1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
|
/* Definitions of target machine for GNU compiler. MIPS version.
Copyright (C) 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
Contributed by A. Lichnewsky (lich@inria.inria.fr).
Changed by Michael Meissner (meissner@osf.org).
64-bit r4000 support by Ian Lance Taylor (ian@cygnus.com) and
Brendan Eich (brendan@microunity.com).
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to
the Free Software Foundation, 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA. */
#include "config/vxworks-dummy.h"
/* MIPS external variables defined in mips.c. */
/* Which processor to schedule for. Since there is no difference between
a R2000 and R3000 in terms of the scheduler, we collapse them into
just an R3000. The elements of the enumeration must match exactly
the cpu attribute in the mips.md machine description. */
enum processor_type {
PROCESSOR_R3000,
PROCESSOR_4KC,
PROCESSOR_4KP,
PROCESSOR_5KC,
PROCESSOR_5KF,
PROCESSOR_20KC,
PROCESSOR_24KC,
PROCESSOR_24KF,
PROCESSOR_24KX,
PROCESSOR_M4K,
PROCESSOR_R3900,
PROCESSOR_R6000,
PROCESSOR_R4000,
PROCESSOR_R4100,
PROCESSOR_R4111,
PROCESSOR_R4120,
PROCESSOR_R4130,
PROCESSOR_R4300,
PROCESSOR_R4600,
PROCESSOR_R4650,
PROCESSOR_R5000,
PROCESSOR_R5400,
PROCESSOR_R5500,
PROCESSOR_R7000,
PROCESSOR_R8000,
PROCESSOR_R9000,
PROCESSOR_SB1,
PROCESSOR_SB1A,
PROCESSOR_SR71000,
PROCESSOR_MAX
};
/* Costs of various operations on the different architectures. */
struct mips_rtx_cost_data
{
unsigned short fp_add;
unsigned short fp_mult_sf;
unsigned short fp_mult_df;
unsigned short fp_div_sf;
unsigned short fp_div_df;
unsigned short int_mult_si;
unsigned short int_mult_di;
unsigned short int_div_si;
unsigned short int_div_di;
unsigned short branch_cost;
unsigned short memory_latency;
};
/* Which ABI to use. ABI_32 (original 32, or o32), ABI_N32 (n32),
ABI_64 (n64) are all defined by SGI. ABI_O64 is o32 extended
to work on a 64-bit machine. */
#define ABI_32 0
#define ABI_N32 1
#define ABI_64 2
#define ABI_EABI 3
#define ABI_O64 4
/* Information about one recognized processor. Defined here for the
benefit of TARGET_CPU_CPP_BUILTINS. */
struct mips_cpu_info {
/* The 'canonical' name of the processor as far as GCC is concerned.
It's typically a manufacturer's prefix followed by a numerical
designation. It should be lowercase. */
const char *name;
/* The internal processor number that most closely matches this
entry. Several processors can have the same value, if there's no
difference between them from GCC's point of view. */
enum processor_type cpu;
/* The ISA level that the processor implements. */
int isa;
};
#ifndef USED_FOR_TARGET
extern char mips_print_operand_punct[256]; /* print_operand punctuation chars */
extern const char *current_function_file; /* filename current function is in */
extern int num_source_filenames; /* current .file # */
extern int mips_section_threshold; /* # bytes of data/sdata cutoff */
extern int sym_lineno; /* sgi next label # for each stmt */
extern int set_noreorder; /* # of nested .set noreorder's */
extern int set_nomacro; /* # of nested .set nomacro's */
extern int set_noat; /* # of nested .set noat's */
extern int set_volatile; /* # of nested .set volatile's */
extern int mips_branch_likely; /* emit 'l' after br (branch likely) */
extern int mips_dbx_regno[]; /* Map register # to debug register # */
extern bool mips_split_p[];
extern GTY(()) rtx cmp_operands[2];
extern enum processor_type mips_arch; /* which cpu to codegen for */
extern enum processor_type mips_tune; /* which cpu to schedule for */
extern int mips_isa; /* architectural level */
extern int mips_abi; /* which ABI to use */
extern int mips16_hard_float; /* mips16 without -msoft-float */
extern const struct mips_cpu_info mips_cpu_info_table[];
extern const struct mips_cpu_info *mips_arch_info;
extern const struct mips_cpu_info *mips_tune_info;
extern const struct mips_rtx_cost_data *mips_cost;
#endif
/* Macros to silence warnings about numbers being signed in traditional
C and unsigned in ISO C when compiled on 32-bit hosts. */
#define BITMASK_HIGH (((unsigned long)1) << 31) /* 0x80000000 */
#define BITMASK_UPPER16 ((unsigned long)0xffff << 16) /* 0xffff0000 */
#define BITMASK_LOWER16 ((unsigned long)0xffff) /* 0x0000ffff */
/* Run-time compilation parameters selecting different hardware subsets. */
/* True if we are generating position-independent VxWorks RTP code. */
#define TARGET_RTP_PIC (TARGET_VXWORKS_RTP && flag_pic)
/* True if the call patterns should be split into a jalr followed by
an instruction to restore $gp. It is only safe to split the load
from the call when every use of $gp is explicit. */
#define TARGET_SPLIT_CALLS \
(TARGET_EXPLICIT_RELOCS && TARGET_CALL_CLOBBERED_GP)
/* True if we're generating a form of -mabicalls in which we can use
operators like %hi and %lo to refer to locally-binding symbols.
We can only do this for -mno-shared, and only then if we can use
relocation operations instead of assembly macros. It isn't really
worth using absolute sequences for 64-bit symbols because GOT
accesses are so much shorter. */
#define TARGET_ABSOLUTE_ABICALLS \
(TARGET_ABICALLS \
&& !TARGET_SHARED \
&& TARGET_EXPLICIT_RELOCS \
&& !ABI_HAS_64BIT_SYMBOLS)
/* True if we can optimize sibling calls. For simplicity, we only
handle cases in which call_insn_operand will reject invalid
sibcall addresses. There are two cases in which this isn't true:
- TARGET_MIPS16. call_insn_operand accepts constant addresses
but there is no direct jump instruction. It isn't worth
using sibling calls in this case anyway; they would usually
be longer than normal calls.
- TARGET_USE_GOT && !TARGET_EXPLICIT_RELOCS. call_insn_operand
accepts global constants, but all sibcalls must be indirect. */
#define TARGET_SIBCALLS \
(!TARGET_MIPS16 && (!TARGET_USE_GOT || TARGET_EXPLICIT_RELOCS))
/* True if we need to use a global offset table to access some symbols. */
#define TARGET_USE_GOT (TARGET_ABICALLS || TARGET_RTP_PIC)
/* True if TARGET_USE_GOT and if $gp is a call-clobbered register. */
#define TARGET_CALL_CLOBBERED_GP (TARGET_ABICALLS && TARGET_OLDABI)
/* True if TARGET_USE_GOT and if $gp is a call-saved register. */
#define TARGET_CALL_SAVED_GP (TARGET_USE_GOT && !TARGET_CALL_CLOBBERED_GP)
/* True if indirect calls must use register class PIC_FN_ADDR_REG.
This is true for both the PIC and non-PIC VxWorks RTP modes. */
#define TARGET_USE_PIC_FN_ADDR_REG (TARGET_ABICALLS || TARGET_VXWORKS_RTP)
/* True if .gpword or .gpdword should be used for switch tables.
Although GAS does understand .gpdword, the SGI linker mishandles
the relocations GAS generates (R_MIPS_GPREL32 followed by R_MIPS_64).
We therefore disable GP-relative switch tables for n64 on IRIX targets. */
#define TARGET_GPWORD (TARGET_ABICALLS && !(mips_abi == ABI_64 && TARGET_IRIX))
/* Generate mips16 code */
#define TARGET_MIPS16 ((target_flags & MASK_MIPS16) != 0)
/* Generate mips16e code. Default 16bit ASE for mips32/mips32r2/mips64 */
#define GENERATE_MIPS16E (TARGET_MIPS16 && mips_isa >= 32)
/* Generic ISA defines. */
#define ISA_MIPS1 (mips_isa == 1)
#define ISA_MIPS2 (mips_isa == 2)
#define ISA_MIPS3 (mips_isa == 3)
#define ISA_MIPS4 (mips_isa == 4)
#define ISA_MIPS32 (mips_isa == 32)
#define ISA_MIPS32R2 (mips_isa == 33)
#define ISA_MIPS64 (mips_isa == 64)
/* Architecture target defines. */
#define TARGET_MIPS3900 (mips_arch == PROCESSOR_R3900)
#define TARGET_MIPS4000 (mips_arch == PROCESSOR_R4000)
#define TARGET_MIPS4120 (mips_arch == PROCESSOR_R4120)
#define TARGET_MIPS4130 (mips_arch == PROCESSOR_R4130)
#define TARGET_MIPS5400 (mips_arch == PROCESSOR_R5400)
#define TARGET_MIPS5500 (mips_arch == PROCESSOR_R5500)
#define TARGET_MIPS7000 (mips_arch == PROCESSOR_R7000)
#define TARGET_MIPS9000 (mips_arch == PROCESSOR_R9000)
#define TARGET_SB1 (mips_arch == PROCESSOR_SB1 \
|| mips_arch == PROCESSOR_SB1A)
#define TARGET_SR71K (mips_arch == PROCESSOR_SR71000)
/* Scheduling target defines. */
#define TUNE_MIPS3000 (mips_tune == PROCESSOR_R3000)
#define TUNE_MIPS3900 (mips_tune == PROCESSOR_R3900)
#define TUNE_MIPS4000 (mips_tune == PROCESSOR_R4000)
#define TUNE_MIPS4120 (mips_tune == PROCESSOR_R4120)
#define TUNE_MIPS4130 (mips_tune == PROCESSOR_R4130)
#define TUNE_MIPS5000 (mips_tune == PROCESSOR_R5000)
#define TUNE_MIPS5400 (mips_tune == PROCESSOR_R5400)
#define TUNE_MIPS5500 (mips_tune == PROCESSOR_R5500)
#define TUNE_MIPS6000 (mips_tune == PROCESSOR_R6000)
#define TUNE_MIPS7000 (mips_tune == PROCESSOR_R7000)
#define TUNE_MIPS9000 (mips_tune == PROCESSOR_R9000)
#define TUNE_SB1 (mips_tune == PROCESSOR_SB1 \
|| mips_tune == PROCESSOR_SB1A)
/* True if the pre-reload scheduler should try to create chains of
multiply-add or multiply-subtract instructions. For example,
suppose we have:
t1 = a * b
t2 = t1 + c * d
t3 = e * f
t4 = t3 - g * h
t1 will have a higher priority than t2 and t3 will have a higher
priority than t4. However, before reload, there is no dependence
between t1 and t3, and they can often have similar priorities.
The scheduler will then tend to prefer:
t1 = a * b
t3 = e * f
t2 = t1 + c * d
t4 = t3 - g * h
which stops us from making full use of macc/madd-style instructions.
This sort of situation occurs frequently in Fourier transforms and
in unrolled loops.
To counter this, the TUNE_MACC_CHAINS code will reorder the ready
queue so that chained multiply-add and multiply-subtract instructions
appear ahead of any other instruction that is likely to clobber lo.
In the example above, if t2 and t3 become ready at the same time,
the code ensures that t2 is scheduled first.
Multiply-accumulate instructions are a bigger win for some targets
than others, so this macro is defined on an opt-in basis. */
#define TUNE_MACC_CHAINS (TUNE_MIPS5500 \
|| TUNE_MIPS4120 \
|| TUNE_MIPS4130)
#define TARGET_OLDABI (mips_abi == ABI_32 || mips_abi == ABI_O64)
#define TARGET_NEWABI (mips_abi == ABI_N32 || mips_abi == ABI_64)
/* IRIX specific stuff. */
#define TARGET_IRIX 0
#define TARGET_IRIX6 0
/* Define preprocessor macros for the -march and -mtune options.
