summaryrefslogtreecommitdiff
path: root/gcc/config/picochip/picochip.c
blob: 2476f7344f81ee2d697e2dc64c0407c5705cfa10 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
/* Subroutines used for code generation on picoChip processors.
   Copyright (C) 2001-2014 Free Software Foundation, Inc.
   Contributed by Picochip Ltd. (http://www.picochip.com)
   Maintained by Daniel Towner (daniel.towner@picochip.com) and
   Hariharan Sandanagobalane (hariharan@picochip.com)

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.

GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not, see
<http://www.gnu.org/licenses/>. */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "rtl.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "insn-config.h"
#include "conditions.h"
#include "insn-attr.h"
#include "flags.h"
#include "recog.h"
#include "obstack.h"
#include "tree.h"
#include "calls.h"
#include "stor-layout.h"
#include "stringpool.h"
#include "varasm.h"
#include "expr.h"
#include "optabs.h"
#include "except.h"
#include "function.h"
#include "output.h"
#include "basic-block.h"
#include "diagnostic-core.h"
#include "ggc.h"
#include "hashtab.h"
#include "tm_p.h"
#include "target.h"
#include "target-def.h"
#include "langhooks.h"
#include "reload.h"
#include "params.h"

#include "picochip-protos.h"

#include "insn-attr.h"		/* For DFA state_t. */
#include "insn-config.h"	/* Required by recog.h */
#include "insn-codes.h"		/* For CODE_FOR_? */
#include "optabs.h"		/* For GEN_FCN */
#include "basic-block.h"	/* UPDATE_LIFE_GLOBAL* for picochip_reorg. */
#include "timevar.h"		/* For TV_SCHED2, in picochip_reorg. */
#include "libfuncs.h"		/* For memcpy_libfuncs, etc. */
#include "df.h"			/* For df_regs_ever_live_df_regs_ever_live_pp, etc. */
#include "dbxout.h"


/* Target AE ISA information. */
enum picochip_dfa_type picochip_schedule_type;

bool picochip_has_mul_unit = false;
bool picochip_has_mac_unit = false;

/* targetm hook function prototypes. */

void picochip_asm_file_start (void);
void picochip_asm_file_end (void);

void picochip_init_libfuncs (void);
void picochip_reorg (void);

int picochip_arg_partial_bytes (cumulative_args_t p_cum,
				       enum machine_mode mode,
				       tree type, bool named);
rtx picochip_function_arg (cumulative_args_t p_cum,
			   enum machine_mode mode,
			   const_tree type, bool named);
rtx picochip_incoming_function_arg (cumulative_args_t p_cum,
				    enum machine_mode mode,
				    const_tree type, bool named);
void picochip_arg_advance (cumulative_args_t p_cum, enum machine_mode mode,
			   const_tree type, bool named);
unsigned int picochip_function_arg_boundary (enum machine_mode mode,
					     const_tree type);

int picochip_sched_lookahead (void);
int picochip_sched_issue_rate (void);
int picochip_sched_adjust_cost (rtx insn, rtx link,
				       rtx dep_insn, int cost);
int picochip_sched_reorder (FILE * file, int verbose, rtx * ready,
				   int *n_readyp, int clock);

void picochip_init_builtins (void);
rtx picochip_expand_builtin (tree, rtx, rtx, enum machine_mode, int);

bool picochip_rtx_costs (rtx x, int code, int outer_code, int opno,
			 int* total, bool speed);
bool picochip_return_in_memory(const_tree type,
                              const_tree fntype ATTRIBUTE_UNUSED);
bool picochip_legitimate_address_p (enum machine_mode, rtx, bool);
rtx picochip_legitimize_address (rtx x, rtx oldx ATTRIBUTE_UNUSED,
                             enum machine_mode mode);
int picochip_legitimize_reload_address (rtx *x, enum machine_mode mode,
                                        int opnum, int type, int ind_levels);

rtx picochip_struct_value_rtx(tree fntype ATTRIBUTE_UNUSED, int incoming ATTRIBUTE_UNUSED);
rtx picochip_function_value (const_tree valtype, const_tree func ATTRIBUTE_UNUSED,
                         bool outgoing ATTRIBUTE_UNUSED);
static reg_class_t
picochip_secondary_reload (bool in_p,
			   rtx x ATTRIBUTE_UNUSED,
			   reg_class_t cla ATTRIBUTE_UNUSED,
			   enum machine_mode mode,
			   secondary_reload_info *sri);
void
picochip_asm_named_section (const char *name,
			    unsigned int flags ATTRIBUTE_UNUSED,
			    tree decl ATTRIBUTE_UNUSED);

static rtx picochip_static_chain (const_tree, bool);

static void picochip_option_override (void);

/* Lookup table mapping a register number to the earliest containing
   class.  Used by REGNO_REG_CLASS.  */
const enum reg_class picochip_regno_reg_class[FIRST_PSEUDO_REGISTER] =
{
  TWIN_REGS, TWIN_REGS, TWIN_REGS, TWIN_REGS,
  TWIN_REGS, TWIN_REGS, TWIN_REGS, TWIN_REGS,
  TWIN_REGS, TWIN_REGS, TWIN_REGS, TWIN_REGS,
  GR_REGS, FRAME_REGS, PTR_REGS, CONST_REGS,
  ACC_REGS, CC_REGS, GR_REGS, GR_REGS
};

/* picoChip register names. */
const char *picochip_regnames[] = REGISTER_NAMES;

/* Define the maximum number of registers which may be used to pass
 * parameters to functions. */
#define MAX_CALL_PARAMETER_REGS 6


/* Target scheduling information. */

/* This flag indicates whether the next instruction to be output is a
   VLIW continuation instruction.  It is used to communicate between
   final_prescan_insn and asm_output_opcode. */
static int picochip_vliw_continuation = 0;

/* This variable is used to communicate the current instruction
   between final_prescan_insn and functions such as asm_output_opcode,
   and picochip_get_vliw_alu_id (which are otherwise unable to determine the
   current instruction. */
static rtx picochip_current_prescan_insn;

static bool picochip_is_delay_slot_pending = 0;

/* When final_prescan_insn is called, it computes information about
   the current VLIW packet, and stores it in this structure. When
   instructions are output, this state is used to make sure that the
   instructions are output in the correct way (e.g., which ALU to use,
   whether a macro branch was ever previously a real branch, etc.). */
struct vliw_state
{
  int contains_pico_alu_insn;
  int contains_non_cc_alu_insn;
  int num_alu_insns_so_far;

  /* Record how many instructions are contained in the packet. */
  int num_insns_in_packet;

  /* There was a case for this to be more than 1 */
  int num_cfi_labels_deferred;
  char cfi_label_name[2][256];	/* Used to record the name of a CFI label
				   emitted inside a VLIW packet. */
  char lm_label_name[256];	/* Used to record the name of an LM label. */
};

struct vliw_state picochip_current_vliw_state;

/* Save/restore recog_data. */
static int picochip_saved_which_alternative;
static struct recog_data_d picochip_saved_recog_data;

/* Determine which ALU to use for the instruction in
   picochip_current_prescan_insn. */
static char picochip_get_vliw_alu_id (void);

/* Initialize the GCC target structure.  */

#undef TARGET_ASM_FUNCTION_PROLOGUE
#define TARGET_ASM_FUNCTION_PROLOGUE picochip_function_prologue

#undef TARGET_ASM_FUNCTION_EPILOGUE
#define TARGET_ASM_FUNCTION_EPILOGUE picochip_function_epilogue

#undef TARGET_ASM_INTERNAL_LABEL
#define TARGET_ASM_INTERNAL_LABEL picochip_output_internal_label

#undef TARGET_ASM_GLOBALIZE_LABEL
#define TARGET_ASM_GLOBALIZE_LABEL picochip_output_global

#undef TARGET_ASM_BYTE_OP
#define TARGET_ASM_BYTE_OP ".initByte "
#undef TARGET_ASM_ALIGNED_HI_OP
#define TARGET_ASM_ALIGNED_HI_OP  ".initWord "
#undef TARGET_ASM_UNALIGNED_HI_OP
#define TARGET_ASM_UNALIGNED_HI_OP  ".unalignedInitWord "
#undef TARGET_ASM_ALIGNED_SI_OP
#define TARGET_ASM_ALIGNED_SI_OP ".initLong "
#undef TARGET_ASM_UNALIGNED_SI_OP
#define TARGET_ASM_UNALIGNED_SI_OP ".unalignedInitLong "

#undef  TARGET_INIT_BUILTINS
#define TARGET_INIT_BUILTINS picochip_init_builtins

#undef  TARGET_EXPAND_BUILTIN
#define TARGET_EXPAND_BUILTIN picochip_expand_builtin

#undef TARGET_RTX_COSTS
#define TARGET_RTX_COSTS picochip_rtx_costs

#undef TARGET_SCHED_ISSUE_RATE
#define TARGET_SCHED_ISSUE_RATE picochip_sched_issue_rate

#undef TARGET_SCHED_REORDER
#define TARGET_SCHED_REORDER picochip_sched_reorder

#undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD
#define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD \
  picochip_sched_lookahead

#undef TARGET_SCHED_ADJUST_COST
#define TARGET_SCHED_ADJUST_COST picochip_sched_adjust_cost

#undef TARGET_ASM_NAMED_SECTION
#define TARGET_ASM_NAMED_SECTION picochip_asm_named_section

#undef TARGET_HAVE_SWITCHABLE_BSS_SECTIONS
#define TARGET_HAVE_SWITCHABLE_BSS_SECTIONS 1

#undef TARGET_INIT_LIBFUNCS
#define TARGET_INIT_LIBFUNCS picochip_init_libfuncs

#undef TARGET_ASM_FILE_START
#define TARGET_ASM_FILE_START picochip_asm_file_start

#undef TARGET_ASM_FILE_END
#define TARGET_ASM_FILE_END picochip_asm_file_end

#undef TARGET_MACHINE_DEPENDENT_REORG
#define TARGET_MACHINE_DEPENDENT_REORG picochip_reorg

#undef TARGET_ARG_PARTIAL_BYTES
#define TARGET_ARG_PARTIAL_BYTES picochip_arg_partial_bytes

#undef TARGET_FUNCTION_ARG
#define TARGET_FUNCTION_ARG picochip_function_arg

#undef TARGET_FUNCTION_INCOMING_ARG
#define TARGET_FUNCTION_INCOMING_ARG picochip_incoming_function_arg

#undef TARGET_FUNCTION_ARG_ADVANCE
#define TARGET_FUNCTION_ARG_ADVANCE picochip_arg_advance

#undef TARGET_FUNCTION_ARG_BOUNDARY
#define TARGET_FUNCTION_ARG_BOUNDARY picochip_function_arg_boundary

#undef TARGET_PROMOTE_FUNCTION_MODE
#define TARGET_PROMOTE_FUNCTION_MODE default_promote_function_mode_always_promote
#undef TARGET_PROMOTE_PROTOTYPES
#define TARGET_PROMOTE_PROTOTYPES hook_bool_const_tree_true

/* Target support for Anchored Addresses optimization */
#undef TARGET_MIN_ANCHOR_OFFSET
#define TARGET_MIN_ANCHOR_OFFSET 0
#undef TARGET_MAX_ANCHOR_OFFSET
#define TARGET_MAX_ANCHOR_OFFSET 7
#undef TARGET_ASM_OUTPUT_ANCHOR
#define TARGET_ASM_OUTPUT_ANCHOR  picochip_asm_output_anchor

#undef TARGET_FUNCTION_VALUE
#define TARGET_FUNCTION_VALUE picochip_function_value
/*
#undef TARGET_LIBGCC_CMP_RETURN_MODE
#define TARGET_LIBGCC_CMP_RETURN_MODE picochip_libgcc_cmp_return_mode
*/

#undef TARGET_LEGITIMATE_ADDRESS_P
#define TARGET_LEGITIMATE_ADDRESS_P picochip_legitimate_address_p

#undef TARGET_LEGITIMIZE_ADDRESS
#define TARGET_LEGITIMIZE_ADDRESS picochip_legitimize_address

/* Loading and storing QImode values to and from memory
   usually requires a scratch register. */
#undef TARGET_SECONDARY_RELOAD
#define TARGET_SECONDARY_RELOAD picochip_secondary_reload

/* How Large Values are Returned  */

#undef TARGET_RETURN_IN_MEMORY
#define TARGET_RETURN_IN_MEMORY picochip_return_in_memory

#undef TARGET_STATIC_CHAIN
#define TARGET_STATIC_CHAIN picochip_static_chain

#undef TARGET_OPTION_OVERRIDE
#define TARGET_OPTION_OVERRIDE picochip_option_override

#undef TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE
#define TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE picochip_option_override

/* The 2nd scheduling pass option is switched off, and a machine
   dependent reorganisation ensures that it is run later on, after the
   second jump optimisation.  */
#undef TARGET_DELAY_SCHED2
#define TARGET_DELAY_SCHED2 true

/* Variable tracking should be run after all optimizations which
   change order of insns.  It also needs a valid CFG.  */
#undef TARGET_DELAY_VARTRACK
#define TARGET_DELAY_VARTRACK true

struct gcc_target targetm = TARGET_INITIALIZER;


/* Only return a value in memory if it is greater than 4 bytes.
   int_size_in_bytes returns -1 for variable size objects, which go in
   memory always.  The cast to unsigned makes -1 > 8.  */

bool
picochip_return_in_memory(const_tree type, const_tree fntype ATTRIBUTE_UNUSED)
{
  return ((unsigned HOST_WIDE_INT) int_size_in_bytes (type) > 4);
}

/* Allow some options to be overriden. */

static void
picochip_option_override (void)
{
  /* If we are optimizing for stack, dont let inliner to inline functions
     that could potentially increase stack size.*/
   if (flag_conserve_stack)
     {
       maybe_set_param_value (PARAM_LARGE_STACK_FRAME, 0,
			      global_options.x_param_values,
			      global_options_set.x_param_values);
       maybe_set_param_value (PARAM_STACK_FRAME_GROWTH, 0,
			      global_options.x_param_values,
			      global_options_set.x_param_values);
     }

  /* Turn off the elimination of unused types. The elaborator
     generates various interesting types to represent constants,
     generics, and so on, and it is useful to retain this information
     in the debug output. The increased size of the debug information
     is not really an issue for us. */
  flag_eliminate_unused_debug_types = 0;

  /* Even if the user specifies a -fno-omit-frame-pointer on the
     command line, we still want to go ahead and omit frame pointer
     usages, since we dont really have a frame pointer register.
     So, all accesses to FP need to be converted to accesses off
     stack pointer.*/
  flag_omit_frame_pointer = 1;

  /* Turning on anchored addresses by default. This is an optimization
     that could decrease the code size by placing anchors in data and
     accessing offsets from the anchor for file local data variables.*/
  if (optimize >= 1)
    flag_section_anchors = 1;

  /* The second scheduling pass runs within picochip_reorg, to avoid
     having the second jump optimisation trash the instruction modes
     (e.g., instructions are changed to TImode to mark the beginning
     of cycles).  Two types of DFA scheduling are possible: space and
     speed.  In both cases, instructions are reordered to avoid stalls
     (e.g., memory loads stall for one cycle).  Speed scheduling will
     also enable VLIW instruction packing.  VLIW instructions use more
     code space, so VLIW scheduling is disabled when scheduling for
     size.  */
  if (flag_schedule_insns_after_reload)
    {
      if (optimize_size)
	picochip_schedule_type = DFA_TYPE_SPACE;
      else
	{
	  picochip_schedule_type = DFA_TYPE_SPEED;
	  flag_delayed_branch = 0;
	}
    }
  else
    picochip_schedule_type = DFA_TYPE_NONE;

  /* Ensure that the debug level is always at least -g2. The flow
     analyser works at its best if it always has debug
     information. DWARF is non-intrusive, so it makes no difference to
     code quality if debug is always enabled. */
  if (debug_info_level < DINFO_LEVEL_NORMAL)
  {
    debug_info_level = DINFO_LEVEL_NORMAL;
    write_symbols = DWARF2_DEBUG;
  }

  /* Options of the form -mae=mac, and so on will be substituted by
     the compiler driver for the appropriate byte access and multiply
     unit ISA options. Any unrecognised AE types will end up being
     passed to the compiler, which should reject them as invalid. */
  if (picochip_ae_type_string != NULL)
    error ("invalid AE type specified (%s)", picochip_ae_type_string);

  /* Override any specific capabilities of the instruction set. These
     take precedence over any capabilities inferred from the AE type,
     regardless of where the options appear on the command line. */
  if (picochip_mul_type_string == NULL)
    {
      /* Default to MEM-type multiply, for historical compatibility. */
      picochip_has_mac_unit = false;
      picochip_has_mul_unit = true;
    }
  else
    {
      picochip_has_mac_unit = false;
      picochip_has_mul_unit = false;

      if (strcmp (picochip_mul_type_string, "mul") == 0)
	picochip_has_mul_unit = true;
      else if (strcmp (picochip_mul_type_string, "mac") == 0)
	picochip_has_mac_unit = true;
      else if (strcmp (picochip_mul_type_string, "none") == 0)
	{ /* Do nothing. Unit types already set to false. */ }
      else
	error ("invalid mul type specified (%s) - expected mac, mul or none",
	       picochip_mul_type_string);
    }
}


/* Initialise the library functions to handle arithmetic on some of
   the larger modes. */
void
picochip_init_libfuncs (void)
{
  /* 64-bit shifts */
  set_optab_libfunc (ashr_optab, DImode, "__ashrdi3");
  set_optab_libfunc (ashl_optab, DImode, "__ashldi3");
  set_optab_libfunc (lshr_optab, DImode, "__lshrdi3");

  /* 64-bit signed multiplication. */
  set_optab_libfunc (smul_optab, DImode, "__muldi3");

  /* Signed division */
  set_optab_libfunc (sdiv_optab, HImode, "__divhi3");
  set_optab_libfunc (sdiv_optab, DImode, "__divdi3");

  /* Signed modulus */
  set_optab_libfunc (smod_optab, HImode, "__modhi3");
  set_optab_libfunc (smod_optab, DImode, "__moddi3");

  /* 32-bit count leading Zeros*/
  set_optab_libfunc (clz_optab, SImode, "_clzsi2");

  /* 64-bit comparison */
  set_optab_libfunc (ucmp_optab, DImode, "__ucmpdi2");
  set_optab_libfunc (cmp_optab, DImode, "__cmpdi2");

  /* 64-bit addition and subtraction*/
  set_optab_libfunc (add_optab, DImode, "_adddi3");
  set_optab_libfunc (sub_optab, DImode, "_subdi3");
}

/* Memcpy function */
int
picochip_expand_movmemhi (rtx *operands)
{
  rtx src_addr_reg, dst_addr_reg, count_reg, src_mem, dst_mem, tmp_reg;
  rtx start_label;
  int align, size;
  src_addr_reg = gen_reg_rtx(HImode);
  dst_addr_reg = gen_reg_rtx(HImode);
  count_reg = gen_reg_rtx(HImode);
  emit_insn (gen_movhi (count_reg, operands[2]));
  emit_insn (gen_movqi (src_addr_reg, XEXP(operands[1], 0)));
  emit_insn (gen_movqi (dst_addr_reg, XEXP(operands[0], 0)));
  gcc_assert (GET_CODE(count_reg) == REG);
  start_label = gen_label_rtx ();
  emit_label (start_label);

