1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
13548
13549
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598
13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
13609
13610
13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
13656
13657
13658
13659
13660
13661
13662
13663
13664
13665
13666
13667
13668
13669
13670
13671
13672
13673
13674
13675
13676
13677
13678
13679
13680
13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
13698
13699
13700
13701
13702
13703
13704
13705
13706
13707
13708
13709
13710
13711
13712
13713
13714
13715
13716
13717
13718
13719
13720
13721
13722
13723
13724
13725
13726
13727
13728
13729
13730
13731
13732
13733
13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772
13773
13774
13775
13776
13777
13778
13779
13780
13781
13782
13783
13784
13785
13786
13787
13788
13789
13790
13791
13792
13793
13794
13795
13796
13797
13798
13799
13800
13801
13802
13803
13804
13805
13806
13807
13808
13809
13810
13811
13812
13813
13814
13815
13816
13817
13818
13819
13820
13821
13822
13823
13824
13825
13826
13827
13828
13829
13830
13831
13832
13833
13834
13835
13836
13837
13838
13839
13840
13841
13842
13843
13844
13845
13846
13847
13848
13849
13850
13851
13852
13853
13854
13855
13856
13857
13858
13859
13860
13861
13862
13863
13864
13865
13866
13867
13868
13869
13870
13871
13872
13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885
13886
13887
13888
13889
13890
13891
13892
13893
13894
13895
13896
13897
13898
13899
13900
13901
13902
13903
13904
13905
13906
13907
13908
13909
13910
13911
13912
13913
13914
13915
13916
13917
13918
13919
13920
13921
13922
13923
13924
13925
13926
13927
13928
13929
13930
13931
13932
13933
13934
13935
13936
13937
13938
13939
13940
13941
13942
13943
13944
13945
13946
13947
13948
13949
13950
13951
13952
13953
13954
13955
13956
13957
13958
13959
13960
13961
13962
13963
13964
13965
13966
13967
13968
13969
13970
13971
13972
13973
13974
13975
13976
13977
13978
13979
13980
13981
13982
13983
13984
13985
13986
13987
13988
13989
13990
13991
13992
13993
13994
13995
13996
13997
13998
13999
14000
14001
14002
14003
14004
14005
14006
14007
14008
14009
14010
14011
14012
14013
14014
14015
14016
14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042
14043
14044
14045
14046
14047
14048
14049
14050
14051
14052
14053
14054
14055
14056
14057
14058
14059
14060
14061
14062
14063
14064
14065
14066
14067
14068
14069
14070
14071
14072
14073
14074
14075
14076
14077
14078
14079
14080
14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
14096
14097
14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
14108
14109
14110
14111
14112
14113
14114
14115
14116
14117
14118
14119
14120
14121
14122
14123
14124
14125
14126
14127
14128
14129
14130
14131
14132
14133
14134
14135
14136
14137
14138
14139
14140
14141
14142
14143
14144
14145
14146
14147
14148
14149
14150
14151
14152
14153
14154
14155
14156
14157
14158
14159
14160
14161
14162
14163
14164
14165
14166
14167
14168
14169
14170
14171
14172
14173
14174
14175
14176
14177
14178
14179
14180
14181
14182
14183
14184
14185
14186
14187
14188
14189
14190
14191
14192
14193
14194
14195
14196
14197
14198
14199
14200
14201
14202
14203
14204
14205
14206
14207
14208
14209
14210
14211
14212
14213
14214
14215
14216
14217
14218
14219
14220
14221
14222
14223
14224
14225
14226
14227
14228
14229
14230
14231
14232
14233
14234
14235
14236
14237
14238
14239
14240
14241
14242
14243
14244
14245
14246
14247
14248
14249
14250
14251
14252
14253
14254
14255
14256
14257
14258
14259
14260
14261
14262
14263
14264
14265
14266
14267
14268
14269
14270
14271
14272
14273
14274
14275
14276
14277
14278
14279
14280
14281
14282
14283
14284
14285
14286
14287
14288
14289
14290
14291
14292
14293
14294
14295
14296
14297
14298
14299
14300
14301
14302
14303
14304
14305
14306
14307
14308
14309
14310
14311
14312
14313
14314
14315
14316
14317
14318
14319
14320
14321
14322
14323
14324
14325
14326
14327
14328
14329
14330
14331
14332
14333
14334
14335
14336
14337
14338
14339
14340
14341
14342
14343
14344
14345
14346
14347
14348
14349
14350
14351
14352
14353
14354
14355
14356
14357
14358
14359
14360
14361
14362
14363
14364
14365
14366
14367
14368
14369
14370
14371
14372
14373
14374
14375
14376
14377
14378
14379
14380
14381
14382
14383
14384
14385
14386
14387
14388
14389
14390
14391
14392
14393
14394
14395
14396
14397
14398
14399
14400
14401
14402
14403
14404
14405
14406
14407
14408
14409
14410
14411
14412
14413
14414
14415
14416
14417
14418
14419
14420
14421
14422
14423
14424
14425
14426
14427
14428
14429
14430
14431
14432
14433
14434
14435
14436
14437
14438
14439
14440
14441
14442
14443
14444
14445
14446
14447
14448
14449
14450
14451
14452
14453
14454
14455
14456
14457
14458
14459
14460
14461
14462
14463
14464
14465
14466
14467
14468
14469
14470
14471
14472
14473
14474
14475
14476
14477
14478
14479
14480
14481
14482
14483
14484
14485
14486
14487
14488
14489
14490
14491
14492
14493
14494
14495
14496
14497
14498
14499
14500
14501
14502
14503
14504
14505
14506
14507
14508
14509
14510
14511
14512
14513
14514
14515
14516
14517
14518
14519
14520
14521
14522
14523
14524
14525
14526
14527
14528
14529
14530
14531
14532
14533
14534
14535
14536
14537
14538
14539
14540
14541
14542
14543
14544
14545
14546
14547
14548
14549
14550
14551
14552
14553
14554
14555
14556
14557
14558
14559
14560
14561
14562
14563
14564
14565
14566
14567
14568
14569
14570
14571
14572
14573
14574
14575
14576
14577
14578
14579
14580
14581
14582
14583
14584
14585
14586
14587
14588
14589
14590
14591
14592
14593
14594
14595
14596
14597
14598
14599
14600
14601
14602
14603
14604
14605
14606
14607
14608
14609
14610
14611
14612
14613
14614
14615
14616
14617
14618
14619
14620
14621
14622
14623
14624
14625
14626
14627
14628
14629
14630
14631
14632
14633
14634
14635
14636
14637
14638
14639
14640
14641
14642
14643
14644
14645
14646
14647
14648
14649
14650
14651
14652
14653
14654
14655
14656
14657
14658
14659
14660
14661
14662
14663
14664
14665
14666
14667
14668
14669
14670
14671
14672
14673
14674
14675
14676
14677
14678
14679
14680
14681
14682
14683
14684
14685
14686
14687
14688
14689
14690
14691
14692
14693
14694
14695
14696
14697
14698
14699
14700
14701
14702
14703
14704
14705
14706
14707
14708
14709
14710
14711
14712
14713
14714
14715
14716
14717
14718
14719
14720
14721
14722
14723
14724
14725
14726
14727
14728
14729
14730
14731
14732
14733
14734
14735
14736
14737
14738
14739
14740
14741
14742
14743
14744
14745
14746
14747
14748
14749
14750
14751
14752
14753
14754
14755
14756
14757
14758
14759
14760
14761
14762
14763
14764
14765
14766
14767
14768
14769
14770
14771
14772
14773
14774
14775
14776
14777
14778
14779
14780
14781
14782
14783
14784
14785
14786
14787
14788
14789
14790
14791
14792
14793
14794
14795
14796
14797
14798
14799
14800
14801
14802
14803
14804
14805
14806
14807
14808
14809
14810
14811
14812
14813
14814
14815
14816
14817
14818
14819
14820
14821
14822
14823
14824
14825
14826
14827
14828
14829
14830
14831
14832
14833
14834
14835
14836
14837
14838
14839
14840
14841
14842
14843
14844
14845
14846
14847
14848
14849
14850
14851
14852
14853
14854
14855
14856
14857
14858
14859
14860
14861
14862
14863
14864
14865
14866
14867
14868
14869
14870
14871
14872
14873
14874
14875
14876
14877
14878
14879
14880
14881
14882
14883
14884
14885
14886
14887
14888
14889
14890
14891
14892
14893
14894
14895
14896
14897
14898
14899
14900
14901
14902
14903
14904
14905
14906
14907
14908
14909
14910
14911
14912
14913
14914
14915
14916
14917
14918
14919
14920
14921
14922
14923
14924
14925
14926
14927
14928
14929
14930
14931
14932
14933
14934
14935
14936
14937
14938
14939
14940
14941
14942
14943
14944
14945
14946
14947
14948
14949
14950
14951
14952
14953
14954
14955
14956
14957
14958
14959
14960
14961
14962
14963
14964
14965
14966
14967
14968
14969
14970
14971
14972
14973
14974
14975
14976
14977
14978
14979
14980
14981
14982
14983
14984
14985
14986
14987
14988
14989
14990
14991
14992
14993
14994
14995
14996
14997
14998
14999
15000
15001
15002
15003
15004
15005
15006
15007
15008
15009
15010
15011
15012
15013
15014
15015
15016
15017
15018
15019
15020
15021
15022
15023
15024
15025
15026
15027
15028
15029
15030
15031
15032
15033
15034
15035
15036
15037
15038
15039
15040
15041
15042
15043
15044
15045
15046
15047
15048
15049
15050
15051
15052
15053
15054
15055
15056
15057
15058
15059
15060
15061
15062
15063
15064
15065
15066
15067
15068
15069
15070
15071
15072
15073
15074
15075
15076
15077
15078
15079
15080
15081
15082
15083
15084
15085
15086
15087
15088
15089
15090
15091
15092
15093
15094
15095
15096
15097
15098
15099
15100
15101
15102
15103
15104
15105
15106
15107
15108
15109
15110
15111
15112
15113
15114
15115
15116
15117
15118
15119
15120
15121
15122
15123
15124
15125
15126
15127
15128
15129
15130
15131
15132
15133
15134
15135
15136
15137
15138
15139
15140
15141
15142
15143
15144
15145
15146
15147
15148
15149
15150
15151
15152
15153
15154
15155
15156
15157
15158
15159
15160
15161
15162
15163
15164
15165
15166
15167
15168
15169
15170
15171
15172
15173
15174
15175
15176
15177
15178
15179
15180
15181
15182
15183
15184
15185
15186
15187
15188
15189
15190
15191
15192
15193
15194
15195
15196
15197
15198
15199
15200
15201
15202
15203
15204
15205
15206
15207
15208
15209
15210
15211
15212
15213
15214
15215
15216
15217
15218
15219
15220
15221
15222
15223
15224
15225
15226
15227
15228
15229
15230
15231
15232
15233
15234
15235
15236
15237
15238
15239
15240
15241
15242
15243
15244
15245
15246
15247
15248
15249
15250
15251
15252
15253
15254
15255
15256
15257
15258
15259
15260
15261
15262
15263
15264
15265
15266
15267
15268
15269
15270
15271
15272
15273
15274
15275
15276
15277
15278
15279
15280
15281
15282
15283
15284
15285
15286
15287
15288
15289
15290
15291
15292
15293
15294
15295
15296
15297
15298
15299
15300
15301
15302
15303
15304
15305
15306
15307
15308
15309
15310
15311
15312
15313
15314
15315
15316
15317
15318
15319
15320
15321
15322
15323
15324
15325
15326
15327
15328
15329
15330
15331
15332
15333
15334
15335
15336
15337
15338
15339
15340
15341
15342
15343
15344
15345
15346
15347
15348
15349
15350
15351
15352
15353
15354
15355
15356
15357
15358
15359
15360
15361
15362
15363
15364
15365
15366
15367
15368
15369
15370
15371
15372
15373
15374
15375
15376
15377
15378
15379
15380
15381
15382
15383
15384
15385
15386
15387
15388
15389
15390
15391
15392
15393
15394
15395
15396
15397
15398
15399
15400
15401
15402
15403
15404
15405
15406
15407
15408
15409
15410
15411
15412
15413
15414
15415
15416
15417
15418
15419
15420
15421
15422
15423
15424
15425
15426
15427
15428
15429
15430
15431
15432
15433
15434
15435
15436
15437
15438
15439
15440
15441
15442
15443
15444
15445
15446
15447
15448
15449
15450
15451
15452
15453
15454
15455
15456
15457
15458
15459
15460
15461
15462
15463
15464
15465
15466
15467
15468
15469
15470
15471
15472
15473
15474
15475
15476
15477
15478
15479
15480
15481
15482
15483
15484
15485
15486
15487
15488
15489
15490
15491
15492
15493
15494
15495
15496
15497
15498
15499
15500
15501
15502
15503
15504
15505
15506
15507
15508
15509
15510
15511
15512
15513
15514
15515
15516
15517
15518
15519
15520
15521
15522
15523
15524
15525
15526
15527
15528
15529
15530
15531
15532
15533
15534
15535
15536
15537
15538
15539
15540
15541
15542
15543
15544
15545
15546
15547
15548
15549
15550
15551
15552
15553
15554
15555
15556
15557
15558
15559
15560
15561
15562
15563
15564
15565
15566
15567
15568
15569
15570
15571
15572
15573
15574
15575
15576
15577
15578
15579
15580
15581
15582
15583
15584
15585
15586
15587
15588
15589
15590
15591
15592
15593
15594
15595
15596
15597
15598
15599
15600
15601
15602
15603
15604
15605
15606
15607
15608
15609
15610
15611
15612
15613
15614
15615
15616
15617
15618
15619
15620
15621
15622
15623
15624
15625
15626
15627
15628
15629
15630
15631
15632
15633
15634
15635
15636
15637
15638
15639
15640
15641
15642
15643
15644
15645
15646
15647
15648
15649
15650
15651
15652
15653
15654
15655
15656
15657
15658
15659
15660
15661
15662
15663
15664
15665
15666
15667
15668
15669
15670
15671
15672
15673
15674
15675
15676
15677
15678
15679
15680
15681
15682
15683
15684
15685
15686
15687
15688
15689
15690
15691
15692
15693
15694
15695
15696
15697
15698
15699
15700
15701
15702
15703
15704
15705
15706
15707
15708
15709
15710
15711
15712
15713
15714
15715
15716
15717
15718
15719
15720
15721
15722
15723
15724
15725
15726
15727
15728
15729
15730
15731
15732
15733
15734
15735
15736
15737
15738
15739
15740
15741
15742
15743
15744
15745
15746
15747
15748
15749
15750
15751
15752
15753
15754
15755
15756
15757
15758
15759
15760
15761
15762
15763
15764
15765
15766
15767
15768
15769
15770
15771
15772
15773
15774
15775
15776
15777
15778
15779
15780
15781
15782
15783
15784
15785
15786
15787
15788
15789
15790
15791
15792
15793
15794
15795
15796
15797
15798
15799
15800
15801
15802
15803
15804
15805
15806
15807
15808
15809
15810
15811
15812
15813
15814
15815
15816
15817
15818
15819
15820
15821
15822
15823
15824
15825
15826
15827
15828
15829
15830
15831
15832
15833
15834
15835
15836
15837
15838
15839
15840
15841
15842
15843
15844
15845
15846
15847
15848
15849
15850
15851
15852
15853
15854
15855
15856
15857
15858
15859
15860
15861
15862
15863
15864
15865
15866
15867
15868
15869
15870
15871
15872
15873
15874
15875
15876
15877
15878
15879
15880
15881
15882
15883
15884
15885
15886
15887
15888
15889
15890
15891
15892
15893
15894
15895
15896
15897
15898
15899
15900
15901
15902
15903
15904
15905
15906
15907
15908
15909
15910
15911
15912
15913
15914
15915
15916
15917
15918
15919
15920
15921
15922
15923
15924
15925
15926
15927
15928
15929
15930
15931
15932
15933
15934
15935
15936
15937
15938
15939
15940
15941
15942
15943
15944
15945
15946
15947
15948
15949
15950
15951
15952
15953
15954
15955
15956
15957
15958
15959
15960
15961
15962
15963
15964
15965
15966
15967
15968
15969
15970
15971
15972
15973
15974
15975
15976
15977
15978
15979
15980
15981
15982
15983
15984
15985
15986
15987
15988
15989
15990
15991
15992
15993
15994
15995
15996
15997
15998
15999
16000
16001
16002
16003
16004
16005
16006
16007
16008
16009
16010
16011
16012
16013
16014
16015
16016
16017
16018
16019
16020
16021
16022
16023
16024
16025
16026
16027
16028
16029
16030
16031
16032
16033
16034
16035
16036
16037
16038
16039
16040
16041
16042
16043
16044
16045
16046
16047
16048
16049
16050
16051
16052
16053
16054
16055
16056
16057
16058
16059
16060
16061
16062
16063
16064
16065
16066
16067
16068
16069
16070
16071
16072
16073
16074
16075
16076
16077
16078
16079
16080
16081
16082
16083
16084
16085
16086
16087
16088
16089
16090
16091
16092
16093
16094
16095
16096
16097
16098
16099
16100
16101
16102
16103
16104
16105
16106
16107
16108
16109
16110
16111
16112
16113
16114
16115
16116
16117
16118
16119
16120
16121
16122
16123
16124
16125
16126
16127
16128
16129
16130
16131
16132
16133
16134
16135
16136
16137
16138
16139
16140
16141
16142
16143
16144
16145
16146
16147
16148
16149
16150
16151
16152
16153
16154
16155
16156
16157
16158
16159
16160
16161
16162
16163
16164
16165
16166
16167
16168
16169
16170
16171
16172
16173
16174
16175
16176
16177
16178
16179
16180
16181
16182
16183
16184
16185
16186
16187
16188
16189
16190
16191
16192
16193
16194
16195
16196
16197
16198
16199
16200
16201
16202
16203
16204
16205
16206
16207
16208
16209
16210
16211
16212
16213
16214
16215
16216
16217
16218
16219
16220
16221
16222
16223
16224
16225
16226
16227
16228
16229
16230
16231
16232
16233
16234
16235
16236
16237
16238
16239
16240
16241
16242
16243
16244
16245
16246
16247
16248
16249
16250
16251
16252
16253
16254
16255
16256
16257
16258
16259
16260
16261
16262
16263
16264
16265
16266
16267
16268
16269
16270
16271
16272
16273
16274
16275
16276
16277
16278
16279
16280
16281
16282
16283
16284
16285
16286
16287
16288
16289
16290
16291
16292
16293
16294
16295
16296
16297
16298
16299
16300
16301
16302
16303
16304
16305
16306
16307
16308
16309
16310
16311
16312
16313
16314
16315
16316
16317
16318
16319
16320
16321
16322
16323
16324
16325
16326
16327
16328
16329
16330
16331
16332
16333
16334
16335
16336
16337
16338
16339
16340
16341
16342
16343
16344
16345
16346
16347
16348
16349
16350
16351
16352
16353
16354
16355
16356
16357
16358
16359
16360
16361
16362
16363
16364
16365
16366
16367
16368
16369
16370
16371
16372
16373
16374
16375
16376
16377
16378
16379
16380
16381
16382
16383
16384
16385
16386
16387
16388
16389
16390
16391
16392
16393
16394
16395
16396
16397
16398
16399
16400
16401
16402
16403
16404
16405
16406
16407
16408
16409
16410
16411
16412
16413
16414
16415
16416
16417
16418
16419
16420
16421
16422
16423
16424
16425
16426
16427
16428
16429
16430
16431
16432
16433
16434
16435
16436
16437
16438
16439
16440
16441
16442
16443
16444
16445
16446
16447
16448
16449
16450
16451
16452
16453
16454
16455
16456
16457
16458
16459
16460
16461
16462
16463
16464
16465
16466
16467
16468
16469
16470
16471
16472
16473
16474
16475
16476
16477
16478
16479
16480
16481
16482
16483
16484
16485
16486
16487
16488
16489
16490
16491
16492
16493
16494
16495
16496
16497
16498
16499
16500
16501
16502
16503
16504
16505
16506
16507
16508
16509
16510
16511
16512
16513
16514
16515
16516
16517
16518
16519
16520
16521
16522
16523
16524
16525
16526
16527
16528
16529
16530
16531
16532
16533
16534
16535
16536
16537
16538
16539
16540
16541
16542
16543
16544
16545
16546
16547
16548
16549
16550
16551
16552
16553
16554
16555
16556
16557
16558
16559
16560
16561
16562
16563
16564
16565
16566
16567
16568
16569
16570
16571
16572
16573
16574
16575
16576
16577
16578
16579
16580
16581
16582
16583
16584
16585
16586
16587
16588
16589
16590
16591
16592
16593
16594
16595
16596
16597
16598
16599
16600
16601
16602
16603
16604
16605
16606
16607
16608
16609
16610
16611
16612
16613
16614
16615
16616
16617
16618
16619
16620
16621
16622
16623
16624
16625
16626
16627
16628
16629
16630
16631
16632
16633
16634
16635
16636
16637
16638
16639
16640
16641
16642
16643
16644
16645
16646
16647
16648
16649
16650
16651
16652
16653
16654
16655
16656
16657
16658
16659
16660
16661
16662
16663
16664
16665
16666
16667
16668
16669
16670
16671
16672
16673
16674
16675
16676
16677
16678
16679
16680
16681
16682
16683
16684
16685
16686
16687
16688
16689
16690
16691
16692
16693
16694
16695
16696
16697
16698
16699
16700
16701
16702
16703
16704
16705
16706
16707
16708
16709
16710
16711
16712
16713
16714
16715
16716
16717
16718
16719
16720
16721
16722
16723
16724
16725
16726
16727
16728
16729
16730
16731
16732
16733
16734
16735
16736
16737
16738
16739
16740
16741
16742
16743
16744
16745
16746
16747
16748
16749
16750
16751
16752
16753
16754
16755
16756
16757
16758
16759
16760
16761
16762
16763
16764
16765
16766
16767
16768
16769
16770
16771
16772
16773
16774
16775
16776
16777
16778
16779
16780
16781
16782
16783
16784
16785
16786
16787
16788
16789
16790
16791
16792
16793
16794
16795
16796
16797
16798
16799
16800
16801
16802
16803
16804
16805
16806
16807
16808
16809
16810
16811
16812
16813
16814
16815
16816
16817
16818
16819
16820
16821
16822
16823
16824
16825
16826
16827
16828
16829
16830
16831
16832
16833
16834
16835
16836
16837
16838
16839
16840
16841
16842
16843
16844
16845
16846
16847
16848
16849
16850
16851
16852
16853
16854
16855
16856
16857
16858
16859
16860
16861
16862
16863
16864
16865
16866
16867
16868
16869
16870
16871
16872
16873
16874
16875
16876
16877
16878
16879
16880
16881
16882
16883
16884
16885
16886
16887
16888
16889
16890
16891
16892
16893
16894
16895
16896
16897
16898
16899
16900
16901
16902
16903
16904
16905
16906
16907
16908
16909
16910
16911
16912
16913
16914
16915
16916
16917
16918
16919
16920
16921
16922
16923
16924
16925
16926
16927
16928
16929
16930
16931
16932
16933
16934
16935
16936
16937
16938
16939
16940
16941
16942
16943
16944
16945
16946
16947
16948
16949
16950
16951
16952
16953
16954
16955
16956
16957
16958
16959
16960
16961
16962
16963
16964
16965
16966
16967
16968
16969
16970
16971
16972
16973
16974
16975
16976
16977
16978
16979
16980
16981
16982
16983
16984
16985
16986
16987
16988
16989
16990
16991
16992
16993
16994
16995
16996
16997
16998
16999
17000
17001
17002
17003
17004
17005
17006
17007
17008
17009
17010
17011
17012
17013
17014
17015
17016
17017
17018
17019
17020
17021
17022
17023
17024
17025
17026
17027
17028
17029
17030
17031
17032
17033
17034
17035
17036
17037
17038
17039
17040
17041
17042
17043
17044
17045
17046
17047
17048
17049
17050
17051
17052
17053
17054
17055
17056
17057
17058
17059
17060
17061
17062
17063
17064
17065
17066
17067
17068
17069
17070
17071
17072
17073
17074
17075
17076
17077
17078
17079
17080
17081
17082
17083
17084
17085
17086
17087
17088
17089
17090
17091
17092
17093
17094
17095
17096
17097
17098
17099
17100
17101
17102
17103
17104
17105
17106
17107
17108
17109
17110
17111
17112
17113
17114
17115
17116
17117
17118
17119
17120
17121
17122
17123
17124
17125
17126
17127
17128
17129
17130
17131
17132
17133
17134
17135
17136
17137
17138
17139
17140
17141
17142
17143
17144
17145
17146
17147
17148
17149
17150
17151
17152
17153
17154
17155
17156
17157
17158
17159
17160
17161
17162
17163
17164
17165
17166
17167
17168
17169
17170
17171
17172
17173
17174
17175
17176
17177
17178
17179
17180
17181
17182
17183
17184
17185
17186
17187
17188
17189
17190
17191
17192
17193
17194
17195
17196
17197
17198
17199
17200
17201
17202
17203
17204
17205
17206
17207
17208
17209
17210
17211
17212
17213
17214
17215
17216
17217
17218
17219
17220
17221
17222
17223
17224
17225
17226
17227
17228
17229
17230
17231
17232
17233
17234
17235
17236
17237
17238
17239
17240
17241
17242
17243
17244
17245
17246
17247
17248
17249
17250
17251
17252
17253
17254
17255
17256
17257
17258
17259
17260
17261
17262
17263
17264
17265
17266
17267
17268
17269
17270
17271
17272
17273
17274
17275
17276
17277
17278
17279
17280
17281
17282
17283
17284
17285
17286
17287
17288
17289
17290
17291
17292
17293
17294
17295
17296
17297
17298
17299
17300
17301
17302
17303
17304
17305
17306
17307
17308
17309
17310
17311
17312
17313
17314
17315
17316
17317
17318
17319
17320
17321
17322
17323
17324
17325
17326
17327
17328
17329
17330
17331
17332
17333
17334
17335
17336
17337
17338
17339
17340
17341
17342
17343
17344
17345
17346
17347
17348
17349
17350
17351
17352
17353
17354
17355
17356
17357
17358
17359
17360
17361
17362
17363
17364
17365
17366
17367
17368
17369
17370
17371
17372
17373
17374
17375
17376
17377
17378
17379
17380
17381
17382
17383
17384
17385
17386
17387
17388
17389
17390
17391
17392
17393
17394
17395
17396
17397
17398
17399
17400
17401
17402
17403
17404
17405
17406
17407
17408
17409
17410
17411
17412
17413
17414
17415
17416
17417
17418
17419
17420
17421
17422
17423
17424
17425
17426
17427
17428
17429
17430
17431
17432
17433
17434
17435
17436
17437
17438
17439
17440
17441
17442
17443
17444
17445
17446
17447
17448
17449
17450
17451
17452
17453
17454
17455
17456
17457
17458
17459
17460
17461
17462
17463
17464
17465
17466
17467
17468
17469
17470
17471
17472
17473
17474
17475
17476
17477
17478
17479
17480
17481
17482
17483
17484
17485
17486
17487
17488
17489
17490
17491
17492
17493
17494
17495
17496
17497
17498
17499
17500
17501
17502
17503
17504
17505
17506
17507
17508
17509
17510
17511
17512
17513
17514
17515
17516
17517
17518
17519
17520
17521
17522
17523
17524
17525
17526
17527
17528
17529
17530
17531
17532
17533
17534
17535
17536
17537
17538
17539
17540
17541
17542
17543
17544
17545
17546
17547
17548
17549
17550
17551
17552
17553
17554
17555
17556
17557
17558
17559
17560
17561
17562
17563
17564
17565
17566
17567
17568
17569
17570
17571
17572
17573
17574
17575
17576
17577
17578
17579
17580
17581
17582
17583
17584
17585
17586
17587
17588
17589
17590
17591
17592
17593
17594
17595
17596
17597
17598
17599
17600
17601
17602
17603
17604
17605
17606
17607
17608
17609
17610
17611
17612
17613
17614
17615
17616
17617
17618
17619
17620
17621
17622
17623
17624
17625
17626
17627
17628
17629
17630
17631
17632
17633
17634
17635
17636
17637
17638
17639
17640
17641
17642
17643
17644
17645
17646
17647
17648
17649
17650
17651
17652
17653
17654
17655
17656
17657
17658
17659
17660
17661
17662
17663
17664
17665
17666
17667
17668
17669
17670
17671
17672
17673
17674
17675
17676
17677
17678
17679
17680
17681
17682
17683
17684
17685
17686
17687
17688
17689
17690
17691
17692
17693
17694
17695
17696
17697
17698
17699
17700
17701
17702
17703
17704
17705
17706
17707
17708
17709
17710
17711
17712
17713
17714
17715
17716
17717
17718
17719
17720
17721
17722
17723
17724
17725
17726
17727
17728
17729
17730
17731
17732
17733
17734
17735
17736
17737
17738
17739
17740
17741
17742
17743
17744
17745
17746
17747
17748
17749
17750
17751
17752
17753
17754
17755
17756
17757
17758
17759
17760
17761
17762
17763
17764
17765
17766
17767
17768
17769
17770
17771
17772
17773
17774
17775
17776
17777
17778
17779
17780
17781
17782
17783
17784
17785
17786
17787
17788
17789
17790
17791
17792
17793
17794
17795
17796
17797
17798
17799
17800
17801
17802
17803
17804
17805
17806
17807
17808
17809
17810
17811
17812
17813
17814
17815
17816
17817
17818
17819
17820
17821
17822
17823
17824
17825
17826
17827
17828
17829
17830
17831
17832
17833
17834
17835
17836
17837
17838
17839
17840
17841
17842
17843
17844
17845
17846
17847
17848
17849
17850
17851
17852
17853
17854
17855
17856
17857
17858
17859
17860
17861
17862
17863
17864
17865
17866
17867
17868
17869
17870
17871
17872
17873
17874
17875
17876
17877
17878
17879
17880
17881
17882
17883
17884
17885
17886
17887
17888
17889
17890
17891
17892
17893
17894
17895
17896
17897
17898
17899
17900
17901
17902
17903
17904
17905
17906
17907
17908
17909
17910
17911
17912
17913
17914
17915
17916
17917
17918
17919
17920
17921
17922
17923
17924
17925
17926
17927
17928
17929
17930
17931
17932
17933
17934
17935
17936
17937
17938
17939
17940
17941
17942
17943
17944
17945
17946
17947
17948
17949
17950
17951
17952
17953
17954
17955
17956
17957
17958
17959
17960
17961
17962
17963
17964
17965
17966
17967
17968
17969
17970
17971
17972
17973
17974
17975
17976
17977
17978
17979
17980
17981
17982
17983
17984
17985
17986
17987
17988
17989
17990
17991
17992
17993
17994
17995
17996
17997
17998
17999
18000
18001
18002
18003
18004
18005
18006
18007
18008
18009
18010
18011
18012
18013
18014
18015
18016
18017
18018
18019
18020
18021
18022
18023
18024
18025
18026
18027
18028
18029
18030
18031
18032
18033
18034
18035
18036
18037
18038
18039
18040
18041
18042
18043
18044
18045
18046
18047
18048
18049
18050
18051
18052
18053
18054
18055
18056
18057
18058
18059
18060
18061
18062
18063
18064
18065
18066
18067
18068
18069
18070
18071
18072
18073
18074
18075
18076
18077
18078
18079
18080
18081
18082
18083
18084
18085
18086
18087
18088
18089
18090
18091
18092
18093
18094
18095
18096
18097
18098
18099
18100
18101
18102
18103
18104
18105
18106
18107
18108
18109
18110
18111
18112
18113
18114
18115
18116
18117
18118
18119
18120
18121
18122
18123
18124
18125
18126
18127
18128
18129
18130
18131
18132
18133
18134
18135
18136
18137
18138
18139
18140
18141
18142
18143
18144
18145
18146
18147
18148
18149
18150
18151
18152
18153
18154
18155
18156
18157
18158
18159
18160
18161
18162
18163
18164
18165
18166
18167
18168
18169
18170
18171
18172
18173
18174
18175
18176
18177
18178
18179
18180
18181
18182
18183
18184
18185
18186
18187
18188
18189
18190
18191
18192
18193
18194
18195
18196
18197
18198
18199
18200
18201
18202
18203
18204
18205
18206
18207
18208
18209
18210
18211
18212
18213
18214
18215
18216
18217
18218
18219
18220
18221
18222
18223
18224
18225
18226
18227
18228
18229
18230
18231
18232
18233
18234
18235
18236
18237
18238
18239
18240
18241
18242
18243
18244
18245
18246
18247
18248
18249
18250
18251
18252
18253
18254
18255
18256
18257
18258
18259
18260
18261
18262
18263
18264
18265
18266
18267
18268
18269
18270
18271
18272
18273
18274
18275
18276
18277
18278
18279
18280
18281
18282
18283
18284
18285
18286
18287
18288
18289
18290
18291
18292
18293
18294
18295
18296
18297
18298
18299
18300
18301
18302
18303
18304
18305
18306
18307
18308
18309
18310
18311
18312
18313
18314
18315
18316
18317
18318
18319
18320
18321
18322
18323
18324
18325
18326
18327
18328
18329
18330
18331
18332
18333
18334
18335
18336
18337
18338
18339
18340
18341
18342
18343
18344
18345
18346
18347
18348
18349
18350
18351
18352
18353
18354
18355
18356
18357
18358
18359
18360
18361
18362
18363
18364
18365
18366
18367
18368
18369
18370
18371
18372
18373
18374
18375
18376
18377
18378
18379
18380
18381
18382
18383
18384
18385
18386
18387
18388
18389
18390
18391
18392
18393
18394
18395
18396
18397
18398
18399
18400
18401
18402
18403
18404
18405
18406
18407
18408
18409
18410
18411
18412
18413
18414
18415
18416
18417
18418
18419
18420
18421
18422
18423
18424
18425
18426
18427
18428
18429
18430
18431
18432
18433
18434
18435
18436
18437
18438
18439
18440
18441
18442
18443
18444
18445
18446
18447
18448
18449
18450
18451
18452
18453
18454
18455
18456
18457
18458
18459
18460
18461
18462
18463
18464
18465
18466
18467
18468
18469
18470
18471
18472
18473
18474
18475
18476
18477
18478
18479
18480
18481
18482
18483
18484
18485
18486
18487
18488
18489
18490
18491
18492
18493
18494
18495
18496
18497
18498
18499
18500
18501
18502
18503
18504
18505
18506
18507
18508
18509
18510
18511
18512
18513
18514
18515
18516
18517
18518
18519
18520
18521
18522
18523
18524
18525
18526
18527
18528
18529
18530
18531
18532
18533
18534
18535
18536
18537
18538
18539
18540
18541
18542
18543
18544
18545
18546
18547
18548
18549
18550
18551
18552
18553
18554
18555
18556
18557
18558
18559
18560
18561
18562
18563
18564
18565
18566
18567
18568
18569
18570
18571
18572
18573
18574
18575
18576
18577
18578
18579
18580
18581
18582
18583
18584
18585
18586
18587
18588
18589
18590
18591
18592
18593
18594
18595
18596
18597
18598
18599
18600
18601
18602
18603
18604
18605
18606
18607
18608
18609
18610
18611
18612
18613
18614
18615
18616
18617
18618
18619
18620
18621
18622
18623
18624
18625
18626
18627
18628
18629
18630
18631
18632
18633
18634
18635
18636
18637
18638
18639
18640
18641
18642
18643
18644
18645
18646
18647
18648
18649
18650
18651
18652
18653
18654
18655
18656
18657
18658
18659
18660
18661
18662
18663
18664
18665
18666
18667
18668
18669
18670
18671
18672
18673
18674
18675
18676
18677
18678
18679
18680
18681
18682
18683
18684
18685
18686
18687
18688
18689
18690
18691
18692
18693
18694
18695
18696
18697
18698
18699
18700
18701
18702
18703
18704
18705
18706
18707
18708
18709
18710
18711
18712
18713
18714
18715
18716
18717
18718
18719
18720
18721
18722
18723
18724
18725
18726
18727
18728
18729
18730
18731
18732
18733
18734
18735
18736
18737
18738
18739
18740
18741
18742
18743
18744
18745
18746
18747
18748
18749
18750
18751
18752
18753
18754
18755
18756
18757
18758
18759
18760
18761
18762
18763
18764
18765
18766
18767
18768
18769
18770
18771
18772
18773
18774
18775
18776
18777
18778
18779
18780
18781
18782
18783
18784
18785
18786
18787
18788
18789
18790
18791
18792
18793
18794
18795
18796
18797
18798
18799
18800
18801
18802
18803
18804
18805
18806
18807
18808
18809
18810
18811
18812
18813
18814
18815
18816
18817
18818
18819
18820
18821
18822
18823
18824
18825
18826
18827
18828
18829
18830
18831
18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
18879
18880
18881
18882
18883
18884
18885
18886
18887
18888
18889
18890
18891
18892
18893
18894
18895
18896
18897
18898
18899
18900
18901
18902
18903
18904
18905
18906
18907
18908
18909
18910
18911
18912
18913
18914
18915
18916
18917
18918
18919
18920
18921
18922
18923
18924
18925
18926
18927
18928
18929
18930
18931
18932
18933
18934
18935
18936
18937
18938
18939
18940
18941
18942
18943
18944
18945
18946
18947
18948
18949
18950
18951
18952
18953
18954
18955
18956
18957
18958
18959
18960
18961
18962
18963
18964
18965
18966
18967
18968
18969
18970
18971
18972
18973
18974
18975
18976
18977
18978
18979
18980
18981
18982
18983
18984
18985
18986
18987
18988
18989
18990
18991
18992
18993
18994
18995
18996
18997
18998
18999
19000
19001
19002
19003
19004
19005
19006
19007
19008
19009
19010
19011
19012
19013
19014
19015
19016
19017
19018
19019
19020
19021
19022
19023
19024
19025
19026
19027
19028
19029
19030
19031
19032
19033
19034
19035
19036
19037
19038
19039
19040
19041
19042
19043
19044
19045
19046
19047
19048
19049
19050
19051
19052
19053
19054
19055
19056
19057
19058
19059
19060
19061
19062
19063
19064
19065
19066
19067
19068
19069
19070
19071
19072
19073
19074
19075
19076
19077
19078
19079
19080
19081
19082
19083
19084
19085
19086
19087
19088
19089
19090
19091
19092
19093
19094
19095
19096
19097
19098
19099
19100
19101
19102
19103
19104
19105
19106
19107
19108
19109
19110
19111
19112
19113
19114
19115
19116
19117
19118
19119
19120
19121
19122
19123
19124
19125
19126
19127
19128
19129
19130
19131
19132
19133
19134
19135
19136
19137
19138
19139
19140
19141
19142
19143
19144
19145
19146
19147
19148
19149
19150
19151
19152
19153
19154
19155
19156
19157
19158
19159
19160
19161
19162
19163
19164
19165
19166
19167
19168
19169
19170
19171
19172
19173
19174
19175
19176
19177
19178
19179
19180
19181
19182
19183
19184
19185
19186
19187
19188
19189
19190
19191
19192
19193
19194
19195
19196
19197
19198
19199
19200
19201
19202
19203
19204
19205
19206
19207
19208
19209
19210
19211
19212
19213
19214
19215
19216
19217
19218
19219
19220
19221
19222
19223
19224
19225
19226
19227
19228
19229
19230
19231
19232
19233
19234
19235
19236
19237
19238
19239
19240
19241
19242
19243
19244
19245
19246
19247
19248
19249
19250
19251
19252
19253
19254
19255
19256
19257
19258
19259
19260
19261
19262
19263
19264
19265
19266
19267
19268
19269
19270
19271
19272
19273
19274
19275
19276
19277
19278
19279
19280
19281
19282
19283
19284
19285
19286
19287
19288
19289
19290
19291
19292
19293
19294
19295
19296
19297
19298
19299
19300
19301
19302
19303
19304
19305
19306
19307
19308
19309
19310
19311
19312
19313
19314
19315
19316
19317
19318
19319
19320
19321
19322
19323
19324
19325
19326
19327
19328
19329
19330
19331
19332
19333
19334
19335
19336
19337
19338
19339
19340
19341
19342
19343
19344
19345
19346
19347
19348
19349
19350
19351
19352
19353
19354
19355
19356
19357
19358
19359
19360
19361
19362
19363
19364
19365
19366
19367
19368
19369
19370
19371
19372
19373
19374
19375
19376
19377
19378
19379
19380
19381
19382
19383
19384
19385
19386
19387
19388
19389
19390
19391
19392
19393
19394
19395
19396
19397
19398
19399
19400
19401
19402
19403
19404
19405
19406
19407
19408
19409
19410
19411
19412
19413
19414
19415
19416
19417
19418
19419
19420
19421
19422
19423
19424
19425
19426
19427
19428
19429
19430
19431
19432
19433
19434
19435
19436
19437
19438
19439
19440
19441
19442
19443
19444
19445
19446
19447
19448
19449
19450
19451
19452
19453
19454
19455
19456
19457
19458
19459
19460
19461
19462
19463
19464
19465
19466
19467
19468
19469
19470
19471
19472
19473
19474
19475
19476
19477
19478
19479
19480
19481
19482
19483
19484
19485
19486
19487
19488
19489
19490
19491
19492
19493
19494
19495
19496
19497
19498
19499
19500
19501
19502
19503
19504
19505
19506
19507
19508
19509
19510
19511
19512
19513
19514
19515
19516
19517
19518
19519
19520
19521
19522
19523
19524
19525
19526
19527
19528
19529
19530
19531
19532
19533
19534
19535
19536
19537
19538
19539
19540
19541
19542
19543
19544
19545
19546
19547
19548
19549
19550
19551
19552
19553
19554
19555
19556
19557
19558
19559
19560
19561
19562
19563
19564
19565
19566
19567
19568
19569
19570
19571
19572
19573
19574
19575
19576
19577
19578
19579
19580
19581
19582
19583
19584
19585
19586
19587
19588
19589
19590
19591
19592
19593
19594
19595
19596
19597
19598
19599
19600
19601
19602
19603
19604
19605
19606
19607
19608
19609
19610
19611
19612
19613
19614
19615
19616
19617
19618
19619
19620
19621
19622
19623
19624
19625
19626
19627
19628
19629
19630
19631
19632
19633
19634
19635
19636
19637
19638
19639
19640
19641
19642
19643
19644
19645
19646
19647
19648
19649
19650
19651
19652
19653
19654
19655
19656
19657
19658
19659
19660
19661
19662
19663
19664
19665
19666
19667
19668
19669
19670
19671
19672
19673
19674
19675
19676
19677
19678
19679
19680
19681
19682
19683
19684
19685
19686
19687
19688
19689
19690
19691
19692
19693
19694
19695
19696
19697
19698
19699
19700
19701
19702
19703
19704
19705
19706
19707
19708
19709
19710
19711
19712
19713
19714
19715
19716
19717
19718
19719
19720
19721
19722
19723
19724
19725
19726
19727
19728
19729
19730
19731
19732
19733
19734
19735
19736
19737
19738
19739
19740
19741
19742
19743
19744
19745
19746
19747
19748
19749
19750
19751
19752
19753
19754
19755
19756
19757
19758
19759
19760
19761
19762
19763
19764
19765
19766
19767
19768
19769
19770
19771
19772
19773
19774
19775
19776
19777
19778
19779
19780
19781
19782
19783
19784
19785
19786
19787
19788
19789
19790
19791
19792
19793
19794
19795
19796
19797
19798
19799
19800
19801
19802
19803
19804
19805
19806
19807
19808
19809
19810
19811
19812
19813
19814
19815
19816
19817
19818
19819
19820
19821
19822
19823
19824
19825
19826
19827
19828
19829
19830
19831
19832
19833
19834
19835
19836
19837
19838
19839
19840
19841
19842
19843
19844
19845
19846
19847
19848
19849
19850
19851
19852
19853
19854
19855
19856
19857
19858
19859
19860
19861
19862
19863
19864
19865
19866
19867
19868
19869
19870
19871
19872
19873
19874
19875
19876
19877
19878
19879
19880
19881
19882
19883
19884
19885
19886
19887
19888
19889
19890
19891
19892
19893
19894
19895
19896
19897
19898
19899
19900
19901
19902
19903
19904
19905
19906
19907
19908
19909
19910
19911
19912
19913
19914
19915
19916
19917
19918
19919
19920
19921
19922
19923
19924
19925
19926
19927
19928
19929
19930
19931
19932
19933
19934
19935
19936
19937
19938
19939
19940
19941
19942
19943
19944
19945
19946
19947
19948
19949
19950
19951
19952
19953
19954
19955
19956
19957
19958
19959
19960
19961
19962
19963
19964
19965
19966
19967
19968
19969
19970
19971
19972
19973
19974
19975
19976
19977
19978
19979
19980
19981
19982
19983
19984
19985
19986
19987
19988
19989
19990
19991
19992
19993
19994
19995
19996
19997
19998
19999
20000
20001
20002
20003
20004
20005
20006
20007
20008
20009
20010
20011
20012
20013
20014
20015
20016
20017
20018
20019
20020
20021
20022
20023
20024
20025
20026
20027
20028
20029
20030
20031
20032
20033
20034
20035
20036
20037
20038
20039
20040
20041
20042
20043
20044
20045
20046
20047
20048
20049
20050
20051
20052
20053
20054
20055
20056
20057
20058
20059
20060
20061
20062
20063
20064
20065
20066
20067
20068
20069
20070
20071
20072
20073
20074
20075
20076
20077
20078
20079
20080
20081
20082
20083
20084
20085
20086
20087
20088
20089
20090
20091
20092
20093
20094
20095
20096
20097
20098
20099
20100
20101
20102
20103
20104
20105
20106
20107
20108
20109
20110
20111
20112
20113
20114
20115
20116
20117
20118
20119
20120
20121
20122
20123
20124
20125
20126
20127
20128
20129
20130
20131
20132
20133
20134
20135
20136
20137
20138
20139
20140
20141
20142
20143
20144
20145
20146
20147
20148
20149
20150
20151
20152
20153
20154
20155
20156
20157
20158
20159
20160
20161
20162
20163
20164
20165
20166
20167
20168
20169
20170
20171
20172
20173
20174
|
/* Subroutines used for MIPS code generation.
Copyright (C) 1989-2015 Free Software Foundation, Inc.
Contributed by A. Lichnewsky, lich@inria.inria.fr.
Changes by Michael Meissner, meissner@osf.org.
64-bit r4000 support by Ian Lance Taylor, ian@cygnus.com, and
Brendan Eich, brendan@microunity.com.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "cfghooks.h"
#include "tree.h"
#include "gimple.h"
#include "rtl.h"
#include "df.h"
#include "regs.h"
#include "insn-config.h"
#include "conditions.h"
#include "insn-attr.h"
#include "recog.h"
#include "output.h"
#include "alias.h"
#include "fold-const.h"
#include "varasm.h"
#include "stringpool.h"
#include "stor-layout.h"
#include "calls.h"
#include "flags.h"
#include "expmed.h"
#include "dojump.h"
#include "explow.h"
#include "emit-rtl.h"
#include "stmt.h"
#include "expr.h"
#include "insn-codes.h"
#include "optabs.h"
#include "libfuncs.h"
#include "reload.h"
#include "tm_p.h"
#include "gstab.h"
#include "debug.h"
#include "target.h"
#include "common/common-target.h"
#include "langhooks.h"
#include "cfgrtl.h"
#include "cfganal.h"
#include "lcm.h"
#include "cfgbuild.h"
#include "cfgcleanup.h"
#include "sched-int.h"
#include "internal-fn.h"
#include "gimple-fold.h"
#include "tree-eh.h"
#include "gimplify.h"
#include "diagnostic.h"
#include "target-globals.h"
#include "opts.h"
#include "tree-pass.h"
#include "context.h"
#include "cgraph.h"
#include "builtins.h"
#include "rtl-iter.h"
/* This file should be included last. */
#include "target-def.h"
/* True if X is an UNSPEC wrapper around a SYMBOL_REF or LABEL_REF. */
#define UNSPEC_ADDRESS_P(X) \
(GET_CODE (X) == UNSPEC \
&& XINT (X, 1) >= UNSPEC_ADDRESS_FIRST \
&& XINT (X, 1) < UNSPEC_ADDRESS_FIRST + NUM_SYMBOL_TYPES)
/* Extract the symbol or label from UNSPEC wrapper X. */
#define UNSPEC_ADDRESS(X) \
XVECEXP (X, 0, 0)
/* Extract the symbol type from UNSPEC wrapper X. */
#define UNSPEC_ADDRESS_TYPE(X) \
((enum mips_symbol_type) (XINT (X, 1) - UNSPEC_ADDRESS_FIRST))
/* The maximum distance between the top of the stack frame and the
value $sp has when we save and restore registers.
The value for normal-mode code must be a SMALL_OPERAND and must
preserve the maximum stack alignment. We therefore use a value
of 0x7ff0 in this case.
microMIPS LWM and SWM support 12-bit offsets (from -0x800 to 0x7ff),
so we use a maximum of 0x7f0 for TARGET_MICROMIPS.
MIPS16e SAVE and RESTORE instructions can adjust the stack pointer by
up to 0x7f8 bytes and can usually save or restore all the registers
that we need to save or restore. (Note that we can only use these
instructions for o32, for which the stack alignment is 8 bytes.)
We use a maximum gap of 0x100 or 0x400 for MIPS16 code when SAVE and
RESTORE are not available. We can then use unextended instructions
to save and restore registers, and to allocate and deallocate the top
part of the frame. */
#define MIPS_MAX_FIRST_STACK_STEP \
(!TARGET_COMPRESSION ? 0x7ff0 \
: TARGET_MICROMIPS || GENERATE_MIPS16E_SAVE_RESTORE ? 0x7f8 \
: TARGET_64BIT ? 0x100 : 0x400)
/* True if INSN is a mips.md pattern or asm statement. */
/* ??? This test exists through the compiler, perhaps it should be
moved to rtl.h. */
#define USEFUL_INSN_P(INSN) \
(NONDEBUG_INSN_P (INSN) \
&& GET_CODE (PATTERN (INSN)) != USE \
&& GET_CODE (PATTERN (INSN)) != CLOBBER)
/* If INSN is a delayed branch sequence, return the first instruction
in the sequence, otherwise return INSN itself. */
#define SEQ_BEGIN(INSN) \
(INSN_P (INSN) && GET_CODE (PATTERN (INSN)) == SEQUENCE \
? as_a <rtx_insn *> (XVECEXP (PATTERN (INSN), 0, 0)) \
: (INSN))
/* Likewise for the last instruction in a delayed branch sequence. */
#define SEQ_END(INSN) \
(INSN_P (INSN) && GET_CODE (PATTERN (INSN)) == SEQUENCE \
? as_a <rtx_insn *> (XVECEXP (PATTERN (INSN), \
0, \
XVECLEN (PATTERN (INSN), 0) - 1)) \
: (INSN))
/* Execute the following loop body with SUBINSN set to each instruction
between SEQ_BEGIN (INSN) and SEQ_END (INSN) inclusive. */
#define FOR_EACH_SUBINSN(SUBINSN, INSN) \
for ((SUBINSN) = SEQ_BEGIN (INSN); \
(SUBINSN) != NEXT_INSN (SEQ_END (INSN)); \
(SUBINSN) = NEXT_INSN (SUBINSN))
/* True if bit BIT is set in VALUE. */
#define BITSET_P(VALUE, BIT) (((VALUE) & (1 << (BIT))) != 0)
/* Return the opcode for a ptr_mode load of the form:
l[wd] DEST, OFFSET(BASE). */
#define MIPS_LOAD_PTR(DEST, OFFSET, BASE) \
(((ptr_mode == DImode ? 0x37 : 0x23) << 26) \
| ((BASE) << 21) \
| ((DEST) << 16) \
| (OFFSET))
/* Return the opcode to move register SRC into register DEST. */
#define MIPS_MOVE(DEST, SRC) \
((TARGET_64BIT ? 0x2d : 0x21) \
| ((DEST) << 11) \
| ((SRC) << 21))
/* Return the opcode for:
lui DEST, VALUE. */
#define MIPS_LUI(DEST, VALUE) \
((0xf << 26) | ((DEST) << 16) | (VALUE))
/* Return the opcode to jump to register DEST. When the JR opcode is not
available use JALR $0, DEST. */
#define MIPS_JR(DEST) \
(TARGET_CB_ALWAYS ? ((0x1b << 27) | ((DEST) << 16)) \
: (((DEST) << 21) | (ISA_HAS_JR ? 0x8 : 0x9)))
/* Return the opcode for:
bal . + (1 + OFFSET) * 4. */
#define MIPS_BAL(OFFSET) \
((0x1 << 26) | (0x11 << 16) | (OFFSET))
/* Return the usual opcode for a nop. */
#define MIPS_NOP 0
/* Classifies an address.