PREFIX is either _MIPS_ARCH or _MIPS_TUNE, INFO is the selected
processor. If INFO's canonical name is "foo", define PREFIX to
be "foo", and define an additional macro PREFIX_FOO. */
#define MIPS_CPP_SET_PROCESSOR(PREFIX, INFO) \
do \
{ \
char *macro, *p; \
\
macro = concat ((PREFIX), "_", (INFO)->name, NULL); \
for (p = macro; *p != 0; p++) \
*p = TOUPPER (*p); \
\
builtin_define (macro); \
builtin_define_with_value ((PREFIX), (INFO)->name, 1); \
free (macro); \
} \
while (0)
/* Target CPU builtins. */
#define TARGET_CPU_CPP_BUILTINS() \
do \
{ \
/* Everyone but IRIX defines this to mips. */ \
if (!TARGET_IRIX) \
builtin_assert ("machine=mips"); \
\
builtin_assert ("cpu=mips"); \
builtin_define ("__mips__"); \
builtin_define ("_mips"); \
\
/* We do this here because __mips is defined below \
and so we can't use builtin_define_std. */ \
if (!flag_iso) \
builtin_define ("mips"); \
\
if (TARGET_64BIT) \
builtin_define ("__mips64"); \
\
if (!TARGET_IRIX) \
{ \
/* Treat _R3000 and _R4000 like register-size \
defines, which is how they've historically \
been used. */ \
if (TARGET_64BIT) \
{ \
builtin_define_std ("R4000"); \
builtin_define ("_R4000"); \
} \
else \
{ \
builtin_define_std ("R3000"); \
builtin_define ("_R3000"); \
} \
} \
if (TARGET_FLOAT64) \
builtin_define ("__mips_fpr=64"); \
else \
builtin_define ("__mips_fpr=32"); \
\
if (TARGET_MIPS16) \
builtin_define ("__mips16"); \
\
if (TARGET_MIPS3D) \
builtin_define ("__mips3d"); \
\
if (TARGET_DSP) \
builtin_define ("__mips_dsp"); \
\
if (TARGET_DSPR2) \
builtin_define ("__mips_dspr2"); \
\
MIPS_CPP_SET_PROCESSOR ("_MIPS_ARCH", mips_arch_info); \
MIPS_CPP_SET_PROCESSOR ("_MIPS_TUNE", mips_tune_info); \
\
if (ISA_MIPS1) \
{ \
builtin_define ("__mips=1"); \
builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS1"); \
} \
else if (ISA_MIPS2) \
{ \
builtin_define ("__mips=2"); \
builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS2"); \
} \
else if (ISA_MIPS3) \
{ \
builtin_define ("__mips=3"); \
builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS3"); \
} \
else if (ISA_MIPS4) \
{ \
builtin_define ("__mips=4"); \
builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS4"); \
} \
else if (ISA_MIPS32) \
{ \
builtin_define ("__mips=32"); \
builtin_define ("__mips_isa_rev=1"); \
builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS32"); \
} \
else if (ISA_MIPS32R2) \
{ \
builtin_define ("__mips=32"); \
builtin_define ("__mips_isa_rev=2"); \
builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS32"); \
} \
else if (ISA_MIPS64) \
{ \
builtin_define ("__mips=64"); \
builtin_define ("__mips_isa_rev=1"); \
builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS64"); \
} \
\
if (TARGET_HARD_FLOAT) \
builtin_define ("__mips_hard_float"); \
else if (TARGET_SOFT_FLOAT) \
builtin_define ("__mips_soft_float"); \
\
if (TARGET_SINGLE_FLOAT) \
builtin_define ("__mips_single_float"); \
\
if (TARGET_PAIRED_SINGLE_FLOAT) \
builtin_define ("__mips_paired_single_float"); \
\
if (TARGET_BIG_ENDIAN) \
{ \
builtin_define_std ("MIPSEB"); \
builtin_define ("_MIPSEB"); \
} \
else \
{ \
builtin_define_std ("MIPSEL"); \
builtin_define ("_MIPSEL"); \
} \
\
/* Macros dependent on the C dialect. */ \
if (preprocessing_asm_p ()) \
{ \
builtin_define_std ("LANGUAGE_ASSEMBLY"); \
builtin_define ("_LANGUAGE_ASSEMBLY"); \
} \
else if (c_dialect_cxx ()) \
{ \
builtin_define ("_LANGUAGE_C_PLUS_PLUS"); \
builtin_define ("__LANGUAGE_C_PLUS_PLUS"); \
builtin_define ("__LANGUAGE_C_PLUS_PLUS__"); \
} \
else \
{ \
builtin_define_std ("LANGUAGE_C"); \
builtin_define ("_LANGUAGE_C"); \
} \
if (c_dialect_objc ()) \
{ \
builtin_define ("_LANGUAGE_OBJECTIVE_C"); \
builtin_define ("__LANGUAGE_OBJECTIVE_C"); \
/* Bizarre, but needed at least for Irix. */ \
builtin_define_std ("LANGUAGE_C"); \
builtin_define ("_LANGUAGE_C"); \
} \
\
if (mips_abi == ABI_EABI) \
builtin_define ("__mips_eabi"); \
\
} while (0)
/* Default target_flags if no switches are specified */
#ifndef TARGET_DEFAULT
#define TARGET_DEFAULT 0
#endif
#ifndef TARGET_CPU_DEFAULT
#define TARGET_CPU_DEFAULT 0
#endif
#ifndef TARGET_ENDIAN_DEFAULT
#define TARGET_ENDIAN_DEFAULT MASK_BIG_ENDIAN
#endif
#ifndef TARGET_FP_EXCEPTIONS_DEFAULT
#define TARGET_FP_EXCEPTIONS_DEFAULT MASK_FP_EXCEPTIONS
#endif
/* 'from-abi' makes a good default: you get whatever the ABI requires. */
#ifndef MIPS_ISA_DEFAULT
#ifndef MIPS_CPU_STRING_DEFAULT
#define MIPS_CPU_STRING_DEFAULT "from-abi"
#endif
#endif
#ifdef IN_LIBGCC2
#undef TARGET_64BIT
/* Make this compile time constant for libgcc2 */
#ifdef __mips64
#define TARGET_64BIT 1
#else
#define TARGET_64BIT 0
#endif
#endif /* IN_LIBGCC2 */
#define TARGET_LIBGCC_SDATA_SECTION ".sdata"
#ifndef MULTILIB_ENDIAN_DEFAULT
#if TARGET_ENDIAN_DEFAULT == 0
#define MULTILIB_ENDIAN_DEFAULT "EL"
#else
#define MULTILIB_ENDIAN_DEFAULT "EB"
#endif
#endif
#ifndef MULTILIB_ISA_DEFAULT
# if MIPS_ISA_DEFAULT == 1
# define MULTILIB_ISA_DEFAULT "mips1"
# else
# if MIPS_ISA_DEFAULT == 2
# define MULTILIB_ISA_DEFAULT "mips2"
# else
# if MIPS_ISA_DEFAULT == 3
# define MULTILIB_ISA_DEFAULT "mips3"
# else
# if MIPS_ISA_DEFAULT == 4
# define MULTILIB_ISA_DEFAULT "mips4"
# else
# if MIPS_ISA_DEFAULT == 32
# define MULTILIB_ISA_DEFAULT "mips32"
# else
# if MIPS_ISA_DEFAULT == 33
# define MULTILIB_ISA_DEFAULT "mips32r2"
# else
# if MIPS_ISA_DEFAULT == 64
# define MULTILIB_ISA_DEFAULT "mips64"
# else
# define MULTILIB_ISA_DEFAULT "mips1"
# endif
# endif
# endif
# endif
# endif
# endif
# endif
#endif
#ifndef MULTILIB_DEFAULTS
#define MULTILIB_DEFAULTS \
{ MULTILIB_ENDIAN_DEFAULT, MULTILIB_ISA_DEFAULT, MULTILIB_ABI_DEFAULT }
#endif
/* We must pass -EL to the linker by default for little endian embedded
targets using linker scripts with a OUTPUT_FORMAT line. Otherwise, the
linker will default to using big-endian output files. The OUTPUT_FORMAT
line must be in the linker script, otherwise -EB/-EL will not work. */
#ifndef ENDIAN_SPEC
#if TARGET_ENDIAN_DEFAULT == 0
#define ENDIAN_SPEC "%{!EB:%{!meb:-EL}} %{EB|meb:-EB}"
#else
#define ENDIAN_SPEC "%{!EL:%{!mel:-EB}} %{EL|mel:-EL}"
#endif
#endif
/* Support for a compile-time default CPU, et cetera. The rules are:
--with-arch is ignored if -march is specified or a -mips is specified
(other than -mips16).
--with-tune is ignored if -mtune is specified.
--with-abi is ignored if -mabi is specified.
--with-float is ignored if -mhard-float or -msoft-float are
specified.
--with-divide is ignored if -mdivide-traps or -mdivide-breaks are
specified. */
#define OPTION_DEFAULT_SPECS \
{"arch", "%{!march=*:%{mips16:-march=%(VALUE)}%{!mips*:-march=%(VALUE)}}" }, \
{"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
{"abi", "%{!mabi=*:-mabi=%(VALUE)}" }, \
{"float", "%{!msoft-float:%{!mhard-float:-m%(VALUE)-float}}" }, \
{"divide", "%{!mdivide-traps:%{!mdivide-breaks:-mdivide-%(VALUE)}}" }
#define GENERATE_DIVIDE_TRAPS (TARGET_DIVIDE_TRAPS \
&& ISA_HAS_COND_TRAP)
#define GENERATE_BRANCHLIKELY (TARGET_BRANCHLIKELY \
&& !TARGET_SR71K \
&& !TARGET_MIPS16)
/* True if the ABI can only work with 64-bit integer registers. We
generally allow ad-hoc variations for TARGET_SINGLE_FLOAT, but
otherwise floating-point registers must also be 64-bit. */
#define ABI_NEEDS_64BIT_REGS (TARGET_NEWABI || mips_abi == ABI_O64)
/* Likewise for 32-bit regs. */
#define ABI_NEEDS_32BIT_REGS (mips_abi == ABI_32)
/* True if symbols are 64 bits wide. At present, n64 is the only
ABI for which this is true. */
#define ABI_HAS_64BIT_SYMBOLS (mips_abi == ABI_64 && !TARGET_SYM32)
/* ISA has instructions for managing 64-bit fp and gp regs (e.g. mips3). */
#define ISA_HAS_64BIT_REGS (ISA_MIPS3 \
|| ISA_MIPS4 \
|| ISA_MIPS64)
/* ISA has branch likely instructions (e.g. mips2). */
/* Disable branchlikely for tx39 until compare rewrite. They haven't
been generated up to this point. */
#define ISA_HAS_BRANCHLIKELY (!ISA_MIPS1)
/* ISA has a three-operand multiplication instruction (usually spelt "mul"). */
#define ISA_HAS_MUL3 ((TARGET_MIPS3900 \
|| TARGET_MIPS5400 \
|| TARGET_MIPS5500 \
|| TARGET_MIPS7000 \
|| TARGET_MIPS9000 \
|| TARGET_MAD \
|| ISA_MIPS32 \
|| ISA_MIPS32R2 \
|| ISA_MIPS64) \
&& !TARGET_MIPS16)
/* ISA has the conditional move instructions introduced in mips4. */
#define ISA_HAS_CONDMOVE ((ISA_MIPS4 \
|| ISA_MIPS32 \
|| ISA_MIPS32R2 \
|| ISA_MIPS64) \
&& !TARGET_MIPS5500 \
&& !TARGET_MIPS16)
/* ISA has the mips4 FP condition code instructions: FP-compare to CC,
branch on CC, and move (both FP and non-FP) on CC. */
#define ISA_HAS_8CC (ISA_MIPS4 \
|| ISA_MIPS32 \
|| ISA_MIPS32R2 \
|| ISA_MIPS64)
/* This is a catch all for other mips4 instructions: indexed load, the
FP madd and msub instructions, and the FP recip and recip sqrt
instructions. */
#define ISA_HAS_FP4 ((ISA_MIPS4 \
|| (ISA_MIPS32R2 && TARGET_FLOAT64) \
|| ISA_MIPS64) \
&& !TARGET_MIPS16)
/* ISA has conditional trap instructions. */
#define ISA_HAS_COND_TRAP (!ISA_MIPS1 \
&& !TARGET_MIPS16)
/* ISA has integer multiply-accumulate instructions, madd and msub. */
#define ISA_HAS_MADD_MSUB ((ISA_MIPS32 \
|| ISA_MIPS32R2 \
|| ISA_MIPS64) \
&& !TARGET_MIPS16)
/* ISA has floating-point nmadd and nmsub instructions. */
#define ISA_HAS_NMADD_NMSUB ((ISA_MIPS4 \
|| ISA_MIPS64) \
&& (!TARGET_MIPS5400 || TARGET_MAD) \
&& !TARGET_MIPS16)
/* ISA has count leading zeroes/ones instruction (not implemented). */
#define ISA_HAS_CLZ_CLO ((ISA_MIPS32 \
|| ISA_MIPS32R2 \
|| ISA_MIPS64) \
&& !TARGET_MIPS16)
/* ISA has three operand multiply instructions that put
the high part in an accumulator: mulhi or mulhiu. */
#define ISA_HAS_MULHI ((TARGET_MIPS5400 \
|| TARGET_MIPS5500 \
|| TARGET_SR71K) \
&& !TARGET_MIPS16)
/* ISA has three operand multiply instructions that
negates the result and puts the result in an accumulator. */
#define ISA_HAS_MULS ((TARGET_MIPS5400 \
|| TARGET_MIPS5500 \
|| TARGET_SR71K) \
&& !TARGET_MIPS16)
/* ISA has three operand multiply instructions that subtracts the
result from a 4th operand and puts the result in an accumulator. */
#define ISA_HAS_MSAC ((TARGET_MIPS5400 \
|| TARGET_MIPS5500 \
|| TARGET_SR71K) \
&& !TARGET_MIPS16)
/* ISA has three operand multiply instructions that the result
from a 4th operand and puts the result in an accumulator. */
#define ISA_HAS_MACC ((TARGET_MIPS4120 \
|| TARGET_MIPS4130 \
|| TARGET_MIPS5400 \
|| TARGET_MIPS5500 \
|| TARGET_SR71K) \
&& !TARGET_MIPS16)
/* ISA has NEC VR-style MACC, MACCHI, DMACC and DMACCHI instructions. */
#define ISA_HAS_MACCHI ((TARGET_MIPS4120 \
|| TARGET_MIPS4130) \
&& !TARGET_MIPS16)
/* ISA has the "ror" (rotate right) instructions. */
#define ISA_HAS_ROR ((ISA_MIPS32R2 \
|| TARGET_MIPS5400 \
|| TARGET_MIPS5500 \
|| TARGET_SR71K) \
&& !TARGET_MIPS16)
/* ISA has data prefetch instructions. This controls use of 'pref'. */
#define ISA_HAS_PREFETCH ((ISA_MIPS4 \
|| ISA_MIPS32 \
|| ISA_MIPS32R2 \
|| ISA_MIPS64) \
&& !TARGET_MIPS16)
/* ISA has data indexed prefetch instructions. This controls use of
'prefx', along with TARGET_HARD_FLOAT and TARGET_DOUBLE_FLOAT.
