d\n", t[0], t[1], t[2], t[3]);

  return MAX ((t[0] + t[2] + t[3] + 1) / 2, MAX (t[2], t[3]));
}


void
spu_init_expanders (void)
{
  if (cfun)
    {
      rtx r0, r1;
      /* HARD_FRAME_REGISTER is only 128 bit aligned when
         frame_pointer_needed is true.  We don't know that until we're
         expanding the prologue. */
      REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = 8;

      /* A number of passes use LAST_VIRTUAL_REGISTER+1 and
	 LAST_VIRTUAL_REGISTER+2 to test the back-end.  We want them
	 to be treated as aligned, so generate them here. */
      r0 = gen_reg_rtx (SImode);
      r1 = gen_reg_rtx (SImode);
      mark_reg_pointer (r0, 128);
      mark_reg_pointer (r1, 128);
      gcc_assert (REGNO (r0) == LAST_VIRTUAL_REGISTER + 1
		  && REGNO (r1) == LAST_VIRTUAL_REGISTER + 2);
    }
}

static enum machine_mode
spu_libgcc_cmp_return_mode (void)
{

/* For SPU word mode is TI mode so it is better to use SImode
   for compare returns.  */
  return SImode;
}

static enum machine_mode
spu_libgcc_shift_count_mode (void)
{
/* For SPU word mode is TI mode so it is better to use SImode
   for shift counts.  */
  return SImode;
}

/* Implement targetm.section_type_flags.  */
static unsigned int
spu_section_type_flags (tree decl, const char *name, int reloc)
{
  /* .toe needs to have type @nobits.  */
  if (strcmp (name, ".toe") == 0)
    return SECTION_BSS;
  /* Don't load _ea into the current address space.  */
  if (strcmp (name, "._ea") == 0)
    return SECTION_WRITE | SECTION_DEBUG;
  return default_section_type_flags (decl, name, reloc);
}

/* Implement targetm.select_section.  */
static section *
spu_select_section (tree decl, int reloc, unsigned HOST_WIDE_INT align)
{
  /* Variables and constants defined in the __ea address space
     go into a special section named "._ea".  */
  if (TREE_TYPE (decl) != error_mark_node
      && TYPE_ADDR_SPACE (TREE_TYPE (decl)) == ADDR_SPACE_EA)
    {
      /* We might get called with string constants, but get_named_section
	 doesn't like them as they are not DECLs.  Also, we need to set
	 flags in that case.  */
      if (!DECL_P (decl))
	return get_section ("._ea", SECTION_WRITE | SECTION_DEBUG, NULL);

      return get_named_section (decl, "._ea", reloc);
    }

  return default_elf_select_section (decl, reloc, align);
}

/* Implement targetm.unique_section.  */
static void
spu_unique_section (tree decl, int reloc)
{
  /* We don't support unique section names in the __ea address
     space for now.  */
  if (TREE_TYPE (decl) != error_mark_node
      && TYPE_ADDR_SPACE (TREE_TYPE (decl)) != 0)
    return;

  default_unique_section (decl, reloc);
}

/* Generate a constant or register which contains 2^SCALE.  We assume
   the result is valid for MODE.  Currently, MODE must be V4SFmode and
   SCALE must be SImode. */
rtx
spu_gen_exp2 (enum machine_mode mode, rtx scale)
{
  gcc_assert (mode == V4SFmode);
  gcc_assert (GET_MODE (scale) == SImode || GET_CODE (scale) == CONST_INT);
  if (GET_CODE (scale) != CONST_INT)
    {
      /* unsigned int exp = (127 + scale) << 23;
	__vector float m = (__vector float) spu_splats (exp); */
      rtx reg = force_reg (SImode, scale);
      rtx exp = gen_reg_rtx (SImode);
      rtx mul = gen_reg_rtx (mode);
      emit_insn (gen_addsi3 (exp, reg, GEN_INT (127)));
      emit_insn (gen_ashlsi3 (exp, exp, GEN_INT (23)));
      emit_insn (gen_spu_splats (mul, gen_rtx_SUBREG (GET_MODE_INNER (mode), exp, 0)));
      return mul;
    }
  else 
    {
      HOST_WIDE_INT exp = 127 + INTVAL (scale);
      unsigned char arr[16];
      arr[0] = arr[4] = arr[8] = arr[12] = exp >> 1;
      arr[1] = arr[5] = arr[9] = arr[13] = exp << 7;
      arr[2] = arr[6] = arr[10] = arr[14] = 0;
      arr[3] = arr[7] = arr[11] = arr[15] = 0;
      return array_to_constant (mode, arr);
    }
}

