1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
|
/* Predicate functions of Andes NDS32 cpu for GNU compiler
Copyright (C) 2012-2014 Free Software Foundation, Inc.
Contributed by Andes Technology Corporation.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 3, or (at your
option) any later version.
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
/* ------------------------------------------------------------------------ */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "stor-layout.h"
#include "varasm.h"
#include "calls.h"
#include "rtl.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "insn-config.h" /* Required by recog.h. */
#include "conditions.h"
#include "output.h"
#include "insn-attr.h" /* For DFA state_t. */
#include "insn-codes.h" /* For CODE_FOR_xxx. */
#include "reload.h" /* For push_reload(). */
#include "flags.h"
#include "hashtab.h"
#include "hash-set.h"
#include "vec.h"
#include "machmode.h"
#include "input.h"
#include "function.h"
#include "expr.h"
#include "recog.h"
#include "diagnostic-core.h"
#include "dominance.h"
#include "cfg.h"
#include "cfgrtl.h"
#include "cfganal.h"
#include "lcm.h"
#include "cfgbuild.h"
#include "cfgcleanup.h"
#include "predict.h"
#include "basic-block.h"
#include "df.h"
#include "tm_p.h"
#include "tm-constrs.h"
#include "optabs.h" /* For GEN_FCN. */
#include "target.h"
#include "target-def.h"
#include "langhooks.h" /* For add_builtin_function(). */
#include "ggc.h"
#include "builtins.h"
/* ------------------------------------------------------------------------ */
/* A subroutine that checks multiple load and store
using consecutive registers.
OP is a parallel rtx we would like to check.
LOAD_P indicates whether we are checking load operation.
PAR_INDEX is starting element of parallel rtx.
FIRST_ELT_REGNO is used to tell starting register number.
COUNT helps us to check consecutive register numbers. */
static bool
nds32_consecutive_registers_load_store_p (rtx op,
bool load_p,
int par_index,
int first_elt_regno,
int count)
{
int i;
int check_regno;
rtx elt;
rtx elt_reg;
rtx elt_mem;
for (i = 0; i < count; i++)
{
/* Pick up each element from parallel rtx. */
elt = XVECEXP (op, 0, i + par_index);
/* If this element is not a 'set' rtx, return false immediately. */
if (GET_CODE (elt) != SET)
return false;
/* Pick up reg and mem of this element. */
elt_reg = load_p ? SET_DEST (elt) : SET_SRC (elt);
elt_mem = load_p ? SET_SRC (elt) : SET_DEST (elt);
/* If elt_reg is not a expected reg rtx, return false. */
if (GET_CODE (elt_reg) != REG || GET_MODE (elt_reg) != SImode)
return false;
/* If elt_mem is not a expected mem rtx, return false. */
if (GET_CODE (elt_mem) != MEM || GET_MODE (elt_mem) != SImode)
return false;
/* The consecutive registers should be in (Rb,Rb+1...Re) order. */
check_regno = first_elt_regno + i;
/* If the register number is not continuous, return false. */
if (REGNO (elt_reg) != (unsigned int) check_regno)
return false;
}
return true;
}
/* Function to check whether the OP is a valid load/store operation.
This is a helper function for the predicates:
'nds32_load_multiple_operation' and 'nds32_store_multiple_operation'
in predicates.md file.
The OP is supposed to be a parallel rtx.
For each element within this parallel rtx:
(set (reg) (mem addr)) is the form for load operation.
(set (mem addr) (reg)) is the form for store operation.
We have to extract reg and mem of every element and
check if the information is valid for multiple load/store operation. */
bool
nds32_valid_multiple_load_store (rtx op, bool load_p)
{
int count;
int first_elt_regno;
rtx elt;
/* Get the counts of elements in the parallel rtx. */
count = XVECLEN (op, 0);
/* Pick up the first element. */
elt = XVECEXP (op, 0, 0);
/* Perform some quick check for the first element in the parallel rtx. */
if (GET_CODE (elt) != SET
|| count <= 1
|| count > 8)
return false;
/* Pick up regno of first element for further detail checking.
Note that the form is different between load and store operation. */
if (load_p)
{
if (GET_CODE (SET_DEST (elt)) != REG
|| GET_CODE (SET_SRC (elt)) != MEM)
return false;
first_elt_regno = REGNO (SET_DEST (elt));
}
else
{
if (GET_CODE (SET_SRC (elt)) != REG
|| GET_CODE (SET_DEST (elt)) != MEM)
return false;
first_elt_regno = REGNO (SET_SRC (elt));
}
/* Perform detail check for each element.