(prefx is a cop1x instruction, so can only be used if FP is
enabled.) */
#define ISA_HAS_PREFETCHX ((ISA_MIPS4 \
|| ISA_MIPS32R2 \
|| ISA_MIPS64) \
&& !TARGET_MIPS16)
/* True if trunc.w.s and trunc.w.d are real (not synthetic)
instructions. Both require TARGET_HARD_FLOAT, and trunc.w.d
also requires TARGET_DOUBLE_FLOAT. */
#define ISA_HAS_TRUNC_W (!ISA_MIPS1)
/* ISA includes the MIPS32r2 seb and seh instructions. */
#define ISA_HAS_SEB_SEH (ISA_MIPS32R2 \
&& !TARGET_MIPS16)
/* ISA includes the MIPS32/64 rev 2 ext and ins instructions. */
#define ISA_HAS_EXT_INS (ISA_MIPS32R2 \
&& !TARGET_MIPS16)
/* ISA has instructions for accessing top part of 64-bit fp regs. */
#define ISA_HAS_MXHC1 (TARGET_FLOAT64 && ISA_MIPS32R2)
/* True if the result of a load is not available to the next instruction.
A nop will then be needed between instructions like "lw $4,..."
and "addiu $4,$4,1". */
#define ISA_HAS_LOAD_DELAY (ISA_MIPS1 \
&& !TARGET_MIPS3900 \
&& !TARGET_MIPS16)
/* Likewise mtc1 and mfc1. */
#define ISA_HAS_XFER_DELAY (mips_isa <= 3)
/* Likewise floating-point comparisons. */
#define ISA_HAS_FCMP_DELAY (mips_isa <= 3)
/* True if mflo and mfhi can be immediately followed by instructions
which write to the HI and LO registers.
According to MIPS specifications, MIPS ISAs I, II, and III need
(at least) two instructions between the reads of HI/LO and
instructions which write them, and later ISAs do not. Contradicting
the MIPS specifications, some MIPS IV processor user manuals (e.g.
the UM for the NEC Vr5000) document needing the instructions between
HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
MIPS64 and later ISAs to have the interlocks, plus any specific
earlier-ISA CPUs for which CPU documentation declares that the
instructions are really interlocked. */
#define ISA_HAS_HILO_INTERLOCKS (ISA_MIPS32 \
|| ISA_MIPS32R2 \
|| ISA_MIPS64 \
|| TARGET_MIPS5500)
/* Add -G xx support. */
#undef SWITCH_TAKES_ARG
#define SWITCH_TAKES_ARG(CHAR) \
(DEFAULT_SWITCH_TAKES_ARG (CHAR) || (CHAR) == 'G')
#define OVERRIDE_OPTIONS override_options ()
#define CONDITIONAL_REGISTER_USAGE mips_conditional_register_usage ()
/* Show we can debug even without a frame pointer. */
#define CAN_DEBUG_WITHOUT_FP
/* Tell collect what flags to pass to nm. */
#ifndef NM_FLAGS
#define NM_FLAGS "-Bn"
#endif
#ifndef MIPS_ABI_DEFAULT
#define MIPS_ABI_DEFAULT ABI_32
#endif
/* Use the most portable ABI flag for the ASM specs. */
#if MIPS_ABI_DEFAULT == ABI_32
#define MULTILIB_ABI_DEFAULT "mabi=32"
#endif
#if MIPS_ABI_DEFAULT == ABI_O64
#define MULTILIB_ABI_DEFAULT "mabi=o64"
#endif
#if MIPS_ABI_DEFAULT == ABI_N32
#define MULTILIB_ABI_DEFAULT "mabi=n32"
#endif
#if MIPS_ABI_DEFAULT == ABI_64
#define MULTILIB_ABI_DEFAULT "mabi=64"
#endif
#if MIPS_ABI_DEFAULT == ABI_EABI
#define MULTILIB_ABI_DEFAULT "mabi=eabi"
#endif
/* SUBTARGET_ASM_OPTIMIZING_SPEC handles passing optimization options
to the assembler. It may be overridden by subtargets. */
#ifndef SUBTARGET_ASM_OPTIMIZING_SPEC
#define SUBTARGET_ASM_OPTIMIZING_SPEC "\
%{noasmopt:-O0} \
%{!noasmopt:%{O:-O2} %{O1:-O2} %{O2:-O2} %{O3:-O3}}"
#endif
/* SUBTARGET_ASM_DEBUGGING_SPEC handles passing debugging options to
the assembler. It may be overridden by subtargets.
Beginning with gas 2.13, -mdebug must be passed to correctly handle
COFF debugging info. */
#ifndef SUBTARGET_ASM_DEBUGGING_SPEC
#define SUBTARGET_ASM_DEBUGGING_SPEC "\
%{g} %{g0} %{g1} %{g2} %{g3} \
%{ggdb:-g} %{ggdb0:-g0} %{ggdb1:-g1} %{ggdb2:-g2} %{ggdb3:-g3} \
%{gstabs:-g} %{gstabs0:-g0} %{gstabs1:-g1} %{gstabs2:-g2} %{gstabs3:-g3} \
%{gstabs+:-g} %{gstabs+0:-g0} %{gstabs+1:-g1} %{gstabs+2:-g2} %{gstabs+3:-g3} \
%{gcoff:-g} %{gcoff0:-g0} %{gcoff1:-g1} %{gcoff2:-g2} %{gcoff3:-g3} \
%{gcoff*:-mdebug} %{!gcoff*:-no-mdebug}"
#endif
/* SUBTARGET_ASM_SPEC is always passed to the assembler. It may be
overridden by subtargets. */
#ifndef SUBTARGET_ASM_SPEC
#define SUBTARGET_ASM_SPEC ""
#endif
#undef ASM_SPEC
#define ASM_SPEC "\
%{G*} %(endian_spec) %{mips1} %{mips2} %{mips3} %{mips4} \
%{mips32} %{mips32r2} %{mips64} \
%{mips16:%{!mno-mips16:-mips16}} %{mno-mips16:-no-mips16} \
%{mips3d:-mips3d} \
%{mdsp} \
%{mdspr2} \
%{mfix-vr4120} %{mfix-vr4130} \
%(subtarget_asm_optimizing_spec) \
%(subtarget_asm_debugging_spec) \
%{mabi=*} %{!mabi*: %(asm_abi_default_spec)} \
%{mgp32} %{mgp64} %{march=*} %{mxgot:-xgot} \
%{mfp32} %{mfp64} \
%{mshared} %{mno-shared} \
%{msym32} %{mno-sym32} \
%{mtune=*} %{v} \
%(subtarget_asm_spec)"
/* Extra switches sometimes passed to the linker. */
/* ??? The bestGnum will never be passed to the linker, because the gcc driver
will interpret it as a -b option. */
#ifndef LINK_SPEC
#define LINK_SPEC "\
%(endian_spec) \
%{G*} %{mips1} %{mips2} %{mips3} %{mips4} %{mips32} %{mips32r2} %{mips64} \
%{bestGnum} %{shared} %{non_shared}"
#endif /* LINK_SPEC defined */
/* Specs for the compiler proper */
/* SUBTARGET_CC1_SPEC is passed to the compiler proper. It may be
overridden by subtargets. */
#ifndef SUBTARGET_CC1_SPEC
#define SUBTARGET_CC1_SPEC ""
#endif
/* CC1_SPEC is the set of arguments to pass to the compiler proper. */
#undef CC1_SPEC
#define CC1_SPEC "\
%{gline:%{!g:%{!g0:%{!g1:%{!g2: -g1}}}}} \
%{G*} %{EB:-meb} %{EL:-mel} %{EB:%{EL:%emay not use both -EB and -EL}} \
%{save-temps: } \
%(subtarget_cc1_spec)"
/* Preprocessor specs. */
/* SUBTARGET_CPP_SPEC is passed to the preprocessor. It may be
overridden by subtargets. */
#ifndef SUBTARGET_CPP_SPEC
#define SUBTARGET_CPP_SPEC ""
#endif
#define CPP_SPEC "%(subtarget_cpp_spec)"
/* This macro defines names of additional specifications to put in the specs
that can be used in various specifications like CC1_SPEC. Its definition
is an initializer with a subgrouping for each command option.
Each subgrouping contains a string constant, that defines the
specification name, and a string constant that used by the GCC driver
program.
Do not define this macro if it does not need to do anything. */
#define EXTRA_SPECS \
{ "subtarget_cc1_spec", SUBTARGET_CC1_SPEC }, \
{ "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \
{ "subtarget_asm_optimizing_spec", SUBTARGET_ASM_OPTIMIZING_SPEC }, \
{ "subtarget_asm_debugging_spec", SUBTARGET_ASM_DEBUGGING_SPEC }, \
{ "subtarget_asm_spec", SUBTARGET_ASM_SPEC }, \
{ "asm_abi_default_spec", "-" MULTILIB_ABI_DEFAULT }, \
{ "endian_spec", ENDIAN_SPEC }, \
SUBTARGET_EXTRA_SPECS
#ifndef SUBTARGET_EXTRA_SPECS
#define SUBTARGET_EXTRA_SPECS
#endif
#define DBX_DEBUGGING_INFO 1 /* generate stabs (OSF/rose) */
#define MIPS_DEBUGGING_INFO 1 /* MIPS specific debugging info */
#define DWARF2_DEBUGGING_INFO 1 /* dwarf2 debugging info */
#ifndef PREFERRED_DEBUGGING_TYPE
#define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
#endif
#define DWARF2_ADDR_SIZE (ABI_HAS_64BIT_SYMBOLS ? 8 : 4)
/* By default, turn on GDB extensions. */
#define DEFAULT_GDB_EXTENSIONS 1
/* Local compiler-generated symbols must have a prefix that the assembler
understands. By default, this is $, although some targets (e.g.,
NetBSD-ELF) need to override this. */
#ifndef LOCAL_LABEL_PREFIX
#define LOCAL_LABEL_PREFIX "$"
#endif
/* By default on the mips, external symbols do not have an underscore
prepended, but some targets (e.g., NetBSD) require this. */
#ifndef USER_LABEL_PREFIX
#define USER_LABEL_PREFIX ""
#endif
/* On Sun 4, this limit is 2048. We use 1500 to be safe,
since the length can run past this up to a continuation point. */
#undef DBX_CONTIN_LENGTH
#define DBX_CONTIN_LENGTH 1500
/* How to renumber registers for dbx and gdb. */
#define DBX_REGISTER_NUMBER(REGNO) mips_dbx_regno[ (REGNO) ]
/* The mapping from gcc register number to DWARF 2 CFA column number. */
#define DWARF_FRAME_REGNUM(REG) (REG)
/* The DWARF 2 CFA column which tracks the return address. */
#define DWARF_FRAME_RETURN_COLUMN (GP_REG_FIRST + 31)
/* The DWARF 2 CFA column which tracks the return address from a
signal handler context. */
#define SIGNAL_UNWIND_RETURN_COLUMN (FP_REG_LAST + 1)
/* Before the prologue, RA lives in r31. */
#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (VOIDmode, GP_REG_FIRST + 31)
/* Describe how we implement __builtin_eh_return. */
#define EH_RETURN_DATA_REGNO(N) \
((N) < (TARGET_MIPS16 ? 2 : 4) ? (N) + GP_ARG_FIRST : INVALID_REGNUM)
#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, GP_REG_FIRST + 3)
/* Offsets recorded in opcodes are a multiple of this alignment factor.
The default for this in 64-bit mode is 8, which causes problems with
SFmode register saves. */
#define DWARF_CIE_DATA_ALIGNMENT -4
/* Correct the offset of automatic variables and arguments. Note that
the MIPS debug format wants all automatic variables and arguments
to be in terms of the virtual frame pointer (stack pointer before
any adjustment in the function), while the MIPS 3.0 linker wants
the frame pointer to be the stack pointer after the initial
adjustment. */
#define DEBUGGER_AUTO_OFFSET(X) \
mips_debugger_offset (X, (HOST_WIDE_INT) 0)
#define DEBUGGER_ARG_OFFSET(OFFSET, X) \
mips_debugger_offset (X, (HOST_WIDE_INT) OFFSET)
/* Target machine storage layout */
#define BITS_BIG_ENDIAN 0
#define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
#define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
/* Define this to set the endianness to use in libgcc2.c, which can
not depend on target_flags. */
#if !defined(MIPSEL) && !defined(__MIPSEL__)
#define LIBGCC2_WORDS_BIG_ENDIAN 1
#else
#define LIBGCC2_WORDS_BIG_ENDIAN 0
#endif
#define MAX_BITS_PER_WORD 64
/* Width of a word, in units (bytes). */
#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
#ifndef IN_LIBGCC2
#define MIN_UNITS_PER_WORD 4
#endif
/* For MIPS, width of a floating point register. */
#define UNITS_PER_FPREG (TARGET_FLOAT64 ? 8 : 4)
/* If register $f0 holds a floating-point value, $f(0 + FP_INC) is
the next available register. */
#define FP_INC (TARGET_FLOAT64 || TARGET_SINGLE_FLOAT ? 1 : 2)
/* The largest size of value that can be held in floating-point
registers and moved with a single instruction. */
#define UNITS_PER_HWFPVALUE (TARGET_SOFT_FLOAT ? 0 : FP_INC * UNITS_PER_FPREG)
/* The largest size of value that can be held in floating-point
registers. */
#define UNITS_PER_FPVALUE \
(TARGET_SOFT_FLOAT ? 0 \
: TARGET_SINGLE_FLOAT ? UNITS_PER_FPREG \
: LONG_DOUBLE_TYPE_SIZE / BITS_PER_UNIT)
/* The number of bytes in a double. */
#define UNITS_PER_DOUBLE (TYPE_PRECISION (double_type_node) / BITS_PER_UNIT)
#define UNITS_PER_SIMD_WORD (TARGET_PAIRED_SINGLE_FLOAT ? 8 : UNITS_PER_WORD)
/* Set the sizes of the core types. */
#define SHORT_TYPE_SIZE 16
#define INT_TYPE_SIZE 32
#define LONG_TYPE_SIZE (TARGET_LONG64 ? 64 : 32)
#define LONG_LONG_TYPE_SIZE 64
#define FLOAT_TYPE_SIZE 32
#define DOUBLE_TYPE_SIZE 64
#define LONG_DOUBLE_TYPE_SIZE (TARGET_NEWABI ? 128 : 64)
/* long double is not a fixed mode, but the idea is that, if we
support long double, we also want a 128-bit integer type. */
#define MAX_FIXED_MODE_SIZE LONG_DOUBLE_TYPE_SIZE
#ifdef IN_LIBGCC2
#if (defined _ABIN32 && _MIPS_SIM == _ABIN32) \
|| (defined _ABI64 && _MIPS_SIM == _ABI64)
# define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
# else
# define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
# endif
#endif
/* Width in bits of a pointer. */
#ifndef POINTER_SIZE
#define POINTER_SIZE ((TARGET_LONG64 && TARGET_64BIT) ? 64 : 32)
#endif
/* Allocation boundary (in *bits*) for storing arguments in argument list. */
#define PARM_BOUNDARY BITS_PER_WORD
/* Allocation boundary (in *bits*) for the code of a function. */
#define FUNCTION_BOUNDARY 32
/* Alignment of field after `int : 0' in a structure. */
#define EMPTY_FIELD_BOUNDARY 32
/* Every structure's size must be a multiple of this. */
/* 8 is observed right on a DECstation and on riscos 4.02. */
#define STRUCTURE_SIZE_BOUNDARY 8
/* There is no point aligning anything to a rounder boundary than this. */
#define BIGGEST_ALIGNMENT LONG_DOUBLE_TYPE_SIZE
/* All accesses must be aligned. */
#define STRICT_ALIGNMENT 1
/* Define this if you wish to imitate the way many other C compilers
handle alignment of bitfields and the structures that contain
them.