ADDRESS_REG
A natural register + offset address. The register satisfies
mips_valid_base_register_p and the offset is a const_arith_operand.
ADDRESS_LO_SUM
A LO_SUM rtx. The first operand is a valid base register and
the second operand is a symbolic address.
ADDRESS_CONST_INT
A signed 16-bit constant address.
ADDRESS_SYMBOLIC:
A constant symbolic address. */
enum mips_address_type {
ADDRESS_REG,
ADDRESS_LO_SUM,
ADDRESS_CONST_INT,
ADDRESS_SYMBOLIC
};
/* Macros to create an enumeration identifier for a function prototype. */
#define MIPS_FTYPE_NAME1(A, B) MIPS_##A##_FTYPE_##B
#define MIPS_FTYPE_NAME2(A, B, C) MIPS_##A##_FTYPE_##B##_##C
#define MIPS_FTYPE_NAME3(A, B, C, D) MIPS_##A##_FTYPE_##B##_##C##_##D
#define MIPS_FTYPE_NAME4(A, B, C, D, E) MIPS_##A##_FTYPE_##B##_##C##_##D##_##E
/* Classifies the prototype of a built-in function. */
enum mips_function_type {
#define DEF_MIPS_FTYPE(NARGS, LIST) MIPS_FTYPE_NAME##NARGS LIST,
#include "config/mips/mips-ftypes.def"
#undef DEF_MIPS_FTYPE
MIPS_MAX_FTYPE_MAX
};
/* Specifies how a built-in function should be converted into rtl. */
enum mips_builtin_type {
/* The function corresponds directly to an .md pattern. The return
value is mapped to operand 0 and the arguments are mapped to
operands 1 and above. */
MIPS_BUILTIN_DIRECT,
/* The function corresponds directly to an .md pattern. There is no return
value and the arguments are mapped to operands 0 and above. */
MIPS_BUILTIN_DIRECT_NO_TARGET,
/* The function corresponds to a comparison instruction followed by
a mips_cond_move_tf_ps pattern. The first two arguments are the
values to compare and the second two arguments are the vector
operands for the movt.ps or movf.ps instruction (in assembly order). */
MIPS_BUILTIN_MOVF,
MIPS_BUILTIN_MOVT,
/* The function corresponds to a V2SF comparison instruction. Operand 0
of this instruction is the result of the comparison, which has mode
CCV2 or CCV4. The function arguments are mapped to operands 1 and
above. The function's return value is an SImode boolean that is
true under the following conditions:
MIPS_BUILTIN_CMP_ANY: one of the registers is true
MIPS_BUILTIN_CMP_ALL: all of the registers are true
MIPS_BUILTIN_CMP_LOWER: the first register is true
MIPS_BUILTIN_CMP_UPPER: the second register is true. */
MIPS_BUILTIN_CMP_ANY,
MIPS_BUILTIN_CMP_ALL,
MIPS_BUILTIN_CMP_UPPER,
MIPS_BUILTIN_CMP_LOWER,
/* As above, but the instruction only sets a single $fcc register. */
MIPS_BUILTIN_CMP_SINGLE,
/* For generating bposge32 branch instructions in MIPS32 DSP ASE. */
MIPS_BUILTIN_BPOSGE32
};
/* Invoke MACRO (COND) for each C.cond.fmt condition. */
#define MIPS_FP_CONDITIONS(MACRO) \
MACRO (f), \
MACRO (un), \
MACRO (eq), \
MACRO (ueq), \
MACRO (olt), \
MACRO (ult), \
MACRO (ole), \
MACRO (ule), \
MACRO (sf), \
MACRO (ngle), \
MACRO (seq), \
MACRO (ngl), \
MACRO (lt), \
MACRO (nge), \
MACRO (le), \
MACRO (ngt)
/* Enumerates the codes above as MIPS_FP_COND_<X>. */
#define DECLARE_MIPS_COND(X) MIPS_FP_COND_ ## X
enum mips_fp_condition {
MIPS_FP_CONDITIONS (DECLARE_MIPS_COND)
};
#undef DECLARE_MIPS_COND
/* Index X provides the string representation of MIPS_FP_COND_<X>. */
#define STRINGIFY(X) #X
static const char *const mips_fp_conditions[] = {
MIPS_FP_CONDITIONS (STRINGIFY)
};
#undef STRINGIFY
/* A class used to control a comdat-style stub that we output in each
translation unit that needs it. */
class mips_one_only_stub {
public:
virtual ~mips_one_only_stub () {}
/* Return the name of the stub. */
virtual const char *get_name () = 0;
/* Output the body of the function to asm_out_file. */
virtual void output_body () = 0;
};
/* Tuning information that is automatically derived from other sources
(such as the scheduler). */
static struct {
/* The architecture and tuning settings that this structure describes. */
enum processor arch;
enum processor tune;
/* True if this structure describes MIPS16 settings. */
bool mips16_p;
/* True if the structure has been initialized. */
bool initialized_p;
/* True if "MULT $0, $0" is preferable to "MTLO $0; MTHI $0"
when optimizing for speed. */
bool fast_mult_zero_zero_p;
} mips_tuning_info;
/* Information about a function's frame layout. */
struct GTY(()) mips_frame_info {
/* The size of the frame in bytes. */
HOST_WIDE_INT total_size;
/* The number of bytes allocated to variables. */
HOST_WIDE_INT var_size;
/* The number of bytes allocated to outgoing function arguments. */
HOST_WIDE_INT args_size;
/* The number of bytes allocated to the .cprestore slot, or 0 if there
is no such slot. */
HOST_WIDE_INT cprestore_size;
/* Bit X is set if the function saves or restores GPR X. */
unsigned int mask;
/* Likewise FPR X. */
unsigned int fmask;
/* Likewise doubleword accumulator X ($acX). */
unsigned int acc_mask;
/* The number of GPRs, FPRs, doubleword accumulators and COP0
registers saved. */
unsigned int num_gp;
unsigned int num_fp;
unsigned int num_acc;
unsigned int num_cop0_regs;
/* The offset of the topmost GPR, FPR, accumulator and COP0-register
save slots from the top of the frame, or zero if no such slots are
needed. */
HOST_WIDE_INT gp_save_offset;
HOST_WIDE_INT fp_save_offset;
HOST_WIDE_INT acc_save_offset;
HOST_WIDE_INT cop0_save_offset;
/* Likewise, but giving offsets from the bottom of the frame. */
HOST_WIDE_INT gp_sp_offset;
HOST_WIDE_INT fp_sp_offset;
HOST_WIDE_INT acc_sp_offset;
HOST_WIDE_INT cop0_sp_offset;
/* Similar, but the value passed to _mcount. */
HOST_WIDE_INT ra_fp_offset;
/* The offset of arg_pointer_rtx from the bottom of the frame. */
HOST_WIDE_INT arg_pointer_offset;
/* The offset of hard_frame_pointer_rtx from the bottom of the frame. */
HOST_WIDE_INT hard_frame_pointer_offset;
};
/* Enumeration for masked vectored (VI) and non-masked (EIC) interrupts. */
enum mips_int_mask
{
INT_MASK_EIC = -1,
INT_MASK_SW0 = 0,
INT_MASK_SW1 = 1,
INT_MASK_HW0 = 2,
INT_MASK_HW1 = 3,
INT_MASK_HW2 = 4,
INT_MASK_HW3 = 5,
INT_MASK_HW4 = 6,
INT_MASK_HW5 = 7
};
/* Enumeration to mark the existence of the shadow register set.
SHADOW_SET_INTSTACK indicates a shadow register set with a valid stack
pointer. */
enum mips_shadow_set
{
SHADOW_SET_NO,
SHADOW_SET_YES,
SHADOW_SET_INTSTACK
};
struct GTY(()) machine_function {
/* The next floating-point condition-code register to allocate
for ISA_HAS_8CC targets, relative to ST_REG_FIRST. */
unsigned int next_fcc;
/* The register returned by mips16_gp_pseudo_reg; see there for details. */
rtx mips16_gp_pseudo_rtx;
/* The number of extra stack bytes taken up by register varargs.
This area is allocated by the callee at the very top of the frame. */
int varargs_size;
/* The current frame information, calculated by mips_compute_frame_info. */
struct mips_frame_info frame;
/* The register to use as the function's global pointer, or INVALID_REGNUM
if the function doesn't need one. */
unsigned int global_pointer;
/* How many instructions it takes to load a label into $AT, or 0 if
this property hasn't yet been calculated. */
unsigned int load_label_num_insns;
/* True if mips_adjust_insn_length should ignore an instruction's
hazard attribute. */
bool ignore_hazard_length_p;
/* True if the whole function is suitable for .set noreorder and
.set nomacro. */
bool all_noreorder_p;
/* True if the function has "inflexible" and "flexible" references
to the global pointer. See mips_cfun_has_inflexible_gp_ref_p
and mips_cfun_has_flexible_gp_ref_p for details. */
bool has_inflexible_gp_insn_p;
bool has_flexible_gp_insn_p;
/* True if the function's prologue must load the global pointer
value into pic_offset_table_rtx and store the same value in
the function's cprestore slot (if any). Even if this value
is currently false, we may decide to set it to true later;
see mips_must_initialize_gp_p () for details. */
bool must_initialize_gp_p;
/* True if the current function must restore $gp after any potential
clobber. This value is only meaningful during the first post-epilogue
split_insns pass; see mips_must_initialize_gp_p () for details. */
bool must_restore_gp_when_clobbered_p;
/* True if this is an interrupt handler. */
bool interrupt_handler_p;
/* Records the way in which interrupts should be masked. Only used if
interrupts are not kept masked. */
enum mips_int_mask int_mask;
/* Records if this is an interrupt handler that uses shadow registers. */
enum mips_shadow_set use_shadow_register_set;
/* True if this is an interrupt handler that should keep interrupts
masked. */
bool keep_interrupts_masked_p;
/* True if this is an interrupt handler that should use DERET
instead of ERET. */
bool use_debug_exception_return_p;
};
/* Information about a single argument. */
struct mips_arg_info {
/* True if the argument is passed in a floating-point register, or
would have been if we hadn't run out of registers. */
bool fpr_p;
/* The number of words passed in registers, rounded up. */
unsigned int reg_words;
/* For EABI, the offset of the first register from GP_ARG_FIRST or
FP_ARG_FIRST. For other ABIs, the offset of the first register from
the start of the ABI's argument structure (see the CUMULATIVE_ARGS
comment for details).
The value is MAX_ARGS_IN_REGISTERS if the argument is passed entirely
on the stack. */
unsigned int reg_offset;
/* The number of words that must be passed on the stack, rounded up. */
unsigned int stack_words;
/* The offset from the start of the stack overflow area of the argument's
first stack word. Only meaningful when STACK_WORDS is nonzero. */
unsigned int stack_offset;
};
/* Information about an address described by mips_address_type.
ADDRESS_CONST_INT
No fields are used.
ADDRESS_REG
REG is the base register and OFFSET is the constant offset.
ADDRESS_LO_SUM
REG and OFFSET are the operands to the LO_SUM and SYMBOL_TYPE
is the type of symbol it references.
ADDRESS_SYMBOLIC
SYMBOL_TYPE is the type of symbol that the address references. */
struct mips_address_info {
enum mips_address_type type;
rtx reg;
rtx offset;
enum mips_symbol_type symbol_type;
};
/* One stage in a constant building sequence. These sequences have
the form:
A = VALUE[0]
A = A CODE[1] VALUE[1]
A = A CODE[2] VALUE[2]
...
where A is an accumulator, each CODE[i] is a binary rtl operation
and each VALUE[i] is a constant integer. CODE[0] is undefined. */
struct mips_integer_op {
enum rtx_code code;
unsigned HOST_WIDE_INT value;
};
/* The largest number of operations needed to load an integer constant.
The worst accepted case for 64-bit constants is LUI,ORI,SLL,ORI,SLL,ORI.
When the lowest bit is clear, we can try, but reject a sequence with
an extra SLL at the end. */
#define MIPS_MAX_INTEGER_OPS 7
/* Information about a MIPS16e SAVE or RESTORE instruction. */
struct mips16e_save_restore_info {
/* The number of argument registers saved by a SAVE instruction.
0 for RESTORE instructions. */
unsigned int nargs;
/* Bit X is set if the instruction saves or restores GPR X. */
unsigned int mask;
/* The total number of bytes to allocate. */
HOST_WIDE_INT size;
};
/* Costs of various operations on the different architectures. */
struct mips_rtx_cost_data
{
unsigned short fp_add;
unsigned short fp_mult_sf;
unsigned short fp_mult_df;
unsigned short fp_div_sf;
unsigned short fp_div_df;
unsigned short int_mult_si;
unsigned short int_mult_di;
unsigned short int_div_si;
unsigned short int_div_di;
unsigned short branch_cost;
unsigned short memory_latency;
};
/* Global variables for machine-dependent things. */
/* The -G setting, or the configuration's default small-data limit if
no -G option is given. */
static unsigned int mips_small_data_threshold;
/* The number of file directives written by mips_output_filename. */
int num_source_filenames;
/* The name that appeared in the last .file directive written by
mips_output_filename, or "" if mips_output_filename hasn't
written anything yet. */
const char *current_function_file = "";
/* Arrays that map GCC register numbers to debugger register numbers. */
int mips_dbx_regno[FIRST_PSEUDO_REGISTER];
int mips_dwarf_regno[FIRST_PSEUDO_REGISTER];
/* Information about the current function's epilogue, used only while
expanding it. */
static struct {
/* A list of queued REG_CFA_RESTORE notes. */
rtx cfa_restores;
/* The CFA is currently defined as CFA_REG + CFA_OFFSET. */
rtx cfa_reg;
HOST_WIDE_INT cfa_offset;
/* The offset of the CFA from the stack pointer while restoring
registers. */
HOST_WIDE_INT cfa_restore_sp_offset;
} mips_epilogue;
/* The nesting depth of the PRINT_OPERAND '%(', '%<' and '%[' constructs. */
struct mips_asm_switch mips_noreorder = { "reorder", 0 };
struct mips_asm_switch mips_nomacro = { "macro", 0 };
struct mips_asm_switch mips_noat = { "at", 0 };
/* True if we're writing out a branch-likely instruction rather than a
normal branch. */
static bool mips_branch_likely;
/* The current instruction-set architecture. */
enum processor mips_arch;
const struct mips_cpu_info *mips_arch_info;
/* The processor that we should tune the code for. */
enum processor mips_tune;
const struct mips_cpu_info *mips_tune_info;
/* The ISA level associated with mips_arch. */
int mips_isa;
/* The ISA revision level. This is 0 for MIPS I to V and N for
MIPS{32,64}rN. */
int mips_isa_rev;
/* The architecture selected by -mipsN, or null if -mipsN wasn't used. */
static const struct mips_cpu_info *mips_isa_option_info;
/* Which cost information to use. */
static const struct mips_rtx_cost_data *mips_cost;
/* The ambient target flags, excluding MASK_MIPS16. */
static int mips_base_target_flags;
/* The default compression mode. */
unsigned int mips_base_compression_flags;
/* The ambient values of other global variables. */
static int mips_base_schedule_insns; /* flag_schedule_insns */
static int mips_base_reorder_blocks_and_partition; /* flag_reorder... */
static int mips_base_move_loop_invariants; /* flag_move_loop_invariants */
static int mips_base_align_loops; /* align_loops */
static int mips_base_align_jumps; /* align_jumps */
static int mips_base_align_functions; /* align_functions */
/* Index [M][R] is true if register R is allowed to hold a value of mode M. */
bool mips_hard_regno_mode_ok[(int) MAX_MACHINE_MODE][FIRST_PSEUDO_REGISTER];
/* Index C is true if character C is a valid PRINT_OPERAND punctation
character. */
static bool mips_print_operand_punct[256];
static GTY (()) int mips_output_filename_first_time = 1;
/* mips_split_p[X] is true if symbols of type X can be split by
mips_split_symbol. */
bool mips_split_p[NUM_SYMBOL_TYPES];
/* mips_split_hi_p[X] is true if the high parts of symbols of type X
can be split by mips_split_symbol. */
bool mips_split_hi_p[NUM_SYMBOL_TYPES];
/* mips_use_pcrel_pool_p[X] is true if symbols of type X should be
forced into a PC-relative constant pool. */
bool mips_use_pcrel_pool_p[NUM_SYMBOL_TYPES];
/* mips_lo_relocs[X] is the relocation to use when a symbol of type X
appears in a LO_SUM. It can be null if such LO_SUMs aren't valid or
if they are matched by a special .md file pattern. */
const char *mips_lo_relocs[NUM_SYMBOL_TYPES];
/* Likewise for HIGHs. */
const char *mips_hi_relocs[NUM_SYMBOL_TYPES];
/* Target state for MIPS16. */
struct target_globals *mips16_globals;
/* Target state for MICROMIPS. */
struct target_globals *micromips_globals;
/* Cached value of can_issue_more. This is cached in mips_variable_issue hook
and returned from mips_sched_reorder2. */
static int cached_can_issue_more;
/* The stubs for various MIPS16 support functions, if used. */
static mips_one_only_stub *mips16_rdhwr_stub;
static mips_one_only_stub *mips16_get_fcsr_stub;
static mips_one_only_stub *mips16_set_fcsr_stub;
/* Index R is the smallest register class that contains register R. */
const enum reg_class mips_regno_to_class[FIRST_PSEUDO_REGISTER] = {
LEA_REGS, LEA_REGS, M16_STORE_REGS, V1_REG,
M16_STORE_REGS, M16_STORE_REGS, M16_STORE_REGS, M16_STORE_REGS,
LEA_REGS, LEA_REGS, LEA_REGS, LEA_REGS,
LEA_REGS, LEA_REGS, LEA_REGS, LEA_REGS,
M16_REGS, M16_STORE_REGS, LEA_REGS, LEA_REGS,
LEA_REGS, LEA_REGS, LEA_REGS, LEA_REGS,
T_REG, PIC_FN_ADDR_REG, LEA_REGS, LEA_REGS,
LEA_REGS, M16_SP_REGS, LEA_REGS, LEA_REGS,
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
MD0_REG, MD1_REG, NO_REGS, ST_REGS,
ST_REGS, ST_REGS, ST_REGS, ST_REGS,
ST_REGS, ST_REGS, ST_REGS, NO_REGS,
NO_REGS, FRAME_REGS, FRAME_REGS, NO_REGS,
COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS,
COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS,
COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS,
COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS,
COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS,
COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS,
COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS,
COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS,
COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS,
COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS,
COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS,
COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS,
COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS,
COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS,
COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS,
COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS,
COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS,
COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS,
COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS,
COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS,
COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS,
COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS,
COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS,
COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS,
DSP_ACC_REGS, DSP_ACC_REGS, DSP_ACC_REGS, DSP_ACC_REGS,
DSP_ACC_REGS, DSP_ACC_REGS, ALL_REGS, ALL_REGS,
ALL_REGS, ALL_REGS, ALL_REGS, ALL_REGS
};
static tree mips_handle_interrupt_attr (tree *, tree, tree, int, bool *);
static tree mips_handle_use_shadow_register_set_attr (tree *, tree, tree, int,
bool *);
/* The value of TARGET_ATTRIBUTE_TABLE. */
static const struct attribute_spec mips_attribute_table[] = {
/* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler,
om_diagnostic } */
{ "long_call", 0, 0, false, true, true, NULL, false },
{ "far", 0, 0, false, true, true, NULL, false },
{ "near", 0, 0, false, true, true, NULL, false },
/* We would really like to treat "mips16" and "nomips16" as type
attributes, but GCC doesn't provide the hooks we need to support
the right conversion rules. As declaration attributes, they affect
code generation but don't carry other semantics. */
{ "mips16", 0, 0, true, false, false, NULL, false },
{ "nomips16", 0, 0, true, false, false, NULL, false },
{ "micromips", 0, 0, true, false, false, NULL, false },
{ "nomicromips", 0, 0, true, false, false, NULL, false },
{ "nocompression", 0, 0, true, false, false, NULL, false },
/* Allow functions to be specified as interrupt handlers */
{ "interrupt", 0, 1, false, true, true, mips_handle_interrupt_attr,
false },
{ "use_shadow_register_set", 0, 1, false, true, true,
mips_handle_use_shadow_register_set_attr, false },
{ "keep_interrupts_masked", 0, 0, false, true, true, NULL, false },
{ "use_debug_exception_return", 0, 0, false, true, true, NULL, false },
{ NULL, 0, 0, false, false, false, NULL, false }
};
/* A table describing all the processors GCC knows about; see
mips-cpus.def for details. */
static const struct mips_cpu_info mips_cpu_info_table[] = {
#define MIPS_CPU(NAME, CPU, ISA, FLAGS) \
{ NAME, CPU, ISA, FLAGS },
#include "mips-cpus.def"
#undef MIPS_CPU
};
/* Default costs. If these are used for a processor we should look
up the actual costs. */
#define DEFAULT_COSTS COSTS_N_INSNS (6), /* fp_add */ \
COSTS_N_INSNS (7), /* fp_mult_sf */ \
COSTS_N_INSNS (8), /* fp_mult_df */ \
COSTS_N_INSNS (23), /* fp_div_sf */ \
COSTS_N_INSNS (36), /* fp_div_df */ \
COSTS_N_INSNS (10), /* int_mult_si */ \
COSTS_N_INSNS (10), /* int_mult_di */ \
COSTS_N_INSNS (69), /* int_div_si */ \
COSTS_N_INSNS (69), /* int_div_di */ \
2, /* branch_cost */ \
4 /* memory_latency */
/* Floating-point costs for processors without an FPU. Just assume that
all floating-point libcalls are very expensive. */
#define SOFT_FP_COSTS COSTS_N_INSNS (256), /* fp_add */ \
COSTS_N_INSNS (256), /* fp_mult_sf */ \
COSTS_N_INSNS (256), /* fp_mult_df */ \
COSTS_N_INSNS (256), /* fp_div_sf */ \
COSTS_N_INSNS (256) /* fp_div_df */
/* Costs to use when optimizing for size. */
static const struct mips_rtx_cost_data mips_rtx_cost_optimize_size = {
COSTS_N_INSNS (1), /* fp_add */
COSTS_N_INSNS (1), /* fp_mult_sf */
COSTS_N_INSNS (1), /* fp_mult_df */
COSTS_N_INSNS (1), /* fp_div_sf */
COSTS_N_INSNS (1), /* fp_div_df */
COSTS_N_INSNS (1), /* int_mult_si */
COSTS_N_INSNS (1), /* int_mult_di */
COSTS_N_INSNS (1), /* int_div_si */
COSTS_N_INSNS (1), /* int_div_di */
2, /* branch_cost */
4 /* memory_latency */
};
/* Costs to use when optimizing for speed, indexed by processor. */
static const struct mips_rtx_cost_data
mips_rtx_cost_data[NUM_PROCESSOR_VALUES] = {
{ /* R3000 */
COSTS_N_INSNS (2), /* fp_add */
COSTS_N_INSNS (4), /* fp_mult_sf */
COSTS_N_INSNS (5), /* fp_mult_df */
COSTS_N_INSNS (12), /* fp_div_sf */
COSTS_N_INSNS (19), /* fp_div_df */
COSTS_N_INSNS (12), /* int_mult_si */
COSTS_N_INSNS (12), /* int_mult_di */
COSTS_N_INSNS (35), /* int_div_si */
COSTS_N_INSNS (35), /* int_div_di */
1, /* branch_cost */
4 /* memory_latency */
},
{ /* 4KC */
SOFT_FP_COSTS,
COSTS_N_INSNS (6), /* int_mult_si */
COSTS_N_INSNS (6), /* int_mult_di */
COSTS_N_INSNS (36), /* int_div_si */
COSTS_N_INSNS (36), /* int_div_di */
1, /* branch_cost */
4 /* memory_latency */
},
{ /* 4KP */
SOFT_FP_COSTS,
COSTS_N_INSNS (36), /* int_mult_si */
COSTS_N_INSNS (36), /* int_mult_di */
COSTS_N_INSNS (37), /* int_div_si */
COSTS_N_INSNS (37), /* int_div_di */
1, /* branch_cost */
4 /* memory_latency */
},
{ /* 5KC */
SOFT_FP_COSTS,
COSTS_N_INSNS (4), /* int_mult_si */
COSTS_N_INSNS (11), /* int_mult_di */
COSTS_N_INSNS (36), /* int_div_si */
COSTS_N_INSNS (68), /* int_div_di */
1, /* branch_cost */
4 /* memory_latency */
},
{ /* 5KF */
COSTS_N_INSNS (4), /* fp_add */
COSTS_N_INSNS (4), /* fp_mult_sf */
COSTS_N_INSNS (5), /* fp_mult_df */
COSTS_N_INSNS (17), /* fp_div_sf */
COSTS_N_INSNS (32), /* fp_div_df */
COSTS_N_INSNS (4), /* int_mult_si */
COSTS_N_INSNS (11), /* int_mult_di */
COSTS_N_INSNS (36), /* int_div_si */
COSTS_N_INSNS (68), /* int_div_di */
1, /* branch_cost */
4 /* memory_latency */
},
{ /* 20KC */
COSTS_N_INSNS (4), /* fp_add */
COSTS_N_INSNS (4), /* fp_mult_sf */
COSTS_N_INSNS (5), /* fp_mult_df */
COSTS_N_INSNS (17), /* fp_div_sf */
COSTS_N_INSNS (32), /* fp_div_df */
COSTS_N_INSNS (4), /* int_mult_si */
COSTS_N_INSNS (7), /* int_mult_di */
COSTS_N_INSNS (42), /* int_div_si */
COSTS_N_INSNS (72), /* int_div_di */
1, /* branch_cost */
4 /* memory_latency */
},
{ /* 24KC */
SOFT_FP_COSTS,
COSTS_N_INSNS (5), /* int_mult_si */
COSTS_N_INSNS (5), /* int_mult_di */
COSTS_N_INSNS (41), /* int_div_si */
COSTS_N_INSNS (41), /* int_div_di */
1, /* branch_cost */
4 /* memory_latency */
},
{ /* 24KF2_1 */
COSTS_N_INSNS (8), /* fp_add */
COSTS_N_INSNS (8), /* fp_mult_sf */
COSTS_N_INSNS (10), /* fp_mult_df */
COSTS_N_INSNS (34), /* fp_div_sf */
COSTS_N_INSNS (64), /* fp_div_df */
COSTS_N_INSNS (5), /* int_mult_si */
COSTS_N_INSNS (5), /* int_mult_di */
COSTS_N_INSNS (41), /* int_div_si */
COSTS_N_INSNS (41), /* int_div_di */
1, /* branch_cost */
4 /* memory_latency */
},
{ /* 24KF1_1 */
COSTS_N_INSNS (4), /* fp_add */
COSTS_N_INSNS (4), /* fp_mult_sf */
COSTS_N_INSNS (5), /* fp_mult_df */
COSTS_N_INSNS (17), /* fp_div_sf */
COSTS_N_INSNS (32), /* fp_div_df */
COSTS_N_INSNS (5), /* int_mult_si */
COSTS_N_INSNS (5), /* int_mult_di */
COSTS_N_INSNS (41), /* int_div_si */
COSTS_N_INSNS (41), /* int_div_di */
1, /* branch_cost */
4 /* memory_latency */
},
{ /* 74KC */
SOFT_FP_COSTS,
COSTS_N_INSNS (5), /* int_mult_si */
COSTS_N_INSNS (5), /* int_mult_di */
COSTS_N_INSNS (41), /* int_div_si */
COSTS_N_INSNS (41), /* int_div_di */
1, /* branch_cost */
4 /* memory_latency */
},
{ /* 74KF2_1 */
COSTS_N_INSNS (8), /* fp_add */
COSTS_N_INSNS (8), /* fp_mult_sf */
COSTS_N_INSNS (10), /* fp_mult_df */
COSTS_N_INSNS (34), /* fp_div_sf */
COSTS_N_INSNS (64), /* fp_div_df */
COSTS_N_INSNS (5), /* int_mult_si */
COSTS_N_INSNS (5), /* int_mult_di */
COSTS_N_INSNS (41), /* int_div_si */
COSTS_N_INSNS (41), /* int_div_di */
1, /* branch_cost */
4 /* memory_latency */
},
{ /* 74KF1_1 */
COSTS_N_INSNS (4), /* fp_add */
COSTS_N_INSNS (4), /* fp_mult_sf */
COSTS_N_INSNS (5), /* fp_mult_df */
COSTS_N_INSNS (17), /* fp_div_sf */
COSTS_N_INSNS (32), /* fp_div_df */
COSTS_N_INSNS (5), /* int_mult_si */
COSTS_N_INSNS (5), /* int_mult_di */
COSTS_N_INSNS (41), /* int_div_si */
COSTS_N_INSNS (41), /* int_div_di */
1, /* branch_cost */
4 /* memory_latency */
},
{ /* 74KF3_2 */
COSTS_N_INSNS (6), /* fp_add */
COSTS_N_INSNS (6), /* fp_mult_sf */
COSTS_N_INSNS (7), /* fp_mult_df */
COSTS_N_INSNS (25), /* fp_div_sf */
COSTS_N_INSNS (48), /* fp_div_df */
COSTS_N_INSNS (5), /* int_mult_si */
COSTS_N_INSNS (5), /* int_mult_di */
COSTS_N_INSNS (41), /* int_div_si */
COSTS_N_INSNS (41), /* int_div_di */
1, /* branch_cost */
4 /* memory_latency */
},
{ /* Loongson-2E */
DEFAULT_COSTS
},
{ /* Loongson-2F */
DEFAULT_COSTS
},
{ /* Loongson-3A */
DEFAULT_COSTS
},
{ /* M4k */
DEFAULT_COSTS
},
/* Octeon */
{
SOFT_FP_COSTS,
COSTS_N_INSNS (5), /* int_mult_si */
COSTS_N_INSNS (5), /* int_mult_di */
COSTS_N_INSNS (72), /* int_div_si */
COSTS_N_INSNS (72), /* int_div_di */
1, /* branch_cost */
4 /* memory_latency */
},
/* Octeon II */
{
SOFT_FP_COSTS,
COSTS_N_INSNS (6), /* int_mult_si */
COSTS_N_INSNS (6), /* int_mult_di */
COSTS_N_INSNS (18), /* int_div_si */
COSTS_N_INSNS (35), /* int_div_di */
4, /* branch_cost */
4 /* memory_latency */
},
/* Octeon III */
{
COSTS_N_INSNS (6), /* fp_add */
COSTS_N_INSNS (6), /* fp_mult_sf */
COSTS_N_INSNS (7), /* fp_mult_df */
COSTS_N_INSNS (25), /* fp_div_sf */
COSTS_N_INSNS (48), /* fp_div_df */
COSTS_N_INSNS (6), /* int_mult_si */
COSTS_N_INSNS (6), /* int_mult_di */
COSTS_N_INSNS (18), /* int_div_si */
COSTS_N_INSNS (35), /* int_div_di */
4, /* branch_cost */
4 /* memory_latency */
},
{ /* R3900 */
COSTS_N_INSNS (2), /* fp_add */
COSTS_N_INSNS (4), /* fp_mult_sf */
COSTS_N_INSNS (5), /* fp_mult_df */
COSTS_N_INSNS (12), /* fp_div_sf */
COSTS_N_INSNS (19), /* fp_div_df */
COSTS_N_INSNS (2), /* int_mult_si */
COSTS_N_INSNS (2), /* int_mult_di */
COSTS_N_INSNS (35), /* int_div_si */
COSTS_N_INSNS (35), /* int_div_di */
1, /* branch_cost */
4 /* memory_latency */
},
{ /* R6000 */
COSTS_N_INSNS (3), /* fp_add */
COSTS_N_INSNS (5), /* fp_mult_sf */
COSTS_N_INSNS (6), /* fp_mult_df */
COSTS_N_INSNS (15), /* fp_div_sf */
COSTS_N_INSNS (16), /* fp_div_df */
COSTS_N_INSNS (17), /* int_mult_si */
COSTS_N_INSNS (17), /* int_mult_di */
COSTS_N_INSNS (38), /* int_div_si */
COSTS_N_INSNS (38), /* int_div_di */
2, /* branch_cost */
6 /* memory_latency */
},
{ /* R4000 */
COSTS_N_INSNS (6), /* fp_add */
COSTS_N_INSNS (7), /* fp_mult_sf */
COSTS_N_INSNS (8), /* fp_mult_df */
COSTS_N_INSNS (23), /* fp_div_sf */
COSTS_N_INSNS (36), /* fp_div_df */
COSTS_N_INSNS (10), /* int_mult_si */
COSTS_N_INSNS (10), /* int_mult_di */
COSTS_N_INSNS (69), /* int_div_si */
COSTS_N_INSNS (69), /* int_div_di */
2, /* branch_cost */
6 /* memory_latency */
},
{ /* R4100 */
DEFAULT_COSTS
},
{ /* R4111 */
DEFAULT_COSTS
},
{ /* R4120 */
DEFAULT_COSTS
},
{ /* R4130 */
/* The only costs that appear to be updated here are
integer multiplication. */
SOFT_FP_COSTS,
COSTS_N_INSNS (4), /* int_mult_si */
COSTS_N_INSNS (6), /* int_mult_di */
COSTS_N_INSNS (69), /* int_div_si */
COSTS_N_INSNS (69), /* int_div_di */
1, /* branch_cost */
4 /* memory_latency */
},
{ /* R4300 */
DEFAULT_COSTS
},
{ /* R4600 */
DEFAULT_COSTS
},
{ /* R4650 */
DEFAULT_COSTS
},
{ /* R4700 */
DEFAULT_COSTS
},
{ /* R5000 */
COSTS_N_INSNS (6), /* fp_add */
COSTS_N_INSNS (4), /* fp_mult_sf */
COSTS_N_INSNS (5), /* fp_mult_df */
COSTS_N_INSNS (23), /* fp_div_sf */
COSTS_N_INSNS (36), /* fp_div_df */
COSTS_N_INSNS (5), /* int_mult_si */
COSTS_N_INSNS (5), /* int_mult_di */
COSTS_N_INSNS (36), /* int_div_si */
COSTS_N_INSNS (36), /* int_div_di */
1, /* branch_cost */
4 /* memory_latency */
},
{ /* R5400 */
COSTS_N_INSNS (6), /* fp_add */
COSTS_N_INSNS (5), /* fp_mult_sf */
COSTS_N_INSNS (6), /* fp_mult_df */
COSTS_N_INSNS (30), /* fp_div_sf */
COSTS_N_INSNS (59), /* fp_div_df */
COSTS_N_INSNS (3), /* int_mult_si */
COSTS_N_INSNS (4), /* int_mult_di */
COSTS_N_INSNS (42), /* int_div_si */
COSTS_N_INSNS (74), /* int_div_di */
1, /* branch_cost */
4 /* memory_latency */
},
{ /* R5500 */
COSTS_N_INSNS (6), /* fp_add */
COSTS_N_INSNS (5), /* fp_mult_sf */
COSTS_N_INSNS (6), /* fp_mult_df */
COSTS_N_INSNS (30), /* fp_div_sf */
COSTS_N_INSNS (59), /* fp_div_df */
COSTS_N_INSNS (5), /* int_mult_si */
COSTS_N_INSNS (9), /* int_mult_di */
COSTS_N_INSNS (42), /* int_div_si */
COSTS_N_INSNS (74), /* int_div_di */
1, /* branch_cost */
4 /* memory_latency */
},
{ /* R5900 */
COSTS_N_INSNS (4), /* fp_add */
COSTS_N_INSNS (4), /* fp_mult_sf */
COSTS_N_INSNS (256), /* fp_mult_df */
COSTS_N_INSNS (8), /* fp_div_sf */
COSTS_N_INSNS (256), /* fp_div_df */
COSTS_N_INSNS (4), /* int_mult_si */
COSTS_N_INSNS (256), /* int_mult_di */
COSTS_N_INSNS (37), /* int_div_si */
COSTS_N_INSNS (256), /* int_div_di */
1, /* branch_cost */
4 /* memory_latency */
},
{ /* R7000 */
/* The only costs that are changed here are
integer multiplication. */
COSTS_N_INSNS (6), /* fp_add */
COSTS_N_INSNS (7), /* fp_mult_sf */
COSTS_N_INSNS (8), /* fp_mult_df */
COSTS_N_INSNS (23), /* fp_div_sf */
COSTS_N_INSNS (36), /* fp_div_df */
COSTS_N_INSNS (5), /* int_mult_si */
COSTS_N_INSNS (9), /* int_mult_di */
COSTS_N_INSNS (69), /* int_div_si */
COSTS_N_INSNS (69), /* int_div_di */
1, /* branch_cost */
4 /* memory_latency */
},
{ /* R8000 */
DEFAULT_COSTS
},
{ /* R9000 */
/* The only costs that are changed here are
integer multiplication. */
COSTS_N_INSNS (6), /* fp_add */
COSTS_N_INSNS (7), /* fp_mult_sf */
COSTS_N_INSNS (8), /* fp_mult_df */
COSTS_N_INSNS (23), /* fp_div_sf */
COSTS_N_INSNS (36), /* fp_div_df */
COSTS_N_INSNS (3), /* int_mult_si */
COSTS_N_INSNS (8), /* int_mult_di */
COSTS_N_INSNS (69), /* int_div_si */
COSTS_N_INSNS (69), /* int_div_di */
1, /* branch_cost */
4 /* memory_latency */
},
{ /* R1x000 */
COSTS_N_INSNS (2), /* fp_add */
COSTS_N_INSNS (2), /* fp_mult_sf */
COSTS_N_INSNS (2), /* fp_mult_df */
COSTS_N_INSNS (12), /* fp_div_sf */
COSTS_N_INSNS (19), /* fp_div_df */
COSTS_N_INSNS (5), /* int_mult_si */
COSTS_N_INSNS (9), /* int_mult_di */
COSTS_N_INSNS (34), /* int_div_si */
COSTS_N_INSNS (66), /* int_div_di */
1, /* branch_cost */
4 /* memory_latency */
},
{ /* SB1 */
/* These costs are the same as the SB-1A below. */
COSTS_N_INSNS (4), /* fp_add */
COSTS_N_INSNS (4), /* fp_mult_sf */
COSTS_N_INSNS (4), /* fp_mult_df */
COSTS_N_INSNS (24), /* fp_div_sf */
COSTS_N_INSNS (32), /* fp_div_df */
COSTS_N_INSNS (3), /* int_mult_si */
COSTS_N_INSNS (4), /* int_mult_di */
COSTS_N_INSNS (36), /* int_div_si */
COSTS_N_INSNS (68), /* int_div_di */
1, /* branch_cost */
4 /* memory_latency */
},
{ /* SB1-A */
/* These costs are the same as the SB-1 above. */
COSTS_N_INSNS (4), /* fp_add */
COSTS_N_INSNS (4), /* fp_mult_sf */
COSTS_N_INSNS (4), /* fp_mult_df */
COSTS_N_INSNS (24), /* fp_div_sf */
COSTS_N_INSNS (32), /* fp_div_df */
COSTS_N_INSNS (3), /* int_mult_si */
COSTS_N_INSNS (4), /* int_mult_di */
COSTS_N_INSNS (36), /* int_div_si */
COSTS_N_INSNS (68), /* int_div_di */
1, /* branch_cost */
4 /* memory_latency */
},
{ /* SR71000 */
DEFAULT_COSTS
},
{ /* XLR */
SOFT_FP_COSTS,
COSTS_N_INSNS (8), /* int_mult_si */
COSTS_N_INSNS (8), /* int_mult_di */
COSTS_N_INSNS (72), /* int_div_si */
COSTS_N_INSNS (72), /* int_div_di */
1, /* branch_cost */
4 /* memory_latency */
},
{ /* XLP */
/* These costs are the same as 5KF above. */
COSTS_N_INSNS (4), /* fp_add */
COSTS_N_INSNS (4), /* fp_mult_sf */
COSTS_N_INSNS (5), /* fp_mult_df */
COSTS_N_INSNS (17), /* fp_div_sf */
COSTS_N_INSNS (32), /* fp_div_df */
COSTS_N_INSNS (4), /* int_mult_si */
COSTS_N_INSNS (11), /* int_mult_di */
COSTS_N_INSNS (36), /* int_div_si */
COSTS_N_INSNS (68), /* int_div_di */
1, /* branch_cost */
4 /* memory_latency */
},
{ /* P5600 */
COSTS_N_INSNS (4), /* fp_add */
COSTS_N_INSNS (5), /* fp_mult_sf */
COSTS_N_INSNS (5), /* fp_mult_df */
COSTS_N_INSNS (17), /* fp_div_sf */
COSTS_N_INSNS (17), /* fp_div_df */
COSTS_N_INSNS (5), /* int_mult_si */
COSTS_N_INSNS (5), /* int_mult_di */
COSTS_N_INSNS (8), /* int_div_si */
COSTS_N_INSNS (8), /* int_div_di */
2, /* branch_cost */
4 /* memory_latency */
},
{ /* M5100 */
COSTS_N_INSNS (4), /* fp_add */
COSTS_N_INSNS (4), /* fp_mult_sf */
COSTS_N_INSNS (5), /* fp_mult_df */
COSTS_N_INSNS (17), /* fp_div_sf */
COSTS_N_INSNS (32), /* fp_div_df */
COSTS_N_INSNS (5), /* int_mult_si */
COSTS_N_INSNS (5), /* int_mult_di */
COSTS_N_INSNS (34), /* int_div_si */
COSTS_N_INSNS (68), /* int_div_di */
1, /* branch_cost */
4 /* memory_latency */
},
{ /* I6400 */
COSTS_N_INSNS (4), /* fp_add */
COSTS_N_INSNS (5), /* fp_mult_sf */
COSTS_N_INSNS (5), /* fp_mult_df */
COSTS_N_INSNS (32), /* fp_div_sf */
COSTS_N_INSNS (32), /* fp_div_df */
COSTS_N_INSNS (5), /* int_mult_si */
COSTS_N_INSNS (5), /* int_mult_di */
COSTS_N_INSNS (36), /* int_div_si */
COSTS_N_INSNS (36), /* int_div_di */
2, /* branch_cost */
4 /* memory_latency */
}
};
static rtx mips_find_pic_call_symbol (rtx_insn *, rtx, bool);
static int mips_register_move_cost (machine_mode, reg_class_t,
reg_class_t);
static unsigned int mips_function_arg_boundary (machine_mode, const_tree);
static machine_mode mips_get_reg_raw_mode (int regno);
/* This hash table keeps track of implicit "mips16" and "nomips16" attributes
for -mflip_mips16. It maps decl names onto a boolean mode setting. */
static GTY (()) hash_map<nofree_string_hash, bool> *mflip_mips16_htab;
/* True if -mflip-mips16 should next add an attribute for the default MIPS16
mode, false if it should next add an attribute for the opposite mode. */
static GTY(()) bool mips16_flipper;
/* DECL is a function that needs a default "mips16" or "nomips16" attribute
for -mflip-mips16. Return true if it should use "mips16" and false if
it should use "nomips16". */
static bool
mflip_mips16_use_mips16_p (tree decl)
{
const char *name;
bool base_is_mips16 = (mips_base_compression_flags & MASK_MIPS16) != 0;
/* Use the opposite of the command-line setting for anonymous decls. */
if (!DECL_NAME (decl))
return !base_is_mips16;
if (!mflip_mips16_htab)
mflip_mips16_htab = hash_map<nofree_string_hash, bool>::create_ggc (37);
name = IDENTIFIER_POINTER (DECL_NAME (decl));
bool existed;
bool *slot = &mflip_mips16_htab->get_or_insert (name, &existed);
if (!existed)
{
mips16_flipper = !mips16_flipper;
*slot = mips16_flipper ? !base_is_mips16 : base_is_mips16;
}
return *slot;
}
/* Predicates to test for presence of "near" and "far"/"long_call"
attributes on the given TYPE. */
static bool
mips_near_type_p (const_tree type)
{
return lookup_attribute ("near", TYPE_ATTRIBUTES (type)) != NULL;
}
static bool
mips_far_type_p (const_tree type)
{
return (lookup_attribute ("long_call", TYPE_ATTRIBUTES (type)) != NULL
|| lookup_attribute ("far", TYPE_ATTRIBUTES (type)) != NULL);
}
/* Check if the interrupt attribute is set for a function. */
static bool
mips_interrupt_type_p (tree type)
{
return lookup_attribute ("interrupt", TYPE_ATTRIBUTES (type)) != NULL;
}
/* Return the mask for the "interrupt" attribute. */
static enum mips_int_mask
mips_interrupt_mask (tree type)
{
tree attr = lookup_attribute ("interrupt", TYPE_ATTRIBUTES (type));
tree args, cst;
const char *str;
/* For missing attributes or no arguments then return 'eic' as a safe
fallback. */
if (attr == NULL)
return INT_MASK_EIC;
args = TREE_VALUE (attr);
if (args == NULL)
return INT_MASK_EIC;
cst = TREE_VALUE (args);
if (strcmp (TREE_STRING_POINTER (cst), "eic") == 0)
return INT_MASK_EIC;
/* The validation code in mips_handle_interrupt_attr guarantees that the
argument is now in the form:
vector=(sw0|sw1|hw0|hw1|hw2|hw3|hw4|hw5). */
str = TREE_STRING_POINTER (cst);
gcc_assert (strlen (str) == strlen ("vector=sw0"));
if (str[7] == 's')
return (enum mips_int_mask) (INT_MASK_SW0 + (str[9] - '0'));
return (enum mips_int_mask) (INT_MASK_HW0 + (str[9] - '0'));
}
/* Return the mips_shadow_set if the "use_shadow_register_set" attribute is
set for a function. */
static enum mips_shadow_set
mips_use_shadow_register_set (tree type)
{
tree attr = lookup_attribute ("use_shadow_register_set",
TYPE_ATTRIBUTES (type));
tree args;
/* The validation code in mips_handle_use_shadow_register_set_attr guarantees
that if an argument is present then it means: Assume the shadow register
set has a valid stack pointer in it. */
if (attr == NULL)
return SHADOW_SET_NO;
args = TREE_VALUE (attr);
if (args == NULL)
return SHADOW_SET_YES;
return SHADOW_SET_INTSTACK;
}
/* Check if the attribute to keep interrupts masked is set for a function. */
static bool
mips_keep_interrupts_masked_p (tree type)
{
return lookup_attribute ("keep_interrupts_masked",
TYPE_ATTRIBUTES (type)) != NULL;
}
/* Check if the attribute to use debug exception return is set for
a function. */
static bool
mips_use_debug_exception_return_p (tree type)
{
return lookup_attribute ("use_debug_exception_return",
TYPE_ATTRIBUTES (type)) != NULL;
}
/* Return the set of compression modes that are explicitly required
by the attributes in ATTRIBUTES. */
static unsigned int
mips_get_compress_on_flags (tree attributes)
{
unsigned int flags = 0;
if (lookup_attribute ("mips16", attributes) != NULL)
flags |= MASK_MIPS16;
if (lookup_attribute ("micromips", attributes) != NULL)
flags |= MASK_MICROMIPS;
return flags;
}
/* Return the set of compression modes that are explicitly forbidden
by the attributes in ATTRIBUTES. */
static unsigned int
mips_get_compress_off_flags (tree attributes)
{
unsigned int flags = 0;
if (lookup_attribute ("nocompression", attributes) != NULL)
flags |= MASK_MIPS16 | MASK_MICROMIPS;
if (lookup_attribute ("nomips16", attributes) != NULL)
flags |= MASK_MIPS16;
if (lookup_attribute ("nomicromips", attributes) != NULL)
flags |= MASK_MICROMIPS;
return flags;
}
/* Return the compression mode that should be used for function DECL.
