summaryrefslogtreecommitdiff
path: root/gcc/config/mn10300/mn10300.c
blob: 342c336f118b3daa02262cf28d5988ee27813e83 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
/* Subroutines for insn-output.c for Matsushita MN10300 series
   Copyright (C) 1996-2013 Free Software Foundation, Inc.
   Contributed by Jeff Law (law@cygnus.com).

   This file is part of GCC.

   GCC is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3, or (at your option)
   any later version.

   GCC is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with GCC; see the file COPYING3.  If not see
   <http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "rtl.h"
#include "tree.h"
#include "stor-layout.h"
#include "varasm.h"
#include "calls.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "insn-config.h"
#include "conditions.h"
#include "output.h"
#include "insn-attr.h"
#include "flags.h"
#include "recog.h"
#include "reload.h"
#include "expr.h"
#include "optabs.h"
#include "function.h"
#include "obstack.h"
#include "diagnostic-core.h"
#include "tm_p.h"
#include "tm-constrs.h"
#include "target.h"
#include "target-def.h"
#include "df.h"
#include "opts.h"
#include "cfgloop.h"
#include "dumpfile.h"

/* This is used in the am33_2.0-linux-gnu port, in which global symbol
   names are not prefixed by underscores, to tell whether to prefix a
   label with a plus sign or not, so that the assembler can tell
   symbol names from register names.  */
int mn10300_protect_label;

/* Selected processor type for tuning.  */
enum processor_type mn10300_tune_cpu = PROCESSOR_DEFAULT;

#define CC_FLAG_Z	1
#define CC_FLAG_N	2
#define CC_FLAG_C	4
#define CC_FLAG_V	8

static int cc_flags_for_mode(enum machine_mode);
static int cc_flags_for_code(enum rtx_code);

/* Implement TARGET_OPTION_OVERRIDE.  */

static void
mn10300_option_override (void)
{
  if (TARGET_AM33)
    target_flags &= ~MASK_MULT_BUG;
  else
    {
      /* Disable scheduling for the MN10300 as we do
	 not have timing information available for it.  */
      flag_schedule_insns = 0;
      flag_schedule_insns_after_reload = 0;

      /* Force enable splitting of wide types, as otherwise it is trivial
	 to run out of registers.  Indeed, this works so well that register
	 allocation problems are now more common *without* optimization,
	 when this flag is not enabled by default.  */
      flag_split_wide_types = 1;
    }

  if (mn10300_tune_string)
    {
      if (strcasecmp (mn10300_tune_string, "mn10300") == 0)
	mn10300_tune_cpu = PROCESSOR_MN10300;
      else if (strcasecmp (mn10300_tune_string, "am33") == 0)
	mn10300_tune_cpu = PROCESSOR_AM33;
      else if (strcasecmp (mn10300_tune_string, "am33-2") == 0)
	mn10300_tune_cpu = PROCESSOR_AM33_2;
      else if (strcasecmp (mn10300_tune_string, "am34") == 0)
	mn10300_tune_cpu = PROCESSOR_AM34;
      else
	error ("-mtune= expects mn10300, am33, am33-2, or am34");
    }
}

static void
mn10300_file_start (void)
{
  default_file_start ();

  if (TARGET_AM33_2)
    fprintf (asm_out_file, "\t.am33_2\n");
  else if (TARGET_AM33)
    fprintf (asm_out_file, "\t.am33\n");
}

/* Note: This list must match the liw_op attribute in mn10300.md.  */

static const char *liw_op_names[] =
{
  "add", "cmp", "sub", "mov",
  "and", "or", "xor",
  "asr", "lsr", "asl",
  "none", "max"
};

/* Print operand X using operand code CODE to assembly language output file
   FILE.  */

void
mn10300_print_operand (FILE *file, rtx x, int code)
{
  switch (code)
    {
    case 'W':
      {
	unsigned int liw_op = UINTVAL (x);

	gcc_assert (TARGET_ALLOW_LIW);
	gcc_assert (liw_op < LIW_OP_MAX);
	fputs (liw_op_names[liw_op], file);
	break;
      }

    case 'b':
    case 'B':
      {
	enum rtx_code cmp = GET_CODE (x);
	enum machine_mode mode = GET_MODE (XEXP (x, 0));
	const char *str;
	int have_flags;

	if (code == 'B')
	  cmp = reverse_condition (cmp);
	have_flags = cc_flags_for_mode (mode);

	switch (cmp)
	  {
	  case NE:
	    str = "ne";
	    break;
	  case EQ:
	    str = "eq";
	    break;
	  case GE:
	    /* bge is smaller than bnc.  */
	    str = (have_flags & CC_FLAG_V ? "ge" : "nc");
	    break;
	  case LT:
	    str = (have_flags & CC_FLAG_V ? "lt" : "ns");
	    break;
	  case GT:
	    str = "gt";
	    break;
	  case LE:
	    str = "le";
	    break;
	  case GEU:
	    str = "cc";
	    break;
	  case GTU:
	    str = "hi";
	    break;
	  case LEU:
	    str = "ls";
	    break;
	  case LTU:
	    str = "cs";
	    break;
	  case ORDERED:
	    str = "lge";
	    break;
	  case UNORDERED:
	    str = "uo";
	    break;
	  case LTGT:
	    str = "lg";
	    break;
	  case UNEQ:
	    str = "ue";
	    break;
	  case UNGE:
	    str = "uge";
	    break;
	  case UNGT:
	    str = "ug";
	    break;
	  case UNLE:
	    str = "ule";
	    break;
	  case UNLT:
	    str = "ul";
	    break;
	  default:
	    gcc_unreachable ();
	  }

	gcc_checking_assert ((cc_flags_for_code (cmp) & ~have_flags) == 0);
	fputs (str, file);
      }
      break;

    case 'C':
      /* This is used for the operand to a call instruction;
	 if it's a REG, enclose it in parens, else output
	 the operand normally.  */
      if (REG_P (x))
	{
	  fputc ('(', file);
	  mn10300_print_operand (file, x, 0);
	  fputc (')', file);
	}
      else
	mn10300_print_operand (file, x, 0);
      break;

    case 'D':
      switch (GET_CODE (x))
	{
	case MEM:
	  fputc ('(', file);
	  output_address (XEXP (x, 0));
	  fputc (')', file);
	  break;

	case REG:
	  fprintf (file, "fd%d", REGNO (x) - 18);
	  break;

	default:
	  gcc_unreachable ();
	}
      break;

      /* These are the least significant word in a 64bit value.  */
    case 'L':
      switch (GET_CODE (x))
	{
	case MEM:
	  fputc ('(', file);
	  output_address (XEXP (x, 0));
	  fputc (')', file);
	  break;

	case REG:
	  fprintf (file, "%s", reg_names[REGNO (x)]);
	  break;

	case SUBREG:
	  fprintf (file, "%s", reg_names[subreg_regno (x)]);
	  break;

	case CONST_DOUBLE:
	  {
	    long val[2];
	    REAL_VALUE_TYPE rv;

	    switch (GET_MODE (x))
	      {
	      case DFmode:
		REAL_VALUE_FROM_CONST_DOUBLE (rv, x);
		REAL_VALUE_TO_TARGET_DOUBLE (rv, val);
		fprintf (file, "0x%lx", val[0]);
		break;;
	      case SFmode:
		REAL_VALUE_FROM_CONST_DOUBLE (rv, x);
		REAL_VALUE_TO_TARGET_SINGLE (rv, val[0]);
		fprintf (file, "0x%lx", val[0]);
		break;;
	      case VOIDmode:
	      case DImode:
		mn10300_print_operand_address (file,
					       GEN_INT (CONST_DOUBLE_LOW (x)));
		break;
	      default:
		break;
	      }
	    break;
	  }

	case CONST_INT:
	  {
	    rtx low, high;
	    split_double (x, &low, &high);
	    fprintf (file, "%ld", (long)INTVAL (low));
	    break;
	    }

	default:
	  gcc_unreachable ();
	}
      break;

      /* Similarly, but for the most significant word.  */
    case 'H':
      switch (GET_CODE (x))
	{
	case MEM:
	  fputc ('(', file);
	  x = adjust_address (x, SImode, 4);
	  output_address (XEXP (x, 0));
	  fputc (')', file);
	  break;

	case REG:
	  fprintf (file, "%s", reg_names[REGNO (x) + 1]);
	  break;

	case SUBREG:
	  fprintf (file, "%s", reg_names[subreg_regno (x) + 1]);
	  break;

	case CONST_DOUBLE:
	  {
	    long val[2];
	    REAL_VALUE_TYPE rv;

	    switch (GET_MODE (x))
	      {
	      case DFmode:
		REAL_VALUE_FROM_CONST_DOUBLE (rv, x);
		REAL_VALUE_TO_TARGET_DOUBLE (rv, val);
		fprintf (file, "0x%lx", val[1]);
		break;;
	      case SFmode:
		gcc_unreachable ();
	      case VOIDmode:
	      case DImode:
		mn10300_print_operand_address (file,
					       GEN_INT (CONST_DOUBLE_HIGH (x)));
		break;
	      default:
		break;
	      }
	    break;
	  }

	case CONST_INT:
	  {
	    rtx low, high;
	    split_double (x, &low, &high);
	    fprintf (file, "%ld", (long)INTVAL (high));
	    break;
	  }

	default:
	  gcc_unreachable ();
	}
      break;

    case 'A':
      fputc ('(', file);
      if (REG_P (XEXP (x, 0)))
	output_address (gen_rtx_PLUS (SImode, XEXP (x, 0), const0_rtx));
      else
	output_address (XEXP (x, 0));
      fputc (')', file);
      break;

    case 'N':
      gcc_assert (INTVAL (x) >= -128 && INTVAL (x) <= 255);
      fprintf (file, "%d", (int)((~INTVAL (x)) & 0xff));
      break;

    case 'U':
      gcc_assert (INTVAL (x) >= -128 && INTVAL (x) <= 255);
      fprintf (file, "%d", (int)(INTVAL (x) & 0xff));
      break;

      /* For shift counts.  The hardware ignores the upper bits of
	 any immediate, but the assembler will flag an out of range
	 shift count as an error.  So we mask off the high bits
	 of the immediate here.  */
    case 'S':
      if (CONST_INT_P (x))
	{
	  fprintf (file, "%d", (int)(INTVAL (x) & 0x1f));
	  break;
	}
      /* FALL THROUGH */

    default:
      switch (GET_CODE (x))
	{
	case MEM:
	  fputc ('(', file);
	  output_address (XEXP (x, 0));
	  fputc (')', file);
	  break;

	case PLUS:
	  output_address (x);
	  break;

	case REG:
	  fprintf (file, "%s", reg_names[REGNO (x)]);
	  break;

	case SUBREG:
	  fprintf (file, "%s", reg_names[subreg_regno (x)]);
	  break;

	  /* This will only be single precision....  */
	case CONST_DOUBLE:
	  {
	    unsigned long val;
	    REAL_VALUE_TYPE rv;

	    REAL_VALUE_FROM_CONST_DOUBLE (rv, x);
	    REAL_VALUE_TO_TARGET_SINGLE (rv, val);
	    fprintf (file, "0x%lx", val);
	    break;
	  }

	case CONST_INT:
	case SYMBOL_REF:
	case CONST:
	case LABEL_REF:
	case CODE_LABEL:
	case UNSPEC:
	  mn10300_print_operand_address (file, x);
	  break;
	default:
	  gcc_unreachable ();
	}
      break;
    }
}

/* Output assembly language output for the address ADDR to FILE.  */

void
mn10300_print_operand_address (FILE *file, rtx addr)
{
  switch (GET_CODE (addr))
    {
    case POST_INC:
      mn10300_print_operand (file, XEXP (addr, 0), 0);
      fputc ('+', file);
      break;

    case POST_MODIFY:
      mn10300_print_operand (file, XEXP (addr, 0), 0);
      fputc ('+', file);
      fputc (',', file);
      mn10300_print_operand (file, XEXP (addr, 1), 0);
      break;

    case REG:
      mn10300_print_operand (file, addr, 0);
      break;
    case PLUS:
      {
	rtx base = XEXP (addr, 0);
	rtx index = XEXP (addr, 1);
	
	if (REG_P (index) && !REG_OK_FOR_INDEX_P (index))
	  {
	    rtx x = base;
	    base = index;
	    index = x;

	    gcc_assert (REG_P (index) && REG_OK_FOR_INDEX_P (index));
	  }
	gcc_assert (REG_OK_FOR_BASE_P (base));

	mn10300_print_operand (file, index, 0);
	fputc (',', file);
	mn10300_print_operand (file, base, 0);
	break;
      }
    case SYMBOL_REF:
      output_addr_const (file, addr);
      break;
    default:
      output_addr_const (file, addr);
      break;
    }
}

/* Implement TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA.