The behavior is that the type written for a bit-field (`int',
`short', or other integer type) imposes an alignment for the
entire structure, as if the structure really did contain an
ordinary field of that type. In addition, the bit-field is placed
within the structure so that it would fit within such a field,
not crossing a boundary for it.
Thus, on most machines, a bit-field whose type is written as `int'
would not cross a four-byte boundary, and would force four-byte
alignment for the whole structure. (The alignment used may not
be four bytes; it is controlled by the other alignment
parameters.)
If the macro is defined, its definition should be a C expression;
a nonzero value for the expression enables this behavior. */
#define PCC_BITFIELD_TYPE_MATTERS 1
/* If defined, a C expression to compute the alignment given to a
constant that is being placed in memory. CONSTANT is the constant
and ALIGN is the alignment that the object would ordinarily have.
The value of this macro is used instead of that alignment to align
the object.
If this macro is not defined, then ALIGN is used.
The typical use of this macro is to increase alignment for string
constants to be word aligned so that `strcpy' calls that copy
constants can be done inline. */
#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
((TREE_CODE (EXP) == STRING_CST || TREE_CODE (EXP) == CONSTRUCTOR) \
&& (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
/* If defined, a C expression to compute the alignment for a static
variable. TYPE is the data type, and ALIGN is the alignment that
the object would ordinarily have. The value of this macro is used
instead of that alignment to align the object.
If this macro is not defined, then ALIGN is used.
One use of this macro is to increase alignment of medium-size
data to make it all fit in fewer cache lines. Another is to
cause character arrays to be word-aligned so that `strcpy' calls
that copy constants to character arrays can be done inline. */
#undef DATA_ALIGNMENT
#define DATA_ALIGNMENT(TYPE, ALIGN) \
((((ALIGN) < BITS_PER_WORD) \
&& (TREE_CODE (TYPE) == ARRAY_TYPE \
|| TREE_CODE (TYPE) == UNION_TYPE \
|| TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
#define PAD_VARARGS_DOWN \
(FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward)
/* Define if operations between registers always perform the operation
on the full register even if a narrower mode is specified. */
#define WORD_REGISTER_OPERATIONS
/* When in 64-bit mode, move insns will sign extend SImode and CCmode
moves. All other references are zero extended. */
#define LOAD_EXTEND_OP(MODE) \
(TARGET_64BIT && ((MODE) == SImode || (MODE) == CCmode) \
? SIGN_EXTEND : ZERO_EXTEND)
/* Define this macro if it is advisable to hold scalars in registers
in a wider mode than that declared by the program. In such cases,
the value is constrained to be within the bounds of the declared
type, but kept valid in the wider mode. The signedness of the
extension may differ from that of the type. */
#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
if (GET_MODE_CLASS (MODE) == MODE_INT \
&& GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
{ \
if ((MODE) == SImode) \
(UNSIGNEDP) = 0; \
(MODE) = Pmode; \
}
/* Define if loading short immediate values into registers sign extends. */
#define SHORT_IMMEDIATES_SIGN_EXTEND
/* The [d]clz instructions have the natural values at 0. */
#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
((VALUE) = GET_MODE_BITSIZE (MODE), true)
/* Standard register usage. */
/* Number of hardware registers. We have:
- 32 integer registers
- 32 floating point registers
- 8 condition code registers
- 2 accumulator registers (hi and lo)
- 32 registers each for coprocessors 0, 2 and 3
- 3 fake registers:
- ARG_POINTER_REGNUM
- FRAME_POINTER_REGNUM
- FAKE_CALL_REGNO (see the comment above load_callsi for details)
- 3 dummy entries that were used at various times in the past.
- 6 DSP accumulator registers (3 hi-lo pairs) for MIPS DSP ASE
- 6 DSP control registers */
#define FIRST_PSEUDO_REGISTER 188
/* By default, fix the kernel registers ($26 and $27), the global
pointer ($28) and the stack pointer ($29). This can change
depending on the command-line options.
Regarding coprocessor registers: without evidence to the contrary,
it's best to assume that each coprocessor register has a unique
use. This can be overridden, in, e.g., override_options() or
CONDITIONAL_REGISTER_USAGE should the assumption be inappropriate
for a particular target. */
#define FIXED_REGISTERS \
{ \
1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, \
/* COP0 registers */ \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
/* COP2 registers */ \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
/* COP3 registers */ \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
/* 6 DSP accumulator registers & 6 control registers */ \
0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1 \
}
/* Set up this array for o32 by default.
Note that we don't mark $31 as a call-clobbered register. The idea is
that it's really the call instructions themselves which clobber $31.
We don't care what the called function does with it afterwards.
This approach makes it easier to implement sibcalls. Unlike normal
calls, sibcalls don't clobber $31, so the register reaches the
called function in tact. EPILOGUE_USES says that $31 is useful
to the called function. */
#define CALL_USED_REGISTERS \
{ \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
/* COP0 registers */ \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
/* COP2 registers */ \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
/* COP3 registers */ \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
/* 6 DSP accumulator registers & 6 control registers */ \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
}
/* Define this since $28, though fixed, is call-saved in many ABIs. */
#define CALL_REALLY_USED_REGISTERS \
{ /* General registers. */ \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, \
/* Floating-point registers. */ \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
/* Others. */ \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
/* COP0 registers */ \
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
/* COP2 registers */ \
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
/* COP3 registers */ \
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
/* 6 DSP accumulator registers & 6 control registers */ \
1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0 \
}
/* Internal macros to classify a register number as to whether it's a
general purpose register, a floating point register, a
multiply/divide register, or a status register. */
#define GP_REG_FIRST 0
#define GP_REG_LAST 31
#define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
#define GP_DBX_FIRST 0
#define FP_REG_FIRST 32
#define FP_REG_LAST 63
#define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
#define FP_DBX_FIRST ((write_symbols == DBX_DEBUG) ? 38 : 32)
#define MD_REG_FIRST 64
#define MD_REG_LAST 65
#define MD_REG_NUM (MD_REG_LAST - MD_REG_FIRST + 1)
#define MD_DBX_FIRST (FP_DBX_FIRST + FP_REG_NUM)
#define ST_REG_FIRST 67
#define ST_REG_LAST 74
#define ST_REG_NUM (ST_REG_LAST - ST_REG_FIRST + 1)
/* FIXME: renumber. */
#define COP0_REG_FIRST 80
#define COP0_REG_LAST 111
#define COP0_REG_NUM (COP0_REG_LAST - COP0_REG_FIRST + 1)
#define COP2_REG_FIRST 112
#define COP2_REG_LAST 143
#define COP2_REG_NUM (COP2_REG_LAST - COP2_REG_FIRST + 1)
#define COP3_REG_FIRST 144
#define COP3_REG_LAST 175
#define COP3_REG_NUM (COP3_REG_LAST - COP3_REG_FIRST + 1)
/* ALL_COP_REG_NUM assumes that COP0,2,and 3 are numbered consecutively. */
#define ALL_COP_REG_NUM (COP3_REG_LAST - COP0_REG_FIRST + 1)
#define DSP_ACC_REG_FIRST 176
#define DSP_ACC_REG_LAST 181
#define DSP_ACC_REG_NUM (DSP_ACC_REG_LAST - DSP_ACC_REG_FIRST + 1)
#define AT_REGNUM (GP_REG_FIRST + 1)
#define HI_REGNUM (MD_REG_FIRST + 0)
#define LO_REGNUM (MD_REG_FIRST + 1)
#define AC1HI_REGNUM (DSP_ACC_REG_FIRST + 0)
#define AC1LO_REGNUM (DSP_ACC_REG_FIRST + 1)
#define AC2HI_REGNUM (DSP_ACC_REG_FIRST + 2)
#define AC2LO_REGNUM (DSP_ACC_REG_FIRST + 3)
#define AC3HI_REGNUM (DSP_ACC_REG_FIRST + 4)
#define AC3LO_REGNUM (DSP_ACC_REG_FIRST + 5)
/* FPSW_REGNUM is the single condition code used if !ISA_HAS_8CC.
If ISA_HAS_8CC, it should not be used, and an arbitrary ST_REG
should be used instead. */
#define FPSW_REGNUM ST_REG_FIRST
#define GP_REG_P(REGNO) \
((unsigned int) ((int) (REGNO) - GP_REG_FIRST) < GP_REG_NUM)
#define M16_REG_P(REGNO) \
(((REGNO) >= 2 && (REGNO) <= 7) || (REGNO) == 16 || (REGNO) == 17)
#define FP_REG_P(REGNO) \
((unsigned int) ((int) (REGNO) - FP_REG_FIRST) < FP_REG_NUM)
#define MD_REG_P(REGNO) \
((unsigned int) ((int) (REGNO) - MD_REG_FIRST) < MD_REG_NUM)
#define ST_REG_P(REGNO) \
((unsigned int) ((int) (REGNO) - ST_REG_FIRST) < ST_REG_NUM)
#define COP0_REG_P(REGNO) \
((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < COP0_REG_NUM)
#define COP2_REG_P(REGNO) \
((unsigned int) ((int) (REGNO) - COP2_REG_FIRST) < COP2_REG_NUM)
#define COP3_REG_P(REGNO) \
((unsigned int) ((int) (REGNO) - COP3_REG_FIRST) < COP3_REG_NUM)
#define ALL_COP_REG_P(REGNO) \
((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < ALL_COP_REG_NUM)
/* Test if REGNO is one of the 6 new DSP accumulators. */
#define DSP_ACC_REG_P(REGNO) \
((unsigned int) ((int) (REGNO) - DSP_ACC_REG_FIRST) < DSP_ACC_REG_NUM)
/* Test if REGNO is hi, lo, or one of the 6 new DSP accumulators. */
#define ACC_REG_P(REGNO) \
(MD_REG_P (REGNO) || DSP_ACC_REG_P (REGNO))
/* Test if REGNO is HI or the first register of 3 new DSP accumulator pairs. */
#define ACC_HI_REG_P(REGNO) \
((REGNO) == HI_REGNUM || (REGNO) == AC1HI_REGNUM || (REGNO) == AC2HI_REGNUM \
|| (REGNO) == AC3HI_REGNUM)
#define FP_REG_RTX_P(X) (REG_P (X) && FP_REG_P (REGNO (X)))
/* True if X is (const (unspec [(const_int 0)] UNSPEC_GP)). This is used
to initialize the mips16 gp pseudo register. */
#define CONST_GP_P(X) \
(GET_CODE (X) == CONST \
&& GET_CODE (XEXP (X, 0)) == UNSPEC \
&& XINT (XEXP (X, 0), 1) == UNSPEC_GP)
/* Return coprocessor number from register number. */
#define COPNUM_AS_CHAR_FROM_REGNUM(REGNO) \
(COP0_REG_P (REGNO) ? '0' : COP2_REG_P (REGNO) ? '2' \
: COP3_REG_P (REGNO) ? '3' : '?')
#define HARD_REGNO_NREGS(REGNO, MODE) mips_hard_regno_nregs (REGNO, MODE)
/* To make the code simpler, HARD_REGNO_MODE_OK just references an
array built in override_options. Because machmodes.h is not yet
included before this file is processed, the MODE bound can't be
expressed here. */
extern char mips_hard_regno_mode_ok[][FIRST_PSEUDO_REGISTER];
#define HARD_REGNO_MODE_OK(REGNO, MODE) \
mips_hard_regno_mode_ok[ (int)(MODE) ][ (REGNO) ]
/* Value is 1 if it is a good idea to tie two pseudo registers
when one has mode MODE1 and one has mode MODE2.