Return the ambient setting if DECL is null. */
static unsigned int
mips_get_compress_mode (tree decl)
{
unsigned int flags, force_on;
flags = mips_base_compression_flags;
if (decl)
{
/* Nested functions must use the same frame pointer as their
parent and must therefore use the same ISA mode. */
tree parent = decl_function_context (decl);
if (parent)
decl = parent;
force_on = mips_get_compress_on_flags (DECL_ATTRIBUTES (decl));
if (force_on)
return force_on;
flags &= ~mips_get_compress_off_flags (DECL_ATTRIBUTES (decl));
}
return flags;
}
/* Return the attribute name associated with MASK_MIPS16 and MASK_MICROMIPS
flags FLAGS. */
static const char *
mips_get_compress_on_name (unsigned int flags)
{
if (flags == MASK_MIPS16)
return "mips16";
return "micromips";
}
/* Return the attribute name that forbids MASK_MIPS16 and MASK_MICROMIPS
flags FLAGS. */
static const char *
mips_get_compress_off_name (unsigned int flags)
{
if (flags == MASK_MIPS16)
return "nomips16";
if (flags == MASK_MICROMIPS)
return "nomicromips";
return "nocompression";
}
/* Implement TARGET_COMP_TYPE_ATTRIBUTES. */
static int
mips_comp_type_attributes (const_tree type1, const_tree type2)
{
/* Disallow mixed near/far attributes. */
if (mips_far_type_p (type1) && mips_near_type_p (type2))
return 0;
if (mips_near_type_p (type1) && mips_far_type_p (type2))
return 0;
return 1;
}
/* Implement TARGET_INSERT_ATTRIBUTES. */
static void
mips_insert_attributes (tree decl, tree *attributes)
{
const char *name;
unsigned int compression_flags, nocompression_flags;
/* Check for "mips16" and "nomips16" attributes. */
compression_flags = mips_get_compress_on_flags (*attributes);
nocompression_flags = mips_get_compress_off_flags (*attributes);
if (TREE_CODE (decl) != FUNCTION_DECL)
{
if (nocompression_flags)
error ("%qs attribute only applies to functions",
mips_get_compress_off_name (nocompression_flags));
if (compression_flags)
error ("%qs attribute only applies to functions",
mips_get_compress_on_name (nocompression_flags));
}
else
{
compression_flags |= mips_get_compress_on_flags (DECL_ATTRIBUTES (decl));
nocompression_flags |=
mips_get_compress_off_flags (DECL_ATTRIBUTES (decl));
if (compression_flags && nocompression_flags)
error ("%qE cannot have both %qs and %qs attributes",
DECL_NAME (decl), mips_get_compress_on_name (compression_flags),
mips_get_compress_off_name (nocompression_flags));
if (compression_flags & MASK_MIPS16
&& compression_flags & MASK_MICROMIPS)
error ("%qE cannot have both %qs and %qs attributes",
DECL_NAME (decl), "mips16", "micromips");
if (TARGET_FLIP_MIPS16
&& !DECL_ARTIFICIAL (decl)
&& compression_flags == 0
&& nocompression_flags == 0)
{
/* Implement -mflip-mips16. If DECL has neither a "nomips16" nor a
"mips16" attribute, arbitrarily pick one. We must pick the same
setting for duplicate declarations of a function. */
name = mflip_mips16_use_mips16_p (decl) ? "mips16" : "nomips16";
*attributes = tree_cons (get_identifier (name), NULL, *attributes);
name = "nomicromips";
*attributes = tree_cons (get_identifier (name), NULL, *attributes);
}
}
}
/* Implement TARGET_MERGE_DECL_ATTRIBUTES. */
static tree
mips_merge_decl_attributes (tree olddecl, tree newdecl)
{
unsigned int diff;
diff = (mips_get_compress_on_flags (DECL_ATTRIBUTES (olddecl))
^ mips_get_compress_on_flags (DECL_ATTRIBUTES (newdecl)));
if (diff)
error ("%qE redeclared with conflicting %qs attributes",
DECL_NAME (newdecl), mips_get_compress_on_name (diff));
diff = (mips_get_compress_off_flags (DECL_ATTRIBUTES (olddecl))
^ mips_get_compress_off_flags (DECL_ATTRIBUTES (newdecl)));
if (diff)
error ("%qE redeclared with conflicting %qs attributes",
DECL_NAME (newdecl), mips_get_compress_off_name (diff));
return merge_attributes (DECL_ATTRIBUTES (olddecl),
DECL_ATTRIBUTES (newdecl));
}
/* Implement TARGET_CAN_INLINE_P. */
static bool
mips_can_inline_p (tree caller, tree callee)
{
if (mips_get_compress_mode (callee) != mips_get_compress_mode (caller))
return false;
return default_target_can_inline_p (caller, callee);
}
/* Handle an "interrupt" attribute with an optional argument. */
static tree
mips_handle_interrupt_attr (tree *node ATTRIBUTE_UNUSED, tree name, tree args,
int flags ATTRIBUTE_UNUSED, bool *no_add_attrs)
{
/* Check for an argument. */
if (is_attribute_p ("interrupt", name) && args != NULL)
{
tree cst;
cst = TREE_VALUE (args);
if (TREE_CODE (cst) != STRING_CST)
{
warning (OPT_Wattributes,
"%qE attribute requires a string argument",
name);
*no_add_attrs = true;
}
else if (strcmp (TREE_STRING_POINTER (cst), "eic") != 0
&& strncmp (TREE_STRING_POINTER (cst), "vector=", 7) != 0)
{
warning (OPT_Wattributes,
"argument to %qE attribute is neither eic, nor "
"vector=<line>", name);
*no_add_attrs = true;
}
else if (strncmp (TREE_STRING_POINTER (cst), "vector=", 7) == 0)
{
const char *arg = TREE_STRING_POINTER (cst) + 7;
/* Acceptable names are: sw0,sw1,hw0,hw1,hw2,hw3,hw4,hw5. */
if (strlen (arg) != 3
|| (arg[0] != 's' && arg[0] != 'h')
|| arg[1] != 'w'
|| (arg[0] == 's' && arg[2] != '0' && arg[2] != '1')
|| (arg[0] == 'h' && (arg[2] < '0' || arg[2] > '5')))
{
warning (OPT_Wattributes,
"interrupt vector to %qE attribute is not "
"vector=(sw0|sw1|hw0|hw1|hw2|hw3|hw4|hw5)",
name);
*no_add_attrs = true;
}
}
return NULL_TREE;
}
return NULL_TREE;
}
/* Handle a "use_shadow_register_set" attribute with an optional argument. */
static tree
mips_handle_use_shadow_register_set_attr (tree *node ATTRIBUTE_UNUSED,
tree name, tree args,
int flags ATTRIBUTE_UNUSED,
bool *no_add_attrs)
{
/* Check for an argument. */
if (is_attribute_p ("use_shadow_register_set", name) && args != NULL)
{
tree cst;
cst = TREE_VALUE (args);
if (TREE_CODE (cst) != STRING_CST)
{
warning (OPT_Wattributes,
"%qE attribute requires a string argument",
name);
*no_add_attrs = true;
}
else if (strcmp (TREE_STRING_POINTER (cst), "intstack") != 0)
{
warning (OPT_Wattributes,
"argument to %qE attribute is not intstack", name);
*no_add_attrs = true;
}
return NULL_TREE;
}
return NULL_TREE;
}
/* If X is a PLUS of a CONST_INT, return the two terms in *BASE_PTR
and *OFFSET_PTR. Return X in *BASE_PTR and 0 in *OFFSET_PTR otherwise. */
static void
mips_split_plus (rtx x, rtx *base_ptr, HOST_WIDE_INT *offset_ptr)
{
if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1)))
{
*base_ptr = XEXP (x, 0);
*offset_ptr = INTVAL (XEXP (x, 1));
}
else
{
*base_ptr = x;
*offset_ptr = 0;
}
}
static unsigned int mips_build_integer (struct mips_integer_op *,
unsigned HOST_WIDE_INT);
/* A subroutine of mips_build_integer, with the same interface.
Assume that the final action in the sequence should be a left shift. */
static unsigned int
mips_build_shift (struct mips_integer_op *codes, HOST_WIDE_INT value)
{
unsigned int i, shift;
/* Shift VALUE right until its lowest bit is set. Shift arithmetically
since signed numbers are easier to load than unsigned ones. */
shift = 0;
while ((value & 1) == 0)
value /= 2, shift++;
i = mips_build_integer (codes, value);
codes[i].code = ASHIFT;
codes[i].value = shift;
return i + 1;
}
/* As for mips_build_shift, but assume that the final action will be
an IOR or PLUS operation. */
static unsigned int
mips_build_lower (struct mips_integer_op *codes, unsigned HOST_WIDE_INT value)
{
unsigned HOST_WIDE_INT high;
unsigned int i;
high = value & ~(unsigned HOST_WIDE_INT) 0xffff;
if (!LUI_OPERAND (high) && (value & 0x18000) == 0x18000)
{
/* The constant is too complex to load with a simple LUI/ORI pair,
so we want to give the recursive call as many trailing zeros as
possible. In this case, we know bit 16 is set and that the
low 16 bits form a negative number. If we subtract that number
from VALUE, we will clear at least the lowest 17 bits, maybe more. */
i = mips_build_integer (codes, CONST_HIGH_PART (value));
codes[i].code = PLUS;
codes[i].value = CONST_LOW_PART (value);
}
else
{
/* Either this is a simple LUI/ORI pair, or clearing the lowest 16
bits gives a value with at least 17 trailing zeros. */
i = mips_build_integer (codes, high);
codes[i].code = IOR;
codes[i].value = value & 0xffff;
}
return i + 1;
}
/* Fill CODES with a sequence of rtl operations to load VALUE.
Return the number of operations needed. */
static unsigned int
mips_build_integer (struct mips_integer_op *codes,
unsigned HOST_WIDE_INT value)
{
if (SMALL_OPERAND (value)
|| SMALL_OPERAND_UNSIGNED (value)
|| LUI_OPERAND (value))
{
/* The value can be loaded with a single instruction. */
codes[0].code = UNKNOWN;
codes[0].value = value;
return 1;
}
else if ((value & 1) != 0 || LUI_OPERAND (CONST_HIGH_PART (value)))
{
/* Either the constant is a simple LUI/ORI combination or its
lowest bit is set. We don't want to shift in this case. */
return mips_build_lower (codes, value);
}
else if ((value & 0xffff) == 0)
{
/* The constant will need at least three actions. The lowest
16 bits are clear, so the final action will be a shift. */
return mips_build_shift (codes, value);
}
else
{
/* The final action could be a shift, add or inclusive OR.
Rather than use a complex condition to select the best
approach, try both mips_build_shift and mips_build_lower
and pick the one that gives the shortest sequence.
Note that this case is only used once per constant. */
struct mips_integer_op alt_codes[MIPS_MAX_INTEGER_OPS];
unsigned int cost, alt_cost;
cost = mips_build_shift (codes, value);
alt_cost = mips_build_lower (alt_codes, value);
if (alt_cost < cost)
{
memcpy (codes, alt_codes, alt_cost * sizeof (codes[0]));
cost = alt_cost;
}
return cost;
}
}
/* Implement TARGET_LEGITIMATE_CONSTANT_P. */
static bool
mips_legitimate_constant_p (machine_mode mode ATTRIBUTE_UNUSED, rtx x)
{
return mips_const_insns (x) > 0;
}
/* Return a SYMBOL_REF for a MIPS16 function called NAME. */
static rtx
mips16_stub_function (const char *name)
{
rtx x;
x = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (name));
SYMBOL_REF_FLAGS (x) |= (SYMBOL_FLAG_EXTERNAL | SYMBOL_FLAG_FUNCTION);
return x;
}
/* Return a legitimate call address for STUB, given that STUB is a MIPS16
support function. */
static rtx
mips16_stub_call_address (mips_one_only_stub *stub)
{
rtx fn = mips16_stub_function (stub->get_name ());
SYMBOL_REF_FLAGS (fn) |= SYMBOL_FLAG_LOCAL;
if (!call_insn_operand (fn, VOIDmode))
fn = force_reg (Pmode, fn);
return fn;
}
/* A stub for moving the thread pointer into TLS_GET_TP_REGNUM. */
class mips16_rdhwr_one_only_stub : public mips_one_only_stub
{
virtual const char *get_name ();
virtual void output_body ();
};
const char *
mips16_rdhwr_one_only_stub::get_name ()
{
return "__mips16_rdhwr";
}
void
mips16_rdhwr_one_only_stub::output_body ()
{
fprintf (asm_out_file,
"\t.set\tpush\n"
"\t.set\tmips32r2\n"
"\t.set\tnoreorder\n"
"\trdhwr\t$3,$29\n"
"\t.set\tpop\n"
"\tj\t$31\n");
}
/* A stub for moving the FCSR into GET_FCSR_REGNUM. */
class mips16_get_fcsr_one_only_stub : public mips_one_only_stub
{
virtual const char *get_name ();
virtual void output_body ();
};
const char *
mips16_get_fcsr_one_only_stub::get_name ()
{
return "__mips16_get_fcsr";
}
void
mips16_get_fcsr_one_only_stub::output_body ()
{
fprintf (asm_out_file,
"\tcfc1\t%s,$31\n"
"\tj\t$31\n", reg_names[GET_FCSR_REGNUM]);
}
/* A stub for moving SET_FCSR_REGNUM into the FCSR. */
class mips16_set_fcsr_one_only_stub : public mips_one_only_stub
{
virtual const char *get_name ();
virtual void output_body ();
};
const char *
mips16_set_fcsr_one_only_stub::get_name ()
{
return "__mips16_set_fcsr";
}
void
mips16_set_fcsr_one_only_stub::output_body ()
{
fprintf (asm_out_file,
"\tctc1\t%s,$31\n"
"\tj\t$31\n", reg_names[SET_FCSR_REGNUM]);
}
/* Return true if symbols of type TYPE require a GOT access. */
static bool
mips_got_symbol_type_p (enum mips_symbol_type type)
{
switch (type)
{
case SYMBOL_GOT_PAGE_OFST:
case SYMBOL_GOT_DISP:
return true;
default:
return false;
}
}
/* Return true if X is a thread-local symbol. */
static bool
mips_tls_symbol_p (rtx x)
{
return GET_CODE (x) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (x) != 0;
}
/* Return true if SYMBOL_REF X is associated with a global symbol
(in the STB_GLOBAL sense). */
static bool
mips_global_symbol_p (const_rtx x)
{
const_tree decl = SYMBOL_REF_DECL (x);
if (!decl)
return !SYMBOL_REF_LOCAL_P (x) || SYMBOL_REF_EXTERNAL_P (x);
/* Weakref symbols are not TREE_PUBLIC, but their targets are global
or weak symbols. Relocations in the object file will be against
the target symbol, so it's that symbol's binding that matters here. */
return DECL_P (decl) && (TREE_PUBLIC (decl) || DECL_WEAK (decl));
}
/* Return true if function X is a libgcc MIPS16 stub function. */
static bool
mips16_stub_function_p (const_rtx x)
{
return (GET_CODE (x) == SYMBOL_REF
&& strncmp (XSTR (x, 0), "__mips16_", 9) == 0);
}
/* Return true if function X is a locally-defined and locally-binding
MIPS16 function. */
static bool
mips16_local_function_p (const_rtx x)
{
return (GET_CODE (x) == SYMBOL_REF
&& SYMBOL_REF_LOCAL_P (x)
&& !SYMBOL_REF_EXTERNAL_P (x)
&& (mips_get_compress_mode (SYMBOL_REF_DECL (x)) & MASK_MIPS16));
}
/* Return true if SYMBOL_REF X binds locally. */
static bool
mips_symbol_binds_local_p (const_rtx x)
{
return (SYMBOL_REF_DECL (x)
? targetm.binds_local_p (SYMBOL_REF_DECL (x))
: SYMBOL_REF_LOCAL_P (x));
}
/* Return true if rtx constants of mode MODE should be put into a small
data section. */
static bool
mips_rtx_constant_in_small_data_p (machine_mode mode)
{
return (!TARGET_EMBEDDED_DATA
&& TARGET_LOCAL_SDATA
&& GET_MODE_SIZE (mode) <= mips_small_data_threshold);
}
/* Return true if X should not be moved directly into register $25.
We need this because many versions of GAS will treat "la $25,foo" as
part of a call sequence and so allow a global "foo" to be lazily bound. */
bool
mips_dangerous_for_la25_p (rtx x)
{
return (!TARGET_EXPLICIT_RELOCS
&& TARGET_USE_GOT
&& GET_CODE (x) == SYMBOL_REF
&& mips_global_symbol_p (x));
}
/* Return true if calls to X might need $25 to be valid on entry. */
bool
mips_use_pic_fn_addr_reg_p (const_rtx x)
{
if (!TARGET_USE_PIC_FN_ADDR_REG)
return false;
/* MIPS16 stub functions are guaranteed not to use $25. */
if (mips16_stub_function_p (x))
return false;
if (GET_CODE (x) == SYMBOL_REF)
{
/* If PLTs and copy relocations are available, the static linker
will make sure that $25 is valid on entry to the target function. */
if (TARGET_ABICALLS_PIC0)
return false;
/* Locally-defined functions use absolute accesses to set up
the global pointer. */
if (TARGET_ABSOLUTE_ABICALLS
&& mips_symbol_binds_local_p (x)
&& !SYMBOL_REF_EXTERNAL_P (x))
return false;
}
return true;
}
/* Return the method that should be used to access SYMBOL_REF or
LABEL_REF X in context CONTEXT. */
static enum mips_symbol_type
mips_classify_symbol (const_rtx x, enum mips_symbol_context context)
{
if (TARGET_RTP_PIC)
return SYMBOL_GOT_DISP;
if (GET_CODE (x) == LABEL_REF)
{
/* Only return SYMBOL_PC_RELATIVE if we are generating MIPS16
code and if we know that the label is in the current function's
text section. LABEL_REFs are used for jump tables as well as
text labels, so we must check whether jump tables live in the
text section. */
if (TARGET_MIPS16_SHORT_JUMP_TABLES
&& !LABEL_REF_NONLOCAL_P (x))
return SYMBOL_PC_RELATIVE;
if (TARGET_ABICALLS && !TARGET_ABSOLUTE_ABICALLS)
return SYMBOL_GOT_PAGE_OFST;
return SYMBOL_ABSOLUTE;
}
gcc_assert (GET_CODE (x) == SYMBOL_REF);
if (SYMBOL_REF_TLS_MODEL (x))
return SYMBOL_TLS;
if (CONSTANT_POOL_ADDRESS_P (x))
{
if (TARGET_MIPS16_TEXT_LOADS)
return SYMBOL_PC_RELATIVE;
if (TARGET_MIPS16_PCREL_LOADS && context == SYMBOL_CONTEXT_MEM)
return SYMBOL_PC_RELATIVE;
if (mips_rtx_constant_in_small_data_p (get_pool_mode (x)))
return SYMBOL_GP_RELATIVE;
}
/* Do not use small-data accesses for weak symbols; they may end up
being zero. */
if (TARGET_GPOPT && SYMBOL_REF_SMALL_P (x) && !SYMBOL_REF_WEAK (x))
return SYMBOL_GP_RELATIVE;
/* Don't use GOT accesses for locally-binding symbols when -mno-shared
is in effect. */
if (TARGET_ABICALLS_PIC2
&& !(TARGET_ABSOLUTE_ABICALLS && mips_symbol_binds_local_p (x)))
{
/* There are three cases to consider:
- o32 PIC (either with or without explicit relocs)
- n32/n64 PIC without explicit relocs
- n32/n64 PIC with explicit relocs
In the first case, both local and global accesses will use an
R_MIPS_GOT16 relocation. We must correctly predict which of
the two semantics (local or global) the assembler and linker
will apply. The choice depends on the symbol's binding rather
than its visibility.
In the second case, the assembler will not use R_MIPS_GOT16
relocations, but it chooses between local and global accesses
in the same way as for o32 PIC.
In the third case we have more freedom since both forms of
access will work for any kind of symbol. However, there seems
little point in doing things differently. */
if (mips_global_symbol_p (x))
return SYMBOL_GOT_DISP;
return SYMBOL_GOT_PAGE_OFST;
}
return SYMBOL_ABSOLUTE;
}
/* Classify the base of symbolic expression X, given that X appears in
context CONTEXT. */
static enum mips_symbol_type
mips_classify_symbolic_expression (rtx x, enum mips_symbol_context context)
{
rtx offset;
split_const (x, &x, &offset);
if (UNSPEC_ADDRESS_P (x))
return UNSPEC_ADDRESS_TYPE (x);
return mips_classify_symbol (x, context);
}
/* Return true if OFFSET is within the range [0, ALIGN), where ALIGN
is the alignment in bytes of SYMBOL_REF X. */
static bool
mips_offset_within_alignment_p (rtx x, HOST_WIDE_INT offset)
{
HOST_WIDE_INT align;
align = SYMBOL_REF_DECL (x) ? DECL_ALIGN_UNIT (SYMBOL_REF_DECL (x)) : 1;
return IN_RANGE (offset, 0, align - 1);
}
/* Return true if X is a symbolic constant that can be used in context
CONTEXT. If it is, store the type of the symbol in *SYMBOL_TYPE. */
bool
mips_symbolic_constant_p (rtx x, enum mips_symbol_context context,
enum mips_symbol_type *symbol_type)
{
rtx offset;
split_const (x, &x, &offset);
if (UNSPEC_ADDRESS_P (x))
{
*symbol_type = UNSPEC_ADDRESS_TYPE (x);
x = UNSPEC_ADDRESS (x);
}
else if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
{
*symbol_type = mips_classify_symbol (x, context);
if (*symbol_type == SYMBOL_TLS)
return false;
}
else
return false;
if (offset == const0_rtx)
return true;
/* Check whether a nonzero offset is valid for the underlying
relocations. */
switch (*symbol_type)
{
case SYMBOL_ABSOLUTE:
case SYMBOL_64_HIGH:
case SYMBOL_64_MID:
case SYMBOL_64_LOW:
/* If the target has 64-bit pointers and the object file only
supports 32-bit symbols, the values of those symbols will be
sign-extended. In this case we can't allow an arbitrary offset
in case the 32-bit value X + OFFSET has a different sign from X. */
if (Pmode == DImode && !ABI_HAS_64BIT_SYMBOLS)
return offset_within_block_p (x, INTVAL (offset));
/* In other cases the relocations can handle any offset. */
return true;
case SYMBOL_PC_RELATIVE:
/* Allow constant pool references to be converted to LABEL+CONSTANT.
In this case, we no longer have access to the underlying constant,
but the original symbol-based access was known to be valid. */
if (GET_CODE (x) == LABEL_REF)
return true;
/* Fall through. */
case SYMBOL_GP_RELATIVE:
/* Make sure that the offset refers to something within the
same object block. This should guarantee that the final
PC- or GP-relative offset is within the 16-bit limit. */
return offset_within_block_p (x, INTVAL (offset));
case SYMBOL_GOT_PAGE_OFST:
case SYMBOL_GOTOFF_PAGE:
/* If the symbol is global, the GOT entry will contain the symbol's
address, and we will apply a 16-bit offset after loading it.
If the symbol is local, the linker should provide enough local
GOT entries for a 16-bit offset, but larger offsets may lead
to GOT overflow. */
return SMALL_INT (offset);
case SYMBOL_TPREL:
case SYMBOL_DTPREL:
/* There is no carry between the HI and LO REL relocations, so the
offset is only valid if we know it won't lead to such a carry. */
return mips_offset_within_alignment_p (x, INTVAL (offset));
case SYMBOL_GOT_DISP:
case SYMBOL_GOTOFF_DISP:
case SYMBOL_GOTOFF_CALL:
case SYMBOL_GOTOFF_LOADGP:
case SYMBOL_TLSGD:
case SYMBOL_TLSLDM:
case SYMBOL_GOTTPREL:
case SYMBOL_TLS:
case SYMBOL_HALF:
return false;
}
gcc_unreachable ();
}
/* Like mips_symbol_insns, but treat extended MIPS16 instructions as a
single instruction. We rely on the fact that, in the worst case,
all instructions involved in a MIPS16 address calculation are usually
extended ones. */
static int
mips_symbol_insns_1 (enum mips_symbol_type type, machine_mode mode)
{
if (mips_use_pcrel_pool_p[(int) type])
{
if (mode == MAX_MACHINE_MODE)
/* LEAs will be converted into constant-pool references by
mips_reorg. */
type = SYMBOL_PC_RELATIVE;
else
/* The constant must be loaded and then dereferenced. */
return 0;
}
switch (type)
{
case SYMBOL_ABSOLUTE:
/* When using 64-bit symbols, we need 5 preparatory instructions,
such as:
lui $at,%highest(symbol)
daddiu $at,$at,%higher(symbol)
dsll $at,$at,16
daddiu $at,$at,%hi(symbol)
dsll $at,$at,16
The final address is then $at + %lo(symbol). With 32-bit
symbols we just need a preparatory LUI for normal mode and
a preparatory LI and SLL for MIPS16. */
return ABI_HAS_64BIT_SYMBOLS ? 6 : TARGET_MIPS16 ? 3 : 2;
case SYMBOL_GP_RELATIVE:
/* Treat GP-relative accesses as taking a single instruction on
MIPS16 too; the copy of $gp can often be shared. */
return 1;
case SYMBOL_PC_RELATIVE:
/* PC-relative constants can be only be used with ADDIUPC,
DADDIUPC, LWPC and LDPC. */
if (mode == MAX_MACHINE_MODE
|| GET_MODE_SIZE (mode) == 4
|| GET_MODE_SIZE (mode) == 8)
return 1;
/* The constant must be loaded using ADDIUPC or DADDIUPC first. */
return 0;
case SYMBOL_GOT_DISP:
/* The constant will have to be loaded from the GOT before it
is used in an address. */
if (mode != MAX_MACHINE_MODE)
return 0;
/* Fall through. */
case SYMBOL_GOT_PAGE_OFST:
/* Unless -funit-at-a-time is in effect, we can't be sure whether the
local/global classification is accurate. The worst cases are:
(1) For local symbols when generating o32 or o64 code. The assembler
will use:
lw $at,%got(symbol)
nop
...and the final address will be $at + %lo(symbol).
(2) For global symbols when -mxgot. The assembler will use:
lui $at,%got_hi(symbol)
(d)addu $at,$at,$gp
...and the final address will be $at + %got_lo(symbol). */
return 3;
case SYMBOL_GOTOFF_PAGE:
case SYMBOL_GOTOFF_DISP:
case SYMBOL_GOTOFF_CALL:
case SYMBOL_GOTOFF_LOADGP:
case SYMBOL_64_HIGH:
case SYMBOL_64_MID:
case SYMBOL_64_LOW:
case SYMBOL_TLSGD:
case SYMBOL_TLSLDM:
case SYMBOL_DTPREL:
case SYMBOL_GOTTPREL:
case SYMBOL_TPREL:
case SYMBOL_HALF:
/* A 16-bit constant formed by a single relocation, or a 32-bit
constant formed from a high 16-bit relocation and a low 16-bit
relocation. Use mips_split_p to determine which. 32-bit
constants need an "lui; addiu" sequence for normal mode and
an "li; sll; addiu" sequence for MIPS16 mode. */
return !mips_split_p[type] ? 1 : TARGET_MIPS16 ? 3 : 2;
case SYMBOL_TLS:
/* We don't treat a bare TLS symbol as a constant. */
return 0;
}
gcc_unreachable ();
}
/* If MODE is MAX_MACHINE_MODE, return the number of instructions needed
to load symbols of type TYPE into a register. Return 0 if the given
type of symbol cannot be used as an immediate operand.
Otherwise, return the number of instructions needed to load or store
values of mode MODE to or from addresses of type TYPE. Return 0 if
the given type of symbol is not valid in addresses.
In both cases, instruction counts are based off BASE_INSN_LENGTH. */
static int
mips_symbol_insns (enum mips_symbol_type type, machine_mode mode)
{
return mips_symbol_insns_1 (type, mode) * (TARGET_MIPS16 ? 2 : 1);
}
/* Implement TARGET_CANNOT_FORCE_CONST_MEM. */
static bool
mips_cannot_force_const_mem (machine_mode mode, rtx x)
{
enum mips_symbol_type type;
rtx base, offset;
/* There is no assembler syntax for expressing an address-sized
high part. */
if (GET_CODE (x) == HIGH)
return true;
/* As an optimization, reject constants that mips_legitimize_move
can expand inline.
Suppose we have a multi-instruction sequence that loads constant C
into register R. If R does not get allocated a hard register, and
R is used in an operand that allows both registers and memory
references, reload will consider forcing C into memory and using
one of the instruction's memory alternatives. Returning false
here will force it to use an input reload instead. */
if (CONST_INT_P (x) && mips_legitimate_constant_p (mode, x))
return true;
split_const (x, &base, &offset);
if (mips_symbolic_constant_p (base, SYMBOL_CONTEXT_LEA, &type))
{
/* See whether we explicitly want these symbols in the pool. */
if (mips_use_pcrel_pool_p[(int) type])
return false;
/* The same optimization as for CONST_INT. */
if (SMALL_INT (offset) && mips_symbol_insns (type, MAX_MACHINE_MODE) > 0)
return true;
/* If MIPS16 constant pools live in the text section, they should
not refer to anything that might need run-time relocation. */
if (TARGET_MIPS16_PCREL_LOADS && mips_got_symbol_type_p (type))
return true;
}
/* TLS symbols must be computed by mips_legitimize_move. */
if (tls_referenced_p (x))
return true;
return false;
}
/* Implement TARGET_USE_BLOCKS_FOR_CONSTANT_P. We can't use blocks for
constants when we're using a per-function constant pool. */
static bool
mips_use_blocks_for_constant_p (machine_mode mode ATTRIBUTE_UNUSED,
const_rtx x ATTRIBUTE_UNUSED)
{
return !TARGET_MIPS16_PCREL_LOADS;
}
/* Return true if register REGNO is a valid base register for mode MODE.
STRICT_P is true if REG_OK_STRICT is in effect. */
int
mips_regno_mode_ok_for_base_p (int regno, machine_mode mode,
bool strict_p)
{
if (!HARD_REGISTER_NUM_P (regno))
{
if (!strict_p)
return true;
regno = reg_renumber[regno];
}
/* These fake registers will be eliminated to either the stack or
hard frame pointer, both of which are usually valid base registers.
Reload deals with the cases where the eliminated form isn't valid. */
if (regno == ARG_POINTER_REGNUM || regno == FRAME_POINTER_REGNUM)
return true;
/* In MIPS16 mode, the stack pointer can only address word and doubleword
values, nothing smaller. */
if (TARGET_MIPS16 && regno == STACK_POINTER_REGNUM)
return GET_MODE_SIZE (mode) == 4 || GET_MODE_SIZE (mode) == 8;
return TARGET_MIPS16 ? M16_REG_P (regno) : GP_REG_P (regno);
}
/* Return true if X is a valid base register for mode MODE.
STRICT_P is true if REG_OK_STRICT is in effect. */
static bool
mips_valid_base_register_p (rtx x, machine_mode mode, bool strict_p)
{
if (!strict_p && GET_CODE (x) == SUBREG)
x = SUBREG_REG (x);
return (REG_P (x)
&& mips_regno_mode_ok_for_base_p (REGNO (x), mode, strict_p));
}
/* Return true if, for every base register BASE_REG, (plus BASE_REG X)
can address a value of mode MODE. */
static bool
mips_valid_offset_p (rtx x, machine_mode mode)
{
/* Check that X is a signed 16-bit number. */
if (!const_arith_operand (x, Pmode))
return false;
/* We may need to split multiword moves, so make sure that every word
is accessible. */
if (GET_MODE_SIZE (mode) > UNITS_PER_WORD
&& !SMALL_OPERAND (INTVAL (x) + GET_MODE_SIZE (mode) - UNITS_PER_WORD))
return false;
return true;
}
/* Return true if a LO_SUM can address a value of mode MODE when the
LO_SUM symbol has type SYMBOL_TYPE. */
static bool
mips_valid_lo_sum_p (enum mips_symbol_type symbol_type, machine_mode mode)
{
/* Check that symbols of type SYMBOL_TYPE can be used to access values
of mode MODE. */
if (mips_symbol_insns (symbol_type, mode) == 0)
return false;
/* Check that there is a known low-part relocation. */
if (mips_lo_relocs[symbol_type] == NULL)
return false;
/* We may need to split multiword moves, so make sure that each word
can be accessed without inducing a carry. This is mainly needed
for o64, which has historically only guaranteed 64-bit alignment
for 128-bit types. */
if (GET_MODE_SIZE (mode) > UNITS_PER_WORD
&& GET_MODE_BITSIZE (mode) > GET_MODE_ALIGNMENT (mode))
return false;
return true;
}
/* Return true if X is a valid address for machine mode MODE. If it is,
fill in INFO appropriately. STRICT_P is true if REG_OK_STRICT is in
effect. */
static bool
mips_classify_address (struct mips_address_info *info, rtx x,
machine_mode mode, bool strict_p)
{
switch (GET_CODE (x))
{
case REG:
case SUBREG:
info->type = ADDRESS_REG;
info->reg = x;
info->offset = const0_rtx;
return mips_valid_base_register_p (info->reg, mode, strict_p);
case PLUS:
info->type = ADDRESS_REG;
info->reg = XEXP (x, 0);
info->offset = XEXP (x, 1);
return (mips_valid_base_register_p (info->reg, mode, strict_p)
&& mips_valid_offset_p (info->offset, mode));
case LO_SUM:
info->type = ADDRESS_LO_SUM;
info->reg = XEXP (x, 0);
info->offset = XEXP (x, 1);
/* We have to trust the creator of the LO_SUM to do something vaguely
sane. Target-independent code that creates a LO_SUM should also
create and verify the matching HIGH. Target-independent code that
adds an offset to a LO_SUM must prove that the offset will not
induce a carry. Failure to do either of these things would be
a bug, and we are not required to check for it here. The MIPS
backend itself should only create LO_SUMs for valid symbolic
constants, with the high part being either a HIGH or a copy
of _gp. */
info->symbol_type
= mips_classify_symbolic_expression (info->offset, SYMBOL_CONTEXT_MEM);
return (mips_valid_base_register_p (info->reg, mode, strict_p)
&& mips_valid_lo_sum_p (info->symbol_type, mode));
case CONST_INT:
/* Small-integer addresses don't occur very often, but they
are legitimate if $0 is a valid base register. */
info->type = ADDRESS_CONST_INT;
return !TARGET_MIPS16 && SMALL_INT (x);
case CONST:
case LABEL_REF:
case SYMBOL_REF:
info->type = ADDRESS_SYMBOLIC;
return (mips_symbolic_constant_p (x, SYMBOL_CONTEXT_MEM,
&info->symbol_type)
&& mips_symbol_insns (info->symbol_type, mode) > 0
&& !mips_split_p[info->symbol_type]);
default:
return false;
}
}
/* Implement TARGET_LEGITIMATE_ADDRESS_P. */
static bool
mips_legitimate_address_p (machine_mode mode, rtx x, bool strict_p)
{
struct mips_address_info addr;
return mips_classify_address (&addr, x, mode, strict_p);
}
/* Return true if X is a legitimate $sp-based address for mode MODE. */
bool
mips_stack_address_p (rtx x, machine_mode mode)
{
struct mips_address_info addr;
return (mips_classify_address (&addr, x, mode, false)
&& addr.type == ADDRESS_REG
&& addr.reg == stack_pointer_rtx);
}
/* Return true if ADDR matches the pattern for the LWXS load scaled indexed
address instruction. Note that such addresses are not considered
legitimate in the TARGET_LEGITIMATE_ADDRESS_P sense, because their use
is so restricted. */
static bool
mips_lwxs_address_p (rtx addr)
{
if (ISA_HAS_LWXS
&& GET_CODE (addr) == PLUS
&& REG_P (XEXP (addr, 1)))
{
rtx offset = XEXP (addr, 0);
if (GET_CODE (offset) == MULT
&& REG_P (XEXP (offset, 0))
&& CONST_INT_P (XEXP (offset, 1))
&& INTVAL (XEXP (offset, 1)) == 4)
return true;
}
return false;
}
/* Return true if ADDR matches the pattern for the L{B,H,W,D}{,U}X load
indexed address instruction. Note that such addresses are
not considered legitimate in the TARGET_LEGITIMATE_ADDRESS_P
sense, because their use is so restricted. */
static bool
mips_lx_address_p (rtx addr, machine_mode mode)
{
if (GET_CODE (addr) != PLUS
|| !REG_P (XEXP (addr, 0))
|| !REG_P (XEXP (addr, 1)))
return false;
if (ISA_HAS_LBX && mode == QImode)
return true;
if (ISA_HAS_LHX && mode == HImode)
return true;
if (ISA_HAS_LWX && mode == SImode)
return true;
if (ISA_HAS_LDX && mode == DImode)
return true;
return false;
}
/* Return true if a value at OFFSET bytes from base register BASE can be
accessed using an unextended MIPS16 instruction. MODE is the mode of
the value.
Usually the offset in an unextended instruction is a 5-bit field.
The offset is unsigned and shifted left once for LH and SH, twice
for LW and SW, and so on. An exception is LWSP and SWSP, which have
an 8-bit immediate field that's shifted left twice. */
static bool
mips16_unextended_reference_p (machine_mode mode, rtx base,
unsigned HOST_WIDE_INT offset)
{
if (mode != BLKmode && offset % GET_MODE_SIZE (mode) == 0)
{
if (GET_MODE_SIZE (mode) == 4 && base == stack_pointer_rtx)
return offset < 256U * GET_MODE_SIZE (mode);
return offset < 32U * GET_MODE_SIZE (mode);
}
return false;
}
/* Return the number of instructions needed to load or store a value
of mode MODE at address X, assuming that BASE_INSN_LENGTH is the
length of one instruction. Return 0 if X isn't valid for MODE.
Assume that multiword moves may need to be split into word moves
if MIGHT_SPLIT_P, otherwise assume that a single load or store is
enough. */
int
mips_address_insns (rtx x, machine_mode mode, bool might_split_p)
{
struct mips_address_info addr;
int factor;
/* BLKmode is used for single unaligned loads and stores and should
not count as a multiword mode. (GET_MODE_SIZE (BLKmode) is pretty
meaningless, so we have to single it out as a special case one way
or the other.) */
if (mode != BLKmode && might_split_p)
factor = (GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
else
factor = 1;
if (mips_classify_address (&addr, x, mode, false))
switch (addr.type)
{
case ADDRESS_REG:
if (TARGET_MIPS16
&& !mips16_unextended_reference_p (mode, addr.reg,
UINTVAL (addr.offset)))
return factor * 2;
return factor;
case ADDRESS_LO_SUM:
return TARGET_MIPS16 ? factor * 2 : factor;
case ADDRESS_CONST_INT:
return factor;
case ADDRESS_SYMBOLIC:
return factor * mips_symbol_insns (addr.symbol_type, mode);
}
return 0;
}
/* Return true if X fits within an unsigned field of BITS bits that is
shifted left SHIFT bits before being used. */
bool
mips_unsigned_immediate_p (unsigned HOST_WIDE_INT x, int bits, int shift = 0)
{
return (x & ((1 << shift) - 1)) == 0 && x < ((unsigned) 1 << (shift + bits));
}
/* Return true if X fits within a signed field of BITS bits that is
shifted left SHIFT bits before being used. */
bool
mips_signed_immediate_p (unsigned HOST_WIDE_INT x, int bits, int shift = 0)
{
x += 1 << (bits + shift - 1);
return mips_unsigned_immediate_p (x, bits, shift);
}
/* Return true if X is legitimate for accessing values of mode MODE,
if it is based on a MIPS16 register, and if the offset satisfies
OFFSET_PREDICATE. */
bool
m16_based_address_p (rtx x, machine_mode mode,
insn_operand_predicate_fn offset_predicate)
{
struct mips_address_info addr;
return (mips_classify_address (&addr, x, mode, false)
&& addr.type == ADDRESS_REG
&& M16_REG_P (REGNO (addr.reg))
&& offset_predicate (addr.offset, mode));
}
/* Return true if X is a legitimate address that conforms to the requirements
for a microMIPS LWSP or SWSP insn. */
bool
lwsp_swsp_address_p (rtx x, machine_mode mode)
{
struct mips_address_info addr;
return (mips_classify_address (&addr, x, mode, false)
&& addr.type == ADDRESS_REG
&& REGNO (addr.reg) == STACK_POINTER_REGNUM
&& uw5_operand (addr.offset, mode));
}
/* Return true if X is a legitimate address with a 12-bit offset.
MODE is the mode of the value being accessed. */
bool
umips_12bit_offset_address_p (rtx x, machine_mode mode)
{
struct mips_address_info addr;
return (mips_classify_address (&addr, x, mode, false)
&& addr.type == ADDRESS_REG
&& CONST_INT_P (addr.offset)
&& UMIPS_12BIT_OFFSET_P (INTVAL (addr.offset)));
}
/* Return true if X is a legitimate address with a 9-bit offset.
MODE is the mode of the value being accessed. */
bool
mips_9bit_offset_address_p (rtx x, machine_mode mode)
{
struct mips_address_info addr;
return (mips_classify_address (&addr, x, mode, false)
&& addr.type == ADDRESS_REG
&& CONST_INT_P (addr.offset)
&& MIPS_9BIT_OFFSET_P (INTVAL (addr.offset)));
}
/* Return the number of instructions needed to load constant X,
assuming that BASE_INSN_LENGTH is the length of one instruction.
Return 0 if X isn't a valid constant. */
int
mips_const_insns (rtx x)
{
struct mips_integer_op codes[MIPS_MAX_INTEGER_OPS];
enum mips_symbol_type symbol_type;
rtx offset;
switch (GET_CODE (x))
{
case HIGH:
if (!mips_symbolic_constant_p (XEXP (x, 0), SYMBOL_CONTEXT_LEA,
&symbol_type)
|| !mips_split_p[symbol_type])
return 0;
/* This is simply an LUI for normal mode. It is an extended
LI followed by an extended SLL for MIPS16. */
return TARGET_MIPS16 ? 4 : 1;
case CONST_INT:
if (TARGET_MIPS16)
/* Unsigned 8-bit constants can be loaded using an unextended
LI instruction. Unsigned 16-bit constants can be loaded
using an extended LI. Negative constants must be loaded
using LI and then negated. */
return (IN_RANGE (INTVAL (x), 0, 255) ? 1
: SMALL_OPERAND_UNSIGNED (INTVAL (x)) ? 2
: IN_RANGE (-INTVAL (x), 0, 255) ? 2
: SMALL_OPERAND_UNSIGNED (-INTVAL (x)) ? 3
: 0);
return mips_build_integer (codes, INTVAL (x));
case CONST_DOUBLE:
case CONST_VECTOR:
/* Allow zeros for normal mode, where we can use $0. */
return !TARGET_MIPS16 && x == CONST0_RTX (GET_MODE (x)) ? 1 : 0;
case CONST:
if (CONST_GP_P (x))
return 1;
/* See if we can refer to X directly. */
if (mips_symbolic_constant_p (x, SYMBOL_CONTEXT_LEA, &symbol_type))
return mips_symbol_insns (symbol_type, MAX_MACHINE_MODE);
/* Otherwise try splitting the constant into a base and offset.
If the offset is a 16-bit value, we can load the base address
into a register and then use (D)ADDIU to add in the offset.
If the offset is larger, we can load the base and offset
into separate registers and add them together with (D)ADDU.
However, the latter is only possible before reload; during
and after reload, we must have the option of forcing the
constant into the pool instead. */
split_const (x, &x, &offset);
if (offset != 0)
{
int n = mips_const_insns (x);
if (n != 0)
{
if (SMALL_INT (offset))
return n + 1;
else if (!targetm.cannot_force_const_mem (GET_MODE (x), x))
return n + 1 + mips_build_integer (codes, INTVAL (offset));
}
}
return 0;
case SYMBOL_REF:
case LABEL_REF:
return mips_symbol_insns (mips_classify_symbol (x, SYMBOL_CONTEXT_LEA),
MAX_MACHINE_MODE);
default:
return 0;
}
}
/* X is a doubleword constant that can be handled by splitting it into
two words and loading each word separately. Return the number of
instructions required to do this, assuming that BASE_INSN_LENGTH
is the length of one instruction. */
int
mips_split_const_insns (rtx x)
{
unsigned int low, high;
low = mips_const_insns (mips_subword (x, false));
high = mips_const_insns (mips_subword (x, true));
gcc_assert (low > 0 && high > 0);
return low + high;
}
/* Return the number of instructions needed to implement INSN,
given that it loads from or stores to MEM. Assume that
BASE_INSN_LENGTH is the length of one instruction. */
int
mips_load_store_insns (rtx mem, rtx_insn *insn)
{
machine_mode mode;
bool might_split_p;
rtx set;
gcc_assert (MEM_P (mem));
mode = GET_MODE (mem);
/* Try to prove that INSN does not need to be split. */
might_split_p = GET_MODE_SIZE (mode) > UNITS_PER_WORD;
if (might_split_p)
{
set = single_set (insn);
if (set && !mips_split_move_insn_p (SET_DEST (set), SET_SRC (set), insn))
might_split_p = false;
}
return mips_address_insns (XEXP (mem, 0), mode, might_split_p);
}
/* Return the number of instructions needed for an integer division,
assuming that BASE_INSN_LENGTH is the length of one instruction. */
int
mips_idiv_insns (void)
{
int count;
count = 1;
if (TARGET_CHECK_ZERO_DIV)
{
if (GENERATE_DIVIDE_TRAPS)
count++;
else
count += 2;
}
if (TARGET_FIX_R4000 || TARGET_FIX_R4400)
count++;
return count;
}
/* Emit a move from SRC to DEST. Assume that the move expanders can
handle all moves if !can_create_pseudo_p (). The distinction is
important because, unlike emit_move_insn, the move expanders know
how to force Pmode objects into the constant pool even when the
constant pool address is not itself legitimate. */
rtx_insn *
mips_emit_move (rtx dest, rtx src)
{
return (can_create_pseudo_p ()
? emit_move_insn (dest, src)
: emit_move_insn_1 (dest, src));
}
/* Emit a move from SRC to DEST, splitting compound moves into individual
instructions. SPLIT_TYPE is the type of split to perform. */
static void
mips_emit_move_or_split (rtx dest, rtx src, enum mips_split_type split_type)
{
if (mips_split_move_p (dest, src, split_type))
mips_split_move (dest, src, split_type);
else
mips_emit_move (dest, src);
}
/* Emit an instruction of the form (set TARGET (CODE OP0)). */
static void
mips_emit_unary (enum rtx_code code, rtx target, rtx op0)
{
emit_insn (gen_rtx_SET (target, gen_rtx_fmt_e (code, GET_MODE (op0), op0)));
}
/* Compute (CODE OP0) and store the result in a new register of mode MODE.
Return that new register. */
static rtx
mips_force_unary (machine_mode mode, enum rtx_code code, rtx op0)
{
rtx reg;
reg = gen_reg_rtx (mode);
mips_emit_unary (code, reg, op0);
return reg;
}
/* Emit an instruction of the form (set TARGET (CODE OP0 OP1)). */
void
mips_emit_binary (enum rtx_code code, rtx target, rtx op0, rtx op1)
{
emit_insn (gen_rtx_SET (target, gen_rtx_fmt_ee (code, GET_MODE (target),
op0, op1)));
}
/* Compute (CODE OP0 OP1) and store the result in a new register
of mode MODE. Return that new register. */
static rtx
mips_force_binary (machine_mode mode, enum rtx_code code, rtx op0, rtx op1)
{
rtx reg;
reg = gen_reg_rtx (mode);
mips_emit_binary (code, reg, op0, op1);
return reg;
}
/* Copy VALUE to a register and return that register. If new pseudos
are allowed, copy it into a new register, otherwise use DEST. */
static rtx
mips_force_temporary (rtx dest, rtx value)
{
if (can_create_pseudo_p ())
return force_reg (Pmode, value);
else
{
mips_emit_move (dest, value);
return dest;
}
}
/* Emit a call sequence with call pattern PATTERN and return the call
instruction itself (which is not necessarily the last instruction
emitted). ORIG_ADDR is the original, unlegitimized address,
ADDR is the legitimized form, and LAZY_P is true if the call
address is lazily-bound. */
static rtx_insn *
mips_emit_call_insn (rtx pattern, rtx orig_addr, rtx addr, bool lazy_p)
{
rtx_insn *insn;
rtx reg;
insn = emit_call_insn (pattern);
if (TARGET_MIPS16 && mips_use_pic_fn_addr_reg_p (orig_addr))
{
/* MIPS16 JALRs only take MIPS16 registers. If the target
function requires $25 to be valid on entry, we must copy it
there separately. The move instruction can be put in the
call's delay slot. */
reg = gen_rtx_REG (Pmode, PIC_FUNCTION_ADDR_REGNUM);
emit_insn_before (gen_move_insn (reg, addr), insn);
use_reg (&CALL_INSN_FUNCTION_USAGE (insn), reg);
}
if (lazy_p)
/* Lazy-binding stubs require $gp to be valid on entry. */
use_reg (&CALL_INSN_FUNCTION_USAGE (insn), pic_offset_table_rtx);
if (TARGET_USE_GOT)
{
/* See the comment above load_call<mode> for details. */
use_reg (&CALL_INSN_FUNCTION_USAGE (insn),
gen_rtx_REG (Pmode, GOT_VERSION_REGNUM));
emit_insn (gen_update_got_version ());
}
if (TARGET_MIPS16
&& TARGET_EXPLICIT_RELOCS
&& TARGET_CALL_CLOBBERED_GP)
{
rtx post_call_tmp_reg = gen_rtx_REG (word_mode, POST_CALL_TMP_REG);
clobber_reg (&CALL_INSN_FUNCTION_USAGE (insn), post_call_tmp_reg);
}
return insn;
}
/* Wrap symbol or label BASE in an UNSPEC address of type SYMBOL_TYPE,
then add CONST_INT OFFSET to the result. */
static rtx
mips_unspec_address_offset (rtx base, rtx offset,
enum mips_symbol_type symbol_type)
{
base = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, base),
UNSPEC_ADDRESS_FIRST + symbol_type);
if (offset != const0_rtx)
base = gen_rtx_PLUS (Pmode, base, offset);
return gen_rtx_CONST (Pmode, base);
}
/* Return an UNSPEC address with underlying address ADDRESS and symbol
type SYMBOL_TYPE. */
rtx
mips_unspec_address (rtx address, enum mips_symbol_type symbol_type)
{
rtx base, offset;
split_const (address, &base, &offset);
return mips_unspec_address_offset (base, offset, symbol_type);
}
/* If OP is an UNSPEC address, return the address to which it refers,
otherwise return OP itself. */
rtx
mips_strip_unspec_address (rtx op)
{
rtx base, offset;
split_const (op, &base, &offset);
if (UNSPEC_ADDRESS_P (base))
op = plus_constant (Pmode, UNSPEC_ADDRESS (base), INTVAL (offset));
return op;
}
/* If mips_unspec_address (ADDR, SYMBOL_TYPE) is a 32-bit value, add the
high part to BASE and return the result. Just return BASE otherwise.
TEMP is as for mips_force_temporary.
The returned expression can be used as the first operand to a LO_SUM. */
static rtx
mips_unspec_offset_high (rtx temp, rtx base, rtx addr,
enum mips_symbol_type symbol_type)
{
if (mips_split_p[symbol_type])
{
addr = gen_rtx_HIGH (Pmode, mips_unspec_address (addr, symbol_type));
addr = mips_force_temporary (temp, addr);
base = mips_force_temporary (temp, gen_rtx_PLUS (Pmode, addr, base));
}
return base;
}
/* Return an instruction that copies $gp into register REG. We want
GCC to treat the register's value as constant, so that its value
can be rematerialized on demand. */
static rtx
gen_load_const_gp (rtx reg)
{
return PMODE_INSN (gen_load_const_gp, (reg));
}
/* Return a pseudo register that contains the value of $gp throughout
the current function. Such registers are needed by MIPS16 functions,
for which $gp itself is not a valid base register or addition operand. */
static rtx
mips16_gp_pseudo_reg (void)
{
if (cfun->machine->mips16_gp_pseudo_rtx == NULL_RTX)
{
rtx_insn *scan;
cfun->machine->mips16_gp_pseudo_rtx = gen_reg_rtx (Pmode);
push_topmost_sequence ();
scan = get_insns ();
while (NEXT_INSN (scan) && !INSN_P (NEXT_INSN (scan)))
scan = NEXT_INSN (scan);
rtx set = gen_load_const_gp (cfun->machine->mips16_gp_pseudo_rtx);
rtx_insn *insn = emit_insn_after (set, scan);
INSN_LOCATION (insn) = 0;
pop_topmost_sequence ();
}
return cfun->machine->mips16_gp_pseudo_rtx;
}
/* Return a base register that holds pic_offset_table_rtx.
TEMP, if nonnull, is a scratch Pmode base register. */
rtx
mips_pic_base_register (rtx temp)
{
if (!TARGET_MIPS16)
return pic_offset_table_rtx;
if (currently_expanding_to_rtl)
return mips16_gp_pseudo_reg ();
if (can_create_pseudo_p ())
temp = gen_reg_rtx (Pmode);
if (TARGET_USE_GOT)
/* The first post-reload split exposes all references to $gp
(both uses and definitions). All references must remain
explicit after that point.