   Used for PIC-specific UNSPECs.  */

static bool
mn10300_asm_output_addr_const_extra (FILE *file, rtx x)
{
  if (GET_CODE (x) == UNSPEC)
    {
      switch (XINT (x, 1))
	{
	case UNSPEC_PIC:
	  /* GLOBAL_OFFSET_TABLE or local symbols, no suffix.  */
	  output_addr_const (file, XVECEXP (x, 0, 0));
	  break;
	case UNSPEC_GOT:
	  output_addr_const (file, XVECEXP (x, 0, 0));
	  fputs ("@GOT", file);
	  break;
	case UNSPEC_GOTOFF:
	  output_addr_const (file, XVECEXP (x, 0, 0));
	  fputs ("@GOTOFF", file);
	  break;
	case UNSPEC_PLT:
	  output_addr_const (file, XVECEXP (x, 0, 0));
	  fputs ("@PLT", file);
	  break;
	case UNSPEC_GOTSYM_OFF:
	  assemble_name (file, GOT_SYMBOL_NAME);
	  fputs ("-(", file);
	  output_addr_const (file, XVECEXP (x, 0, 0));
	  fputs ("-.)", file);
	  break;
	default:
	  return false;
	}
      return true;
    }
  else
    return false;
}

/* Count the number of FP registers that have to be saved.  */
static int
fp_regs_to_save (void)
{
  int i, n = 0;

  if (! TARGET_AM33_2)
    return 0;

  for (i = FIRST_FP_REGNUM; i <= LAST_FP_REGNUM; ++i)
    if (df_regs_ever_live_p (i) && ! call_really_used_regs[i])
      ++n;

  return n;
}

/* Print a set of registers in the format required by "movm" and "ret".
   Register K is saved if bit K of MASK is set.  The data and address
   registers can be stored individually, but the extended registers cannot.
   We assume that the mask already takes that into account.  For instance,
   bits 14 to 17 must have the same value.  */

void
mn10300_print_reg_list (FILE *file, int mask)
{
  int need_comma;
  int i;

  need_comma = 0;
  fputc ('[', file);

  for (i = 0; i < FIRST_EXTENDED_REGNUM; i++)
    if ((mask & (1 << i)) != 0)
      {
	if (need_comma)
	  fputc (',', file);
	fputs (reg_names [i], file);
	need_comma = 1;
      }

  if ((mask & 0x3c000) != 0)
    {
      gcc_assert ((mask & 0x3c000) == 0x3c000);
      if (need_comma)
	fputc (',', file);
      fputs ("exreg1", file);
      need_comma = 1;
    }

  fputc (']', file);
}

/* If the MDR register is never clobbered, we can use the RETF instruction
   which takes the address from the MDR register.  This is 3 cycles faster
   than having to load the address from the stack.  */

bool
mn10300_can_use_retf_insn (void)
{
  /* Don't bother if we're not optimizing.  In this case we won't
     have proper access to df_regs_ever_live_p.  */
  if (!optimize)
    return false;

  /* EH returns alter the saved return address; MDR is not current.  */
  if (crtl->calls_eh_return)
    return false;

  /* Obviously not if MDR is ever clobbered.  */
  if (df_regs_ever_live_p (MDR_REG))
    return false;

  /* ??? Careful not to use this during expand_epilogue etc.  */
  gcc_assert (!in_sequence_p ());
  return leaf_function_p ();
}

bool
mn10300_can_use_rets_insn (void)
{
  return !mn10300_initial_offset (ARG_POINTER_REGNUM, STACK_POINTER_REGNUM);
}

/* Returns the set of live, callee-saved registers as a bitmask.  The
   callee-saved extended registers cannot be stored individually, so
   all of them will be included in the mask if any one of them is used.
   Also returns the number of bytes in the registers in the mask if
   BYTES_SAVED is not NULL.  */

unsigned int
mn10300_get_live_callee_saved_regs (unsigned int * bytes_saved)
{
  int mask;
  int i;
  unsigned int count;

  count = mask = 0;
  for (i = 0; i <= LAST_EXTENDED_REGNUM; i++)
    if (df_regs_ever_live_p (i) && ! call_really_used_regs[i])
      {
	mask |= (1 << i);
	++ count;
      }

  if ((mask & 0x3c000) != 0)
    {
      for (i = 0x04000; i < 0x40000; i <<= 1)
	if ((mask & i) == 0)
	  ++ count;
      
      mask |= 0x3c000;
    }

  if (bytes_saved)
    * bytes_saved = count * UNITS_PER_WORD;

  return mask;
}

static rtx
F (rtx r)
{
  RTX_FRAME_RELATED_P (r) = 1;
  return r;
}

/* Generate an instruction that pushes several registers onto the stack.
   Register K will be saved if bit K in MASK is set.  The function does
   nothing if MASK is zero.

   To be compatible with the "movm" instruction, the lowest-numbered
   register must be stored in the lowest slot.  If MASK is the set
   { R1,...,RN }, where R1...RN are ordered least first, the generated
   instruction will have the form:

       (parallel
         (set (reg:SI 9) (plus:SI (reg:SI 9) (const_int -N*4)))
	 (set (mem:SI (plus:SI (reg:SI 9)
	                       (const_int -1*4)))
	      (reg:SI RN))
	 ...
	 (set (mem:SI (plus:SI (reg:SI 9)
	                       (const_int -N*4)))
	      (reg:SI R1))) */

static void
mn10300_gen_multiple_store (unsigned int mask)
{
  /* The order in which registers are stored, from SP-4 through SP-N*4.  */
  static const unsigned int store_order[8] = {
    /* e2, e3: never saved */
    FIRST_EXTENDED_REGNUM + 4,
    FIRST_EXTENDED_REGNUM + 5,
    FIRST_EXTENDED_REGNUM + 6,
    FIRST_EXTENDED_REGNUM + 7,
    /* e0, e1, mdrq, mcrh, mcrl, mcvf: never saved. */
    FIRST_DATA_REGNUM + 2,
    FIRST_DATA_REGNUM + 3,
    FIRST_ADDRESS_REGNUM + 2,
    FIRST_ADDRESS_REGNUM + 3,
    /* d0, d1, a0, a1, mdr, lir, lar: never saved.  */
  };

  rtx x, elts[9];
  unsigned int i;
  int count;

  if (mask == 0)
    return;

  for (i = count = 0; i < ARRAY_SIZE(store_order); ++i)
    {
      unsigned regno = store_order[i];

      if (((mask >> regno) & 1) == 0)
	continue;

      ++count;
      x = plus_constant (Pmode, stack_pointer_rtx, count * -4);
      x = gen_frame_mem (SImode, x);
      x = gen_rtx_SET (VOIDmode, x, gen_rtx_REG (SImode, regno));
      elts[count] = F(x);

      /* Remove the register from the mask so that... */
      mask &= ~(1u << regno);
    }

  /* ... we can make sure that we didn't try to use a register
     not listed in the store order.  */
  gcc_assert (mask == 0);

  /* Create the instruction that updates the stack pointer.  */
  x = plus_constant (Pmode, stack_pointer_rtx, count * -4);
  x = gen_rtx_SET (VOIDmode, stack_pointer_rtx, x);
  elts[0] = F(x);

  /* We need one PARALLEL element to update the stack pointer and
     an additional element for each register that is stored.  */
  x = gen_rtx_PARALLEL (VOIDmode, gen_rtvec_v (count + 1, elts));
  F (emit_insn (x));
}

void
mn10300_expand_prologue (void)
{
  HOST_WIDE_INT size = mn10300_frame_size ();

  if (flag_stack_usage_info)
    current_function_static_stack_size = size;

  /* If we use any of the callee-saved registers, save them now.  */
  mn10300_gen_multiple_store (mn10300_get_live_callee_saved_regs (NULL));

  if (TARGET_AM33_2 && fp_regs_to_save ())
    {
      int num_regs_to_save = fp_regs_to_save (), i;
      HOST_WIDE_INT xsize;
      enum
      {
	save_sp_merge,
	save_sp_no_merge,
	save_sp_partial_merge,
	save_a0_merge,
	save_a0_no_merge
      } strategy;
      unsigned int strategy_size = (unsigned)-1, this_strategy_size;
      rtx reg;

      /* We have several different strategies to save FP registers.
	 We can store them using SP offsets, which is beneficial if
	 there are just a few registers to save, or we can use `a0' in
	 post-increment mode (`a0' is the only call-clobbered address
	 register that is never used to pass information to a
	 function).  Furthermore, if we don't need a frame pointer, we
	 can merge the two SP adds into a single one, but this isn't
	 always beneficial; sometimes we can just split the two adds
	 so that we don't exceed a 16-bit constant size.  The code
	 below will select which strategy to use, so as to generate
	 smallest code.  Ties are broken in favor or shorter sequences
	 (in terms of number of instructions).  */

#define SIZE_ADD_AX(S) ((((S) >= (1 << 15)) || ((S) < -(1 << 15))) ? 6 \
			: (((S) >= (1 << 7)) || ((S) < -(1 << 7))) ? 4 : 2)
#define SIZE_ADD_SP(S) ((((S) >= (1 << 15)) || ((S) < -(1 << 15))) ? 6 \
			: (((S) >= (1 << 7)) || ((S) < -(1 << 7))) ? 4 : 3)

/* We add 0 * (S) in two places to promote to the type of S,
   so that all arms of the conditional have the same type.  */
#define SIZE_FMOV_LIMIT(S,N,L,SIZE1,SIZE2,ELSE) \
  (((S) >= (L)) ? 0 * (S) + (SIZE1) * (N) \
   : ((S) + 4 * (N) >= (L)) ? (((L) - (S)) / 4 * (SIZE2) \
			       + ((S) + 4 * (N) - (L)) / 4 * (SIZE1)) \
   : 0 * (S) + (ELSE))
#define SIZE_FMOV_SP_(S,N) \
  (SIZE_FMOV_LIMIT ((S), (N), (1 << 24), 7, 6, \
                   SIZE_FMOV_LIMIT ((S), (N), (1 << 8), 6, 4, \
				    (S) ? 4 * (N) : 3 + 4 * ((N) - 1))))
#define SIZE_FMOV_SP(S,N) (SIZE_FMOV_SP_ ((unsigned HOST_WIDE_INT)(S), (N)))

      /* Consider alternative save_sp_merge only if we don't need the
	 frame pointer and size is nonzero.  */
      if (! frame_pointer_needed && size)
	{
	  /* Insn: add -(size + 4 * num_regs_to_save), sp.  */
	  this_strategy_size = SIZE_ADD_SP (-(size + 4 * num_regs_to_save));
	  /* Insn: fmov fs#, (##, sp), for each fs# to be saved.  */
	  this_strategy_size += SIZE_FMOV_SP (size, num_regs_to_save);

	  if (this_strategy_size < strategy_size)
	    {
	      strategy = save_sp_merge;
	      strategy_size = this_strategy_size;
	    }
	}

      /* Consider alternative save_sp_no_merge unconditionally.  */
      /* Insn: add -4 * num_regs_to_save, sp.  */
      this_strategy_size = SIZE_ADD_SP (-4 * num_regs_to_save);
      /* Insn: fmov fs#, (##, sp), for each fs# to be saved.  */
      this_strategy_size += SIZE_FMOV_SP (0, num_regs_to_save);
      if (size)
	{
	  /* Insn: add -size, sp.  */
	  this_strategy_size += SIZE_ADD_SP (-size);
	}

      if (this_strategy_size < strategy_size)
	{
	  strategy = save_sp_no_merge;
	  strategy_size = this_strategy_size;
	}

      /* Consider alternative save_sp_partial_merge only if we don't
	 need a frame pointer and size is reasonably large.  */
      if (! frame_pointer_needed && size + 4 * num_regs_to_save > 128)
	{
	  /* Insn: add -128, sp.  */
	  this_strategy_size = SIZE_ADD_SP (-128);
	  /* Insn: fmov fs#, (##, sp), for each fs# to be saved.  */
	  this_strategy_size += SIZE_FMOV_SP (128 - 4 * num_regs_to_save,
					      num_regs_to_save);
	  if (size)
	    {
	      /* Insn: add 128-size, sp.  */
	      this_strategy_size += SIZE_ADD_SP (128 - size);
	    }

	  if (this_strategy_size < strategy_size)
	    {
	      strategy = save_sp_partial_merge;
	      strategy_size = this_strategy_size;
	    }
	}

      /* Consider alternative save_a0_merge only if we don't need a
	 frame pointer, size is nonzero and the user hasn't
	 changed the calling conventions of a0.  */
      if (! frame_pointer_needed && size
	  && call_really_used_regs [FIRST_ADDRESS_REGNUM]
	  && ! fixed_regs[FIRST_ADDRESS_REGNUM])
	{
	  /* Insn: add -(size + 4 * num_regs_to_save), sp.  */
	  this_strategy_size = SIZE_ADD_SP (-(size + 4 * num_regs_to_save));
	  /* Insn: mov sp, a0.  */
	  this_strategy_size++;
	  if (size)
	    {
	      /* Insn: add size, a0.  */
	      this_strategy_size += SIZE_ADD_AX (size);
	    }
	  /* Insn: fmov fs#, (a0+), for each fs# to be saved.  */
	  this_strategy_size += 3 * num_regs_to_save;

	  if (this_strategy_size < strategy_size)
	    {
	      strategy = save_a0_merge;
	      strategy_size = this_strategy_size;
	    }
	}

      /* Consider alternative save_a0_no_merge if the user hasn't
	 changed the calling conventions of a0.  */
      if (call_really_used_regs [FIRST_ADDRESS_REGNUM]
	  && ! fixed_regs[FIRST_ADDRESS_REGNUM])
	{
	  /* Insn: add -4 * num_regs_to_save, sp.  */
	  this_strategy_size = SIZE_ADD_SP (-4 * num_regs_to_save);
	  /* Insn: mov sp, a0.  */
	  this_strategy_size++;
	  /* Insn: fmov fs#, (a0+), for each fs# to be saved.  */
	  this_strategy_size += 3 * num_regs_to_save;
	  if (size)
	    {
	      /* Insn: add -size, sp.  */
	      this_strategy_size += SIZE_ADD_SP (-size);
	    }

	  if (this_strategy_size < strategy_size)
	    {
	      strategy = save_a0_no_merge;
	      strategy_size = this_strategy_size;
	    }
	}