If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
for any hard reg, then this must be 0 for correct output. */
#define MODES_TIEABLE_P(MODE1, MODE2) \
((GET_MODE_CLASS (MODE1) == MODE_FLOAT || \
GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT) \
== (GET_MODE_CLASS (MODE2) == MODE_FLOAT || \
GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT))
/* Register to use for pushing function arguments. */
#define STACK_POINTER_REGNUM (GP_REG_FIRST + 29)
/* These two registers don't really exist: they get eliminated to either
the stack or hard frame pointer. */
#define ARG_POINTER_REGNUM 77
#define FRAME_POINTER_REGNUM 78
/* $30 is not available on the mips16, so we use $17 as the frame
pointer. */
#define HARD_FRAME_POINTER_REGNUM \
(TARGET_MIPS16 ? GP_REG_FIRST + 17 : GP_REG_FIRST + 30)
/* Value should be nonzero if functions must have frame pointers.
Zero means the frame pointer need not be set up (and parms
may be accessed via the stack pointer) in functions that seem suitable.
This is computed in `reload', in reload1.c. */
#define FRAME_POINTER_REQUIRED (current_function_calls_alloca)
/* Register in which static-chain is passed to a function. */
#define STATIC_CHAIN_REGNUM (GP_REG_FIRST + 2)
/* Registers used as temporaries in prologue/epilogue code. If we're
generating mips16 code, these registers must come from the core set
of 8. The prologue register mustn't conflict with any incoming
arguments, the static chain pointer, or the frame pointer. The
epilogue temporary mustn't conflict with the return registers, the
frame pointer, the EH stack adjustment, or the EH data registers. */
#define MIPS_PROLOGUE_TEMP_REGNUM (GP_REG_FIRST + 3)
#define MIPS_EPILOGUE_TEMP_REGNUM (GP_REG_FIRST + (TARGET_MIPS16 ? 6 : 8))
#define MIPS_PROLOGUE_TEMP(MODE) gen_rtx_REG (MODE, MIPS_PROLOGUE_TEMP_REGNUM)
#define MIPS_EPILOGUE_TEMP(MODE) gen_rtx_REG (MODE, MIPS_EPILOGUE_TEMP_REGNUM)
/* Define this macro if it is as good or better to call a constant
function address than to call an address kept in a register. */
#define NO_FUNCTION_CSE 1
/* The ABI-defined global pointer. Sometimes we use a different
register in leaf functions: see PIC_OFFSET_TABLE_REGNUM. */
#define GLOBAL_POINTER_REGNUM (GP_REG_FIRST + 28)
/* We normally use $28 as the global pointer. However, when generating
n32/64 PIC, it is better for leaf functions to use a call-clobbered
register instead. They can then avoid saving and restoring $28
and perhaps avoid using a frame at all.
When a leaf function uses something other than $28, mips_expand_prologue
will modify pic_offset_table_rtx in place. Take the register number
from there after reload. */
#define PIC_OFFSET_TABLE_REGNUM \
(reload_completed ? REGNO (pic_offset_table_rtx) : GLOBAL_POINTER_REGNUM)
#define PIC_FUNCTION_ADDR_REGNUM (GP_REG_FIRST + 25)
/* Define the classes of registers for register constraints in the
machine description. Also define ranges of constants.
One of the classes must always be named ALL_REGS and include all hard regs.
If there is more than one class, another class must be named NO_REGS
and contain no registers.
The name GENERAL_REGS must be the name of a class (or an alias for
another name such as ALL_REGS). This is the class of registers
that is allowed by "g" or "r" in a register constraint.
Also, registers outside this class are allocated only when
instructions express preferences for them.
The classes must be numbered in nondecreasing order; that is,
a larger-numbered class must never be contained completely
in a smaller-numbered class.
For any two classes, it is very desirable that there be another
class that represents their union. */
enum reg_class
{
NO_REGS, /* no registers in set */
M16_NA_REGS, /* mips16 regs not used to pass args */
M16_REGS, /* mips16 directly accessible registers */
T_REG, /* mips16 T register ($24) */
M16_T_REGS, /* mips16 registers plus T register */
PIC_FN_ADDR_REG, /* SVR4 PIC function address register */
V1_REG, /* Register $v1 ($3) used for TLS access. */
LEA_REGS, /* Every GPR except $25 */
GR_REGS, /* integer registers */
FP_REGS, /* floating point registers */
HI_REG, /* hi register */
LO_REG, /* lo register */
MD_REGS, /* multiply/divide registers (hi/lo) */
COP0_REGS, /* generic coprocessor classes */
COP2_REGS,
COP3_REGS,
HI_AND_GR_REGS, /* union classes */
LO_AND_GR_REGS,
HI_AND_FP_REGS,
COP0_AND_GR_REGS,
COP2_AND_GR_REGS,
COP3_AND_GR_REGS,
ALL_COP_REGS,
ALL_COP_AND_GR_REGS,
ST_REGS, /* status registers (fp status) */
DSP_ACC_REGS, /* DSP accumulator registers */
ACC_REGS, /* Hi/Lo and DSP accumulator registers */
ALL_REGS, /* all registers */
LIM_REG_CLASSES /* max value + 1 */
};
#define N_REG_CLASSES (int) LIM_REG_CLASSES
#define GENERAL_REGS GR_REGS
/* An initializer containing the names of the register classes as C
string constants. These names are used in writing some of the
debugging dumps. */
#define REG_CLASS_NAMES \
{ \
"NO_REGS", \
"M16_NA_REGS", \
"M16_REGS", \
"T_REG", \
"M16_T_REGS", \
"PIC_FN_ADDR_REG", \
"V1_REG", \
"LEA_REGS", \
"GR_REGS", \
"FP_REGS", \
"HI_REG", \
"LO_REG", \
"MD_REGS", \
/* coprocessor registers */ \
"COP0_REGS", \
"COP2_REGS", \
"COP3_REGS", \
"HI_AND_GR_REGS", \
"LO_AND_GR_REGS", \
"HI_AND_FP_REGS", \
"COP0_AND_GR_REGS", \
"COP2_AND_GR_REGS", \
"COP3_AND_GR_REGS", \
"ALL_COP_REGS", \
"ALL_COP_AND_GR_REGS", \
"ST_REGS", \
"DSP_ACC_REGS", \
"ACC_REGS", \
"ALL_REGS" \
}
/* An initializer containing the contents of the register classes,
as integers which are bit masks. The Nth integer specifies the
contents of class N. The way the integer MASK is interpreted is
that register R is in the class if `MASK & (1 << R)' is 1.
When the machine has more than 32 registers, an integer does not
suffice. Then the integers are replaced by sub-initializers,
braced groupings containing several integers. Each
sub-initializer must be suitable as an initializer for the type
`HARD_REG_SET' which is defined in `hard-reg-set.h'. */
#define REG_CLASS_CONTENTS \
{ \
{ 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* no registers */ \
{ 0x0003000c, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* mips16 nonarg regs */\
{ 0x000300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* mips16 registers */ \
{ 0x01000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* mips16 T register */ \
{ 0x010300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* mips16 and T regs */ \
{ 0x02000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* SVR4 PIC function address register */ \
{ 0x00000008, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* only $v1 */ \
{ 0xfdffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* Every other GPR except $25 */ \
{ 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* integer registers */ \
{ 0x00000000, 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* floating registers*/ \
{ 0x00000000, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 }, /* hi register */ \
{ 0x00000000, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 }, /* lo register */ \
{ 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x00000000 }, /* mul/div registers */ \
{ 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000, 0x00000000 }, /* cop0 registers */ \
{ 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000 }, /* cop2 registers */ \
{ 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff }, /* cop3 registers */ \
{ 0xffffffff, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 }, /* union classes */ \
{ 0xffffffff, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 }, \
{ 0x00000000, 0xffffffff, 0x00000001, 0x00000000, 0x00000000, 0x00000000 }, \
{ 0xffffffff, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000, 0x00000000 }, \
{ 0xffffffff, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000 }, \
{ 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff }, \
{ 0x00000000, 0x00000000, 0xffff0000, 0xffffffff, 0xffffffff, 0x0000ffff }, \
{ 0xffffffff, 0x00000000, 0xffff0000, 0xffffffff, 0xffffffff, 0x0000ffff }, \
{ 0x00000000, 0x00000000, 0x000007f8, 0x00000000, 0x00000000, 0x00000000 }, /* status registers */ \
{ 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x003f0000 }, /* dsp accumulator registers */ \
{ 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x003f0000 }, /* hi/lo and dsp accumulator registers */ \
{ 0xffffffff, 0xffffffff, 0xffff07ff, 0xffffffff, 0xffffffff, 0x0fffffff } /* all registers */ \
}
/* A C expression whose value is a register class containing hard
register REGNO. In general there is more that one such class;
choose a class which is "minimal", meaning that no smaller class
also contains the register. */
extern const enum reg_class mips_regno_to_class[];
#define REGNO_REG_CLASS(REGNO) mips_regno_to_class[ (REGNO) ]
/* A macro whose definition is the name of the class to which a
valid base register must belong. A base register is one used in
an address which is the register value plus a displacement. */
#define BASE_REG_CLASS (TARGET_MIPS16 ? M16_REGS : GR_REGS)
/* A macro whose definition is the name of the class to which a
valid index register must belong. An index register is one used
in an address where its value is either multiplied by a scale
factor or added to another register (as well as added to a
displacement). */
#define INDEX_REG_CLASS NO_REGS
/* When SMALL_REGISTER_CLASSES is nonzero, the compiler allows
registers explicitly used in the rtl to be used as spill registers
but prevents the compiler from extending the lifetime of these
registers. */
#define SMALL_REGISTER_CLASSES (TARGET_MIPS16)
/* This macro is used later on in the file. */
#define GR_REG_CLASS_P(CLASS) \
((CLASS) == GR_REGS || (CLASS) == M16_REGS || (CLASS) == T_REG \
|| (CLASS) == M16_T_REGS || (CLASS) == M16_NA_REGS \
|| (CLASS) == V1_REG \
|| (CLASS) == PIC_FN_ADDR_REG || (CLASS) == LEA_REGS)
/* This macro is also used later on in the file. */
#define COP_REG_CLASS_P(CLASS) \
((CLASS) == COP0_REGS || (CLASS) == COP2_REGS || (CLASS) == COP3_REGS)
/* REG_ALLOC_ORDER is to order in which to allocate registers. This
is the default value (allocate the registers in numeric order). We
define it just so that we can override it for the mips16 target in
ORDER_REGS_FOR_LOCAL_ALLOC. */
#define REG_ALLOC_ORDER \
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, \
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, \
32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, \
64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, \
80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, \
96, 97, 98, 99, 100,101,102,103,104,105,106,107,108,109,110,111, \
112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127, \
128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143, \
144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159, \
160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175, \
176,177,178,179,180,181,182,183,184,185,186,187 \
}
/* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
to be rearranged based on a particular function. On the mips16, we
want to allocate $24 (T_REG) before other registers for
instructions for which it is possible. */
#define ORDER_REGS_FOR_LOCAL_ALLOC mips_order_regs_for_local_alloc ()
/* True if VALUE is an unsigned 6-bit number. */
#define UIMM6_OPERAND(VALUE) \
(((VALUE) & ~(unsigned HOST_WIDE_INT) 0x3f) == 0)
/* True if VALUE is a signed 10-bit number. */
#define IMM10_OPERAND(VALUE) \
((unsigned HOST_WIDE_INT) (VALUE) + 0x200 < 0x400)
/* True if VALUE is a signed 16-bit number. */
#define SMALL_OPERAND(VALUE) \
((unsigned HOST_WIDE_INT) (VALUE) + 0x8000 < 0x10000)
/* True if VALUE is an unsigned 16-bit number. */
#define SMALL_OPERAND_UNSIGNED(VALUE) \
(((VALUE) & ~(unsigned HOST_WIDE_INT) 0xffff) == 0)
/* True if VALUE can be loaded into a register using LUI. */
#define LUI_OPERAND(VALUE) \
(((VALUE) | 0x7fff0000) == 0x7fff0000 \
|| ((VALUE) | 0x7fff0000) + 0x10000 == 0)
/* Return a value X with the low 16 bits clear, and such that
VALUE - X is a signed 16-bit value. */
#define CONST_HIGH_PART(VALUE) \
(((VALUE) + 0x8000) & ~(unsigned HOST_WIDE_INT) 0xffff)
#define CONST_LOW_PART(VALUE) \
((VALUE) - CONST_HIGH_PART (VALUE))
#define SMALL_INT(X) SMALL_OPERAND (INTVAL (X))
#define SMALL_INT_UNSIGNED(X) SMALL_OPERAND_UNSIGNED (INTVAL (X))
#define LUI_INT(X) LUI_OPERAND (INTVAL (X))
#define PREFERRED_RELOAD_CLASS(X,CLASS) \
mips_preferred_reload_class (X, CLASS)
/* Certain machines have the property that some registers cannot be
copied to some other registers without using memory. Define this
macro on those machines to be a C expression that is nonzero if
objects of mode MODE in registers of CLASS1 can only be copied to
registers of class CLASS2 by storing a register of CLASS1 into
memory and loading that memory location into a register of CLASS2.