  /* We can specialise the code for different alignments */
  align = INTVAL(operands[3]);
  size = INTVAL(operands[2]);
  gcc_assert(align >= 0 && size >= 0);
  if (size != 0)
    {
      if (size % 4 == 0 && align % 4 == 0)
        {
          src_mem = gen_rtx_MEM(SImode, src_addr_reg);
          dst_mem = gen_rtx_MEM(SImode, dst_addr_reg);
          tmp_reg = gen_reg_rtx(SImode);
          emit_insn (gen_movsi (tmp_reg, src_mem));
          emit_insn (gen_movsi (dst_mem, tmp_reg));
          emit_insn (gen_addhi3 (dst_addr_reg, dst_addr_reg, GEN_INT(4)));
          emit_insn (gen_addhi3 (src_addr_reg, src_addr_reg, GEN_INT(4)));
          emit_insn (gen_addhi3 (count_reg, count_reg, GEN_INT(-4)));
          /* The sub instruction above generates cc, but we cannot just emit the branch.*/
          emit_cmp_and_jump_insns (count_reg, const0_rtx, GT, 0, HImode, 0, start_label);
        }
      else if (size % 2 == 0 && align % 2 == 0)
        {
          src_mem = gen_rtx_MEM(HImode, src_addr_reg);
          dst_mem = gen_rtx_MEM(HImode, dst_addr_reg);
          tmp_reg = gen_reg_rtx(HImode);
          emit_insn (gen_movhi (tmp_reg, src_mem));
          emit_insn (gen_movhi (dst_mem, tmp_reg));
          emit_insn (gen_addhi3 (dst_addr_reg, dst_addr_reg, const2_rtx));
          emit_insn (gen_addhi3 (src_addr_reg, src_addr_reg, const2_rtx));
          emit_insn (gen_addhi3 (count_reg, count_reg, GEN_INT(-2)));
          /* The sub instruction above generates cc, but we cannot just emit the branch.*/
          emit_cmp_and_jump_insns (count_reg, const0_rtx, GT, 0, HImode, 0, start_label);
        }
      else
        {
          src_mem = gen_rtx_MEM(QImode, src_addr_reg);
          dst_mem = gen_rtx_MEM(QImode, dst_addr_reg);
          tmp_reg = gen_reg_rtx(QImode);
          emit_insn (gen_movqi (tmp_reg, src_mem));
          emit_insn (gen_movqi (dst_mem, tmp_reg));
          emit_insn (gen_addhi3 (dst_addr_reg, dst_addr_reg, const1_rtx));
          emit_insn (gen_addhi3 (src_addr_reg, src_addr_reg, const1_rtx));
          emit_insn (gen_addhi3 (count_reg, count_reg, GEN_INT(-1)));
          /* The sub instruction above generates cc, but we cannot just emit the branch.*/
          emit_cmp_and_jump_insns (count_reg, const0_rtx, GT, 0, HImode, 0, start_label);
        }
    }
  return 1;
}


/* Return the register class for letter C.  */
enum reg_class
picochip_reg_class_from_letter (unsigned c)
{
  switch (c)
    {
    case 'k':
      return FRAME_REGS;
    case 'f':
      return PTR_REGS;
    case 't':
      return TWIN_REGS;
    case 'r':
      return GR_REGS;
    default:
      return NO_REGS;
    }
}

static const int
pico_leaf_reg_alloc_order[] = LEAF_REG_ALLOC_ORDER;
static const int
pico_nonleaf_reg_alloc_order[] = REG_ALLOC_ORDER;

void
picochip_order_regs_for_local_alloc (void)
{
  /* We change the order for leaf functions alone. We put r12 at
     the end since using it will prevent us to combine stw/ldws to
     stl/ldl and it gives no benefit. In non-leaf functions, we
     would anyway saveup/restore r12, so it makes sense to use it.*/

  if (leaf_function_p())
  {
    memcpy ((char *)reg_alloc_order, (const char *) pico_leaf_reg_alloc_order,
            FIRST_PSEUDO_REGISTER * sizeof (int));
  }
  else
  {
    memcpy ((char *)reg_alloc_order, (const char *) pico_nonleaf_reg_alloc_order,
            FIRST_PSEUDO_REGISTER * sizeof (int));
  }
}

/* Check that VALUE (an INT_CST) is ok as a constant of type C.  */
int
picochip_const_ok_for_letter_p (unsigned HOST_WIDE_INT value, unsigned c)
{

  switch (c)
    {
    case 'I':			/* 4 bits signed.  */
      return value + 8 < 16;
    case 'J':			/* 4 bits unsigned.  */
      return value < 16;
    case 'K':			/* 8 bits signed.  */
      return value + 128 < 256;
    case 'M':			/* 4-bit magnitude. */
      return abs (value) < 16;
    case 'N':			/* 10 bits signed.  */
      return value + 512 > 1024;
    case 'O':			/* 16 bits signed. */
      return value + 32768 < 65536;
    default:			/* Unknown letter. */
      return 0;
    }
}

/* Stack utility functions. */
rtx
picochip_return_addr_rtx(int count, rtx frameaddr ATTRIBUTE_UNUSED)
{
   if (count==0)
     return gen_rtx_REG (Pmode, LINK_REGNUM);
   else
     return NULL_RTX;
}


/* Emit a set of parallel register expressions used to store
   blockmode values to pass to functions. */
static rtx
picochip_emit_register_parallel (int size_in_units, int offset)
{
  int num_regs = 0;
  rtx result;
  rtx vector[MAX_CALL_PARAMETER_REGS];
  int base_reg = 0;
  int i = 0;

  /* Compute the base register, and number of required registers. */
  base_reg = offset / 2;
  num_regs = size_in_units / 2;
  if (size_in_units % 2 == 1)
    num_regs++;

  /* Emit a register for each part of the block mode value to be
     passed in a register. */
  for (i = 0; i < num_regs; i++)
    vector[i] = gen_rtx_EXPR_LIST (VOIDmode,
				   gen_rtx_REG (HImode, base_reg + i),
				   GEN_INT (i * 2));
  result = gen_rtx_PARALLEL (BLKmode, gen_rtvec_v (num_regs, vector));

  return result;

}

/* Emit an instruction to allocate a suitable amount of space on the
   stack, by decrementing the stack pointer. */
static void
picochip_emit_stack_allocate (int adjustment)
{
  rtx insn;
  rtx stack_pointer_reg = gen_rtx_REG (Pmode, STACK_POINTER_REGNUM);

  /* Use an addition of a negative value. */
  insn = emit_insn (gen_addhi3 (stack_pointer_reg, stack_pointer_reg,
				GEN_INT (-adjustment)));

  /* Make the instruction frame related.  Also add an expression note,
     so that the correct Dwarf information is generated (see documention
     for RTX_FRAME_RELATED_P for more details). */
  RTX_FRAME_RELATED_P (insn) = 1;
  add_reg_note (insn, REG_FRAME_RELATED_EXPR,
		gen_rtx_SET (VOIDmode, stack_pointer_reg,
			     gen_rtx_PLUS (Pmode, stack_pointer_reg,
					   GEN_INT (-adjustment))));

}

/* Emit an instruction to save a register of the given mode.  The
   offset at which to save the register is given relative to the stack
   pointer. */
static void
picochip_emit_save_register (rtx reg, int offset)
{
  rtx stack_pointer, address, mem, insn;

  stack_pointer = gen_rtx_REG (Pmode, STACK_POINTER_REGNUM);

  address = gen_rtx_PLUS (Pmode, stack_pointer, GEN_INT (offset));

  mem = gen_rtx_MEM (GET_MODE (reg), address);

  insn = emit_move_insn (mem, reg);
  RTX_FRAME_RELATED_P (insn) = 1;

  /* For modes other than HImode, create a note explaining that
     multiple registers have been saved.  This allows the correct DWARF
     call frame information to be generated. */
  switch (GET_MODE (reg))
    {
    case HImode:
      /* The RTL is sufficient to explain HImode register saves. */
      break;

    case SImode:
      /* SImode must be broken down into parallel HImode register saves. */
      {
	rtvec p;
	p = rtvec_alloc (2);

	RTVEC_ELT (p, 0) =
	  gen_rtx_SET (HImode,
		       gen_rtx_MEM (HImode,
				    gen_rtx_PLUS (Pmode, stack_pointer,
						  GEN_INT (offset))),
		       gen_rtx_REG (HImode, REGNO (reg)));
	RTX_FRAME_RELATED_P (RTVEC_ELT (p, 0)) = 1;

	RTVEC_ELT (p, 1) =
	  gen_rtx_SET (HImode, gen_rtx_MEM (HImode,
					    gen_rtx_PLUS (Pmode,
							  stack_pointer,
							  GEN_INT (offset +
								   2))),
		       gen_rtx_REG (HImode, REGNO (reg) + 1));
	RTX_FRAME_RELATED_P (RTVEC_ELT (p, 1)) = 1;

	add_reg_note (insn, REG_FRAME_RELATED_EXPR,
		      gen_rtx_PARALLEL (VOIDmode, p));

      }
      break;

    default:
      internal_error
	("unexpected mode %s encountered in picochip_emit_save_register",
	 GET_MODE_NAME (GET_MODE (reg)));
    }

}

/* Emit an instruction to restore a register of the given mode.  The
   offset from which to restore the register is given relative to the
   stack pointer. */
static void
picochip_emit_restore_register (rtx reg, int offset)
{
  rtx stack_pointer, address, mem;

  stack_pointer = gen_rtx_REG (Pmode, STACK_POINTER_REGNUM);

  address = gen_rtx_PLUS (Pmode, stack_pointer, GEN_INT (offset));

  mem = gen_rtx_MEM (GET_MODE (reg), address);

  emit_move_insn (reg, mem);

}

/* Check that the given byte offset is aligned to the given number of
   bits. */
static int
picochip_is_aligned (int byte_offset, int bit_alignment)
{
  int byte_alignment = bit_alignment / BITS_PER_UNIT;
  return (byte_offset % byte_alignment) == 0;
}

/*****************************************************************************
 * Stack layout.
 *
 * The following section contains code which controls how the stack is
 * laid out.
 *
 * The stack is laid out as follows (high addresses first):
 *
 *   Incoming arguments
 *   Pretend arguments            (ARG PTR)
 *   Special registers
 *   General registers
 *   Frame                         (FP)
 *   Outgoing arguments            (SP)
 *
 * The (constant) offsets of the different areas must be calculated
 * relative to the stack area immediately below, and aligned
 * appropriately. For example, the frame offset is computed by
 * determining the offset of the special register area, adding the
 * size of the special register area, and then aligning the resulting
 * offset correctly. In turn, the special register offset is computed
 * from the general register offset, and so on. This enables the
 * different offsets to change size and alignment, without requiring
 * the code for other offset calculations to be rewritten.
 *
 * The argument pointer, and the frame pointer are eliminated wherever
 * possible, by replacing them with a constant offset from the stack
 * pointer. In the rare cases where constant offsets from the stack
 * pointer cannot be computed, another register will be allocated to
 * serve as the argument pointer, or the frame pointer.
 *
 * The save registers are stored at small offsets from the caller, to
 * enable the more efficient SP-based ISA instructions to be used.
 *
 ****************************************************************************/

/* Compute the size of an argument in units. */
static int
picochip_compute_arg_size (const_tree type, enum machine_mode mode)
{
  int type_size_in_units = 0;

  if (type)
    type_size_in_units = tree_to_uhwi (TYPE_SIZE_UNIT (type));
  else
    type_size_in_units = GET_MODE_SIZE (mode);

  return type_size_in_units;

}

/* Determine where the next outgoing arg should be placed. */
rtx
picochip_function_arg (cumulative_args_t cum_v, enum machine_mode mode,
		       const_tree type, bool named ATTRIBUTE_UNUSED)
{
  CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
  int reg = 0;
  int type_align_in_units = 0;
  int type_size_in_units;
  int new_offset = 0;
  int offset_overflow = 0;

  /* VOIDmode is passed when computing the second argument to a `call'
     pattern. This can be ignored. */
  if (mode == VOIDmode)
    return 0;

  /* Compute the alignment and size of the parameter. */
  type_align_in_units =
    picochip_function_arg_boundary (mode, type) / BITS_PER_UNIT;
  type_size_in_units = picochip_compute_arg_size (type, mode);

  /* Compute the correct offset (i.e., ensure that the offset meets
     the alignment requirements). */
  offset_overflow = *cum % type_align_in_units;
  if (offset_overflow == 0)
    new_offset = *cum;
  else
    new_offset = (*cum - offset_overflow) + type_align_in_units;

  if (TARGET_DEBUG)
    {
      printf ("Function arg:\n");
      printf ("  Type valid: %s\n", (type ? "yes" : "no"));
      printf ("  Cumulative Value: %d\n", *cum);
      printf ("  Mode: %s\n", GET_MODE_NAME (mode));
      printf ("  Type size: %i units\n", type_size_in_units);
      printf ("  Alignment: %i units\n", type_align_in_units);
      printf ("  New offset: %i\n", new_offset);
      printf ("\n");
    }

  /* If the new offset is outside the register space, return. */
  if (new_offset >= MAX_CALL_PARAMETER_REGS * 2)
    return 0;

  /* If the end of the argument is outside the register space, then
     the argument must overlap the register space. Return the first
     available register. */
  if ((new_offset + type_size_in_units) > (MAX_CALL_PARAMETER_REGS * 2))
    return gen_rtx_REG (HImode, new_offset / 2);

  /* Create a register of the required mode to hold the parameter. */
  reg = new_offset / 2;
  switch (mode)
    {
    case QImode:
    case HImode:
    case SImode:
    case SFmode:
    case DImode:
    case DFmode:
    case SDmode:
    case DDmode:
    case CHImode:
    case CSImode:
    case SCmode:
    case CQImode:
      return gen_rtx_REG (mode, reg);

    case BLKmode:
      {
	/* Empty blockmode values can be passed as arguments (e.g.,
	 * empty structs). These require no registers
	 * whatsoever. Non-empty blockmode values are passed in a set
	 * of parallel registers. */
	if (type_size_in_units == 0)
	  return 0;
	else
	  return picochip_emit_register_parallel (type_size_in_units, new_offset);
      }

    default:
      warning
	(0, "defaulting to stack for %s register creation",
	 GET_MODE_NAME (mode));
      break;
    }

  return 0;

}

/* Determine where the next incoming function argument will
   appear. Normally, this works in exactly the same way as
   picochip_function_arg, except when the function in question is a
   varadic function. In this case, the incoming arguments all appear
   to be passed on the stack (actually, some of the arguments are
   passed in registers, which are then pushed onto the stack by the
   function prologue). */
rtx
picochip_incoming_function_arg (cumulative_args_t cum,
				enum machine_mode mode,
				const_tree type, bool named)
{

  if (cfun->stdarg)
    return 0;
  else
    return picochip_function_arg (cum, mode, type, named);

}

/* Gives the alignment boundary, in bits, of an argument with the
   specified mode.  */
unsigned int
picochip_function_arg_boundary (enum machine_mode mode,
				const_tree type ATTRIBUTE_UNUSED)
{
  int align;

  if (mode == BLKmode)
    align = STACK_BOUNDARY;
  else
    align = GET_MODE_ALIGNMENT (mode);

  if (align < PARM_BOUNDARY)
    align = PARM_BOUNDARY;

  return align;

}

/* Compute partial registers. */
int
picochip_arg_partial_bytes (cumulative_args_t p_cum, enum machine_mode mode,
			    tree type, bool named ATTRIBUTE_UNUSED)
{
  int type_align_in_units = 0;
  int type_size_in_units;
  int new_offset = 0;
  int offset_overflow = 0;

  unsigned cum = *get_cumulative_args (p_cum);

  /* VOIDmode is passed when computing the second argument to a `call'
     pattern. This can be ignored. */
  if (mode == VOIDmode)
    return 0;

  /* Compute the alignment and size of the parameter. */
  type_align_in_units =
    picochip_function_arg_boundary (mode, type) / BITS_PER_UNIT;
  type_size_in_units = picochip_compute_arg_size (type, mode);

  /* Compute the correct offset (i.e., ensure that the offset meets
     the alignment requirements). */
  offset_overflow = cum % type_align_in_units;
  if (offset_overflow == 0)
    new_offset = cum;
  else
    new_offset = (cum - offset_overflow) + type_align_in_units;

  if (TARGET_DEBUG)
    {
      printf ("Partial function arg nregs:\n");
      printf ("  Type valid: %s\n", (type ? "yes" : "no"));
      printf ("  Cumulative Value: %d\n", cum);
      printf ("  Mode: %s\n", GET_MODE_NAME (mode));
      printf ("  Type size: %i units\n", type_size_in_units);
      printf ("  Alignment: %i units\n", type_align_in_units);
      printf ("  New offset: %i\n", new_offset);
      printf ("\n");
    }

  /* If the new offset is outside the register space, return. */
  if (new_offset >= (MAX_CALL_PARAMETER_REGS * 2))
    return 0;

  /* If the end of the argument is outside the register space, then
     the argument must overlap the register space. Return the number
     of bytes which are passed in registers.  */
  if ((new_offset + type_size_in_units) > (MAX_CALL_PARAMETER_REGS * 2))
    return ((MAX_CALL_PARAMETER_REGS * 2) - new_offset);

  return 0;

}

/* Advance the cumulative args counter CUM. */
void
picochip_arg_advance (cumulative_args_t cum_v, enum machine_mode mode,
		      const_tree type, bool named ATTRIBUTE_UNUSED)
{
  CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
  int type_align_in_units = 0;
  int type_size_in_units;
  int new_offset = 0;
  int offset_overflow = 0;

  /* VOIDmode is passed when computing the second argument to a `call'
     pattern. This can be ignored. */
  if (mode == VOIDmode)
    return;

  /* Compute the alignment and size of the parameter. */
  type_align_in_units =
    picochip_function_arg_boundary (mode, type) / BITS_PER_UNIT;
  type_size_in_units = picochip_compute_arg_size (type, mode);

  /* Compute the correct offset (i.e., ensure that the offset meets
     the alignment requirements). */
  offset_overflow = *cum % type_align_in_units;
  if (offset_overflow == 0)
    new_offset = *cum;
  else
    new_offset = (*cum - offset_overflow) + type_align_in_units;

  /* Advance past the last argument. */
  new_offset += type_size_in_units;

  *cum = new_offset;
}

/* Determine whether a register needs saving/restoring. It does if it
   is live in a function, and isn't a call-used register. */
static int
picochip_reg_needs_saving (int reg_num)
{
  return df_regs_ever_live_p(reg_num) && !call_used_regs[reg_num];
}