      /* Emit the initial SP add, common to all strategies.  */
      switch (strategy)
	{
	case save_sp_no_merge:
	case save_a0_no_merge:
	  F (emit_insn (gen_addsi3 (stack_pointer_rtx,
				    stack_pointer_rtx,
				    GEN_INT (-4 * num_regs_to_save))));
	  xsize = 0;
	  break;

	case save_sp_partial_merge:
	  F (emit_insn (gen_addsi3 (stack_pointer_rtx,
				    stack_pointer_rtx,
				    GEN_INT (-128))));
	  xsize = 128 - 4 * num_regs_to_save;
	  size -= xsize;
	  break;

	case save_sp_merge:
	case save_a0_merge:
	  F (emit_insn (gen_addsi3 (stack_pointer_rtx,
				    stack_pointer_rtx,
				    GEN_INT (-(size + 4 * num_regs_to_save)))));
	  /* We'll have to adjust FP register saves according to the
	     frame size.  */
	  xsize = size;
	  /* Since we've already created the stack frame, don't do it
	     again at the end of the function.  */
	  size = 0;
	  break;

	default:
	  gcc_unreachable ();
	}

      /* Now prepare register a0, if we have decided to use it.  */
      switch (strategy)
	{
	case save_sp_merge:
	case save_sp_no_merge:
	case save_sp_partial_merge:
	  reg = 0;
	  break;

	case save_a0_merge:
	case save_a0_no_merge:
	  reg = gen_rtx_REG (SImode, FIRST_ADDRESS_REGNUM);
	  F (emit_insn (gen_movsi (reg, stack_pointer_rtx)));
	  if (xsize)
	    F (emit_insn (gen_addsi3 (reg, reg, GEN_INT (xsize))));
	  reg = gen_rtx_POST_INC (SImode, reg);
	  break;

	default:
	  gcc_unreachable ();
	}

      /* Now actually save the FP registers.  */
      for (i = FIRST_FP_REGNUM; i <= LAST_FP_REGNUM; ++i)
	if (df_regs_ever_live_p (i) && ! call_really_used_regs [i])
	  {
	    rtx addr;

	    if (reg)
	      addr = reg;
	    else
	      {
		/* If we aren't using `a0', use an SP offset.  */
		if (xsize)
		  {
		    addr = gen_rtx_PLUS (SImode,
					 stack_pointer_rtx,
					 GEN_INT (xsize));
		  }
		else
		  addr = stack_pointer_rtx;

		xsize += 4;
	      }

	    F (emit_insn (gen_movsf (gen_rtx_MEM (SFmode, addr),
				     gen_rtx_REG (SFmode, i))));
	  }
    }

  /* Now put the frame pointer into the frame pointer register.  */
  if (frame_pointer_needed)
    F (emit_move_insn (frame_pointer_rtx, stack_pointer_rtx));

  /* Allocate stack for this frame.  */
  if (size)
    F (emit_insn (gen_addsi3 (stack_pointer_rtx,
			      stack_pointer_rtx,
			      GEN_INT (-size))));

  if (flag_pic && df_regs_ever_live_p (PIC_OFFSET_TABLE_REGNUM))
    emit_insn (gen_load_pic ());
}

void
mn10300_expand_epilogue (void)
{
  HOST_WIDE_INT size = mn10300_frame_size ();
  unsigned int reg_save_bytes;

  mn10300_get_live_callee_saved_regs (& reg_save_bytes);

  if (TARGET_AM33_2 && fp_regs_to_save ())
    {
      int num_regs_to_save = fp_regs_to_save (), i;
      rtx reg = 0;

      /* We have several options to restore FP registers.  We could
	 load them from SP offsets, but, if there are enough FP
	 registers to restore, we win if we use a post-increment
	 addressing mode.  */

      /* If we have a frame pointer, it's the best option, because we
	 already know it has the value we want.  */
      if (frame_pointer_needed)
	reg = gen_rtx_REG (SImode, FRAME_POINTER_REGNUM);
      /* Otherwise, we may use `a1', since it's call-clobbered and
	 it's never used for return values.  But only do so if it's
	 smaller than using SP offsets.  */
      else
	{
	  enum { restore_sp_post_adjust,
		 restore_sp_pre_adjust,
		 restore_sp_partial_adjust,
		 restore_a1 } strategy;
	  unsigned int this_strategy_size, strategy_size = (unsigned)-1;

	  /* Consider using sp offsets before adjusting sp.  */
	  /* Insn: fmov (##,sp),fs#, for each fs# to be restored.  */
	  this_strategy_size = SIZE_FMOV_SP (size, num_regs_to_save);
	  /* If size is too large, we'll have to adjust SP with an
		 add.  */
	  if (size + 4 * num_regs_to_save + reg_save_bytes > 255)
	    {
	      /* Insn: add size + 4 * num_regs_to_save, sp.  */
	      this_strategy_size += SIZE_ADD_SP (size + 4 * num_regs_to_save);
	    }
	  /* If we don't have to restore any non-FP registers,
		 we'll be able to save one byte by using rets.  */
	  if (! reg_save_bytes)
	    this_strategy_size--;

	  if (this_strategy_size < strategy_size)
	    {
	      strategy = restore_sp_post_adjust;
	      strategy_size = this_strategy_size;
	    }

	  /* Consider using sp offsets after adjusting sp.  */
	  /* Insn: add size, sp.  */
	  this_strategy_size = SIZE_ADD_SP (size);
	  /* Insn: fmov (##,sp),fs#, for each fs# to be restored.  */
	  this_strategy_size += SIZE_FMOV_SP (0, num_regs_to_save);
	  /* We're going to use ret to release the FP registers
		 save area, so, no savings.  */

	  if (this_strategy_size < strategy_size)
	    {
	      strategy = restore_sp_pre_adjust;
	      strategy_size = this_strategy_size;
	    }

	  /* Consider using sp offsets after partially adjusting sp.
	     When size is close to 32Kb, we may be able to adjust SP
	     with an imm16 add instruction while still using fmov
	     (d8,sp).  */
	  if (size + 4 * num_regs_to_save + reg_save_bytes > 255)
	    {
	      /* Insn: add size + 4 * num_regs_to_save
				+ reg_save_bytes - 252,sp.  */
	      this_strategy_size = SIZE_ADD_SP (size + 4 * num_regs_to_save
						+ (int) reg_save_bytes - 252);
	      /* Insn: fmov (##,sp),fs#, fo each fs# to be restored.  */
	      this_strategy_size += SIZE_FMOV_SP (252 - reg_save_bytes
						  - 4 * num_regs_to_save,
						  num_regs_to_save);
	      /* We're going to use ret to release the FP registers
		 save area, so, no savings.  */

	      if (this_strategy_size < strategy_size)
		{
		  strategy = restore_sp_partial_adjust;
		  strategy_size = this_strategy_size;
		}
	    }

	  /* Consider using a1 in post-increment mode, as long as the
	     user hasn't changed the calling conventions of a1.  */
	  if (call_really_used_regs [FIRST_ADDRESS_REGNUM + 1]
	      && ! fixed_regs[FIRST_ADDRESS_REGNUM+1])
	    {
	      /* Insn: mov sp,a1.  */
	      this_strategy_size = 1;
	      if (size)
		{
		  /* Insn: add size,a1.  */
		  this_strategy_size += SIZE_ADD_AX (size);
		}
	      /* Insn: fmov (a1+),fs#, for each fs# to be restored.  */
	      this_strategy_size += 3 * num_regs_to_save;
	      /* If size is large enough, we may be able to save a
		 couple of bytes.  */
	      if (size + 4 * num_regs_to_save + reg_save_bytes > 255)
		{
		  /* Insn: mov a1,sp.  */
		  this_strategy_size += 2;
		}
	      /* If we don't have to restore any non-FP registers,
		 we'll be able to save one byte by using rets.  */
	      if (! reg_save_bytes)
		this_strategy_size--;

	      if (this_strategy_size < strategy_size)
		{
		  strategy = restore_a1;
		  strategy_size = this_strategy_size;
		}
	    }

	  switch (strategy)
	    {
	    case restore_sp_post_adjust:
	      break;

	    case restore_sp_pre_adjust:
	      emit_insn (gen_addsi3 (stack_pointer_rtx,
				     stack_pointer_rtx,
				     GEN_INT (size)));
	      size = 0;
	      break;

	    case restore_sp_partial_adjust:
	      emit_insn (gen_addsi3 (stack_pointer_rtx,
				     stack_pointer_rtx,
				     GEN_INT (size + 4 * num_regs_to_save
					      + reg_save_bytes - 252)));
	      size = 252 - reg_save_bytes - 4 * num_regs_to_save;
	      break;

	    case restore_a1:
	      reg = gen_rtx_REG (SImode, FIRST_ADDRESS_REGNUM + 1);
	      emit_insn (gen_movsi (reg, stack_pointer_rtx));
	      if (size)
		emit_insn (gen_addsi3 (reg, reg, GEN_INT (size)));
	      break;

	    default:
	      gcc_unreachable ();
	    }
	}

      /* Adjust the selected register, if any, for post-increment.  */
      if (reg)
	reg = gen_rtx_POST_INC (SImode, reg);

      for (i = FIRST_FP_REGNUM; i <= LAST_FP_REGNUM; ++i)
	if (df_regs_ever_live_p (i) && ! call_really_used_regs [i])
	  {
	    rtx addr;

	    if (reg)
	      addr = reg;
	    else if (size)
	      {
		/* If we aren't using a post-increment register, use an
		   SP offset.  */
		addr = gen_rtx_PLUS (SImode,
				     stack_pointer_rtx,
				     GEN_INT (size));
	      }
	    else
	      addr = stack_pointer_rtx;

	    size += 4;

	    emit_insn (gen_movsf (gen_rtx_REG (SFmode, i),
				  gen_rtx_MEM (SFmode, addr)));
	  }

      /* If we were using the restore_a1 strategy and the number of
	 bytes to be released won't fit in the `ret' byte, copy `a1'
	 to `sp', to avoid having to use `add' to adjust it.  */
      if (! frame_pointer_needed && reg && size + reg_save_bytes > 255)
	{
	  emit_move_insn (stack_pointer_rtx, XEXP (reg, 0));
	  size = 0;
	}
    }

  /* Maybe cut back the stack, except for the register save area.

     If the frame pointer exists, then use the frame pointer to
     cut back the stack.

     If the stack size + register save area is more than 255 bytes,
     then the stack must be cut back here since the size + register
     save size is too big for a ret/retf instruction.

     Else leave it alone, it will be cut back as part of the
     ret/retf instruction, or there wasn't any stack to begin with.

     Under no circumstances should the register save area be
     deallocated here, that would leave a window where an interrupt
     could occur and trash the register save area.  */
  if (frame_pointer_needed)
    {
      emit_move_insn (stack_pointer_rtx, frame_pointer_rtx);
      size = 0;
    }
  else if (size + reg_save_bytes > 255)
    {
      emit_insn (gen_addsi3 (stack_pointer_rtx,
			     stack_pointer_rtx,
			     GEN_INT (size)));
      size = 0;
    }

  /* Adjust the stack and restore callee-saved registers, if any.  */
  if (mn10300_can_use_rets_insn ())
    emit_jump_insn (ret_rtx);
  else
    emit_jump_insn (gen_return_ret (GEN_INT (size + reg_save_bytes)));
}

/* Recognize the PARALLEL rtx generated by mn10300_gen_multiple_store().
   This function is for MATCH_PARALLEL and so assumes OP is known to be
   parallel.  If OP is a multiple store, return a mask indicating which
   registers it saves.  Return 0 otherwise.  */

int
mn10300_store_multiple_operation (rtx op,
				  enum machine_mode mode ATTRIBUTE_UNUSED)
{
  int count;
  int mask;
  int i;
  unsigned int last;
  rtx elt;

  count = XVECLEN (op, 0);
  if (count < 2)
    return 0;

  /* Check that first instruction has the form (set (sp) (plus A B)) */
  elt = XVECEXP (op, 0, 0);
  if (GET_CODE (elt) != SET
      || (! REG_P (SET_DEST (elt)))
      || REGNO (SET_DEST (elt)) != STACK_POINTER_REGNUM
      || GET_CODE (SET_SRC (elt)) != PLUS)
    return 0;

  /* Check that A is the stack pointer and B is the expected stack size.
     For OP to match, each subsequent instruction should push a word onto
     the stack.  We therefore expect the first instruction to create
     COUNT-1 stack slots.  */
  elt = SET_SRC (elt);
  if ((! REG_P (XEXP (elt, 0)))
      || REGNO (XEXP (elt, 0)) != STACK_POINTER_REGNUM
      || (! CONST_INT_P (XEXP (elt, 1)))
      || INTVAL (XEXP (elt, 1)) != -(count - 1) * 4)
    return 0;

  mask = 0;
  for (i = 1; i < count; i++)
    {
      /* Check that element i is a (set (mem M) R).  */
      /* ??? Validate the register order a-la mn10300_gen_multiple_store.
	 Remember: the ordering is *not* monotonic.  */
      elt = XVECEXP (op, 0, i);
      if (GET_CODE (elt) != SET
	  || (! MEM_P (SET_DEST (elt)))
	  || (! REG_P (SET_SRC (elt))))
	return 0;

      /* Remember which registers are to be saved.  */
      last = REGNO (SET_SRC (elt));
      mask |= (1 << last);

      /* Check that M has the form (plus (sp) (const_int -I*4)) */
      elt = XEXP (SET_DEST (elt), 0);
      if (GET_CODE (elt) != PLUS
	  || (! REG_P (XEXP (elt, 0)))
	  || REGNO (XEXP (elt, 0)) != STACK_POINTER_REGNUM
	  || (! CONST_INT_P (XEXP (elt, 1)))
	  || INTVAL (XEXP (elt, 1)) != -i * 4)
	return 0;
    }

  /* All or none of the callee-saved extended registers must be in the set.  */
  if ((mask & 0x3c000) != 0
      && (mask & 0x3c000) != 0x3c000)
    return 0;

  return mask;
}

/* Implement TARGET_PREFERRED_RELOAD_CLASS.  */

static reg_class_t
mn10300_preferred_reload_class (rtx x, reg_class_t rclass)
{
  if (x == stack_pointer_rtx && rclass != SP_REGS)
    return (TARGET_AM33 ? GENERAL_REGS : ADDRESS_REGS);
  else if (MEM_P (x)
	   || (REG_P (x) 
	       && !HARD_REGISTER_P (x))
	   || (GET_CODE (x) == SUBREG
	       && REG_P (SUBREG_REG (x))
	       && !HARD_REGISTER_P (SUBREG_REG (x))))
    return LIMIT_RELOAD_CLASS (GET_MODE (x), rclass);
  else
    return rclass;
}