Refer to nds32-multiple.md for more information
about following checking.
The starting element of parallel rtx is index 0. */
if (!nds32_consecutive_registers_load_store_p (op, load_p, 0,
first_elt_regno,
count))
return false;
/* Pass all test, this is a valid rtx. */
return true;
}
/* Function to check whether the OP is a valid stack push/pop operation.
For a valid stack operation, it must satisfy following conditions:
1. Consecutive registers push/pop operations.
2. Valid $fp/$gp/$lp push/pop operations.
3. The last element must be stack adjustment rtx.
See the prologue/epilogue implementation for details. */
bool
nds32_valid_stack_push_pop_p (rtx op, bool push_p)
{
int index;
int total_count;
int rest_count;
int first_regno;
int save_fp, save_gp, save_lp;
rtx elt;
rtx elt_reg;
rtx elt_mem;
rtx elt_plus;
/* Get the counts of elements in the parallel rtx. */
total_count = XVECLEN (op, 0);
/* Perform some quick check for that every element should be 'set'. */
for (index = 0; index < total_count; index++)
{
elt = XVECEXP (op, 0, index);
if (GET_CODE (elt) != SET)
return false;
}
/* For push operation, the parallel rtx looks like:
(parallel [(set (mem (plus (reg:SI SP_REGNUM) (const_int -32)))
(reg:SI Rb))
(set (mem (plus (reg:SI SP_REGNUM) (const_int -28)))
(reg:SI Rb+1))
...
(set (mem (plus (reg:SI SP_REGNUM) (const_int -16)))
(reg:SI Re))
(set (mem (plus (reg:SI SP_REGNUM) (const_int -12)))
(reg:SI FP_REGNUM))
(set (mem (plus (reg:SI SP_REGNUM) (const_int -8)))
(reg:SI GP_REGNUM))
(set (mem (plus (reg:SI SP_REGNUM) (const_int -4)))
(reg:SI LP_REGNUM))
(set (reg:SI SP_REGNUM)
(plus (reg:SI SP_REGNUM) (const_int -32)))])
For pop operation, the parallel rtx looks like:
(parallel [(set (reg:SI Rb)
(mem (reg:SI SP_REGNUM)))
(set (reg:SI Rb+1)
(mem (plus (reg:SI SP_REGNUM) (const_int 4))))
...
(set (reg:SI Re)
(mem (plus (reg:SI SP_REGNUM) (const_int 16))))
(set (reg:SI FP_REGNUM)
(mem (plus (reg:SI SP_REGNUM) (const_int 20))))
(set (reg:SI GP_REGNUM)
(mem (plus (reg:SI SP_REGNUM) (const_int 24))))
(set (reg:SI LP_REGNUM)
(mem (plus (reg:SI SP_REGNUM) (const_int 28))))
(set (reg:SI SP_REGNUM)
(plus (reg:SI SP_REGNUM) (const_int 32)))]) */
/* 1. Consecutive registers push/pop operations.
We need to calculate how many registers should be consecutive.
The $sp adjustment rtx, $fp push rtx, $gp push rtx,
and $lp push rtx are excluded. */
/* Detect whether we have $fp, $gp, or $lp in the parallel rtx. */
save_fp = reg_mentioned_p (gen_rtx_REG (SImode, FP_REGNUM), op);
save_gp = reg_mentioned_p (gen_rtx_REG (SImode, GP_REGNUM), op);
save_lp = reg_mentioned_p (gen_rtx_REG (SImode, LP_REGNUM), op);
/* Exclude last $sp adjustment rtx. */
rest_count = total_count - 1;
/* Exclude $fp, $gp, and $lp if they are in the parallel rtx. */
if (save_fp)
rest_count--;
if (save_gp)
rest_count--;
if (save_lp)
rest_count--;
if (rest_count > 0)
{
elt = XVECEXP (op, 0, 0);
/* Pick up register element. */
elt_reg = push_p ? SET_SRC (elt) : SET_DEST (elt);
first_regno = REGNO (elt_reg);
/* The 'push' operation is a kind of store operation.
The 'pop' operation is a kind of load operation.
Pass corresponding false/true as second argument (bool load_p).
The par_index is supposed to start with index 0. */
if (!nds32_consecutive_registers_load_store_p (op,
!push_p ? true : false,
0,
first_regno,
rest_count))
return false;
}
/* 2. Valid $fp/$gp/$lp push/pop operations.