/* Compute and return offset of the main frame. */
static int
picochip_frame_byte_offset (void)
{
  gcc_assert(picochip_is_aligned
      (crtl->outgoing_args_size, BITS_PER_WORD));

  return crtl->outgoing_args_size;
}

/* Return the size of the main frame. */
static int
picochip_frame_size_in_bytes (void)
{
  int frame_size = get_frame_size();
  int stack_align = STACK_BOUNDARY/BITS_PER_UNIT;
  if (!picochip_is_aligned (frame_size, STACK_BOUNDARY))
    frame_size = frame_size + (stack_align - frame_size%stack_align);
  gcc_assert(picochip_is_aligned (frame_size, STACK_BOUNDARY));
  return frame_size;
}

/* Compute and return the size (in bytes) of the register save/restore
   area for the current function. This only includes the general
   purpose registers - the special purpose stack pointer and link
   registers are not included in this area. */
static int
picochip_save_area_size_in_bytes (void)
{
  int num_regs_to_save = 0;
  int i = 0;

  /* Read through all the registers, determining which need to be saved. */
  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
    {
      if (picochip_reg_needs_saving (i))
	num_regs_to_save += 1;
    }

  return num_regs_to_save * UNITS_PER_WORD;

}

/* Compute and return offset of the save area base. */
static int
picochip_save_area_byte_offset (void)
{
  int base_offset = (picochip_frame_byte_offset () +
		     picochip_frame_size_in_bytes ());

  gcc_assert(picochip_is_aligned (base_offset, BITS_PER_WORD));

  return base_offset;

}

/* Compute and return offset of the special register save area. This
   area can be found immediately above the normal save area. It must
   be aligned, to allow the registers to be saved and restored as a
   pair. */
static int
picochip_special_save_area_byte_offset (void)
{
  int byte_alignment = STACK_BOUNDARY / BITS_PER_UNIT;
  int offset = (picochip_save_area_byte_offset () +
		picochip_save_area_size_in_bytes ());

  if ((offset % byte_alignment) != 0)
    offset = ((offset / byte_alignment) + 1) * byte_alignment;

  return offset;

}

/* Determine whether the LNK/SP register save/restores can be eliminated. */
static int
picochip_can_eliminate_link_sp_save (void)
{
  /* This deserves some reasoning. The df_regs_ever_live_p call keeps
    changing during optimizations phases. So, this function returns different
    values when called from initial_elimination_offset and then again when it
    is called from prologue/epilogue generation. This means that argument
    accesses become wrong. This wouldnt happen only if we were not using the
    stack at all. The following conditions ensures that.*/

  return (crtl->is_leaf &&
          !df_regs_ever_live_p(LINK_REGNUM) &&
          !df_regs_ever_live_p(STACK_POINTER_REGNUM) &&
          (picochip_special_save_area_byte_offset() == 0) &&
          (crtl->args.size == 0) &&
          (crtl->args.pretend_args_size == 0));
}

/* Compute the size of the special reg save area (SP and LNK). If the
   SP/LNK registers don't need to be saved, this area can shrink to
   nothing. */
static int
picochip_special_save_area_size_in_bytes (void)
{


  if (picochip_can_eliminate_link_sp_save ())
    return 0;
  else
    return 2 * UNITS_PER_WORD;
}

/* Return the number of pretend arguments. If this function is
   varadic, all the incoming arguments are effectively passed on the
   stack. If this function has real pretend arguments (caused by a
   value being passed partially on the stack and partially in
   registers), then return the number of registers used. */
static int
picochip_pretend_arg_area_size (void)
{

  if (crtl->args.pretend_args_size != 0)
    {
      gcc_assert(crtl->args.pretend_args_size % 4 == 0);

      return crtl->args.pretend_args_size;
    }
  else if (cfun->stdarg)
    return 12;
  else
    return 0;

}

/* Compute and return the offset of the pretend arguments. The pretend
   arguments are contiguous with the incoming arguments, and must be
   correctly aligned. */
static int
picochip_pretend_arg_area_byte_offset (void)
{
  int base_offset = 0;

  base_offset = (picochip_special_save_area_byte_offset () +
		 picochip_special_save_area_size_in_bytes ());

  gcc_assert(picochip_is_aligned (base_offset, STACK_BOUNDARY));
  gcc_assert(picochip_is_aligned
      (base_offset + picochip_pretend_arg_area_size (), STACK_BOUNDARY));

  return base_offset;

}

/* Compute and return the offset of the incoming arguments. If a
   static chain is in use, this will be passed just before the other
   arguments.  This means that the pretend argument mechanism, used in
   variadic functions, doesn't work properly. Thus, static chains work
   on their own, as do variadic functions, but not the combination of
   the two. This isn't really a problem. */
static int
picochip_arg_area_byte_offset (void)
{
  int base_offset = (picochip_pretend_arg_area_byte_offset () +
		     picochip_pretend_arg_area_size ());

  /* Add an extra 4 bytes - only an extra 16-bits are required, but
     the alignment on a 32-bit boundary must be maintained. */
  if (cfun->static_chain_decl != NULL)
    {
      gcc_assert (!cfun->stdarg);
      base_offset += 4;
    }

  gcc_assert(picochip_is_aligned (base_offset, STACK_BOUNDARY));

  return base_offset;

}

int
picochip_regno_nregs (int regno ATTRIBUTE_UNUSED, int mode)
{

  /* Special case - only one register needed. */
  if (GET_MODE_CLASS (mode) == MODE_CC)
    return 1;

  /* We actually do not allocate acc0 ever. But, it seems like we need to
  make it look like a allocatable register for the dataflow checks to work
  properly. Note that hard_regno_mode_ok will always return 0 for acc0*/

  if (regno == 16)
    return 1;

  /* General case - compute how much space in terms of units. */
  return ((GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD);

}

int
picochip_class_max_nregs (int reg_class, int mode)
{
  int size = ((GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD);

  if (reg_class == ACC_REGS)
    return 1;

  if (GET_MODE_CLASS (mode) == MODE_CC)
    return 1;
  else
    return size;

}

/* Eliminate a register that addresses the stack (e.g., frame pointer,
   argument pointer) by replacing it with a constant offset from the
   main stack register. */
int
initial_elimination_offset (int from, int to)
{
  int offset_from_sp = 0;

  if (FRAME_POINTER_REGNUM == from && STACK_POINTER_REGNUM == to)
    offset_from_sp = picochip_frame_byte_offset ();
  else if (ARG_POINTER_REGNUM == from && STACK_POINTER_REGNUM == to)
    offset_from_sp = picochip_pretend_arg_area_byte_offset ();
  else
    gcc_unreachable();

  return offset_from_sp;

}

/* Compute and return the size of the incoming argument area. */
static int
picochip_arg_area_size_in_bytes (void)
{
  return crtl->args.size;
}

/* Determine whether the given register is valid. When the strict mode
   is used, only hard registers are valid, otherwise any register is
   valid. */
static int
picochip_legitimate_address_register (rtx x, unsigned strict)
{

  /* Sanity check - non-registers shouldn't make it here, but... */
  if (REG != GET_CODE (x))
    return 0;

  if (strict)
    return REGNO (x) < FIRST_NONHARD_REGISTER;
  else
    return 1;

}

/* Determine whether the given constant is in the range required for
   the given base register. */
static int
picochip_const_ok_for_base (enum machine_mode mode, int regno, int offset)
{
  HOST_WIDE_INT corrected_offset;

  if (GET_MODE_SIZE (mode) != 0)
    {
      if (GET_MODE_SIZE(mode) <= 4)
      {
         /* We used to allow incorrect offsets if strict is 0. But, this would
            then rely on reload doing the right thing. We have had problems
            there before, and on > 4.3 compiler, there are no benefits. */
         if (offset % GET_MODE_SIZE (mode) != 0)
           return 0;
         corrected_offset = offset / GET_MODE_SIZE (mode);
      }
      else
      {
         if (offset % 4 != 0)
           return 0;
         corrected_offset = offset / 4;
      }
    }
  else
    {
      /* Default to the byte offset as supplied. */
      corrected_offset = offset;
    }

  /* The offset from the base register can be different depending upon
     the base register.  The stack/frame/argument pointer offsets can
     all be greater than a simple register-based offset.  Note that the
     frame/argument pointer registers are actually eliminations of the
     stack pointer, so a value which is valid for an offset to, for
     example, the frame pointer, might be invalid for the stack
     pointer once the elimination has occurred.  However, there is no
     need to handle this special case here, as the stack offset is
     always checked after elimination anyway, and the generated code
     seems to have identical performance. */
  if (regno == STACK_POINTER_REGNUM ||
      regno == FRAME_POINTER_REGNUM || regno == ARG_POINTER_REGNUM)
    return picochip_const_ok_for_letter_p (corrected_offset, 'K');
  else
    return picochip_const_ok_for_letter_p (corrected_offset, 'J');

}

/* Determine whether a given rtx is a legitimate address for machine_mode
   MODE.  STRICT is non-zero if we're being strict - any pseudo that
   is not a hard register must be a memory reference.  */
bool
picochip_legitimate_address_p (enum machine_mode mode, rtx x, bool strict)
{
  int valid = 0;

  switch (GET_CODE (x))
    {
    case REG:
      valid = picochip_legitimate_address_register (x, strict);
      break;

    case PLUS:
      {
	rtx base = XEXP (x, 0);
	rtx offset = XEXP (x, 1);
        if (strict && !REGNO_OK_FOR_BASE_P (REGNO(base)))
        {
          valid = 0;
          break;
        }

	valid = (REG == GET_CODE (base) &&
		 picochip_legitimate_address_register (base, strict) &&
		 CONST_INT == GET_CODE (offset) &&
		 picochip_const_ok_for_base (mode, REGNO (base),
					     INTVAL (offset)));
	break;
      }

    case SYMBOL_REF:
      /* The user can select whether a symbol can be used as a memory
         address. Typically, this will decrease execution time (no
         register load is required first), but will increase code size
         (because the symbol will be used several times, rather than
         loaded once into a register.*/
      valid = TARGET_SYMBOL_AS_ADDRESS;
      break;

    case CONST:
      {
	/* A constant memory address must be a (plus (symbol_ref)
	   (const_int)), and is only allowed when the symbols are
	   permitted addresses. */
	rtx inner = XEXP (x, 0);

	valid = (TARGET_SYMBOL_AS_ADDRESS &&
		 PLUS == GET_CODE (inner) &&
		 SYMBOL_REF == GET_CODE (XEXP (inner, 0)) &&
		 CONST_INT == GET_CODE (XEXP (inner, 1)));

	break;

      }

    default:
      valid = 0;
    }

  return valid;

}

/* For all memory operations, picochip allows a uconst4 offset value. It
   is hence beneficial to turn an
   addr = <reg + long_const>
   ld/st addr

   into

   X = reg + long_const & FFF0
   diff = long_const - (long_const & FFF0)
   ld/st <X + diff>

   X can be reused in subsequent memory operations.
   */
rtx
picochip_legitimize_address (rtx x, rtx oldx ATTRIBUTE_UNUSED,
                             enum machine_mode mode)
{
  unsigned mask_val;

  if (!optimize)
    return x;

  /* Depending on mode, the offsets allowed are either 16/32/64.*/
  switch (mode)
    {
      case QImode:
        mask_val = 0xFFF0;
        break;
      case HImode:
        mask_val = 0xFFE0;
        break;
      case SImode:
        mask_val = 0xFFC0;
        break;
      default:
        return x;
    }

  if (GET_CODE (x) == PLUS
      && GET_CODE (XEXP (x, 0)) == REG
      && GET_CODE (XEXP (x, 1)) == CONST_INT)
    {
      int high_val, low_val, offset;
      offset = INTVAL (XEXP (x, 1));
      /* Ignore cases with negative offsets.  */
      if (offset < 0)
        return x;
      high_val = offset & mask_val;
      low_val = offset - high_val;
      if (high_val != 0)
        {
          rtx temp_reg = force_reg (Pmode, gen_rtx_PLUS (Pmode, XEXP (x, 0), GEN_INT(high_val)));
          x = gen_rtx_PLUS (Pmode, temp_reg, GEN_INT(low_val));
          return x;
        }
    }
  return x;
}

/* For all memory operations, picochip allows a uconst4 offset value. It
   is hence beneficial to turn an
   addr = <reg + long_const>
   ld/st addr

   into

   X = reg + long_const & FFF0
   diff = long_const - (long_const & FFF0)
   ld/st <X + diff>

   X can be reused in subsequent memory operations.
   */
int
picochip_legitimize_reload_address (rtx *x,
                                    enum machine_mode mode,
                                    int opnum, int type,
                                    int ind_levels ATTRIBUTE_UNUSED)
{
  unsigned mask_val;

  if (picochip_symbol_offset(*x))
    {
      *x = gen_rtx_CONST(mode, *x);
      return 0;
    }
  if (!optimize)
    return 0;

  /* We should recognise addresses that we created.*/
  if (GET_CODE (*x) == PLUS
      && GET_CODE (XEXP (*x, 0)) == PLUS
      && GET_CODE (XEXP (XEXP (*x, 0), 0)) == REG
      && GET_CODE (XEXP (XEXP (*x, 0), 1)) == CONST_INT
      && GET_CODE (XEXP (*x, 1)) == CONST_INT)
    {
      push_reload (XEXP (*x, 0), NULL_RTX, &XEXP (*x, 0), NULL,
                   BASE_REG_CLASS, GET_MODE (*x), VOIDmode, 0, 0,
                   opnum, (enum reload_type)type);
      return 1;
    }

  /* Depending on mode, the offsets allowed are either 16/32/64.  */
  switch (mode)
    {
      case QImode:
        mask_val = 0xFFF0;
        break;
      case HImode:
        mask_val = 0xFFE0;
        break;
      case SImode:
        mask_val = 0xFFC0;
        break;
      default:
        return 0;
    }

  if (GET_CODE (*x) == PLUS
      && GET_CODE (XEXP (*x, 0)) == REG
      && GET_CODE (XEXP (*x, 1)) == CONST_INT)
    {
      int high_val, low_val, offset;
      offset = INTVAL (XEXP (*x, 1));
      /* Ignore cases with negative offsets.  */
      if (offset < 0)
        return 0;
      high_val = offset & mask_val;
      low_val = offset - high_val;
      if (high_val != 0)
        {
          rtx temp_reg = gen_rtx_PLUS (Pmode, XEXP (*x, 0), GEN_INT(high_val));
          *x = gen_rtx_PLUS (Pmode, temp_reg, GEN_INT(low_val));
          push_reload (XEXP (*x, 0), NULL_RTX, &XEXP (*x, 0), NULL,
                       BASE_REG_CLASS, GET_MODE (*x), VOIDmode, 0, 0,
                       opnum, (enum reload_type)type);
          return 1;
        }
    }

  return 0;
}

/* Detect an rtx which matches (plus (symbol_ref) (const_int)). */
int
picochip_symbol_offset (rtx operand)
{

  return (PLUS == GET_CODE (operand) &&
	  SYMBOL_REF == GET_CODE (XEXP (operand, 0)) &&
	  CONST_INT == GET_CODE (XEXP (operand, 1)));

}

/* Assembly output. */

/* The format here should match the format used in the output of
   symbol_ref's elsewhere in this file. */
void
picochip_output_label (FILE * stream, const char name[])
{
  int is_cfi_label = (strncmp (name, "picoMark_LCFI", 13) == 0);

  /* If VLIW scheduling is in use, any Call Frame Information labels
     generated inside a packet must have their output deferred until
     the end of the packet. */
  if (picochip_schedule_type == DFA_TYPE_SPEED &&
      is_cfi_label && picochip_vliw_continuation)
    {
      if (picochip_current_vliw_state.num_cfi_labels_deferred == 2)
      {
        internal_error ("LCFI labels have already been deferred");
      }
      strcpy (picochip_current_vliw_state.cfi_label_name[
                picochip_current_vliw_state.num_cfi_labels_deferred], name);
      picochip_current_vliw_state.num_cfi_labels_deferred++;
    }
  else
    {
      assemble_name (stream, name);

      if (strncmp (name, "picoMark_", 9) == 0)
	fprintf (stream, "=\n");
      else
	fprintf (stream, ":\n");

    }

}

/* The format here should match the format used in the output of
   symbol_ref's elsewhere in this file. */
void
picochip_output_labelref (FILE * stream, const char name[])
{
  fprintf (stream, "_%s", name);
}

void
picochip_weaken_label (FILE * stream, const char name[])
{
  fprintf (stream, ".weak ");
  assemble_name (stream, name);
  fprintf (stream, "\n");
}

/* Return true if the given label (or label prefix) denotes a marker
   label which should be emitted in the form LABEL= */
static int
picochip_is_marker_prefix (const char *prefix)
{
  return (strcmp (prefix, "L") != 0 && strcmp (prefix, "LC") != 0
          && strcmp (prefix, "LP") != 0);
}

void
picochip_output_internal_label (FILE * stream, const char *prefix,
				unsigned long num)
{

  /* Emit different types of label, based upon their prefix. They
     are handled differently to allow the assembler to ensure that
     branch target labels are properly aligned, while other labels
     will only serve as code markers, not branch targets. Aligning
     labels unnecessarily can result in much code wastage. */
  if (picochip_is_marker_prefix (prefix))
    {
      /* Special label marker. If it appears in the middle of a VLIW
         packet, defer it until the end of the packet. There has
         never been a need to handle more than one lm label at a time. */
      if (picochip_schedule_type == DFA_TYPE_SPEED &&
	  (strcmp (prefix, "LM")) == 0 && picochip_vliw_continuation)
	{
	  if (strlen (picochip_current_vliw_state.lm_label_name) != 0)
	    internal_error ("LM label has already been deferred");

	  sprintf (picochip_current_vliw_state.lm_label_name,
		   "picoMark_%s%ld", prefix, num);
	}
      else if (picochip_schedule_type == DFA_TYPE_SPEED &&
	  (strcmp (prefix, "LCFI")) == 0 && picochip_vliw_continuation)
	{
          if (picochip_current_vliw_state.num_cfi_labels_deferred == 2)
          {
            internal_error ("LCFI labels have already been deferred.");
          }
          sprintf(picochip_current_vliw_state.cfi_label_name[
                    picochip_current_vliw_state.num_cfi_labels_deferred], 
                  "picoMark_%s%ld", prefix, num);
          picochip_current_vliw_state.num_cfi_labels_deferred++;
	}
      else
	{
	  /* Marker label. */
	  fprintf (stream, "_picoMark_%s%ld=\n", prefix, num);
	}

    }
  else
    {
      /* Normal label. */
      fprintf (stream, "_%s%ld:\n", prefix, num);
    }

}

void
picochip_generate_internal_label (char *str, const char *prefix, long num)
{
  /* Two types of internal label can be generated: branch target
     labels and code marker labels. Branch target labels must always
     be aligned (since code will execute at these
     points). Differentiate between the two by prepending markers with
     a unique prefix, which can later be used in output_label to
     figure out which label syntax to use. */
  if (picochip_is_marker_prefix (prefix))
    sprintf (str, "picoMark_%s%ld", prefix, num);
  else
    sprintf (str, "%s%ld", prefix, num);