/* Implement TARGET_PREFERRED_OUTPUT_RELOAD_CLASS.  */

static reg_class_t
mn10300_preferred_output_reload_class (rtx x, reg_class_t rclass)
{
  if (x == stack_pointer_rtx && rclass != SP_REGS)
    return (TARGET_AM33 ? GENERAL_REGS : ADDRESS_REGS);
  return rclass;
}

/* Implement TARGET_SECONDARY_RELOAD.  */

static reg_class_t
mn10300_secondary_reload (bool in_p, rtx x, reg_class_t rclass_i,
			  enum machine_mode mode, secondary_reload_info *sri)
{
  enum reg_class rclass = (enum reg_class) rclass_i;
  enum reg_class xclass = NO_REGS;
  unsigned int xregno = INVALID_REGNUM;

  if (REG_P (x))
    {
      xregno = REGNO (x);
      if (xregno >= FIRST_PSEUDO_REGISTER)
	xregno = true_regnum (x);
      if (xregno != INVALID_REGNUM)
	xclass = REGNO_REG_CLASS (xregno);
    }

  if (!TARGET_AM33)
    {
      /* Memory load/stores less than a full word wide can't have an
         address or stack pointer destination.  They must use a data
         register as an intermediate register.  */
      if (rclass != DATA_REGS
	  && (mode == QImode || mode == HImode)
	  && xclass == NO_REGS)
	return DATA_REGS;

      /* We can only move SP to/from an address register.  */
      if (in_p
	  && rclass == SP_REGS
	  && xclass != ADDRESS_REGS)
	return ADDRESS_REGS;
      if (!in_p
	  && xclass == SP_REGS
	  && rclass != ADDRESS_REGS
	  && rclass != SP_OR_ADDRESS_REGS)
	return ADDRESS_REGS;
    }

  /* We can't directly load sp + const_int into a register;
     we must use an address register as an scratch.  */
  if (in_p
      && rclass != SP_REGS
      && rclass != SP_OR_ADDRESS_REGS
      && rclass != SP_OR_GENERAL_REGS
      && GET_CODE (x) == PLUS
      && (XEXP (x, 0) == stack_pointer_rtx
	  || XEXP (x, 1) == stack_pointer_rtx))
    {
      sri->icode = CODE_FOR_reload_plus_sp_const;
      return NO_REGS;
    }

  /* We can only move MDR to/from a data register.  */
  if (rclass == MDR_REGS && xclass != DATA_REGS)
    return DATA_REGS;
  if (xclass == MDR_REGS && rclass != DATA_REGS)
    return DATA_REGS;

  /* We can't load/store an FP register from a constant address.  */
  if (TARGET_AM33_2
      && (rclass == FP_REGS || xclass == FP_REGS)
      && (xclass == NO_REGS || rclass == NO_REGS))
    {
      rtx addr = NULL;

      if (xregno >= FIRST_PSEUDO_REGISTER && xregno != INVALID_REGNUM)
	{
	  addr = reg_equiv_mem (xregno);
	  if (addr)
	    addr = XEXP (addr, 0);
	}
      else if (MEM_P (x))
	addr = XEXP (x, 0);

      if (addr && CONSTANT_ADDRESS_P (addr))
	return GENERAL_REGS;
    }

  /* Otherwise assume no secondary reloads are needed.  */
  return NO_REGS;
}

int
mn10300_frame_size (void)
{
  /* size includes the fixed stack space needed for function calls.  */
  int size = get_frame_size () + crtl->outgoing_args_size;

  /* And space for the return pointer.  */
  size += crtl->outgoing_args_size ? 4 : 0;

  return size;
}

int
mn10300_initial_offset (int from, int to)
{
  int diff = 0;

  gcc_assert (from == ARG_POINTER_REGNUM || from == FRAME_POINTER_REGNUM);
  gcc_assert (to == FRAME_POINTER_REGNUM || to == STACK_POINTER_REGNUM);

  if (to == STACK_POINTER_REGNUM)
    diff = mn10300_frame_size ();

  /* The difference between the argument pointer and the frame pointer
     is the size of the callee register save area.  */
  if (from == ARG_POINTER_REGNUM)
    {
      unsigned int reg_save_bytes;

      mn10300_get_live_callee_saved_regs (& reg_save_bytes);
      diff += reg_save_bytes;
      diff += 4 * fp_regs_to_save ();
    }

  return diff;
}

/* Worker function for TARGET_RETURN_IN_MEMORY.  */

static bool
mn10300_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED)
{
  /* Return values > 8 bytes in length in memory.  */
  return (int_size_in_bytes (type) > 8
	  || int_size_in_bytes (type) == 0
	  || TYPE_MODE (type) == BLKmode);
}

/* Flush the argument registers to the stack for a stdarg function;
   return the new argument pointer.  */
static rtx
mn10300_builtin_saveregs (void)
{
  rtx offset, mem;
  tree fntype = TREE_TYPE (current_function_decl);
  int argadj = ((!stdarg_p (fntype))
                ? UNITS_PER_WORD : 0);
  alias_set_type set = get_varargs_alias_set ();

  if (argadj)
    offset = plus_constant (Pmode, crtl->args.arg_offset_rtx, argadj);
  else
    offset = crtl->args.arg_offset_rtx;

  mem = gen_rtx_MEM (SImode, crtl->args.internal_arg_pointer);
  set_mem_alias_set (mem, set);
  emit_move_insn (mem, gen_rtx_REG (SImode, 0));

  mem = gen_rtx_MEM (SImode,
		     plus_constant (Pmode,
				    crtl->args.internal_arg_pointer, 4));
  set_mem_alias_set (mem, set);
  emit_move_insn (mem, gen_rtx_REG (SImode, 1));

  return copy_to_reg (expand_binop (Pmode, add_optab,
				    crtl->args.internal_arg_pointer,
				    offset, 0, 0, OPTAB_LIB_WIDEN));
}

static void
mn10300_va_start (tree valist, rtx nextarg)
{
  nextarg = expand_builtin_saveregs ();
  std_expand_builtin_va_start (valist, nextarg);
}

/* Return true when a parameter should be passed by reference.  */

static bool
mn10300_pass_by_reference (cumulative_args_t cum ATTRIBUTE_UNUSED,
			   enum machine_mode mode, const_tree type,
			   bool named ATTRIBUTE_UNUSED)
{
  unsigned HOST_WIDE_INT size;

  if (type)
    size = int_size_in_bytes (type);
  else
    size = GET_MODE_SIZE (mode);

  return (size > 8 || size == 0);
}

/* Return an RTX to represent where a value with mode MODE will be returned
   from a function.  If the result is NULL_RTX, the argument is pushed.  */

static rtx
mn10300_function_arg (cumulative_args_t cum_v, enum machine_mode mode,
		      const_tree type, bool named ATTRIBUTE_UNUSED)
{
  CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
  rtx result = NULL_RTX;
  int size;

  /* We only support using 2 data registers as argument registers.  */
  int nregs = 2;

  /* Figure out the size of the object to be passed.  */
  if (mode == BLKmode)
    size = int_size_in_bytes (type);
  else
    size = GET_MODE_SIZE (mode);

  cum->nbytes = (cum->nbytes + 3) & ~3;

  /* Don't pass this arg via a register if all the argument registers
     are used up.  */
  if (cum->nbytes > nregs * UNITS_PER_WORD)
    return result;

  /* Don't pass this arg via a register if it would be split between
     registers and memory.  */
  if (type == NULL_TREE
      && cum->nbytes + size > nregs * UNITS_PER_WORD)
    return result;

  switch (cum->nbytes / UNITS_PER_WORD)
    {
    case 0:
      result = gen_rtx_REG (mode, FIRST_ARGUMENT_REGNUM);
      break;
    case 1:
      result = gen_rtx_REG (mode, FIRST_ARGUMENT_REGNUM + 1);
      break;
    default:
      break;
    }

  return result;
}

/* Update the data in CUM to advance over an argument
   of mode MODE and data type TYPE.
   (TYPE is null for libcalls where that information may not be available.)  */

static void
mn10300_function_arg_advance (cumulative_args_t cum_v, enum machine_mode mode,
			      const_tree type, bool named ATTRIBUTE_UNUSED)
{
  CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);

  cum->nbytes += (mode != BLKmode
		  ? (GET_MODE_SIZE (mode) + 3) & ~3
		  : (int_size_in_bytes (type) + 3) & ~3);
}

/* Return the number of bytes of registers to use for an argument passed
   partially in registers and partially in memory.  */

static int
mn10300_arg_partial_bytes (cumulative_args_t cum_v, enum machine_mode mode,
			   tree type, bool named ATTRIBUTE_UNUSED)
{
  CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
  int size;

  /* We only support using 2 data registers as argument registers.  */
  int nregs = 2;

  /* Figure out the size of the object to be passed.  */
  if (mode == BLKmode)
    size = int_size_in_bytes (type);
  else
    size = GET_MODE_SIZE (mode);

  cum->nbytes = (cum->nbytes + 3) & ~3;

  /* Don't pass this arg via a register if all the argument registers
     are used up.  */
  if (cum->nbytes > nregs * UNITS_PER_WORD)
    return 0;

  if (cum->nbytes + size <= nregs * UNITS_PER_WORD)
    return 0;

  /* Don't pass this arg via a register if it would be split between
     registers and memory.  */
  if (type == NULL_TREE
      && cum->nbytes + size > nregs * UNITS_PER_WORD)
    return 0;

  return nregs * UNITS_PER_WORD - cum->nbytes;
}

/* Return the location of the function's value.  This will be either
   $d0 for integer functions, $a0 for pointers, or a PARALLEL of both
   $d0 and $a0 if the -mreturn-pointer-on-do flag is set.  Note that
   we only return the PARALLEL for outgoing values; we do not want
   callers relying on this extra copy.  */

static rtx
mn10300_function_value (const_tree valtype,
			const_tree fn_decl_or_type ATTRIBUTE_UNUSED,
			bool outgoing)
{
  rtx rv;
  enum machine_mode mode = TYPE_MODE (valtype);

  if (! POINTER_TYPE_P (valtype))
    return gen_rtx_REG (mode, FIRST_DATA_REGNUM);
  else if (! TARGET_PTR_A0D0 || ! outgoing
	   || cfun->returns_struct)
    return gen_rtx_REG (mode, FIRST_ADDRESS_REGNUM);

  rv = gen_rtx_PARALLEL (mode, rtvec_alloc (2));
  XVECEXP (rv, 0, 0)
    = gen_rtx_EXPR_LIST (VOIDmode,
			 gen_rtx_REG (mode, FIRST_ADDRESS_REGNUM),
			 GEN_INT (0));

  XVECEXP (rv, 0, 1)
    = gen_rtx_EXPR_LIST (VOIDmode,
			 gen_rtx_REG (mode, FIRST_DATA_REGNUM),
			 GEN_INT (0));
  return rv;
}

/* Implements TARGET_LIBCALL_VALUE.  */

static rtx
mn10300_libcall_value (enum machine_mode mode,
		       const_rtx fun ATTRIBUTE_UNUSED)
{
  return gen_rtx_REG (mode, FIRST_DATA_REGNUM);
}

/* Implements FUNCTION_VALUE_REGNO_P.  */

bool
mn10300_function_value_regno_p (const unsigned int regno)
{
 return (regno == FIRST_DATA_REGNUM || regno == FIRST_ADDRESS_REGNUM);
}

/* Output an addition operation.  */

const char *
mn10300_output_add (rtx operands[3], bool need_flags)
{
  rtx dest, src1, src2;
  unsigned int dest_regnum, src1_regnum, src2_regnum;
  enum reg_class src1_class, src2_class, dest_class;

  dest = operands[0];
  src1 = operands[1];
  src2 = operands[2];

  dest_regnum = true_regnum (dest);
  src1_regnum = true_regnum (src1);

  dest_class = REGNO_REG_CLASS (dest_regnum);
  src1_class = REGNO_REG_CLASS (src1_regnum);

  if (CONST_INT_P (src2))
    {
      gcc_assert (dest_regnum == src1_regnum);

      if (src2 == const1_rtx && !need_flags)
	return "inc %0";
      if (INTVAL (src2) == 4 && !need_flags && dest_class != DATA_REGS)
        return "inc4 %0";

      gcc_assert (!need_flags || dest_class != SP_REGS);
      return "add %2,%0";
    }
  else if (CONSTANT_P (src2))
    return "add %2,%0";

  src2_regnum = true_regnum (src2);
  src2_class = REGNO_REG_CLASS (src2_regnum);
      
  if (dest_regnum == src1_regnum)
    return "add %2,%0";
  if (dest_regnum == src2_regnum)
    return "add %1,%0";

  /* The rest of the cases are reg = reg+reg.  For AM33, we can implement
     this directly, as below, but when optimizing for space we can sometimes
     do better by using a mov+add.  For MN103, we claimed that we could
     implement a three-operand add because the various move and add insns
     change sizes across register classes, and we can often do better than
     reload in choosing which operand to move.  */
  if (TARGET_AM33 && optimize_insn_for_speed_p ())
    return "add %2,%1,%0";

  /* Catch cases where no extended register was used.  */
  if (src1_class != EXTENDED_REGS
      && src2_class != EXTENDED_REGS
      && dest_class != EXTENDED_REGS)
    {
      /* We have to copy one of the sources into the destination, then
         add the other source to the destination.