It is safe to introduce uses of $gp at any time, so for
simplicity, we do that before the split too. */
mips_emit_move (temp, pic_offset_table_rtx);
else
emit_insn (gen_load_const_gp (temp));
return temp;
}
/* Return the RHS of a load_call<mode> insn. */
static rtx
mips_unspec_call (rtx reg, rtx symbol)
{
rtvec vec;
vec = gen_rtvec (3, reg, symbol, gen_rtx_REG (SImode, GOT_VERSION_REGNUM));
return gen_rtx_UNSPEC (Pmode, vec, UNSPEC_LOAD_CALL);
}
/* If SRC is the RHS of a load_call<mode> insn, return the underlying symbol
reference. Return NULL_RTX otherwise. */
static rtx
mips_strip_unspec_call (rtx src)
{
if (GET_CODE (src) == UNSPEC && XINT (src, 1) == UNSPEC_LOAD_CALL)
return mips_strip_unspec_address (XVECEXP (src, 0, 1));
return NULL_RTX;
}
/* Create and return a GOT reference of type TYPE for address ADDR.
TEMP, if nonnull, is a scratch Pmode base register. */
rtx
mips_got_load (rtx temp, rtx addr, enum mips_symbol_type type)
{
rtx base, high, lo_sum_symbol;
base = mips_pic_base_register (temp);
/* If we used the temporary register to load $gp, we can't use
it for the high part as well. */
if (temp != NULL && reg_overlap_mentioned_p (base, temp))
temp = NULL;
high = mips_unspec_offset_high (temp, base, addr, type);
lo_sum_symbol = mips_unspec_address (addr, type);
if (type == SYMBOL_GOTOFF_CALL)
return mips_unspec_call (high, lo_sum_symbol);
else
return PMODE_INSN (gen_unspec_got, (high, lo_sum_symbol));
}
/* If MODE is MAX_MACHINE_MODE, ADDR appears as a move operand, otherwise
it appears in a MEM of that mode. Return true if ADDR is a legitimate
constant in that context and can be split into high and low parts.
If so, and if LOW_OUT is nonnull, emit the high part and store the
low part in *LOW_OUT. Leave *LOW_OUT unchanged otherwise.
TEMP is as for mips_force_temporary and is used to load the high
part into a register.
When MODE is MAX_MACHINE_MODE, the low part is guaranteed to be
a legitimize SET_SRC for an .md pattern, otherwise the low part
is guaranteed to be a legitimate address for mode MODE. */
bool
mips_split_symbol (rtx temp, rtx addr, machine_mode mode, rtx *low_out)
{
enum mips_symbol_context context;
enum mips_symbol_type symbol_type;
rtx high;
context = (mode == MAX_MACHINE_MODE
? SYMBOL_CONTEXT_LEA
: SYMBOL_CONTEXT_MEM);
if (GET_CODE (addr) == HIGH && context == SYMBOL_CONTEXT_LEA)
{
addr = XEXP (addr, 0);
if (mips_symbolic_constant_p (addr, context, &symbol_type)
&& mips_symbol_insns (symbol_type, mode) > 0
&& mips_split_hi_p[symbol_type])
{
if (low_out)
switch (symbol_type)
{
case SYMBOL_GOT_PAGE_OFST:
/* The high part of a page/ofst pair is loaded from the GOT. */
*low_out = mips_got_load (temp, addr, SYMBOL_GOTOFF_PAGE);
break;
default:
gcc_unreachable ();
}
return true;
}
}
else
{
if (mips_symbolic_constant_p (addr, context, &symbol_type)
&& mips_symbol_insns (symbol_type, mode) > 0
&& mips_split_p[symbol_type])
{
if (low_out)
switch (symbol_type)
{
case SYMBOL_GOT_DISP:
/* SYMBOL_GOT_DISP symbols are loaded from the GOT. */
*low_out = mips_got_load (temp, addr, SYMBOL_GOTOFF_DISP);
break;
case SYMBOL_GP_RELATIVE:
high = mips_pic_base_register (temp);
*low_out = gen_rtx_LO_SUM (Pmode, high, addr);
break;
default:
high = gen_rtx_HIGH (Pmode, copy_rtx (addr));
high = mips_force_temporary (temp, high);
*low_out = gen_rtx_LO_SUM (Pmode, high, addr);
break;
}
return true;
}
}
return false;
}
/* Return a legitimate address for REG + OFFSET. TEMP is as for
mips_force_temporary; it is only needed when OFFSET is not a
SMALL_OPERAND. */
static rtx
mips_add_offset (rtx temp, rtx reg, HOST_WIDE_INT offset)
{
if (!SMALL_OPERAND (offset))
{
rtx high;
if (TARGET_MIPS16)
{
/* Load the full offset into a register so that we can use
an unextended instruction for the address itself. */
high = GEN_INT (offset);
offset = 0;
}
else
{
/* Leave OFFSET as a 16-bit offset and put the excess in HIGH.
The addition inside the macro CONST_HIGH_PART may cause an
overflow, so we need to force a sign-extension check. */
high = gen_int_mode (CONST_HIGH_PART (offset), Pmode);
offset = CONST_LOW_PART (offset);
}
high = mips_force_temporary (temp, high);
reg = mips_force_temporary (temp, gen_rtx_PLUS (Pmode, high, reg));
}
return plus_constant (Pmode, reg, offset);
}
/* The __tls_get_attr symbol. */
static GTY(()) rtx mips_tls_symbol;
/* Return an instruction sequence that calls __tls_get_addr. SYM is
the TLS symbol we are referencing and TYPE is the symbol type to use
(either global dynamic or local dynamic). V0 is an RTX for the
return value location. */
static rtx
mips_call_tls_get_addr (rtx sym, enum mips_symbol_type type, rtx v0)
{
rtx insn, loc, a0;
a0 = gen_rtx_REG (Pmode, GP_ARG_FIRST);
if (!mips_tls_symbol)
mips_tls_symbol = init_one_libfunc ("__tls_get_addr");
loc = mips_unspec_address (sym, type);
start_sequence ();
emit_insn (gen_rtx_SET (a0, gen_rtx_LO_SUM (Pmode, pic_offset_table_rtx,
loc)));
insn = mips_expand_call (MIPS_CALL_NORMAL, v0, mips_tls_symbol,
const0_rtx, NULL_RTX, false);
RTL_CONST_CALL_P (insn) = 1;
use_reg (&CALL_INSN_FUNCTION_USAGE (insn), a0);
insn = get_insns ();
end_sequence ();
return insn;
}
/* Return a pseudo register that contains the current thread pointer. */
rtx
mips_expand_thread_pointer (rtx tp)
{
rtx fn;
if (TARGET_MIPS16)
{
if (!mips16_rdhwr_stub)
mips16_rdhwr_stub = new mips16_rdhwr_one_only_stub ();
fn = mips16_stub_call_address (mips16_rdhwr_stub);
emit_insn (PMODE_INSN (gen_tls_get_tp_mips16, (tp, fn)));
}
else
emit_insn (PMODE_INSN (gen_tls_get_tp, (tp)));
return tp;
}
static rtx
mips_get_tp (void)
{
return mips_expand_thread_pointer (gen_reg_rtx (Pmode));
}
/* Generate the code to access LOC, a thread-local SYMBOL_REF, and return
its address. The return value will be both a valid address and a valid
SET_SRC (either a REG or a LO_SUM). */
static rtx
mips_legitimize_tls_address (rtx loc)
{
rtx dest, insn, v0, tp, tmp1, tmp2, eqv, offset;
enum tls_model model;
model = SYMBOL_REF_TLS_MODEL (loc);
/* Only TARGET_ABICALLS code can have more than one module; other
code must be static and should not use a GOT. All TLS models
reduce to local exec in this situation. */
if (!TARGET_ABICALLS)
model = TLS_MODEL_LOCAL_EXEC;
switch (model)
{
case TLS_MODEL_GLOBAL_DYNAMIC:
v0 = gen_rtx_REG (Pmode, GP_RETURN);
insn = mips_call_tls_get_addr (loc, SYMBOL_TLSGD, v0);
dest = gen_reg_rtx (Pmode);
emit_libcall_block (insn, dest, v0, loc);
break;
case TLS_MODEL_LOCAL_DYNAMIC:
v0 = gen_rtx_REG (Pmode, GP_RETURN);
insn = mips_call_tls_get_addr (loc, SYMBOL_TLSLDM, v0);
tmp1 = gen_reg_rtx (Pmode);
/* Attach a unique REG_EQUIV, to allow the RTL optimizers to
share the LDM result with other LD model accesses. */
eqv = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const0_rtx),
UNSPEC_TLS_LDM);
emit_libcall_block (insn, tmp1, v0, eqv);
offset = mips_unspec_address (loc, SYMBOL_DTPREL);
if (mips_split_p[SYMBOL_DTPREL])
{
tmp2 = mips_unspec_offset_high (NULL, tmp1, loc, SYMBOL_DTPREL);
dest = gen_rtx_LO_SUM (Pmode, tmp2, offset);
}
else
dest = expand_binop (Pmode, add_optab, tmp1, offset,
0, 0, OPTAB_DIRECT);
break;
case TLS_MODEL_INITIAL_EXEC:
tp = mips_get_tp ();
tmp1 = gen_reg_rtx (Pmode);
tmp2 = mips_unspec_address (loc, SYMBOL_GOTTPREL);
if (Pmode == DImode)
emit_insn (gen_load_gotdi (tmp1, pic_offset_table_rtx, tmp2));
else
emit_insn (gen_load_gotsi (tmp1, pic_offset_table_rtx, tmp2));
dest = gen_reg_rtx (Pmode);
emit_insn (gen_add3_insn (dest, tmp1, tp));
break;
case TLS_MODEL_LOCAL_EXEC:
tmp1 = mips_get_tp ();
offset = mips_unspec_address (loc, SYMBOL_TPREL);
if (mips_split_p[SYMBOL_TPREL])
{
tmp2 = mips_unspec_offset_high (NULL, tmp1, loc, SYMBOL_TPREL);
dest = gen_rtx_LO_SUM (Pmode, tmp2, offset);
}
else
dest = expand_binop (Pmode, add_optab, tmp1, offset,
0, 0, OPTAB_DIRECT);
break;
default:
gcc_unreachable ();
}
return dest;
}
/* Implement "TARGET = __builtin_mips_get_fcsr ()" for MIPS16,
using a stub. */
void
mips16_expand_get_fcsr (rtx target)
{
if (!mips16_get_fcsr_stub)
mips16_get_fcsr_stub = new mips16_get_fcsr_one_only_stub ();
rtx fn = mips16_stub_call_address (mips16_get_fcsr_stub);
emit_insn (PMODE_INSN (gen_mips_get_fcsr_mips16, (fn)));
emit_move_insn (target, gen_rtx_REG (SImode, GET_FCSR_REGNUM));
}
/* Implement __builtin_mips_set_fcsr (TARGET) for MIPS16, using a stub. */
void
mips16_expand_set_fcsr (rtx newval)
{
if (!mips16_set_fcsr_stub)
mips16_set_fcsr_stub = new mips16_set_fcsr_one_only_stub ();
rtx fn = mips16_stub_call_address (mips16_set_fcsr_stub);
emit_move_insn (gen_rtx_REG (SImode, SET_FCSR_REGNUM), newval);
emit_insn (PMODE_INSN (gen_mips_set_fcsr_mips16, (fn)));
}
/* If X is not a valid address for mode MODE, force it into a register. */
static rtx
mips_force_address (rtx x, machine_mode mode)
{
if (!mips_legitimate_address_p (mode, x, false))
x = force_reg (Pmode, x);
return x;
}
/* This function is used to implement LEGITIMIZE_ADDRESS. If X can
be legitimized in a way that the generic machinery might not expect,
return a new address, otherwise return NULL. MODE is the mode of
the memory being accessed. */
static rtx
mips_legitimize_address (rtx x, rtx oldx ATTRIBUTE_UNUSED,
machine_mode mode)
{
rtx base, addr;
HOST_WIDE_INT offset;
if (mips_tls_symbol_p (x))
return mips_legitimize_tls_address (x);
/* See if the address can split into a high part and a LO_SUM. */
if (mips_split_symbol (NULL, x, mode, &addr))
return mips_force_address (addr, mode);
/* Handle BASE + OFFSET using mips_add_offset. */
mips_split_plus (x, &base, &offset);
if (offset != 0)
{
if (!mips_valid_base_register_p (base, mode, false))
base = copy_to_mode_reg (Pmode, base);
addr = mips_add_offset (NULL, base, offset);
return mips_force_address (addr, mode);
}
return x;
}
/* Load VALUE into DEST. TEMP is as for mips_force_temporary. */
void
mips_move_integer (rtx temp, rtx dest, unsigned HOST_WIDE_INT value)
{
struct mips_integer_op codes[MIPS_MAX_INTEGER_OPS];
machine_mode mode;
unsigned int i, num_ops;
rtx x;
mode = GET_MODE (dest);
num_ops = mips_build_integer (codes, value);
/* Apply each binary operation to X. Invariant: X is a legitimate
source operand for a SET pattern. */
x = GEN_INT (codes[0].value);
for (i = 1; i < num_ops; i++)
{
if (!can_create_pseudo_p ())
{
emit_insn (gen_rtx_SET (temp, x));
x = temp;
}
else
x = force_reg (mode, x);
x = gen_rtx_fmt_ee (codes[i].code, mode, x, GEN_INT (codes[i].value));
}
emit_insn (gen_rtx_SET (dest, x));
}
/* Subroutine of mips_legitimize_move. Move constant SRC into register
DEST given that SRC satisfies immediate_operand but doesn't satisfy
move_operand. */
static void
mips_legitimize_const_move (machine_mode mode, rtx dest, rtx src)
{
rtx base, offset;
/* Split moves of big integers into smaller pieces. */
if (splittable_const_int_operand (src, mode))
{
mips_move_integer (dest, dest, INTVAL (src));
return;
}
/* Split moves of symbolic constants into high/low pairs. */
if (mips_split_symbol (dest, src, MAX_MACHINE_MODE, &src))
{
emit_insn (gen_rtx_SET (dest, src));
return;
}
/* Generate the appropriate access sequences for TLS symbols. */
if (mips_tls_symbol_p (src))
{
mips_emit_move (dest, mips_legitimize_tls_address (src));
return;
}
/* If we have (const (plus symbol offset)), and that expression cannot
be forced into memory, load the symbol first and add in the offset.
In non-MIPS16 mode, prefer to do this even if the constant _can_ be
forced into memory, as it usually produces better code. */
split_const (src, &base, &offset);
if (offset != const0_rtx
&& (targetm.cannot_force_const_mem (mode, src)
|| (!TARGET_MIPS16 && can_create_pseudo_p ())))
{
base = mips_force_temporary (dest, base);
mips_emit_move (dest, mips_add_offset (NULL, base, INTVAL (offset)));
return;
}
src = force_const_mem (mode, src);
/* When using explicit relocs, constant pool references are sometimes
not legitimate addresses. */
mips_split_symbol (dest, XEXP (src, 0), mode, &XEXP (src, 0));
mips_emit_move (dest, src);
}
/* If (set DEST SRC) is not a valid move instruction, emit an equivalent
sequence that is valid. */
bool
mips_legitimize_move (machine_mode mode, rtx dest, rtx src)
{
if (!register_operand (dest, mode) && !reg_or_0_operand (src, mode))
{
mips_emit_move (dest, force_reg (mode, src));
return true;
}
/* We need to deal with constants that would be legitimate
immediate_operands but aren't legitimate move_operands. */
if (CONSTANT_P (src) && !move_operand (src, mode))
{
mips_legitimize_const_move (mode, dest, src);
set_unique_reg_note (get_last_insn (), REG_EQUAL, copy_rtx (src));
return true;
}
return false;
}
/* Return true if value X in context CONTEXT is a small-data address
that can be rewritten as a LO_SUM. */
static bool
mips_rewrite_small_data_p (rtx x, enum mips_symbol_context context)
{
enum mips_symbol_type symbol_type;
return (mips_lo_relocs[SYMBOL_GP_RELATIVE]
&& !mips_split_p[SYMBOL_GP_RELATIVE]
&& mips_symbolic_constant_p (x, context, &symbol_type)
&& symbol_type == SYMBOL_GP_RELATIVE);
}
/* Return true if OP refers to small data symbols directly, not through
a LO_SUM. CONTEXT is the context in which X appears. */
static int
mips_small_data_pattern_1 (rtx x, enum mips_symbol_context context)
{
subrtx_var_iterator::array_type array;
FOR_EACH_SUBRTX_VAR (iter, array, x, ALL)
{
rtx x = *iter;
/* Ignore things like "g" constraints in asms. We make no particular
guarantee about which symbolic constants are acceptable as asm operands
versus which must be forced into a GPR. */
if (GET_CODE (x) == LO_SUM || GET_CODE (x) == ASM_OPERANDS)
iter.skip_subrtxes ();
else if (MEM_P (x))
{
if (mips_small_data_pattern_1 (XEXP (x, 0), SYMBOL_CONTEXT_MEM))
return true;
iter.skip_subrtxes ();
}
else if (mips_rewrite_small_data_p (x, context))
return true;
}
return false;
}
/* Return true if OP refers to small data symbols directly, not through
a LO_SUM. */
bool
mips_small_data_pattern_p (rtx op)
{
return mips_small_data_pattern_1 (op, SYMBOL_CONTEXT_LEA);
}
/* Rewrite *LOC so that it refers to small data using explicit
relocations. CONTEXT is the context in which *LOC appears. */
static void
mips_rewrite_small_data_1 (rtx *loc, enum mips_symbol_context context)
{
subrtx_ptr_iterator::array_type array;
FOR_EACH_SUBRTX_PTR (iter, array, loc, ALL)
{
rtx *loc = *iter;
if (MEM_P (*loc))
{
mips_rewrite_small_data_1 (&XEXP (*loc, 0), SYMBOL_CONTEXT_MEM);
iter.skip_subrtxes ();
}
else if (mips_rewrite_small_data_p (*loc, context))
{
*loc = gen_rtx_LO_SUM (Pmode, pic_offset_table_rtx, *loc);
iter.skip_subrtxes ();
}
else if (GET_CODE (*loc) == LO_SUM)
iter.skip_subrtxes ();
}
}
/* Rewrite instruction pattern PATTERN so that it refers to small data
using explicit relocations. */
rtx
mips_rewrite_small_data (rtx pattern)
{
pattern = copy_insn (pattern);
mips_rewrite_small_data_1 (&pattern, SYMBOL_CONTEXT_LEA);
return pattern;
}
/* The cost of loading values from the constant pool. It should be
larger than the cost of any constant we want to synthesize inline. */
#define CONSTANT_POOL_COST COSTS_N_INSNS (TARGET_MIPS16 ? 4 : 8)
/* Return the cost of X when used as an operand to the MIPS16 instruction
that implements CODE. Return -1 if there is no such instruction, or if
X is not a valid immediate operand for it. */
static int
mips16_constant_cost (int code, HOST_WIDE_INT x)
{
switch (code)
{
case ASHIFT:
case ASHIFTRT:
case LSHIFTRT:
/* Shifts by between 1 and 8 bits (inclusive) are unextended,
other shifts are extended. The shift patterns truncate the shift
count to the right size, so there are no out-of-range values. */
if (IN_RANGE (x, 1, 8))
return 0;
return COSTS_N_INSNS (1);
case PLUS:
if (IN_RANGE (x, -128, 127))
return 0;
if (SMALL_OPERAND (x))
return COSTS_N_INSNS (1);
return -1;
case LEU:
/* Like LE, but reject the always-true case. */
if (x == -1)
return -1;
case LE:
/* We add 1 to the immediate and use SLT. */
x += 1;
case XOR:
/* We can use CMPI for an xor with an unsigned 16-bit X. */
case LT:
case LTU:
if (IN_RANGE (x, 0, 255))
return 0;
if (SMALL_OPERAND_UNSIGNED (x))
return COSTS_N_INSNS (1);
return -1;
case EQ:
case NE:
/* Equality comparisons with 0 are cheap. */
if (x == 0)
return 0;
return -1;
default:
return -1;
}
}
/* Return true if there is a non-MIPS16 instruction that implements CODE
and if that instruction accepts X as an immediate operand. */
static int
mips_immediate_operand_p (int code, HOST_WIDE_INT x)
{
switch (code)
{
case ASHIFT:
case ASHIFTRT:
case LSHIFTRT:
/* All shift counts are truncated to a valid constant. */
return true;
case ROTATE:
case ROTATERT:
/* Likewise rotates, if the target supports rotates at all. */
return ISA_HAS_ROR;
case AND:
case IOR:
case XOR:
/* These instructions take 16-bit unsigned immediates. */
return SMALL_OPERAND_UNSIGNED (x);
case PLUS:
case LT:
case LTU:
/* These instructions take 16-bit signed immediates. */
return SMALL_OPERAND (x);
case EQ:
case NE:
case GT:
case GTU:
/* The "immediate" forms of these instructions are really
implemented as comparisons with register 0. */
return x == 0;
case GE:
case GEU:
/* Likewise, meaning that the only valid immediate operand is 1. */
return x == 1;
case LE:
/* We add 1 to the immediate and use SLT. */
return SMALL_OPERAND (x + 1);
case LEU:
/* Likewise SLTU, but reject the always-true case. */
return SMALL_OPERAND (x + 1) && x + 1 != 0;
case SIGN_EXTRACT:
case ZERO_EXTRACT:
/* The bit position and size are immediate operands. */
return ISA_HAS_EXT_INS;
default:
/* By default assume that $0 can be used for 0. */
return x == 0;
}
}
/* Return the cost of binary operation X, given that the instruction
sequence for a word-sized or smaller operation has cost SINGLE_COST
and that the sequence of a double-word operation has cost DOUBLE_COST.
If SPEED is true, optimize for speed otherwise optimize for size. */
static int
mips_binary_cost (rtx x, int single_cost, int double_cost, bool speed)
{
int cost;
if (GET_MODE_SIZE (GET_MODE (x)) == UNITS_PER_WORD * 2)
cost = double_cost;
else
cost = single_cost;
return (cost
+ set_src_cost (XEXP (x, 0), GET_MODE (x), speed)
+ rtx_cost (XEXP (x, 1), GET_MODE (x), GET_CODE (x), 1, speed));
}
/* Return the cost of floating-point multiplications of mode MODE. */
static int
mips_fp_mult_cost (machine_mode mode)
{
return mode == DFmode ? mips_cost->fp_mult_df : mips_cost->fp_mult_sf;
}
/* Return the cost of floating-point divisions of mode MODE. */
static int
mips_fp_div_cost (machine_mode mode)
{
return mode == DFmode ? mips_cost->fp_div_df : mips_cost->fp_div_sf;
}
/* Return the cost of sign-extending OP to mode MODE, not including the
cost of OP itself. */
static int
mips_sign_extend_cost (machine_mode mode, rtx op)
{
if (MEM_P (op))
/* Extended loads are as cheap as unextended ones. */
return 0;
if (TARGET_64BIT && mode == DImode && GET_MODE (op) == SImode)
/* A sign extension from SImode to DImode in 64-bit mode is free. */
return 0;
if (ISA_HAS_SEB_SEH || GENERATE_MIPS16E)
/* We can use SEB or SEH. */
return COSTS_N_INSNS (1);
/* We need to use a shift left and a shift right. */
return COSTS_N_INSNS (TARGET_MIPS16 ? 4 : 2);
}
/* Return the cost of zero-extending OP to mode MODE, not including the
cost of OP itself. */
static int
mips_zero_extend_cost (machine_mode mode, rtx op)
{
if (MEM_P (op))
/* Extended loads are as cheap as unextended ones. */
return 0;
if (TARGET_64BIT && mode == DImode && GET_MODE (op) == SImode)
/* We need a shift left by 32 bits and a shift right by 32 bits. */
return COSTS_N_INSNS (TARGET_MIPS16 ? 4 : 2);
if (GENERATE_MIPS16E)
/* We can use ZEB or ZEH. */
return COSTS_N_INSNS (1);
if (TARGET_MIPS16)
/* We need to load 0xff or 0xffff into a register and use AND. */
return COSTS_N_INSNS (GET_MODE (op) == QImode ? 2 : 3);
/* We can use ANDI. */
return COSTS_N_INSNS (1);
}
/* Return the cost of moving between two registers of mode MODE,
assuming that the move will be in pieces of at most UNITS bytes. */
static int
mips_set_reg_reg_piece_cost (machine_mode mode, unsigned int units)
{
return COSTS_N_INSNS ((GET_MODE_SIZE (mode) + units - 1) / units);
}
/* Return the cost of moving between two registers of mode MODE. */
static int
mips_set_reg_reg_cost (machine_mode mode)
{
switch (GET_MODE_CLASS (mode))
{
case MODE_CC:
return mips_set_reg_reg_piece_cost (mode, GET_MODE_SIZE (CCmode));
case MODE_FLOAT:
case MODE_COMPLEX_FLOAT:
case MODE_VECTOR_FLOAT:
if (TARGET_HARD_FLOAT)
return mips_set_reg_reg_piece_cost (mode, UNITS_PER_HWFPVALUE);
/* Fall through */
default:
return mips_set_reg_reg_piece_cost (mode, UNITS_PER_WORD);
}
}
/* Implement TARGET_RTX_COSTS. */
static bool
mips_rtx_costs (rtx x, machine_mode mode, int outer_code,
int opno ATTRIBUTE_UNUSED, int *total, bool speed)
{
int code = GET_CODE (x);
bool float_mode_p = FLOAT_MODE_P (mode);
int cost;
rtx addr;
/* The cost of a COMPARE is hard to define for MIPS. COMPAREs don't
appear in the instruction stream, and the cost of a comparison is
really the cost of the branch or scc condition. At the time of
writing, GCC only uses an explicit outer COMPARE code when optabs
is testing whether a constant is expensive enough to force into a
register. We want optabs to pass such constants through the MIPS
expanders instead, so make all constants very cheap here. */
if (outer_code == COMPARE)
{
gcc_assert (CONSTANT_P (x));
*total = 0;
return true;
}
switch (code)
{
case CONST_INT:
/* Treat *clear_upper32-style ANDs as having zero cost in the
second operand. The cost is entirely in the first operand.
??? This is needed because we would otherwise try to CSE
the constant operand. Although that's the right thing for
instructions that continue to be a register operation throughout
compilation, it is disastrous for instructions that could
later be converted into a memory operation. */
if (TARGET_64BIT
&& outer_code == AND
&& UINTVAL (x) == 0xffffffff)
{
*total = 0;
return true;
}
if (TARGET_MIPS16)
{
cost = mips16_constant_cost (outer_code, INTVAL (x));
if (cost >= 0)
{
*total = cost;
return true;
}
}
else
{
/* When not optimizing for size, we care more about the cost
of hot code, and hot code is often in a loop. If a constant
operand needs to be forced into a register, we will often be
able to hoist the constant load out of the loop, so the load
should not contribute to the cost. */
if (speed || mips_immediate_operand_p (outer_code, INTVAL (x)))
{
*total = 0;
return true;
}
}
/* Fall through. */
case CONST:
case SYMBOL_REF:
case LABEL_REF:
case CONST_DOUBLE:
if (force_to_mem_operand (x, VOIDmode))
{
*total = COSTS_N_INSNS (1);
return true;
}
cost = mips_const_insns (x);
if (cost > 0)
{
/* If the constant is likely to be stored in a GPR, SETs of
single-insn constants are as cheap as register sets; we
never want to CSE them.
Don't reduce the cost of storing a floating-point zero in
FPRs. If we have a zero in an FPR for other reasons, we
can get better cfg-cleanup and delayed-branch results by
using it consistently, rather than using $0 sometimes and
an FPR at other times. Also, moves between floating-point
registers are sometimes cheaper than (D)MTC1 $0. */
if (cost == 1
&& outer_code == SET
&& !(float_mode_p && TARGET_HARD_FLOAT))
cost = 0;
/* When non-MIPS16 code loads a constant N>1 times, we rarely
want to CSE the constant itself. It is usually better to
have N copies of the last operation in the sequence and one
shared copy of the other operations. (Note that this is
not true for MIPS16 code, where the final operation in the
sequence is often an extended instruction.)
Also, if we have a CONST_INT, we don't know whether it is
for a word or doubleword operation, so we cannot rely on
the result of mips_build_integer. */
else if (!TARGET_MIPS16
&& (outer_code == SET || GET_MODE (x) == VOIDmode))
cost = 1;
*total = COSTS_N_INSNS (cost);
return true;
}
/* The value will need to be fetched from the constant pool. */
*total = CONSTANT_POOL_COST;
return true;
case MEM:
/* If the address is legitimate, return the number of
instructions it needs. */
addr = XEXP (x, 0);
cost = mips_address_insns (addr, mode, true);
if (cost > 0)
{
*total = COSTS_N_INSNS (cost + 1);
return true;
}
/* Check for a scaled indexed address. */
if (mips_lwxs_address_p (addr)
|| mips_lx_address_p (addr, mode))
{
*total = COSTS_N_INSNS (2);
return true;
}
/* Otherwise use the default handling. */
return false;
case FFS:
*total = COSTS_N_INSNS (6);
return false;
case NOT:
*total = COSTS_N_INSNS (GET_MODE_SIZE (mode) > UNITS_PER_WORD ? 2 : 1);
return false;
case AND:
/* Check for a *clear_upper32 pattern and treat it like a zero
extension. See the pattern's comment for details. */
if (TARGET_64BIT
&& mode == DImode
&& CONST_INT_P (XEXP (x, 1))
&& UINTVAL (XEXP (x, 1)) == 0xffffffff)
{
*total = (mips_zero_extend_cost (mode, XEXP (x, 0))
+ set_src_cost (XEXP (x, 0), mode, speed));
return true;
}
if (ISA_HAS_CINS && CONST_INT_P (XEXP (x, 1)))
{
rtx op = XEXP (x, 0);
if (GET_CODE (op) == ASHIFT
&& CONST_INT_P (XEXP (op, 1))
&& mask_low_and_shift_p (mode, XEXP (x, 1), XEXP (op, 1), 32))
{
*total = COSTS_N_INSNS (1);
*total += set_src_cost (XEXP (op, 0), mode, speed);
return true;
}
}
/* (AND (NOT op0) (NOT op1) is a nor operation that can be done in
a single instruction. */
if (!TARGET_MIPS16
&& GET_CODE (XEXP (x, 0)) == NOT
&& GET_CODE (XEXP (x, 1)) == NOT)
{
cost = GET_MODE_SIZE (mode) > UNITS_PER_WORD ? 2 : 1;
*total = (COSTS_N_INSNS (cost)
+ set_src_cost (XEXP (XEXP (x, 0), 0), mode, speed)
+ set_src_cost (XEXP (XEXP (x, 1), 0), mode, speed));
return true;
}
/* Fall through. */
case IOR:
case XOR:
/* Double-word operations use two single-word operations. */
*total = mips_binary_cost (x, COSTS_N_INSNS (1), COSTS_N_INSNS (2),
speed);
return true;
case ASHIFT:
case ASHIFTRT:
case LSHIFTRT:
case ROTATE:
case ROTATERT:
if (CONSTANT_P (XEXP (x, 1)))
*total = mips_binary_cost (x, COSTS_N_INSNS (1), COSTS_N_INSNS (4),
speed);
else
*total = mips_binary_cost (x, COSTS_N_INSNS (1), COSTS_N_INSNS (12),
speed);
return true;
case ABS:
if (float_mode_p)
*total = mips_cost->fp_add;
else
*total = COSTS_N_INSNS (4);
return false;
case LO_SUM:
/* Low-part immediates need an extended MIPS16 instruction. */
*total = (COSTS_N_INSNS (TARGET_MIPS16 ? 2 : 1)
+ set_src_cost (XEXP (x, 0), mode, speed));
return true;
case LT:
case LTU:
case LE:
case LEU:
case GT:
case GTU:
case GE:
case GEU:
case EQ:
case NE:
case UNORDERED:
case LTGT:
/* Branch comparisons have VOIDmode, so use the first operand's
mode instead. */
mode = GET_MODE (XEXP (x, 0));
if (FLOAT_MODE_P (mode))
{
*total = mips_cost->fp_add;
return false;
}
*total = mips_binary_cost (x, COSTS_N_INSNS (1), COSTS_N_INSNS (4),
speed);
return true;
case MINUS:
if (float_mode_p && ISA_HAS_UNFUSED_MADD4 && !HONOR_SIGNED_ZEROS (mode))
{
/* See if we can use NMADD or NMSUB via the *nmadd4<mode>_fastmath
or *nmsub4<mode>_fastmath patterns. These patterns check for
HONOR_SIGNED_ZEROS so we check here too. */
rtx op0 = XEXP (x, 0);
rtx op1 = XEXP (x, 1);
if (GET_CODE (op0) == MULT && GET_CODE (XEXP (op0, 0)) == NEG)
{
*total = (mips_fp_mult_cost (mode)
+ set_src_cost (XEXP (XEXP (op0, 0), 0), mode, speed)
+ set_src_cost (XEXP (op0, 1), mode, speed)
+ set_src_cost (op1, mode, speed));
return true;
}
if (GET_CODE (op1) == MULT)
{
*total = (mips_fp_mult_cost (mode)
+ set_src_cost (op0, mode, speed)
+ set_src_cost (XEXP (op1, 0), mode, speed)
+ set_src_cost (XEXP (op1, 1), mode, speed));
return true;
}
}
/* Fall through. */
case PLUS:
if (float_mode_p)
{
/* If this is part of a MADD or MSUB, treat the PLUS as
being free. */
if (ISA_HAS_UNFUSED_MADD4 && GET_CODE (XEXP (x, 0)) == MULT)
*total = 0;
else
*total = mips_cost->fp_add;
return false;
}
/* If it's an add + mult (which is equivalent to shift left) and
it's immediate operand satisfies const_immlsa_operand predicate. */
if (((ISA_HAS_LSA && mode == SImode)
|| (ISA_HAS_DLSA && mode == DImode))
&& GET_CODE (XEXP (x, 0)) == MULT)
{
rtx op2 = XEXP (XEXP (x, 0), 1);
if (const_immlsa_operand (op2, mode))
{
*total = (COSTS_N_INSNS (1)
+ set_src_cost (XEXP (XEXP (x, 0), 0), mode, speed)
+ set_src_cost (XEXP (x, 1), mode, speed));
return true;
}
}
/* Double-word operations require three single-word operations and
an SLTU. The MIPS16 version then needs to move the result of
the SLTU from $24 to a MIPS16 register. */
*total = mips_binary_cost (x, COSTS_N_INSNS (1),
COSTS_N_INSNS (TARGET_MIPS16 ? 5 : 4),
speed);
return true;
case NEG:
if (float_mode_p && ISA_HAS_UNFUSED_MADD4)
{
/* See if we can use NMADD or NMSUB via the *nmadd4<mode> or
*nmsub4<mode> patterns. */
rtx op = XEXP (x, 0);
if ((GET_CODE (op) == PLUS || GET_CODE (op) == MINUS)
&& GET_CODE (XEXP (op, 0)) == MULT)
{
*total = (mips_fp_mult_cost (mode)
+ set_src_cost (XEXP (XEXP (op, 0), 0), mode, speed)
+ set_src_cost (XEXP (XEXP (op, 0), 1), mode, speed)
+ set_src_cost (XEXP (op, 1), mode, speed));
return true;
}
}
if (float_mode_p)
*total = mips_cost->fp_add;
else
*total = COSTS_N_INSNS (GET_MODE_SIZE (mode) > UNITS_PER_WORD ? 4 : 1);
return false;
case FMA:
*total = mips_fp_mult_cost (mode);
return false;
case MULT:
if (float_mode_p)
*total = mips_fp_mult_cost (mode);
else if (mode == DImode && !TARGET_64BIT)
/* Synthesized from 2 mulsi3s, 1 mulsidi3 and two additions,
where the mulsidi3 always includes an MFHI and an MFLO. */
*total = (speed
? mips_cost->int_mult_si * 3 + 6
: COSTS_N_INSNS (ISA_HAS_MUL3 ? 7 : 9));
else if (!speed)
*total = COSTS_N_INSNS ((ISA_HAS_MUL3 || ISA_HAS_R6MUL) ? 1 : 2) + 1;
else if (mode == DImode)
*total = mips_cost->int_mult_di;
else
*total = mips_cost->int_mult_si;
return false;
case DIV:
/* Check for a reciprocal. */
if (float_mode_p
&& ISA_HAS_FP_RECIP_RSQRT (mode)
&& flag_unsafe_math_optimizations
&& XEXP (x, 0) == CONST1_RTX (mode))
{
if (outer_code == SQRT || GET_CODE (XEXP (x, 1)) == SQRT)
/* An rsqrt<mode>a or rsqrt<mode>b pattern. Count the
division as being free. */
*total = set_src_cost (XEXP (x, 1), mode, speed);
else
*total = (mips_fp_div_cost (mode)
+ set_src_cost (XEXP (x, 1), mode, speed));
return true;
}
/* Fall through. */
case SQRT:
case MOD:
if (float_mode_p)
{
*total = mips_fp_div_cost (mode);
return false;
}
/* Fall through. */
case UDIV:
case UMOD:
if (!speed)
{
/* It is our responsibility to make division by a power of 2
as cheap as 2 register additions if we want the division
expanders to be used for such operations; see the setting
of sdiv_pow2_cheap in optabs.c. Using (D)DIV for MIPS16
should always produce shorter code than using
expand_sdiv2_pow2. */
if (TARGET_MIPS16
&& CONST_INT_P (XEXP (x, 1))
&& exact_log2 (INTVAL (XEXP (x, 1))) >= 0)
{
*total = COSTS_N_INSNS (2);
*total += set_src_cost (XEXP (x, 0), mode, speed);
return true;
}
*total = COSTS_N_INSNS (mips_idiv_insns ());
}
else if (mode == DImode)
*total = mips_cost->int_div_di;
else
*total = mips_cost->int_div_si;
return false;
case SIGN_EXTEND:
*total = mips_sign_extend_cost (mode, XEXP (x, 0));
return false;
case ZERO_EXTEND:
if (outer_code == SET
&& ISA_HAS_BADDU
&& (GET_CODE (XEXP (x, 0)) == TRUNCATE
|| GET_CODE (XEXP (x, 0)) == SUBREG)
&& GET_MODE (XEXP (x, 0)) == QImode
&& GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS)
{
*total = set_src_cost (XEXP (XEXP (x, 0), 0), VOIDmode, speed);
return true;
}
*total = mips_zero_extend_cost (mode, XEXP (x, 0));
return false;
case TRUNCATE:
/* Costings for highpart multiplies. Matching patterns of the form:
(lshiftrt:DI (mult:DI (sign_extend:DI (...)
(sign_extend:DI (...))
(const_int 32)
*/
if (ISA_HAS_R6MUL
&& (GET_CODE (XEXP (x, 0)) == ASHIFTRT
|| GET_CODE (XEXP (x, 0)) == LSHIFTRT)
&& CONST_INT_P (XEXP (XEXP (x, 0), 1))
&& ((INTVAL (XEXP (XEXP (x, 0), 1)) == 32
&& GET_MODE (XEXP (x, 0)) == DImode)
|| (ISA_HAS_R6DMUL
&& INTVAL (XEXP (XEXP (x, 0), 1)) == 64
&& GET_MODE (XEXP (x, 0)) == TImode))
&& GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT
&& ((GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == SIGN_EXTEND
&& GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == SIGN_EXTEND)
|| (GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == ZERO_EXTEND
&& (GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1))
== ZERO_EXTEND))))
{
if (!speed)
*total = COSTS_N_INSNS (1) + 1;
else if (mode == DImode)
*total = mips_cost->int_mult_di;
else
*total = mips_cost->int_mult_si;
/* Sign extension is free, zero extension costs for DImode when
on a 64bit core / when DMUL is present. */
for (int i = 0; i < 2; ++i)
{
rtx op = XEXP (XEXP (XEXP (x, 0), 0), i);
if (ISA_HAS_R6DMUL
&& GET_CODE (op) == ZERO_EXTEND
&& GET_MODE (op) == DImode)
*total += rtx_cost (op, DImode, MULT, i, speed);
else
*total += rtx_cost (XEXP (op, 0), VOIDmode, GET_CODE (op),
0, speed);
}
return true;
}
return false;
case FLOAT:
case UNSIGNED_FLOAT:
case FIX:
case FLOAT_EXTEND:
case FLOAT_TRUNCATE:
*total = mips_cost->fp_add;
return false;
case SET:
if (register_operand (SET_DEST (x), VOIDmode)
&& reg_or_0_operand (SET_SRC (x), VOIDmode))
{
*total = mips_set_reg_reg_cost (GET_MODE (SET_DEST (x)));
return true;
}
return false;
default:
return false;
}
}
/* Implement TARGET_ADDRESS_COST. */
static int
mips_address_cost (rtx addr, machine_mode mode,
addr_space_t as ATTRIBUTE_UNUSED,
bool speed ATTRIBUTE_UNUSED)
{
return mips_address_insns (addr, mode, false);
}
/* Information about a single instruction in a multi-instruction
asm sequence. */
struct mips_multi_member {
/* True if this is a label, false if it is code. */
bool is_label_p;
/* The output_asm_insn format of the instruction. */
const char *format;
/* The operands to the instruction. */
rtx operands[MAX_RECOG_OPERANDS];
};
typedef struct mips_multi_member mips_multi_member;
/* The instructions that make up the current multi-insn sequence. */
static vec<mips_multi_member> mips_multi_members;
/* How many instructions (as opposed to labels) are in the current
multi-insn sequence. */
static unsigned int mips_multi_num_insns;
/* Start a new multi-insn sequence. */
static void
mips_multi_start (void)
{
mips_multi_members.truncate (0);
mips_multi_num_insns = 0;
}
/* Add a new, uninitialized member to the current multi-insn sequence. */
static struct mips_multi_member *
mips_multi_add (void)
{
mips_multi_member empty;
return mips_multi_members.safe_push (empty);
}
/* Add a normal insn with the given asm format to the current multi-insn
sequence. The other arguments are a null-terminated list of operands. */
static void
mips_multi_add_insn (const char *format, ...)
{
struct mips_multi_member *member;
va_list ap;
unsigned int i;
rtx op;
member = mips_multi_add ();
member->is_label_p = false;
member->format = format;
va_start (ap, format);
i = 0;
while ((op = va_arg (ap, rtx)))
member->operands[i++] = op;
va_end (ap);
mips_multi_num_insns++;
}
/* Add the given label definition to the current multi-insn sequence.
The definition should include the colon. */
static void
mips_multi_add_label (const char *label)
{
struct mips_multi_member *member;
member = mips_multi_add ();
member->is_label_p = true;
member->format = label;
}
/* Return the index of the last member of the current multi-insn sequence. */
static unsigned int
mips_multi_last_index (void)
{
return mips_multi_members.length () - 1;
}
/* Add a copy of an existing instruction to the current multi-insn
sequence. I is the index of the instruction that should be copied. */
static void
mips_multi_copy_insn (unsigned int i)
{
struct mips_multi_member *member;
member = mips_multi_add ();
memcpy (member, &mips_multi_members[i], sizeof (*member));
gcc_assert (!member->is_label_p);
}
/* Change the operand of an existing instruction in the current
multi-insn sequence. I is the index of the instruction,
OP is the index of the operand, and X is the new value. */
static void
mips_multi_set_operand (unsigned int i, unsigned int op, rtx x)
{
mips_multi_members[i].operands[op] = x;
}
/* Write out the asm code for the current multi-insn sequence. */
static void
mips_multi_write (void)
{
struct mips_multi_member *member;
unsigned int i;
FOR_EACH_VEC_ELT (mips_multi_members, i, member)
if (member->is_label_p)
fprintf (asm_out_file, "%s\n", member->format);
else
output_asm_insn (member->format, member->operands);
}
/* Return one word of double-word value OP, taking into account the fixed
endianness of certain registers. HIGH_P is true to select the high part,
false to select the low part. */
rtx
mips_subword (rtx op, bool high_p)
{
unsigned int byte, offset;
machine_mode mode;
mode = GET_MODE (op);
if (mode == VOIDmode)
mode = TARGET_64BIT ? TImode : DImode;
if (TARGET_BIG_ENDIAN ? !high_p : high_p)
byte = UNITS_PER_WORD;
else
byte = 0;
if (FP_REG_RTX_P (op))
{
/* Paired FPRs are always ordered little-endian. */
offset = (UNITS_PER_WORD < UNITS_PER_HWFPVALUE ? high_p : byte != 0);
return gen_rtx_REG (word_mode, REGNO (op) + offset);
}
if (MEM_P (op))
return mips_rewrite_small_data (adjust_address (op, word_mode, byte));
return simplify_gen_subreg (word_mode, op, mode, byte);
}
/* Return true if SRC should be moved into DEST using "MULT $0, $0".
SPLIT_TYPE is the condition under which moves should be split. */
static bool
mips_mult_move_p (rtx dest, rtx src, enum mips_split_type split_type)
{
return ((split_type != SPLIT_FOR_SPEED
|| mips_tuning_info.fast_mult_zero_zero_p)
&& src == const0_rtx
&& REG_P (dest)
&& GET_MODE_SIZE (GET_MODE (dest)) == 2 * UNITS_PER_WORD
&& (ISA_HAS_DSP_MULT
? ACC_REG_P (REGNO (dest))
: MD_REG_P (REGNO (dest))));
}
/* Return true if a move from SRC to DEST should be split into two.
SPLIT_TYPE describes the split condition. */
bool
mips_split_move_p (rtx dest, rtx src, enum mips_split_type split_type)
{
/* Check whether the move can be done using some variant of MULT $0,$0. */
if (mips_mult_move_p (dest, src, split_type))
return false;
/* FPR-to-FPR moves can be done in a single instruction, if they're
allowed at all. */
unsigned int size = GET_MODE_SIZE (GET_MODE (dest));
if (size == 8 && FP_REG_RTX_P (src) && FP_REG_RTX_P (dest))
return false;
/* Check for floating-point loads and stores. */
if (size == 8 && ISA_HAS_LDC1_SDC1)
{
if (FP_REG_RTX_P (dest) && MEM_P (src))
return false;
if (FP_REG_RTX_P (src) && MEM_P (dest))
return false;
}
/* Otherwise split all multiword moves. */
return size > UNITS_PER_WORD;
}
/* Split a move from SRC to DEST, given that mips_split_move_p holds.