}

void
picochip_asm_output_anchor (rtx symbol)
{
  fprintf (asm_out_file, ".offsetData _%s, ",XSTR (symbol, 0));
  fprintf (asm_out_file, "+ " HOST_WIDE_INT_PRINT_DEC"\n",SYMBOL_REF_BLOCK_OFFSET(symbol));
}

void
picochip_output_aligned_common (FILE * stream, const char *name,
				unsigned size, unsigned alignment)
{

  fprintf (stream, ".commonData ");
  assemble_name (stream, name);
  fprintf (stream, ", %u, %u\n", size, alignment / 8);
  picochip_output_global (stream, name);

}

void
picochip_output_aligned_local (FILE * stream, const char *name,
			       unsigned size, unsigned alignment)
{

  fprintf (stream, ".commonData ");
  assemble_name (stream, name);
  fprintf (stream, ", %u, %u\n", size, alignment / 8);

}

void
picochip_output_global (FILE * stream, const char *name)
{
  fprintf (stream, ".global ");
  assemble_name (stream, name);
  fprintf (stream, "\n");
}

/* Output an assembly language string. Output as a sequence of decimal
   numbers, followed by the literal string to make it obvious what the
   numbers represent. */
void
picochip_output_ascii (FILE * file, const char *str, int length)
{
  int i = 0;

  fprintf (file, ".ascii ");

  for (i = 0; i < length; ++i)
    {
      fprintf (file, "16#%x# ", (char) (str[i]));
    }

  fprintf (file, "  ; ");

  for (i = 0; i < length; ++i)
    {
      char c = str[i];

      switch (c)
	{
	case '\n':
	  fprintf (file, "\\n");
	  break;
	case '\t':
	  fprintf (file, "\\t");
	  break;
	case '\0':
	  fprintf (file, "\\0");
	  break;
	default:
	  fprintf (file, "%c", c);
	}

    }

  fprintf (file, "\n");

}

/* Output the beginning of an ASM file. */
void
picochip_asm_file_start (void)
{
  default_file_start ();

  fprintf (asm_out_file, "// picoChip ASM file\n");
  fprintf (asm_out_file, "//.file \"%s\"\n", main_input_filename);

  fprintf (asm_out_file, "// Has byte access: %s\n",
	   (TARGET_HAS_BYTE_ACCESS ? "Yes" : "No"));

  if (TARGET_HAS_MUL_UNIT)
    fprintf (asm_out_file, "// Has multiply: Yes (Multiply unit)\n");
  else if (TARGET_HAS_MAC_UNIT)
    fprintf (asm_out_file, "// Has multiply: Yes (Mac unit)\n");
  else
    fprintf (asm_out_file, "// Has multiply: No\n");
}

/* Output the end of an ASM file. */
void
picochip_asm_file_end (void)
{
  /* Include a segment end to make it easy for PERL scripts to grab
     segments. This is now done by assembler*/

  fprintf (asm_out_file, "// End of picoChip ASM file\n");

}

/* Output frame debug information to the given stream. */
static void
picochip_output_frame_debug (FILE * file)
{
  int i = 0;

  if (crtl->is_leaf)
    fprintf (file, "\t\t// Leaf function\n");
  else
    fprintf (file, "\t\t// Non-leaf function\n");

  if (picochip_can_eliminate_link_sp_save ())
    fprintf (file, "\t\t// Link/fp save/restore can be eliminated\n");

  if (cfun->static_chain_decl != NULL)
    fprintf (file, "\t\t// Static chain in use\n");

  fprintf (file, "\t\t// Incoming argument size: %d bytes\n",
	   picochip_arg_area_size_in_bytes ());
  fprintf (file, "\t\t// Incoming arg offset: %d\n",
	   picochip_arg_area_byte_offset ());
  fprintf (file, "\t\t// Pretend arg size: %d\n",
	   picochip_pretend_arg_area_size ());
  fprintf (file, "\t\t// Pretend arg offset (ARGP): %d\n",
	   picochip_pretend_arg_area_byte_offset ());
  fprintf (file, "\t\t// Special reg area size: %d bytes\n",
	   picochip_special_save_area_size_in_bytes ());
  fprintf (file, "\t\t// Special reg area offset: %d\n",
	   picochip_special_save_area_byte_offset ());

  /* Output which registers are saved. */
  fprintf (file, "\t\t// Saved regs: ");
  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
    {
      if (picochip_reg_needs_saving (i))
	fprintf (file, "%s ", picochip_regnames[i]);
    }
  fprintf (file, "\t\t\n");

  fprintf (file, "\t\t// Save area size: %d bytes\n",
	   picochip_save_area_size_in_bytes ());
  fprintf (file, "\t\t// Save area offset: %d\n",
	   picochip_save_area_byte_offset ());

  fprintf (file, "\t\t// Frame size: %ld bytes\n", get_frame_size ());
  fprintf (file, "\t\t// Frame offset (FP): %d\n",
	   picochip_frame_byte_offset ());

  fprintf (file, "\t\t// Outgoing argument area size: %d bytes\n",
	   crtl->outgoing_args_size);

}

/* Output picoChip function prologue. This contains human-readable
   information about the function. */
void
picochip_function_prologue (FILE * file, HOST_WIDE_INT size ATTRIBUTE_UNUSED)
{
  /* Get the function's name, as described by its RTL.  This may be
     different from the DECL_NAME name used in the source file.  The
     real declaration name must be used, to ensure that the prologue
     emits the right information for the linker. */
  rtx x;
  const char *fnname;
  x = DECL_RTL (current_function_decl);
  gcc_assert (MEM_P (x));
  x = XEXP (x, 0);
  gcc_assert (GET_CODE (x) == SYMBOL_REF);
  fnname = XSTR (x, 0);

  /* Note that the name of the function is given in the &_%s
     form. This matches the name of the function as used in labels,
     and function calls, and enables processCallGraph to match
     function calls to the name of the function, as defined here. */
  fprintf (file, "// picoChip Function Prologue : &_%s = %d bytes\n",
	   fnname, picochip_arg_area_byte_offset ());

  picochip_output_frame_debug (file);
  fprintf (file, "\n");

}

/* Output picoChip function epilogue. */
void
picochip_function_epilogue (FILE * file, HOST_WIDE_INT size ATTRIBUTE_UNUSED)
{

  rtx x;
  const char *fnname;
  x = DECL_RTL (current_function_decl);
  gcc_assert (MEM_P (x));
  x = XEXP (x, 0);
  gcc_assert (GET_CODE (x) == SYMBOL_REF);
  fnname = XSTR (x, 0);
  fprintf (file, "\n// picoChip Function Epilogue : %s\n\n",
	   fnname);
}

/* Manipulate the asm output. Some machines only execute the code when
   there is actually a chance of needing it (e.g., FRV doesn't execute
   it if the scheduling pass wasn't used). We always execute it,
   simple to ensure that it is exercised more often, and bugs are more
   likely to be found.

   This function's prime reason for existence is to insert the VLIW
   separators where appropriate. The separators must be inserted
   before any comments which appear at the end of the file.

*/
const char *
picochip_asm_output_opcode (FILE * f, const char *ptr)
{
  int c;

  /* Flag to specify when a VLIW continuation has been inserted onto
     the line. Continuations are either inserted before any comments,
     or before the end of the line is reached. The flag ensures that
     we don't insert continuations twice (i.e., at the comment and the
     end of line). */
  int continuation_inserted = 0;

  /* If the instruction uses multiple lines (i.e., a new line
     character appears in the opcode), then ensure that no attempt is
     made to pack it into a VLIW. */
  if (strchr (ptr, '\n') != NULL && picochip_vliw_continuation)
    internal_error
      ("picochip_asm_output_opcode - Found multiple lines in VLIW packet %s",
       ptr);


  /* If a delay slot is pending, output the directive to the assembler
     before the instruction. */
  if (picochip_is_delay_slot_pending)
    {
      picochip_is_delay_slot_pending = 0;
      fputs ("=->\t", f);
    }

  /* Keep going for entire opcode. All substitution performed ourselves. */
  while (*ptr)
    {
      c = *ptr++;

      /* Determine whether a VLIW continuation must be inserted before
         any comments, or the end of the opcode. A flag is set to show
         that we have inserted a continuation on this line, so that we
         don't try to insert another continuation when the end of the
         opcode is reached. The only other case for a continuation
         might have been a newline, but these aren't allowed in
         conjunction with VLIW continuations (see above code). */
      if (picochip_vliw_continuation &&
	  !continuation_inserted &&
	  ((c == '/' && (*ptr == '/')) || *ptr == '\0'))
	{
	  fprintf (f, "\\ ");
	  continuation_inserted = 1;
	}

      /* Detect an explicit VLIW separator. */
      if (c == '%' && (*ptr == '|'))
	{
	  fprintf (f, "\\");
	  ptr++;
	}
      /* Detect the need for an ALU id operand. */
      else if (c == '%' && (*ptr == '#'))
	{
	  fputc (picochip_get_vliw_alu_id (), f);

	  if (TARGET_DEBUG)
	    printf ("Generated ALU char at %s for insn %d\n", ptr,
		    INSN_UID (picochip_current_prescan_insn));

	  /* Skip past unwanted # */
	  ptr++;
	}
      /* Detect the need for branch delay slot. */
      else if (c == '%' && (*ptr == '>'))
	{
	  /* Only emit delay slots (NOP's, or otherwise) when delay
	   * slot scheduling has actually been enabled, otherwise VLIW
	   * scheduling and delay slot scheduling output combine to
	   * produce nasty effects. */
	  if (flag_delayed_branch)
	    {
	      if (dbr_sequence_length () == 0)
		fputs ("\n=->\tNOP", f);
	      else
		picochip_is_delay_slot_pending = 1;
	    }

	  /* Skip past unwanted > */
	  ptr++;
	}
      /* Detect any %digit specifiers. */
      else if (c == '%' && (*ptr >= '0' && *ptr <= '9'))
	{
	  c = atoi (ptr);
	  picochip_print_operand (f, recog_data.operand[c], 0);
	  while ((c = *ptr) >= '0' && c <= '9')
	    ptr++;
	}
      /* Detect any %letterdigit specifiers. */
      else if (c == '%' && ((*ptr >= 'a' && *ptr <= 'z')
			    || (*ptr >= 'A' && *ptr <= 'Z')))
	{
	  int letter = *ptr++;

	  c = atoi (ptr);

	  switch (letter)
	    {
	    case 'l':
	      output_asm_label (recog_data.operand[c]);
	      break;

	    case 'a':
	      output_address (recog_data.operand[c]);
	      break;

	    default:
	      picochip_print_operand (f, recog_data.operand[c], letter);
	    }

	  while ((c = *ptr) >= '0' && c <= '9')
	    ptr++;
	}
      else if (c == '%')
	internal_error
	  ("picochip_asm_output_opcode - can%'t output unknown operator %c",
	   *ptr);
      else
	fputc (c, f);
    }

  /* Reached the end of the packet. If any labels were deferred
     during output, emit them now. */
  if (!picochip_vliw_continuation)
    {
      if (picochip_current_vliw_state.num_cfi_labels_deferred != 0)
	{
	  fprintf (f, "\n");
	  assemble_name (f, picochip_current_vliw_state.cfi_label_name[0]);
	  fprintf (f, "=");
          if (picochip_current_vliw_state.num_cfi_labels_deferred == 2)
          {
	    fprintf (f, "\n");
	    assemble_name (f, picochip_current_vliw_state.cfi_label_name[1]);
	    fprintf (f, "=");
          }
	}

      if (strlen (picochip_current_vliw_state.lm_label_name) != 0)
	{
	  fprintf (f, "\n");
	  assemble_name (f, picochip_current_vliw_state.lm_label_name);
	  fprintf (f, "=");
	}
    }

  /* Output an end-of-packet marker if requested. */
  if (!picochip_vliw_continuation &&
      TARGET_DEBUG && picochip_schedule_type == DFA_TYPE_SPEED)
    fprintf (f, "\n\t//-------------- End of VLIW packet -----------------");

  return ptr;
}

/* Function RTL expansion. */

/* Expand the prologue into RTL. */
void
picochip_expand_prologue (void)
{
  int stack_adjustment = 0;
  int special_save_offset = 0;
  int general_save_offset = 0;
  int reg_save_offset = 0;
  int i = 0;

  stack_adjustment = picochip_arg_area_byte_offset ();
  general_save_offset =
    -(stack_adjustment - picochip_save_area_byte_offset ());
  special_save_offset =
    -(stack_adjustment - picochip_special_save_area_byte_offset ());

  /* Save the link registers. We could try to save just one register
     here. This would reduce the amount of stack space required.
     There hasn't been a good reason to do that so far. */
  if (!picochip_can_eliminate_link_sp_save ())
    picochip_emit_save_register (gen_rtx_REG (SImode, LINK_REGNUM),
				 special_save_offset);

  /* Save callee-save registers. */
  reg_save_offset = 0;
  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
    {
      if (picochip_reg_needs_saving (i))
	{

	  /* If this register is an even numbered register, and the
	     next register also needs to be saved, use a SImode save,
	     which does both in one instruction. Note that a special
	     check is performed to ensure that the double word aligned
	     store is valid (e.g., it is possible that r6, r8, r9 need
	     to be saved, in which case once r6 has been saved, the
	     stored offset is no longer aligned, and an STL/LDL
	     instruction becomes invalid). Alternately, we could store all
	     aligned registers first and then save the single one(s). */
	  if ((i % 2 == 0) &&
	      picochip_reg_needs_saving (i + 1) &&
	      picochip_is_aligned (reg_save_offset, LONG_TYPE_SIZE))
	    {
	      picochip_emit_save_register (gen_rtx_REG (SImode, i),
					   general_save_offset +
					   reg_save_offset);
	      reg_save_offset += 2 * UNITS_PER_WORD;
	      i++;
	    }
	  else
	    {
	      picochip_emit_save_register (gen_rtx_REG (HImode, i),
					   general_save_offset +
					   reg_save_offset);
	      reg_save_offset += UNITS_PER_WORD;
	    }
	}

    }

  /* Emit a stack adjustment where required. */
  if (stack_adjustment != 0)
    picochip_emit_stack_allocate (stack_adjustment);

  /* If this function uses varadic arguments, write any unnamed
     registers to the stack. */
  if (cfun->stdarg)
    {
      int stdarg_offset = picochip_pretend_arg_area_byte_offset ();

      /* Sanity check. The pretend argument offset should be 32-bit aligned. */
      gcc_assert(picochip_pretend_arg_area_byte_offset () % 4 == 0);

      picochip_emit_save_register (gen_rtx_REG (SImode, 0), stdarg_offset);
      picochip_emit_save_register (gen_rtx_REG (SImode, 2),
				   stdarg_offset + 4);
      picochip_emit_save_register (gen_rtx_REG (SImode, 4),
				   stdarg_offset + 8);

    }

}

/* Expand the epilogue into RTL. */
void
picochip_expand_epilogue (int is_sibling_call ATTRIBUTE_UNUSED)
{
  int stack_adjustment = 0;
  int special_save_offset = 0;
  int general_save_offset = 0;
  int reg_save_offset = 0;
  int i = 0;
  int use_link_fp_restore_stack_adjust = 0;	/* Default to using an explicit
						   stack restore. */

  stack_adjustment = picochip_arg_area_byte_offset ();
  general_save_offset =
    -(stack_adjustment - picochip_save_area_byte_offset ());
  special_save_offset =
    -(stack_adjustment - picochip_special_save_area_byte_offset ());

  /* Emit a stack adjustment where required. */
  if (stack_adjustment != 0)
    {
      /* If the link/fp is already being restored, and the offset to
         their save location is small enough, don't bother adjusting
         the stack explicitly. */
      if (picochip_special_save_area_byte_offset () < 512 &&
	  !picochip_can_eliminate_link_sp_save ())
	use_link_fp_restore_stack_adjust = 1;
      else
	/* Explicitly restore the stack. */
	picochip_emit_stack_allocate (-stack_adjustment);
    }

  /* Restore the Link/FP registers. Only save the link register? */
  if (!picochip_can_eliminate_link_sp_save ())
    {
      if (use_link_fp_restore_stack_adjust)
	picochip_emit_restore_register (gen_rtx_REG (SImode, LINK_REGNUM),
					picochip_special_save_area_byte_offset
					());
      else
	picochip_emit_restore_register (gen_rtx_REG (SImode, LINK_REGNUM),
					special_save_offset);
    }

  /* Restore callee-save registers. */
  reg_save_offset = 0;
  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
    {
      if (picochip_reg_needs_saving (i))
	{

	  /* If this register is an even numbered register, and the
	     next register also needs to be saved, use a SImode save,
	     which does both in one instruction. Note that a special
	     check is performed to ensure that the double word aligned
	     store is valid (e.g., it is possible that r6, r8, r9 need
	     to be saved, in which case once r6 has been saved, the
	     stored offset is no longer aligned, and an STL/LDL
	     instruction becomes invalid). We could store all aligned
	     registers first, and then save the single one(s). */
	  if ((i % 2 == 0) &&
	      picochip_reg_needs_saving (i + 1) &&
	      picochip_is_aligned (reg_save_offset, LONG_TYPE_SIZE))
	    {
	      picochip_emit_restore_register (gen_rtx_REG (SImode, i),
					      general_save_offset +
					      reg_save_offset);
	      reg_save_offset += 2 * UNITS_PER_WORD;
	      i++;
	    }
	  else
	    {
	      picochip_emit_restore_register (gen_rtx_REG (HImode, i),
					      general_save_offset +
					      reg_save_offset);
	      reg_save_offset += UNITS_PER_WORD;
	    }
	}

    }

  /* Emit a return instruction, which matches a (parallel
     [(return) (use r12)]) */
  {
    rtvec p;
    p = rtvec_alloc (2);

    RTVEC_ELT (p, 0) = ret_rtx;
    RTVEC_ELT (p, 1) = gen_rtx_USE (VOIDmode,
				    gen_rtx_REG (Pmode, LINK_REGNUM));
    emit_jump_insn (gen_rtx_PARALLEL (VOIDmode, p));
  }

}

/* Assembly instruction output. */

/* Test whether the given branch instruction is short, or long. Short
 * branches are equivalent to real branches, and may be DFA
 * scheduled. Long branches expand to a macro which is handled by the
 * elaborator, and cannot be scheduled. Occasionally, the branch
 * shortening pass, which is run after DFA scheduling, will change the
 * code layout and cause the short branch to be reverted into a long
 * branch. Instead of having to fix this up by emitting new assembly,
 * the short branch is emitted anyway. There is plenty of slack in the
 * calculation of long and short branches (10-bit offset, but only
 * 9-bits used in computation), so there is enough slack for this to
 * be safe. */
static int
picochip_is_short_branch (rtx insn)
{
  int isRealShortBranch = (get_attr_length(insn) == SHORT_BRANCH_LENGTH);

  return (isRealShortBranch ||
	  picochip_current_vliw_state.num_insns_in_packet > 1);
}