         Carefully select which source to copy to the destination; a
         naive implementation will waste a byte when the source classes
         are different and the destination is an address register.
         Selecting the lowest cost register copy will optimize this
         sequence.  */
      if (src1_class == dest_class)
        return "mov %1,%0\n\tadd %2,%0";
      else
	return "mov %2,%0\n\tadd %1,%0";
    }

  /* At least one register is an extended register.  */

  /* The three operand add instruction on the am33 is a win iff the
     output register is an extended register, or if both source
     registers are extended registers.  */
  if (dest_class == EXTENDED_REGS || src1_class == src2_class)
    return "add %2,%1,%0";

  /* It is better to copy one of the sources to the destination, then
     perform a 2 address add.  The destination in this case must be
     an address or data register and one of the sources must be an
     extended register and the remaining source must not be an extended
     register.

     The best code for this case is to copy the extended reg to the
     destination, then emit a two address add.  */
  if (src1_class == EXTENDED_REGS)
    return "mov %1,%0\n\tadd %2,%0";
  else
    return "mov %2,%0\n\tadd %1,%0";
}

/* Return 1 if X contains a symbolic expression.  We know these
   expressions will have one of a few well defined forms, so
   we need only check those forms.  */

int
mn10300_symbolic_operand (rtx op,
			  enum machine_mode mode ATTRIBUTE_UNUSED)
{
  switch (GET_CODE (op))
    {
    case SYMBOL_REF:
    case LABEL_REF:
      return 1;
    case CONST:
      op = XEXP (op, 0);
      return ((GET_CODE (XEXP (op, 0)) == SYMBOL_REF
               || GET_CODE (XEXP (op, 0)) == LABEL_REF)
              && CONST_INT_P (XEXP (op, 1)));
    default:
      return 0;
    }
}

/* Try machine dependent ways of modifying an illegitimate address
   to be legitimate.  If we find one, return the new valid address.
   This macro is used in only one place: `memory_address' in explow.c.

   OLDX is the address as it was before break_out_memory_refs was called.
   In some cases it is useful to look at this to decide what needs to be done.

   Normally it is always safe for this macro to do nothing.  It exists to
   recognize opportunities to optimize the output.

   But on a few ports with segmented architectures and indexed addressing
   (mn10300, hppa) it is used to rewrite certain problematical addresses.  */

static rtx
mn10300_legitimize_address (rtx x, rtx oldx ATTRIBUTE_UNUSED,
			    enum machine_mode mode ATTRIBUTE_UNUSED)
{
  if (flag_pic && ! mn10300_legitimate_pic_operand_p (x))
    x = mn10300_legitimize_pic_address (oldx, NULL_RTX);

  /* Uh-oh.  We might have an address for x[n-100000].  This needs
     special handling to avoid creating an indexed memory address
     with x-100000 as the base.  */
  if (GET_CODE (x) == PLUS
      && mn10300_symbolic_operand (XEXP (x, 1), VOIDmode))
    {
      /* Ugly.  We modify things here so that the address offset specified
         by the index expression is computed first, then added to x to form
         the entire address.  */

      rtx regx1, regy1, regy2, y;

      /* Strip off any CONST.  */
      y = XEXP (x, 1);
      if (GET_CODE (y) == CONST)
        y = XEXP (y, 0);

      if (GET_CODE (y) == PLUS || GET_CODE (y) == MINUS)
	{
	  regx1 = force_reg (Pmode, force_operand (XEXP (x, 0), 0));
	  regy1 = force_reg (Pmode, force_operand (XEXP (y, 0), 0));
	  regy2 = force_reg (Pmode, force_operand (XEXP (y, 1), 0));
	  regx1 = force_reg (Pmode,
			     gen_rtx_fmt_ee (GET_CODE (y), Pmode, regx1,
					     regy2));
	  return force_reg (Pmode, gen_rtx_PLUS (Pmode, regx1, regy1));
	}
    }
  return x;
}

/* Convert a non-PIC address in `orig' to a PIC address using @GOT or
   @GOTOFF in `reg'.  */

rtx
mn10300_legitimize_pic_address (rtx orig, rtx reg)
{
  rtx x;

  if (GET_CODE (orig) == LABEL_REF
      || (GET_CODE (orig) == SYMBOL_REF
	  && (CONSTANT_POOL_ADDRESS_P (orig)
	      || ! MN10300_GLOBAL_P (orig))))
    {
      if (reg == NULL)
	reg = gen_reg_rtx (Pmode);

      x = gen_rtx_UNSPEC (SImode, gen_rtvec (1, orig), UNSPEC_GOTOFF);
      x = gen_rtx_CONST (SImode, x);
      emit_move_insn (reg, x);

      x = emit_insn (gen_addsi3 (reg, reg, pic_offset_table_rtx));
    }
  else if (GET_CODE (orig) == SYMBOL_REF)
    {
      if (reg == NULL)
	reg = gen_reg_rtx (Pmode);

      x = gen_rtx_UNSPEC (SImode, gen_rtvec (1, orig), UNSPEC_GOT);
      x = gen_rtx_CONST (SImode, x);
      x = gen_rtx_PLUS (SImode, pic_offset_table_rtx, x);
      x = gen_const_mem (SImode, x);

      x = emit_move_insn (reg, x);
    }
  else
    return orig;

  set_unique_reg_note (x, REG_EQUAL, orig);
  return reg;
}

/* Return zero if X references a SYMBOL_REF or LABEL_REF whose symbol
   isn't protected by a PIC unspec; nonzero otherwise.  */

int
mn10300_legitimate_pic_operand_p (rtx x)
{
  const char *fmt;
  int i;

  if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
    return 0;

  if (GET_CODE (x) == UNSPEC
      && (XINT (x, 1) == UNSPEC_PIC
	  || XINT (x, 1) == UNSPEC_GOT
	  || XINT (x, 1) == UNSPEC_GOTOFF
	  || XINT (x, 1) == UNSPEC_PLT
	  || XINT (x, 1) == UNSPEC_GOTSYM_OFF))
      return 1;

  fmt = GET_RTX_FORMAT (GET_CODE (x));
  for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'E')
	{
	  int j;

	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
	    if (! mn10300_legitimate_pic_operand_p (XVECEXP (x, i, j)))
	      return 0;
	}
      else if (fmt[i] == 'e'
	       && ! mn10300_legitimate_pic_operand_p (XEXP (x, i)))
	return 0;
    }

  return 1;
}

/* Return TRUE if the address X, taken from a (MEM:MODE X) rtx, is
   legitimate, and FALSE otherwise.

   On the mn10300, the value in the address register must be
   in the same memory space/segment as the effective address.

   This is problematical for reload since it does not understand
   that base+index != index+base in a memory reference.

   Note it is still possible to use reg+reg addressing modes,
   it's just much more difficult.  For a discussion of a possible
   workaround and solution, see the comments in pa.c before the
   function record_unscaled_index_insn_codes.  */

static bool
mn10300_legitimate_address_p (enum machine_mode mode, rtx x, bool strict)
{
  rtx base, index;

  if (CONSTANT_ADDRESS_P (x))
    return !flag_pic || mn10300_legitimate_pic_operand_p (x);

  if (RTX_OK_FOR_BASE_P (x, strict))
    return true;

  if (TARGET_AM33 && (mode == SImode || mode == SFmode || mode == HImode))
    {
      if (GET_CODE (x) == POST_INC)
	return RTX_OK_FOR_BASE_P (XEXP (x, 0), strict);
      if (GET_CODE (x) == POST_MODIFY)
	return (RTX_OK_FOR_BASE_P (XEXP (x, 0), strict)
		&& CONSTANT_ADDRESS_P (XEXP (x, 1)));
    }

  if (GET_CODE (x) != PLUS)
    return false;

  base = XEXP (x, 0);
  index = XEXP (x, 1);

  if (!REG_P (base))
    return false;
  if (REG_P (index))
    {
      /* ??? Without AM33 generalized (Ri,Rn) addressing, reg+reg
	 addressing is hard to satisfy.  */
      if (!TARGET_AM33)
	return false;

      return (REGNO_GENERAL_P (REGNO (base), strict)
	      && REGNO_GENERAL_P (REGNO (index), strict));
    }

  if (!REGNO_STRICT_OK_FOR_BASE_P (REGNO (base), strict))
    return false;

  if (CONST_INT_P (index))
    return IN_RANGE (INTVAL (index), -1 - 0x7fffffff, 0x7fffffff);

  if (CONSTANT_ADDRESS_P (index))
    return !flag_pic || mn10300_legitimate_pic_operand_p (index);

  return false;
}

bool
mn10300_regno_in_class_p (unsigned regno, int rclass, bool strict)
{
  if (regno >= FIRST_PSEUDO_REGISTER)
    {
      if (!strict)
	return true;
      if (!reg_renumber)
	return false;
      regno = reg_renumber[regno];
      if (regno == INVALID_REGNUM)
	return false;
    }
  return TEST_HARD_REG_BIT (reg_class_contents[rclass], regno);
}

rtx
mn10300_legitimize_reload_address (rtx x,
				   enum machine_mode mode ATTRIBUTE_UNUSED,
				   int opnum, int type,
				   int ind_levels ATTRIBUTE_UNUSED)
{
  bool any_change = false;

  /* See above re disabling reg+reg addressing for MN103.  */
  if (!TARGET_AM33)
    return NULL_RTX;

  if (GET_CODE (x) != PLUS)
    return NULL_RTX;

  if (XEXP (x, 0) == stack_pointer_rtx)
    {
      push_reload (XEXP (x, 0), NULL_RTX, &XEXP (x, 0), NULL,
		   GENERAL_REGS, GET_MODE (x), VOIDmode, 0, 0,
		   opnum, (enum reload_type) type);
      any_change = true;
    }
  if (XEXP (x, 1) == stack_pointer_rtx)
    {
      push_reload (XEXP (x, 1), NULL_RTX, &XEXP (x, 1), NULL,
		   GENERAL_REGS, GET_MODE (x), VOIDmode, 0, 0,
		   opnum, (enum reload_type) type);
      any_change = true;
    }

  return any_change ? x : NULL_RTX;
}

/* Implement TARGET_LEGITIMATE_CONSTANT_P.  Returns TRUE if X is a valid
   constant.  Note that some "constants" aren't valid, such as TLS
   symbols and unconverted GOT-based references, so we eliminate
   those here.  */

static bool
mn10300_legitimate_constant_p (enum machine_mode mode ATTRIBUTE_UNUSED, rtx x)
{
  switch (GET_CODE (x))
    {
    case CONST:
      x = XEXP (x, 0);

      if (GET_CODE (x) == PLUS)
	{
	  if (! CONST_INT_P (XEXP (x, 1)))
	    return false;
	  x = XEXP (x, 0);
	}

      /* Only some unspecs are valid as "constants".  */
      if (GET_CODE (x) == UNSPEC)
	{
	  switch (XINT (x, 1))
	    {
	    case UNSPEC_PIC:
	    case UNSPEC_GOT:
	    case UNSPEC_GOTOFF:
	    case UNSPEC_PLT:
	      return true;
	    default:
	      return false;
	    }
	}

      /* We must have drilled down to a symbol.  */
      if (! mn10300_symbolic_operand (x, Pmode))
	return false;
      break;

    default:
      break;
    }

  return true;
}

/* Undo pic address legitimization for the benefit of debug info.  */

static rtx
mn10300_delegitimize_address (rtx orig_x)
{
  rtx x = orig_x, ret, addend = NULL;
  bool need_mem;

  if (MEM_P (x))
    x = XEXP (x, 0);
  if (GET_CODE (x) != PLUS || GET_MODE (x) != Pmode)
    return orig_x;

  if (XEXP (x, 0) == pic_offset_table_rtx)
    ;
  /* With the REG+REG addressing of AM33, var-tracking can re-assemble
     some odd-looking "addresses" that were never valid in the first place.
     We need to look harder to avoid warnings being emitted.  */
  else if (GET_CODE (XEXP (x, 0)) == PLUS)
    {
      rtx x0 = XEXP (x, 0);
      rtx x00 = XEXP (x0, 0);
      rtx x01 = XEXP (x0, 1);

      if (x00 == pic_offset_table_rtx)
	addend = x01;
      else if (x01 == pic_offset_table_rtx)
	addend = x00;
      else
	return orig_x;

    }
  else
    return orig_x;
  x = XEXP (x, 1);

  if (GET_CODE (x) != CONST)
    return orig_x;
  x = XEXP (x, 0);
  if (GET_CODE (x) != UNSPEC)
    return orig_x;

  ret = XVECEXP (x, 0, 0);
  if (XINT (x, 1) == UNSPEC_GOTOFF)
    need_mem = false;
  else if (XINT (x, 1) == UNSPEC_GOT)
    need_mem = true;
  else
    return orig_x;

  gcc_assert (GET_CODE (ret) == SYMBOL_REF);
  if (need_mem != MEM_P (orig_x))
    return orig_x;
  if (need_mem && addend)
    return orig_x;
  if (addend)
    ret = gen_rtx_PLUS (Pmode, addend, ret);
  return ret;
}

/* For addresses, costs are relative to "MOV (Rm),Rn".  For AM33 this is
   the 3-byte fully general instruction; for MN103 this is the 2-byte form
   with an address register.  */

static int
mn10300_address_cost (rtx x, enum machine_mode mode ATTRIBUTE_UNUSED,
		      addr_space_t as ATTRIBUTE_UNUSED, bool speed)
{
  HOST_WIDE_INT i;
  rtx base, index;

  switch (GET_CODE (x))
    {
    case CONST:
    case SYMBOL_REF:
    case LABEL_REF:
      /* We assume all of these require a 32-bit constant, even though
	 some symbol and label references can be relaxed.  */
      return speed ? 1 : 4;

    case REG:
    case SUBREG:
    case POST_INC:
      return 0;

    case POST_MODIFY:
      /* Assume any symbolic offset is a 32-bit constant.  */
      i = (CONST_INT_P (XEXP (x, 1)) ? INTVAL (XEXP (x, 1)) : 0x12345678);
      if (IN_RANGE (i, -128, 127))
	return speed ? 0 : 1;
      if (speed)
	return 1;
      if (IN_RANGE (i, -0x800000, 0x7fffff))
	return 3;
      return 4;

    case PLUS:
      base = XEXP (x, 0);
      index = XEXP (x, 1);
      if (register_operand (index, SImode))
	{
	  /* Attempt to minimize the number of registers in the address.
	     This is similar to what other ports do.  */
	  if (register_operand (base, SImode))
	    return 1;

	  base = XEXP (x, 1);
	  index = XEXP (x, 0);
	}

      /* Assume any symbolic offset is a 32-bit constant.  */
      i = (CONST_INT_P (XEXP (x, 1)) ? INTVAL (XEXP (x, 1)) : 0x12345678);
      if (IN_RANGE (i, -128, 127))
	return speed ? 0 : 1;
      if (IN_RANGE (i, -32768, 32767))
	return speed ? 0 : 2;
      return speed ? 2 : 6;

    default:
      return rtx_cost (x, MEM, 0, speed);
    }
}

/* Implement the TARGET_REGISTER_MOVE_COST hook.