SPLIT_TYPE describes the split condition. */
void
mips_split_move (rtx dest, rtx src, enum mips_split_type split_type)
{
rtx low_dest;
gcc_checking_assert (mips_split_move_p (dest, src, split_type));
if (FP_REG_RTX_P (dest) || FP_REG_RTX_P (src))
{
if (!TARGET_64BIT && GET_MODE (dest) == DImode)
emit_insn (gen_move_doubleword_fprdi (dest, src));
else if (!TARGET_64BIT && GET_MODE (dest) == DFmode)
emit_insn (gen_move_doubleword_fprdf (dest, src));
else if (!TARGET_64BIT && GET_MODE (dest) == V2SFmode)
emit_insn (gen_move_doubleword_fprv2sf (dest, src));
else if (!TARGET_64BIT && GET_MODE (dest) == V2SImode)
emit_insn (gen_move_doubleword_fprv2si (dest, src));
else if (!TARGET_64BIT && GET_MODE (dest) == V4HImode)
emit_insn (gen_move_doubleword_fprv4hi (dest, src));
else if (!TARGET_64BIT && GET_MODE (dest) == V8QImode)
emit_insn (gen_move_doubleword_fprv8qi (dest, src));
else if (TARGET_64BIT && GET_MODE (dest) == TFmode)
emit_insn (gen_move_doubleword_fprtf (dest, src));
else
gcc_unreachable ();
}
else if (REG_P (dest) && REGNO (dest) == MD_REG_FIRST)
{
low_dest = mips_subword (dest, false);
mips_emit_move (low_dest, mips_subword (src, false));
if (TARGET_64BIT)
emit_insn (gen_mthidi_ti (dest, mips_subword (src, true), low_dest));
else
emit_insn (gen_mthisi_di (dest, mips_subword (src, true), low_dest));
}
else if (REG_P (src) && REGNO (src) == MD_REG_FIRST)
{
mips_emit_move (mips_subword (dest, false), mips_subword (src, false));
if (TARGET_64BIT)
emit_insn (gen_mfhidi_ti (mips_subword (dest, true), src));
else
emit_insn (gen_mfhisi_di (mips_subword (dest, true), src));
}
else
{
/* The operation can be split into two normal moves. Decide in
which order to do them. */
low_dest = mips_subword (dest, false);
if (REG_P (low_dest)
&& reg_overlap_mentioned_p (low_dest, src))
{
mips_emit_move (mips_subword (dest, true), mips_subword (src, true));
mips_emit_move (low_dest, mips_subword (src, false));
}
else
{
mips_emit_move (low_dest, mips_subword (src, false));
mips_emit_move (mips_subword (dest, true), mips_subword (src, true));
}
}
}
/* Return the split type for instruction INSN. */
static enum mips_split_type
mips_insn_split_type (rtx insn)
{
basic_block bb = BLOCK_FOR_INSN (insn);
if (bb)
{
if (optimize_bb_for_speed_p (bb))
return SPLIT_FOR_SPEED;
else
return SPLIT_FOR_SIZE;
}
/* Once CFG information has been removed, we should trust the optimization
decisions made by previous passes and only split where necessary. */
return SPLIT_IF_NECESSARY;
}
/* Return true if a move from SRC to DEST in INSN should be split. */
bool
mips_split_move_insn_p (rtx dest, rtx src, rtx insn)
{
return mips_split_move_p (dest, src, mips_insn_split_type (insn));
}
/* Split a move from SRC to DEST in INSN, given that mips_split_move_insn_p
holds. */
void
mips_split_move_insn (rtx dest, rtx src, rtx insn)
{
mips_split_move (dest, src, mips_insn_split_type (insn));
}
/* Return the appropriate instructions to move SRC into DEST. Assume
that SRC is operand 1 and DEST is operand 0. */
const char *
mips_output_move (rtx dest, rtx src)
{
enum rtx_code dest_code, src_code;
machine_mode mode;
enum mips_symbol_type symbol_type;
bool dbl_p;
dest_code = GET_CODE (dest);
src_code = GET_CODE (src);
mode = GET_MODE (dest);
dbl_p = (GET_MODE_SIZE (mode) == 8);
if (mips_split_move_p (dest, src, SPLIT_IF_NECESSARY))
return "#";
if ((src_code == REG && GP_REG_P (REGNO (src)))
|| (!TARGET_MIPS16 && src == CONST0_RTX (mode)))
{
if (dest_code == REG)
{
if (GP_REG_P (REGNO (dest)))
return "move\t%0,%z1";
if (mips_mult_move_p (dest, src, SPLIT_IF_NECESSARY))
{
if (ISA_HAS_DSP_MULT)
return "mult\t%q0,%.,%.";
else
return "mult\t%.,%.";
}
/* Moves to HI are handled by special .md insns. */
if (REGNO (dest) == LO_REGNUM)
return "mtlo\t%z1";
if (DSP_ACC_REG_P (REGNO (dest)))
{
static char retval[] = "mt__\t%z1,%q0";
retval[2] = reg_names[REGNO (dest)][4];
retval[3] = reg_names[REGNO (dest)][5];
return retval;
}
if (FP_REG_P (REGNO (dest)))
return dbl_p ? "dmtc1\t%z1,%0" : "mtc1\t%z1,%0";
if (ALL_COP_REG_P (REGNO (dest)))
{
static char retval[] = "dmtc_\t%z1,%0";
retval[4] = COPNUM_AS_CHAR_FROM_REGNUM (REGNO (dest));
return dbl_p ? retval : retval + 1;
}
}
if (dest_code == MEM)
switch (GET_MODE_SIZE (mode))
{
case 1: return "sb\t%z1,%0";
case 2: return "sh\t%z1,%0";
case 4: return "sw\t%z1,%0";
case 8: return "sd\t%z1,%0";
}
}
if (dest_code == REG && GP_REG_P (REGNO (dest)))
{
if (src_code == REG)
{
/* Moves from HI are handled by special .md insns. */
if (REGNO (src) == LO_REGNUM)
{
/* When generating VR4120 or VR4130 code, we use MACC and
DMACC instead of MFLO. This avoids both the normal
MIPS III HI/LO hazards and the errata related to
-mfix-vr4130. */
if (ISA_HAS_MACCHI)
return dbl_p ? "dmacc\t%0,%.,%." : "macc\t%0,%.,%.";
return "mflo\t%0";
}
if (DSP_ACC_REG_P (REGNO (src)))
{
static char retval[] = "mf__\t%0,%q1";
retval[2] = reg_names[REGNO (src)][4];
retval[3] = reg_names[REGNO (src)][5];
return retval;
}
if (FP_REG_P (REGNO (src)))
return dbl_p ? "dmfc1\t%0,%1" : "mfc1\t%0,%1";
if (ALL_COP_REG_P (REGNO (src)))
{
static char retval[] = "dmfc_\t%0,%1";
retval[4] = COPNUM_AS_CHAR_FROM_REGNUM (REGNO (src));
return dbl_p ? retval : retval + 1;
}
}
if (src_code == MEM)
switch (GET_MODE_SIZE (mode))
{
case 1: return "lbu\t%0,%1";
case 2: return "lhu\t%0,%1";
case 4: return "lw\t%0,%1";
case 8: return "ld\t%0,%1";
}
if (src_code == CONST_INT)
{
/* Don't use the X format for the operand itself, because that
will give out-of-range numbers for 64-bit hosts and 32-bit
targets. */
if (!TARGET_MIPS16)
return "li\t%0,%1\t\t\t# %X1";
if (SMALL_OPERAND_UNSIGNED (INTVAL (src)))
return "li\t%0,%1";
if (SMALL_OPERAND_UNSIGNED (-INTVAL (src)))
return "#";
}
if (src_code == HIGH)
return TARGET_MIPS16 ? "#" : "lui\t%0,%h1";
if (CONST_GP_P (src))
return "move\t%0,%1";
if (mips_symbolic_constant_p (src, SYMBOL_CONTEXT_LEA, &symbol_type)
&& mips_lo_relocs[symbol_type] != 0)
{
/* A signed 16-bit constant formed by applying a relocation
operator to a symbolic address. */
gcc_assert (!mips_split_p[symbol_type]);
return "li\t%0,%R1";
}
if (symbolic_operand (src, VOIDmode))
{
gcc_assert (TARGET_MIPS16
? TARGET_MIPS16_TEXT_LOADS
: !TARGET_EXPLICIT_RELOCS);
return dbl_p ? "dla\t%0,%1" : "la\t%0,%1";
}
}
if (src_code == REG && FP_REG_P (REGNO (src)))
{
if (dest_code == REG && FP_REG_P (REGNO (dest)))
{
if (GET_MODE (dest) == V2SFmode)
return "mov.ps\t%0,%1";
else
return dbl_p ? "mov.d\t%0,%1" : "mov.s\t%0,%1";
}
if (dest_code == MEM)
return dbl_p ? "sdc1\t%1,%0" : "swc1\t%1,%0";
}
if (dest_code == REG && FP_REG_P (REGNO (dest)))
{
if (src_code == MEM)
return dbl_p ? "ldc1\t%0,%1" : "lwc1\t%0,%1";
}
if (dest_code == REG && ALL_COP_REG_P (REGNO (dest)) && src_code == MEM)
{
static char retval[] = "l_c_\t%0,%1";
retval[1] = (dbl_p ? 'd' : 'w');
retval[3] = COPNUM_AS_CHAR_FROM_REGNUM (REGNO (dest));
return retval;
}
if (dest_code == MEM && src_code == REG && ALL_COP_REG_P (REGNO (src)))
{
static char retval[] = "s_c_\t%1,%0";
retval[1] = (dbl_p ? 'd' : 'w');
retval[3] = COPNUM_AS_CHAR_FROM_REGNUM (REGNO (src));
return retval;
}
gcc_unreachable ();
}
/* Return true if CMP1 is a suitable second operand for integer ordering
test CODE. See also the *sCC patterns in mips.md. */
static bool
mips_int_order_operand_ok_p (enum rtx_code code, rtx cmp1)
{
switch (code)
{
case GT:
case GTU:
return reg_or_0_operand (cmp1, VOIDmode);
case GE:
case GEU:
return !TARGET_MIPS16 && cmp1 == const1_rtx;
case LT:
case LTU:
return arith_operand (cmp1, VOIDmode);
case LE:
return sle_operand (cmp1, VOIDmode);
case LEU:
return sleu_operand (cmp1, VOIDmode);
default:
gcc_unreachable ();
}
}
/* Return true if *CMP1 (of mode MODE) is a valid second operand for
integer ordering test *CODE, or if an equivalent combination can
be formed by adjusting *CODE and *CMP1. When returning true, update
*CODE and *CMP1 with the chosen code and operand, otherwise leave
them alone. */
static bool
mips_canonicalize_int_order_test (enum rtx_code *code, rtx *cmp1,
machine_mode mode)
{
HOST_WIDE_INT plus_one;
if (mips_int_order_operand_ok_p (*code, *cmp1))
return true;
if (CONST_INT_P (*cmp1))
switch (*code)
{
case LE:
plus_one = trunc_int_for_mode (UINTVAL (*cmp1) + 1, mode);
if (INTVAL (*cmp1) < plus_one)
{
*code = LT;
*cmp1 = force_reg (mode, GEN_INT (plus_one));
return true;
}
break;
case LEU:
plus_one = trunc_int_for_mode (UINTVAL (*cmp1) + 1, mode);
if (plus_one != 0)
{
*code = LTU;
*cmp1 = force_reg (mode, GEN_INT (plus_one));
return true;
}
break;
default:
break;
}
return false;
}
/* Compare CMP0 and CMP1 using ordering test CODE and store the result
in TARGET. CMP0 and TARGET are register_operands. If INVERT_PTR
is nonnull, it's OK to set TARGET to the inverse of the result and
flip *INVERT_PTR instead. */
static void
mips_emit_int_order_test (enum rtx_code code, bool *invert_ptr,
rtx target, rtx cmp0, rtx cmp1)
{
machine_mode mode;
/* First see if there is a MIPS instruction that can do this operation.
If not, try doing the same for the inverse operation. If that also
fails, force CMP1 into a register and try again. */
mode = GET_MODE (cmp0);
if (mips_canonicalize_int_order_test (&code, &cmp1, mode))
mips_emit_binary (code, target, cmp0, cmp1);
else
{
enum rtx_code inv_code = reverse_condition (code);
if (!mips_canonicalize_int_order_test (&inv_code, &cmp1, mode))
{
cmp1 = force_reg (mode, cmp1);
mips_emit_int_order_test (code, invert_ptr, target, cmp0, cmp1);
}
else if (invert_ptr == 0)
{
rtx inv_target;
inv_target = mips_force_binary (GET_MODE (target),
inv_code, cmp0, cmp1);
mips_emit_binary (XOR, target, inv_target, const1_rtx);
}
else
{
*invert_ptr = !*invert_ptr;
mips_emit_binary (inv_code, target, cmp0, cmp1);
}
}
}
/* Return a register that is zero iff CMP0 and CMP1 are equal.
The register will have the same mode as CMP0. */
static rtx
mips_zero_if_equal (rtx cmp0, rtx cmp1)
{
if (cmp1 == const0_rtx)
return cmp0;
if (uns_arith_operand (cmp1, VOIDmode))
return expand_binop (GET_MODE (cmp0), xor_optab,
cmp0, cmp1, 0, 0, OPTAB_DIRECT);
return expand_binop (GET_MODE (cmp0), sub_optab,
cmp0, cmp1, 0, 0, OPTAB_DIRECT);
}
/* Convert *CODE into a code that can be used in a floating-point
scc instruction (C.cond.fmt). Return true if the values of
the condition code registers will be inverted, with 0 indicating
that the condition holds. */
static bool
mips_reversed_fp_cond (enum rtx_code *code)
{
switch (*code)
{
case NE:
case LTGT:
case ORDERED:
*code = reverse_condition_maybe_unordered (*code);
return true;
default:
return false;
}
}
/* Allocate a floating-point condition-code register of mode MODE.
These condition code registers are used for certain kinds
of compound operation, such as compare and branches, vconds,
and built-in functions. At expand time, their use is entirely
controlled by MIPS-specific code and is entirely internal
to these compound operations.
We could (and did in the past) expose condition-code values
as pseudo registers and leave the register allocator to pick
appropriate registers. The problem is that it is not practically
possible for the rtl optimizers to guarantee that no spills will
be needed, even when AVOID_CCMODE_COPIES is defined. We would
therefore need spill and reload sequences to handle the worst case.
Although such sequences do exist, they are very expensive and are
not something we'd want to use. This is especially true of CCV2 and
CCV4, where all the shuffling would greatly outweigh whatever benefit
the vectorization itself provides.
The main benefit of having more than one condition-code register
is to allow the pipelining of operations, especially those involving
comparisons and conditional moves. We don't really expect the
registers to be live for long periods, and certainly never want
them to be live across calls.
Also, there should be no penalty attached to using all the available
registers. They are simply bits in the same underlying FPU control
register.
We therefore expose the hardware registers from the outset and use
a simple round-robin allocation scheme. */
static rtx
mips_allocate_fcc (machine_mode mode)
{
unsigned int regno, count;
gcc_assert (TARGET_HARD_FLOAT && ISA_HAS_8CC);
if (mode == CCmode)
count = 1;
else if (mode == CCV2mode)
count = 2;
else if (mode == CCV4mode)
count = 4;
else
gcc_unreachable ();
cfun->machine->next_fcc += -cfun->machine->next_fcc & (count - 1);
if (cfun->machine->next_fcc > ST_REG_LAST - ST_REG_FIRST)
cfun->machine->next_fcc = 0;
regno = ST_REG_FIRST + cfun->machine->next_fcc;
cfun->machine->next_fcc += count;
return gen_rtx_REG (mode, regno);
}
/* Convert a comparison into something that can be used in a branch or
conditional move. On entry, *OP0 and *OP1 are the values being
compared and *CODE is the code used to compare them.
Update *CODE, *OP0 and *OP1 so that they describe the final comparison.
If NEED_EQ_NE_P, then only EQ or NE comparisons against zero are possible,
otherwise any standard branch condition can be used. The standard branch
conditions are:
- EQ or NE between two registers.
- any comparison between a register and zero.
- if compact branches are available then any condition is valid. */
static void
mips_emit_compare (enum rtx_code *code, rtx *op0, rtx *op1, bool need_eq_ne_p)
{
rtx cmp_op0 = *op0;
rtx cmp_op1 = *op1;
if (GET_MODE_CLASS (GET_MODE (*op0)) == MODE_INT)
{
if (!need_eq_ne_p && *op1 == const0_rtx)
;
else if (*code == EQ || *code == NE)
{
if (need_eq_ne_p)
{
*op0 = mips_zero_if_equal (cmp_op0, cmp_op1);
*op1 = const0_rtx;
}
else
*op1 = force_reg (GET_MODE (cmp_op0), cmp_op1);
}
else if (!need_eq_ne_p && TARGET_CB_MAYBE)
{
bool swap = false;
switch (*code)
{
case LE:
swap = true;
*code = GE;
break;
case GT:
swap = true;
*code = LT;
break;
case LEU:
swap = true;
*code = GEU;
break;
case GTU:
swap = true;
*code = LTU;
break;
case GE:
case LT:
case GEU:
case LTU:
/* Do nothing. */
break;
default:
gcc_unreachable ();
}
*op1 = force_reg (GET_MODE (cmp_op0), cmp_op1);
if (swap)
{
rtx tmp = *op1;
*op1 = *op0;
*op0 = tmp;
}
}
else
{
/* The comparison needs a separate scc instruction. Store the
result of the scc in *OP0 and compare it against zero. */
bool invert = false;
*op0 = gen_reg_rtx (GET_MODE (cmp_op0));
mips_emit_int_order_test (*code, &invert, *op0, cmp_op0, cmp_op1);
*code = (invert ? EQ : NE);
*op1 = const0_rtx;
}
}
else if (ALL_FIXED_POINT_MODE_P (GET_MODE (cmp_op0)))
{
*op0 = gen_rtx_REG (CCDSPmode, CCDSP_CC_REGNUM);
mips_emit_binary (*code, *op0, cmp_op0, cmp_op1);
*code = NE;
*op1 = const0_rtx;
}
else
{
enum rtx_code cmp_code;
/* Floating-point tests use a separate C.cond.fmt or CMP.cond.fmt
comparison to set a register. The branch or conditional move will
then compare that register against zero.
Set CMP_CODE to the code of the comparison instruction and
*CODE to the code that the branch or move should use. */
cmp_code = *code;
if (ISA_HAS_CCF)
{
/* All FP conditions can be implemented directly with CMP.cond.fmt
or by reversing the operands. */
*code = NE;
*op0 = gen_reg_rtx (CCFmode);
}
else
{
/* Three FP conditions cannot be implemented by reversing the
operands for C.cond.fmt, instead a reversed condition code is
required and a test for false. */
*code = mips_reversed_fp_cond (&cmp_code) ? EQ : NE;
if (ISA_HAS_8CC)
*op0 = mips_allocate_fcc (CCmode);
else
*op0 = gen_rtx_REG (CCmode, FPSW_REGNUM);
}
*op1 = const0_rtx;
mips_emit_binary (cmp_code, *op0, cmp_op0, cmp_op1);
}
}
/* Try performing the comparison in OPERANDS[1], whose arms are OPERANDS[2]
and OPERAND[3]. Store the result in OPERANDS[0].
On 64-bit targets, the mode of the comparison and target will always be
SImode, thus possibly narrower than that of the comparison's operands. */
void
mips_expand_scc (rtx operands[])
{
rtx target = operands[0];
enum rtx_code code = GET_CODE (operands[1]);
rtx op0 = operands[2];
rtx op1 = operands[3];
gcc_assert (GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT);
if (code == EQ || code == NE)
{
if (ISA_HAS_SEQ_SNE
&& reg_imm10_operand (op1, GET_MODE (op1)))
mips_emit_binary (code, target, op0, op1);
else
{
rtx zie = mips_zero_if_equal (op0, op1);
mips_emit_binary (code, target, zie, const0_rtx);
}
}
else
mips_emit_int_order_test (code, 0, target, op0, op1);
}
/* Compare OPERANDS[1] with OPERANDS[2] using comparison code
CODE and jump to OPERANDS[3] if the condition holds. */
void
mips_expand_conditional_branch (rtx *operands)
{
enum rtx_code code = GET_CODE (operands[0]);
rtx op0 = operands[1];
rtx op1 = operands[2];
rtx condition;
mips_emit_compare (&code, &op0, &op1, TARGET_MIPS16);
condition = gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
emit_jump_insn (gen_condjump (condition, operands[3]));
}
/* Implement:
(set temp (COND:CCV2 CMP_OP0 CMP_OP1))
(set DEST (unspec [TRUE_SRC FALSE_SRC temp] UNSPEC_MOVE_TF_PS)) */
void
mips_expand_vcondv2sf (rtx dest, rtx true_src, rtx false_src,
enum rtx_code cond, rtx cmp_op0, rtx cmp_op1)
{
rtx cmp_result;
bool reversed_p;
reversed_p = mips_reversed_fp_cond (&cond);
cmp_result = mips_allocate_fcc (CCV2mode);
emit_insn (gen_scc_ps (cmp_result,
gen_rtx_fmt_ee (cond, VOIDmode, cmp_op0, cmp_op1)));
if (reversed_p)
emit_insn (gen_mips_cond_move_tf_ps (dest, false_src, true_src,
cmp_result));
else
emit_insn (gen_mips_cond_move_tf_ps (dest, true_src, false_src,
cmp_result));
}
/* Perform the comparison in OPERANDS[1]. Move OPERANDS[2] into OPERANDS[0]
if the condition holds, otherwise move OPERANDS[3] into OPERANDS[0]. */
void
mips_expand_conditional_move (rtx *operands)
{
rtx cond;
enum rtx_code code = GET_CODE (operands[1]);
rtx op0 = XEXP (operands[1], 0);
rtx op1 = XEXP (operands[1], 1);
mips_emit_compare (&code, &op0, &op1, true);
cond = gen_rtx_fmt_ee (code, GET_MODE (op0), op0, op1);
/* There is no direct support for general conditional GP move involving
two registers using SEL. */
if (ISA_HAS_SEL
&& INTEGRAL_MODE_P (GET_MODE (operands[2]))
&& register_operand (operands[2], VOIDmode)
&& register_operand (operands[3], VOIDmode))
{
machine_mode mode = GET_MODE (operands[0]);
rtx temp = gen_reg_rtx (mode);
rtx temp2 = gen_reg_rtx (mode);
emit_insn (gen_rtx_SET (temp,
gen_rtx_IF_THEN_ELSE (mode, cond,
operands[2], const0_rtx)));
/* Flip the test for the second operand. */
cond = gen_rtx_fmt_ee ((code == EQ) ? NE : EQ, GET_MODE (op0), op0, op1);
emit_insn (gen_rtx_SET (temp2,
gen_rtx_IF_THEN_ELSE (mode, cond,
operands[3], const0_rtx)));
/* Merge the two results, at least one is guaranteed to be zero. */
emit_insn (gen_rtx_SET (operands[0], gen_rtx_IOR (mode, temp, temp2)));
}
else
{
if (FLOAT_MODE_P (GET_MODE (operands[2])) && !ISA_HAS_SEL)
{
operands[2] = force_reg (GET_MODE (operands[0]), operands[2]);
operands[3] = force_reg (GET_MODE (operands[0]), operands[3]);
}
emit_insn (gen_rtx_SET (operands[0],
gen_rtx_IF_THEN_ELSE (GET_MODE (operands[0]), cond,
operands[2], operands[3])));
}
}
/* Perform the comparison in COMPARISON, then trap if the condition holds. */
void
mips_expand_conditional_trap (rtx comparison)
{
rtx op0, op1;
machine_mode mode;
enum rtx_code code;
/* MIPS conditional trap instructions don't have GT or LE flavors,
so we must swap the operands and convert to LT and GE respectively. */
code = GET_CODE (comparison);
switch (code)
{
case GT:
case LE:
case GTU:
case LEU:
code = swap_condition (code);
op0 = XEXP (comparison, 1);
op1 = XEXP (comparison, 0);
break;
default:
op0 = XEXP (comparison, 0);
op1 = XEXP (comparison, 1);
break;
}
mode = GET_MODE (XEXP (comparison, 0));
op0 = force_reg (mode, op0);
if (!(ISA_HAS_COND_TRAPI
? arith_operand (op1, mode)
: reg_or_0_operand (op1, mode)))
op1 = force_reg (mode, op1);
emit_insn (gen_rtx_TRAP_IF (VOIDmode,
gen_rtx_fmt_ee (code, mode, op0, op1),
const0_rtx));
}
/* Initialize *CUM for a call to a function of type FNTYPE. */
void
mips_init_cumulative_args (CUMULATIVE_ARGS *cum, tree fntype)
{
memset (cum, 0, sizeof (*cum));
cum->prototype = (fntype && prototype_p (fntype));
cum->gp_reg_found = (cum->prototype && stdarg_p (fntype));
}
/* Fill INFO with information about a single argument. CUM is the
cumulative state for earlier arguments. MODE is the mode of this
argument and TYPE is its type (if known). NAMED is true if this
is a named (fixed) argument rather than a variable one. */
static void
mips_get_arg_info (struct mips_arg_info *info, const CUMULATIVE_ARGS *cum,
machine_mode mode, const_tree type, bool named)
{
bool doubleword_aligned_p;
unsigned int num_bytes, num_words, max_regs;
/* Work out the size of the argument. */
num_bytes = type ? int_size_in_bytes (type) : GET_MODE_SIZE (mode);
num_words = (num_bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
/* Decide whether it should go in a floating-point register, assuming
one is free. Later code checks for availability.
The checks against UNITS_PER_FPVALUE handle the soft-float and
single-float cases. */
switch (mips_abi)
{
case ABI_EABI:
/* The EABI conventions have traditionally been defined in terms
of TYPE_MODE, regardless of the actual type. */
info->fpr_p = ((GET_MODE_CLASS (mode) == MODE_FLOAT
|| mode == V2SFmode)
&& GET_MODE_SIZE (mode) <= UNITS_PER_FPVALUE);
break;
case ABI_32:
case ABI_O64:
/* Only leading floating-point scalars are passed in
floating-point registers. We also handle vector floats the same
say, which is OK because they are not covered by the standard ABI. */
gcc_assert (TARGET_PAIRED_SINGLE_FLOAT || mode != V2SFmode);
info->fpr_p = (!cum->gp_reg_found
&& cum->arg_number < 2
&& (type == 0
|| SCALAR_FLOAT_TYPE_P (type)
|| VECTOR_FLOAT_TYPE_P (type))
&& (GET_MODE_CLASS (mode) == MODE_FLOAT
|| mode == V2SFmode)
&& GET_MODE_SIZE (mode) <= UNITS_PER_FPVALUE);
break;
case ABI_N32:
case ABI_64:
/* Scalar, complex and vector floating-point types are passed in
floating-point registers, as long as this is a named rather
than a variable argument. */
gcc_assert (TARGET_PAIRED_SINGLE_FLOAT || mode != V2SFmode);
info->fpr_p = (named
&& (type == 0 || FLOAT_TYPE_P (type))
&& (GET_MODE_CLASS (mode) == MODE_FLOAT
|| GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
|| mode == V2SFmode)
&& GET_MODE_UNIT_SIZE (mode) <= UNITS_PER_FPVALUE);
/* ??? According to the ABI documentation, the real and imaginary
parts of complex floats should be passed in individual registers.
The real and imaginary parts of stack arguments are supposed
to be contiguous and there should be an extra word of padding
at the end.
This has two problems. First, it makes it impossible to use a
single "void *" va_list type, since register and stack arguments
are passed differently. (At the time of writing, MIPSpro cannot
handle complex float varargs correctly.) Second, it's unclear
what should happen when there is only one register free.
For now, we assume that named complex floats should go into FPRs
if there are two FPRs free, otherwise they should be passed in the
same way as a struct containing two floats. */
if (info->fpr_p
&& GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
&& GET_MODE_UNIT_SIZE (mode) < UNITS_PER_FPVALUE)
{
if (cum->num_gprs >= MAX_ARGS_IN_REGISTERS - 1)
info->fpr_p = false;
else
num_words = 2;
}
break;
default:
gcc_unreachable ();
}
/* See whether the argument has doubleword alignment. */
doubleword_aligned_p = (mips_function_arg_boundary (mode, type)
> BITS_PER_WORD);
/* Set REG_OFFSET to the register count we're interested in.
The EABI allocates the floating-point registers separately,
but the other ABIs allocate them like integer registers. */
info->reg_offset = (mips_abi == ABI_EABI && info->fpr_p
? cum->num_fprs
: cum->num_gprs);
/* Advance to an even register if the argument is doubleword-aligned. */
if (doubleword_aligned_p)
info->reg_offset += info->reg_offset & 1;
/* Work out the offset of a stack argument. */
info->stack_offset = cum->stack_words;
if (doubleword_aligned_p)
info->stack_offset += info->stack_offset & 1;
max_regs = MAX_ARGS_IN_REGISTERS - info->reg_offset;
/* Partition the argument between registers and stack. */
info->reg_words = MIN (num_words, max_regs);
info->stack_words = num_words - info->reg_words;
}
/* INFO describes a register argument that has the normal format for the
argument's mode. Return the register it uses, assuming that FPRs are
available if HARD_FLOAT_P. */
static unsigned int
mips_arg_regno (const struct mips_arg_info *info, bool hard_float_p)
{
if (!info->fpr_p || !hard_float_p)
return GP_ARG_FIRST + info->reg_offset;
else if (mips_abi == ABI_32 && TARGET_DOUBLE_FLOAT && info->reg_offset > 0)
/* In o32, the second argument is always passed in $f14
for TARGET_DOUBLE_FLOAT, regardless of whether the
first argument was a word or doubleword. */
return FP_ARG_FIRST + 2;
else
return FP_ARG_FIRST + info->reg_offset;
}
/* Implement TARGET_STRICT_ARGUMENT_NAMING. */
static bool
mips_strict_argument_naming (cumulative_args_t ca ATTRIBUTE_UNUSED)
{
return !TARGET_OLDABI;
}
/* Implement TARGET_FUNCTION_ARG. */
static rtx
mips_function_arg (cumulative_args_t cum_v, machine_mode mode,
const_tree type, bool named)
{
CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
struct mips_arg_info info;
/* We will be called with a mode of VOIDmode after the last argument
has been seen. Whatever we return will be passed to the call expander.
If we need a MIPS16 fp_code, return a REG with the code stored as
the mode. */
if (mode == VOIDmode)
{
if (TARGET_MIPS16 && cum->fp_code != 0)
return gen_rtx_REG ((machine_mode) cum->fp_code, 0);
else
return NULL;
}
mips_get_arg_info (&info, cum, mode, type, named);
/* Return straight away if the whole argument is passed on the stack. */
if (info.reg_offset == MAX_ARGS_IN_REGISTERS)
return NULL;
/* The n32 and n64 ABIs say that if any 64-bit chunk of the structure
contains a double in its entirety, then that 64-bit chunk is passed
in a floating-point register. */
if (TARGET_NEWABI
&& TARGET_HARD_FLOAT
&& named
&& type != 0
&& TREE_CODE (type) == RECORD_TYPE
&& TYPE_SIZE_UNIT (type)
&& tree_fits_uhwi_p (TYPE_SIZE_UNIT (type)))
{
tree field;
/* First check to see if there is any such field. */
for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
if (TREE_CODE (field) == FIELD_DECL
&& SCALAR_FLOAT_TYPE_P (TREE_TYPE (field))
&& TYPE_PRECISION (TREE_TYPE (field)) == BITS_PER_WORD
&& tree_fits_shwi_p (bit_position (field))
&& int_bit_position (field) % BITS_PER_WORD == 0)
break;
if (field != 0)
{
/* Now handle the special case by returning a PARALLEL
indicating where each 64-bit chunk goes. INFO.REG_WORDS
chunks are passed in registers. */
unsigned int i;
HOST_WIDE_INT bitpos;
rtx ret;
/* assign_parms checks the mode of ENTRY_PARM, so we must
use the actual mode here. */
ret = gen_rtx_PARALLEL (mode, rtvec_alloc (info.reg_words));
bitpos = 0;
field = TYPE_FIELDS (type);
for (i = 0; i < info.reg_words; i++)
{
rtx reg;
for (; field; field = DECL_CHAIN (field))
if (TREE_CODE (field) == FIELD_DECL
&& int_bit_position (field) >= bitpos)
break;
if (field
&& int_bit_position (field) == bitpos
&& SCALAR_FLOAT_TYPE_P (TREE_TYPE (field))
&& TYPE_PRECISION (TREE_TYPE (field)) == BITS_PER_WORD)
reg = gen_rtx_REG (DFmode, FP_ARG_FIRST + info.reg_offset + i);
else
reg = gen_rtx_REG (DImode, GP_ARG_FIRST + info.reg_offset + i);
XVECEXP (ret, 0, i)
= gen_rtx_EXPR_LIST (VOIDmode, reg,
GEN_INT (bitpos / BITS_PER_UNIT));
bitpos += BITS_PER_WORD;
}
return ret;
}
}
/* Handle the n32/n64 conventions for passing complex floating-point
arguments in FPR pairs. The real part goes in the lower register
and the imaginary part goes in the upper register. */
if (TARGET_NEWABI
&& info.fpr_p
&& GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
{
rtx real, imag;
machine_mode inner;
unsigned int regno;
inner = GET_MODE_INNER (mode);
regno = FP_ARG_FIRST + info.reg_offset;
if (info.reg_words * UNITS_PER_WORD == GET_MODE_SIZE (inner))
{
/* Real part in registers, imaginary part on stack. */
gcc_assert (info.stack_words == info.reg_words);
return gen_rtx_REG (inner, regno);
}
else
{
gcc_assert (info.stack_words == 0);
real = gen_rtx_EXPR_LIST (VOIDmode,
gen_rtx_REG (inner, regno),
const0_rtx);
imag = gen_rtx_EXPR_LIST (VOIDmode,
gen_rtx_REG (inner,
regno + info.reg_words / 2),
GEN_INT (GET_MODE_SIZE (inner)));
return gen_rtx_PARALLEL (mode, gen_rtvec (2, real, imag));
}
}
return gen_rtx_REG (mode, mips_arg_regno (&info, TARGET_HARD_FLOAT));
}
/* Implement TARGET_FUNCTION_ARG_ADVANCE. */
static void
mips_function_arg_advance (cumulative_args_t cum_v, machine_mode mode,
const_tree type, bool named)
{
CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
struct mips_arg_info info;
mips_get_arg_info (&info, cum, mode, type, named);
if (!info.fpr_p)
cum->gp_reg_found = true;
/* See the comment above the CUMULATIVE_ARGS structure in mips.h for
an explanation of what this code does. It assumes that we're using
either the o32 or the o64 ABI, both of which pass at most 2 arguments
in FPRs. */
if (cum->arg_number < 2 && info.fpr_p)
cum->fp_code += (mode == SFmode ? 1 : 2) << (cum->arg_number * 2);
/* Advance the register count. This has the effect of setting
num_gprs to MAX_ARGS_IN_REGISTERS if a doubleword-aligned
argument required us to skip the final GPR and pass the whole
argument on the stack. */
if (mips_abi != ABI_EABI || !info.fpr_p)
cum->num_gprs = info.reg_offset + info.reg_words;
else if (info.reg_words > 0)
cum->num_fprs += MAX_FPRS_PER_FMT;
/* Advance the stack word count. */
if (info.stack_words > 0)
cum->stack_words = info.stack_offset + info.stack_words;
cum->arg_number++;
}
/* Implement TARGET_ARG_PARTIAL_BYTES. */
static int
mips_arg_partial_bytes (cumulative_args_t cum,
machine_mode mode, tree type, bool named)
{
struct mips_arg_info info;
mips_get_arg_info (&info, get_cumulative_args (cum), mode, type, named);
return info.stack_words > 0 ? info.reg_words * UNITS_PER_WORD : 0;
}
/* Implement TARGET_FUNCTION_ARG_BOUNDARY. Every parameter gets at
least PARM_BOUNDARY bits of alignment, but will be given anything up
to STACK_BOUNDARY bits if the type requires it. */
static unsigned int
mips_function_arg_boundary (machine_mode mode, const_tree type)
{
unsigned int alignment;
alignment = type ? TYPE_ALIGN (type) : GET_MODE_ALIGNMENT (mode);
if (alignment < PARM_BOUNDARY)
alignment = PARM_BOUNDARY;
if (alignment > STACK_BOUNDARY)
alignment = STACK_BOUNDARY;
return alignment;
}
/* Implement TARGET_GET_RAW_RESULT_MODE and TARGET_GET_RAW_ARG_MODE. */
static machine_mode
mips_get_reg_raw_mode (int regno)
{
if (TARGET_FLOATXX && FP_REG_P (regno))
return DFmode;
return default_get_reg_raw_mode (regno);
}
/* Return true if FUNCTION_ARG_PADDING (MODE, TYPE) should return
upward rather than downward. In other words, return true if the
first byte of the stack slot has useful data, false if the last
byte does. */
bool
mips_pad_arg_upward (machine_mode mode, const_tree type)
{
/* On little-endian targets, the first byte of every stack argument
is passed in the first byte of the stack slot. */
if (!BYTES_BIG_ENDIAN)
return true;
/* Otherwise, integral types are padded downward: the last byte of a
stack argument is passed in the last byte of the stack slot. */
if (type != 0
? (INTEGRAL_TYPE_P (type)
|| POINTER_TYPE_P (type)
|| FIXED_POINT_TYPE_P (type))
: (SCALAR_INT_MODE_P (mode)
|| ALL_SCALAR_FIXED_POINT_MODE_P (mode)))
return false;
/* Big-endian o64 pads floating-point arguments downward. */
if (mips_abi == ABI_O64)
if (type != 0 ? FLOAT_TYPE_P (type) : GET_MODE_CLASS (mode) == MODE_FLOAT)
return false;
/* Other types are padded upward for o32, o64, n32 and n64. */
if (mips_abi != ABI_EABI)
return true;
/* Arguments smaller than a stack slot are padded downward. */
if (mode != BLKmode)
return GET_MODE_BITSIZE (mode) >= PARM_BOUNDARY;
else
return int_size_in_bytes (type) >= (PARM_BOUNDARY / BITS_PER_UNIT);
}
/* Likewise BLOCK_REG_PADDING (MODE, TYPE, ...). Return !BYTES_BIG_ENDIAN
if the least significant byte of the register has useful data. Return
the opposite if the most significant byte does. */
bool
mips_pad_reg_upward (machine_mode mode, tree type)
{
/* No shifting is required for floating-point arguments. */
if (type != 0 ? FLOAT_TYPE_P (type) : GET_MODE_CLASS (mode) == MODE_FLOAT)
return !BYTES_BIG_ENDIAN;
/* Otherwise, apply the same padding to register arguments as we do
to stack arguments. */
return mips_pad_arg_upward (mode, type);
}
/* Return nonzero when an argument must be passed by reference. */
static bool
mips_pass_by_reference (cumulative_args_t cum ATTRIBUTE_UNUSED,
machine_mode mode, const_tree type,
bool named ATTRIBUTE_UNUSED)
{
if (mips_abi == ABI_EABI)
{
int size;
/* ??? How should SCmode be handled? */
if (mode == DImode || mode == DFmode
|| mode == DQmode || mode == UDQmode
|| mode == DAmode || mode == UDAmode)
return 0;
size = type ? int_size_in_bytes (type) : GET_MODE_SIZE (mode);
return size == -1 || size > UNITS_PER_WORD;
}
else
{
/* If we have a variable-sized parameter, we have no choice. */
return targetm.calls.must_pass_in_stack (mode, type);
}
}
/* Implement TARGET_CALLEE_COPIES. */
static bool
mips_callee_copies (cumulative_args_t cum ATTRIBUTE_UNUSED,
machine_mode mode ATTRIBUTE_UNUSED,
const_tree type ATTRIBUTE_UNUSED, bool named)
{
return mips_abi == ABI_EABI && named;
}
/* See whether VALTYPE is a record whose fields should be returned in
floating-point registers. If so, return the number of fields and
list them in FIELDS (which should have two elements). Return 0
otherwise.
For n32 & n64, a structure with one or two fields is returned in
floating-point registers as long as every field has a floating-point
type. */
static int
mips_fpr_return_fields (const_tree valtype, tree *fields)
{
tree field;
int i;
if (!TARGET_NEWABI)
return 0;
if (TREE_CODE (valtype) != RECORD_TYPE)
return 0;
i = 0;
for (field = TYPE_FIELDS (valtype); field != 0; field = DECL_CHAIN (field))
{
if (TREE_CODE (field) != FIELD_DECL)
continue;
if (!SCALAR_FLOAT_TYPE_P (TREE_TYPE (field)))
return 0;
if (i == 2)
return 0;
fields[i++] = field;
}
return i;
}
/* Implement TARGET_RETURN_IN_MSB. For n32 & n64, we should return
a value in the most significant part of $2/$3 if:
- the target is big-endian;
- the value has a structure or union type (we generalize this to
cover aggregates from other languages too); and
- the structure is not returned in floating-point registers. */
static bool
mips_return_in_msb (const_tree valtype)
{
tree fields[2];
return (TARGET_NEWABI
&& TARGET_BIG_ENDIAN
&& AGGREGATE_TYPE_P (valtype)
&& mips_fpr_return_fields (valtype, fields) == 0);
}
/* Return true if the function return value MODE will get returned in a
floating-point register. */
static bool
mips_return_mode_in_fpr_p (machine_mode mode)
{
gcc_assert (TARGET_PAIRED_SINGLE_FLOAT || mode != V2SFmode);
return ((GET_MODE_CLASS (mode) == MODE_FLOAT
|| mode == V2SFmode
|| GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
&& GET_MODE_UNIT_SIZE (mode) <= UNITS_PER_HWFPVALUE);
}
/* Return the representation of an FPR return register when the
value being returned in FP_RETURN has mode VALUE_MODE and the
return type itself has mode TYPE_MODE. On NewABI targets,
the two modes may be different for structures like:
struct __attribute__((packed)) foo { float f; }
where we return the SFmode value of "f" in FP_RETURN, but where
the structure itself has mode BLKmode. */
static rtx
mips_return_fpr_single (machine_mode type_mode,
machine_mode value_mode)
{
rtx x;
x = gen_rtx_REG (value_mode, FP_RETURN);
if (type_mode != value_mode)
{
x = gen_rtx_EXPR_LIST (VOIDmode, x, const0_rtx);
x = gen_rtx_PARALLEL (type_mode, gen_rtvec (1, x));
}
return x;
}
/* Return a composite value in a pair of floating-point registers.
MODE1 and OFFSET1 are the mode and byte offset for the first value,
likewise MODE2 and OFFSET2 for the second. MODE is the mode of the
complete value.
For n32 & n64, $f0 always holds the first value and $f2 the second.
Otherwise the values are packed together as closely as possible. */
static rtx
mips_return_fpr_pair (machine_mode mode,
machine_mode mode1, HOST_WIDE_INT offset1,
machine_mode mode2, HOST_WIDE_INT offset2)
{
int inc;
inc = (TARGET_NEWABI || mips_abi == ABI_32 ? 2 : MAX_FPRS_PER_FMT);
return gen_rtx_PARALLEL
(mode,
gen_rtvec (2,
gen_rtx_EXPR_LIST (VOIDmode,
gen_rtx_REG (mode1, FP_RETURN),
GEN_INT (offset1)),
gen_rtx_EXPR_LIST (VOIDmode,
gen_rtx_REG (mode2, FP_RETURN + inc),
GEN_INT (offset2))));
}
/* Implement TARGET_FUNCTION_VALUE and TARGET_LIBCALL_VALUE.
For normal calls, VALTYPE is the return type and MODE is VOIDmode.
For libcalls, VALTYPE is null and MODE is the mode of the return value. */
static rtx
mips_function_value_1 (const_tree valtype, const_tree fn_decl_or_type,
machine_mode mode)
{
if (valtype)
{
tree fields[2];
int unsigned_p;
const_tree func;
if (fn_decl_or_type && DECL_P (fn_decl_or_type))
func = fn_decl_or_type;
else
func = NULL;
mode = TYPE_MODE (valtype);
unsigned_p = TYPE_UNSIGNED (valtype);
/* Since TARGET_PROMOTE_FUNCTION_MODE unconditionally promotes,
return values, promote the mode here too. */
mode = promote_function_mode (valtype, mode, &unsigned_p, func, 1);
/* Handle structures whose fields are returned in $f0/$f2. */
switch (mips_fpr_return_fields (valtype, fields))
{
case 1:
return mips_return_fpr_single (mode,
TYPE_MODE (TREE_TYPE (fields[0])));
case 2:
return mips_return_fpr_pair (mode,
TYPE_MODE (TREE_TYPE (fields[0])),
int_byte_position (fields[0]),
TYPE_MODE (TREE_TYPE (fields[1])),
int_byte_position (fields[1]));
}
/* If a value is passed in the most significant part of a register, see
whether we have to round the mode up to a whole number of words. */
if (mips_return_in_msb (valtype))
{
HOST_WIDE_INT size = int_size_in_bytes (valtype);
if (size % UNITS_PER_WORD != 0)
{
size += UNITS_PER_WORD - size % UNITS_PER_WORD;
mode = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
}
}
/* For EABI, the class of return register depends entirely on MODE.
For example, "struct { some_type x; }" and "union { some_type x; }"
are returned in the same way as a bare "some_type" would be.
Other ABIs only use FPRs for scalar, complex or vector types. */
if (mips_abi != ABI_EABI && !FLOAT_TYPE_P (valtype))
return gen_rtx_REG (mode, GP_RETURN);
}
if (!TARGET_MIPS16)
{
/* Handle long doubles for n32 & n64. */
if (mode == TFmode)
return mips_return_fpr_pair (mode,
DImode, 0,
DImode, GET_MODE_SIZE (mode) / 2);
if (mips_return_mode_in_fpr_p (mode))
{
if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
return mips_return_fpr_pair (mode,
GET_MODE_INNER (mode), 0,
GET_MODE_INNER (mode),
GET_MODE_SIZE (mode) / 2);
else
return gen_rtx_REG (mode, FP_RETURN);
}
}
return gen_rtx_REG (mode, GP_RETURN);
}
/* Implement TARGET_FUNCTION_VALUE. */
static rtx
mips_function_value (const_tree valtype, const_tree fn_decl_or_type,
bool outgoing ATTRIBUTE_UNUSED)
{
return mips_function_value_1 (valtype, fn_decl_or_type, VOIDmode);
}
/* Implement TARGET_LIBCALL_VALUE. */
static rtx
mips_libcall_value (machine_mode mode, const_rtx fun ATTRIBUTE_UNUSED)
{
return mips_function_value_1 (NULL_TREE, NULL_TREE, mode);
}
/* Implement TARGET_FUNCTION_VALUE_REGNO_P.
On the MIPS, R2 R3 and F0 F2 are the only register thus used. */
static bool
mips_function_value_regno_p (const unsigned int regno)
{
/* Most types only require one GPR or one FPR for return values but for
hard-float two FPRs can be used for _Complex types (for all ABIs)
and long doubles (for n64). */
if (regno == GP_RETURN
|| regno == FP_RETURN
|| (FP_RETURN != GP_RETURN
&& regno == FP_RETURN + 2))
return true;
/* For o32 FP32, _Complex double will be returned in four 32-bit registers.
This does not apply to o32 FPXX as floating-point function argument and
return registers are described as 64-bit even though floating-point
registers are primarily described as 32-bit internally.
See: mips_get_reg_raw_mode. */
if ((mips_abi == ABI_32 && TARGET_FLOAT32)
&& FP_RETURN != GP_RETURN
&& (regno == FP_RETURN + 1
|| regno == FP_RETURN + 3))
return true;
return false;
}
/* Implement TARGET_RETURN_IN_MEMORY. Under the o32 and o64 ABIs,
all BLKmode objects are returned in memory. Under the n32, n64
and embedded ABIs, small structures are returned in a register.
Objects with varying size must still be returned in memory, of
course. */
static bool
mips_return_in_memory (const_tree type, const_tree fndecl ATTRIBUTE_UNUSED)
{
return (TARGET_OLDABI
? TYPE_MODE (type) == BLKmode
: !IN_RANGE (int_size_in_bytes (type), 0, 2 * UNITS_PER_WORD));
}
/* Implement TARGET_SETUP_INCOMING_VARARGS. */
static void
mips_setup_incoming_varargs (cumulative_args_t cum, machine_mode mode,
tree type, int *pretend_size ATTRIBUTE_UNUSED,
int no_rtl)
{
CUMULATIVE_ARGS local_cum;
int gp_saved, fp_saved;
/* The caller has advanced CUM up to, but not beyond, the last named
argument. Advance a local copy of CUM past the last "real" named
argument, to find out how many registers are left over. */
local_cum = *get_cumulative_args (cum);
mips_function_arg_advance (pack_cumulative_args (&local_cum), mode, type,
true);
/* Found out how many registers we need to save. */
gp_saved = MAX_ARGS_IN_REGISTERS - local_cum.num_gprs;
fp_saved = (EABI_FLOAT_VARARGS_P
? MAX_ARGS_IN_REGISTERS - local_cum.num_fprs
: 0);
if (!no_rtl)
{
if (gp_saved > 0)
{
rtx ptr, mem;
ptr = plus_constant (Pmode, virtual_incoming_args_rtx,
REG_PARM_STACK_SPACE (cfun->decl)
- gp_saved * UNITS_PER_WORD);
mem = gen_frame_mem (BLKmode, ptr);
set_mem_alias_set (mem, get_varargs_alias_set ());
move_block_from_reg (local_cum.num_gprs + GP_ARG_FIRST,
mem, gp_saved);
}
if (fp_saved > 0)
{
/* We can't use move_block_from_reg, because it will use
the wrong mode. */
machine_mode mode;
int off, i;
/* Set OFF to the offset from virtual_incoming_args_rtx of
the first float register. The FP save area lies below
the integer one, and is aligned to UNITS_PER_FPVALUE bytes. */
off = (-gp_saved * UNITS_PER_WORD) & -UNITS_PER_FPVALUE;
off -= fp_saved * UNITS_PER_FPREG;
mode = TARGET_SINGLE_FLOAT ? SFmode : DFmode;
for (i = local_cum.num_fprs; i < MAX_ARGS_IN_REGISTERS;
i += MAX_FPRS_PER_FMT)
{
rtx ptr, mem;
ptr = plus_constant (Pmode, virtual_incoming_args_rtx, off);
mem = gen_frame_mem (mode, ptr);
set_mem_alias_set (mem, get_varargs_alias_set ());
mips_emit_move (mem, gen_rtx_REG (mode, FP_ARG_FIRST + i));
off += UNITS_PER_HWFPVALUE;
}
}
}
if (REG_PARM_STACK_SPACE (cfun->decl) == 0)
cfun->machine->varargs_size = (gp_saved * UNITS_PER_WORD
+ fp_saved * UNITS_PER_FPREG);
}
/* Implement TARGET_BUILTIN_VA_LIST. */
static tree
mips_build_builtin_va_list (void)
{
if (EABI_FLOAT_VARARGS_P)
{
/* We keep 3 pointers, and two offsets.
Two pointers are to the overflow area, which starts at the CFA.
One of these is constant, for addressing into the GPR save area
below it. The other is advanced up the stack through the
overflow region.
The third pointer is to the bottom of the GPR save area.
Since the FPR save area is just below it, we can address
FPR slots off this pointer.
We also keep two one-byte offsets, which are to be subtracted
from the constant pointers to yield addresses in the GPR and
FPR save areas. These are downcounted as float or non-float
arguments are used, and when they get to zero, the argument
must be obtained from the overflow region. */
tree f_ovfl, f_gtop, f_ftop, f_goff, f_foff, f_res, record;
tree array, index;
record = lang_hooks.types.make_type (RECORD_TYPE);
f_ovfl = build_decl (BUILTINS_LOCATION,
FIELD_DECL, get_identifier ("__overflow_argptr"),
ptr_type_node);
f_gtop = build_decl (BUILTINS_LOCATION,
FIELD_DECL, get_identifier ("__gpr_top"),
ptr_type_node);
f_ftop = build_decl (BUILTINS_LOCATION,
FIELD_DECL, get_identifier ("__fpr_top"),
ptr_type_node);
f_goff = build_decl (BUILTINS_LOCATION,
FIELD_DECL, get_identifier ("__gpr_offset"),
unsigned_char_type_node);
f_foff = build_decl (BUILTINS_LOCATION,
FIELD_DECL, get_identifier ("__fpr_offset"),
unsigned_char_type_node);
/* Explicitly pad to the size of a pointer, so that -Wpadded won't
warn on every user file. */
index = build_int_cst (NULL_TREE, GET_MODE_SIZE (ptr_mode) - 2 - 1);
array = build_array_type (unsigned_char_type_node,
build_index_type (index));
f_res = build_decl (BUILTINS_LOCATION,
FIELD_DECL, get_identifier ("__reserved"), array);
DECL_FIELD_CONTEXT (f_ovfl) = record;
DECL_FIELD_CONTEXT (f_gtop) = record;
DECL_FIELD_CONTEXT (f_ftop) = record;
DECL_FIELD_CONTEXT (f_goff) = record;
DECL_FIELD_CONTEXT (f_foff) = record;
DECL_FIELD_CONTEXT (f_res) = record;
TYPE_FIELDS (record) = f_ovfl;
DECL_CHAIN (f_ovfl) = f_gtop;
DECL_CHAIN (f_gtop) = f_ftop;
DECL_CHAIN (f_ftop) = f_goff;
DECL_CHAIN (f_goff) = f_foff;
DECL_CHAIN (f_foff) = f_res;
layout_type (record);
return record;
}
else
/* Otherwise, we use 'void *'. */
return ptr_type_node;
}
/* Implement TARGET_EXPAND_BUILTIN_VA_START. */
static void
mips_va_start (tree valist, rtx nextarg)
{
if (EABI_FLOAT_VARARGS_P)
{
const CUMULATIVE_ARGS *cum;
tree f_ovfl, f_gtop, f_ftop, f_goff, f_foff;
tree ovfl, gtop, ftop, goff, foff;
tree t;
int gpr_save_area_size;
int fpr_save_area_size;
int fpr_offset;
cum = &crtl->args.info;
gpr_save_area_size
= (MAX_ARGS_IN_REGISTERS - cum->num_gprs) * UNITS_PER_WORD;
fpr_save_area_size
= (MAX_ARGS_IN_REGISTERS - cum->num_fprs) * UNITS_PER_FPREG;
f_ovfl = TYPE_FIELDS (va_list_type_node);
f_gtop = DECL_CHAIN (f_ovfl);
f_ftop = DECL_CHAIN (f_gtop);
f_goff = DECL_CHAIN (f_ftop);
f_foff = DECL_CHAIN (f_goff);
ovfl = build3 (COMPONENT_REF, TREE_TYPE (f_ovfl), valist, f_ovfl,
NULL_TREE);
gtop = build3 (COMPONENT_REF, TREE_TYPE (f_gtop), valist, f_gtop,
NULL_TREE);
ftop = build3 (COMPONENT_REF, TREE_TYPE (f_ftop), valist, f_ftop,
NULL_TREE);
goff = build3 (COMPONENT_REF, TREE_TYPE (f_goff), valist, f_goff,
NULL_TREE);
foff = build3 (COMPONENT_REF, TREE_TYPE (f_foff), valist, f_foff,
NULL_TREE);
/* Emit code to initialize OVFL, which points to the next varargs
stack argument. CUM->STACK_WORDS gives the number of stack
words used by named arguments. */
t = make_tree (TREE_TYPE (ovfl), virtual_incoming_args_rtx);
if (cum->stack_words > 0)
t = fold_build_pointer_plus_hwi (t, cum->stack_words * UNITS_PER_WORD);
t = build2 (MODIFY_EXPR, TREE_TYPE (ovfl), ovfl, t);
expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
/* Emit code to initialize GTOP, the top of the GPR save area. */
t = make_tree (TREE_TYPE (gtop), virtual_incoming_args_rtx);
t = build2 (MODIFY_EXPR, TREE_TYPE (gtop), gtop, t);
expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
/* Emit code to initialize FTOP, the top of the FPR save area.