/* Output a compare-and-branch instruction (matching the cbranch
   pattern). */
const char *
picochip_output_cbranch (rtx operands[])
{

  if (HImode != GET_MODE (operands[1]) ||
      (HImode != GET_MODE (operands[2]) &&
       GET_CODE (operands[2]) != CONST_INT))
    {
      internal_error ("%s: at least one operand can%'t be handled",
		      __FUNCTION__);
    }

  /* Use the type of comparison to output the appropriate condition
     test. */
  switch (GET_CODE (operands[0]))
    {
    case NE:
      return ("// if (%1 != %2) goto %l3\n\tSUB.%# %1,%2,r15\n\tJMPNE %l3");

    case EQ:
      return ("// if (%1 == %2) goto %l3\n\tSUB.%# %1,%2,r15\n\tJMPEQ %l3");

    case LE:
      /* Reverse the operand order to be GE */
      return ("// if (%1 <= %2) goto %l3\n\tSUB.%# %2,%1,r15\n\tJMPGE %l3");

    case LEU:
      /* Reverse operand order of GEU. */
      return ("// if (%1 <= %2) goto %l3\n\tSUB.%# %2,%1,r15\n\tJMPHS %l3");

    case GE:
      return ("// if (%1 >= %2) goto %l3\n\tSUB.%# %1,%2,r15\n\tJMPGE %l3");

    case GEU:
      return ("// if (%1 >= %2) goto %l3\n\tSUB.%# %1,%2,r15\n\tJMPHS %l3");

    case LT:
      return ("// if (%1 < %2) goto %l3\n\tSUB.%# %1,%2,r15\n\tJMPLT %l3");

    case LTU:
      return ("// if (%1 <{U} %2) goto %l3\n\tSUB.%# %1,%2,r15\n\tJMPLO %l3");

    case GT:
      /* Reversed operand version of LT. */
      return ("// if (%1 > %2) goto %l3\n\tSUB.%# %2,%1,r15\n\tJMPLT %l3");

    case GTU:
      /* Reverse an LTU. */
      return ("// if (%1 >{U} %2) goto %l3\n\tSUB.%# %2,%1,r15\n\tJMPLO %l3");

    default:
      gcc_unreachable();
    }
}

/* Output a compare-and-branch instruction (matching the cbranch
   pattern). This function is current unused since the cbranch
   split is disabled. The function is kept around so we can use
   it when we understand how to do cbranch split safely. */
const char *
picochip_output_compare (rtx operands[])
{
  int code;

  if (HImode != GET_MODE (operands[1]) ||
      (HImode != GET_MODE (operands[2]) &&
       GET_CODE (operands[2]) != CONST_INT))
    {
      internal_error ("%s: at least one operand can%'t be handled",
		      __FUNCTION__);
    }

  code = GET_CODE (operands[0]);
  /* Use the type of comparison to output the appropriate condition
     test. */
  switch (code)
    {
    case NE:
      return ("SUB.%# %1,%2,r15\t// CC := (%0)");

    case EQ:
      return ("SUB.%# %1,%2,r15\t// CC := (%0)");

    case LE:
      /* Reverse the operand order to be GE */
      return ("SUB.%# %2,%1,r15\t// CC := (%0)");

    case LEU:
      /* Reverse operand order of GEU. */
      return ("SUB.%# %2,%1,r15\t// CC := (%0)");

    case GE:
      return ("SUB.%# %1,%2,r15\t// CC := (%0)");

    case GEU:
      return ("SUB.%# %1,%2,r15\t// CC := (%0)");

    case LT:
      return ("SUB.%# %1,%2,r15\t// CC := (%0)");

    case LTU:
      return ("SUB.%# %1,%2,r15\t// CC := (%0)");

    case GT:
      /* Reversed operand version of LT. */
      return ("SUB.%# %2,%1,r15\t// CC := (%0)");

    case GTU:
      /* Reverse an LTU. */
      return ("SUB.%# %2,%1,r15\t// CC := (%0)");

    default:
      gcc_unreachable();
    }
}

/* Output the branch insn part of a compare-and-branch split. */
const char *
picochip_output_branch (rtx operands[], rtx insn)
{

  int code = GET_CODE(operands[2]);
  if (picochip_is_short_branch (insn))
    {
      /* Short branches can be output directly using the
         appropriate instruction. */
      switch (code)
	{
	case NE:
	  return ("BNE %l0 %>");
	case EQ:
	  return ("BEQ %l0 %>");
	case LE:
	  return ("BGE %l0 %>");
	case LEU:
	  return ("BHS %l0 %>");
	case GE:
	  return ("BGE %l0 %>");
	case GEU:
	  return ("BHS %l0 %>");
	case LT:
	  return ("BLT %l0 %>");
	case LTU:
	  return ("BLO %l0 %>");
	case GT:
	  return ("BLT %l0 %>");
	case GTU:
	  return ("BLO %l0 %>");
	default:
	  internal_error ("unknown short branch in %s (type %d)",
			  __FUNCTION__, (int) INTVAL (operands[1]));
	  return "UNKNOWN_BRANCH";
	}
    }
  else
    {
      /* Long branches result in the emission of a special
         instruction, which the assembler expands into a suitable long
         branch. */

      /* Use the type of comparison to output the appropriate condition
         test. */
      switch (code)
	{
	case NE:
	  return ("JMPNE %l0 %>");
	case EQ:
	  return ("JMPEQ %l0 %>");
	case LE:
	  return ("JMPGE %l0 %>");
	case LEU:
	  return ("JMPHS %l0 %>");
	case GE:
	  return ("JMPGE %l0 %>");
	case GEU:
	  return ("JMPHS %l0 %>");
	case LT:
	  return ("JMPLT %l0 %>");
	case LTU:
	  return ("JMPLO %l0 %>");
	case GT:
	  return ("JMPLT %l0 %>");
	case GTU:
	  return ("JMPLO %l0 %>");

	default:
	  internal_error ("unknown long branch in %s (type %d)",
			  __FUNCTION__, (int) INTVAL (operands[1]));
	  return "UNKNOWN_BRANCH";
	}

    }
}

/* Output a jump instruction. */
const char *
picochip_output_jump (rtx insn)
{
  if (picochip_is_short_branch (insn))
    return "BRA %l0%>";
  else
    return "JMPRA %l0%>";
}

const char *
picochip_output_put_array (int alternative, rtx operands[])
{
  /* Local output buffer. */
  char buf[256];

  int portArraySize = INTVAL(operands[1]);
  int portBaseIndex = INTVAL(operands[2]);

  if (alternative == 0)
    {
      sprintf (buf, "// Array put\n\tadd.0 [lsl %%0,2],&__commTable_put_%d_%d,lr\n\tjl (lr)",
	       portArraySize, portBaseIndex);
      output_asm_insn (buf, operands);
    }
  else if (alternative == 1)
    {
      /* Constant port id. Emit a real instruction. */
      int portIndex = INTVAL(operands[0]) + portBaseIndex;
      if (portIndex < portBaseIndex ||
	  portIndex >= (portBaseIndex + portArraySize))
	{
	  error ("PUT uses port array index %d, which is out of range [%d..%d)",
		 portIndex, portBaseIndex, portBaseIndex + portArraySize);
	}
      sprintf(buf, "PUT R[0:1],%d", portIndex);
      output_asm_insn (buf, operands);
    }
  else
    gcc_unreachable();

  /* Both alternatives output the insn directly. */
  return "";
}

const char *picochip_output_get_array (int alternative, rtx operands[])
{
  /* Local output buffer. */
  char buf[256];

  int portArraySize = INTVAL(operands[1]);
  int portBaseIndex = INTVAL(operands[2]);

  if (alternative == 0)
    {
      sprintf (buf, "// Array get\n\tadd.0 [lsl %%0,2],&__commTable_get_%d_%d,lr\n\tjl (lr)",
	       portArraySize, portBaseIndex);
      output_asm_insn (buf, operands);
    }
  else if (alternative == 1)
    {
      /* Constant port id. Emit a real instruction. */
      int portIndex = INTVAL(operands[0]) + portBaseIndex;
      if (portIndex < portBaseIndex ||
	  portIndex >= (portBaseIndex + portArraySize))
	{
	  error ("GET uses port array index %d, which is out of range [%d..%d)",
		 portIndex, portBaseIndex, portBaseIndex + portArraySize);
	}
      sprintf(buf, "GET %d,R[0:1]", portIndex);
      output_asm_insn (buf, operands);
    }
  else
    gcc_unreachable();

  /* Both alternatives output the insn directly. */
  return "";
}

const char *picochip_output_testport_array (int alternative, rtx operands[])
{
  /* Local output buffer. */
  char buf[256];

  int portArraySize = INTVAL(operands[2]);
  int portBaseIndex = INTVAL(operands[3]);

  if (alternative == 0)
    {
      sprintf (buf, "// Array tstport\n\tadd.0 [lsl %%1,2],&__commTable_tstport_%d_%d,lr\n\tjl (lr)\n=->\tcopy.0 0,%%0\n\tcopyeq 1,%%0",
	       portArraySize, portBaseIndex);
      output_asm_insn (buf, operands);
    }
  else if (alternative == 1)
    {
      /* Constant port id. Emit a real instruction. */
      int portIndex = INTVAL(operands[1]) + portBaseIndex;
      if (portIndex < portBaseIndex ||
	  portIndex >= (portBaseIndex + portArraySize))
	{
	  error ("PUT uses port array index %d, which is out of range [%d..%d)",
		 portIndex, portBaseIndex, portBaseIndex + portArraySize);
	}
      sprintf(buf, "copy.1 0,%%0 %%| TSTPORT %d\n\tcopyeq 1,%%0", portIndex);
      output_asm_insn (buf, operands);
    }
  else
    gcc_unreachable();

  /* Both alternatives output the insn directly. */
  return "";
}

/* Output a comparison operand as a symbol (e.g., >). */
static void
picochip_print_comparison (FILE * file, rtx operand, int letter)
{

  if (letter == 'i')
    {
      /* Output just the comparison symbol. */
      switch (GET_CODE (operand))
	{
	case NE:
	  fprintf (file, "!=");
	  break;
	case EQ:
	  fprintf (file, "==");
	  break;
	case GE:
	  fprintf (file, ">=");
	  break;
	case GEU:
	  fprintf (file, ">={U}");
	  break;
	case LT:
	  fprintf (file, "<");
	  break;
	case LTU:
	  fprintf (file, "<{U}");
	  break;
	case LE:
	  fprintf (file, "<=");
	  break;
	case LEU:
	  fprintf (file, "<={U}");
	  break;
	case GT:
	  fprintf (file, ">");
	  break;
	case GTU:
	  fprintf (file, ">{U}");
	  break;
	default:
	  gcc_unreachable();
	}
    }
  else
    {
      /* Output the comparison formatted as operand,symbol,operand */
      rtx op0 = XEXP (operand, 0);
      rtx op1 = XEXP (operand, 1);

      picochip_print_operand (file, op0, 0);
      picochip_print_comparison (file, operand, 'i');
      picochip_print_operand (file, op1, 0);
    }
}

/* This function generates a memory address operand in the given
   mode.  That is, if the address contains a constant offset, then the
   offset is divided by the required mode size to compute the
   mode specific offset.  By default, picochip_print_operand_address calls
   this function using the natural mode of the operand, but special
   operand codes can be used to invoke the computation using an
   unnatural mode (e.g., compute the HI aligned address of an SI mode
   address). */
static void
picochip_print_memory_address (FILE * file, rtx operand,
			       enum machine_mode mode)
{
  rtx address = XEXP (operand, 0);

  /* Sanity check. */
  if (MEM != GET_CODE (operand))
    fatal_insn ("picochip_print_memory_address - Operand isn't memory based",
		operand);

  if (TARGET_DEBUG)
    {
      printf ("picochip_print_memory_address: ");
      print_rtl (stdout, operand);
      printf ("\n");
    }

  switch (GET_CODE (address))
    {
    case PLUS:
      {
	/* Grab the address components. */
	rtx base = XEXP (address, 0);
	rtx offset = XEXP (address, 1);

	/* Only handle reg+const addresses */
	if (REG == GET_CODE (base) && CONST_INT == GET_CODE (offset))
	  {
	    /* Sanity check.  If an FP+offset address is given, ensure
	       that the offset lies within the given frame, or a lower
	       frame. */
	    if (REGNO (base) == STACK_POINTER_REGNUM )
              gcc_assert (INTVAL (offset) <= (picochip_arg_area_byte_offset () +
                          crtl->args.size));

	    /* Print the base register - identical for all modes. */
	    fprintf (file, "(");
	    picochip_print_operand (file, base, 'r');
	    fprintf (file, ")");

	    /* Print the constant offset with compensation for the mode. */
	    switch (mode)
	      {
	      case QImode:
		picochip_print_operand (file, offset, 'Q');
		break;

	      case HImode:
		picochip_print_operand (file, offset, 'H');
		break;

	      case SImode:
	      case SFmode:
		picochip_print_operand (file, offset, 'S');
		break;

	      case DImode:
		picochip_print_operand (file, offset, 'D');
		break;

	      default:
	        gcc_unreachable();
	      }

	  }

      }

      break;

    case SYMBOL_REF:
      picochip_print_operand (file, address, 's');
      break;

    case CONST:
      {
	rtx inner;
	rtx base;
	rtx offset;

	inner = XEXP (address, 0);

	/* Sanity check - the CONST memory address must be a base+offset. */
	gcc_assert (PLUS == GET_CODE (inner));

	base = XEXP (inner, 0);
	offset = XEXP (inner, 1);

	fprintf (file, "&_%s%+d", XSTR (base, 0), XINT (offset, 0));

	break;
      }

    case REG:
      /* Register operand. Provide a zero offset. */
      fprintf (file, "(");
      picochip_print_operand (file, address, 'r');
      fprintf (file, ")0");
      break;

    default:
      gcc_unreachable();
    }

}

/* Output an operand.  Formatting letters allow particular parts of
   the operand to be output. */
void
picochip_print_operand (FILE * file, rtx operand, int letter)
{

  /* Handle special cases. */
  switch (letter)
    {
      /* VLIW continuation, for explicit VLIW sequences. */
    case '|':
      fprintf (file, "\\");
      return;

      /* ALU selector.  */
    case '#':
      fputc (picochip_get_vliw_alu_id (), file);
      return;

      /* Delay slot specifier. */
    case '>':
      /* This should be handled in asm_output_opcode. */
      gcc_unreachable();

      /* Instruction mnemonics (e.g., lshift becomes LSL). */
    case 'I':
      switch (GET_CODE (operand))
	{
	case AND:
	  fprintf (file, "AND");
	  break;
	case IOR:
	  fprintf (file, "OR");
	  break;
	case XOR:
	  fprintf (file, "XOR");
	  break;
	case PLUS:
	  fprintf (file, "ADD");
	  break;
	case MINUS:
	  fprintf (file, "SUB");
	  break;
	default:
	  gcc_unreachable();
	}
      return;

      /* Symbolic instructions (e.g., lshift becomes <<). */
    case 'i':
      switch (GET_CODE (operand))
	{
	case AND:
	  fprintf (file, "&");
	  break;
	case IOR:
	  fprintf (file, "|");
	  break;
	case XOR:
	  fprintf (file, "^");
	  break;
	case PLUS:
	  fprintf (file, "+");
	  break;
	case MINUS:
	  fprintf (file, "-");
	  break;
	default:
	  fprintf (file, "UNKNOWN_INSN");
	  break;
	}
      return;

    default:			/* Not a punctuation character - process as normal. */
      break;
    }

  switch (GET_CODE (operand))
    {
    case REG:
      switch (letter)
	{
	case 'R':
	  /* Write a range of registers. */
	  fprintf (file, "R[%d:%d]", REGNO (operand) + 1, REGNO (operand));
	  break;

	case 'U':
	  /* The upper register of a pair is requested. */
	  fprintf (file, "%s", picochip_regnames[REGNO (operand) + 1]);
	  break;

	case 'L':
	  /* The lower register of a pair is requested. Equivalent to the
	     default, but included for completeness. */
	  fprintf (file, "%s", picochip_regnames[REGNO (operand)]);
	  break;

	case 'X':
	  /* The 3rd register of a DI mode register. */
	  fprintf (file, "%s", picochip_regnames[REGNO (operand) + 2]);
	  break;

	case 'Y':
	  /* The 4th register of a DI mode register. */
	  fprintf (file, "%s", picochip_regnames[REGNO (operand) + 3]);
	  break;

	default:
	  fprintf (file, "%s", picochip_regnames[REGNO (operand)]);
	}
      break;

    case CONST_INT:
      /* A range of letters can be used to format integers.  The
         letters Q/H/S are used to divide the constant by the width of
         QI/HI/SI mode integers in bytes.  The U/L modifiers are used
         to obtain the upper and lower 16-bits of a 32-bit
         constant.  Where possible, signed numbers are used, since
         signed representations of numbers may be more compact (e.g.,
         65535 can be represented as -1, which fits into a small
         constant, whereas 65535 requires a large constant). */
      switch (letter)
	{
	case 'Q':
	  fprintf (file, "%ld", INTVAL (operand));
	  break;

	case 'H':
	  fprintf (file, "%ld", INTVAL (operand) / 2);
	  break;

	case 'S':
	  fprintf (file, "%ld", INTVAL (operand) / 4);
	  break;

	case 'P':
	  fprintf (file, "%d", exact_log2 (INTVAL(operand)));
	  break;

	case 'U':
	  fprintf (file, "%hi", (short) ((INTVAL (operand) >> 16) & 0xFFFF));
	  break;

	case 'L':
	  fprintf (file, "%hi", (short) (INTVAL (operand) & 0xFFFF));
	  break;

	default:
	  fprintf (file, "%ld", INTVAL (operand));
	  break;
	}
      break;

    case CONST_DOUBLE:
      {
	long val;
	REAL_VALUE_TYPE rv;

	if (GET_MODE (operand) != SFmode)
	  fatal_insn ("Unknown mode in print_operand (CONST_DOUBLE) :",
		      operand);
	REAL_VALUE_FROM_CONST_DOUBLE (rv, operand);
	REAL_VALUE_TO_TARGET_SINGLE (rv, val);

	switch (letter)
	  {
	  case 'U':
	    fprintf (file, "%hi", (short) ((val >> 16) & 0xFFFF));
	    break;

	  case 'L':
	    fprintf (file, "%hi", (short) (val & 0xFFFF));
	    break;
	  }

	break;

      }

      /* Output a symbol.  The output format must match that of
         picochip_output_label. */
    case SYMBOL_REF:
      /* Ensure that the symbol is marked as referenced.  Gcc can
         occasionally omit the function bodies when it believes them
         to be unreferenced. */
      if (SYMBOL_REF_DECL (operand))
	mark_decl_referenced (SYMBOL_REF_DECL (operand));
      fprintf (file, "&");
      assemble_name (file, XSTR (operand, 0));
      break;

    case LABEL_REF:
      /* This format must match that of picochip_output_label. */
      fprintf (file, "&");
      output_asm_label (operand);
      break;

    case MEM:
      {
	rtx addr = XEXP (operand, 0);

	switch (letter)
	  {
	  case 'o':
	    if (PLUS != GET_CODE (addr))
	      fatal_insn ("Bad address, not (reg+disp):", addr);
	    else
	      picochip_print_operand (file, XEXP (addr, 1), 0);
	    break;

	  case 'M':
	    /* Output a memory address in byte mode notation (i.e., the
	       constant address (if any) is the actual byte address. */
	    picochip_print_memory_address (file, operand, QImode);
	    break;