   Recall that the base value of 2 is required by assumptions elsewhere
   in the body of the compiler, and that cost 2 is special-cased as an
   early exit from reload meaning no work is required.  */

static int
mn10300_register_move_cost (enum machine_mode mode ATTRIBUTE_UNUSED,
			    reg_class_t ifrom, reg_class_t ito)
{
  enum reg_class from = (enum reg_class) ifrom;
  enum reg_class to = (enum reg_class) ito;
  enum reg_class scratch, test;

  /* Simplify the following code by unifying the fp register classes.  */
  if (to == FP_ACC_REGS)
    to = FP_REGS;
  if (from == FP_ACC_REGS)
    from = FP_REGS;

  /* Diagnose invalid moves by costing them as two moves.  */

  scratch = NO_REGS;
  test = from;
  if (to == SP_REGS)
    scratch = (TARGET_AM33 ? GENERAL_REGS : ADDRESS_REGS);
  else if (to == MDR_REGS)
    scratch = DATA_REGS;
  else if (to == FP_REGS && to != from)
    scratch = GENERAL_REGS;
  else
    {
      test = to;
      if (from == SP_REGS)
	scratch = (TARGET_AM33 ? GENERAL_REGS : ADDRESS_REGS);
      else if (from == MDR_REGS)
	scratch = DATA_REGS;
      else if (from == FP_REGS && to != from)
	scratch = GENERAL_REGS;
    }
  if (scratch != NO_REGS && !reg_class_subset_p (test, scratch))
    return (mn10300_register_move_cost (VOIDmode, from, scratch)
	    + mn10300_register_move_cost (VOIDmode, scratch, to));

  /* From here on, all we need consider are legal combinations.  */

  if (optimize_size)
    {
      /* The scale here is bytes * 2.  */

      if (from == to && (to == ADDRESS_REGS || to == DATA_REGS))
	return 2;

      if (from == SP_REGS)
	return (to == ADDRESS_REGS ? 2 : 6);

      /* For MN103, all remaining legal moves are two bytes.  */
      if (TARGET_AM33)
	return 4;

      if (to == SP_REGS)
	return (from == ADDRESS_REGS ? 4 : 6);

      if ((from == ADDRESS_REGS || from == DATA_REGS)
	   && (to == ADDRESS_REGS || to == DATA_REGS))
	return 4;

      if (to == EXTENDED_REGS)
	return (to == from ? 6 : 4);

      /* What's left are SP_REGS, FP_REGS, or combinations of the above.  */
      return 6;
    }
  else
    {
      /* The scale here is cycles * 2.  */

      if (to == FP_REGS)
	return 8;
      if (from == FP_REGS)
	return 4;

      /* All legal moves between integral registers are single cycle.  */
      return 2;
    }
}

/* Implement the TARGET_MEMORY_MOVE_COST hook.

   Given lack of the form of the address, this must be speed-relative,
   though we should never be less expensive than a size-relative register
   move cost above.  This is not a problem.  */

static int
mn10300_memory_move_cost (enum machine_mode mode ATTRIBUTE_UNUSED, 
			  reg_class_t iclass, bool in ATTRIBUTE_UNUSED)
{
  enum reg_class rclass = (enum reg_class) iclass;

  if (rclass == FP_REGS)
    return 8;
  return 6;
}

/* Implement the TARGET_RTX_COSTS hook.

   Speed-relative costs are relative to COSTS_N_INSNS, which is intended
   to represent cycles.  Size-relative costs are in bytes.  */

static bool
mn10300_rtx_costs (rtx x, int code, int outer_code, int opno ATTRIBUTE_UNUSED,
		   int *ptotal, bool speed)
{
  /* This value is used for SYMBOL_REF etc where we want to pretend
     we have a full 32-bit constant.  */
  HOST_WIDE_INT i = 0x12345678;
  int total;

  switch (code)
    {
    case CONST_INT:
      i = INTVAL (x);
    do_int_costs:
      if (speed)
	{
	  if (outer_code == SET)
	    {
	      /* 16-bit integer loads have latency 1, 32-bit loads 2.  */
	      if (IN_RANGE (i, -32768, 32767))
		total = COSTS_N_INSNS (1);
	      else
		total = COSTS_N_INSNS (2);
	    }
	  else
	    {
	      /* 16-bit integer operands don't affect latency;
		 24-bit and 32-bit operands add a cycle.  */
	      if (IN_RANGE (i, -32768, 32767))
		total = 0;
	      else
		total = COSTS_N_INSNS (1);
	    }
	}
      else
	{
	  if (outer_code == SET)
	    {
	      if (i == 0)
		total = 1;
	      else if (IN_RANGE (i, -128, 127))
		total = 2;
	      else if (IN_RANGE (i, -32768, 32767))
		total = 3;
	      else
		total = 6;
	    }
	  else
	    {
	      /* Reference here is ADD An,Dn, vs ADD imm,Dn.  */
	      if (IN_RANGE (i, -128, 127))
		total = 0;
	      else if (IN_RANGE (i, -32768, 32767))
		total = 2;
	      else if (TARGET_AM33 && IN_RANGE (i, -0x01000000, 0x00ffffff))
		total = 3;
	      else
		total = 4;
	    }
	}
      goto alldone;

    case CONST:
    case LABEL_REF:
    case SYMBOL_REF:
    case CONST_DOUBLE:
      /* We assume all of these require a 32-bit constant, even though
	 some symbol and label references can be relaxed.  */
      goto do_int_costs;

    case UNSPEC:
      switch (XINT (x, 1))
	{
	case UNSPEC_PIC:
	case UNSPEC_GOT:
	case UNSPEC_GOTOFF:
	case UNSPEC_PLT:
	case UNSPEC_GOTSYM_OFF:
	  /* The PIC unspecs also resolve to a 32-bit constant.  */
	  goto do_int_costs;

	default:
	  /* Assume any non-listed unspec is some sort of arithmetic.  */
	  goto do_arith_costs;
	}

    case PLUS:
      /* Notice the size difference of INC and INC4.  */
      if (!speed && outer_code == SET && CONST_INT_P (XEXP (x, 1)))
	{
	  i = INTVAL (XEXP (x, 1));
	  if (i == 1 || i == 4)
	    {
	      total = 1 + rtx_cost (XEXP (x, 0), PLUS, 0, speed);
	      goto alldone;
	    }
	}
      goto do_arith_costs;
	
    case MINUS:
    case AND:
    case IOR:
    case XOR:
    case NOT:
    case NEG:
    case ZERO_EXTEND:
    case SIGN_EXTEND:
    case COMPARE:
    case BSWAP:
    case CLZ:
    do_arith_costs:
      total = (speed ? COSTS_N_INSNS (1) : 2);
      break;

    case ASHIFT:
      /* Notice the size difference of ASL2 and variants.  */
      if (!speed && CONST_INT_P (XEXP (x, 1)))
	switch (INTVAL (XEXP (x, 1)))
	  {
	  case 1:
	  case 2:
	    total = 1;
	    goto alldone;
	  case 3:
	  case 4:
	    total = 2;
	    goto alldone;
	  }
      /* FALLTHRU */

    case ASHIFTRT:
    case LSHIFTRT:
      total = (speed ? COSTS_N_INSNS (1) : 3);
      goto alldone;

    case MULT:
      total = (speed ? COSTS_N_INSNS (3) : 2);
      break;

    case DIV:
    case UDIV:
    case MOD:
    case UMOD:
      total = (speed ? COSTS_N_INSNS (39)
		/* Include space to load+retrieve MDR.  */
		: code == MOD || code == UMOD ? 6 : 4);
      break;

    case MEM:
      total = mn10300_address_cost (XEXP (x, 0), GET_MODE (x),
				    MEM_ADDR_SPACE (x), speed);
      if (speed)
	total = COSTS_N_INSNS (2 + total);
      goto alldone;

    default:
      /* Probably not implemented.  Assume external call.  */
      total = (speed ? COSTS_N_INSNS (10) : 7);
      break;
    }

  *ptotal = total;
  return false;

 alldone:
  *ptotal = total;
  return true;
}

/* If using PIC, mark a SYMBOL_REF for a non-global symbol so that we
   may access it using GOTOFF instead of GOT.  */

static void
mn10300_encode_section_info (tree decl, rtx rtl, int first)
{
  rtx symbol;

  default_encode_section_info (decl, rtl, first);

  if (! MEM_P (rtl))
    return;

  symbol = XEXP (rtl, 0);
  if (GET_CODE (symbol) != SYMBOL_REF)
    return;

  if (flag_pic)
    SYMBOL_REF_FLAG (symbol) = (*targetm.binds_local_p) (decl);
}

/* Dispatch tables on the mn10300 are extremely expensive in terms of code
   and readonly data size.  So we crank up the case threshold value to
   encourage a series of if/else comparisons to implement many small switch
   statements.  In theory, this value could be increased much more if we
   were solely optimizing for space, but we keep it "reasonable" to avoid
   serious code efficiency lossage.  */

static unsigned int
mn10300_case_values_threshold (void)
{
  return 6;
}

/* Worker function for TARGET_TRAMPOLINE_INIT.  */

static void
mn10300_trampoline_init (rtx m_tramp, tree fndecl, rtx chain_value)
{
  rtx mem, disp, fnaddr = XEXP (DECL_RTL (fndecl), 0);

  /* This is a strict alignment target, which means that we play
     some games to make sure that the locations at which we need
     to store <chain> and <disp> wind up at aligned addresses.

	0x28 0x00			add 0,d0
	          0xfc 0xdd		mov chain,a1
        <chain>
	0xf8 0xed 0x00			btst 0,d1
	               0xdc		jmp fnaddr
	<disp>

     Note that the two extra insns are effectively nops; they 
     clobber the flags but do not affect the contents of D0 or D1.  */

  disp = expand_binop (SImode, sub_optab, fnaddr,
		       plus_constant (Pmode, XEXP (m_tramp, 0), 11),
		       NULL_RTX, 1, OPTAB_DIRECT);

  mem = adjust_address (m_tramp, SImode, 0);
  emit_move_insn (mem, gen_int_mode (0xddfc0028, SImode));
  mem = adjust_address (m_tramp, SImode, 4);
  emit_move_insn (mem, chain_value);
  mem = adjust_address (m_tramp, SImode, 8);
  emit_move_insn (mem, gen_int_mode (0xdc00edf8, SImode));
  mem = adjust_address (m_tramp, SImode, 12);
  emit_move_insn (mem, disp);
}

/* Output the assembler code for a C++ thunk function.
   THUNK_DECL is the declaration for the thunk function itself, FUNCTION
   is the decl for the target function.  DELTA is an immediate constant
   offset to be added to the THIS parameter.  If VCALL_OFFSET is nonzero
   the word at the adjusted address *(*THIS' + VCALL_OFFSET) should be
   additionally added to THIS.  Finally jump to the entry point of
   FUNCTION.  */

static void
mn10300_asm_output_mi_thunk (FILE *        file,
			     tree          thunk_fndecl ATTRIBUTE_UNUSED,
			     HOST_WIDE_INT delta,
			     HOST_WIDE_INT vcall_offset,
			     tree          function)
{
  const char * _this;

  /* Get the register holding the THIS parameter.  Handle the case
     where there is a hidden first argument for a returned structure.  */
  if (aggregate_value_p (TREE_TYPE (TREE_TYPE (function)), function))
    _this = reg_names [FIRST_ARGUMENT_REGNUM + 1];
  else
    _this = reg_names [FIRST_ARGUMENT_REGNUM];

  fprintf (file, "\t%s Thunk Entry Point:\n", ASM_COMMENT_START);

  if (delta)
    fprintf (file, "\tadd %d, %s\n", (int) delta, _this);

  if (vcall_offset)
    {
      const char * scratch = reg_names [FIRST_ADDRESS_REGNUM + 1];

      fprintf (file, "\tmov %s, %s\n", _this, scratch);
      fprintf (file, "\tmov (%s), %s\n", scratch, scratch);
      fprintf (file, "\tadd %d, %s\n", (int) vcall_offset, scratch);
      fprintf (file, "\tmov (%s), %s\n", scratch, scratch);
      fprintf (file, "\tadd %s, %s\n", scratch, _this);
    }

  fputs ("\tjmp ", file);
  assemble_name (file, XSTR (XEXP (DECL_RTL (function), 0), 0));
  putc ('\n', file);
}