This address is gpr_save_area_bytes below GTOP, rounded
down to the next fp-aligned boundary. */
t = make_tree (TREE_TYPE (ftop), virtual_incoming_args_rtx);
fpr_offset = gpr_save_area_size + UNITS_PER_FPVALUE - 1;
fpr_offset &= -UNITS_PER_FPVALUE;
if (fpr_offset)
t = fold_build_pointer_plus_hwi (t, -fpr_offset);
t = build2 (MODIFY_EXPR, TREE_TYPE (ftop), ftop, t);
expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
/* Emit code to initialize GOFF, the offset from GTOP of the
next GPR argument. */
t = build2 (MODIFY_EXPR, TREE_TYPE (goff), goff,
build_int_cst (TREE_TYPE (goff), gpr_save_area_size));
expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
/* Likewise emit code to initialize FOFF, the offset from FTOP
of the next FPR argument. */
t = build2 (MODIFY_EXPR, TREE_TYPE (foff), foff,
build_int_cst (TREE_TYPE (foff), fpr_save_area_size));
expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
}
else
{
nextarg = plus_constant (Pmode, nextarg, -cfun->machine->varargs_size);
std_expand_builtin_va_start (valist, nextarg);
}
}
/* Like std_gimplify_va_arg_expr, but apply alignment to zero-sized
types as well. */
static tree
mips_std_gimplify_va_arg_expr (tree valist, tree type, gimple_seq *pre_p,
gimple_seq *post_p)
{
tree addr, t, type_size, rounded_size, valist_tmp;
unsigned HOST_WIDE_INT align, boundary;
bool indirect;
indirect = pass_by_reference (NULL, TYPE_MODE (type), type, false);
if (indirect)
type = build_pointer_type (type);
align = PARM_BOUNDARY / BITS_PER_UNIT;
boundary = targetm.calls.function_arg_boundary (TYPE_MODE (type), type);
/* When we align parameter on stack for caller, if the parameter
alignment is beyond MAX_SUPPORTED_STACK_ALIGNMENT, it will be
aligned at MAX_SUPPORTED_STACK_ALIGNMENT. We will match callee
here with caller. */
if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
boundary /= BITS_PER_UNIT;
/* Hoist the valist value into a temporary for the moment. */
valist_tmp = get_initialized_tmp_var (valist, pre_p, NULL);
/* va_list pointer is aligned to PARM_BOUNDARY. If argument actually
requires greater alignment, we must perform dynamic alignment. */
if (boundary > align)
{
t = build2 (MODIFY_EXPR, TREE_TYPE (valist), valist_tmp,
fold_build_pointer_plus_hwi (valist_tmp, boundary - 1));
gimplify_and_add (t, pre_p);
t = build2 (MODIFY_EXPR, TREE_TYPE (valist), valist_tmp,
fold_build2 (BIT_AND_EXPR, TREE_TYPE (valist),
valist_tmp,
build_int_cst (TREE_TYPE (valist), -boundary)));
gimplify_and_add (t, pre_p);
}
else
boundary = align;
/* If the actual alignment is less than the alignment of the type,
adjust the type accordingly so that we don't assume strict alignment
when dereferencing the pointer. */
boundary *= BITS_PER_UNIT;
if (boundary < TYPE_ALIGN (type))
{
type = build_variant_type_copy (type);
TYPE_ALIGN (type) = boundary;
}
/* Compute the rounded size of the type. */
type_size = size_in_bytes (type);
rounded_size = round_up (type_size, align);
/* Reduce rounded_size so it's sharable with the postqueue. */
gimplify_expr (&rounded_size, pre_p, post_p, is_gimple_val, fb_rvalue);
/* Get AP. */
addr = valist_tmp;
if (PAD_VARARGS_DOWN && !integer_zerop (rounded_size))
{
/* Small args are padded downward. */
t = fold_build2_loc (input_location, GT_EXPR, sizetype,
rounded_size, size_int (align));
t = fold_build3 (COND_EXPR, sizetype, t, size_zero_node,
size_binop (MINUS_EXPR, rounded_size, type_size));
addr = fold_build_pointer_plus (addr, t);
}
/* Compute new value for AP. */
t = fold_build_pointer_plus (valist_tmp, rounded_size);
t = build2 (MODIFY_EXPR, TREE_TYPE (valist), valist, t);
gimplify_and_add (t, pre_p);
addr = fold_convert (build_pointer_type (type), addr);
if (indirect)
addr = build_va_arg_indirect_ref (addr);
return build_va_arg_indirect_ref (addr);
}
/* Implement TARGET_GIMPLIFY_VA_ARG_EXPR. */
static tree
mips_gimplify_va_arg_expr (tree valist, tree type, gimple_seq *pre_p,
gimple_seq *post_p)
{
tree addr;
bool indirect_p;
indirect_p = pass_by_reference (NULL, TYPE_MODE (type), type, 0);
if (indirect_p)
type = build_pointer_type (type);
if (!EABI_FLOAT_VARARGS_P)
addr = mips_std_gimplify_va_arg_expr (valist, type, pre_p, post_p);
else
{
tree f_ovfl, f_gtop, f_ftop, f_goff, f_foff;
tree ovfl, top, off, align;
HOST_WIDE_INT size, rsize, osize;
tree t, u;
f_ovfl = TYPE_FIELDS (va_list_type_node);
f_gtop = DECL_CHAIN (f_ovfl);
f_ftop = DECL_CHAIN (f_gtop);
f_goff = DECL_CHAIN (f_ftop);
f_foff = DECL_CHAIN (f_goff);
/* Let:
TOP be the top of the GPR or FPR save area;
OFF be the offset from TOP of the next register;
ADDR_RTX be the address of the argument;
SIZE be the number of bytes in the argument type;
RSIZE be the number of bytes used to store the argument
when it's in the register save area; and
OSIZE be the number of bytes used to store it when it's
in the stack overflow area.
The code we want is:
1: off &= -rsize; // round down
2: if (off != 0)
3: {
4: addr_rtx = top - off + (BYTES_BIG_ENDIAN ? RSIZE - SIZE : 0);
5: off -= rsize;
6: }
7: else
8: {
9: ovfl = ((intptr_t) ovfl + osize - 1) & -osize;
10: addr_rtx = ovfl + (BYTES_BIG_ENDIAN ? OSIZE - SIZE : 0);
11: ovfl += osize;
14: }
[1] and [9] can sometimes be optimized away. */
ovfl = build3 (COMPONENT_REF, TREE_TYPE (f_ovfl), valist, f_ovfl,
NULL_TREE);
size = int_size_in_bytes (type);
if (GET_MODE_CLASS (TYPE_MODE (type)) == MODE_FLOAT
&& GET_MODE_SIZE (TYPE_MODE (type)) <= UNITS_PER_FPVALUE)
{
top = build3 (COMPONENT_REF, TREE_TYPE (f_ftop),
unshare_expr (valist), f_ftop, NULL_TREE);
off = build3 (COMPONENT_REF, TREE_TYPE (f_foff),
unshare_expr (valist), f_foff, NULL_TREE);
/* When va_start saves FPR arguments to the stack, each slot
takes up UNITS_PER_HWFPVALUE bytes, regardless of the
argument's precision. */
rsize = UNITS_PER_HWFPVALUE;
/* Overflow arguments are padded to UNITS_PER_WORD bytes
(= PARM_BOUNDARY bits). This can be different from RSIZE
in two cases:
(1) On 32-bit targets when TYPE is a structure such as:
struct s { float f; };
Such structures are passed in paired FPRs, so RSIZE
will be 8 bytes. However, the structure only takes
up 4 bytes of memory, so OSIZE will only be 4.
(2) In combinations such as -mgp64 -msingle-float
-fshort-double. Doubles passed in registers will then take
up 4 (UNITS_PER_HWFPVALUE) bytes, but those passed on the
stack take up UNITS_PER_WORD bytes. */
osize = MAX (GET_MODE_SIZE (TYPE_MODE (type)), UNITS_PER_WORD);
}
else
{
top = build3 (COMPONENT_REF, TREE_TYPE (f_gtop),
unshare_expr (valist), f_gtop, NULL_TREE);
off = build3 (COMPONENT_REF, TREE_TYPE (f_goff),
unshare_expr (valist), f_goff, NULL_TREE);
rsize = (size + UNITS_PER_WORD - 1) & -UNITS_PER_WORD;
if (rsize > UNITS_PER_WORD)
{
/* [1] Emit code for: off &= -rsize. */
t = build2 (BIT_AND_EXPR, TREE_TYPE (off), unshare_expr (off),
build_int_cst (TREE_TYPE (off), -rsize));
gimplify_assign (unshare_expr (off), t, pre_p);
}
osize = rsize;
}
/* [2] Emit code to branch if off == 0. */
t = build2 (NE_EXPR, boolean_type_node, unshare_expr (off),
build_int_cst (TREE_TYPE (off), 0));
addr = build3 (COND_EXPR, ptr_type_node, t, NULL_TREE, NULL_TREE);
/* [5] Emit code for: off -= rsize. We do this as a form of
post-decrement not available to C. */
t = fold_convert (TREE_TYPE (off), build_int_cst (NULL_TREE, rsize));
t = build2 (POSTDECREMENT_EXPR, TREE_TYPE (off), off, t);
/* [4] Emit code for:
addr_rtx = top - off + (BYTES_BIG_ENDIAN ? RSIZE - SIZE : 0). */
t = fold_convert (sizetype, t);
t = fold_build1 (NEGATE_EXPR, sizetype, t);
t = fold_build_pointer_plus (top, t);
if (BYTES_BIG_ENDIAN && rsize > size)
t = fold_build_pointer_plus_hwi (t, rsize - size);
COND_EXPR_THEN (addr) = t;
if (osize > UNITS_PER_WORD)
{
/* [9] Emit: ovfl = ((intptr_t) ovfl + osize - 1) & -osize. */
t = fold_build_pointer_plus_hwi (unshare_expr (ovfl), osize - 1);
u = build_int_cst (TREE_TYPE (t), -osize);
t = build2 (BIT_AND_EXPR, TREE_TYPE (t), t, u);
align = build2 (MODIFY_EXPR, TREE_TYPE (ovfl),
unshare_expr (ovfl), t);
}
else
align = NULL;
/* [10, 11] Emit code for:
addr_rtx = ovfl + (BYTES_BIG_ENDIAN ? OSIZE - SIZE : 0)
ovfl += osize. */
u = fold_convert (TREE_TYPE (ovfl), build_int_cst (NULL_TREE, osize));
t = build2 (POSTINCREMENT_EXPR, TREE_TYPE (ovfl), ovfl, u);
if (BYTES_BIG_ENDIAN && osize > size)
t = fold_build_pointer_plus_hwi (t, osize - size);
/* String [9] and [10, 11] together. */
if (align)
t = build2 (COMPOUND_EXPR, TREE_TYPE (t), align, t);
COND_EXPR_ELSE (addr) = t;
addr = fold_convert (build_pointer_type (type), addr);
addr = build_va_arg_indirect_ref (addr);
}
if (indirect_p)
addr = build_va_arg_indirect_ref (addr);
return addr;
}
/* Declare a unique, locally-binding function called NAME, then start
its definition. */
static void
mips_start_unique_function (const char *name)
{
tree decl;
decl = build_decl (BUILTINS_LOCATION, FUNCTION_DECL,
get_identifier (name),
build_function_type_list (void_type_node, NULL_TREE));
DECL_RESULT (decl) = build_decl (BUILTINS_LOCATION, RESULT_DECL,
NULL_TREE, void_type_node);
TREE_PUBLIC (decl) = 1;
TREE_STATIC (decl) = 1;
cgraph_node::create (decl)->set_comdat_group (DECL_ASSEMBLER_NAME (decl));
targetm.asm_out.unique_section (decl, 0);
switch_to_section (get_named_section (decl, NULL, 0));
targetm.asm_out.globalize_label (asm_out_file, name);
fputs ("\t.hidden\t", asm_out_file);
assemble_name (asm_out_file, name);
putc ('\n', asm_out_file);
}
/* Start a definition of function NAME. MIPS16_P indicates whether the
function contains MIPS16 code. */
static void
mips_start_function_definition (const char *name, bool mips16_p)
{
if (mips16_p)
fprintf (asm_out_file, "\t.set\tmips16\n");
else
fprintf (asm_out_file, "\t.set\tnomips16\n");
if (TARGET_MICROMIPS)
fprintf (asm_out_file, "\t.set\tmicromips\n");
#ifdef HAVE_GAS_MICROMIPS
else
fprintf (asm_out_file, "\t.set\tnomicromips\n");
#endif
if (!flag_inhibit_size_directive)
{
fputs ("\t.ent\t", asm_out_file);
assemble_name (asm_out_file, name);
fputs ("\n", asm_out_file);
}
ASM_OUTPUT_TYPE_DIRECTIVE (asm_out_file, name, "function");
/* Start the definition proper. */
assemble_name (asm_out_file, name);
fputs (":\n", asm_out_file);
}
/* End a function definition started by mips_start_function_definition. */
static void
mips_end_function_definition (const char *name)
{
if (!flag_inhibit_size_directive)
{
fputs ("\t.end\t", asm_out_file);
assemble_name (asm_out_file, name);
fputs ("\n", asm_out_file);
}
}
/* If *STUB_PTR points to a stub, output a comdat-style definition for it,
then free *STUB_PTR. */
static void
mips_finish_stub (mips_one_only_stub **stub_ptr)
{
mips_one_only_stub *stub = *stub_ptr;
if (!stub)
return;
const char *name = stub->get_name ();
mips_start_unique_function (name);
mips_start_function_definition (name, false);
stub->output_body ();
mips_end_function_definition (name);
delete stub;
*stub_ptr = 0;
}
/* Return true if calls to X can use R_MIPS_CALL* relocations. */
static bool
mips_ok_for_lazy_binding_p (rtx x)
{
return (TARGET_USE_GOT
&& GET_CODE (x) == SYMBOL_REF
&& !SYMBOL_REF_BIND_NOW_P (x)
&& !mips_symbol_binds_local_p (x));
}
/* Load function address ADDR into register DEST. TYPE is as for
mips_expand_call. Return true if we used an explicit lazy-binding
sequence. */
static bool
mips_load_call_address (enum mips_call_type type, rtx dest, rtx addr)
{
/* If we're generating PIC, and this call is to a global function,
try to allow its address to be resolved lazily. This isn't
possible for sibcalls when $gp is call-saved because the value
of $gp on entry to the stub would be our caller's gp, not ours. */
if (TARGET_EXPLICIT_RELOCS
&& !(type == MIPS_CALL_SIBCALL && TARGET_CALL_SAVED_GP)
&& mips_ok_for_lazy_binding_p (addr))
{
addr = mips_got_load (dest, addr, SYMBOL_GOTOFF_CALL);
emit_insn (gen_rtx_SET (dest, addr));
return true;
}
else
{
mips_emit_move (dest, addr);
return false;
}
}
/* Each locally-defined hard-float MIPS16 function has a local symbol
associated with it. This hash table maps the function symbol (FUNC)
to the local symbol (LOCAL). */
static GTY (()) hash_map<nofree_string_hash, rtx> *mips16_local_aliases;
/* FUNC is the symbol for a locally-defined hard-float MIPS16 function.
Return a local alias for it, creating a new one if necessary. */
static rtx
mips16_local_alias (rtx func)
{
/* Create the hash table if this is the first call. */
if (mips16_local_aliases == NULL)
mips16_local_aliases = hash_map<nofree_string_hash, rtx>::create_ggc (37);
/* Look up the function symbol, creating a new entry if need be. */
bool existed;
const char *func_name = XSTR (func, 0);
rtx *slot = &mips16_local_aliases->get_or_insert (func_name, &existed);
gcc_assert (slot != NULL);
if (!existed)
{
rtx local;
/* Create a new SYMBOL_REF for the local symbol. The choice of
__fn_local_* is based on the __fn_stub_* names that we've
traditionally used for the non-MIPS16 stub. */
func_name = targetm.strip_name_encoding (XSTR (func, 0));
const char *local_name = ACONCAT (("__fn_local_", func_name, NULL));
local = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (local_name));
SYMBOL_REF_FLAGS (local) = SYMBOL_REF_FLAGS (func) | SYMBOL_FLAG_LOCAL;
/* Create a new structure to represent the mapping. */
*slot = local;
}
return *slot;
}
/* A chained list of functions for which mips16_build_call_stub has already
generated a stub. NAME is the name of the function and FP_RET_P is true
if the function returns a value in floating-point registers. */
struct mips16_stub {
struct mips16_stub *next;
char *name;
bool fp_ret_p;
};
static struct mips16_stub *mips16_stubs;
/* Return the two-character string that identifies floating-point
return mode MODE in the name of a MIPS16 function stub. */
static const char *
mips16_call_stub_mode_suffix (machine_mode mode)
{
if (mode == SFmode)
return "sf";
else if (mode == DFmode)
return "df";
else if (mode == SCmode)
return "sc";
else if (mode == DCmode)
return "dc";
else if (mode == V2SFmode)
{
gcc_assert (TARGET_PAIRED_SINGLE_FLOAT);
return "df";
}
else
gcc_unreachable ();
}
/* Write instructions to move a 32-bit value between general register
GPREG and floating-point register FPREG. DIRECTION is 't' to move
from GPREG to FPREG and 'f' to move in the opposite direction. */
static void
mips_output_32bit_xfer (char direction, unsigned int gpreg, unsigned int fpreg)
{
fprintf (asm_out_file, "\tm%cc1\t%s,%s\n", direction,
reg_names[gpreg], reg_names[fpreg]);
}
/* Likewise for 64-bit values. */
static void
mips_output_64bit_xfer (char direction, unsigned int gpreg, unsigned int fpreg)
{
if (TARGET_64BIT)
fprintf (asm_out_file, "\tdm%cc1\t%s,%s\n", direction,
reg_names[gpreg], reg_names[fpreg]);
else if (ISA_HAS_MXHC1)
{
fprintf (asm_out_file, "\tm%cc1\t%s,%s\n", direction,
reg_names[gpreg + TARGET_BIG_ENDIAN], reg_names[fpreg]);
fprintf (asm_out_file, "\tm%chc1\t%s,%s\n", direction,
reg_names[gpreg + TARGET_LITTLE_ENDIAN], reg_names[fpreg]);
}
else if (TARGET_FLOATXX && direction == 't')
{
/* Use the argument save area to move via memory. */
fprintf (asm_out_file, "\tsw\t%s,0($sp)\n", reg_names[gpreg]);
fprintf (asm_out_file, "\tsw\t%s,4($sp)\n", reg_names[gpreg + 1]);
fprintf (asm_out_file, "\tldc1\t%s,0($sp)\n", reg_names[fpreg]);
}
else if (TARGET_FLOATXX && direction == 'f')
{
/* Use the argument save area to move via memory. */
fprintf (asm_out_file, "\tsdc1\t%s,0($sp)\n", reg_names[fpreg]);
fprintf (asm_out_file, "\tlw\t%s,0($sp)\n", reg_names[gpreg]);
fprintf (asm_out_file, "\tlw\t%s,4($sp)\n", reg_names[gpreg + 1]);
}
else
{
/* Move the least-significant word. */
fprintf (asm_out_file, "\tm%cc1\t%s,%s\n", direction,
reg_names[gpreg + TARGET_BIG_ENDIAN], reg_names[fpreg]);
/* ...then the most significant word. */
fprintf (asm_out_file, "\tm%cc1\t%s,%s\n", direction,
reg_names[gpreg + TARGET_LITTLE_ENDIAN], reg_names[fpreg + 1]);
}
}
/* Write out code to move floating-point arguments into or out of
general registers. FP_CODE is the code describing which arguments
are present (see the comment above the definition of CUMULATIVE_ARGS
in mips.h). DIRECTION is as for mips_output_32bit_xfer. */
static void
mips_output_args_xfer (int fp_code, char direction)
{
unsigned int gparg, fparg, f;
CUMULATIVE_ARGS cum;
/* This code only works for o32 and o64. */
gcc_assert (TARGET_OLDABI);
mips_init_cumulative_args (&cum, NULL);
for (f = (unsigned int) fp_code; f != 0; f >>= 2)
{
machine_mode mode;
struct mips_arg_info info;
if ((f & 3) == 1)
mode = SFmode;
else if ((f & 3) == 2)
mode = DFmode;
else
gcc_unreachable ();
mips_get_arg_info (&info, &cum, mode, NULL, true);
gparg = mips_arg_regno (&info, false);
fparg = mips_arg_regno (&info, true);
if (mode == SFmode)
mips_output_32bit_xfer (direction, gparg, fparg);
else
mips_output_64bit_xfer (direction, gparg, fparg);
mips_function_arg_advance (pack_cumulative_args (&cum), mode, NULL, true);
}
}
/* Write a MIPS16 stub for the current function. This stub is used
for functions which take arguments in the floating-point registers.
It is normal-mode code that moves the floating-point arguments
into the general registers and then jumps to the MIPS16 code. */
static void
mips16_build_function_stub (void)
{
const char *fnname, *alias_name, *separator;
char *secname, *stubname;
tree stubdecl;
unsigned int f;
rtx symbol, alias;
/* Create the name of the stub, and its unique section. */
symbol = XEXP (DECL_RTL (current_function_decl), 0);
alias = mips16_local_alias (symbol);
fnname = targetm.strip_name_encoding (XSTR (symbol, 0));
alias_name = targetm.strip_name_encoding (XSTR (alias, 0));
secname = ACONCAT ((".mips16.fn.", fnname, NULL));
stubname = ACONCAT (("__fn_stub_", fnname, NULL));
/* Build a decl for the stub. */
stubdecl = build_decl (BUILTINS_LOCATION,
FUNCTION_DECL, get_identifier (stubname),
build_function_type_list (void_type_node, NULL_TREE));
set_decl_section_name (stubdecl, secname);
DECL_RESULT (stubdecl) = build_decl (BUILTINS_LOCATION,
RESULT_DECL, NULL_TREE, void_type_node);
/* Output a comment. */
fprintf (asm_out_file, "\t# Stub function for %s (",
current_function_name ());
separator = "";
for (f = (unsigned int) crtl->args.info.fp_code; f != 0; f >>= 2)
{
fprintf (asm_out_file, "%s%s", separator,
(f & 3) == 1 ? "float" : "double");
separator = ", ";
}
fprintf (asm_out_file, ")\n");
/* Start the function definition. */
assemble_start_function (stubdecl, stubname);
mips_start_function_definition (stubname, false);
/* If generating pic2 code, either set up the global pointer or
switch to pic0. */
if (TARGET_ABICALLS_PIC2)
{
if (TARGET_ABSOLUTE_ABICALLS)
fprintf (asm_out_file, "\t.option\tpic0\n");
else
{
output_asm_insn ("%(.cpload\t%^%)", NULL);
/* Emit an R_MIPS_NONE relocation to tell the linker what the
target function is. Use a local GOT access when loading the
symbol, to cut down on the number of unnecessary GOT entries
for stubs that aren't needed. */
output_asm_insn (".reloc\t0,R_MIPS_NONE,%0", &symbol);
symbol = alias;
}
}
/* Load the address of the MIPS16 function into $25. Do this first so
that targets with coprocessor interlocks can use an MFC1 to fill the
delay slot. */
output_asm_insn ("la\t%^,%0", &symbol);
/* Move the arguments from floating-point registers to general registers. */
mips_output_args_xfer (crtl->args.info.fp_code, 'f');
/* Jump to the MIPS16 function. */
output_asm_insn ("jr\t%^", NULL);
if (TARGET_ABICALLS_PIC2 && TARGET_ABSOLUTE_ABICALLS)
fprintf (asm_out_file, "\t.option\tpic2\n");
mips_end_function_definition (stubname);
/* If the linker needs to create a dynamic symbol for the target
function, it will associate the symbol with the stub (which,
unlike the target function, follows the proper calling conventions).
It is therefore useful to have a local alias for the target function,
so that it can still be identified as MIPS16 code. As an optimization,
this symbol can also be used for indirect MIPS16 references from
within this file. */
ASM_OUTPUT_DEF (asm_out_file, alias_name, fnname);
switch_to_section (function_section (current_function_decl));
}
/* The current function is a MIPS16 function that returns a value in an FPR.
Copy the return value from its soft-float to its hard-float location.
libgcc2 has special non-MIPS16 helper functions for each case. */
static void
mips16_copy_fpr_return_value (void)
{
rtx fn, insn, retval;
tree return_type;
machine_mode return_mode;
const char *name;
return_type = DECL_RESULT (current_function_decl);
return_mode = DECL_MODE (return_type);
name = ACONCAT (("__mips16_ret_",
mips16_call_stub_mode_suffix (return_mode),
NULL));
fn = mips16_stub_function (name);
/* The function takes arguments in $2 (and possibly $3), so calls
to it cannot be lazily bound. */
SYMBOL_REF_FLAGS (fn) |= SYMBOL_FLAG_BIND_NOW;
/* Model the call as something that takes the GPR return value as
argument and returns an "updated" value. */
retval = gen_rtx_REG (return_mode, GP_RETURN);
insn = mips_expand_call (MIPS_CALL_EPILOGUE, retval, fn,
const0_rtx, NULL_RTX, false);
use_reg (&CALL_INSN_FUNCTION_USAGE (insn), retval);
}
/* Consider building a stub for a MIPS16 call to function *FN_PTR.
RETVAL is the location of the return value, or null if this is
a "call" rather than a "call_value". ARGS_SIZE is the size of the
arguments and FP_CODE is the code built by mips_function_arg;
see the comment before the fp_code field in CUMULATIVE_ARGS for details.
There are three alternatives:
- If a stub was needed, emit the call and return the call insn itself.
- If we can avoid using a stub by redirecting the call, set *FN_PTR
to the new target and return null.
- If *FN_PTR doesn't need a stub, return null and leave *FN_PTR
unmodified.
A stub is needed for calls to functions that, in normal mode,
receive arguments in FPRs or return values in FPRs. The stub
copies the arguments from their soft-float positions to their
hard-float positions, calls the real function, then copies the
return value from its hard-float position to its soft-float
position.
We can emit a JAL to *FN_PTR even when *FN_PTR might need a stub.
If *FN_PTR turns out to be to a non-MIPS16 function, the linker
automatically redirects the JAL to the stub, otherwise the JAL
continues to call FN directly. */
static rtx_insn *
mips16_build_call_stub (rtx retval, rtx *fn_ptr, rtx args_size, int fp_code)
{
const char *fnname;
bool fp_ret_p;
struct mips16_stub *l;
rtx_insn *insn;
rtx pattern, fn;
/* We don't need to do anything if we aren't in MIPS16 mode, or if
we were invoked with the -msoft-float option. */
if (!TARGET_MIPS16 || TARGET_SOFT_FLOAT_ABI)
return NULL;
/* Figure out whether the value might come back in a floating-point
register. */
fp_ret_p = retval && mips_return_mode_in_fpr_p (GET_MODE (retval));
/* We don't need to do anything if there were no floating-point
arguments and the value will not be returned in a floating-point
register. */
if (fp_code == 0 && !fp_ret_p)
return NULL;
/* We don't need to do anything if this is a call to a special
MIPS16 support function. */
fn = *fn_ptr;
if (mips16_stub_function_p (fn))
return NULL;
/* If we're calling a locally-defined MIPS16 function, we know that
it will return values in both the "soft-float" and "hard-float"
registers. There is no need to use a stub to move the latter
to the former. */
if (fp_code == 0 && mips16_local_function_p (fn))
return NULL;
/* This code will only work for o32 and o64 abis. The other ABI's
require more sophisticated support. */
gcc_assert (TARGET_OLDABI);
/* If we're calling via a function pointer, use one of the magic
libgcc.a stubs provided for each (FP_CODE, FP_RET_P) combination.
Each stub expects the function address to arrive in register $2. */
if (GET_CODE (fn) != SYMBOL_REF
|| !call_insn_operand (fn, VOIDmode))
{
char buf[30];
rtx stub_fn, addr;
rtx_insn *insn;
bool lazy_p;
/* If this is a locally-defined and locally-binding function,
avoid the stub by calling the local alias directly. */
if (mips16_local_function_p (fn))
{
*fn_ptr = mips16_local_alias (fn);
return NULL;
}
/* Create a SYMBOL_REF for the libgcc.a function. */
if (fp_ret_p)
sprintf (buf, "__mips16_call_stub_%s_%d",
mips16_call_stub_mode_suffix (GET_MODE (retval)),
fp_code);
else
sprintf (buf, "__mips16_call_stub_%d", fp_code);
stub_fn = mips16_stub_function (buf);
/* The function uses $2 as an argument, so calls to it
cannot be lazily bound. */
SYMBOL_REF_FLAGS (stub_fn) |= SYMBOL_FLAG_BIND_NOW;
/* Load the target function into $2. */
addr = gen_rtx_REG (Pmode, GP_REG_FIRST + 2);
lazy_p = mips_load_call_address (MIPS_CALL_NORMAL, addr, fn);
/* Emit the call. */
insn = mips_expand_call (MIPS_CALL_NORMAL, retval, stub_fn,
args_size, NULL_RTX, lazy_p);
/* Tell GCC that this call does indeed use the value of $2. */
use_reg (&CALL_INSN_FUNCTION_USAGE (insn), addr);
/* If we are handling a floating-point return value, we need to
save $18 in the function prologue. Putting a note on the
call will mean that df_regs_ever_live_p ($18) will be true if the
call is not eliminated, and we can check that in the prologue
code. */
if (fp_ret_p)
CALL_INSN_FUNCTION_USAGE (insn) =
gen_rtx_EXPR_LIST (VOIDmode,
gen_rtx_CLOBBER (VOIDmode,
gen_rtx_REG (word_mode, 18)),
CALL_INSN_FUNCTION_USAGE (insn));
return insn;
}
/* We know the function we are going to call. If we have already
built a stub, we don't need to do anything further. */
fnname = targetm.strip_name_encoding (XSTR (fn, 0));
for (l = mips16_stubs; l != NULL; l = l->next)
if (strcmp (l->name, fnname) == 0)
break;
if (l == NULL)
{
const char *separator;
char *secname, *stubname;
tree stubid, stubdecl;
unsigned int f;
/* If the function does not return in FPRs, the special stub
section is named
.mips16.call.FNNAME
If the function does return in FPRs, the stub section is named
.mips16.call.fp.FNNAME
Build a decl for the stub. */
secname = ACONCAT ((".mips16.call.", fp_ret_p ? "fp." : "",
fnname, NULL));
stubname = ACONCAT (("__call_stub_", fp_ret_p ? "fp_" : "",
fnname, NULL));
stubid = get_identifier (stubname);
stubdecl = build_decl (BUILTINS_LOCATION,
FUNCTION_DECL, stubid,
build_function_type_list (void_type_node,
NULL_TREE));
set_decl_section_name (stubdecl, secname);
DECL_RESULT (stubdecl) = build_decl (BUILTINS_LOCATION,
RESULT_DECL, NULL_TREE,
void_type_node);
/* Output a comment. */
fprintf (asm_out_file, "\t# Stub function to call %s%s (",
(fp_ret_p
? (GET_MODE (retval) == SFmode ? "float " : "double ")
: ""),
fnname);
separator = "";
for (f = (unsigned int) fp_code; f != 0; f >>= 2)
{
fprintf (asm_out_file, "%s%s", separator,
(f & 3) == 1 ? "float" : "double");
separator = ", ";
}
fprintf (asm_out_file, ")\n");
/* Start the function definition. */
assemble_start_function (stubdecl, stubname);
mips_start_function_definition (stubname, false);
if (fp_ret_p)
{
fprintf (asm_out_file, "\t.cfi_startproc\n");
/* Create a fake CFA 4 bytes below the stack pointer.
This works around unwinders (like libgcc's) that expect
the CFA for non-signal frames to be unique. */
fprintf (asm_out_file, "\t.cfi_def_cfa 29,-4\n");
/* "Save" $sp in itself so we don't use the fake CFA.
This is: DW_CFA_val_expression r29, { DW_OP_reg29 }. */
fprintf (asm_out_file, "\t.cfi_escape 0x16,29,1,0x6d\n");
/* Save the return address in $18. The stub's caller knows
that $18 might be clobbered, even though $18 is usually
a call-saved register.
Do it early on in case the last move to a floating-point
register can be scheduled into the delay slot of the
call we are about to make. */
fprintf (asm_out_file, "\tmove\t%s,%s\n",
reg_names[GP_REG_FIRST + 18],
reg_names[RETURN_ADDR_REGNUM]);
}
else
{
/* Load the address of the MIPS16 function into $25. Do this
first so that targets with coprocessor interlocks can use
an MFC1 to fill the delay slot. */
if (TARGET_EXPLICIT_RELOCS)
{
output_asm_insn ("lui\t%^,%%hi(%0)", &fn);
output_asm_insn ("addiu\t%^,%^,%%lo(%0)", &fn);
}
else
output_asm_insn ("la\t%^,%0", &fn);
}
/* Move the arguments from general registers to floating-point
registers. */
mips_output_args_xfer (fp_code, 't');
if (fp_ret_p)
{
/* Now call the non-MIPS16 function. */
output_asm_insn (mips_output_jump (&fn, 0, -1, true), &fn);
fprintf (asm_out_file, "\t.cfi_register 31,18\n");
/* Move the result from floating-point registers to
general registers. */
switch (GET_MODE (retval))
{
case SCmode:
mips_output_32bit_xfer ('f', GP_RETURN + TARGET_BIG_ENDIAN,
TARGET_BIG_ENDIAN
? FP_REG_FIRST + 2
: FP_REG_FIRST);
mips_output_32bit_xfer ('f', GP_RETURN + TARGET_LITTLE_ENDIAN,
TARGET_LITTLE_ENDIAN
? FP_REG_FIRST + 2
: FP_REG_FIRST);
if (GET_MODE (retval) == SCmode && TARGET_64BIT)
{
/* On 64-bit targets, complex floats are returned in
a single GPR, such that "sd" on a suitably-aligned
target would store the value correctly. */
fprintf (asm_out_file, "\tdsll\t%s,%s,32\n",
reg_names[GP_RETURN + TARGET_BIG_ENDIAN],
reg_names[GP_RETURN + TARGET_BIG_ENDIAN]);
fprintf (asm_out_file, "\tdsll\t%s,%s,32\n",
reg_names[GP_RETURN + TARGET_LITTLE_ENDIAN],
reg_names[GP_RETURN + TARGET_LITTLE_ENDIAN]);
fprintf (asm_out_file, "\tdsrl\t%s,%s,32\n",
reg_names[GP_RETURN + TARGET_BIG_ENDIAN],
reg_names[GP_RETURN + TARGET_BIG_ENDIAN]);
fprintf (asm_out_file, "\tor\t%s,%s,%s\n",
reg_names[GP_RETURN],
reg_names[GP_RETURN],
reg_names[GP_RETURN + 1]);
}
break;
case SFmode:
mips_output_32bit_xfer ('f', GP_RETURN, FP_REG_FIRST);
break;
case DCmode:
mips_output_64bit_xfer ('f', GP_RETURN + (8 / UNITS_PER_WORD),
FP_REG_FIRST + 2);
/* Fall though. */
case DFmode:
case V2SFmode:
gcc_assert (TARGET_PAIRED_SINGLE_FLOAT
|| GET_MODE (retval) != V2SFmode);
mips_output_64bit_xfer ('f', GP_RETURN, FP_REG_FIRST);
break;
default:
gcc_unreachable ();
}
fprintf (asm_out_file, "\tjr\t%s\n", reg_names[GP_REG_FIRST + 18]);
fprintf (asm_out_file, "\t.cfi_endproc\n");
}
else
{
/* Jump to the previously-loaded address. */
output_asm_insn ("jr\t%^", NULL);
}
#ifdef ASM_DECLARE_FUNCTION_SIZE
ASM_DECLARE_FUNCTION_SIZE (asm_out_file, stubname, stubdecl);
#endif
mips_end_function_definition (stubname);
/* Record this stub. */
l = XNEW (struct mips16_stub);
l->name = xstrdup (fnname);
l->fp_ret_p = fp_ret_p;
l->next = mips16_stubs;
mips16_stubs = l;
}
/* If we expect a floating-point return value, but we've built a
stub which does not expect one, then we're in trouble. We can't
use the existing stub, because it won't handle the floating-point
value. We can't build a new stub, because the linker won't know
which stub to use for the various calls in this object file.
Fortunately, this case is illegal, since it means that a function
was declared in two different ways in a single compilation. */
if (fp_ret_p && !l->fp_ret_p)
error ("cannot handle inconsistent calls to %qs", fnname);
if (retval == NULL_RTX)
pattern = gen_call_internal_direct (fn, args_size);
else
pattern = gen_call_value_internal_direct (retval, fn, args_size);
insn = mips_emit_call_insn (pattern, fn, fn, false);
/* If we are calling a stub which handles a floating-point return
value, we need to arrange to save $18 in the prologue. We do this
by marking the function call as using the register. The prologue
will later see that it is used, and emit code to save it. */
if (fp_ret_p)
CALL_INSN_FUNCTION_USAGE (insn) =
gen_rtx_EXPR_LIST (VOIDmode,
gen_rtx_CLOBBER (VOIDmode,
gen_rtx_REG (word_mode, 18)),
CALL_INSN_FUNCTION_USAGE (insn));
return insn;
}
/* Expand a call of type TYPE. RESULT is where the result will go (null
for "call"s and "sibcall"s), ADDR is the address of the function,
ARGS_SIZE is the size of the arguments and AUX is the value passed
to us by mips_function_arg. LAZY_P is true if this call already
involves a lazily-bound function address (such as when calling
functions through a MIPS16 hard-float stub).
Return the call itself. */
rtx_insn *
mips_expand_call (enum mips_call_type type, rtx result, rtx addr,
rtx args_size, rtx aux, bool lazy_p)
{
rtx orig_addr, pattern;
rtx_insn *insn;
int fp_code;
fp_code = aux == 0 ? 0 : (int) GET_MODE (aux);
insn = mips16_build_call_stub (result, &addr, args_size, fp_code);
if (insn)
{
gcc_assert (!lazy_p && type == MIPS_CALL_NORMAL);
return insn;
}
orig_addr = addr;
if (!call_insn_operand (addr, VOIDmode))
{
if (type == MIPS_CALL_EPILOGUE)
addr = MIPS_EPILOGUE_TEMP (Pmode);
else
addr = gen_reg_rtx (Pmode);
lazy_p |= mips_load_call_address (type, addr, orig_addr);
}
if (result == 0)
{
rtx (*fn) (rtx, rtx);
if (type == MIPS_CALL_SIBCALL)
fn = gen_sibcall_internal;
else
fn = gen_call_internal;
pattern = fn (addr, args_size);
}
else if (GET_CODE (result) == PARALLEL && XVECLEN (result, 0) == 2)
{
/* Handle return values created by mips_return_fpr_pair. */
rtx (*fn) (rtx, rtx, rtx, rtx);
rtx reg1, reg2;
if (type == MIPS_CALL_SIBCALL)
fn = gen_sibcall_value_multiple_internal;
else
fn = gen_call_value_multiple_internal;
reg1 = XEXP (XVECEXP (result, 0, 0), 0);
reg2 = XEXP (XVECEXP (result, 0, 1), 0);
pattern = fn (reg1, addr, args_size, reg2);
}
else
{
rtx (*fn) (rtx, rtx, rtx);
if (type == MIPS_CALL_SIBCALL)
fn = gen_sibcall_value_internal;
else
fn = gen_call_value_internal;
/* Handle return values created by mips_return_fpr_single. */
if (GET_CODE (result) == PARALLEL && XVECLEN (result, 0) == 1)
result = XEXP (XVECEXP (result, 0, 0), 0);
pattern = fn (result, addr, args_size);
}
return mips_emit_call_insn (pattern, orig_addr, addr, lazy_p);
}
/* Split call instruction INSN into a $gp-clobbering call and
(where necessary) an instruction to restore $gp from its save slot.
CALL_PATTERN is the pattern of the new call. */
void
mips_split_call (rtx insn, rtx call_pattern)
{
emit_call_insn (call_pattern);
if (!find_reg_note (insn, REG_NORETURN, 0))
mips_restore_gp_from_cprestore_slot (gen_rtx_REG (Pmode,
POST_CALL_TMP_REG));
}
/* Return true if a call to DECL may need to use JALX. */
static bool
mips_call_may_need_jalx_p (tree decl)
{
/* If the current translation unit would use a different mode for DECL,
assume that the call needs JALX. */
if (mips_get_compress_mode (decl) != TARGET_COMPRESSION)
return true;
/* mips_get_compress_mode is always accurate for locally-binding
functions in the current translation unit. */
if (!DECL_EXTERNAL (decl) && targetm.binds_local_p (decl))
return false;
/* When -minterlink-compressed is in effect, assume that functions
could use a different encoding mode unless an attribute explicitly
tells us otherwise. */
if (TARGET_INTERLINK_COMPRESSED)
{
if (!TARGET_COMPRESSION
&& mips_get_compress_off_flags (DECL_ATTRIBUTES (decl)) ==0)
return true;
if (TARGET_COMPRESSION
&& mips_get_compress_on_flags (DECL_ATTRIBUTES (decl)) == 0)
return true;
}
return false;
}
/* Implement TARGET_FUNCTION_OK_FOR_SIBCALL. */
static bool
mips_function_ok_for_sibcall (tree decl, tree exp ATTRIBUTE_UNUSED)
{
if (!TARGET_SIBCALLS)
return false;
/* Interrupt handlers need special epilogue code and therefore can't
use sibcalls. */
if (mips_interrupt_type_p (TREE_TYPE (current_function_decl)))
return false;
/* Direct Js are only possible to functions that use the same ISA encoding.
There is no JX counterpoart of JALX. */
if (decl
&& const_call_insn_operand (XEXP (DECL_RTL (decl), 0), VOIDmode)
&& mips_call_may_need_jalx_p (decl))
return false;
/* Sibling calls should not prevent lazy binding. Lazy-binding stubs
require $gp to be valid on entry, so sibcalls can only use stubs
if $gp is call-clobbered. */
if (decl
&& TARGET_CALL_SAVED_GP
&& !TARGET_ABICALLS_PIC0
&& !targetm.binds_local_p (decl))
return false;
/* Otherwise OK. */
return true;
}
/* Implement TARGET_USE_MOVE_BY_PIECES_INFRASTRUCTURE_P. */
bool
mips_use_by_pieces_infrastructure_p (unsigned HOST_WIDE_INT size,
unsigned int align,
enum by_pieces_operation op,
bool speed_p)
{
if (op == STORE_BY_PIECES)
return mips_store_by_pieces_p (size, align);
if (op == MOVE_BY_PIECES && HAVE_movmemsi)
{
/* movmemsi is meant to generate code that is at least as good as
move_by_pieces. However, movmemsi effectively uses a by-pieces
implementation both for moves smaller than a word and for
word-aligned moves of no more than MIPS_MAX_MOVE_BYTES_STRAIGHT
bytes. We should allow the tree-level optimisers to do such
moves by pieces, as it often exposes other optimization
opportunities. We might as well continue to use movmemsi at
the rtl level though, as it produces better code when
scheduling is disabled (such as at -O). */
if (currently_expanding_to_rtl)
return false;
if (align < BITS_PER_WORD)
return size < UNITS_PER_WORD;
return size <= MIPS_MAX_MOVE_BYTES_STRAIGHT;
}
return default_use_by_pieces_infrastructure_p (size, align, op, speed_p);
}
/* Implement a handler for STORE_BY_PIECES operations
for TARGET_USE_MOVE_BY_PIECES_INFRASTRUCTURE_P. */
bool
mips_store_by_pieces_p (unsigned HOST_WIDE_INT size, unsigned int align)
{
/* Storing by pieces involves moving constants into registers
of size MIN (ALIGN, BITS_PER_WORD), then storing them.
We need to decide whether it is cheaper to load the address of
constant data into a register and use a block move instead. */
/* If the data is only byte aligned, then:
(a1) A block move of less than 4 bytes would involve three 3 LBs and
3 SBs. We might as well use 3 single-instruction LIs and 3 SBs
instead.
(a2) A block move of 4 bytes from aligned source data can use an
LW/SWL/SWR sequence. This is often better than the 4 LIs and
4 SBs that we would generate when storing by pieces. */
if (align <= BITS_PER_UNIT)
return size < 4;
/* If the data is 2-byte aligned, then:
(b1) A block move of less than 4 bytes would use a combination of LBs,
LHs, SBs and SHs. We get better code by using single-instruction
LIs, SBs and SHs instead.
(b2) A block move of 4 bytes from aligned source data would again use
an LW/SWL/SWR sequence. In most cases, loading the address of
the source data would require at least one extra instruction.
It is often more efficient to use 2 single-instruction LIs and
2 SHs instead.
(b3) A block move of up to 3 additional bytes would be like (b1).
(b4) A block move of 8 bytes from aligned source data can use two
LW/SWL/SWR sequences or a single LD/SDL/SDR sequence. Both
sequences are better than the 4 LIs and 4 SHs that we'd generate
when storing by pieces.
The reasoning for higher alignments is similar:
(c1) A block move of less than 4 bytes would be the same as (b1).
(c2) A block move of 4 bytes would use an LW/SW sequence. Again,
loading the address of the source data would typically require
at least one extra instruction. It is generally better to use
LUI/ORI/SW instead.
(c3) A block move of up to 3 additional bytes would be like (b1).
(c4) A block move of 8 bytes can use two LW/SW sequences or a single
LD/SD sequence, and in these cases we've traditionally preferred
the memory copy over the more bulky constant moves. */
return size < 8;
}
/* Emit straight-line code to move LENGTH bytes from SRC to DEST.
Assume that the areas do not overlap. */
static void
mips_block_move_straight (rtx dest, rtx src, HOST_WIDE_INT length)
{
HOST_WIDE_INT offset, delta;
unsigned HOST_WIDE_INT bits;
int i;
machine_mode mode;
rtx *regs;
/* Work out how many bits to move at a time. If both operands have
half-word alignment, it is usually better to move in half words.
For instance, lh/lh/sh/sh is usually better than lwl/lwr/swl/swr
and lw/lw/sw/sw is usually better than ldl/ldr/sdl/sdr.
Otherwise move word-sized chunks.
For ISA_HAS_LWL_LWR we rely on the lwl/lwr & swl/swr load. Otherwise
picking the minimum of alignment or BITS_PER_WORD gets us the
desired size for bits. */
if (!ISA_HAS_LWL_LWR)
bits = MIN (BITS_PER_WORD, MIN (MEM_ALIGN (src), MEM_ALIGN (dest)));
else
{
if (MEM_ALIGN (src) == BITS_PER_WORD / 2
&& MEM_ALIGN (dest) == BITS_PER_WORD / 2)
bits = BITS_PER_WORD / 2;
else
bits = BITS_PER_WORD;
}
mode = mode_for_size (bits, MODE_INT, 0);
delta = bits / BITS_PER_UNIT;
/* Allocate a buffer for the temporary registers. */
regs = XALLOCAVEC (rtx, length / delta);
/* Load as many BITS-sized chunks as possible. Use a normal load if
the source has enough alignment, otherwise use left/right pairs. */
for (offset = 0, i = 0; offset + delta <= length; offset += delta, i++)
{
regs[i] = gen_reg_rtx (mode);
if (MEM_ALIGN (src) >= bits)
mips_emit_move (regs[i], adjust_address (src, mode, offset));
else
{
rtx part = adjust_address (src, BLKmode, offset);
set_mem_size (part, delta);
if (!mips_expand_ext_as_unaligned_load (regs[i], part, bits, 0, 0))
gcc_unreachable ();
}
}
/* Copy the chunks to the destination. */
for (offset = 0, i = 0; offset + delta <= length; offset += delta, i++)
if (MEM_ALIGN (dest) >= bits)
mips_emit_move (adjust_address (dest, mode, offset), regs[i]);
else
{
rtx part = adjust_address (dest, BLKmode, offset);
set_mem_size (part, delta);
if (!mips_expand_ins_as_unaligned_store (part, regs[i], bits, 0))
gcc_unreachable ();
}
/* Mop up any left-over bytes. */
if (offset < length)
{
src = adjust_address (src, BLKmode, offset);
dest = adjust_address (dest, BLKmode, offset);
move_by_pieces (dest, src, length - offset,
MIN (MEM_ALIGN (src), MEM_ALIGN (dest)), 0);
}
}
/* Helper function for doing a loop-based block operation on memory
reference MEM. Each iteration of the loop will operate on LENGTH
bytes of MEM.
Create a new base register for use within the loop and point it to
the start of MEM. Create a new memory reference that uses this
register. Store them in *LOOP_REG and *LOOP_MEM respectively. */
static void
mips_adjust_block_mem (rtx mem, HOST_WIDE_INT length,
rtx *loop_reg, rtx *loop_mem)
{
*loop_reg = copy_addr_to_reg (XEXP (mem, 0));
/* Although the new mem does not refer to a known location,
it does keep up to LENGTH bytes of alignment. */
*loop_mem = change_address (mem, BLKmode, *loop_reg);
set_mem_align (*loop_mem, MIN (MEM_ALIGN (mem), length * BITS_PER_UNIT));
}
/* Move LENGTH bytes from SRC to DEST using a loop that moves BYTES_PER_ITER
bytes at a time. LENGTH must be at least BYTES_PER_ITER. Assume that
the memory regions do not overlap. */
static void
mips_block_move_loop (rtx dest, rtx src, HOST_WIDE_INT length,
HOST_WIDE_INT bytes_per_iter)
{
rtx_code_label *label;
rtx src_reg, dest_reg, final_src, test;
HOST_WIDE_INT leftover;
leftover = length % bytes_per_iter;
length -= leftover;
/* Create registers and memory references for use within the loop. */
mips_adjust_block_mem (src, bytes_per_iter, &src_reg, &src);
mips_adjust_block_mem (dest, bytes_per_iter, &dest_reg, &dest);
/* Calculate the value that SRC_REG should have after the last iteration
of the loop. */
final_src = expand_simple_binop (Pmode, PLUS, src_reg, GEN_INT (length),
0, 0, OPTAB_WIDEN);
/* Emit the start of the loop. */
label = gen_label_rtx ();
emit_label (label);
/* Emit the loop body. */
mips_block_move_straight (dest, src, bytes_per_iter);
/* Move on to the next block. */
mips_emit_move (src_reg, plus_constant (Pmode, src_reg, bytes_per_iter));
mips_emit_move (dest_reg, plus_constant (Pmode, dest_reg, bytes_per_iter));
/* Emit the loop condition. */
test = gen_rtx_NE (VOIDmode, src_reg, final_src);
if (Pmode == DImode)
emit_jump_insn (gen_cbranchdi4 (test, src_reg, final_src, label));
else
emit_jump_insn (gen_cbranchsi4 (test, src_reg, final_src, label));
/* Mop up any left-over bytes. */
if (leftover)
mips_block_move_straight (dest, src, leftover);
}
/* Expand a movmemsi instruction, which copies LENGTH bytes from
memory reference SRC to memory reference DEST. */
bool
mips_expand_block_move (rtx dest, rtx src, rtx length)
{
if (!ISA_HAS_LWL_LWR
&& (MEM_ALIGN (src) < MIPS_MIN_MOVE_MEM_ALIGN
|| MEM_ALIGN (dest) < MIPS_MIN_MOVE_MEM_ALIGN))
return false;
if (CONST_INT_P (length))
{
if (INTVAL (length) <= MIPS_MAX_MOVE_BYTES_STRAIGHT)
{
mips_block_move_straight (dest, src, INTVAL (length));
return true;
}
else if (optimize)
{
mips_block_move_loop (dest, src, INTVAL (length),
MIPS_MAX_MOVE_BYTES_PER_LOOP_ITER);
return true;
}
}
return false;
}
/* Expand a loop of synci insns for the address range [BEGIN, END). */
void
mips_expand_synci_loop (rtx begin, rtx end)
{
rtx inc, cmp_result, mask, length;
rtx_code_label *label, *end_label;
/* Create end_label. */
end_label = gen_label_rtx ();
/* Check if begin equals end. */
cmp_result = gen_rtx_EQ (VOIDmode, begin, end);
emit_jump_insn (gen_condjump (cmp_result, end_label));
/* Load INC with the cache line size (rdhwr INC,$1). */
inc = gen_reg_rtx (Pmode);
emit_insn (PMODE_INSN (gen_rdhwr_synci_step, (inc)));
/* Check if inc is 0. */
cmp_result = gen_rtx_EQ (VOIDmode, inc, const0_rtx);
emit_jump_insn (gen_condjump (cmp_result, end_label));
/* Calculate mask. */
mask = mips_force_unary (Pmode, NEG, inc);
/* Mask out begin by mask. */
begin = mips_force_binary (Pmode, AND, begin, mask);
/* Calculate length. */
length = mips_force_binary (Pmode, MINUS, end, begin);
/* Loop back to here. */
label = gen_label_rtx ();
emit_label (label);
emit_insn (gen_synci (begin));
/* Update length. */
mips_emit_binary (MINUS, length, length, inc);
/* Update begin. */
mips_emit_binary (PLUS, begin, begin, inc);
/* Check if length is greater than 0. */
cmp_result = gen_rtx_GT (VOIDmode, length, const0_rtx);
emit_jump_insn (gen_condjump (cmp_result, label));
emit_label (end_label);
}
/* Expand a QI or HI mode atomic memory operation.