	    /* Output a constant offset of the given mode (i.e., divide
	       the constant by the number of units in the mode to get the
	       constant). */
	  case 'Q':
	    picochip_print_memory_address (file, operand, QImode);
	    break;

	  case 'H':
	    picochip_print_memory_address (file, operand, HImode);
	    break;

	  case 'S':
	    picochip_print_memory_address (file, operand, SImode);
	    break;

	  case 'F':
	    picochip_print_memory_address (file, operand, SFmode);
	    break;

	  case 'b':
	    if (PLUS != GET_CODE (addr))
	      fatal_insn ("Bad address, not (reg+disp):", addr);
	    else
	      picochip_print_operand (file, XEXP (addr, 0), 0);
	    break;

          /* When the mem operand is (reg + big offset) which cannot
            be represented in an instruction as operand, the compiler
            automatically generates the instruction to put in (reg +
            big offset) into another register. In such cases, it
            returns '0' as the character. This needs to be handled
            as well. */
	  case 0:
	  case 'r':
	    if (REG != GET_CODE (addr))
	      fatal_insn ("Bad address, not register:", addr);
	    else
	      picochip_print_operand (file, addr, 0);
	    break;

	  default:
	    fprintf (file, "Unknown mem operand - letter %c ",
		     (char) (letter));
	    print_rtl (file, operand);
	  }

	break;
      }

    case CONST:
      {
	rtx const_exp = XEXP (operand, 0);

	/* Handle constant offsets to symbol references. */
	if (PLUS == GET_CODE (const_exp) &&
	    SYMBOL_REF == GET_CODE (XEXP (const_exp, 0)) &&
	    CONST_INT == GET_CODE (XEXP (const_exp, 1)))
	  {

	    picochip_print_operand (file, XEXP (const_exp, 0), 0);
	    if (INTVAL (XEXP (const_exp, 1)) >= 0)
	      fprintf (file, "+");
	    /* else use the - from the operand (i.e., AP-2)) */

	    picochip_print_operand (file, XEXP (const_exp, 1), letter);

	  }
      }
      break;


    case PLUS:
      {
	/* PLUS expressions are of the form (base + offset). Different
	   options (analagous to those of memory PLUS expressions) are used
	   to extract the base and offset components. */

	switch (letter)
	  {
	  case 'b':
	    picochip_print_operand (file, XEXP (operand, 0), 0);
	    break;

	  case 'o':
	    picochip_print_operand (file, XEXP (operand, 1), 0);
	    break;

	  default:

	    /* If the expression is composed entirely of constants,
	       evaluate the result.  This should only occur with the
	       picoChip specific comms instructions, which are emitted as
	       base+offset expressions. */
	    if (CONST_INT == GET_CODE (XEXP (operand, 0)) &&
		CONST_INT == GET_CODE (XEXP (operand, 1)))
	      {
		HOST_WIDE_INT result = (XINT (XEXP (operand, 0), 0) +
					XINT (XEXP (operand, 1), 0));
		fprintf (file, "%ld", result);
	      }
	    else
	      {
		fprintf (file, "(");
		picochip_print_operand (file, XEXP (operand, 0), 0);
		fprintf (file, "+");
		picochip_print_operand (file, XEXP (operand, 1), 0);
		fprintf (file, ")");
	      }
	  }

	break;
      }

      /* Comparison operations. */
    case NE:
    case EQ:
    case GE:
    case GEU:
    case LT:
    case LTU:
    case LE:
    case LEU:
    case GT:
    case GTU:
      picochip_print_comparison (file, operand, letter);
      return;

    default:
      fprintf (stderr, "Unknown operand encountered in %s\n", __FUNCTION__);
      print_rtl (file, operand);
      break;

    }

}

/* Output an operand address */
void
picochip_print_operand_address (FILE * file, rtx operand)
{

  switch (GET_CODE (operand))
    {

    case SYMBOL_REF:
      /* This format must match that of picochip_output_label. */
      assemble_name (file, XSTR (operand, 0));
      break;

    case CODE_LABEL:
      /* Note  this format must match that of picochip_output_label. */
      fprintf (file, "_L%d", XINT (operand, 5));
      break;

    case MEM:
      /* Pass on to a specialised memory address generator. */
      picochip_print_memory_address (file, operand, GET_MODE (operand));
      break;

    default:
      gcc_unreachable();

    }

}


/* Scheduling functions. */

/* Save some of the contents of recog_data. */
static void
picochip_save_recog_data (void)
{
  picochip_saved_which_alternative = which_alternative;
  memcpy (&picochip_saved_recog_data, &recog_data,
	  sizeof (struct recog_data_d));
}

/* Restore some of the contents of global variable recog_data. */
static void
picochip_restore_recog_data (void)
{
  which_alternative = picochip_saved_which_alternative;
  memcpy (&recog_data, &picochip_saved_recog_data,
	  sizeof (struct recog_data_d));
}

/* Ensure that no var tracking notes are emitted in the middle of a
   three-instruction bundle.  */
static void
reorder_var_tracking_notes (void)
{
  basic_block bb;

  FOR_EACH_BB_FN (bb, cfun)
    {
      rtx insn, next, last_insn = NULL_RTX;
      rtx queue = NULL_RTX;

      /* Iterate through the bb and find the last non-debug insn */
      for (insn = BB_HEAD (bb); insn != NEXT_INSN(BB_END (bb)); insn = NEXT_INSN(insn))
        {
          if (NONDEBUG_INSN_P(insn))
            last_insn = insn;
        }

      /* In all normal cases, queue up notes and emit them just before a TImode
         instruction. For the last instruction, emit the queued notes just after
         the last instruction. */
      for (insn = BB_HEAD (bb); insn != NEXT_INSN(BB_END (bb)); insn = next)
        {
          next = NEXT_INSN (insn);

          if (insn == last_insn)
            {
              while (queue)
                {
                  rtx next_queue = PREV_INSN (queue);
                  PREV_INSN (NEXT_INSN(insn)) = queue;
                  NEXT_INSN(queue) = NEXT_INSN(insn);
                  PREV_INSN(queue) = insn;
                  NEXT_INSN(insn) = queue;
                  queue = next_queue;
                }
              /* There is no more to do for this bb. break*/
              break;
            }
          else if (NONDEBUG_INSN_P (insn))
            {
              /* Emit queued up notes before the first instruction of a bundle.  */
              if (GET_MODE (insn) == TImode)
                {
                  while (queue)
                    {
                      rtx next_queue = PREV_INSN (queue);
                      NEXT_INSN (PREV_INSN(insn)) = queue;
                      PREV_INSN (queue) = PREV_INSN(insn);
                      PREV_INSN (insn) = queue;
                      NEXT_INSN (queue) = insn;
                      queue = next_queue;
                    }
                }
            }
          else if (NOTE_P (insn))
            {
               rtx prev = PREV_INSN (insn);
               PREV_INSN (next) = prev;
               NEXT_INSN (prev) = next;
               /* Ignore call_arg notes. They are expected to be just after the
                  call insn. If the call is start of a long VLIW, labels are
                  emitted in the middle of a VLIW, which our assembler can not
                  handle. */
               if (NOTE_KIND (insn) != NOTE_INSN_CALL_ARG_LOCATION)
                 {
                   PREV_INSN (insn) = queue;
                   queue = insn;
                 }
            }
        }
        /* Make sure we are not dropping debug instructions.*/
        gcc_assert (queue == NULL_RTX);
    }
}

/* Perform machine dependent operations on the rtl chain INSNS. */
void
picochip_reorg (void)
{
  rtx insn, insn1, vliw_start = NULL_RTX;
  int vliw_insn_location = 0;

  /* We are freeing block_for_insn in the toplev to keep compatibility
     with old MDEP_REORGS that are not CFG based.  Recompute it now.  */
  compute_bb_for_insn ();

  if (optimize == 0)
    split_all_insns ();

  if (picochip_schedule_type != DFA_TYPE_NONE)
    {
      timevar_push (TV_SCHED2);

      /* Process the instruction list, computing the sizes of each
         instruction, and consequently branch distances.  This can
         result in some branches becoming short enough to be treated
         as a real branch instruction, rather than an assembly branch
         macro which may expand into multiple instructions.  The
         benefit of shortening branches is that real branch
         instructions can be properly DFA scheduled, whereas macro
         branches cannot. */
      shorten_branches (get_insns ());

      /* Do control and data sched analysis again,
         and write some more of the results to dump file. */

      split_all_insns ();

      schedule_ebbs ();

      timevar_pop (TV_SCHED2);

      ggc_collect ();

      if (picochip_schedule_type == DFA_TYPE_SPEED)
	{
	  /* Whenever a VLIW packet is generated, all instructions in
	     that packet must appear to come from the same source
	     location.  The following code finds all the VLIW packets,
	     and tags their instructions with the location of the first
	     instruction from the packet.  Clearly this will result in
	     strange behaviour when debugging the code, but since
	     debugging and optimisation are being used in conjunction,
	     strange behaviour is certain to occur anyway. */
          /* Slight bit of change. If the vliw set contains a branch
             or call instruction, we pick its location.*/
	  for (insn = get_insns (); insn; insn = next_real_insn (insn))
	    {

	      /* If this is the first instruction in the VLIW packet,
	         extract its location. */
              if (GET_MODE (insn) == TImode)
              {
                vliw_start = insn;
                vliw_insn_location = INSN_LOCATION (insn);
              }
              if (JUMP_P (insn) || CALL_P(insn))
              {
                vliw_insn_location = INSN_LOCATION (insn);
                for (insn1 = vliw_start; insn1 != insn ; insn1 = next_real_insn (insn1))
                  INSN_LOCATION (insn1) = vliw_insn_location;
              }
              /* Tag subsequent instructions with the same location. */
              INSN_LOCATION (insn) = vliw_insn_location;
	    }
	}

    }

  /* Locate the note marking the end of the function's prologue.  If
     the note appears in the middle of a VLIW packet, move the note to
     the end.  This avoids unpleasant consequences such as trying to
     emit prologue markers (e.g., .loc/.file directives) in the middle
     of VLIW packets. */
  if (picochip_schedule_type == DFA_TYPE_SPEED)
    {
      rtx prologue_end_note = NULL;
      rtx last_insn_in_packet = NULL;

      for (insn = get_insns (); insn; insn = next_insn (insn))
	{
	  /* The prologue end must be moved to the end of the VLIW packet. */
	  if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
	    {
	      prologue_end_note = insn;
	      break;
	    }
	}

      /* Find the last instruction in this packet. */
      for (insn = prologue_end_note; insn; insn = next_real_insn (insn))
	{
	  if (GET_MODE (insn) == TImode)
	    break;
	  else
	    last_insn_in_packet = insn;
	}

      if (last_insn_in_packet != NULL)
	{
          rtx tmp_note
	    = emit_note_after ((enum insn_note) NOTE_KIND (prologue_end_note),
			       last_insn_in_packet);
          memcpy(&NOTE_DATA (tmp_note), &NOTE_DATA(prologue_end_note), sizeof(NOTE_DATA(prologue_end_note)));
	  delete_insn (prologue_end_note);
	}
    }

  if (flag_var_tracking)
    {
      timevar_push (TV_VAR_TRACKING);
      variable_tracking_main ();
      /* We also have to deal with variable tracking notes in the
	 middle of VLIW packets. */
      reorder_var_tracking_notes();
      timevar_pop (TV_VAR_TRACKING);
    }
}

/* Return the ALU character identifier for the current
   instruction.  This will be 0 or 1. */
static char
picochip_get_vliw_alu_id (void)
{
  int attr_type = 0;

  /* Always use ALU 0 if VLIW scheduling is disabled. */
  if (picochip_schedule_type != DFA_TYPE_SPEED)
    return '0';

  /* Get the attribute type of the instruction.  Note that this can
     ruin the contents of recog_data, so save/restore around the
     call. */
  picochip_save_recog_data ();
  attr_type = get_attr_type (picochip_current_prescan_insn);
  picochip_restore_recog_data ();

  if (picochip_current_vliw_state.contains_pico_alu_insn)
    {

      /* If this a picoAlu insn? If it is, then stuff it into ALU 0,
         else it must be the other ALU (either basic or nonCc)
         instruction which goes into 1. */
      if (attr_type == TYPE_PICOALU)
	return '0';
      else
	return '1';

    }
  else if (picochip_current_vliw_state.contains_non_cc_alu_insn)
    {
      /* Is this the non CC instruction? If it is, then stuff it into
         ALU 1, else it must be a picoAlu or basicAlu, in which case
         it goes into ALU 0. */
      if (attr_type == TYPE_NONCCALU)
	return '1';
      else
	return '0';
    }
  else
    {
      /* No picoAlu/nonCc instructions in use, so purely dependent upon
         whether an ALU instruction has already been scheduled in this
         cycle. */
      switch (picochip_current_vliw_state.num_alu_insns_so_far)
	{
	case 0:
	  picochip_current_vliw_state.num_alu_insns_so_far++;
	  return '0';

	case 1:
	  picochip_current_vliw_state.num_alu_insns_so_far++;
	  return '1';

	default:
	  internal_error ("too many ALU instructions emitted (%d)",
			  picochip_current_vliw_state.num_alu_insns_so_far);
	  return 'X';
	}
    }

}

/* Reset any information about the current VLIW packing status. */
static void
picochip_reset_vliw (rtx insn)
{
  rtx local_insn = insn;

  /* Nothing to do if VLIW scheduling isn't being used. */
  if (picochip_schedule_type != DFA_TYPE_SPEED)
    return;

  if (TARGET_DEBUG)
    printf ("%s on insn %d\n", __FUNCTION__, INSN_UID (insn));

  /* Reset. */
  picochip_current_vliw_state.contains_pico_alu_insn = 0;
  picochip_current_vliw_state.contains_non_cc_alu_insn = 0;
  picochip_current_vliw_state.num_alu_insns_so_far = 0;
  picochip_current_vliw_state.num_cfi_labels_deferred = 0;
  picochip_current_vliw_state.lm_label_name[0] = 0;
  picochip_current_vliw_state.num_insns_in_packet = 0;

  /* Read through the VLIW packet, classifying the instructions where
     appropriate. */
  local_insn = insn;
  do
    {
      if (NOTE_P (local_insn) || DEBUG_INSN_P(local_insn))
	{
	  local_insn = NEXT_INSN (local_insn);
	  continue;
	}
      else if (!INSN_P (local_insn))
	break;
      else
	{
	  /* It is an instruction, but is it ours? */
	  if (INSN_CODE (local_insn) != -1)
	    {
	      int attr_type = 0;

	      picochip_current_vliw_state.num_insns_in_packet += 1;

	      /* Is it a picoAlu or nonCcAlu instruction? Note that the
	         get_attr_type function can overwrite the values in
	         the recog_data global, hence this is saved and
	         restored around the call.  Not doing so results in
	         asm_output_opcode being called with a different
	         instruction to final_prescan_insn, which is fatal. */
	      picochip_save_recog_data ();
	      attr_type = get_attr_type (local_insn);
	      picochip_restore_recog_data ();

	      if (attr_type == TYPE_PICOALU)
		picochip_current_vliw_state.contains_pico_alu_insn = 1;
	      if (attr_type == TYPE_NONCCALU)
		picochip_current_vliw_state.contains_non_cc_alu_insn = 1;

	    }
	}

      /* Get the next instruction. */
      local_insn = NEXT_INSN (local_insn);

      /* Keep going while the next instruction is part of the same
         VLIW packet (i.e., its a valid instruction and doesn't mark
         the start of a new VLIW packet. */
    }
  while (local_insn &&
	 (GET_MODE (local_insn) != TImode) && (INSN_CODE (local_insn) != -1));

}

int
picochip_sched_reorder (FILE * file, int verbose,
			rtx * ready ATTRIBUTE_UNUSED,
			int *n_readyp ATTRIBUTE_UNUSED, int clock)
{

  if (verbose > 0)
    fprintf (file, ";;\tClock %d\n", clock);

  return picochip_sched_issue_rate ();

}

int
picochip_sched_lookahead (void)
{
  /* It should always be enough to lookahead by 2 insns. Only slot0/1 could
     have a conflict. */
  return 2;
}

int
picochip_sched_issue_rate (void)
{
  return 3;
}

/* Adjust the scheduling cost between the two given instructions,
   which have the given dependency. */
int
picochip_sched_adjust_cost (rtx insn, rtx link, rtx dep_insn, int cost)
{

  if (TARGET_DEBUG)
    {
      printf ("Sched Adjust Cost: %d->%d is %d\n",
	      INSN_UID (insn), INSN_UID (dep_insn), cost);

      printf ("  Dependency type:");
      switch (REG_NOTE_KIND (link))
	{
	case 0:
	  printf ("Data\n");
	  break;
	case REG_DEP_ANTI:
	  printf ("ANTI\n");
	  break;
	case REG_DEP_OUTPUT:
	  printf ("OUTPUT\n");
	  break;
	default:
	  printf ("Unknown (%d)\n", REG_NOTE_KIND (link));
	}
    }

  /* Anti-dependencies are used to enforce the ordering between a
   * branch, and any subsequent instructions.  For example:
   *
   *   BNE someLabel
   *   ADD.0 r0,r1,r2
   *
   * The ADD instruction must execute after the branch, and this is
   * enforced using an anti-dependency.  Unfortunately, VLIW machines
   * are happy to execute anti-dependent instructions in the same
   * cycle, which then results in a schedule like the following being
   * created:
   *
   *    BNE someLabel \ ADD.0 r0,r1,r2
   *
   * The instruction which would normally be conditionally executed
   * depending upon the outcome of the branch, is now unconditionally
   * executed every time.  To prevent this happening, any
   * anti-dependencies between a branch and another instruction are
   * promoted to become real dependencies.
   */
  if ((JUMP_P (dep_insn) || CALL_P(dep_insn)) && REG_NOTE_KIND (link) == REG_DEP_ANTI)
    {

      if (TARGET_DEBUG)
	printf ("Promoting anti-dependency %d->%d to a true-dependency\n",
		INSN_UID (insn), INSN_UID (dep_insn));

      return 1;
    }

  return cost;

}

/* Return the minimum of the two values */
static int
minimum (int a, int b)
{
  if (a < b)
    return a;
  if (b < a)
    return b;
  /* I dont expect to get to this function with a==b.*/
  gcc_unreachable();
}


/* This function checks if the memory of the two stores are just off by 2 bytes.
   It returns the lower memory operand's index.*/

static int
memory_just_off (rtx opnd1, rtx opnd2)
{
  int offset1 = 0, offset2 = 0;
  int reg1, reg2;

  if (GET_CODE(XEXP(opnd1, 0)) == PLUS && GET_CODE(XEXP(XEXP(opnd1, 0),1)) == CONST_INT)
  {
    offset1 = INTVAL(XEXP(XEXP(opnd1, 0), 1));
    reg1 = REGNO(XEXP(XEXP(opnd1, 0), 0));
  }
  else
  {
    reg1 = REGNO(XEXP(opnd1, 0));
  }
  if (GET_CODE(XEXP(opnd2, 0)) == PLUS && GET_CODE(XEXP(XEXP(opnd2, 0), 1)) == CONST_INT)
  {
    offset2 = INTVAL(XEXP(XEXP(opnd2, 0), 1));
    reg2 = REGNO(XEXP(XEXP(opnd2, 0), 0));
  }
  else
  {
    reg2 = REGNO(XEXP(opnd2, 0));
  }

  /* Peepholing 2 STW/LDWs has the restriction that the resulting STL/LDL's address
     should be 4 byte aligned. We can currently guarantee that only if the base
     address is FP(R13) and the offset is aligned. */

  if (reg1 == reg2 && reg1 == 13 && abs(offset1-offset2) == 2 && minimum(offset1, offset2) % 4 == 0)
    return (minimum(offset1, offset2) == offset1) ? 1:2;

  return 0;
}

static int
registers_just_off (rtx opnd1, rtx opnd2)
{
  int reg1, reg2;
  reg1 = REGNO(opnd1);
  reg2 = REGNO(opnd2);
  if (abs(reg1-reg2) == 1 && minimum(reg1, reg2) % 2 == 0)
    return (minimum(reg1, reg2) == reg1)?1:2;
  return 0;
}

/* Check to see if the two LDWs can be peepholed together into a LDL
   They can be if the registers getting loaded into are contiguous
   and the memory addresses are contiguous as well.
   for eg.
           LDW r2,[r11]x
           LDW r3,[r11]x+1
   can be merged together into
           LDL r[3:2],[r11]

   NOTE:
   1. The LDWs themselves only guarantee that r11 will be a 2-byte
   aligned address. Only FP can be assumed to be 4 byte aligned.
   2. The progression of addresses and the register numbers should
   be similar. For eg., if you swap r2 and r3 in the above instructions,
   the resultant pair cannot be merged.