Do not define this macro if its value would always be zero. */
#if 0
#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
((!TARGET_DEBUG_H_MODE \
&& GET_MODE_CLASS (MODE) == MODE_INT \
&& ((CLASS1 == FP_REGS && GR_REG_CLASS_P (CLASS2)) \
|| (GR_REG_CLASS_P (CLASS1) && CLASS2 == FP_REGS))) \
|| (TARGET_FLOAT64 && !TARGET_64BIT && (MODE) == DFmode \
&& ((GR_REG_CLASS_P (CLASS1) && CLASS2 == FP_REGS) \
|| (GR_REG_CLASS_P (CLASS2) && CLASS1 == FP_REGS))))
#endif
/* The HI and LO registers can only be reloaded via the general
registers. Condition code registers can only be loaded to the
general registers, and from the floating point registers. */
#define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
mips_secondary_reload_class (CLASS, MODE, X, 1)
#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
mips_secondary_reload_class (CLASS, MODE, X, 0)
/* Return the maximum number of consecutive registers
needed to represent mode MODE in a register of class CLASS. */
#define CLASS_MAX_NREGS(CLASS, MODE) mips_class_max_nregs (CLASS, MODE)
#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
mips_cannot_change_mode_class (FROM, TO, CLASS)
/* Stack layout; function entry, exit and calling. */
#define STACK_GROWS_DOWNWARD
/* The offset of the first local variable from the beginning of the frame.
See compute_frame_size for details about the frame layout.
??? If flag_profile_values is true, and we are generating 32-bit code, then
we assume that we will need 16 bytes of argument space. This is because
the value profiling code may emit calls to cmpdi2 in leaf functions.
Without this hack, the local variables will start at sp+8 and the gp save
area will be at sp+16, and thus they will overlap. compute_frame_size is
OK because it uses STARTING_FRAME_OFFSET to compute cprestore_size, which
will end up as 24 instead of 8. This won't be needed if profiling code is
inserted before virtual register instantiation. */
#define STARTING_FRAME_OFFSET \
((flag_profile_values && ! TARGET_64BIT \
? MAX (REG_PARM_STACK_SPACE(NULL), current_function_outgoing_args_size) \
: current_function_outgoing_args_size) \
+ (TARGET_CALL_CLOBBERED_GP ? MIPS_STACK_ALIGN (UNITS_PER_WORD) : 0))
#define RETURN_ADDR_RTX mips_return_addr
/* Since the mips16 ISA mode is encoded in the least-significant bit
of the address, mask it off return addresses for purposes of
finding exception handling regions. */
#define MASK_RETURN_ADDR GEN_INT (-2)
/* Similarly, don't use the least-significant bit to tell pointers to
code from vtable index. */
#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
/* The eliminations to $17 are only used for mips16 code. See the
definition of HARD_FRAME_POINTER_REGNUM. */
#define ELIMINABLE_REGS \
{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
{ ARG_POINTER_REGNUM, GP_REG_FIRST + 30}, \
{ ARG_POINTER_REGNUM, GP_REG_FIRST + 17}, \
{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
{ FRAME_POINTER_REGNUM, GP_REG_FIRST + 30}, \
{ FRAME_POINTER_REGNUM, GP_REG_FIRST + 17}}
/* We can always eliminate to the hard frame pointer. We can eliminate
to the stack pointer unless a frame pointer is needed.
In mips16 mode, we need a frame pointer for a large frame; otherwise,
reload may be unable to compute the address of a local variable,
since there is no way to add a large constant to the stack pointer
without using a temporary register. */
#define CAN_ELIMINATE(FROM, TO) \
((TO) == HARD_FRAME_POINTER_REGNUM \
|| ((TO) == STACK_POINTER_REGNUM && !frame_pointer_needed \
&& (!TARGET_MIPS16 \
|| compute_frame_size (get_frame_size ()) < 32768)))
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
(OFFSET) = mips_initial_elimination_offset ((FROM), (TO))
/* Allocate stack space for arguments at the beginning of each function. */
#define ACCUMULATE_OUTGOING_ARGS 1
/* The argument pointer always points to the first argument. */
#define FIRST_PARM_OFFSET(FNDECL) 0
/* o32 and o64 reserve stack space for all argument registers. */
#define REG_PARM_STACK_SPACE(FNDECL) \
(TARGET_OLDABI \
? (MAX_ARGS_IN_REGISTERS * UNITS_PER_WORD) \
: 0)
/* Define this if it is the responsibility of the caller to
allocate the area reserved for arguments passed in registers.
If `ACCUMULATE_OUTGOING_ARGS' is also defined, the only effect
of this macro is to determine whether the space is included in
`current_function_outgoing_args_size'. */
#define OUTGOING_REG_PARM_STACK_SPACE 1
#define STACK_BOUNDARY (TARGET_NEWABI ? 128 : 64)
#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
/* Symbolic macros for the registers used to return integer and floating
point values. */
#define GP_RETURN (GP_REG_FIRST + 2)
#define FP_RETURN ((TARGET_SOFT_FLOAT) ? GP_RETURN : (FP_REG_FIRST + 0))
#define MAX_ARGS_IN_REGISTERS (TARGET_OLDABI ? 4 : 8)
/* Symbolic macros for the first/last argument registers. */
#define GP_ARG_FIRST (GP_REG_FIRST + 4)
#define GP_ARG_LAST (GP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
#define FP_ARG_FIRST (FP_REG_FIRST + 12)
#define FP_ARG_LAST (FP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
#define LIBCALL_VALUE(MODE) \
mips_function_value (NULL_TREE, NULL, (MODE))
#define FUNCTION_VALUE(VALTYPE, FUNC) \
mips_function_value ((VALTYPE), (FUNC), VOIDmode)
/* 1 if N is a possible register number for a function value.
On the MIPS, R2 R3 and F0 F2 are the only register thus used.
Currently, R2 and F0 are only implemented here (C has no complex type) */
#define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_RETURN || (N) == FP_RETURN \
|| (LONG_DOUBLE_TYPE_SIZE == 128 && FP_RETURN != GP_RETURN \
&& (N) == FP_RETURN + 2))
/* 1 if N is a possible register number for function argument passing.
We have no FP argument registers when soft-float. When FP registers
are 32 bits, we can't directly reference the odd numbered ones. */
#define FUNCTION_ARG_REGNO_P(N) \
((IN_RANGE((N), GP_ARG_FIRST, GP_ARG_LAST) \
|| (IN_RANGE((N), FP_ARG_FIRST, FP_ARG_LAST))) \
&& !fixed_regs[N])
/* This structure has to cope with two different argument allocation
schemes. Most MIPS ABIs view the arguments as a structure, of which
the first N words go in registers and the rest go on the stack. If I
< N, the Ith word might go in Ith integer argument register or in a
floating-point register. For these ABIs, we only need to remember
the offset of the current argument into the structure.
The EABI instead allocates the integer and floating-point arguments
separately. The first N words of FP arguments go in FP registers,
the rest go on the stack. Likewise, the first N words of the other
arguments go in integer registers, and the rest go on the stack. We
need to maintain three counts: the number of integer registers used,
the number of floating-point registers used, and the number of words
passed on the stack.
We could keep separate information for the two ABIs (a word count for
the standard ABIs, and three separate counts for the EABI). But it
seems simpler to view the standard ABIs as forms of EABI that do not
allocate floating-point registers.
So for the standard ABIs, the first N words are allocated to integer
registers, and function_arg decides on an argument-by-argument basis
whether that argument should really go in an integer register, or in
a floating-point one. */
typedef struct mips_args {
/* Always true for varargs functions. Otherwise true if at least
one argument has been passed in an integer register. */
int gp_reg_found;
/* The number of arguments seen so far. */
unsigned int arg_number;
/* The number of integer registers used so far. For all ABIs except
EABI, this is the number of words that have been added to the
argument structure, limited to MAX_ARGS_IN_REGISTERS. */
unsigned int num_gprs;
/* For EABI, the number of floating-point registers used so far. */
unsigned int num_fprs;
/* The number of words passed on the stack. */
unsigned int stack_words;
/* On the mips16, we need to keep track of which floating point
arguments were passed in general registers, but would have been
passed in the FP regs if this were a 32-bit function, so that we
can move them to the FP regs if we wind up calling a 32-bit
function. We record this information in fp_code, encoded in base
four. A zero digit means no floating point argument, a one digit
means an SFmode argument, and a two digit means a DFmode argument,
and a three digit is not used. The low order digit is the first
argument. Thus 6 == 1 * 4 + 2 means a DFmode argument followed by
an SFmode argument. ??? A more sophisticated approach will be
needed if MIPS_ABI != ABI_32. */
int fp_code;
/* True if the function has a prototype. */
int prototype;
} CUMULATIVE_ARGS;
/* Initialize a variable CUM of type CUMULATIVE_ARGS
for a call to a function whose data type is FNTYPE.
For a library call, FNTYPE is 0. */
#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
init_cumulative_args (&CUM, FNTYPE, LIBNAME) \
/* Update the data in CUM to advance over an argument
of mode MODE and data type TYPE.
(TYPE is null for libcalls where that information may not be available.) */
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
function_arg_advance (&CUM, MODE, TYPE, NAMED)
/* Determine where to put an argument to a function.
Value is zero to push the argument on the stack,
or a hard register in which to store the argument.
MODE is the argument's machine mode.
TYPE is the data type of the argument (as a tree).
This is null for libcalls where that information may
not be available.
CUM is a variable of type CUMULATIVE_ARGS which gives info about
the preceding args and about the function being called.
NAMED is nonzero if this argument is a named parameter
(otherwise it is an extra parameter matching an ellipsis). */
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
function_arg( &CUM, MODE, TYPE, NAMED)
#define FUNCTION_ARG_BOUNDARY function_arg_boundary
#define FUNCTION_ARG_PADDING(MODE, TYPE) \
(mips_pad_arg_upward (MODE, TYPE) ? upward : downward)
#define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
(mips_pad_reg_upward (MODE, TYPE) ? upward : downward)
/* True if using EABI and varargs can be passed in floating-point
registers. Under these conditions, we need a more complex form
of va_list, which tracks GPR, FPR and stack arguments separately. */
#define EABI_FLOAT_VARARGS_P \
(mips_abi == ABI_EABI && UNITS_PER_FPVALUE >= UNITS_PER_DOUBLE)
/* Say that the epilogue uses the return address register. Note that
in the case of sibcalls, the values "used by the epilogue" are
considered live at the start of the called function. */
#define EPILOGUE_USES(REGNO) ((REGNO) == 31)
/* Treat LOC as a byte offset from the stack pointer and round it up
to the next fully-aligned offset. */
#define MIPS_STACK_ALIGN(LOC) \
(TARGET_NEWABI ? ((LOC) + 15) & -16 : ((LOC) + 7) & -8)
/* Implement `va_start' for varargs and stdarg. */
#define EXPAND_BUILTIN_VA_START(valist, nextarg) \
mips_va_start (valist, nextarg)
/* Output assembler code to FILE to increment profiler label # LABELNO
for profiling a function entry. */
#define FUNCTION_PROFILER(FILE, LABELNO) \
{ \
if (TARGET_MIPS16) \
sorry ("mips16 function profiling"); \
fprintf (FILE, "\t.set\tnoat\n"); \
fprintf (FILE, "\tmove\t%s,%s\t\t# save current return address\n", \
reg_names[GP_REG_FIRST + 1], reg_names[GP_REG_FIRST + 31]); \
if (!TARGET_NEWABI) \
{ \
fprintf (FILE, \
"\t%s\t%s,%s,%d\t\t# _mcount pops 2 words from stack\n", \
TARGET_64BIT ? "dsubu" : "subu", \
reg_names[STACK_POINTER_REGNUM], \
reg_names[STACK_POINTER_REGNUM], \
Pmode == DImode ? 16 : 8); \
} \
fprintf (FILE, "\tjal\t_mcount\n"); \
fprintf (FILE, "\t.set\tat\n"); \
}
/* No mips port has ever used the profiler counter word, so don't emit it
or the label for it. */
#define NO_PROFILE_COUNTERS 1
/* Define this macro if the code for function profiling should come
before the function prologue. Normally, the profiling code comes
after. */
/* #define PROFILE_BEFORE_PROLOGUE */
/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
the stack pointer does not matter. The value is tested only in
functions that have frame pointers.
No definition is equivalent to always zero. */
#define EXIT_IGNORE_STACK 1
/* A C statement to output, on the stream FILE, assembler code for a
block of data that contains the constant parts of a trampoline.
This code should not include a label--the label is taken care of
automatically. */
#define TRAMPOLINE_TEMPLATE(STREAM) \
{ \
if (ptr_mode == DImode) \
fprintf (STREAM, "\t.word\t0x03e0082d\t\t# dmove $1,$31\n"); \
else \
fprintf (STREAM, "\t.word\t0x03e00821\t\t# move $1,$31\n"); \
fprintf (STREAM, "\t.word\t0x04110001\t\t# bgezal $0,.+8\n"); \
fprintf (STREAM, "\t.word\t0x00000000\t\t# nop\n"); \
if (ptr_mode == DImode) \
{ \
fprintf (STREAM, "\t.word\t0xdfe30014\t\t# ld $3,20($31)\n"); \
fprintf (STREAM, "\t.word\t0xdfe2001c\t\t# ld $2,28($31)\n"); \
fprintf (STREAM, "\t.word\t0x0060c82d\t\t# dmove $25,$3\n"); \
} \
else \
{ \
fprintf (STREAM, "\t.word\t0x8fe30014\t\t# lw $3,20($31)\n"); \
fprintf (STREAM, "\t.word\t0x8fe20018\t\t# lw $2,24($31)\n"); \
fprintf (STREAM, "\t.word\t0x0060c821\t\t# move $25,$3\n"); \
} \
fprintf (STREAM, "\t.word\t0x00600008\t\t# jr $3\n"); \
if (ptr_mode == DImode) \
{ \
fprintf (STREAM, "\t.word\t0x0020f82d\t\t# dmove $31,$1\n"); \
fprintf (STREAM, "\t.dword\t0x00000000\t\t# <function address>\n"); \
fprintf (STREAM, "\t.dword\t0x00000000\t\t# <static chain value>\n"); \
} \
else \
{ \
fprintf (STREAM, "\t.word\t0x0020f821\t\t# move $31,$1\n"); \
fprintf (STREAM, "\t.word\t0x00000000\t\t# <function address>\n"); \
fprintf (STREAM, "\t.word\t0x00000000\t\t# <static chain value>\n"); \
} \
}
/* A C expression for the size in bytes of the trampoline, as an
integer. */
#define TRAMPOLINE_SIZE (32 + GET_MODE_SIZE (ptr_mode) * 2)
/* Alignment required for trampolines, in bits. */
#define TRAMPOLINE_ALIGNMENT GET_MODE_BITSIZE (ptr_mode)
/* INITIALIZE_TRAMPOLINE calls this library function to flush
program and data caches. */
#ifndef CACHE_FLUSH_FUNC
#define CACHE_FLUSH_FUNC "_flush_cache"
#endif
/* A C statement to initialize the variable parts of a trampoline.