/* After reload, just change the convert into a move instruction
   or a dead instruction. */
void
spu_split_convert (rtx ops[])
{
  if (REGNO (ops[0]) == REGNO (ops[1]))
    emit_note (NOTE_INSN_DELETED);
  else
    {
      /* Use TImode always as this might help hard reg copyprop.  */
      rtx op0 = gen_rtx_REG (TImode, REGNO (ops[0]));
      rtx op1 = gen_rtx_REG (TImode, REGNO (ops[1]));
      emit_insn (gen_move_insn (op0, op1));
    }
}

void
spu_function_profiler (FILE * file, int labelno ATTRIBUTE_UNUSED)
{
  fprintf (file, "# profile\n");
  fprintf (file, "brsl $75,  _mcount\n");
}

/* Implement targetm.ref_may_alias_errno.  */
static bool
spu_ref_may_alias_errno (ao_ref *ref)
{
  tree base = ao_ref_base (ref);

  /* With SPU newlib, errno is defined as something like
         _impure_data._errno
     The default implementation of this target macro does not
     recognize such expressions, so special-code for it here.  */

  if (TREE_CODE (base) == VAR_DECL
      && !TREE_STATIC (base)
      && DECL_EXTERNAL (base)
      && TREE_CODE (TREE_TYPE (base)) == RECORD_TYPE
      && strcmp (IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (base)),
		 "_impure_data") == 0
      /* _errno is the first member of _impure_data.  */
      && ref->offset == 0)
    return true;

  return default_ref_may_alias_errno (ref);
}

/* Output thunk to FILE that implements a C++ virtual function call (with
   multiple inheritance) to FUNCTION.  The thunk adjusts the this pointer
   by DELTA, and unless VCALL_OFFSET is zero, applies an additional adjustment
   stored at VCALL_OFFSET in the vtable whose address is located at offset 0
   relative to the resulting this pointer.  */

static void
spu_output_mi_thunk (FILE *file, tree thunk ATTRIBUTE_UNUSED,
		     HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset,
		     tree function)
{
  rtx op[8];

  /* Make sure unwind info is emitted for the thunk if needed.  */
  final_start_function (emit_barrier (), file, 1);

  /* Operand 0 is the target function.  */
  op[0] = XEXP (DECL_RTL (function), 0);

  /* Operand 1 is the 'this' pointer.  */
  if (aggregate_value_p (TREE_TYPE (TREE_TYPE (function)), function))
    op[1] = gen_rtx_REG (Pmode, FIRST_ARG_REGNUM + 1);
  else
    op[1] = gen_rtx_REG (Pmode, FIRST_ARG_REGNUM);

  /* Operands 2/3 are the low/high halfwords of delta.  */
  op[2] = GEN_INT (trunc_int_for_mode (delta, HImode));
  op[3] = GEN_INT (trunc_int_for_mode (delta >> 16, HImode));

  /* Operands 4/5 are the low/high halfwords of vcall_offset.  */
  op[4] = GEN_INT (trunc_int_for_mode (vcall_offset, HImode));
  op[5] = GEN_INT (trunc_int_for_mode (vcall_offset >> 16, HImode));

  /* Operands 6/7 are temporary registers.  */
  op[6] = gen_rtx_REG (Pmode, 79);
  op[7] = gen_rtx_REG (Pmode, 78);

  /* Add DELTA to this pointer.  */
  if (delta)
    {
      if (delta >= -0x200 && delta < 0x200)
	output_asm_insn ("ai\t%1,%1,%2", op);
      else if (delta >= -0x8000 && delta < 0x8000)
	{
	  output_asm_insn ("il\t%6,%2", op);
	  output_asm_insn ("a\t%1,%1,%6", op);
	}
      else
	{
	  output_asm_insn ("ilhu\t%6,%3", op);
	  output_asm_insn ("iohl\t%6,%2", op);
	  output_asm_insn ("a\t%1,%1,%6", op);
	}
    }

  /* Perform vcall adjustment.  */
  if (vcall_offset)
    {
      output_asm_insn ("lqd\t%7,0(%1)", op);
      output_asm_insn ("rotqby\t%7,%7,%1", op);

      if (vcall_offset >= -0x200 && vcall_offset < 0x200)
	output_asm_insn ("ai\t%7,%7,%4", op);
      else if (vcall_offset >= -0x8000 && vcall_offset < 0x8000)
	{
	  output_asm_insn ("il\t%6,%4", op);
	  output_asm_insn ("a\t%7,%7,%6", op);
	}
      else
	{
	  output_asm_insn ("ilhu\t%6,%5", op);
	  output_asm_insn ("iohl\t%6,%4", op);
	  output_asm_insn ("a\t%7,%7,%6", op);
	}

      output_asm_insn ("lqd\t%6,0(%7)", op);
      output_asm_insn ("rotqby\t%6,%6,%7", op);
      output_asm_insn ("a\t%1,%1,%6", op);
    }

  /* Jump to target.  */
  output_asm_insn ("br\t%0", op);

  final_end_function ();
}

#include "gt-spu.h"