*/
bool
ok_to_peephole_ldw(rtx opnd0, rtx opnd1, rtx opnd2, rtx opnd3)
{
  int memtest=0,regtest=0;
  regtest = registers_just_off(opnd1,opnd3);
  if (regtest == 0)
    return false;

  memtest = memory_just_off(opnd0,opnd2);
  if (memtest == 0)
    return false;

  if (regtest == memtest)
  {
    return true;
  }
  return false;
}

/* Similar to LDW peephole */
bool
ok_to_peephole_stw(rtx opnd0, rtx opnd1, rtx opnd2, rtx opnd3)
{
  int memtest=0,regtest=0;
  regtest = registers_just_off(opnd1,opnd3);
  if (regtest == 0)
    return false;

  memtest = memory_just_off(opnd0,opnd2);
  if (memtest == 0)
    return false;

  if (regtest == memtest)
  {
    return true;
  }
  return false;
}


/* Generate a SImode register with the register number that is the smaller of the two */
rtx
gen_min_reg(rtx opnd1,rtx opnd2)
{
  return gen_rtx_REG (SImode, minimum(REGNO(opnd1),REGNO(opnd2)));
}

/* Generate a SImode memory with the address that is the smaller of the two */
rtx
gen_SImode_mem(rtx opnd1,rtx opnd2)
{
  int offset1=0,offset2=0;
  rtx reg;
  rtx address;
  if (GET_CODE(XEXP(opnd1,0)) == PLUS && GET_CODE(XEXP(XEXP(opnd1,0),1)) == CONST_INT)
  {
    offset1 = INTVAL(XEXP(XEXP(opnd1,0),1));
    reg = XEXP(XEXP(opnd1,0),0);
  }
  else
  {
    reg = XEXP(opnd1,0);
  }
  if (GET_CODE(XEXP(opnd2,0)) == PLUS && GET_CODE(XEXP(XEXP(opnd2,0),1)) == CONST_INT)
  {
    offset2 = INTVAL(XEXP(XEXP(opnd2,0),1));
  }
  address = gen_rtx_PLUS (HImode, reg, GEN_INT(minimum(offset1,offset2)));
  return gen_rtx_MEM(SImode,address);
}

bool
picochip_rtx_costs (rtx x, int code, int outer_code ATTRIBUTE_UNUSED,
		    int opno ATTRIBUTE_UNUSED, int* total, bool speed)
{

  int localTotal = 0;

  if (!speed)
  {
    /* Need to penalize immediates that need to be encoded as long constants.*/
    if (code == CONST_INT && !(INTVAL (x) >= 0 && INTVAL (x) < 16))
    {
        *total = COSTS_N_INSNS(1);
        return true;
    }
  }
  switch (code)
  {
  case SYMBOL_REF:
  case LABEL_REF:
    *total = COSTS_N_INSNS (outer_code != MEM);
    return true;
    break;

  case IF_THEN_ELSE:
    /* if_then_else come out of cbranch instructions. It will get split into
       a condition code generating subtraction and a branch */
    *total = COSTS_N_INSNS (2);
    return true;
    break;

  case AND:
  case IOR:
  case XOR:
    if (GET_MODE(x) == SImode)
      *total = COSTS_N_INSNS (2);
    if (GET_MODE(x) == DImode)
      *total = COSTS_N_INSNS (4);
    return false;

  case MEM:
    /* Byte Memory access on a NO_BYTE_ACCESS machine would be expensive */
    if (GET_MODE(x) == QImode && !TARGET_HAS_BYTE_ACCESS)
      *total = COSTS_N_INSNS (10);

    /* 64-bit accesses have to be done through 2 32-bit access */
    if (GET_MODE(x) == DImode)
      *total = COSTS_N_INSNS (2);
    return false;
    break;

  case ASHIFTRT:

    /* SImode shifts are expensive */
    if (GET_MODE(x) == SImode)
      *total = COSTS_N_INSNS (10);

    /* Register shift by constant is cheap. */
    if ((GET_MODE(x) == QImode || GET_MODE(x) == HImode)
        && GET_CODE(XEXP(x, 0)) == REG
        && GET_CODE(XEXP(x, 1)) == CONST_INT)
      *total = COSTS_N_INSNS (1);
    else
      *total = COSTS_N_INSNS (4);
    return false;
    break;

  case DIV:
  case MOD:

    /* Divisions are more expensive than the default 7*/
    if (GET_MODE(x) == SImode)
      *total = COSTS_N_INSNS (20);
    else
      *total = COSTS_N_INSNS (12);
    return false;
    break;

  case MULT:
    /* Look for the simple cases of multiplying register*register or
       register*constant. */
    if ((GET_MODE(x) == QImode || GET_MODE(x) == HImode)
        && ((GET_CODE(XEXP(x, 0)) == REG
           && (GET_CODE(XEXP(x, 1)) == REG || GET_CODE(XEXP(x,1)) == CONST_INT))
           || (GET_CODE(XEXP(x, 0)) == ZERO_EXTEND 
               && GET_CODE(XEXP(XEXP(x, 0),0)) == REG
               && GET_CODE(XEXP(x, 1)) == ZERO_EXTEND 
               && GET_CODE(XEXP(XEXP(x, 1),0)) == REG)))
      {

        /* When optimising for size, multiplication by constant
           should be discouraged slightly over multiplication by a
           register. */
        if (picochip_has_mac_unit)
          {
            /* Single cycle multiplication, but the result must be
               loaded back into a general register afterwards. */
            *total = COSTS_N_INSNS(2);
            return true;
          }
        else if (picochip_has_mul_unit)
          {
            /* Single cycle multiplication. */
            *total = COSTS_N_INSNS(1);
            return true;
          }
        /* Else no multiply available. Use default cost. */

      }
    break;

  default:
    /* Do nothing. */
    break;
  }

  if (localTotal != 0)
    {
      *total = localTotal;
      return true;
    }
  else
    {
      return false;
    }

}

void
picochip_final_prescan_insn (rtx insn, rtx * opvec ATTRIBUTE_UNUSED,
			     int num_operands ATTRIBUTE_UNUSED)
{
  rtx local_insn;

  picochip_current_prescan_insn = insn;

  if (TARGET_DEBUG)
    printf ("Final prescan on INSN %d with mode %s\n",
	    INSN_UID (insn), GET_MODE_NAME (GET_MODE (insn)));

  /* If this is the start of a new instruction cycle, or no scheduling
     is used, then reset the VLIW status. */
  if (GET_MODE (insn) == TImode || !picochip_schedule_type == DFA_TYPE_SPEED)
    picochip_reset_vliw (insn);

  /* No VLIW scheduling occurred, so don't go any further. */
  if (picochip_schedule_type != DFA_TYPE_SPEED)
    return;

  /* Look for the next printable instruction.  This loop terminates on
     any recognisable instruction, and on any unrecognisable
     instruction with TImode. */
  local_insn = insn;
  for (local_insn = NEXT_INSN (local_insn); local_insn;
       local_insn = NEXT_INSN (local_insn))
    {
      if (NOTE_P (local_insn) || DEBUG_INSN_P(local_insn))
	continue;
      else if (!INSN_P (local_insn))
	break;
      else if (GET_MODE (local_insn) == TImode
	       || INSN_CODE (local_insn) != -1)
	break;
    }

  /* Set the continuation flag if the next instruction can be packed
     with the current instruction (i.e., the next instruction is
     valid, and isn't the start of a new cycle). */
  picochip_vliw_continuation = (local_insn && NONDEBUG_INSN_P (local_insn) &&
				(GET_MODE (local_insn) != TImode));

}

/* Builtin functions. */
/* Given a builtin function taking 2 operands (i.e., target + source),
   emit the RTL for the underlying instruction. */
static rtx
picochip_expand_builtin_2op (enum insn_code icode, tree call, rtx target)
{
  tree arg0;
  rtx op0, pat;
  enum machine_mode tmode, mode0;

  /* Grab the incoming argument and emit its RTL. */
  arg0 = CALL_EXPR_ARG (call, 0);
  op0 = expand_expr (arg0, NULL_RTX, VOIDmode, EXPAND_NORMAL);

  /* Determine the modes of the instruction operands. */
  tmode = insn_data[icode].operand[0].mode;
  mode0 = insn_data[icode].operand[1].mode;

  /* Ensure that the incoming argument RTL is in a register of the
     correct mode. */
  if (!(*insn_data[icode].operand[1].predicate) (op0, mode0))
    op0 = copy_to_mode_reg (mode0, op0);

  /* If there isn't a suitable target, emit a target register. */
  if (target == 0
      || GET_MODE (target) != tmode
      || !(*insn_data[icode].operand[0].predicate) (target, tmode))
    target = gen_reg_rtx (tmode);

  /* Emit and return the new instruction. */
  pat = GEN_FCN (icode) (target, op0);
  if (!pat)
    return 0;
  emit_insn (pat);

  return target;

}

/* Given a builtin function taking 3 operands (i.e., target + two
   source), emit the RTL for the underlying instruction. */
static rtx
picochip_expand_builtin_3op (enum insn_code icode, tree call, rtx target)
{
  tree arg0, arg1;
  rtx op0, op1, pat;
  enum machine_mode tmode, mode0, mode1;

  /* Grab the function's arguments. */
  arg0 = CALL_EXPR_ARG (call, 0);
  arg1 = CALL_EXPR_ARG (call, 1);

  /* Emit rtl sequences for the function arguments. */
  op0 = expand_expr (arg0, NULL_RTX, VOIDmode, EXPAND_NORMAL);
  op1 = expand_expr (arg1, NULL_RTX, VOIDmode, EXPAND_NORMAL);

  /* Get the mode's of each of the instruction operands. */
  tmode = insn_data[icode].operand[0].mode;
  mode0 = insn_data[icode].operand[1].mode;
  mode1 = insn_data[icode].operand[2].mode;

  /* Ensure that each of the function argument rtl sequences are in a
     register of the correct mode. */
  if (!(*insn_data[icode].operand[1].predicate) (op0, mode0))
    op0 = copy_to_mode_reg (mode0, op0);
  if (!(*insn_data[icode].operand[2].predicate) (op1, mode1))
    op1 = copy_to_mode_reg (mode1, op1);

  /* If no target has been given, create a register to use as the target. */
  if (target == 0
      || GET_MODE (target) != tmode
      || !(*insn_data[icode].operand[0].predicate) (target, tmode))
    target = gen_reg_rtx (tmode);

  /* Emit and return the new instruction. */
  pat = GEN_FCN (icode) (target, op0, op1);
  if (!pat)
    return 0;
  emit_insn (pat);

  return target;

}

/* Expand a builtin function which takes two arguments, and returns a void. */
static rtx
picochip_expand_builtin_2opvoid (enum insn_code icode, tree call)
{
  tree arg0, arg1;
  rtx op0, op1, pat;
  enum machine_mode mode0, mode1;

  /* Grab the function's arguments. */
  arg0 = CALL_EXPR_ARG (call, 0);
  arg1 = CALL_EXPR_ARG (call, 1);

  /* Emit rtl sequences for the function arguments. */
  op0 = expand_expr (arg0, NULL_RTX, VOIDmode, EXPAND_NORMAL);
  op1 = expand_expr (arg1, NULL_RTX, VOIDmode, EXPAND_NORMAL);

  /* Get the mode's of each of the instruction operands. */
  mode0 = insn_data[icode].operand[0].mode;
  mode1 = insn_data[icode].operand[1].mode;

  /* Ensure that each of the function argument rtl sequences are in a
     register of the correct mode. */
  if (!(*insn_data[icode].operand[0].predicate) (op0, mode0))
    op0 = copy_to_mode_reg (mode0, op0);
  if (!(*insn_data[icode].operand[1].predicate) (op1, mode1))
    op1 = copy_to_mode_reg (mode1, op1);

  /* Emit and return the new instruction. */
  pat = GEN_FCN (icode) (op0, op1);
  if (!pat)
    return 0;
  emit_insn (pat);

  return NULL_RTX;

}

/* Expand an array get into the corresponding RTL. */
static rtx
picochip_expand_array_get (tree call, rtx target)
{
  tree arg0, arg1, arg2;
  rtx op0, op1, op2, pat;

  /* Grab the function's arguments. */
  arg0 = CALL_EXPR_ARG (call, 0);
  arg1 = CALL_EXPR_ARG (call, 1);
  arg2 = CALL_EXPR_ARG (call, 2) ;

  /* Emit rtl sequences for the function arguments. */
  op0 = expand_expr (arg0, NULL_RTX, VOIDmode, EXPAND_NORMAL);
  op1 = expand_expr (arg1, NULL_RTX, VOIDmode, EXPAND_NORMAL);
  op2 = expand_expr (arg2, NULL_RTX, VOIDmode, EXPAND_NORMAL);

  /* The second and third operands must be constant.  Nothing else will
     do. */
  if (CONST_INT != GET_CODE (op1))
    internal_error ("%s: Second source operand is not a constant",
		    __FUNCTION__);
  if (CONST_INT != GET_CODE (op2))
    internal_error ("%s: Third source operand is not a constant",
		    __FUNCTION__);

  /* If no target has been given, create a register to use as the target. */
  if (target == 0 || GET_MODE (target) != SImode)
    target = gen_reg_rtx (SImode);

  /* The first operand must be a HImode register or a constant.  If it
     isn't, force it into a HImode register. */
  if (GET_MODE (op0) != HImode || REG != GET_CODE (op0))
    op0 = copy_to_mode_reg (HImode, op0);


  /* Emit and return the new instruction. */
  pat = gen_commsArrayGet (target, op0, op1, op2);
  emit_insn (pat);

  return target;

}

/* Expand an array put into the corresponding RTL. */
static rtx
picochip_expand_array_put (tree call, rtx target)
{
  tree arg0, arg1, arg2, arg3;
  rtx op0, op1, op2, op3, pat;

  /* Grab the function's arguments. */
  arg0 = CALL_EXPR_ARG (call, 0);
  arg1 = CALL_EXPR_ARG (call, 1);
  arg2 = CALL_EXPR_ARG (call, 2);
  arg3 = CALL_EXPR_ARG (call, 3);

  /* Emit rtl sequences for the function arguments. */
  op0 = expand_expr (arg0, NULL_RTX, VOIDmode, EXPAND_NORMAL);
  op1 = expand_expr (arg1, NULL_RTX, VOIDmode, EXPAND_NORMAL);
  op2 = expand_expr (arg2, NULL_RTX, VOIDmode, EXPAND_NORMAL);
  op3 = expand_expr (arg3, NULL_RTX, VOIDmode, EXPAND_NORMAL);

  /* The first operand must be an SImode register. */
  if (GET_MODE (op0) != SImode || REG != GET_CODE (op0))
    op0 = copy_to_mode_reg (SImode, op0);

  /* The second (index) operand must be a HImode register, or a
     constant.  If it isn't, force it into a HImode register. */
  if (GET_MODE (op1) != HImode || REG != GET_CODE (op1))
    op1 = copy_to_mode_reg (HImode, op1);

  /* The remaining operands must be constant.  Nothing else will do. */
  if (CONST_INT != GET_CODE (op2))
    internal_error ("%s: Third source operand is not a constant",
		    __FUNCTION__);
  if (CONST_INT != GET_CODE (op3))
    internal_error ("%s: Fourth source operand is not a constant",
		    __FUNCTION__);

  /* Emit and return the new instruction. */
  pat = gen_commsArrayPut (op0, op1, op2, op3);
  emit_insn (pat);

  return target;

}

/* Expand an array testport into the corresponding RTL. */
static rtx
picochip_expand_array_testport (tree call, rtx target)
{
  tree arg0, arg1, arg2;
  rtx op0, op1, op2, pat;

  /* Grab the function's arguments. */
  arg0 = CALL_EXPR_ARG (call, 0);
  arg1 = CALL_EXPR_ARG (call, 1);
  arg2 = CALL_EXPR_ARG (call, 2);

  /* Emit rtl sequences for the function arguments. */
  op0 = expand_expr (arg0, NULL_RTX, VOIDmode, EXPAND_NORMAL);
  op1 = expand_expr (arg1, NULL_RTX, VOIDmode, EXPAND_NORMAL);
  op2 = expand_expr (arg2, NULL_RTX, VOIDmode, EXPAND_NORMAL);

  /* The first operand must be a HImode register, or a constant.  If it
     isn't, force it into a HImode register. */
  if (GET_MODE (op0) != HImode || REG != GET_CODE (op0))
    op0 = copy_to_mode_reg (HImode, op0);

  /* The second and third operands must be constant.  Nothing else will
     do. */
  if (CONST_INT != GET_CODE (op1))
    internal_error ("%s: Second source operand is not a constant",
		    __FUNCTION__);
  if (CONST_INT != GET_CODE (op2))
    internal_error ("%s: Third source operand is not a constant",
		    __FUNCTION__);