ADDR is an RTX for the address of the trampoline; FNADDR is an
RTX for the address of the nested function; STATIC_CHAIN is an
RTX for the static chain value that should be passed to the
function when it is called. */
#define INITIALIZE_TRAMPOLINE(ADDR, FUNC, CHAIN) \
{ \
rtx func_addr, chain_addr; \
\
func_addr = plus_constant (ADDR, 32); \
chain_addr = plus_constant (func_addr, GET_MODE_SIZE (ptr_mode)); \
emit_move_insn (gen_rtx_MEM (ptr_mode, func_addr), FUNC); \
emit_move_insn (gen_rtx_MEM (ptr_mode, chain_addr), CHAIN); \
\
/* Flush both caches. We need to flush the data cache in case \
the system has a write-back cache. */ \
/* ??? Should check the return value for errors. */ \
if (mips_cache_flush_func && mips_cache_flush_func[0]) \
emit_library_call (gen_rtx_SYMBOL_REF (Pmode, mips_cache_flush_func), \
0, VOIDmode, 3, ADDR, Pmode, \
GEN_INT (TRAMPOLINE_SIZE), TYPE_MODE (integer_type_node),\
GEN_INT (3), TYPE_MODE (integer_type_node)); \
}
/* Addressing modes, and classification of registers for them. */
#define REGNO_OK_FOR_INDEX_P(REGNO) 0
#define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
mips_regno_mode_ok_for_base_p (REGNO, MODE, 1)
/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
and check its validity for a certain class.
We have two alternate definitions for each of them.
The usual definition accepts all pseudo regs; the other rejects them all.
The symbol REG_OK_STRICT causes the latter definition to be used.
Most source files want to accept pseudo regs in the hope that
they will get allocated to the class that the insn wants them to be in.
Some source files that are used after register allocation
need to be strict. */
#ifndef REG_OK_STRICT
#define REG_MODE_OK_FOR_BASE_P(X, MODE) \
mips_regno_mode_ok_for_base_p (REGNO (X), MODE, 0)
#else
#define REG_MODE_OK_FOR_BASE_P(X, MODE) \
mips_regno_mode_ok_for_base_p (REGNO (X), MODE, 1)
#endif
#define REG_OK_FOR_INDEX_P(X) 0
/* Maximum number of registers that can appear in a valid memory address. */
#define MAX_REGS_PER_ADDRESS 1
#ifdef REG_OK_STRICT
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
{ \
if (mips_legitimate_address_p (MODE, X, 1)) \
goto ADDR; \
}
#else
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
{ \
if (mips_legitimate_address_p (MODE, X, 0)) \
goto ADDR; \
}
#endif
/* Check for constness inline but use mips_legitimate_address_p
to check whether a constant really is an address. */
#define CONSTANT_ADDRESS_P(X) \
(CONSTANT_P (X) && mips_legitimate_address_p (SImode, X, 0))
#define LEGITIMATE_CONSTANT_P(X) (mips_const_insns (X) > 0)
#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
do { \
if (mips_legitimize_address (&(X), MODE)) \
goto WIN; \
} while (0)
/* A C statement or compound statement with a conditional `goto
LABEL;' executed if memory address X (an RTX) can have different
meanings depending on the machine mode of the memory reference it
is used for.
Autoincrement and autodecrement addresses typically have
mode-dependent effects because the amount of the increment or
decrement is the size of the operand being addressed. Some
machines have other mode-dependent addresses. Many RISC machines
have no mode-dependent addresses.
You may assume that ADDR is a valid address for the machine. */
#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) {}
/* This handles the magic '..CURRENT_FUNCTION' symbol, which means
'the start of the function that this code is output in'. */
#define ASM_OUTPUT_LABELREF(FILE,NAME) \
if (strcmp (NAME, "..CURRENT_FUNCTION") == 0) \
asm_fprintf ((FILE), "%U%s", \
XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0)); \
else \
asm_fprintf ((FILE), "%U%s", (NAME))
/* Flag to mark a function decl symbol that requires a long call. */
#define SYMBOL_FLAG_LONG_CALL (SYMBOL_FLAG_MACH_DEP << 0)
#define SYMBOL_REF_LONG_CALL_P(X) \
((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_LONG_CALL) != 0)
/* Specify the machine mode that this machine uses
for the index in the tablejump instruction.
??? Using HImode in mips16 mode can cause overflow. */
#define CASE_VECTOR_MODE \
(TARGET_MIPS16 ? HImode : ptr_mode)
/* Define as C expression which evaluates to nonzero if the tablejump
instruction expects the table to contain offsets from the address of the
table.
Do not define this if the table should contain absolute addresses. */
#define CASE_VECTOR_PC_RELATIVE (TARGET_MIPS16)
/* Define this as 1 if `char' should by default be signed; else as 0. */
#ifndef DEFAULT_SIGNED_CHAR
#define DEFAULT_SIGNED_CHAR 1
#endif
/* Max number of bytes we can move from memory to memory
in one reasonably fast instruction. */
#define MOVE_MAX (TARGET_64BIT ? 8 : 4)
#define MAX_MOVE_MAX 8
/* Define this macro as a C expression which is nonzero if
accessing less than a word of memory (i.e. a `char' or a
`short') is no faster than accessing a word of memory, i.e., if
such access require more than one instruction or if there is no
difference in cost between byte and (aligned) word loads.
On RISC machines, it tends to generate better code to define
this as 1, since it avoids making a QI or HI mode register. */
#define SLOW_BYTE_ACCESS 1
/* Define this to be nonzero if shift instructions ignore all but the low-order
few bits. */
#define SHIFT_COUNT_TRUNCATED 1
/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
is done just by pretending it is already truncated. */
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) \
(TARGET_64BIT ? ((INPREC) <= 32 || (OUTPREC) > 32) : 1)
/* Specify the machine mode that pointers have.
After generation of rtl, the compiler makes no further distinction
between pointers and any other objects of this machine mode. */
#ifndef Pmode
#define Pmode (TARGET_64BIT && TARGET_LONG64 ? DImode : SImode)
#endif
/* Give call MEMs SImode since it is the "most permissive" mode
for both 32-bit and 64-bit targets. */
#define FUNCTION_MODE SImode
/* The cost of loading values from the constant pool. It should be
larger than the cost of any constant we want to synthesize in-line. */
#define CONSTANT_POOL_COST COSTS_N_INSNS (8)
/* A C expression for the cost of moving data from a register in
class FROM to one in class TO. The classes are expressed using
the enumeration values such as `GENERAL_REGS'. A value of 2 is
the default; other values are interpreted relative to that.
It is not required that the cost always equal 2 when FROM is the
same as TO; on some machines it is expensive to move between
registers if they are not general registers.
If reload sees an insn consisting of a single `set' between two
hard registers, and if `REGISTER_MOVE_COST' applied to their
classes returns a value of 2, reload does not check to ensure
that the constraints of the insn are met. Setting a cost of
other than 2 will allow reload to verify that the constraints are
met. You should do this if the `movM' pattern's constraints do
not allow such copying. */
#define REGISTER_MOVE_COST(MODE, FROM, TO) \
mips_register_move_cost (MODE, FROM, TO)
#define MEMORY_MOVE_COST(MODE,CLASS,TO_P) \
(mips_cost->memory_latency \
+ memory_move_secondary_cost ((MODE), (CLASS), (TO_P)))
/* Define if copies to/from condition code registers should be avoided.
This is needed for the MIPS because reload_outcc is not complete;
it needs to handle cases where the source is a general or another
condition code register. */
#define AVOID_CCMODE_COPIES
/* A C expression for the cost of a branch instruction. A value of
1 is the default; other values are interpreted relative to that. */
#define BRANCH_COST mips_cost->branch_cost
#define LOGICAL_OP_NON_SHORT_CIRCUIT 0
/* If defined, modifies the length assigned to instruction INSN as a
function of the context in which it is used. LENGTH is an lvalue
that contains the initially computed length of the insn and should
be updated with the correct length of the insn. */
#define ADJUST_INSN_LENGTH(INSN, LENGTH) \
((LENGTH) = mips_adjust_insn_length ((INSN), (LENGTH)))
/* Return the asm template for a non-MIPS16 conditional branch instruction.
OPCODE is the opcode's mnemonic and OPERANDS is the asm template for
its operands. */
#define MIPS_BRANCH(OPCODE, OPERANDS) \
"%*" OPCODE "%?\t" OPERANDS "%/"
/* Return the asm template for a call. INSN is the instruction's mnemonic
("j" or "jal"), OPERANDS are its operands, and OPNO is the operand number
of the target.
When generating GOT code without explicit relocation operators,
all calls should use assembly macros. Otherwise, all indirect
calls should use "jr" or "jalr"; we will arrange to restore $gp
afterwards if necessary. Finally, we can only generate direct
calls for -mabicalls by temporarily switching to non-PIC mode. */
#define MIPS_CALL(INSN, OPERANDS, OPNO) \
(TARGET_USE_GOT && !TARGET_EXPLICIT_RELOCS \
? "%*" INSN "\t%" #OPNO "%/" \
: REG_P (OPERANDS[OPNO]) \
? "%*" INSN "r\t%" #OPNO "%/" \
: TARGET_ABICALLS \
? (".option\tpic0\n\t" \
"%*" INSN "\t%" #OPNO "%/\n\t" \
".option\tpic2") \
: "%*" INSN "\t%" #OPNO "%/")
/* Control the assembler format that we output. */
/* Output to assembler file text saying following lines
may contain character constants, extra white space, comments, etc. */
#ifndef ASM_APP_ON
#define ASM_APP_ON " #APP\n"
#endif
/* Output to assembler file text saying following lines
no longer contain unusual constructs. */
#ifndef ASM_APP_OFF
#define ASM_APP_OFF " #NO_APP\n"
#endif
#define REGISTER_NAMES \
{ "$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", \
"$8", "$9", "$10", "$11", "$12", "$13", "$14", "$15", \
"$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23", \
"$24", "$25", "$26", "$27", "$28", "$sp", "$fp", "$31", \
"$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", \
"$f8", "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
"$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23", \
"$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31", \
"hi", "lo", "", "$fcc0","$fcc1","$fcc2","$fcc3","$fcc4", \
"$fcc5","$fcc6","$fcc7","", "", "$arg", "$frame", "$fakec", \
"$c0r0", "$c0r1", "$c0r2", "$c0r3", "$c0r4", "$c0r5", "$c0r6", "$c0r7", \
"$c0r8", "$c0r9", "$c0r10","$c0r11","$c0r12","$c0r13","$c0r14","$c0r15", \
"$c0r16","$c0r17","$c0r18","$c0r19","$c0r20","$c0r21","$c0r22","$c0r23", \
"$c0r24","$c0r25","$c0r26","$c0r27","$c0r28","$c0r29","$c0r30","$c0r31", \
"$c2r0", "$c2r1", "$c2r2", "$c2r3", "$c2r4", "$c2r5", "$c2r6", "$c2r7", \
"$c2r8", "$c2r9", "$c2r10","$c2r11","$c2r12","$c2r13","$c2r14","$c2r15", \
"$c2r16","$c2r17","$c2r18","$c2r19","$c2r20","$c2r21","$c2r22","$c2r23", \
"$c2r24","$c2r25","$c2r26","$c2r27","$c2r28","$c2r29","$c2r30","$c2r31", \
"$c3r0", "$c3r1", "$c3r2", "$c3r3", "$c3r4", "$c3r5", "$c3r6", "$c3r7", \
"$c3r8", "$c3r9", "$c3r10","$c3r11","$c3r12","$c3r13","$c3r14","$c3r15", \
"$c3r16","$c3r17","$c3r18","$c3r19","$c3r20","$c3r21","$c3r22","$c3r23", \
"$c3r24","$c3r25","$c3r26","$c3r27","$c3r28","$c3r29","$c3r30","$c3r31", \
"$ac1hi","$ac1lo","$ac2hi","$ac2lo","$ac3hi","$ac3lo","$dsp_po","$dsp_sc", \
"$dsp_ca","$dsp_ou","$dsp_cc","$dsp_ef" }
/* List the "software" names for each register. Also list the numerical
names for $fp and $sp. */
#define ADDITIONAL_REGISTER_NAMES \
{ \
{ "$29", 29 + GP_REG_FIRST }, \
{ "$30", 30 + GP_REG_FIRST }, \
{ "at", 1 + GP_REG_FIRST }, \
{ "v0", 2 + GP_REG_FIRST }, \
{ "v1", 3 + GP_REG_FIRST }, \
{ "a0", 4 + GP_REG_FIRST }, \
{ "a1", 5 + GP_REG_FIRST }, \
{ "a2", 6 + GP_REG_FIRST }, \
{ "a3", 7 + GP_REG_FIRST }, \
{ "t0", 8 + GP_REG_FIRST }, \
{ "t1", 9 + GP_REG_FIRST }, \
{ "t2", 10 + GP_REG_FIRST }, \
{ "t3", 11 + GP_REG_FIRST }, \
{ "t4", 12 + GP_REG_FIRST }, \
{ "t5", 13 + GP_REG_FIRST }, \
{ "t6", 14 + GP_REG_FIRST }, \
{ "t7", 15 + GP_REG_FIRST }, \
{ "s0", 16 + GP_REG_FIRST }, \
{ "s1", 17 + GP_REG_FIRST }, \
{ "s2", 18 + GP_REG_FIRST }, \
{ "s3", 19 + GP_REG_FIRST }, \
{ "s4", 20 + GP_REG_FIRST }, \
{ "s5", 21 + GP_REG_FIRST }, \
{ "s6", 22 + GP_REG_FIRST }, \
{ "s7", 23 + GP_REG_FIRST }, \
{ "t8", 24 + GP_REG_FIRST }, \
{ "t9", 25 + GP_REG_FIRST }, \
{ "k0", 26 + GP_REG_FIRST }, \
{ "k1", 27 + GP_REG_FIRST }, \
{ "gp", 28 + GP_REG_FIRST }, \
{ "sp", 29 + GP_REG_FIRST }, \
{ "fp", 30 + GP_REG_FIRST }, \
{ "ra", 31 + GP_REG_FIRST }, \
ALL_COP_ADDITIONAL_REGISTER_NAMES \
}
/* This is meant to be redefined in the host dependent files. It is a
set of alternative names and regnums for mips coprocessors. */
#define ALL_COP_ADDITIONAL_REGISTER_NAMES
/* A C compound statement to output to stdio stream STREAM the
assembler syntax for an instruction operand X. X is an RTL
expression.