/* Return true if mn10300_output_mi_thunk would be able to output the
   assembler code for the thunk function specified by the arguments
   it is passed, and false otherwise.  */

static bool
mn10300_can_output_mi_thunk (const_tree    thunk_fndecl ATTRIBUTE_UNUSED,
			     HOST_WIDE_INT delta        ATTRIBUTE_UNUSED,
			     HOST_WIDE_INT vcall_offset ATTRIBUTE_UNUSED,
			     const_tree    function     ATTRIBUTE_UNUSED)
{
  return true;
}

bool
mn10300_hard_regno_mode_ok (unsigned int regno, enum machine_mode mode)
{
  if (REGNO_REG_CLASS (regno) == FP_REGS
      || REGNO_REG_CLASS (regno) == FP_ACC_REGS)
    /* Do not store integer values in FP registers.  */
    return GET_MODE_CLASS (mode) == MODE_FLOAT && ((regno & 1) == 0);
  
  if (((regno) & 1) == 0 || GET_MODE_SIZE (mode) == 4)
    return true;

  if (REGNO_REG_CLASS (regno) == DATA_REGS
      || (TARGET_AM33 && REGNO_REG_CLASS (regno) == ADDRESS_REGS)
      || REGNO_REG_CLASS (regno) == EXTENDED_REGS)
    return GET_MODE_SIZE (mode) <= 4;
  
  return false;
}

bool
mn10300_modes_tieable (enum machine_mode mode1, enum machine_mode mode2)
{
  if (GET_MODE_CLASS (mode1) == MODE_FLOAT
      && GET_MODE_CLASS (mode2) != MODE_FLOAT)
    return false;

  if (GET_MODE_CLASS (mode2) == MODE_FLOAT
      && GET_MODE_CLASS (mode1) != MODE_FLOAT)
    return false;

  if (TARGET_AM33
      || mode1 == mode2
      || (GET_MODE_SIZE (mode1) <= 4 && GET_MODE_SIZE (mode2) <= 4))
    return true;

  return false;
}

static int
cc_flags_for_mode (enum machine_mode mode)
{
  switch (mode)
    {
    case CCmode:
      return CC_FLAG_Z | CC_FLAG_N | CC_FLAG_C | CC_FLAG_V;
    case CCZNCmode:
      return CC_FLAG_Z | CC_FLAG_N | CC_FLAG_C;
    case CCZNmode:
      return CC_FLAG_Z | CC_FLAG_N;
    case CC_FLOATmode:
      return -1;
    default:
      gcc_unreachable ();
    }
}

static int
cc_flags_for_code (enum rtx_code code)
{
  switch (code)
    {
    case EQ:	/* Z */
    case NE:	/* ~Z */
      return CC_FLAG_Z;

    case LT:	/* N */
    case GE:	/* ~N */
      return CC_FLAG_N;
      break;

    case GT:    /* ~(Z|(N^V)) */
    case LE:    /* Z|(N^V) */
      return CC_FLAG_Z | CC_FLAG_N | CC_FLAG_V;

    case GEU:	/* ~C */
    case LTU:	/* C */
      return CC_FLAG_C;

    case GTU:	/* ~(C | Z) */
    case LEU:	/* C | Z */
      return CC_FLAG_Z | CC_FLAG_C;

    case ORDERED:
    case UNORDERED:
    case LTGT:
    case UNEQ:
    case UNGE:
    case UNGT:
    case UNLE:
    case UNLT:
      return -1;

    default:
      gcc_unreachable ();
    }
}

enum machine_mode
mn10300_select_cc_mode (enum rtx_code code, rtx x, rtx y ATTRIBUTE_UNUSED)
{
  int req;

  if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
    return CC_FLOATmode;

  req = cc_flags_for_code (code);

  if (req & CC_FLAG_V)
    return CCmode;
  if (req & CC_FLAG_C)
    return CCZNCmode;
  return CCZNmode;
}

static inline bool
is_load_insn (rtx insn)
{
  if (GET_CODE (PATTERN (insn)) != SET)
    return false;

  return MEM_P (SET_SRC (PATTERN (insn)));
}

static inline bool
is_store_insn (rtx insn)
{
  if (GET_CODE (PATTERN (insn)) != SET)
    return false;

  return MEM_P (SET_DEST (PATTERN (insn)));
}

/* Update scheduling costs for situations that cannot be
   described using the attributes and DFA machinery.
   DEP is the insn being scheduled.
   INSN is the previous insn.
   COST is the current cycle cost for DEP.  */

static int
mn10300_adjust_sched_cost (rtx insn, rtx link, rtx dep, int cost)
{
  int timings = get_attr_timings (insn);

  if (!TARGET_AM33)
    return 1;

  if (GET_CODE (insn) == PARALLEL)
    insn = XVECEXP (insn, 0, 0);

  if (GET_CODE (dep) == PARALLEL)
    dep = XVECEXP (dep, 0, 0);

  /* For the AM34 a load instruction that follows a
     store instruction incurs an extra cycle of delay.  */
  if (mn10300_tune_cpu == PROCESSOR_AM34
      && is_load_insn (dep)
      && is_store_insn (insn))
    cost += 1;

  /* For the AM34 a non-store, non-branch FPU insn that follows
     another FPU insn incurs a one cycle throughput increase.  */
  else if (mn10300_tune_cpu == PROCESSOR_AM34
      && ! is_store_insn (insn)
      && ! JUMP_P (insn)
      && GET_CODE (PATTERN (dep)) == SET
      && GET_CODE (PATTERN (insn)) == SET
      && GET_MODE_CLASS (GET_MODE (SET_SRC (PATTERN (dep)))) == MODE_FLOAT
      && GET_MODE_CLASS (GET_MODE (SET_SRC (PATTERN (insn)))) == MODE_FLOAT)
    cost += 1;

  /*  Resolve the conflict described in section 1-7-4 of
      Chapter 3 of the MN103E Series Instruction Manual
      where it says:

        "When the preceding instruction is a CPU load or
	 store instruction, a following FPU instruction
	 cannot be executed until the CPU completes the
	 latency period even though there are no register
	 or flag dependencies between them."  */

  /* Only the AM33-2 (and later) CPUs have FPU instructions.  */
  if (! TARGET_AM33_2)
    return cost;

  /* If a data dependence already exists then the cost is correct.  */
  if (REG_NOTE_KIND (link) == 0)
    return cost;

  /* Check that the instruction about to scheduled is an FPU instruction.  */
  if (GET_CODE (PATTERN (dep)) != SET)
    return cost;

  if (GET_MODE_CLASS (GET_MODE (SET_SRC (PATTERN (dep)))) != MODE_FLOAT)
    return cost;

  /* Now check to see if the previous instruction is a load or store.  */
  if (! is_load_insn (insn) && ! is_store_insn (insn))
    return cost;

  /* XXX: Verify: The text of 1-7-4 implies that the restriction
     only applies when an INTEGER load/store precedes an FPU
     instruction, but is this true ?  For now we assume that it is.  */
  if (GET_MODE_CLASS (GET_MODE (SET_SRC (PATTERN (insn)))) != MODE_INT)
    return cost;

  /* Extract the latency value from the timings attribute.  */
  return timings < 100 ? (timings % 10) : (timings % 100);
}

static void
mn10300_conditional_register_usage (void)
{
  unsigned int i;

  if (!TARGET_AM33)
    {
      for (i = FIRST_EXTENDED_REGNUM;
	   i <= LAST_EXTENDED_REGNUM; i++)
	fixed_regs[i] = call_used_regs[i] = 1;
    }
  if (!TARGET_AM33_2)
    {
      for (i = FIRST_FP_REGNUM;
	   i <= LAST_FP_REGNUM; i++)
	fixed_regs[i] = call_used_regs[i] = 1;
    }
  if (flag_pic)
    fixed_regs[PIC_OFFSET_TABLE_REGNUM] =
    call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1;
}

/* Worker function for TARGET_MD_ASM_CLOBBERS.
   We do this in the mn10300 backend to maintain source compatibility
   with the old cc0-based compiler.  */

static tree
mn10300_md_asm_clobbers (tree outputs ATTRIBUTE_UNUSED,
                         tree inputs ATTRIBUTE_UNUSED,
                         tree clobbers)
{
  clobbers = tree_cons (NULL_TREE, build_string (5, "EPSW"),
                        clobbers);
  return clobbers;
}

/* A helper function for splitting cbranch patterns after reload.  */

void
mn10300_split_cbranch (enum machine_mode cmp_mode, rtx cmp_op, rtx label_ref)
{
  rtx flags, x;

  flags = gen_rtx_REG (cmp_mode, CC_REG);
  x = gen_rtx_COMPARE (cmp_mode, XEXP (cmp_op, 0), XEXP (cmp_op, 1));
  x = gen_rtx_SET (VOIDmode, flags, x);
  emit_insn (x);

  x = gen_rtx_fmt_ee (GET_CODE (cmp_op), VOIDmode, flags, const0_rtx);
  x = gen_rtx_IF_THEN_ELSE (VOIDmode, x, label_ref, pc_rtx);
  x = gen_rtx_SET (VOIDmode, pc_rtx, x);
  emit_jump_insn (x);
}

/* A helper function for matching parallels that set the flags.  */

bool
mn10300_match_ccmode (rtx insn, enum machine_mode cc_mode)
{
  rtx op1, flags;
  enum machine_mode flags_mode;

  gcc_checking_assert (XVECLEN (PATTERN (insn), 0) == 2);

  op1 = XVECEXP (PATTERN (insn), 0, 1);
  gcc_checking_assert (GET_CODE (SET_SRC (op1)) == COMPARE);

  flags = SET_DEST (op1);
  flags_mode = GET_MODE (flags);

  if (GET_MODE (SET_SRC (op1)) != flags_mode)
    return false;
  if (GET_MODE_CLASS (flags_mode) != MODE_CC)
    return false;

  /* Ensure that the mode of FLAGS is compatible with CC_MODE.  */
  if (cc_flags_for_mode (flags_mode) & ~cc_flags_for_mode (cc_mode))
    return false;

  return true;
}

/* This function is used to help split:
   
     (set (reg) (and (reg) (int)))
     
   into:
   
     (set (reg) (shift (reg) (int))
     (set (reg) (shift (reg) (int))
     
   where the shitfs will be shorter than the "and" insn.

   It returns the number of bits that should be shifted.  A positive
   values means that the low bits are to be cleared (and hence the
   shifts should be right followed by left) whereas a negative value
   means that the high bits are to be cleared (left followed by right).
   Zero is returned when it would not be economical to split the AND.  */

int
mn10300_split_and_operand_count (rtx op)
{
  HOST_WIDE_INT val = INTVAL (op);
  int count;

  if (val < 0)
    {
      /* High bit is set, look for bits clear at the bottom.  */
      count = exact_log2 (-val);
      if (count < 0)
	return 0;
      /* This is only size win if we can use the asl2 insn.  Otherwise we
	 would be replacing 1 6-byte insn with 2 3-byte insns.  */
      if (count > (optimize_insn_for_speed_p () ? 2 : 4))
	return 0;
      return count;
    }
  else
    {
      /* High bit is clear, look for bits set at the bottom.  */
      count = exact_log2 (val + 1);
      count = 32 - count;
      /* Again, this is only a size win with asl2.  */
      if (count > (optimize_insn_for_speed_p () ? 2 : 4))
	return 0;
      return -count;
    }
}

struct liw_data
{
  enum attr_liw slot;
  enum attr_liw_op op;
  rtx dest;
  rtx src;
};

/* Decide if the given insn is a candidate for LIW bundling.  If it is then
   extract the operands and LIW attributes from the insn and use them to fill
   in the liw_data structure.  Return true upon success or false if the insn
   cannot be bundled.  */

static bool
extract_bundle (rtx insn, struct liw_data * pdata)
{
  bool allow_consts = true;
  rtx p;

  gcc_assert (pdata != NULL);

  if (insn == NULL_RTX)
    return false;
  /* Make sure that we are dealing with a simple SET insn.  */
  p = single_set (insn);
  if (p == NULL_RTX)
    return false;

  /* Make sure that it could go into one of the LIW pipelines.  */
  pdata->slot = get_attr_liw (insn);
  if (pdata->slot == LIW_BOTH)
    return false;

  pdata->op = get_attr_liw_op (insn);

  switch (pdata->op)
    {
    case LIW_OP_MOV:
      pdata->dest = SET_DEST (p);
      pdata->src = SET_SRC (p);
      break;
    case LIW_OP_CMP:
      pdata->dest = XEXP (SET_SRC (p), 0);
      pdata->src = XEXP (SET_SRC (p), 1);
      break;
    case LIW_OP_NONE:
      return false;
    case LIW_OP_AND:
    case LIW_OP_OR:
    case LIW_OP_XOR:
      /* The AND, OR and XOR long instruction words only accept register arguments.  */
      allow_consts = false;
      /* Fall through.  */
    default:
      pdata->dest = SET_DEST (p);
      pdata->src = XEXP (SET_SRC (p), 1);
      break;
    }

  if (! REG_P (pdata->dest))
    return false;

  if (REG_P (pdata->src))
    return true;

  return allow_consts && satisfies_constraint_O (pdata->src);
}

/* Make sure that it is OK to execute LIW1 and LIW2 in parallel.  GCC generated
   the instructions with the assumption that LIW1 would be executed before LIW2
   so we must check for overlaps between their sources and destinations.  */

static bool
check_liw_constraints (struct liw_data * pliw1, struct liw_data * pliw2)
{
  /* Check for slot conflicts.  */
  if (pliw2->slot == pliw1->slot && pliw1->slot != LIW_EITHER)
    return false;

  /* If either operation is a compare, then "dest" is really an input; the real
     destination is CC_REG.  So these instructions need different checks.  */

  /* Changing "CMP ; OP" into "CMP | OP" is OK because the comparison will
     check its values prior to any changes made by OP.  */
  if (pliw1->op == LIW_OP_CMP)
    {
      /* Two sequential comparisons means dead code, which ought to 
         have been eliminated given that bundling only happens with
         optimization.  We cannot bundle them in any case.  */
      gcc_assert (pliw1->op != pliw2->op);
      return true;
    }