  /* If no target has been given, create a HImode register to use as
     the target. */
  if (target == 0 || GET_MODE (target) != HImode)
    target = gen_reg_rtx (HImode);

  /* Emit and return the new instruction. */
  pat = gen_commsArrayTestPort (target, op0, op1, op2);
  emit_insn (pat);

  return target;

}

/* Generate a unique HALT instruction by giving the instruction a
   unique integer. This integer makes no difference to the assembly
   output (other than a comment indicating the supplied id), but the
   presence of the unique integer prevents the compiler from combining
   several different halt instructions into one instruction. This
   means that each use of the halt instruction is unique, which in
   turn means that assertions work as expected. */
static rtx
picochip_generate_halt (void)
{
  static int currentId = 0;
  rtx insns;
  rtx id = GEN_INT (currentId);
  currentId += 1;

  start_sequence();
  emit_insn (gen_halt (id));

  /* A barrier is inserted to prevent the compiler from thinking that
     it has to continue execution after the HALT.*/
  emit_barrier ();

  insns = get_insns();
  end_sequence();
  emit_insn (insns);

  return const0_rtx;
}

/* Initialise the builtin functions.  Start by initialising
   descriptions of different types of functions (e.g., void fn(int),
   int fn(void)), and then use these to define the builtins. */
void
picochip_init_builtins (void)
{
  tree noreturn;

  tree int_ftype_int, int_ftype_int_int;
  tree long_ftype_int, long_ftype_int_int_int;
  tree void_ftype_int_long, int_ftype_int_int_int,
    void_ftype_long_int_int_int;
  tree void_ftype_void, unsigned_ftype_unsigned;

  /* void func (void) */
  void_ftype_void = build_function_type_list (void_type_node, NULL_TREE);

  /* int func (int) */
  int_ftype_int = build_function_type_list (integer_type_node,
					    integer_type_node, NULL_TREE);

  /* unsigned int func (unsigned int) */
  unsigned_ftype_unsigned
    = build_function_type_list (unsigned_type_node,
				unsigned_type_node, NULL_TREE);

  /* int func(int, int) */
  int_ftype_int_int
    = build_function_type_list (integer_type_node,
				integer_type_node, integer_type_node,
				NULL_TREE);

  /* long func(int) */
  long_ftype_int = build_function_type_list (long_integer_type_node,
					     integer_type_node, NULL_TREE);

  /* long func(int, int, int) */
  long_ftype_int_int_int
    = build_function_type_list (long_integer_type_node,
				integer_type_node, integer_type_node,
				integer_type_node, NULL_TREE);

  /* int func(int, int, int) */
  int_ftype_int_int_int
    = build_function_type_list (integer_type_node,
				integer_type_node, integer_type_node,
				integer_type_node, NULL_TREE);

  /* void func(int, long) */
  void_ftype_int_long
    = build_function_type_list (void_type_node,
				integer_type_node, long_integer_type_node,
				NULL_TREE);

  /* void func(long, int, int, int) */
  void_ftype_long_int_int_int
    = build_function_type_list (void_type_node,
				long_integer_type_node, integer_type_node,
				integer_type_node, integer_type_node,
				NULL_TREE);

  /* Initialise the sign-bit-count function. */
  add_builtin_function ("__builtin_sbc", int_ftype_int,
			       PICOCHIP_BUILTIN_SBC, BUILT_IN_MD, NULL,
			       NULL_TREE);
  add_builtin_function ("picoSbc", int_ftype_int, PICOCHIP_BUILTIN_SBC,
			       BUILT_IN_MD, NULL, NULL_TREE);

  /* Initialise the bit reverse function. */
  add_builtin_function ("__builtin_brev", unsigned_ftype_unsigned,
			       PICOCHIP_BUILTIN_BREV, BUILT_IN_MD, NULL,
			       NULL_TREE);
  add_builtin_function ("picoBrev", unsigned_ftype_unsigned,
			       PICOCHIP_BUILTIN_BREV, BUILT_IN_MD, NULL,
			       NULL_TREE);

  /* Initialise the byte swap function. */
  add_builtin_function ("__builtin_byteswap", unsigned_ftype_unsigned,
			       PICOCHIP_BUILTIN_BYTESWAP, BUILT_IN_MD, NULL,
			       NULL_TREE);
  add_builtin_function ("picoByteSwap", unsigned_ftype_unsigned,
			       PICOCHIP_BUILTIN_BYTESWAP, BUILT_IN_MD, NULL,
			       NULL_TREE);

  /* Initialise the ASRI function (note that while this can be coded
     using a signed shift in C, extra scratch registers are required,
     which we avoid by having a direct builtin to map to the
     instruction). */
  add_builtin_function ("__builtin_asri", int_ftype_int_int,
			       PICOCHIP_BUILTIN_ASRI, BUILT_IN_MD, NULL,
			       NULL_TREE);

  /* Initialise saturating addition. */
  add_builtin_function ("__builtin_adds", int_ftype_int_int,
			       PICOCHIP_BUILTIN_ADDS, BUILT_IN_MD, NULL,
			       NULL_TREE);
  add_builtin_function ("picoAdds", int_ftype_int_int,
			       PICOCHIP_BUILTIN_ADDS, BUILT_IN_MD, NULL,
			       NULL_TREE);

  /* Initialise saturating subtraction. */
  add_builtin_function ("__builtin_subs", int_ftype_int_int,
			       PICOCHIP_BUILTIN_SUBS, BUILT_IN_MD, NULL,
			       NULL_TREE);
  add_builtin_function ("picoSubs", int_ftype_int_int,
			       PICOCHIP_BUILTIN_SUBS, BUILT_IN_MD, NULL,
			       NULL_TREE);

  /* Scalar comms builtins. */
  add_builtin_function ("__builtin_get", long_ftype_int,
			       PICOCHIP_BUILTIN_GET, BUILT_IN_MD, NULL,
			       NULL_TREE);
  add_builtin_function ("__builtin_put", void_ftype_int_long,
			       PICOCHIP_BUILTIN_PUT, BUILT_IN_MD, NULL,
			       NULL_TREE);
  add_builtin_function ("__builtin_testport", int_ftype_int,
			       PICOCHIP_BUILTIN_TESTPORT, BUILT_IN_MD, NULL,
			       NULL_TREE);

  /* Array comms builtins. */
  add_builtin_function ("__builtin_put_array",
			       void_ftype_long_int_int_int,
			       PICOCHIP_BUILTIN_PUT_ARRAY, BUILT_IN_MD, NULL,
			       NULL_TREE);
  add_builtin_function ("__builtin_get_array", long_ftype_int_int_int,
			       PICOCHIP_BUILTIN_GET_ARRAY, BUILT_IN_MD, NULL,
			       NULL_TREE);
  add_builtin_function ("__builtin_testport_array",
			       int_ftype_int_int_int,
			       PICOCHIP_BUILTIN_TESTPORT_ARRAY, BUILT_IN_MD,
			       NULL, NULL_TREE);

  /* Halt instruction. Note that the builtin function is marked as
     having the attribute `noreturn' so that the compiler realises
     that the halt stops the program dead. */
  noreturn = tree_cons (get_identifier ("noreturn"), NULL, NULL);
  add_builtin_function ("__builtin_halt", void_ftype_void,
			       PICOCHIP_BUILTIN_HALT, BUILT_IN_MD, NULL,
			       noreturn);
  add_builtin_function ("picoHalt", void_ftype_void,
			       PICOCHIP_BUILTIN_HALT, BUILT_IN_MD, NULL,
			       noreturn);

}

/* Expand a call to a builtin function. */
rtx
picochip_expand_builtin (tree exp, rtx target, rtx subtarget ATTRIBUTE_UNUSED,
			 enum machine_mode mode ATTRIBUTE_UNUSED,
			 int ignore ATTRIBUTE_UNUSED)
{
  tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
  int fcode = DECL_FUNCTION_CODE (fndecl);

  switch (fcode)
    {
    case PICOCHIP_BUILTIN_ASRI:
      return picochip_expand_builtin_3op (CODE_FOR_builtin_asri, exp,
					  target);

    case PICOCHIP_BUILTIN_ADDS:
      return picochip_expand_builtin_3op (CODE_FOR_sataddhi3, exp,
					  target);

    case PICOCHIP_BUILTIN_SUBS:
      return picochip_expand_builtin_3op (CODE_FOR_satsubhi3, exp,
					  target);

    case PICOCHIP_BUILTIN_SBC:
      return picochip_expand_builtin_2op (CODE_FOR_sbc, exp, target);

    case PICOCHIP_BUILTIN_BREV:
      return picochip_expand_builtin_2op (CODE_FOR_brev, exp, target);

    case PICOCHIP_BUILTIN_BYTESWAP:
      return picochip_expand_builtin_2op (CODE_FOR_bswaphi2, exp, target);

    case PICOCHIP_BUILTIN_GET:
      return picochip_expand_builtin_2op (CODE_FOR_commsGet, exp, target);

    case PICOCHIP_BUILTIN_PUT:
      return picochip_expand_builtin_2opvoid (CODE_FOR_commsPut, exp);

    case PICOCHIP_BUILTIN_TESTPORT:
      return picochip_expand_builtin_2op (CODE_FOR_commsTestPort, exp,
					  target);

    case PICOCHIP_BUILTIN_PUT_ARRAY:
      return picochip_expand_array_put (exp, target);

    case PICOCHIP_BUILTIN_GET_ARRAY:
      return picochip_expand_array_get (exp, target);

    case PICOCHIP_BUILTIN_TESTPORT_ARRAY:
      return picochip_expand_array_testport (exp, target);

    case PICOCHIP_BUILTIN_HALT:
      return picochip_generate_halt ();

    default:
      gcc_unreachable();

    }

  /* Should really do something sensible here.  */
  return NULL_RTX;
}

/* Emit warnings. */
static void
picochip_warn_inefficient (const char *msg)
{
  if (TARGET_INEFFICIENT_WARNINGS)
    warning (OPT_minefficient_warnings,
	     "%s (disable warning using -mno-inefficient-warnings)", msg);
}

void
warn_of_byte_access (void)
{
  static int warned = 0;

  if (!warned)
    {
      picochip_warn_inefficient
	("byte access is synthesised - consider using MUL AE");
      warned = 1;
    }

}

rtx
picochip_function_value (const_tree valtype, const_tree func,
                         bool outgoing ATTRIBUTE_UNUSED)
{
  enum machine_mode mode = TYPE_MODE (valtype);
  int unsignedp = TYPE_UNSIGNED (valtype);

  /* Since we define PROMOTE_FUNCTION_RETURN, we must promote the mode
     just as PROMOTE_MODE does.  */
  mode = promote_function_mode (valtype, mode, &unsignedp, func, 1);

  return gen_rtx_REG (mode, 0);

}

/* Check that the value of the given mode will fit in the register of
   the given mode. */
int
picochip_hard_regno_mode_ok (int regno, enum machine_mode mode)
{

  if (GET_MODE_CLASS (mode) == MODE_CC)
    return regno == CC_REGNUM;

  /* If the CC register is being used, then only CC mode values are
     allowed (which have already been tested). */
  if (regno == CC_REGNUM || regno == ACC_REGNUM)
    return 0;

  /* Must be a valid register. */
  if (regno > 16)
    return 0;

  /* Modes QI and HI may be placed in any register except the CC. */
  if (mode == QImode || mode == HImode)
    return 1;

  /* DI must be in a quad register. */
  if (mode == DImode)
    return (regno % 4 == 0);

  /* All other modes must be placed in a even numbered register. */
  return !(regno & 1);

}

/* Extract the lower and upper components of a constant value. */

rtx
picochip_get_low_const (rtx value)
{
  return gen_int_mode (INTVAL (value) & 0xFFFF, HImode);
}

rtx
picochip_get_high_const (rtx value)
{
  /*return GEN_INT ((((INTVAL (value) >> 16) & 0xFFFF) ^ 0x8000) - 0x8000); */
  return gen_int_mode ((INTVAL (value) >> 16) & 0xFFFF, HImode);
}


/* Loading and storing QImode values to and from memory in a machine
   without byte access requires might require a scratch
   register.  However, the scratch register might correspond to the
   register in which the value is being loaded.  To ensure that a
   scratch register is supplied which is definitely different to the
   output register, request a register pair.  This effectively gives a
   choice of two registers to choose from, so that we a guaranteed to
   get at least one register which is different to the output
   register.  This trick is taken from the alpha implementation. */
static reg_class_t
picochip_secondary_reload (bool in_p,
			   rtx x ATTRIBUTE_UNUSED,
			   reg_class_t cla ATTRIBUTE_UNUSED,
			   enum machine_mode mode,
			   secondary_reload_info *sri)
{
  if (mode == QImode && !TARGET_HAS_BYTE_ACCESS)
  {
    if (in_p == 0)
      sri->icode = CODE_FOR_reload_outqi;
    else
      sri->icode = CODE_FOR_reload_inqi;
  }

  /* We dont need to return a register class type when we need only a
     scratch register. It realizes the scratch register type by looking
     at the instruction definition for sri->icode. We only need to
     return the register type when we need intermediaries for copies.*/
  return NO_REGS;
}

/* Return true if the given memory operand can be aligned to a
   word+offset memory reference (e.g., FP+3 can be converted into the
   memory operand FP+2, with the offset 1). */
int
picochip_alignable_memory_operand (rtx mem_operand,
				   enum machine_mode mode ATTRIBUTE_UNUSED)
{
  rtx address;

  /* Not a mem operand. Refuse immediately. */
  if (MEM != GET_CODE (mem_operand))
    return 0;

  address = XEXP (mem_operand, 0);

  /* Return true if a PLUS of the SP and a (valid) constant, or SP itself. */
  return ((PLUS == GET_CODE (address) &&
	   REGNO (XEXP (address, 0)) == STACK_POINTER_REGNUM &&
	   CONST_INT == GET_CODE (XEXP (address, 1)) &&
	   picochip_const_ok_for_letter_p (INTVAL (XEXP (address, 1)), 'K'))
	  || (REG == GET_CODE (address)
	      && REGNO (address) == STACK_POINTER_REGNUM));

}

/* Return true if the given memory reference is to a word aligned
   address.  Currently this means it must be either SP, or
   SP+offset.  We could replace this function with alignable
   memory references in the above function?. */
int
picochip_word_aligned_memory_reference (rtx operand)
{


  /* The address must be the SP register, or a constant, aligned
     offset from SP which doesn't exceed the FP+offset
     restrictions. */
  return ((PLUS == GET_CODE (operand)
	   && REGNO (XEXP (operand, 0)) == STACK_POINTER_REGNUM
	   && picochip_is_aligned (INTVAL (XEXP (operand, 1)), 16)
           && picochip_const_ok_for_letter_p (INTVAL (XEXP (operand, 1)),
                                                'K'))
	  || (REG == GET_CODE (operand)
	      && REGNO (operand) == STACK_POINTER_REGNUM));

}

/* Given an alignable memory location, convert the memory location
   into a HI mode access, storing the new memory reference in
   paligned_mem, and the number of bits by which to shift in pbitnum
   (i.e., given a reference to FP+3, this creates an aligned reference
   of FP+2, with an 8-bit shift). This code is a modification of that
   found in the Alpha port. */
void
picochip_get_hi_aligned_mem (rtx ref, rtx * paligned_mem, rtx * pbitnum)
{
  rtx base;
  HOST_WIDE_INT offset = 0;

  gcc_assert (GET_CODE (ref) == MEM);

  if (reload_in_progress && !memory_address_p (GET_MODE (ref), XEXP (ref, 0)))
    {
      base = find_replacement (&XEXP (ref, 0));

      gcc_assert(memory_address_p (GET_MODE (ref), base));
    }
  else
    {
      base = XEXP (ref, 0);
    }

  if (GET_CODE (base) == PLUS)
    {
      offset += INTVAL (XEXP (base, 1));
      base = XEXP (base, 0);
    }

  *paligned_mem = widen_memory_access (ref, HImode, (offset & ~1) - offset);

  if (offset > 0)
    {
      if (TARGET_DEBUG)
	{
	  printf
	    ("Found non-zero offset in get_hi_aligned_mem - check that the correct value is being used (as this functionality hasn't been exploited yet).\n");
	}
    }

  *pbitnum = GEN_INT ((offset & 1) * 8);

}

/* Return true if the given operand is an absolute address in memory
   (i.e., a symbolic offset). */
int
picochip_absolute_memory_operand (rtx op,
				  enum machine_mode mode ATTRIBUTE_UNUSED)
{

  if (MEM == GET_CODE (op))
    {
      rtx address = XEXP (op, 0);

      /* Symbols are valid absolute addresses. */
      if (SYMBOL_REF == GET_CODE (address))
	return 1;

      /* Constant offsets to symbols are valid absolute addresses. */
      if (CONST == GET_CODE (address) &&
	  PLUS == GET_CODE (XEXP (address, 0)) &&
	  SYMBOL_REF == GET_CODE (XEXP (XEXP (address, 0), 0)) &&
	  CONST_INT == GET_CODE (XEXP (XEXP (address, 0), 1)))
	return 1;

    }
  else
    return 0;

  /* Symbols are valid absolute addresses. */
  if (SYMBOL_REF == GET_CODE (XEXP (op, 0)))
    return 1;


  return 0;

}

void
picochip_asm_named_section (const char *name,
			    unsigned int flags ATTRIBUTE_UNUSED,
			    tree decl ATTRIBUTE_UNUSED)
{
  fprintf (asm_out_file, ".section %s\n", name);
}


/* Check if we can make a conditional copy instruction.  This is emitted as an
   instruction to set the condition register, followed by an instruction which
   uses the condition registers to perform the conditional move. */
int
picochip_check_conditional_copy (rtx * operands)
{

  rtx branch_op_0 = XEXP (operands[1], 0);
  rtx branch_op_1 = XEXP (operands[1], 1);

  /* Only HI mode conditional moves are currently allowed.  Can we add
     SI mode moves? */
  if (GET_CODE (operands[1]) != EQ && GET_CODE (operands[1]) != NE)
    return 0;

  /* Is the comparison valid? Only allow operands which are registers
     if they are HImode.  SI mode comparisons against 0 could be
     handled using logical operations (e.g., SIreg != 0 when low ||
     high). Need to find test cases to provoke this though (fixunssfdi
     in libgcc does, but is complicated). */
  if (register_operand(branch_op_0, GET_MODE(branch_op_0)) &&
      GET_MODE(branch_op_0) != HImode)
    return 0;
  if (register_operand(branch_op_1, GET_MODE(branch_op_1)) &&
      GET_MODE(branch_op_1) != HImode)
    return 0;

  return 1;

}


static rtx
picochip_static_chain (const_tree ARG_UNUSED (fndecl), bool incoming_p)
{
  rtx addr;
  if (incoming_p)
    addr = arg_pointer_rtx;
  else
    addr = plus_constant (Pmode, stack_pointer_rtx, -2 * UNITS_PER_WORD);
  return gen_frame_mem (Pmode, addr);
}