Remember to set start index for checking them. */
/* The rest_count is the start index for checking $fp/$gp/$lp. */
index = rest_count;
/* If index < 0, this parallel rtx is definitely
not a valid stack push/pop operation. */
if (index < 0)
return false;
/* Check $fp/$gp/$lp one by one.
We use 'push_p' to pick up reg rtx and mem rtx. */
if (save_fp)
{
elt = XVECEXP (op, 0, index);
elt_mem = push_p ? SET_DEST (elt) : SET_SRC (elt);
elt_reg = push_p ? SET_SRC (elt) : SET_DEST (elt);
index++;
if (GET_CODE (elt_mem) != MEM
|| GET_CODE (elt_reg) != REG
|| REGNO (elt_reg) != FP_REGNUM)
return false;
}
if (save_gp)
{
elt = XVECEXP (op, 0, index);
elt_mem = push_p ? SET_DEST (elt) : SET_SRC (elt);
elt_reg = push_p ? SET_SRC (elt) : SET_DEST (elt);
index++;
if (GET_CODE (elt_mem) != MEM
|| GET_CODE (elt_reg) != REG
|| REGNO (elt_reg) != GP_REGNUM)
return false;
}
if (save_lp)
{
elt = XVECEXP (op, 0, index);
elt_mem = push_p ? SET_DEST (elt) : SET_SRC (elt);
elt_reg = push_p ? SET_SRC (elt) : SET_DEST (elt);
index++;
if (GET_CODE (elt_mem) != MEM
|| GET_CODE (elt_reg) != REG
|| REGNO (elt_reg) != LP_REGNUM)
return false;
}
/* 3. The last element must be stack adjustment rtx.
Its form of rtx should be:
(set (reg:SI SP_REGNUM)
(plus (reg:SI SP_REGNUM) (const_int X)))
The X could be positive or negative value. */
/* Pick up the last element. */
elt = XVECEXP (op, 0, total_count - 1);
/* Extract its destination and source rtx. */
elt_reg = SET_DEST (elt);
elt_plus = SET_SRC (elt);
/* Check this is (set (stack_reg) (plus stack_reg const)) pattern. */
if (GET_CODE (elt_reg) != REG
|| GET_CODE (elt_plus) != PLUS
|| REGNO (elt_reg) != SP_REGNUM)
return false;
/* Pass all test, this is a valid rtx. */
return true;
}
/* Function to check if 'bclr' instruction can be used with IVAL. */
int
nds32_can_use_bclr_p (int ival)
{
int one_bit_count;
/* Calculate the number of 1-bit of (~ival), if there is only one 1-bit,
it means the original ival has only one 0-bit,
So it is ok to perform 'bclr' operation. */
one_bit_count = popcount_hwi ((unsigned HOST_WIDE_INT) (~ival));
/* 'bclr' is a performance extension instruction. */
return (TARGET_PERF_EXT && (one_bit_count == 1));
}
/* Function to check if 'bset' instruction can be used with IVAL. */
int
nds32_can_use_bset_p (int ival)
{
int one_bit_count;
/* Caculate the number of 1-bit of ival, if there is only one 1-bit,
it is ok to perform 'bset' operation. */
one_bit_count = popcount_hwi ((unsigned HOST_WIDE_INT) (ival));
/* 'bset' is a performance extension instruction. */
return (TARGET_PERF_EXT && (one_bit_count == 1));
}
/* Function to check if 'btgl' instruction can be used with IVAL. */
int
nds32_can_use_btgl_p (int ival)
{
int one_bit_count;
/* Caculate the number of 1-bit of ival, if there is only one 1-bit,
it is ok to perform 'btgl' operation. */
one_bit_count = popcount_hwi ((unsigned HOST_WIDE_INT) (ival));
/* 'btgl' is a performance extension instruction. */
return (TARGET_PERF_EXT && (one_bit_count == 1));
}
/* Function to check if 'bitci' instruction can be used with IVAL. */
int
nds32_can_use_bitci_p (int ival)
{
/* If we are using V3 ISA, we have 'bitci' instruction.
Try to see if we can present 'andi' semantic with
such 'bit-clear-immediate' operation.
For example, 'andi $r0,$r0,0xfffffffc' can be
presented with 'bitci $r0,$r0,3'. */
return (TARGET_ISA_V3
&& (ival < 0)
&& satisfies_constraint_Iu15 (gen_int_mode (~ival, SImode)));
}
/* ------------------------------------------------------------------------ */
|