GENERATOR contains a pointer to the gen_* function that generates
the SI mode underlying atomic operation using masks that we
calculate.
RESULT is the return register for the operation. Its value is NULL
if unused.
MEM is the location of the atomic access.
OLDVAL is the first operand for the operation.
NEWVAL is the optional second operand for the operation. Its value
is NULL if unused. */
void
mips_expand_atomic_qihi (union mips_gen_fn_ptrs generator,
rtx result, rtx mem, rtx oldval, rtx newval)
{
rtx orig_addr, memsi_addr, memsi, shift, shiftsi, unshifted_mask;
rtx unshifted_mask_reg, mask, inverted_mask, si_op;
rtx res = NULL;
machine_mode mode;
mode = GET_MODE (mem);
/* Compute the address of the containing SImode value. */
orig_addr = force_reg (Pmode, XEXP (mem, 0));
memsi_addr = mips_force_binary (Pmode, AND, orig_addr,
force_reg (Pmode, GEN_INT (-4)));
/* Create a memory reference for it. */
memsi = gen_rtx_MEM (SImode, memsi_addr);
set_mem_alias_set (memsi, ALIAS_SET_MEMORY_BARRIER);
MEM_VOLATILE_P (memsi) = MEM_VOLATILE_P (mem);
/* Work out the byte offset of the QImode or HImode value,
counting from the least significant byte. */
shift = mips_force_binary (Pmode, AND, orig_addr, GEN_INT (3));
if (TARGET_BIG_ENDIAN)
mips_emit_binary (XOR, shift, shift, GEN_INT (mode == QImode ? 3 : 2));
/* Multiply by eight to convert the shift value from bytes to bits. */
mips_emit_binary (ASHIFT, shift, shift, GEN_INT (3));
/* Make the final shift an SImode value, so that it can be used in
SImode operations. */
shiftsi = force_reg (SImode, gen_lowpart (SImode, shift));
/* Set MASK to an inclusive mask of the QImode or HImode value. */
unshifted_mask = GEN_INT (GET_MODE_MASK (mode));
unshifted_mask_reg = force_reg (SImode, unshifted_mask);
mask = mips_force_binary (SImode, ASHIFT, unshifted_mask_reg, shiftsi);
/* Compute the equivalent exclusive mask. */
inverted_mask = gen_reg_rtx (SImode);
emit_insn (gen_rtx_SET (inverted_mask, gen_rtx_NOT (SImode, mask)));
/* Shift the old value into place. */
if (oldval != const0_rtx)
{
oldval = convert_modes (SImode, mode, oldval, true);
oldval = force_reg (SImode, oldval);
oldval = mips_force_binary (SImode, ASHIFT, oldval, shiftsi);
}
/* Do the same for the new value. */
if (newval && newval != const0_rtx)
{
newval = convert_modes (SImode, mode, newval, true);
newval = force_reg (SImode, newval);
newval = mips_force_binary (SImode, ASHIFT, newval, shiftsi);
}
/* Do the SImode atomic access. */
if (result)
res = gen_reg_rtx (SImode);
if (newval)
si_op = generator.fn_6 (res, memsi, mask, inverted_mask, oldval, newval);
else if (result)
si_op = generator.fn_5 (res, memsi, mask, inverted_mask, oldval);
else
si_op = generator.fn_4 (memsi, mask, inverted_mask, oldval);
emit_insn (si_op);
if (result)
{
/* Shift and convert the result. */
mips_emit_binary (AND, res, res, mask);
mips_emit_binary (LSHIFTRT, res, res, shiftsi);
mips_emit_move (result, gen_lowpart (GET_MODE (result), res));
}
}
/* Return true if it is possible to use left/right accesses for a
bitfield of WIDTH bits starting BITPOS bits into BLKmode memory OP.
When returning true, update *LEFT and *RIGHT as follows:
*LEFT is a QImode reference to the first byte if big endian or
the last byte if little endian. This address can be used in the
left-side instructions (LWL, SWL, LDL, SDL).
*RIGHT is a QImode reference to the opposite end of the field and
can be used in the patterning right-side instruction. */
static bool
mips_get_unaligned_mem (rtx op, HOST_WIDE_INT width, HOST_WIDE_INT bitpos,
rtx *left, rtx *right)
{
rtx first, last;
/* Check that the size is valid. */
if (width != 32 && (!TARGET_64BIT || width != 64))
return false;
/* We can only access byte-aligned values. Since we are always passed
a reference to the first byte of the field, it is not necessary to
do anything with BITPOS after this check. */
if (bitpos % BITS_PER_UNIT != 0)
return false;
/* Reject aligned bitfields: we want to use a normal load or store
instead of a left/right pair. */
if (MEM_ALIGN (op) >= width)
return false;
/* Get references to both ends of the field. */
first = adjust_address (op, QImode, 0);
last = adjust_address (op, QImode, width / BITS_PER_UNIT - 1);
/* Allocate to LEFT and RIGHT according to endianness. LEFT should
correspond to the MSB and RIGHT to the LSB. */
if (TARGET_BIG_ENDIAN)
*left = first, *right = last;
else
*left = last, *right = first;
return true;
}
/* Try to use left/right loads to expand an "extv" or "extzv" pattern.
DEST, SRC, WIDTH and BITPOS are the operands passed to the expander;
the operation is the equivalent of:
(set DEST (*_extract SRC WIDTH BITPOS))
Return true on success. */
bool
mips_expand_ext_as_unaligned_load (rtx dest, rtx src, HOST_WIDE_INT width,
HOST_WIDE_INT bitpos, bool unsigned_p)
{
rtx left, right, temp;
rtx dest1 = NULL_RTX;
/* If TARGET_64BIT, the destination of a 32-bit "extz" or "extzv" will
be a DImode, create a new temp and emit a zero extend at the end. */
if (GET_MODE (dest) == DImode
&& REG_P (dest)
&& GET_MODE_BITSIZE (SImode) == width)
{
dest1 = dest;
dest = gen_reg_rtx (SImode);
}
if (!mips_get_unaligned_mem (src, width, bitpos, &left, &right))
return false;
temp = gen_reg_rtx (GET_MODE (dest));
if (GET_MODE (dest) == DImode)
{
emit_insn (gen_mov_ldl (temp, src, left));
emit_insn (gen_mov_ldr (dest, copy_rtx (src), right, temp));
}
else
{
emit_insn (gen_mov_lwl (temp, src, left));
emit_insn (gen_mov_lwr (dest, copy_rtx (src), right, temp));
}
/* If we were loading 32bits and the original register was DI then
sign/zero extend into the orignal dest. */
if (dest1)
{
if (unsigned_p)
emit_insn (gen_zero_extendsidi2 (dest1, dest));
else
emit_insn (gen_extendsidi2 (dest1, dest));
}
return true;
}
/* Try to use left/right stores to expand an "ins" pattern. DEST, WIDTH,
BITPOS and SRC are the operands passed to the expander; the operation
is the equivalent of:
(set (zero_extract DEST WIDTH BITPOS) SRC)
Return true on success. */
bool
mips_expand_ins_as_unaligned_store (rtx dest, rtx src, HOST_WIDE_INT width,
HOST_WIDE_INT bitpos)
{
rtx left, right;
machine_mode mode;
if (!mips_get_unaligned_mem (dest, width, bitpos, &left, &right))
return false;
mode = mode_for_size (width, MODE_INT, 0);
src = gen_lowpart (mode, src);
if (mode == DImode)
{
emit_insn (gen_mov_sdl (dest, src, left));
emit_insn (gen_mov_sdr (copy_rtx (dest), copy_rtx (src), right));
}
else
{
emit_insn (gen_mov_swl (dest, src, left));
emit_insn (gen_mov_swr (copy_rtx (dest), copy_rtx (src), right));
}
return true;
}
/* Return true if X is a MEM with the same size as MODE. */
bool
mips_mem_fits_mode_p (machine_mode mode, rtx x)
{
return (MEM_P (x)
&& MEM_SIZE_KNOWN_P (x)
&& MEM_SIZE (x) == GET_MODE_SIZE (mode));
}
/* Return true if (zero_extract OP WIDTH BITPOS) can be used as the
source of an "ext" instruction or the destination of an "ins"
instruction. OP must be a register operand and the following
conditions must hold:
0 <= BITPOS < GET_MODE_BITSIZE (GET_MODE (op))
0 < WIDTH <= GET_MODE_BITSIZE (GET_MODE (op))
0 < BITPOS + WIDTH <= GET_MODE_BITSIZE (GET_MODE (op))
Also reject lengths equal to a word as they are better handled
by the move patterns. */
bool
mips_use_ins_ext_p (rtx op, HOST_WIDE_INT width, HOST_WIDE_INT bitpos)
{
if (!ISA_HAS_EXT_INS
|| !register_operand (op, VOIDmode)
|| GET_MODE_BITSIZE (GET_MODE (op)) > BITS_PER_WORD)
return false;
if (!IN_RANGE (width, 1, GET_MODE_BITSIZE (GET_MODE (op)) - 1))
return false;
if (bitpos < 0 || bitpos + width > GET_MODE_BITSIZE (GET_MODE (op)))
return false;
return true;
}
/* Check if MASK and SHIFT are valid in mask-low-and-shift-left
operation if MAXLEN is the maxium length of consecutive bits that
can make up MASK. MODE is the mode of the operation. See
mask_low_and_shift_len for the actual definition. */
bool
mask_low_and_shift_p (machine_mode mode, rtx mask, rtx shift, int maxlen)
{
return IN_RANGE (mask_low_and_shift_len (mode, mask, shift), 1, maxlen);
}
/* Return true iff OP1 and OP2 are valid operands together for the
*and<MODE>3 and *and<MODE>3_mips16 patterns. For the cases to consider,
see the table in the comment before the pattern. */
bool
and_operands_ok (machine_mode mode, rtx op1, rtx op2)
{
return (memory_operand (op1, mode)
? and_load_operand (op2, mode)
: and_reg_operand (op2, mode));
}
/* The canonical form of a mask-low-and-shift-left operation is
(and (ashift X SHIFT) MASK) where MASK has the lower SHIFT number of bits
cleared. Thus we need to shift MASK to the right before checking if it
is a valid mask value. MODE is the mode of the operation. If true
return the length of the mask, otherwise return -1. */
int
mask_low_and_shift_len (machine_mode mode, rtx mask, rtx shift)
{
HOST_WIDE_INT shval;
shval = INTVAL (shift) & (GET_MODE_BITSIZE (mode) - 1);
return exact_log2 ((UINTVAL (mask) >> shval) + 1);
}
/* Return true if -msplit-addresses is selected and should be honored.
-msplit-addresses is a half-way house between explicit relocations
and the traditional assembler macros. It can split absolute 32-bit
symbolic constants into a high/lo_sum pair but uses macros for other
sorts of access.
Like explicit relocation support for REL targets, it relies
on GNU extensions in the assembler and the linker.
Although this code should work for -O0, it has traditionally
been treated as an optimization. */
static bool
mips_split_addresses_p (void)
{
return (TARGET_SPLIT_ADDRESSES
&& optimize
&& !TARGET_MIPS16
&& !flag_pic
&& !ABI_HAS_64BIT_SYMBOLS);
}
/* (Re-)Initialize mips_split_p, mips_lo_relocs and mips_hi_relocs. */
static void
mips_init_relocs (void)
{
memset (mips_split_p, '\0', sizeof (mips_split_p));
memset (mips_split_hi_p, '\0', sizeof (mips_split_hi_p));
memset (mips_use_pcrel_pool_p, '\0', sizeof (mips_use_pcrel_pool_p));
memset (mips_hi_relocs, '\0', sizeof (mips_hi_relocs));
memset (mips_lo_relocs, '\0', sizeof (mips_lo_relocs));
if (TARGET_MIPS16_PCREL_LOADS)
mips_use_pcrel_pool_p[SYMBOL_ABSOLUTE] = true;
else
{
if (ABI_HAS_64BIT_SYMBOLS)
{
if (TARGET_EXPLICIT_RELOCS)
{
mips_split_p[SYMBOL_64_HIGH] = true;
mips_hi_relocs[SYMBOL_64_HIGH] = "%highest(";
mips_lo_relocs[SYMBOL_64_HIGH] = "%higher(";
mips_split_p[SYMBOL_64_MID] = true;
mips_hi_relocs[SYMBOL_64_MID] = "%higher(";
mips_lo_relocs[SYMBOL_64_MID] = "%hi(";
mips_split_p[SYMBOL_64_LOW] = true;
mips_hi_relocs[SYMBOL_64_LOW] = "%hi(";
mips_lo_relocs[SYMBOL_64_LOW] = "%lo(";
mips_split_p[SYMBOL_ABSOLUTE] = true;
mips_lo_relocs[SYMBOL_ABSOLUTE] = "%lo(";
}
}
else
{
if (TARGET_EXPLICIT_RELOCS
|| mips_split_addresses_p ()
|| TARGET_MIPS16)
{
mips_split_p[SYMBOL_ABSOLUTE] = true;
mips_hi_relocs[SYMBOL_ABSOLUTE] = "%hi(";
mips_lo_relocs[SYMBOL_ABSOLUTE] = "%lo(";
}
}
}
if (TARGET_MIPS16)
{
/* The high part is provided by a pseudo copy of $gp. */
mips_split_p[SYMBOL_GP_RELATIVE] = true;
mips_lo_relocs[SYMBOL_GP_RELATIVE] = "%gprel(";
}
else if (TARGET_EXPLICIT_RELOCS)
/* Small data constants are kept whole until after reload,
then lowered by mips_rewrite_small_data. */
mips_lo_relocs[SYMBOL_GP_RELATIVE] = "%gp_rel(";
if (TARGET_EXPLICIT_RELOCS)
{
mips_split_p[SYMBOL_GOT_PAGE_OFST] = true;
if (TARGET_NEWABI)
{
mips_lo_relocs[SYMBOL_GOTOFF_PAGE] = "%got_page(";
mips_lo_relocs[SYMBOL_GOT_PAGE_OFST] = "%got_ofst(";
}
else
{
mips_lo_relocs[SYMBOL_GOTOFF_PAGE] = "%got(";
mips_lo_relocs[SYMBOL_GOT_PAGE_OFST] = "%lo(";
}
if (TARGET_MIPS16)
/* Expose the use of $28 as soon as possible. */
mips_split_hi_p[SYMBOL_GOT_PAGE_OFST] = true;
if (TARGET_XGOT)
{
/* The HIGH and LO_SUM are matched by special .md patterns. */
mips_split_p[SYMBOL_GOT_DISP] = true;
mips_split_p[SYMBOL_GOTOFF_DISP] = true;
mips_hi_relocs[SYMBOL_GOTOFF_DISP] = "%got_hi(";
mips_lo_relocs[SYMBOL_GOTOFF_DISP] = "%got_lo(";
mips_split_p[SYMBOL_GOTOFF_CALL] = true;
mips_hi_relocs[SYMBOL_GOTOFF_CALL] = "%call_hi(";
mips_lo_relocs[SYMBOL_GOTOFF_CALL] = "%call_lo(";
}
else
{
if (TARGET_NEWABI)
mips_lo_relocs[SYMBOL_GOTOFF_DISP] = "%got_disp(";
else
mips_lo_relocs[SYMBOL_GOTOFF_DISP] = "%got(";
mips_lo_relocs[SYMBOL_GOTOFF_CALL] = "%call16(";
if (TARGET_MIPS16)
/* Expose the use of $28 as soon as possible. */
mips_split_p[SYMBOL_GOT_DISP] = true;
}
}
if (TARGET_NEWABI)
{
mips_split_p[SYMBOL_GOTOFF_LOADGP] = true;
mips_hi_relocs[SYMBOL_GOTOFF_LOADGP] = "%hi(%neg(%gp_rel(";
mips_lo_relocs[SYMBOL_GOTOFF_LOADGP] = "%lo(%neg(%gp_rel(";
}
mips_lo_relocs[SYMBOL_TLSGD] = "%tlsgd(";
mips_lo_relocs[SYMBOL_TLSLDM] = "%tlsldm(";
if (TARGET_MIPS16_PCREL_LOADS)
{
mips_use_pcrel_pool_p[SYMBOL_DTPREL] = true;
mips_use_pcrel_pool_p[SYMBOL_TPREL] = true;
}
else
{
mips_split_p[SYMBOL_DTPREL] = true;
mips_hi_relocs[SYMBOL_DTPREL] = "%dtprel_hi(";
mips_lo_relocs[SYMBOL_DTPREL] = "%dtprel_lo(";
mips_split_p[SYMBOL_TPREL] = true;
mips_hi_relocs[SYMBOL_TPREL] = "%tprel_hi(";
mips_lo_relocs[SYMBOL_TPREL] = "%tprel_lo(";
}
mips_lo_relocs[SYMBOL_GOTTPREL] = "%gottprel(";
mips_lo_relocs[SYMBOL_HALF] = "%half(";
}
/* Print symbolic operand OP, which is part of a HIGH or LO_SUM
in context CONTEXT. RELOCS is the array of relocations to use. */
static void
mips_print_operand_reloc (FILE *file, rtx op, enum mips_symbol_context context,
const char **relocs)
{
enum mips_symbol_type symbol_type;
const char *p;
symbol_type = mips_classify_symbolic_expression (op, context);
gcc_assert (relocs[symbol_type]);
fputs (relocs[symbol_type], file);
output_addr_const (file, mips_strip_unspec_address (op));
for (p = relocs[symbol_type]; *p != 0; p++)
if (*p == '(')
fputc (')', file);
}
/* Start a new block with the given asm switch enabled. If we need
to print a directive, emit PREFIX before it and SUFFIX after it. */
static void
mips_push_asm_switch_1 (struct mips_asm_switch *asm_switch,
const char *prefix, const char *suffix)
{
if (asm_switch->nesting_level == 0)
fprintf (asm_out_file, "%s.set\tno%s%s", prefix, asm_switch->name, suffix);
asm_switch->nesting_level++;
}
/* Likewise, but end a block. */
static void
mips_pop_asm_switch_1 (struct mips_asm_switch *asm_switch,
const char *prefix, const char *suffix)
{
gcc_assert (asm_switch->nesting_level);
asm_switch->nesting_level--;
if (asm_switch->nesting_level == 0)
fprintf (asm_out_file, "%s.set\t%s%s", prefix, asm_switch->name, suffix);
}
/* Wrappers around mips_push_asm_switch_1 and mips_pop_asm_switch_1
that either print a complete line or print nothing. */
void
mips_push_asm_switch (struct mips_asm_switch *asm_switch)
{
mips_push_asm_switch_1 (asm_switch, "\t", "\n");
}
void
mips_pop_asm_switch (struct mips_asm_switch *asm_switch)
{
mips_pop_asm_switch_1 (asm_switch, "\t", "\n");
}
/* Print the text for PRINT_OPERAND punctation character CH to FILE.
The punctuation characters are:
'(' Start a nested ".set noreorder" block.
')' End a nested ".set noreorder" block.
'[' Start a nested ".set noat" block.
']' End a nested ".set noat" block.
'<' Start a nested ".set nomacro" block.
'>' End a nested ".set nomacro" block.
'*' Behave like %(%< if generating a delayed-branch sequence.
'#' Print a nop if in a ".set noreorder" block.
'/' Like '#', but do nothing within a delayed-branch sequence.
'?' Print "l" if mips_branch_likely is true
'~' Print a nop if mips_branch_likely is true
'.' Print the name of the register with a hard-wired zero (zero or $0).
'@' Print the name of the assembler temporary register (at or $1).
'^' Print the name of the pic call-through register (t9 or $25).
'+' Print the name of the gp register (usually gp or $28).
'$' Print the name of the stack pointer register (sp or $29).
':' Print "c" to use the compact version if the delay slot is a nop.
'!' Print "s" to use the short version if the delay slot contains a
16-bit instruction.
See also mips_init_print_operand_punct. */
static void
mips_print_operand_punctuation (FILE *file, int ch)
{
switch (ch)
{
case '(':
mips_push_asm_switch_1 (&mips_noreorder, "", "\n\t");
break;
case ')':
mips_pop_asm_switch_1 (&mips_noreorder, "\n\t", "");
break;
case '[':
mips_push_asm_switch_1 (&mips_noat, "", "\n\t");
break;
case ']':
mips_pop_asm_switch_1 (&mips_noat, "\n\t", "");
break;
case '<':
mips_push_asm_switch_1 (&mips_nomacro, "", "\n\t");
break;
case '>':
mips_pop_asm_switch_1 (&mips_nomacro, "\n\t", "");
break;
case '*':
if (final_sequence != 0)
{
mips_print_operand_punctuation (file, '(');
mips_print_operand_punctuation (file, '<');
}
break;
case '#':
if (mips_noreorder.nesting_level > 0)
fputs ("\n\tnop", file);
break;
case '/':
/* Print an extra newline so that the delayed insn is separated
from the following ones. This looks neater and is consistent
with non-nop delayed sequences. */
if (mips_noreorder.nesting_level > 0 && final_sequence == 0)
fputs ("\n\tnop\n", file);
break;
case '?':
if (mips_branch_likely)
putc ('l', file);
break;
case '~':
if (mips_branch_likely)
fputs ("\n\tnop", file);
break;
case '.':
fputs (reg_names[GP_REG_FIRST + 0], file);
break;
case '@':
fputs (reg_names[AT_REGNUM], file);
break;
case '^':
fputs (reg_names[PIC_FUNCTION_ADDR_REGNUM], file);
break;
case '+':
fputs (reg_names[PIC_OFFSET_TABLE_REGNUM], file);
break;
case '$':
fputs (reg_names[STACK_POINTER_REGNUM], file);
break;
case ':':
/* When final_sequence is 0, the delay slot will be a nop. We can
use the compact version where available. The %: formatter will
only be present if a compact form of the branch is available. */
if (final_sequence == 0)
putc ('c', file);
break;
case '!':
/* If the delay slot instruction is short, then use the
compact version. */
if (TARGET_MICROMIPS && !TARGET_INTERLINK_COMPRESSED && mips_isa_rev <= 5
&& (final_sequence == 0
|| get_attr_length (final_sequence->insn (1)) == 2))
putc ('s', file);
break;
default:
gcc_unreachable ();
break;
}
}
/* Initialize mips_print_operand_punct. */
static void
mips_init_print_operand_punct (void)
{
const char *p;
for (p = "()[]<>*#/?~.@^+$:!"; *p; p++)
mips_print_operand_punct[(unsigned char) *p] = true;
}
/* PRINT_OPERAND prefix LETTER refers to the integer branch instruction
associated with condition CODE. Print the condition part of the
opcode to FILE. */
static void
mips_print_int_branch_condition (FILE *file, enum rtx_code code, int letter)
{
switch (code)
{
case EQ:
case NE:
case GT:
case GE:
case LT:
case LE:
case GTU:
case GEU:
case LTU:
case LEU:
/* Conveniently, the MIPS names for these conditions are the same
as their RTL equivalents. */
fputs (GET_RTX_NAME (code), file);
break;
default:
output_operand_lossage ("'%%%c' is not a valid operand prefix", letter);
break;
}
}
/* Likewise floating-point branches. */
static void
mips_print_float_branch_condition (FILE *file, enum rtx_code code, int letter)
{
switch (code)
{
case EQ:
if (ISA_HAS_CCF)
fputs ("c1eqz", file);
else
fputs ("c1f", file);
break;
case NE:
if (ISA_HAS_CCF)
fputs ("c1nez", file);
else
fputs ("c1t", file);
break;
default:
output_operand_lossage ("'%%%c' is not a valid operand prefix", letter);
break;
}
}
/* Implement TARGET_PRINT_OPERAND_PUNCT_VALID_P. */
static bool
mips_print_operand_punct_valid_p (unsigned char code)
{
return mips_print_operand_punct[code];
}
/* Implement TARGET_PRINT_OPERAND. The MIPS-specific operand codes are:
'X' Print CONST_INT OP in hexadecimal format.
'x' Print the low 16 bits of CONST_INT OP in hexadecimal format.
'd' Print CONST_INT OP in decimal.
'm' Print one less than CONST_INT OP in decimal.
'h' Print the high-part relocation associated with OP, after stripping
any outermost HIGH.
'R' Print the low-part relocation associated with OP.
'C' Print the integer branch condition for comparison OP.
'N' Print the inverse of the integer branch condition for comparison OP.
'F' Print the FPU branch condition for comparison OP.
'W' Print the inverse of the FPU branch condition for comparison OP.
'T' Print 'f' for (eq:CC ...), 't' for (ne:CC ...),
'z' for (eq:?I ...), 'n' for (ne:?I ...).
't' Like 'T', but with the EQ/NE cases reversed
'Y' Print mips_fp_conditions[INTVAL (OP)]
'Z' Print OP and a comma for ISA_HAS_8CC, otherwise print nothing.
'q' Print a DSP accumulator register.
'D' Print the second part of a double-word register or memory operand.
'L' Print the low-order register in a double-word register operand.
'M' Print high-order register in a double-word register operand.
'z' Print $0 if OP is zero, otherwise print OP normally.
'b' Print the address of a memory operand, without offset. */
static void
mips_print_operand (FILE *file, rtx op, int letter)
{
enum rtx_code code;
if (mips_print_operand_punct_valid_p (letter))
{
mips_print_operand_punctuation (file, letter);
return;
}
gcc_assert (op);
code = GET_CODE (op);
switch (letter)
{
case 'X':
if (CONST_INT_P (op))
fprintf (file, HOST_WIDE_INT_PRINT_HEX, INTVAL (op));
else
output_operand_lossage ("invalid use of '%%%c'", letter);
break;
case 'x':
if (CONST_INT_P (op))
fprintf (file, HOST_WIDE_INT_PRINT_HEX, INTVAL (op) & 0xffff);
else
output_operand_lossage ("invalid use of '%%%c'", letter);
break;
case 'd':
if (CONST_INT_P (op))
fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (op));
else
output_operand_lossage ("invalid use of '%%%c'", letter);
break;
case 'm':
if (CONST_INT_P (op))
fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (op) - 1);
else
output_operand_lossage ("invalid use of '%%%c'", letter);
break;
case 'h':
if (code == HIGH)
op = XEXP (op, 0);
mips_print_operand_reloc (file, op, SYMBOL_CONTEXT_LEA, mips_hi_relocs);
break;
case 'R':
mips_print_operand_reloc (file, op, SYMBOL_CONTEXT_LEA, mips_lo_relocs);
break;
case 'C':
mips_print_int_branch_condition (file, code, letter);
break;
case 'N':
mips_print_int_branch_condition (file, reverse_condition (code), letter);
break;
case 'F':
mips_print_float_branch_condition (file, code, letter);
break;
case 'W':
mips_print_float_branch_condition (file, reverse_condition (code),
letter);
break;
case 'T':
case 't':
{
int truth = (code == NE) == (letter == 'T');
fputc ("zfnt"[truth * 2 + ST_REG_P (REGNO (XEXP (op, 0)))], file);
}
break;
case 'Y':
if (code == CONST_INT && UINTVAL (op) < ARRAY_SIZE (mips_fp_conditions))
fputs (mips_fp_conditions[UINTVAL (op)], file);
else
output_operand_lossage ("'%%%c' is not a valid operand prefix",
letter);
break;
case 'Z':
if (ISA_HAS_8CC || ISA_HAS_CCF)
{
mips_print_operand (file, op, 0);
fputc (',', file);
}
break;
case 'q':
if (code == REG && MD_REG_P (REGNO (op)))
fprintf (file, "$ac0");
else if (code == REG && DSP_ACC_REG_P (REGNO (op)))
fprintf (file, "$ac%c", reg_names[REGNO (op)][3]);
else
output_operand_lossage ("invalid use of '%%%c'", letter);
break;
default:
switch (code)
{
case REG:
{
unsigned int regno = REGNO (op);
if ((letter == 'M' && TARGET_LITTLE_ENDIAN)
|| (letter == 'L' && TARGET_BIG_ENDIAN)
|| letter == 'D')
regno++;
else if (letter && letter != 'z' && letter != 'M' && letter != 'L')
output_operand_lossage ("invalid use of '%%%c'", letter);
/* We need to print $0 .. $31 for COP0 registers. */
if (COP0_REG_P (regno))
fprintf (file, "$%s", ®_names[regno][4]);
else
fprintf (file, "%s", reg_names[regno]);
}
break;
case MEM:
if (letter == 'D')
output_address (plus_constant (Pmode, XEXP (op, 0), 4));
else if (letter == 'b')
{
gcc_assert (REG_P (XEXP (op, 0)));
mips_print_operand (file, XEXP (op, 0), 0);
}
else if (letter && letter != 'z')
output_operand_lossage ("invalid use of '%%%c'", letter);
else
output_address (XEXP (op, 0));
break;
default:
if (letter == 'z' && op == CONST0_RTX (GET_MODE (op)))
fputs (reg_names[GP_REG_FIRST], file);
else if (letter && letter != 'z')
output_operand_lossage ("invalid use of '%%%c'", letter);
else if (CONST_GP_P (op))
fputs (reg_names[GLOBAL_POINTER_REGNUM], file);
else
output_addr_const (file, mips_strip_unspec_address (op));
break;
}
}
}
/* Implement TARGET_PRINT_OPERAND_ADDRESS. */
static void
mips_print_operand_address (FILE *file, rtx x)
{
struct mips_address_info addr;
if (mips_classify_address (&addr, x, word_mode, true))
switch (addr.type)
{
case ADDRESS_REG:
mips_print_operand (file, addr.offset, 0);
fprintf (file, "(%s)", reg_names[REGNO (addr.reg)]);
return;
case ADDRESS_LO_SUM:
mips_print_operand_reloc (file, addr.offset, SYMBOL_CONTEXT_MEM,
mips_lo_relocs);
fprintf (file, "(%s)", reg_names[REGNO (addr.reg)]);
return;
case ADDRESS_CONST_INT:
output_addr_const (file, x);
fprintf (file, "(%s)", reg_names[GP_REG_FIRST]);
return;
case ADDRESS_SYMBOLIC:
output_addr_const (file, mips_strip_unspec_address (x));
return;
}
gcc_unreachable ();
}
/* Implement TARGET_ENCODE_SECTION_INFO. */
static void
mips_encode_section_info (tree decl, rtx rtl, int first)
{
default_encode_section_info (decl, rtl, first);
if (TREE_CODE (decl) == FUNCTION_DECL)
{
rtx symbol = XEXP (rtl, 0);
tree type = TREE_TYPE (decl);
/* Encode whether the symbol is short or long. */
if ((TARGET_LONG_CALLS && !mips_near_type_p (type))
|| mips_far_type_p (type))
SYMBOL_REF_FLAGS (symbol) |= SYMBOL_FLAG_LONG_CALL;
}
}
/* Implement TARGET_SELECT_RTX_SECTION. */
static section *
mips_select_rtx_section (machine_mode mode, rtx x,
unsigned HOST_WIDE_INT align)
{
/* ??? Consider using mergeable small data sections. */
if (mips_rtx_constant_in_small_data_p (mode))
return get_named_section (NULL, ".sdata", 0);
return default_elf_select_rtx_section (mode, x, align);
}
/* Implement TARGET_ASM_FUNCTION_RODATA_SECTION.
The complication here is that, with the combination TARGET_ABICALLS
&& !TARGET_ABSOLUTE_ABICALLS && !TARGET_GPWORD, jump tables will use
absolute addresses, and should therefore not be included in the
read-only part of a DSO. Handle such cases by selecting a normal
data section instead of a read-only one. The logic apes that in
default_function_rodata_section. */
static section *
mips_function_rodata_section (tree decl)
{
if (!TARGET_ABICALLS || TARGET_ABSOLUTE_ABICALLS || TARGET_GPWORD)
return default_function_rodata_section (decl);
if (decl && DECL_SECTION_NAME (decl))
{
const char *name = DECL_SECTION_NAME (decl);
if (DECL_COMDAT_GROUP (decl) && strncmp (name, ".gnu.linkonce.t.", 16) == 0)
{
char *rname = ASTRDUP (name);
rname[14] = 'd';
return get_section (rname, SECTION_LINKONCE | SECTION_WRITE, decl);
}
else if (flag_function_sections
&& flag_data_sections
&& strncmp (name, ".text.", 6) == 0)
{
char *rname = ASTRDUP (name);
memcpy (rname + 1, "data", 4);
return get_section (rname, SECTION_WRITE, decl);
}
}
return data_section;
}
/* Implement TARGET_IN_SMALL_DATA_P. */
static bool
mips_in_small_data_p (const_tree decl)
{
unsigned HOST_WIDE_INT size;
if (TREE_CODE (decl) == STRING_CST || TREE_CODE (decl) == FUNCTION_DECL)
return false;
/* We don't yet generate small-data references for -mabicalls
or VxWorks RTP code. See the related -G handling in
mips_option_override. */
if (TARGET_ABICALLS || TARGET_VXWORKS_RTP)
return false;
if (TREE_CODE (decl) == VAR_DECL && DECL_SECTION_NAME (decl) != 0)
{
const char *name;
/* Reject anything that isn't in a known small-data section. */
name = DECL_SECTION_NAME (decl);
if (strcmp (name, ".sdata") != 0 && strcmp (name, ".sbss") != 0)
return false;
/* If a symbol is defined externally, the assembler will use the
usual -G rules when deciding how to implement macros. */
if (mips_lo_relocs[SYMBOL_GP_RELATIVE] || !DECL_EXTERNAL (decl))
return true;
}
else if (TARGET_EMBEDDED_DATA)
{
/* Don't put constants into the small data section: we want them
to be in ROM rather than RAM. */
if (TREE_CODE (decl) != VAR_DECL)
return false;
if (TREE_READONLY (decl)
&& !TREE_SIDE_EFFECTS (decl)
&& (!DECL_INITIAL (decl) || TREE_CONSTANT (DECL_INITIAL (decl))))
return false;
}
/* Enforce -mlocal-sdata. */
if (!TARGET_LOCAL_SDATA && !TREE_PUBLIC (decl))
return false;
/* Enforce -mextern-sdata. */
if (!TARGET_EXTERN_SDATA && DECL_P (decl))
{
if (DECL_EXTERNAL (decl))
return false;
if (DECL_COMMON (decl) && DECL_INITIAL (decl) == NULL)
return false;
}
/* We have traditionally not treated zero-sized objects as small data,
so this is now effectively part of the ABI. */
size = int_size_in_bytes (TREE_TYPE (decl));
return size > 0 && size <= mips_small_data_threshold;
}
/* Implement TARGET_USE_ANCHORS_FOR_SYMBOL_P. We don't want to use
anchors for small data: the GP register acts as an anchor in that
case. We also don't want to use them for PC-relative accesses,
where the PC acts as an anchor. */
static bool
mips_use_anchors_for_symbol_p (const_rtx symbol)
{
switch (mips_classify_symbol (symbol, SYMBOL_CONTEXT_MEM))
{
case SYMBOL_PC_RELATIVE:
case SYMBOL_GP_RELATIVE:
return false;
default:
return default_use_anchors_for_symbol_p (symbol);
}
}
/* The MIPS debug format wants all automatic variables and arguments
to be in terms of the virtual frame pointer (stack pointer before
any adjustment in the function), while the MIPS 3.0 linker wants
the frame pointer to be the stack pointer after the initial
adjustment. So, we do the adjustment here. The arg pointer (which
is eliminated) points to the virtual frame pointer, while the frame
pointer (which may be eliminated) points to the stack pointer after
the initial adjustments. */
HOST_WIDE_INT
mips_debugger_offset (rtx addr, HOST_WIDE_INT offset)
{
rtx offset2 = const0_rtx;
rtx reg = eliminate_constant_term (addr, &offset2);
if (offset == 0)
offset = INTVAL (offset2);
if (reg == stack_pointer_rtx
|| reg == frame_pointer_rtx
|| reg == hard_frame_pointer_rtx)
{
offset -= cfun->machine->frame.total_size;
if (reg == hard_frame_pointer_rtx)
offset += cfun->machine->frame.hard_frame_pointer_offset;
}
return offset;
}
/* Implement ASM_OUTPUT_EXTERNAL. */
void
mips_output_external (FILE *file, tree decl, const char *name)
{
default_elf_asm_output_external (file, decl, name);
/* We output the name if and only if TREE_SYMBOL_REFERENCED is
set in order to avoid putting out names that are never really
used. */
if (TREE_SYMBOL_REFERENCED (DECL_ASSEMBLER_NAME (decl)))
{
if (!TARGET_EXPLICIT_RELOCS && mips_in_small_data_p (decl))
{
/* When using assembler macros, emit .extern directives for
all small-data externs so that the assembler knows how
big they are.
In most cases it would be safe (though pointless) to emit
.externs for other symbols too. One exception is when an
object is within the -G limit but declared by the user to
be in a section other than .sbss or .sdata. */
fputs ("\t.extern\t", file);
assemble_name (file, name);
fprintf (file, ", " HOST_WIDE_INT_PRINT_DEC "\n",
int_size_in_bytes (TREE_TYPE (decl)));
}
}
}
/* Implement TARGET_ASM_OUTPUT_SOURCE_FILENAME. */
static void
mips_output_filename (FILE *stream, const char *name)
{
/* If we are emitting DWARF-2, let dwarf2out handle the ".file"
directives. */
if (write_symbols == DWARF2_DEBUG)
return;
else if (mips_output_filename_first_time)
{
mips_output_filename_first_time = 0;
num_source_filenames += 1;
current_function_file = name;
fprintf (stream, "\t.file\t%d ", num_source_filenames);
output_quoted_string (stream, name);
putc ('\n', stream);
}
/* If we are emitting stabs, let dbxout.c handle this (except for
the mips_output_filename_first_time case). */
else if (write_symbols == DBX_DEBUG)
return;
else if (name != current_function_file
&& strcmp (name, current_function_file) != 0)
{
num_source_filenames += 1;
current_function_file = name;
fprintf (stream, "\t.file\t%d ", num_source_filenames);
output_quoted_string (stream, name);
putc ('\n', stream);
}
}
/* Implement TARGET_ASM_OUTPUT_DWARF_DTPREL. */
static void ATTRIBUTE_UNUSED
mips_output_dwarf_dtprel (FILE *file, int size, rtx x)
{
switch (size)
{
case 4:
fputs ("\t.dtprelword\t", file);
break;
case 8:
fputs ("\t.dtpreldword\t", file);
break;
default:
gcc_unreachable ();
}
output_addr_const (file, x);
fputs ("+0x8000", file);
}
/* Implement TARGET_DWARF_REGISTER_SPAN. */
static rtx
mips_dwarf_register_span (rtx reg)
{
rtx high, low;
machine_mode mode;
/* TARGET_FLOATXX is implemented as 32-bit floating-point registers but
ensures that double-precision registers are treated as if they were
64-bit physical registers. The code will run correctly with 32-bit or
64-bit registers which means that dwarf information cannot be precise
for all scenarios. We choose to state that the 64-bit values are stored
in a single 64-bit 'piece'. This slightly unusual construct can then be
interpreted as either a pair of registers if the registers are 32-bit or
a single 64-bit register depending on hardware. */
mode = GET_MODE (reg);
if (FP_REG_P (REGNO (reg))
&& TARGET_FLOATXX
&& GET_MODE_SIZE (mode) > UNITS_PER_FPREG)
{
return gen_rtx_PARALLEL (VOIDmode, gen_rtvec (1, reg));
}
/* By default, GCC maps increasing register numbers to increasing
memory locations, but paired FPRs are always little-endian,
regardless of the prevailing endianness. */
else if (FP_REG_P (REGNO (reg))
&& TARGET_BIG_ENDIAN
&& MAX_FPRS_PER_FMT > 1
&& GET_MODE_SIZE (mode) > UNITS_PER_FPREG)
{
gcc_assert (GET_MODE_SIZE (mode) == UNITS_PER_HWFPVALUE);
high = mips_subword (reg, true);
low = mips_subword (reg, false);
return gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, high, low));
}
return NULL_RTX;
}
/* Implement TARGET_DWARF_FRAME_REG_MODE. */
static machine_mode
mips_dwarf_frame_reg_mode (int regno)
{
machine_mode mode = default_dwarf_frame_reg_mode (regno);
if (FP_REG_P (regno) && mips_abi == ABI_32 && TARGET_FLOAT64)
mode = SImode;
return mode;
}
/* DSP ALU can bypass data with no delays for the following pairs. */
enum insn_code dspalu_bypass_table[][2] =
{
{CODE_FOR_mips_addsc, CODE_FOR_mips_addwc},
{CODE_FOR_mips_cmpu_eq_qb, CODE_FOR_mips_pick_qb},
{CODE_FOR_mips_cmpu_lt_qb, CODE_FOR_mips_pick_qb},
{CODE_FOR_mips_cmpu_le_qb, CODE_FOR_mips_pick_qb},
{CODE_FOR_mips_cmp_eq_ph, CODE_FOR_mips_pick_ph},
{CODE_FOR_mips_cmp_lt_ph, CODE_FOR_mips_pick_ph},
{CODE_FOR_mips_cmp_le_ph, CODE_FOR_mips_pick_ph},
{CODE_FOR_mips_wrdsp, CODE_FOR_mips_insv}
};
int
mips_dspalu_bypass_p (rtx out_insn, rtx in_insn)
{
int i;
int num_bypass = ARRAY_SIZE (dspalu_bypass_table);
enum insn_code out_icode = (enum insn_code) INSN_CODE (out_insn);
enum insn_code in_icode = (enum insn_code) INSN_CODE (in_insn);
for (i = 0; i < num_bypass; i++)
{
if (out_icode == dspalu_bypass_table[i][0]
&& in_icode == dspalu_bypass_table[i][1])
return true;
}
return false;
}
/* Implement ASM_OUTPUT_ASCII. */
void
mips_output_ascii (FILE *stream, const char *string, size_t len)
{
size_t i;
int cur_pos;
cur_pos = 17;
fprintf (stream, "\t.ascii\t\"");
for (i = 0; i < len; i++)
{
int c;
c = (unsigned char) string[i];
if (ISPRINT (c))
{
if (c == '\\' || c == '\"')
{
putc ('\\', stream);
cur_pos++;
}
putc (c, stream);
cur_pos++;
}
else
{
fprintf (stream, "\\%03o", c);
cur_pos += 4;
}
if (cur_pos > 72 && i+1 < len)
{
cur_pos = 17;
fprintf (stream, "\"\n\t.ascii\t\"");
}
}
fprintf (stream, "\"\n");
}
/* Return the pseudo-op for full SYMBOL_(D)TPREL address *ADDR.
Update *ADDR with the operand that should be printed. */
const char *
mips_output_tls_reloc_directive (rtx *addr)
{
enum mips_symbol_type type;
type = mips_classify_symbolic_expression (*addr, SYMBOL_CONTEXT_LEA);
*addr = mips_strip_unspec_address (*addr);
switch (type)
{
case SYMBOL_DTPREL:
return Pmode == SImode ? ".dtprelword\t%0" : ".dtpreldword\t%0";
case SYMBOL_TPREL:
return Pmode == SImode ? ".tprelword\t%0" : ".tpreldword\t%0";
default:
gcc_unreachable ();
}
}
/* Emit either a label, .comm, or .lcomm directive. When using assembler
macros, mark the symbol as written so that mips_asm_output_external
won't emit an .extern for it. STREAM is the output file, NAME is the
name of the symbol, INIT_STRING is the string that should be written
before the symbol and FINAL_STRING is the string that should be
written after it. FINAL_STRING is a printf format that consumes the
remaining arguments. */
void
mips_declare_object (FILE *stream, const char *name, const char *init_string,
const char *final_string, ...)
{
va_list ap;
fputs (init_string, stream);
assemble_name (stream, name);
va_start (ap, final_string);
vfprintf (stream, final_string, ap);
va_end (ap);
if (!TARGET_EXPLICIT_RELOCS)
{
tree name_tree = get_identifier (name);
TREE_ASM_WRITTEN (name_tree) = 1;
}
}
/* Declare a common object of SIZE bytes using asm directive INIT_STRING.
NAME is the name of the object and ALIGN is the required alignment
in bytes. TAKES_ALIGNMENT_P is true if the directive takes a third
alignment argument. */
void
mips_declare_common_object (FILE *stream, const char *name,
const char *init_string,
unsigned HOST_WIDE_INT size,
unsigned int align, bool takes_alignment_p)
{
if (!takes_alignment_p)
{
size += (align / BITS_PER_UNIT) - 1;
size -= size % (align / BITS_PER_UNIT);
mips_declare_object (stream, name, init_string,
"," HOST_WIDE_INT_PRINT_UNSIGNED "\n", size);
}
else
mips_declare_object (stream, name, init_string,
"," HOST_WIDE_INT_PRINT_UNSIGNED ",%u\n",
size, align / BITS_PER_UNIT);
}
/* Implement ASM_OUTPUT_ALIGNED_DECL_COMMON. This is usually the same as the
elfos.h version, but we also need to handle -muninit-const-in-rodata. */
void
mips_output_aligned_decl_common (FILE *stream, tree decl, const char *name,
unsigned HOST_WIDE_INT size,
unsigned int align)
{
/* If the target wants uninitialized const declarations in
.rdata then don't put them in .comm. */
if (TARGET_EMBEDDED_DATA
&& TARGET_UNINIT_CONST_IN_RODATA
&& TREE_CODE (decl) == VAR_DECL
&& TREE_READONLY (decl)
&& (DECL_INITIAL (decl) == 0 || DECL_INITIAL (decl) == error_mark_node))
{
if (TREE_PUBLIC (decl) && DECL_NAME (decl))
targetm.asm_out.globalize_label (stream, name);
switch_to_section (readonly_data_section);
ASM_OUTPUT_ALIGN (stream, floor_log2 (align / BITS_PER_UNIT));
mips_declare_object (stream, name, "",
":\n\t.space\t" HOST_WIDE_INT_PRINT_UNSIGNED "\n",
size);
}
else
mips_declare_common_object (stream, name, "\n\t.comm\t",
size, align, true);
}
#ifdef ASM_OUTPUT_SIZE_DIRECTIVE
extern int size_directive_output;
/* Implement ASM_DECLARE_OBJECT_NAME. This is like most of the standard ELF
definitions except that it uses mips_declare_object to emit the label. */
void
mips_declare_object_name (FILE *stream, const char *name,
tree decl ATTRIBUTE_UNUSED)
{
#ifdef ASM_OUTPUT_TYPE_DIRECTIVE
ASM_OUTPUT_TYPE_DIRECTIVE (stream, name, "object");
#endif
size_directive_output = 0;
if (!flag_inhibit_size_directive && DECL_SIZE (decl))
{
HOST_WIDE_INT size;
size_directive_output = 1;
size = int_size_in_bytes (TREE_TYPE (decl));
ASM_OUTPUT_SIZE_DIRECTIVE (stream, name, size);
}
mips_declare_object (stream, name, "", ":\n");
}
/* Implement ASM_FINISH_DECLARE_OBJECT. This is generic ELF stuff. */
void
mips_finish_declare_object (FILE *stream, tree decl, int top_level, int at_end)
{
const char *name;
name = XSTR (XEXP (DECL_RTL (decl), 0), 0);
if (!flag_inhibit_size_directive
&& DECL_SIZE (decl) != 0
&& !at_end
&& top_level
&& DECL_INITIAL (decl) == error_mark_node
&& !size_directive_output)
{
HOST_WIDE_INT size;
size_directive_output = 1;
size = int_size_in_bytes (TREE_TYPE (decl));
ASM_OUTPUT_SIZE_DIRECTIVE (stream, name, size);
}
}
#endif
/* Return the FOO in the name of the ".mdebug.FOO" section associated
with the current ABI. */
static const char *
mips_mdebug_abi_name (void)
{
switch (mips_abi)
{
case ABI_32:
return "abi32";
case ABI_O64:
return "abiO64";
case ABI_N32:
return "abiN32";
case ABI_64:
return "abi64";
case ABI_EABI:
return TARGET_64BIT ? "eabi64" : "eabi32";
default:
gcc_unreachable ();
}
}
/* Implement TARGET_ASM_FILE_START. */
static void
mips_file_start (void)
{
default_file_start ();
/* Generate a special section to describe the ABI switches used to
produce the resultant binary. */
/* Record the ABI itself. Modern versions of binutils encode
this information in the ELF header flags, but GDB needs the
information in order to correctly debug binaries produced by
older binutils. See the function mips_gdbarch_init in
gdb/mips-tdep.c. */
fprintf (asm_out_file, "\t.section .mdebug.%s\n\t.previous\n",
mips_mdebug_abi_name ());
/* There is no ELF header flag to distinguish long32 forms of the
EABI from long64 forms. Emit a special section to help tools
such as GDB. Do the same for o64, which is sometimes used with
-mlong64. */
if (mips_abi == ABI_EABI || mips_abi == ABI_O64)
fprintf (asm_out_file, "\t.section .gcc_compiled_long%d\n"
"\t.previous\n", TARGET_LONG64 ? 64 : 32);
/* Record the NaN encoding. */
if (HAVE_AS_NAN || mips_nan != MIPS_IEEE_754_DEFAULT)
fprintf (asm_out_file, "\t.nan\t%s\n",
mips_nan == MIPS_IEEE_754_2008 ? "2008" : "legacy");
#ifdef HAVE_AS_DOT_MODULE
/* Record the FP ABI. See below for comments. */
if (TARGET_NO_FLOAT)
#ifdef HAVE_AS_GNU_ATTRIBUTE
fputs ("\t.gnu_attribute 4, 0\n", asm_out_file);
#else
;
#endif
else if (!TARGET_HARD_FLOAT_ABI)
fputs ("\t.module\tsoftfloat\n", asm_out_file);
else if (!TARGET_DOUBLE_FLOAT)
fputs ("\t.module\tsinglefloat\n", asm_out_file);
else if (TARGET_FLOATXX)
fputs ("\t.module\tfp=xx\n", asm_out_file);
else if (TARGET_FLOAT64)
fputs ("\t.module\tfp=64\n", asm_out_file);
else
fputs ("\t.module\tfp=32\n", asm_out_file);
if (TARGET_ODD_SPREG)
fputs ("\t.module\toddspreg\n", asm_out_file);
else
fputs ("\t.module\tnooddspreg\n", asm_out_file);
#else
#ifdef HAVE_AS_GNU_ATTRIBUTE
{
int attr;
/* No floating-point operations, -mno-float. */
if (TARGET_NO_FLOAT)
attr = 0;
/* Soft-float code, -msoft-float. */
else if (!TARGET_HARD_FLOAT_ABI)
attr = 3;
/* Single-float code, -msingle-float. */
else if (!TARGET_DOUBLE_FLOAT)
attr = 2;
/* 64-bit FP registers on a 32-bit target, -mips32r2 -mfp64.