  /* Changing "OP ; CMP" into "OP | CMP" does not work if the value being compared
     is the destination of OP, as the CMP will look at the old value, not the new
     one.  */
  if (pliw2->op == LIW_OP_CMP)
    {
      if (REGNO (pliw2->dest) == REGNO (pliw1->dest))
	return false;

      if (REG_P (pliw2->src))
	return REGNO (pliw2->src) != REGNO (pliw1->dest);

      return true;
    }

  /* Changing "OP1 ; OP2" into "OP1 | OP2" does not work if they both write to the
     same destination register.  */
  if (REGNO (pliw2->dest) == REGNO (pliw1->dest))
    return false;

  /* Changing "OP1 ; OP2" into "OP1 | OP2" generally does not work if the destination
     of OP1 is the source of OP2.  The exception is when OP1 is a MOVE instruction when
     we can replace the source in OP2 with the source of OP1.  */
  if (REG_P (pliw2->src) && REGNO (pliw2->src) == REGNO (pliw1->dest))
    {
      if (pliw1->op == LIW_OP_MOV && REG_P (pliw1->src))
	{
	  if (! REG_P (pliw1->src)
	      && (pliw2->op == LIW_OP_AND
		  || pliw2->op == LIW_OP_OR
		  || pliw2->op == LIW_OP_XOR))
	    return false;
		  
	  pliw2->src = pliw1->src;
	  return true;
	}
      return false;
    }

  /* Everything else is OK.  */
  return true;
}

/* Combine pairs of insns into LIW bundles.  */

static void
mn10300_bundle_liw (void)
{
  rtx r;

  for (r = get_insns (); r != NULL_RTX; r = next_nonnote_nondebug_insn (r))
    {
      rtx insn1, insn2;
      struct liw_data liw1, liw2;

      insn1 = r;
      if (! extract_bundle (insn1, & liw1))
	continue;

      insn2 = next_nonnote_nondebug_insn (insn1);
      if (! extract_bundle (insn2, & liw2))
	continue;

      /* Check for source/destination overlap.  */
      if (! check_liw_constraints (& liw1, & liw2))
	continue;

      if (liw1.slot == LIW_OP2 || liw2.slot == LIW_OP1)
	{
	  struct liw_data temp;
	  
	  temp = liw1;
	  liw1 = liw2;
	  liw2 = temp;
	}

      delete_insn (insn2);

      if (liw1.op == LIW_OP_CMP)
	insn2 = gen_cmp_liw (liw2.dest, liw2.src, liw1.dest, liw1.src,
			     GEN_INT (liw2.op));
      else if (liw2.op == LIW_OP_CMP)
	insn2 = gen_liw_cmp (liw1.dest, liw1.src, liw2.dest, liw2.src,
			     GEN_INT (liw1.op));
      else
	insn2 = gen_liw (liw1.dest, liw2.dest, liw1.src, liw2.src,
			 GEN_INT (liw1.op), GEN_INT (liw2.op));

      insn2 = emit_insn_after (insn2, insn1);
      delete_insn (insn1);
      r = insn2;
    }
}

#define DUMP(reason, insn)			\
  do						\
    {						\
      if (dump_file)				\
	{					\
	  fprintf (dump_file, reason "\n");	\
	  if (insn != NULL_RTX)			\
	    print_rtl_single (dump_file, insn);	\
	  fprintf(dump_file, "\n");		\
	}					\
    }						\
  while (0)

/* Replace the BRANCH insn with a Lcc insn that goes to LABEL.
   Insert a SETLB insn just before LABEL.  */

static void
mn10300_insert_setlb_lcc (rtx label, rtx branch)
{
  rtx lcc, comparison, cmp_reg;

  if (LABEL_NUSES (label) > 1)
    {
      rtx insn;

      /* This label is used both as an entry point to the loop
	 and as a loop-back point for the loop.  We need to separate
	 these two functions so that the SETLB happens upon entry,
	 but the loop-back does not go to the SETLB instruction.  */
      DUMP ("Inserting SETLB insn after:", label);
      insn = emit_insn_after (gen_setlb (), label);
      label = gen_label_rtx ();
      emit_label_after (label, insn);
      DUMP ("Created new loop-back label:", label);
    }
  else
    {
      DUMP ("Inserting SETLB insn before:", label);
      emit_insn_before (gen_setlb (), label);
    }

  comparison = XEXP (SET_SRC (PATTERN (branch)), 0);
  cmp_reg = XEXP (comparison, 0);
  gcc_assert (REG_P (cmp_reg));

  /* If the comparison has not already been split out of the branch
     then do so now.  */
  gcc_assert (REGNO (cmp_reg) == CC_REG);

  if (GET_MODE (cmp_reg) == CC_FLOATmode)
    lcc = gen_FLcc (comparison, label);
  else
    lcc = gen_Lcc (comparison, label);    

  lcc = emit_jump_insn_before (lcc, branch);
  mark_jump_label (XVECEXP (PATTERN (lcc), 0, 0), lcc, 0);
  JUMP_LABEL (lcc) = label;
  DUMP ("Replacing branch insn...", branch);
  DUMP ("... with Lcc insn:", lcc);  
  delete_insn (branch);
}

static bool
mn10300_block_contains_call (basic_block block)
{
  rtx insn;

  FOR_BB_INSNS (block, insn)
    if (CALL_P (insn))
      return true;

  return false;
}

static bool
mn10300_loop_contains_call_insn (loop_p loop)
{
  basic_block * bbs;
  bool result = false;
  unsigned int i;

  bbs = get_loop_body (loop);

  for (i = 0; i < loop->num_nodes; i++)
    if (mn10300_block_contains_call (bbs[i]))
      {
	result = true;
	break;
      }

  free (bbs);
  return result;
}

static void
mn10300_scan_for_setlb_lcc (void)
{
  loop_iterator liter;
  loop_p loop;

  DUMP ("Looking for loops that can use the SETLB insn", NULL_RTX);

  df_analyze ();
  compute_bb_for_insn ();

  /* Find the loops.  */
  loop_optimizer_init (AVOID_CFG_MODIFICATIONS);

  /* FIXME: For now we only investigate innermost loops.  In practice however
     if an inner loop is not suitable for use with the SETLB/Lcc insns, it may
     be the case that its parent loop is suitable.  Thus we should check all
     loops, but work from the innermost outwards.  */
  FOR_EACH_LOOP (liter, loop, LI_ONLY_INNERMOST)
    {
      const char * reason = NULL;

      /* Check to see if we can modify this loop.  If we cannot
	 then set 'reason' to describe why it could not be done.  */
      if (loop->latch == NULL)
	reason = "it contains multiple latches";
      else if (loop->header != loop->latch)
	/* FIXME: We could handle loops that span multiple blocks,
	   but this requires a lot more work tracking down the branches
	   that need altering, so for now keep things simple.  */
	reason = "the loop spans multiple blocks";
      else if (mn10300_loop_contains_call_insn (loop))
	reason = "it contains CALL insns";
      else
	{
	  rtx branch = BB_END (loop->latch);

	  gcc_assert (JUMP_P (branch));
	  if (single_set (branch) == NULL_RTX || ! any_condjump_p (branch))
	    /* We cannot optimize tablejumps and the like.  */
	    /* FIXME: We could handle unconditional jumps.  */
	    reason = "it is not a simple loop";
	  else
	    {
	      rtx label;

	      if (dump_file)
		flow_loop_dump (loop, dump_file, NULL, 0);

	      label = BB_HEAD (loop->header);
	      gcc_assert (LABEL_P (label));

	      mn10300_insert_setlb_lcc (label, branch);
	    }
	}

      if (dump_file && reason != NULL)
	fprintf (dump_file, "Loop starting with insn %d is not suitable because %s\n",
		 INSN_UID (BB_HEAD (loop->header)),
		 reason);
    }

  loop_optimizer_finalize ();

  df_finish_pass (false);  

  DUMP ("SETLB scan complete", NULL_RTX);
}

static void
mn10300_reorg (void)
{
  /* These are optimizations, so only run them if optimizing.  */
  if (TARGET_AM33 && (optimize > 0 || optimize_size))
    {
      if (TARGET_ALLOW_SETLB)
	mn10300_scan_for_setlb_lcc ();

      if (TARGET_ALLOW_LIW)
	mn10300_bundle_liw ();
    }
}

/* Initialize the GCC target structure.  */

#undef  TARGET_MACHINE_DEPENDENT_REORG
#define TARGET_MACHINE_DEPENDENT_REORG mn10300_reorg

#undef  TARGET_ASM_ALIGNED_HI_OP
#define TARGET_ASM_ALIGNED_HI_OP "\t.hword\t"

#undef  TARGET_LEGITIMIZE_ADDRESS
#define TARGET_LEGITIMIZE_ADDRESS mn10300_legitimize_address

#undef  TARGET_ADDRESS_COST
#define TARGET_ADDRESS_COST  mn10300_address_cost
#undef  TARGET_REGISTER_MOVE_COST
#define TARGET_REGISTER_MOVE_COST  mn10300_register_move_cost
#undef  TARGET_MEMORY_MOVE_COST
#define TARGET_MEMORY_MOVE_COST  mn10300_memory_move_cost
#undef  TARGET_RTX_COSTS
#define TARGET_RTX_COSTS mn10300_rtx_costs

#undef  TARGET_ASM_FILE_START
#define TARGET_ASM_FILE_START mn10300_file_start
#undef  TARGET_ASM_FILE_START_FILE_DIRECTIVE
#define TARGET_ASM_FILE_START_FILE_DIRECTIVE true

#undef TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA
#define TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA mn10300_asm_output_addr_const_extra

#undef  TARGET_OPTION_OVERRIDE
#define TARGET_OPTION_OVERRIDE mn10300_option_override

#undef  TARGET_ENCODE_SECTION_INFO
#define TARGET_ENCODE_SECTION_INFO mn10300_encode_section_info

#undef  TARGET_PROMOTE_PROTOTYPES
#define TARGET_PROMOTE_PROTOTYPES hook_bool_const_tree_true
#undef  TARGET_RETURN_IN_MEMORY
#define TARGET_RETURN_IN_MEMORY mn10300_return_in_memory
#undef  TARGET_PASS_BY_REFERENCE
#define TARGET_PASS_BY_REFERENCE mn10300_pass_by_reference
#undef  TARGET_CALLEE_COPIES
#define TARGET_CALLEE_COPIES hook_bool_CUMULATIVE_ARGS_mode_tree_bool_true
#undef  TARGET_ARG_PARTIAL_BYTES
#define TARGET_ARG_PARTIAL_BYTES mn10300_arg_partial_bytes
#undef  TARGET_FUNCTION_ARG
#define TARGET_FUNCTION_ARG mn10300_function_arg
#undef  TARGET_FUNCTION_ARG_ADVANCE
#define TARGET_FUNCTION_ARG_ADVANCE mn10300_function_arg_advance

#undef  TARGET_EXPAND_BUILTIN_SAVEREGS
#define TARGET_EXPAND_BUILTIN_SAVEREGS mn10300_builtin_saveregs
#undef  TARGET_EXPAND_BUILTIN_VA_START
#define TARGET_EXPAND_BUILTIN_VA_START mn10300_va_start

#undef  TARGET_CASE_VALUES_THRESHOLD
#define TARGET_CASE_VALUES_THRESHOLD mn10300_case_values_threshold

#undef  TARGET_LEGITIMATE_ADDRESS_P
#define TARGET_LEGITIMATE_ADDRESS_P	mn10300_legitimate_address_p
#undef  TARGET_DELEGITIMIZE_ADDRESS
#define TARGET_DELEGITIMIZE_ADDRESS	mn10300_delegitimize_address
#undef  TARGET_LEGITIMATE_CONSTANT_P
#define TARGET_LEGITIMATE_CONSTANT_P	mn10300_legitimate_constant_p

#undef  TARGET_PREFERRED_RELOAD_CLASS
#define TARGET_PREFERRED_RELOAD_CLASS mn10300_preferred_reload_class
#undef  TARGET_PREFERRED_OUTPUT_RELOAD_CLASS
#define TARGET_PREFERRED_OUTPUT_RELOAD_CLASS \
  mn10300_preferred_output_reload_class
#undef  TARGET_SECONDARY_RELOAD
#define TARGET_SECONDARY_RELOAD  mn10300_secondary_reload

#undef  TARGET_TRAMPOLINE_INIT
#define TARGET_TRAMPOLINE_INIT mn10300_trampoline_init

#undef  TARGET_FUNCTION_VALUE
#define TARGET_FUNCTION_VALUE mn10300_function_value
#undef  TARGET_LIBCALL_VALUE
#define TARGET_LIBCALL_VALUE mn10300_libcall_value

#undef  TARGET_ASM_OUTPUT_MI_THUNK
#define TARGET_ASM_OUTPUT_MI_THUNK      mn10300_asm_output_mi_thunk
#undef  TARGET_ASM_CAN_OUTPUT_MI_THUNK
#define TARGET_ASM_CAN_OUTPUT_MI_THUNK  mn10300_can_output_mi_thunk

#undef  TARGET_SCHED_ADJUST_COST
#define TARGET_SCHED_ADJUST_COST mn10300_adjust_sched_cost

#undef  TARGET_CONDITIONAL_REGISTER_USAGE
#define TARGET_CONDITIONAL_REGISTER_USAGE mn10300_conditional_register_usage

#undef TARGET_MD_ASM_CLOBBERS
#define TARGET_MD_ASM_CLOBBERS  mn10300_md_asm_clobbers

#undef  TARGET_FLAGS_REGNUM
#define TARGET_FLAGS_REGNUM  CC_REG

struct gcc_target targetm = TARGET_INITIALIZER;