CODE is a value that can be used to specify one of several ways
of printing the operand. It is used when identical operands
must be printed differently depending on the context. CODE
comes from the `%' specification that was used to request
printing of the operand. If the specification was just `%DIGIT'
then CODE is 0; if the specification was `%LTR DIGIT' then CODE
is the ASCII code for LTR.
If X is a register, this macro should print the register's name.
The names can be found in an array `reg_names' whose type is
`char *[]'. `reg_names' is initialized from `REGISTER_NAMES'.
When the machine description has a specification `%PUNCT' (a `%'
followed by a punctuation character), this macro is called with
a null pointer for X and the punctuation character for CODE.
See mips.c for the MIPS specific codes. */
#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
/* A C expression which evaluates to true if CODE is a valid
punctuation character for use in the `PRINT_OPERAND' macro. If
`PRINT_OPERAND_PUNCT_VALID_P' is not defined, it means that no
punctuation characters (except for the standard one, `%') are
used in this way. */
#define PRINT_OPERAND_PUNCT_VALID_P(CODE) mips_print_operand_punct[CODE]
/* A C compound statement to output to stdio stream STREAM the
assembler syntax for an instruction operand that is a memory
reference whose address is ADDR. ADDR is an RTL expression. */
#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
/* A C statement, to be executed after all slot-filler instructions
have been output. If necessary, call `dbr_sequence_length' to
determine the number of slots filled in a sequence (zero if not
currently outputting a sequence), to decide how many no-ops to
output, or whatever.
Don't define this macro if it has nothing to do, but it is
helpful in reading assembly output if the extent of the delay
sequence is made explicit (e.g. with white space).
Note that output routines for instructions with delay slots must
be prepared to deal with not being output as part of a sequence
(i.e. when the scheduling pass is not run, or when no slot
fillers could be found.) The variable `final_sequence' is null
when not processing a sequence, otherwise it contains the
`sequence' rtx being output. */
#define DBR_OUTPUT_SEQEND(STREAM) \
do \
{ \
if (set_nomacro > 0 && --set_nomacro == 0) \
fputs ("\t.set\tmacro\n", STREAM); \
\
if (set_noreorder > 0 && --set_noreorder == 0) \
fputs ("\t.set\treorder\n", STREAM); \
\
fputs ("\n", STREAM); \
} \
while (0)
/* How to tell the debugger about changes of source files. */
#define ASM_OUTPUT_SOURCE_FILENAME(STREAM, NAME) \
mips_output_filename (STREAM, NAME)
/* mips-tfile does not understand .stabd directives. */
#define DBX_OUTPUT_SOURCE_LINE(STREAM, LINE, COUNTER) do { \
dbxout_begin_stabn_sline (LINE); \
dbxout_stab_value_internal_label ("LM", &COUNTER); \
} while (0)
/* Use .loc directives for SDB line numbers. */
#define SDB_OUTPUT_SOURCE_LINE(STREAM, LINE) \
fprintf (STREAM, "\t.loc\t%d %d\n", num_source_filenames, LINE)
/* The MIPS implementation uses some labels for its own purpose. The
following lists what labels are created, and are all formed by the
pattern $L[a-z].*. The machine independent portion of GCC creates
labels matching: $L[A-Z][0-9]+ and $L[0-9]+.
LM[0-9]+ Silicon Graphics/ECOFF stabs label before each stmt.
$Lb[0-9]+ Begin blocks for MIPS debug support
$Lc[0-9]+ Label for use in s<xx> operation.
$Le[0-9]+ End blocks for MIPS debug support */
#undef ASM_DECLARE_OBJECT_NAME
#define ASM_DECLARE_OBJECT_NAME(STREAM, NAME, DECL) \
mips_declare_object (STREAM, NAME, "", ":\n", 0)
/* Globalizing directive for a label. */
#define GLOBAL_ASM_OP "\t.globl\t"
/* This says how to define a global common symbol. */
#define ASM_OUTPUT_ALIGNED_DECL_COMMON mips_output_aligned_decl_common
/* This says how to define a local common symbol (i.e., not visible to
linker). */
#ifndef ASM_OUTPUT_ALIGNED_LOCAL
#define ASM_OUTPUT_ALIGNED_LOCAL(STREAM, NAME, SIZE, ALIGN) \
mips_declare_common_object (STREAM, NAME, "\n\t.lcomm\t", SIZE, ALIGN, false)
#endif
/* This says how to output an external. It would be possible not to
output anything and let undefined symbol become external. However
the assembler uses length information on externals to allocate in
data/sdata bss/sbss, thereby saving exec time. */
#undef ASM_OUTPUT_EXTERNAL
#define ASM_OUTPUT_EXTERNAL(STREAM,DECL,NAME) \
mips_output_external(STREAM,DECL,NAME)
/* This is how to declare a function name. The actual work of
emitting the label is moved to function_prologue, so that we can
get the line number correctly emitted before the .ent directive,
and after any .file directives. Define as empty so that the function
is not declared before the .ent directive elsewhere. */
#undef ASM_DECLARE_FUNCTION_NAME
#define ASM_DECLARE_FUNCTION_NAME(STREAM,NAME,DECL)
#ifndef FUNCTION_NAME_ALREADY_DECLARED
#define FUNCTION_NAME_ALREADY_DECLARED 0
#endif
/* This is how to store into the string LABEL
the symbol_ref name of an internal numbered label where
PREFIX is the class of label and NUM is the number within the class.
This is suitable for output with `assemble_name'. */
#undef ASM_GENERATE_INTERNAL_LABEL
#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
sprintf ((LABEL), "*%s%s%ld", (LOCAL_LABEL_PREFIX), (PREFIX), (long)(NUM))
/* This is how to output an element of a case-vector that is absolute. */
#define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
fprintf (STREAM, "\t%s\t%sL%d\n", \
ptr_mode == DImode ? ".dword" : ".word", \
LOCAL_LABEL_PREFIX, \
VALUE)
/* This is how to output an element of a case-vector. We can make the
entries PC-relative in MIPS16 code and GP-relative when .gp(d)word
is supported. */
#define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
do { \
if (TARGET_MIPS16) \
fprintf (STREAM, "\t.half\t%sL%d-%sL%d\n", \
LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL); \
else if (TARGET_GPWORD) \
fprintf (STREAM, "\t%s\t%sL%d\n", \
ptr_mode == DImode ? ".gpdword" : ".gpword", \
LOCAL_LABEL_PREFIX, VALUE); \
else if (TARGET_RTP_PIC) \
{ \
/* Make the entry relative to the start of the function. */ \
rtx fnsym = XEXP (DECL_RTL (current_function_decl), 0); \
fprintf (STREAM, "\t%s\t%sL%d-", \
Pmode == DImode ? ".dword" : ".word", \
LOCAL_LABEL_PREFIX, VALUE); \
assemble_name (STREAM, XSTR (fnsym, 0)); \
fprintf (STREAM, "\n"); \
} \
else \
fprintf (STREAM, "\t%s\t%sL%d\n", \
ptr_mode == DImode ? ".dword" : ".word", \
LOCAL_LABEL_PREFIX, VALUE); \
} while (0)
/* When generating MIPS16 code, we want the jump table to be in the text
section so that we can load its address using a PC-relative addition. */
#define JUMP_TABLES_IN_TEXT_SECTION TARGET_MIPS16
/* This is how to output an assembler line
that says to advance the location counter
to a multiple of 2**LOG bytes. */
#define ASM_OUTPUT_ALIGN(STREAM,LOG) \
fprintf (STREAM, "\t.align\t%d\n", (LOG))
/* This is how to output an assembler line to advance the location
counter by SIZE bytes. */
#undef ASM_OUTPUT_SKIP
#define ASM_OUTPUT_SKIP(STREAM,SIZE) \
fprintf (STREAM, "\t.space\t"HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
/* This is how to output a string. */
#undef ASM_OUTPUT_ASCII
#define ASM_OUTPUT_ASCII(STREAM, STRING, LEN) \
mips_output_ascii (STREAM, STRING, LEN, "\t.ascii\t")
/* Output #ident as a in the read-only data section. */
#undef ASM_OUTPUT_IDENT
#define ASM_OUTPUT_IDENT(FILE, STRING) \
{ \
const char *p = STRING; \
int size = strlen (p) + 1; \
switch_to_section (readonly_data_section); \
assemble_string (p, size); \
}
/* Default to -G 8 */
#ifndef MIPS_DEFAULT_GVALUE
#define MIPS_DEFAULT_GVALUE 8
#endif
/* Define the strings to put out for each section in the object file. */
#define TEXT_SECTION_ASM_OP "\t.text" /* instructions */
#define DATA_SECTION_ASM_OP "\t.data" /* large data */
#undef READONLY_DATA_SECTION_ASM_OP
#define READONLY_DATA_SECTION_ASM_OP "\t.rdata" /* read-only data */
#define ASM_OUTPUT_REG_PUSH(STREAM,REGNO) \
do \
{ \
fprintf (STREAM, "\t%s\t%s,%s,8\n\t%s\t%s,0(%s)\n", \
TARGET_64BIT ? "dsubu" : "subu", \
reg_names[STACK_POINTER_REGNUM], \
reg_names[STACK_POINTER_REGNUM], \
TARGET_64BIT ? "sd" : "sw", \
reg_names[REGNO], \
reg_names[STACK_POINTER_REGNUM]); \
} \
while (0)
#define ASM_OUTPUT_REG_POP(STREAM,REGNO) \
do \
{ \
if (! set_noreorder) \
fprintf (STREAM, "\t.set\tnoreorder\n"); \
\
fprintf (STREAM, "\t%s\t%s,0(%s)\n\t%s\t%s,%s,8\n", \
TARGET_64BIT ? "ld" : "lw", \
reg_names[REGNO], \
reg_names[STACK_POINTER_REGNUM], \
TARGET_64BIT ? "daddu" : "addu", \
reg_names[STACK_POINTER_REGNUM], \
reg_names[STACK_POINTER_REGNUM]); \
\
if (! set_noreorder) \
fprintf (STREAM, "\t.set\treorder\n"); \
} \
while (0)
/* How to start an assembler comment.
The leading space is important (the mips native assembler requires it). */
#ifndef ASM_COMMENT_START
#define ASM_COMMENT_START " #"
#endif
/* Default definitions for size_t and ptrdiff_t. We must override the
definitions from ../svr4.h on mips-*-linux-gnu. */
#undef SIZE_TYPE
#define SIZE_TYPE (POINTER_SIZE == 64 ? "long unsigned int" : "unsigned int")
#undef PTRDIFF_TYPE
#define PTRDIFF_TYPE (POINTER_SIZE == 64 ? "long int" : "int")
#ifndef __mips16
/* Since the bits of the _init and _fini function is spread across
many object files, each potentially with its own GP, we must assume
we need to load our GP. We don't preserve $gp or $ra, since each
init/fini chunk is supposed to initialize $gp, and crti/crtn
already take care of preserving $ra and, when appropriate, $gp. */
#if (defined _ABIO32 && _MIPS_SIM == _ABIO32)
#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
asm (SECTION_OP "\n\
.set noreorder\n\
bal 1f\n\
nop\n\
1: .cpload $31\n\
.set reorder\n\
jal " USER_LABEL_PREFIX #FUNC "\n\
" TEXT_SECTION_ASM_OP);
#endif /* Switch to #elif when we're no longer limited by K&R C. */
#if (defined _ABIN32 && _MIPS_SIM == _ABIN32) \
|| (defined _ABI64 && _MIPS_SIM == _ABI64)
#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
asm (SECTION_OP "\n\
.set noreorder\n\
bal 1f\n\
nop\n\
1: .set reorder\n\
.cpsetup $31, $2, 1b\n\
jal " USER_LABEL_PREFIX #FUNC "\n\
" TEXT_SECTION_ASM_OP);
#endif
#endif
#ifndef HAVE_AS_TLS
#define HAVE_AS_TLS 0
#endif
|