Reserved attr=4.
This case used 12 callee-saved double-precision registers
and is deprecated. */
/* 64-bit or 32-bit FP registers on a 32-bit target, -mfpxx. */
else if (TARGET_FLOATXX)
attr = 5;
/* 64-bit FP registers on a 32-bit target, -mfp64 -modd-spreg. */
else if (mips_abi == ABI_32 && TARGET_FLOAT64 && TARGET_ODD_SPREG)
attr = 6;
/* 64-bit FP registers on a 32-bit target, -mfp64 -mno-odd-spreg. */
else if (mips_abi == ABI_32 && TARGET_FLOAT64)
attr = 7;
/* Regular FP code, FP regs same size as GP regs, -mdouble-float. */
else
attr = 1;
fprintf (asm_out_file, "\t.gnu_attribute 4, %d\n", attr);
}
#endif
#endif
/* If TARGET_ABICALLS, tell GAS to generate -KPIC code. */
if (TARGET_ABICALLS)
{
fprintf (asm_out_file, "\t.abicalls\n");
if (TARGET_ABICALLS_PIC0)
fprintf (asm_out_file, "\t.option\tpic0\n");
}
if (flag_verbose_asm)
fprintf (asm_out_file, "\n%s -G value = %d, Arch = %s, ISA = %d\n",
ASM_COMMENT_START,
mips_small_data_threshold, mips_arch_info->name, mips_isa);
}
/* Implement TARGET_ASM_CODE_END. */
static void
mips_code_end (void)
{
mips_finish_stub (&mips16_rdhwr_stub);
mips_finish_stub (&mips16_get_fcsr_stub);
mips_finish_stub (&mips16_set_fcsr_stub);
}
/* Make the last instruction frame-related and note that it performs
the operation described by FRAME_PATTERN. */
static void
mips_set_frame_expr (rtx frame_pattern)
{
rtx_insn *insn;
insn = get_last_insn ();
RTX_FRAME_RELATED_P (insn) = 1;
REG_NOTES (insn) = alloc_EXPR_LIST (REG_FRAME_RELATED_EXPR,
frame_pattern,
REG_NOTES (insn));
}
/* Return a frame-related rtx that stores REG at MEM.
REG must be a single register. */
static rtx
mips_frame_set (rtx mem, rtx reg)
{
rtx set;
set = gen_rtx_SET (mem, reg);
RTX_FRAME_RELATED_P (set) = 1;
return set;
}
/* Record that the epilogue has restored call-saved register REG. */
static void
mips_add_cfa_restore (rtx reg)
{
mips_epilogue.cfa_restores = alloc_reg_note (REG_CFA_RESTORE, reg,
mips_epilogue.cfa_restores);
}
/* If a MIPS16e SAVE or RESTORE instruction saves or restores register
mips16e_s2_s8_regs[X], it must also save the registers in indexes
X + 1 onwards. Likewise mips16e_a0_a3_regs. */
static const unsigned char mips16e_s2_s8_regs[] = {
30, 23, 22, 21, 20, 19, 18
};
static const unsigned char mips16e_a0_a3_regs[] = {
4, 5, 6, 7
};
/* A list of the registers that can be saved by the MIPS16e SAVE instruction,
ordered from the uppermost in memory to the lowest in memory. */
static const unsigned char mips16e_save_restore_regs[] = {
31, 30, 23, 22, 21, 20, 19, 18, 17, 16, 7, 6, 5, 4
};
/* Return the index of the lowest X in the range [0, SIZE) for which
bit REGS[X] is set in MASK. Return SIZE if there is no such X. */
static unsigned int
mips16e_find_first_register (unsigned int mask, const unsigned char *regs,
unsigned int size)
{
unsigned int i;
for (i = 0; i < size; i++)
if (BITSET_P (mask, regs[i]))
break;
return i;
}
/* *MASK_PTR is a mask of general-purpose registers and *NUM_REGS_PTR
is the number of set bits. If *MASK_PTR contains REGS[X] for some X
in [0, SIZE), adjust *MASK_PTR and *NUM_REGS_PTR so that the same
is true for all indexes (X, SIZE). */
static void
mips16e_mask_registers (unsigned int *mask_ptr, const unsigned char *regs,
unsigned int size, unsigned int *num_regs_ptr)
{
unsigned int i;
i = mips16e_find_first_register (*mask_ptr, regs, size);
for (i++; i < size; i++)
if (!BITSET_P (*mask_ptr, regs[i]))
{
*num_regs_ptr += 1;
*mask_ptr |= 1 << regs[i];
}
}
/* Return a simplified form of X using the register values in REG_VALUES.
REG_VALUES[R] is the last value assigned to hard register R, or null
if R has not been modified.
This function is rather limited, but is good enough for our purposes. */
static rtx
mips16e_collect_propagate_value (rtx x, rtx *reg_values)
{
x = avoid_constant_pool_reference (x);
if (UNARY_P (x))
{
rtx x0 = mips16e_collect_propagate_value (XEXP (x, 0), reg_values);
return simplify_gen_unary (GET_CODE (x), GET_MODE (x),
x0, GET_MODE (XEXP (x, 0)));
}
if (ARITHMETIC_P (x))
{
rtx x0 = mips16e_collect_propagate_value (XEXP (x, 0), reg_values);
rtx x1 = mips16e_collect_propagate_value (XEXP (x, 1), reg_values);
return simplify_gen_binary (GET_CODE (x), GET_MODE (x), x0, x1);
}
if (REG_P (x)
&& reg_values[REGNO (x)]
&& !rtx_unstable_p (reg_values[REGNO (x)]))
return reg_values[REGNO (x)];
return x;
}
/* Return true if (set DEST SRC) stores an argument register into its
caller-allocated save slot, storing the number of that argument
register in *REGNO_PTR if so. REG_VALUES is as for
mips16e_collect_propagate_value. */
static bool
mips16e_collect_argument_save_p (rtx dest, rtx src, rtx *reg_values,
unsigned int *regno_ptr)
{
unsigned int argno, regno;
HOST_WIDE_INT offset, required_offset;
rtx addr, base;
/* Check that this is a word-mode store. */
if (!MEM_P (dest) || !REG_P (src) || GET_MODE (dest) != word_mode)
return false;
/* Check that the register being saved is an unmodified argument
register. */
regno = REGNO (src);
if (!IN_RANGE (regno, GP_ARG_FIRST, GP_ARG_LAST) || reg_values[regno])
return false;
argno = regno - GP_ARG_FIRST;
/* Check whether the address is an appropriate stack-pointer or
frame-pointer access. */
addr = mips16e_collect_propagate_value (XEXP (dest, 0), reg_values);
mips_split_plus (addr, &base, &offset);
required_offset = cfun->machine->frame.total_size + argno * UNITS_PER_WORD;
if (base == hard_frame_pointer_rtx)
required_offset -= cfun->machine->frame.hard_frame_pointer_offset;
else if (base != stack_pointer_rtx)
return false;
if (offset != required_offset)
return false;
*regno_ptr = regno;
return true;
}
/* A subroutine of mips_expand_prologue, called only when generating
MIPS16e SAVE instructions. Search the start of the function for any
instructions that save argument registers into their caller-allocated
save slots. Delete such instructions and return a value N such that
saving [GP_ARG_FIRST, GP_ARG_FIRST + N) would make all the deleted
instructions redundant. */
static unsigned int
mips16e_collect_argument_saves (void)
{
rtx reg_values[FIRST_PSEUDO_REGISTER];
rtx_insn *insn, *next;
rtx set, dest, src;
unsigned int nargs, regno;
push_topmost_sequence ();
nargs = 0;
memset (reg_values, 0, sizeof (reg_values));
for (insn = get_insns (); insn; insn = next)
{
next = NEXT_INSN (insn);
if (NOTE_P (insn) || DEBUG_INSN_P (insn))
continue;
if (!INSN_P (insn))
break;
set = PATTERN (insn);
if (GET_CODE (set) != SET)
break;
dest = SET_DEST (set);
src = SET_SRC (set);
if (mips16e_collect_argument_save_p (dest, src, reg_values, ®no))
{
if (!BITSET_P (cfun->machine->frame.mask, regno))
{
delete_insn (insn);
nargs = MAX (nargs, (regno - GP_ARG_FIRST) + 1);
}
}
else if (REG_P (dest) && GET_MODE (dest) == word_mode)
reg_values[REGNO (dest)]
= mips16e_collect_propagate_value (src, reg_values);
else
break;
}
pop_topmost_sequence ();
return nargs;
}
/* Return a move between register REGNO and memory location SP + OFFSET.
REG_PARM_P is true if SP + OFFSET belongs to REG_PARM_STACK_SPACE.
Make the move a load if RESTORE_P, otherwise make it a store. */
static rtx
mips16e_save_restore_reg (bool restore_p, bool reg_parm_p,
HOST_WIDE_INT offset, unsigned int regno)
{
rtx reg, mem;
mem = gen_frame_mem (SImode, plus_constant (Pmode, stack_pointer_rtx,
offset));
reg = gen_rtx_REG (SImode, regno);
if (restore_p)
{
mips_add_cfa_restore (reg);
return gen_rtx_SET (reg, mem);
}
if (reg_parm_p)
return gen_rtx_SET (mem, reg);
return mips_frame_set (mem, reg);
}
/* Return RTL for a MIPS16e SAVE or RESTORE instruction; RESTORE_P says which.
The instruction must:
- Allocate or deallocate SIZE bytes in total; SIZE is known
to be nonzero.
- Save or restore as many registers in *MASK_PTR as possible.
The instruction saves the first registers at the top of the
allocated area, with the other registers below it.
- Save NARGS argument registers above the allocated area.
(NARGS is always zero if RESTORE_P.)
The SAVE and RESTORE instructions cannot save and restore all general
registers, so there may be some registers left over for the caller to
handle. Destructively modify *MASK_PTR so that it contains the registers
that still need to be saved or restored. The caller can save these
registers in the memory immediately below *OFFSET_PTR, which is a
byte offset from the bottom of the allocated stack area. */
static rtx
mips16e_build_save_restore (bool restore_p, unsigned int *mask_ptr,
HOST_WIDE_INT *offset_ptr, unsigned int nargs,
HOST_WIDE_INT size)
{
rtx pattern, set;
HOST_WIDE_INT offset, top_offset;
unsigned int i, regno;
int n;
gcc_assert (cfun->machine->frame.num_fp == 0);
/* Calculate the number of elements in the PARALLEL. We need one element
for the stack adjustment, one for each argument register save, and one
for each additional register move. */
n = 1 + nargs;
for (i = 0; i < ARRAY_SIZE (mips16e_save_restore_regs); i++)
if (BITSET_P (*mask_ptr, mips16e_save_restore_regs[i]))
n++;
/* Create the final PARALLEL. */
pattern = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (n));
n = 0;
/* Add the stack pointer adjustment. */
set = gen_rtx_SET (stack_pointer_rtx,
plus_constant (Pmode, stack_pointer_rtx,
restore_p ? size : -size));
RTX_FRAME_RELATED_P (set) = 1;
XVECEXP (pattern, 0, n++) = set;
/* Stack offsets in the PARALLEL are relative to the old stack pointer. */
top_offset = restore_p ? size : 0;
/* Save the arguments. */
for (i = 0; i < nargs; i++)
{
offset = top_offset + i * UNITS_PER_WORD;
set = mips16e_save_restore_reg (restore_p, true, offset,
GP_ARG_FIRST + i);
XVECEXP (pattern, 0, n++) = set;
}
/* Then fill in the other register moves. */
offset = top_offset;
for (i = 0; i < ARRAY_SIZE (mips16e_save_restore_regs); i++)
{
regno = mips16e_save_restore_regs[i];
if (BITSET_P (*mask_ptr, regno))
{
offset -= UNITS_PER_WORD;
set = mips16e_save_restore_reg (restore_p, false, offset, regno);
XVECEXP (pattern, 0, n++) = set;
*mask_ptr &= ~(1 << regno);
}
}
/* Tell the caller what offset it should use for the remaining registers. */
*offset_ptr = size + (offset - top_offset);
gcc_assert (n == XVECLEN (pattern, 0));
return pattern;
}
/* PATTERN is a PARALLEL whose first element adds ADJUST to the stack
pointer. Return true if PATTERN matches the kind of instruction
generated by mips16e_build_save_restore. If INFO is nonnull,
initialize it when returning true. */
bool
mips16e_save_restore_pattern_p (rtx pattern, HOST_WIDE_INT adjust,
struct mips16e_save_restore_info *info)
{
unsigned int i, nargs, mask, extra;
HOST_WIDE_INT top_offset, save_offset, offset;
rtx set, reg, mem, base;
int n;
if (!GENERATE_MIPS16E_SAVE_RESTORE)
return false;
/* Stack offsets in the PARALLEL are relative to the old stack pointer. */
top_offset = adjust > 0 ? adjust : 0;
/* Interpret all other members of the PARALLEL. */
save_offset = top_offset - UNITS_PER_WORD;
mask = 0;
nargs = 0;
i = 0;
for (n = 1; n < XVECLEN (pattern, 0); n++)
{
/* Check that we have a SET. */
set = XVECEXP (pattern, 0, n);
if (GET_CODE (set) != SET)
return false;
/* Check that the SET is a load (if restoring) or a store
(if saving). */
mem = adjust > 0 ? SET_SRC (set) : SET_DEST (set);
if (!MEM_P (mem))
return false;
/* Check that the address is the sum of the stack pointer and a
possibly-zero constant offset. */
mips_split_plus (XEXP (mem, 0), &base, &offset);
if (base != stack_pointer_rtx)
return false;
/* Check that SET's other operand is a register. */
reg = adjust > 0 ? SET_DEST (set) : SET_SRC (set);
if (!REG_P (reg))
return false;
/* Check for argument saves. */
if (offset == top_offset + nargs * UNITS_PER_WORD
&& REGNO (reg) == GP_ARG_FIRST + nargs)
nargs++;
else if (offset == save_offset)
{
while (mips16e_save_restore_regs[i++] != REGNO (reg))
if (i == ARRAY_SIZE (mips16e_save_restore_regs))
return false;
mask |= 1 << REGNO (reg);
save_offset -= UNITS_PER_WORD;
}
else
return false;
}
/* Check that the restrictions on register ranges are met. */
extra = 0;
mips16e_mask_registers (&mask, mips16e_s2_s8_regs,
ARRAY_SIZE (mips16e_s2_s8_regs), &extra);
mips16e_mask_registers (&mask, mips16e_a0_a3_regs,
ARRAY_SIZE (mips16e_a0_a3_regs), &extra);
if (extra != 0)
return false;
/* Make sure that the topmost argument register is not saved twice.
The checks above ensure that the same is then true for the other
argument registers. */
if (nargs > 0 && BITSET_P (mask, GP_ARG_FIRST + nargs - 1))
return false;
/* Pass back information, if requested. */
if (info)
{
info->nargs = nargs;
info->mask = mask;
info->size = (adjust > 0 ? adjust : -adjust);
}
return true;
}
/* Add a MIPS16e SAVE or RESTORE register-range argument to string S
for the register range [MIN_REG, MAX_REG]. Return a pointer to
the null terminator. */
static char *
mips16e_add_register_range (char *s, unsigned int min_reg,
unsigned int max_reg)
{
if (min_reg != max_reg)
s += sprintf (s, ",%s-%s", reg_names[min_reg], reg_names[max_reg]);
else
s += sprintf (s, ",%s", reg_names[min_reg]);
return s;
}
/* Return the assembly instruction for a MIPS16e SAVE or RESTORE instruction.
PATTERN and ADJUST are as for mips16e_save_restore_pattern_p. */
const char *
mips16e_output_save_restore (rtx pattern, HOST_WIDE_INT adjust)
{
static char buffer[300];
struct mips16e_save_restore_info info;
unsigned int i, end;
char *s;
/* Parse the pattern. */
if (!mips16e_save_restore_pattern_p (pattern, adjust, &info))
gcc_unreachable ();
/* Add the mnemonic. */
s = strcpy (buffer, adjust > 0 ? "restore\t" : "save\t");
s += strlen (s);
/* Save the arguments. */
if (info.nargs > 1)
s += sprintf (s, "%s-%s,", reg_names[GP_ARG_FIRST],
reg_names[GP_ARG_FIRST + info.nargs - 1]);
else if (info.nargs == 1)
s += sprintf (s, "%s,", reg_names[GP_ARG_FIRST]);
/* Emit the amount of stack space to allocate or deallocate. */
s += sprintf (s, "%d", (int) info.size);
/* Save or restore $16. */
if (BITSET_P (info.mask, 16))
s += sprintf (s, ",%s", reg_names[GP_REG_FIRST + 16]);
/* Save or restore $17. */
if (BITSET_P (info.mask, 17))
s += sprintf (s, ",%s", reg_names[GP_REG_FIRST + 17]);
/* Save or restore registers in the range $s2...$s8, which
mips16e_s2_s8_regs lists in decreasing order. Note that this
is a software register range; the hardware registers are not
numbered consecutively. */
end = ARRAY_SIZE (mips16e_s2_s8_regs);
i = mips16e_find_first_register (info.mask, mips16e_s2_s8_regs, end);
if (i < end)
s = mips16e_add_register_range (s, mips16e_s2_s8_regs[end - 1],
mips16e_s2_s8_regs[i]);
/* Save or restore registers in the range $a0...$a3. */
end = ARRAY_SIZE (mips16e_a0_a3_regs);
i = mips16e_find_first_register (info.mask, mips16e_a0_a3_regs, end);
if (i < end)
s = mips16e_add_register_range (s, mips16e_a0_a3_regs[i],
mips16e_a0_a3_regs[end - 1]);
/* Save or restore $31. */
if (BITSET_P (info.mask, RETURN_ADDR_REGNUM))
s += sprintf (s, ",%s", reg_names[RETURN_ADDR_REGNUM]);
return buffer;
}
/* Return true if the current function returns its value in a floating-point
register in MIPS16 mode. */
static bool
mips16_cfun_returns_in_fpr_p (void)
{
tree return_type = DECL_RESULT (current_function_decl);
return (TARGET_MIPS16
&& TARGET_HARD_FLOAT_ABI
&& !aggregate_value_p (return_type, current_function_decl)
&& mips_return_mode_in_fpr_p (DECL_MODE (return_type)));
}
/* Return true if predicate PRED is true for at least one instruction.
Cache the result in *CACHE, and assume that the result is true
if *CACHE is already true. */
static bool
mips_find_gp_ref (bool *cache, bool (*pred) (rtx_insn *))
{
rtx_insn *insn, *subinsn;
if (!*cache)
{
push_topmost_sequence ();
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
FOR_EACH_SUBINSN (subinsn, insn)
if (USEFUL_INSN_P (subinsn) && pred (subinsn))
{
*cache = true;
break;
}
pop_topmost_sequence ();
}
return *cache;
}
/* Return true if INSN refers to the global pointer in an "inflexible" way.
See mips_cfun_has_inflexible_gp_ref_p for details. */
static bool
mips_insn_has_inflexible_gp_ref_p (rtx_insn *insn)
{
/* Uses of pic_offset_table_rtx in CALL_INSN_FUNCTION_USAGE
indicate that the target could be a traditional MIPS
lazily-binding stub. */
return find_reg_fusage (insn, USE, pic_offset_table_rtx);
}
/* Return true if the current function refers to the global pointer
in a way that forces $28 to be valid. This means that we can't
change the choice of global pointer, even for NewABI code.
One example of this (and one which needs several checks) is that
$28 must be valid when calling traditional MIPS lazy-binding stubs.
(This restriction does not apply to PLTs.) */
static bool
mips_cfun_has_inflexible_gp_ref_p (void)
{
/* If the function has a nonlocal goto, $28 must hold the correct
global pointer for the target function. That is, the target
of the goto implicitly uses $28. */
if (crtl->has_nonlocal_goto)
return true;
if (TARGET_ABICALLS_PIC2)
{
/* Symbolic accesses implicitly use the global pointer unless
-mexplicit-relocs is in effect. JAL macros to symbolic addresses
might go to traditional MIPS lazy-binding stubs. */
if (!TARGET_EXPLICIT_RELOCS)
return true;
/* FUNCTION_PROFILER includes a JAL to _mcount, which again
can be lazily-bound. */
if (crtl->profile)
return true;
/* MIPS16 functions that return in FPRs need to call an
external libgcc routine. This call is only made explict
during mips_expand_epilogue, and it too might be lazily bound. */
if (mips16_cfun_returns_in_fpr_p ())
return true;
}
return mips_find_gp_ref (&cfun->machine->has_inflexible_gp_insn_p,
mips_insn_has_inflexible_gp_ref_p);
}
/* Return true if INSN refers to the global pointer in a "flexible" way.
See mips_cfun_has_flexible_gp_ref_p for details. */
static bool
mips_insn_has_flexible_gp_ref_p (rtx_insn *insn)
{
return (get_attr_got (insn) != GOT_UNSET
|| mips_small_data_pattern_p (PATTERN (insn))
|| reg_overlap_mentioned_p (pic_offset_table_rtx, PATTERN (insn)));
}
/* Return true if the current function references the global pointer,
but if those references do not inherently require the global pointer
to be $28. Assume !mips_cfun_has_inflexible_gp_ref_p (). */
static bool
mips_cfun_has_flexible_gp_ref_p (void)
{
/* Reload can sometimes introduce constant pool references
into a function that otherwise didn't need them. For example,
suppose we have an instruction like:
(set (reg:DF R1) (float:DF (reg:SI R2)))
If R2 turns out to be a constant such as 1, the instruction may
have a REG_EQUAL note saying that R1 == 1.0. Reload then has
the option of using this constant if R2 doesn't get allocated
to a register.
In cases like these, reload will have added the constant to the
pool but no instruction will yet refer to it. */
if (TARGET_ABICALLS_PIC2 && !reload_completed && crtl->uses_const_pool)
return true;
return mips_find_gp_ref (&cfun->machine->has_flexible_gp_insn_p,
mips_insn_has_flexible_gp_ref_p);
}
/* Return the register that should be used as the global pointer
within this function. Return INVALID_REGNUM if the function
doesn't need a global pointer. */
static unsigned int
mips_global_pointer (void)
{
unsigned int regno;
/* $gp is always available unless we're using a GOT. */
if (!TARGET_USE_GOT)
return GLOBAL_POINTER_REGNUM;
/* If there are inflexible references to $gp, we must use the
standard register. */
if (mips_cfun_has_inflexible_gp_ref_p ())
return GLOBAL_POINTER_REGNUM;
/* If there are no current references to $gp, then the only uses
we can introduce later are those involved in long branches. */
if (TARGET_ABSOLUTE_JUMPS && !mips_cfun_has_flexible_gp_ref_p ())
return INVALID_REGNUM;
/* If the global pointer is call-saved, try to use a call-clobbered
alternative. */
if (TARGET_CALL_SAVED_GP && crtl->is_leaf)
for (regno = GP_REG_FIRST; regno <= GP_REG_LAST; regno++)
if (!df_regs_ever_live_p (regno)
&& call_really_used_regs[regno]
&& !fixed_regs[regno]
&& regno != PIC_FUNCTION_ADDR_REGNUM)
return regno;
return GLOBAL_POINTER_REGNUM;
}
/* Return true if the current function's prologue must load the global
pointer value into pic_offset_table_rtx and store the same value in
the function's cprestore slot (if any).
One problem we have to deal with is that, when emitting GOT-based
position independent code, long-branch sequences will need to load
the address of the branch target from the GOT. We don't know until
the very end of compilation whether (and where) the function needs
long branches, so we must ensure that _any_ branch can access the
global pointer in some form. However, we do not want to pessimize
the usual case in which all branches are short.
We handle this as follows:
(1) During reload, we set cfun->machine->global_pointer to
INVALID_REGNUM if we _know_ that the current function
doesn't need a global pointer. This is only valid if
long branches don't need the GOT.
Otherwise, we assume that we might need a global pointer
and pick an appropriate register.
(2) If cfun->machine->global_pointer != INVALID_REGNUM,
we ensure that the global pointer is available at every
block boundary bar entry and exit. We do this in one of two ways:
- If the function has a cprestore slot, we ensure that this
slot is valid at every branch. However, as explained in
point (6) below, there is no guarantee that pic_offset_table_rtx
itself is valid if new uses of the global pointer are introduced
after the first post-epilogue split.
We guarantee that the cprestore slot is valid by loading it
into a fake register, CPRESTORE_SLOT_REGNUM. We then make
this register live at every block boundary bar function entry
and exit. It is then invalid to move the load (and thus the
preceding store) across a block boundary.
- If the function has no cprestore slot, we guarantee that
pic_offset_table_rtx itself is valid at every branch.
See mips_eh_uses for the handling of the register liveness.
(3) During prologue and epilogue generation, we emit "ghost"
placeholder instructions to manipulate the global pointer.
(4) During prologue generation, we set cfun->machine->must_initialize_gp_p
and cfun->machine->must_restore_gp_when_clobbered_p if we already know
that the function needs a global pointer. (There is no need to set
them earlier than this, and doing it as late as possible leads to
fewer false positives.)
(5) If cfun->machine->must_initialize_gp_p is true during a
split_insns pass, we split the ghost instructions into real
instructions. These split instructions can then be optimized in
the usual way. Otherwise, we keep the ghost instructions intact,
and optimize for the case where they aren't needed. We still
have the option of splitting them later, if we need to introduce
new uses of the global pointer.
For example, the scheduler ignores a ghost instruction that
stores $28 to the stack, but it handles the split form of
the ghost instruction as an ordinary store.
(6) [OldABI only.] If cfun->machine->must_restore_gp_when_clobbered_p
is true during the first post-epilogue split_insns pass, we split
calls and restore_gp patterns into instructions that explicitly
load pic_offset_table_rtx from the cprestore slot. Otherwise,
we split these patterns into instructions that _don't_ load from
the cprestore slot.
If cfun->machine->must_restore_gp_when_clobbered_p is true at the
time of the split, then any instructions that exist at that time
can make free use of pic_offset_table_rtx. However, if we want
to introduce new uses of the global pointer after the split,
we must explicitly load the value from the cprestore slot, since
pic_offset_table_rtx itself might not be valid at a given point
in the function.
The idea is that we want to be able to delete redundant
loads from the cprestore slot in the usual case where no
long branches are needed.
(7) If cfun->machine->must_initialize_gp_p is still false at the end
of md_reorg, we decide whether the global pointer is needed for
long branches. If so, we set cfun->machine->must_initialize_gp_p
to true and split the ghost instructions into real instructions
at that stage.
Note that the ghost instructions must have a zero length for three reasons:
- Giving the length of the underlying $gp sequence might cause
us to use long branches in cases where they aren't really needed.
- They would perturb things like alignment calculations.
- More importantly, the hazard detection in md_reorg relies on
empty instructions having a zero length.
If we find a long branch and split the ghost instructions at the
end of md_reorg, the split could introduce more long branches.
That isn't a problem though, because we still do the split before
the final shorten_branches pass.
This is extremely ugly, but it seems like the best compromise between
correctness and efficiency. */
bool
mips_must_initialize_gp_p (void)
{
return cfun->machine->must_initialize_gp_p;
}
/* Return true if REGNO is a register that is ordinarily call-clobbered
but must nevertheless be preserved by an interrupt handler. */
static bool
mips_interrupt_extra_call_saved_reg_p (unsigned int regno)
{
if ((ISA_HAS_HILO || TARGET_DSP)
&& MD_REG_P (regno))
return true;
if (TARGET_DSP && DSP_ACC_REG_P (regno))
return true;
if (GP_REG_P (regno)
&& cfun->machine->use_shadow_register_set == SHADOW_SET_NO)
{
/* $0 is hard-wired. */
if (regno == GP_REG_FIRST)
return false;
/* The interrupt handler can treat kernel registers as
scratch registers. */
if (KERNEL_REG_P (regno))
return false;
/* The function will return the stack pointer to its original value
anyway. */
if (regno == STACK_POINTER_REGNUM)
return false;
/* Otherwise, return true for registers that aren't ordinarily
call-clobbered. */
return call_really_used_regs[regno];
}
return false;
}
/* Return true if the current function should treat register REGNO
as call-saved. */
static bool
mips_cfun_call_saved_reg_p (unsigned int regno)
{
/* If the user makes an ordinarily-call-saved register global,
that register is no longer call-saved. */
if (global_regs[regno])
return false;
/* Interrupt handlers need to save extra registers. */
if (cfun->machine->interrupt_handler_p
&& mips_interrupt_extra_call_saved_reg_p (regno))
return true;
/* call_insns preserve $28 unless they explicitly say otherwise,
so call_really_used_regs[] treats $28 as call-saved. However,
we want the ABI property rather than the default call_insn
property here. */
return (regno == GLOBAL_POINTER_REGNUM
? TARGET_CALL_SAVED_GP
: !call_really_used_regs[regno]);
}
/* Return true if the function body might clobber register REGNO.
We know that REGNO is call-saved. */
static bool
mips_cfun_might_clobber_call_saved_reg_p (unsigned int regno)
{
/* Some functions should be treated as clobbering all call-saved
registers. */
if (crtl->saves_all_registers)
return true;
/* DF handles cases where a register is explicitly referenced in
the rtl. Incoming values are passed in call-clobbered registers,
so we can assume that any live call-saved register is set within
the function. */
if (df_regs_ever_live_p (regno))
return true;
/* Check for registers that are clobbered by FUNCTION_PROFILER.
These clobbers are not explicit in the rtl. */
if (crtl->profile && MIPS_SAVE_REG_FOR_PROFILING_P (regno))
return true;
/* If we're using a call-saved global pointer, the function's
prologue will need to set it up. */
if (cfun->machine->global_pointer == regno)
return true;
/* The function's prologue will need to set the frame pointer if
frame_pointer_needed. */
if (regno == HARD_FRAME_POINTER_REGNUM && frame_pointer_needed)
return true;
/* If a MIPS16 function returns a value in FPRs, its epilogue
will need to call an external libgcc routine. This yet-to-be
generated call_insn will clobber $31. */
if (regno == RETURN_ADDR_REGNUM && mips16_cfun_returns_in_fpr_p ())
return true;
/* If REGNO is ordinarily call-clobbered, we must assume that any
called function could modify it. */
if (cfun->machine->interrupt_handler_p
&& !crtl->is_leaf
&& mips_interrupt_extra_call_saved_reg_p (regno))
return true;
return false;
}
/* Return true if the current function must save register REGNO. */
static bool
mips_save_reg_p (unsigned int regno)
{
if (mips_cfun_call_saved_reg_p (regno))
{
if (mips_cfun_might_clobber_call_saved_reg_p (regno))
return true;
/* Save both registers in an FPR pair if either one is used. This is
needed for the case when MIN_FPRS_PER_FMT == 1, which allows the odd
register to be used without the even register. */
if (FP_REG_P (regno)
&& MAX_FPRS_PER_FMT == 2
&& mips_cfun_might_clobber_call_saved_reg_p (regno + 1))
return true;
}
/* We need to save the incoming return address if __builtin_eh_return
is being used to set a different return address. */
if (regno == RETURN_ADDR_REGNUM && crtl->calls_eh_return)
return true;
return false;
}
/* Populate the current function's mips_frame_info structure.
MIPS stack frames look like:
+-------------------------------+
| |
| incoming stack arguments |
| |
+-------------------------------+
| |
| caller-allocated save area |
A | for register arguments |
| |
+-------------------------------+ <-- incoming stack pointer
| |
| callee-allocated save area |
B | for arguments that are |
| split between registers and |
| the stack |
| |
+-------------------------------+ <-- arg_pointer_rtx
| |
C | callee-allocated save area |
| for register varargs |
| |
+-------------------------------+ <-- frame_pointer_rtx
| | + cop0_sp_offset
| COP0 reg save area | + UNITS_PER_WORD
| |
+-------------------------------+ <-- frame_pointer_rtx + acc_sp_offset
| | + UNITS_PER_WORD
| accumulator save area |
| |
+-------------------------------+ <-- stack_pointer_rtx + fp_sp_offset
| | + UNITS_PER_HWFPVALUE
| FPR save area |
| |
+-------------------------------+ <-- stack_pointer_rtx + gp_sp_offset
| | + UNITS_PER_WORD
| GPR save area |
| |
+-------------------------------+ <-- frame_pointer_rtx with
| | \ -fstack-protector
| local variables | | var_size
| | /
+-------------------------------+
| | \
| $gp save area | | cprestore_size
| | /
P +-------------------------------+ <-- hard_frame_pointer_rtx for
| | \ MIPS16 code
| outgoing stack arguments | |
| | |
+-------------------------------+ | args_size
| | |
| caller-allocated save area | |
| for register arguments | |
| | /
+-------------------------------+ <-- stack_pointer_rtx
frame_pointer_rtx without
-fstack-protector
hard_frame_pointer_rtx for
non-MIPS16 code.
At least two of A, B and C will be empty.
Dynamic stack allocations such as alloca insert data at point P.
They decrease stack_pointer_rtx but leave frame_pointer_rtx and
hard_frame_pointer_rtx unchanged. */
static void
mips_compute_frame_info (void)
{
struct mips_frame_info *frame;
HOST_WIDE_INT offset, size;
unsigned int regno, i;
/* Set this function's interrupt properties. */
if (mips_interrupt_type_p (TREE_TYPE (current_function_decl)))
{
if (mips_isa_rev < 2)
error ("the %<interrupt%> attribute requires a MIPS32r2 processor or greater");
else if (TARGET_MIPS16)
error ("interrupt handlers cannot be MIPS16 functions");
else
{
cfun->machine->interrupt_handler_p = true;
cfun->machine->int_mask =
mips_interrupt_mask (TREE_TYPE (current_function_decl));
cfun->machine->use_shadow_register_set =
mips_use_shadow_register_set (TREE_TYPE (current_function_decl));
cfun->machine->keep_interrupts_masked_p =
mips_keep_interrupts_masked_p (TREE_TYPE (current_function_decl));
cfun->machine->use_debug_exception_return_p =
mips_use_debug_exception_return_p (TREE_TYPE
(current_function_decl));
}
}
frame = &cfun->machine->frame;
memset (frame, 0, sizeof (*frame));
size = get_frame_size ();
cfun->machine->global_pointer = mips_global_pointer ();
/* The first two blocks contain the outgoing argument area and the $gp save
slot. This area isn't needed in leaf functions, but if the
target-independent frame size is nonzero, we have already committed to
allocating these in STARTING_FRAME_OFFSET for !FRAME_GROWS_DOWNWARD. */
if ((size == 0 || FRAME_GROWS_DOWNWARD) && crtl->is_leaf)
{
/* The MIPS 3.0 linker does not like functions that dynamically
allocate the stack and have 0 for STACK_DYNAMIC_OFFSET, since it
looks like we are trying to create a second frame pointer to the
function, so allocate some stack space to make it happy. */
if (cfun->calls_alloca)
frame->args_size = REG_PARM_STACK_SPACE (cfun->decl);
else
frame->args_size = 0;
frame->cprestore_size = 0;
}
else
{
frame->args_size = crtl->outgoing_args_size;
frame->cprestore_size = MIPS_GP_SAVE_AREA_SIZE;
}
offset = frame->args_size + frame->cprestore_size;
/* Move above the local variables. */
frame->var_size = MIPS_STACK_ALIGN (size);
offset += frame->var_size;
/* Find out which GPRs we need to save. */
for (regno = GP_REG_FIRST; regno <= GP_REG_LAST; regno++)
if (mips_save_reg_p (regno))
{
frame->num_gp++;
frame->mask |= 1 << (regno - GP_REG_FIRST);
}
/* If this function calls eh_return, we must also save and restore the
EH data registers. */
if (crtl->calls_eh_return)
for (i = 0; EH_RETURN_DATA_REGNO (i) != INVALID_REGNUM; i++)
{
frame->num_gp++;
frame->mask |= 1 << (EH_RETURN_DATA_REGNO (i) - GP_REG_FIRST);
}
/* The MIPS16e SAVE and RESTORE instructions have two ranges of registers:
$a3-$a0 and $s2-$s8. If we save one register in the range, we must
save all later registers too. */
if (GENERATE_MIPS16E_SAVE_RESTORE)
{
mips16e_mask_registers (&frame->mask, mips16e_s2_s8_regs,
ARRAY_SIZE (mips16e_s2_s8_regs), &frame->num_gp);
mips16e_mask_registers (&frame->mask, mips16e_a0_a3_regs,
ARRAY_SIZE (mips16e_a0_a3_regs), &frame->num_gp);
}
/* Move above the GPR save area. */
if (frame->num_gp > 0)
{
offset += MIPS_STACK_ALIGN (frame->num_gp * UNITS_PER_WORD);
frame->gp_sp_offset = offset - UNITS_PER_WORD;
}
/* Find out which FPRs we need to save. This loop must iterate over
the same space as its companion in mips_for_each_saved_gpr_and_fpr. */
if (TARGET_HARD_FLOAT)
for (regno = FP_REG_FIRST; regno <= FP_REG_LAST; regno += MAX_FPRS_PER_FMT)
if (mips_save_reg_p (regno))
{
frame->num_fp += MAX_FPRS_PER_FMT;
frame->fmask |= ~(~0 << MAX_FPRS_PER_FMT) << (regno - FP_REG_FIRST);
}
/* Move above the FPR save area. */
if (frame->num_fp > 0)
{
offset += MIPS_STACK_ALIGN (frame->num_fp * UNITS_PER_FPREG);
frame->fp_sp_offset = offset - UNITS_PER_HWFPVALUE;
}
/* Add in space for the interrupt context information. */
if (cfun->machine->interrupt_handler_p)
{
/* Check HI/LO. */
if (mips_save_reg_p (LO_REGNUM) || mips_save_reg_p (HI_REGNUM))
{
frame->num_acc++;
frame->acc_mask |= (1 << 0);
}
/* Check accumulators 1, 2, 3. */
for (i = DSP_ACC_REG_FIRST; i <= DSP_ACC_REG_LAST; i += 2)
if (mips_save_reg_p (i) || mips_save_reg_p (i + 1))
{
frame->num_acc++;
frame->acc_mask |= 1 << (((i - DSP_ACC_REG_FIRST) / 2) + 1);
}
/* All interrupt context functions need space to preserve STATUS. */
frame->num_cop0_regs++;
/* We need to save EPC regardless of whether interrupts remain masked
as exceptions will corrupt EPC. */
frame->num_cop0_regs++;
}
/* Move above the accumulator save area. */
if (frame->num_acc > 0)
{
/* Each accumulator needs 2 words. */
offset += frame->num_acc * 2 * UNITS_PER_WORD;
frame->acc_sp_offset = offset - UNITS_PER_WORD;
}
/* Move above the COP0 register save area. */
if (frame->num_cop0_regs > 0)
{
offset += frame->num_cop0_regs * UNITS_PER_WORD;
frame->cop0_sp_offset = offset - UNITS_PER_WORD;
}
/* Move above the callee-allocated varargs save area. */
offset += MIPS_STACK_ALIGN (cfun->machine->varargs_size);
frame->arg_pointer_offset = offset;
/* Move above the callee-allocated area for pretend stack arguments. */
offset += crtl->args.pretend_args_size;
frame->total_size = offset;
/* Work out the offsets of the save areas from the top of the frame. */
if (frame->gp_sp_offset > 0)
frame->gp_save_offset = frame->gp_sp_offset - offset;
if (frame->fp_sp_offset > 0)
frame->fp_save_offset = frame->fp_sp_offset - offset;
if (frame->acc_sp_offset > 0)
frame->acc_save_offset = frame->acc_sp_offset - offset;
if (frame->num_cop0_regs > 0)
frame->cop0_save_offset = frame->cop0_sp_offset - offset;
/* MIPS16 code offsets the frame pointer by the size of the outgoing
arguments. This tends to increase the chances of using unextended
instructions for local variables and incoming arguments. */
if (TARGET_MIPS16)
frame->hard_frame_pointer_offset = frame->args_size;
}
/* Return the style of GP load sequence that is being used for the
current function. */
enum mips_loadgp_style
mips_current_loadgp_style (void)
{
if (!TARGET_USE_GOT || cfun->machine->global_pointer == INVALID_REGNUM)
return LOADGP_NONE;
if (TARGET_RTP_PIC)
return LOADGP_RTP;
if (TARGET_ABSOLUTE_ABICALLS)
return LOADGP_ABSOLUTE;
return TARGET_NEWABI ? LOADGP_NEWABI : LOADGP_OLDABI;
}
/* Implement TARGET_FRAME_POINTER_REQUIRED. */
static bool
mips_frame_pointer_required (void)
{
/* If the function contains dynamic stack allocations, we need to
use the frame pointer to access the static parts of the frame. */
if (cfun->calls_alloca)
return true;
/* In MIPS16 mode, we need a frame pointer for a large frame; otherwise,
reload may be unable to compute the address of a local variable,
since there is no way to add a large constant to the stack pointer
without using a second temporary register. */
if (TARGET_MIPS16)
{
mips_compute_frame_info ();
if (!SMALL_OPERAND (cfun->machine->frame.total_size))
return true;
}
return false;
}
/* Make sure that we're not trying to eliminate to the wrong hard frame
pointer. */
static bool
mips_can_eliminate (const int from ATTRIBUTE_UNUSED, const int to)
{
return (to == HARD_FRAME_POINTER_REGNUM || to == STACK_POINTER_REGNUM);
}
/* Implement INITIAL_ELIMINATION_OFFSET. FROM is either the frame pointer
or argument pointer. TO is either the stack pointer or hard frame
pointer. */
HOST_WIDE_INT
mips_initial_elimination_offset (int from, int to)
{
HOST_WIDE_INT offset;
mips_compute_frame_info ();
/* Set OFFSET to the offset from the end-of-prologue stack pointer. */
switch (from)
{
case FRAME_POINTER_REGNUM:
if (FRAME_GROWS_DOWNWARD)
offset = (cfun->machine->frame.args_size
+ cfun->machine->frame.cprestore_size
+ cfun->machine->frame.var_size);
else
offset = 0;
break;
case ARG_POINTER_REGNUM:
offset = cfun->machine->frame.arg_pointer_offset;
break;
default:
gcc_unreachable ();
}
if (to == HARD_FRAME_POINTER_REGNUM)
offset -= cfun->machine->frame.hard_frame_pointer_offset;
return offset;
}
/* Implement TARGET_EXTRA_LIVE_ON_ENTRY. */
static void
mips_extra_live_on_entry (bitmap regs)
{
if (TARGET_USE_GOT)
{
/* PIC_FUNCTION_ADDR_REGNUM is live if we need it to set up
the global pointer. */
if (!TARGET_ABSOLUTE_ABICALLS)
bitmap_set_bit (regs, PIC_FUNCTION_ADDR_REGNUM);
/* The prologue may set MIPS16_PIC_TEMP_REGNUM to the value of
the global pointer. */
if (TARGET_MIPS16)
bitmap_set_bit (regs, MIPS16_PIC_TEMP_REGNUM);
/* See the comment above load_call<mode> for details. */
bitmap_set_bit (regs, GOT_VERSION_REGNUM);
}
}
/* Implement RETURN_ADDR_RTX. We do not support moving back to a
previous frame. */
rtx
mips_return_addr (int count, rtx frame ATTRIBUTE_UNUSED)
{
if (count != 0)
return const0_rtx;
return get_hard_reg_initial_val (Pmode, RETURN_ADDR_REGNUM);
}
/* Emit code to change the current function's return address to
ADDRESS. SCRATCH is available as a scratch register, if needed.
ADDRESS and SCRATCH are both word-mode GPRs. */
void
mips_set_return_address (rtx address, rtx scratch)
{
rtx slot_address;
gcc_assert (BITSET_P (cfun->machine->frame.mask, RETURN_ADDR_REGNUM));
slot_address = mips_add_offset (scratch, stack_pointer_rtx,
cfun->machine->frame.gp_sp_offset);
mips_emit_move (gen_frame_mem (GET_MODE (address), slot_address), address);
}
/* Return true if the current function has a cprestore slot. */
bool
mips_cfun_has_cprestore_slot_p (void)
{
return (cfun->machine->global_pointer != INVALID_REGNUM
&& cfun->machine->frame.cprestore_size > 0);
}
/* Fill *BASE and *OFFSET such that *BASE + *OFFSET refers to the
cprestore slot. LOAD_P is true if the caller wants to load from
the cprestore slot; it is false if the caller wants to store to
the slot. */
static void
mips_get_cprestore_base_and_offset (rtx *base, HOST_WIDE_INT *offset,
bool load_p)
{
const struct mips_frame_info *frame;
frame = &cfun->machine->frame;
/* .cprestore always uses the stack pointer instead of the frame pointer.
We have a free choice for direct stores for non-MIPS16 functions,
and for MIPS16 functions whose cprestore slot is in range of the
stack pointer. Using the stack pointer would sometimes give more
(early) scheduling freedom, but using the frame pointer would
sometimes give more (late) scheduling freedom. It's hard to
predict which applies to a given function, so let's keep things
simple.
Loads must always use the frame pointer in functions that call
alloca, and there's little benefit to using the stack pointer
otherwise. */
if (frame_pointer_needed && !(TARGET_CPRESTORE_DIRECTIVE && !load_p))
{
*base = hard_frame_pointer_rtx;
*offset = frame->args_size - frame->hard_frame_pointer_offset;
}
else
{
*base = stack_pointer_rtx;
*offset = frame->args_size;
}
}
/* Return true if X is the load or store address of the cprestore slot;
LOAD_P says which. */
bool
mips_cprestore_address_p (rtx x, bool load_p)
{
rtx given_base, required_base;
HOST_WIDE_INT given_offset, required_offset;
mips_split_plus (x, &given_base, &given_offset);
mips_get_cprestore_base_and_offset (&required_base, &required_offset, load_p);
return given_base == required_base && given_offset == required_offset;
}
/* Return a MEM rtx for the cprestore slot. LOAD_P is true if we are
going to load from it, false if we are going to store to it.
Use TEMP as a temporary register if need be. */
static rtx
mips_cprestore_slot (rtx temp, bool load_p)
{
rtx base;
HOST_WIDE_INT offset;
mips_get_cprestore_base_and_offset (&base, &offset, load_p);
return gen_frame_mem (Pmode, mips_add_offset (temp, base, offset));
}
/* Emit instructions to save global pointer value GP into cprestore
slot MEM. OFFSET is the offset that MEM applies to the base register.
MEM may not be a legitimate address. If it isn't, TEMP is a
temporary register that can be used, otherwise it is a SCRATCH. */
void
mips_save_gp_to_cprestore_slot (rtx mem, rtx offset, rtx gp, rtx temp)
{
if (TARGET_CPRESTORE_DIRECTIVE)
{
gcc_assert (gp == pic_offset_table_rtx);
emit_insn (PMODE_INSN (gen_cprestore, (mem, offset)));
}
else
mips_emit_move (mips_cprestore_slot (temp, false), gp);
}
/* Restore $gp from its save slot, using TEMP as a temporary base register
if need be. This function is for o32 and o64 abicalls only.
See mips_must_initialize_gp_p for details about how we manage the
global pointer. */
void
mips_restore_gp_from_cprestore_slot (rtx temp)
{
gcc_assert (TARGET_ABICALLS && TARGET_OLDABI && epilogue_completed);
if (!cfun->machine->must_restore_gp_when_clobbered_p)
{
emit_note (NOTE_INSN_DELETED);
return;
}
if (TARGET_MIPS16)
{
mips_emit_move (temp, mips_cprestore_slot (temp, true));
mips_emit_move (pic_offset_table_rtx, temp);
}
else
mips_emit_move (pic_offset_table_rtx, mips_cprestore_slot (temp, true));
if (!TARGET_EXPLICIT_RELOCS)
emit_insn (gen_blockage ());
}
/* A function to save or store a register. The first argument is the
register and the second is the stack slot. */
typedef void (*mips_save_restore_fn) (rtx, rtx);
/* Use FN to save or restore register REGNO. MODE is the register's
mode and OFFSET is the offset of its save slot from the current
stack pointer. */
static void
mips_save_restore_reg (machine_mode mode, int regno,
HOST_WIDE_INT offset, mips_save_restore_fn fn)
{
rtx mem;
mem = gen_frame_mem (mode, plus_constant (Pmode, stack_pointer_rtx,
offset));
fn (gen_rtx_REG (mode, regno), mem);
}
/* Call FN for each accumlator that is saved by the current function.
SP_OFFSET is the offset of the current stack pointer from the start
of the frame. */
static void
mips_for_each_saved_acc (HOST_WIDE_INT sp_offset, mips_save_restore_fn fn)
{
HOST_WIDE_INT offset;
int regno;
offset = cfun->machine->frame.acc_sp_offset - sp_offset;
if (BITSET_P (cfun->machine->frame.acc_mask, 0))
{
mips_save_restore_reg (word_mode, LO_REGNUM, offset, fn);
offset -= UNITS_PER_WORD;
mips_save_restore_reg (word_mode, HI_REGNUM, offset, fn);
offset -= UNITS_PER_WORD;
}
for (regno = DSP_ACC_REG_FIRST; regno <= DSP_ACC_REG_LAST; regno++)
if (BITSET_P (cfun->machine->frame.acc_mask,
((regno - DSP_ACC_REG_FIRST) / 2) + 1))
{
mips_save_restore_reg (word_mode, regno, offset, fn);
offset -= UNITS_PER_WORD;
}
}
/* Save register REG to MEM. Make the instruction frame-related. */
static void
mips_save_reg (rtx reg, rtx mem)
{
if (GET_MODE (reg) == DFmode
&& (!TARGET_FLOAT64
|| mips_abi == ABI_32))
{
rtx x1, x2;
mips_emit_move_or_split (mem, reg, SPLIT_IF_NECESSARY);
x1 = mips_frame_set (mips_subword (mem, false),
mips_subword (reg, false));
x2 = mips_frame_set (mips_subword (mem, true),
mips_subword (reg, true));
mips_set_frame_expr (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, x1, x2)));
}
else
mips_emit_save_slot_move (mem, reg, MIPS_PROLOGUE_TEMP (GET_MODE (reg)));
}
/* Capture the register combinations that are allowed in a SWM or LWM
instruction. The entries are ordered by number of registers set in
the mask. We also ignore the single register encodings because a
normal SW/LW is preferred. */
static const unsigned int umips_swm_mask[17] = {
0xc0ff0000, 0x80ff0000, 0x40ff0000, 0x807f0000,
0x00ff0000, 0x803f0000, 0x007f0000, 0x801f0000,
0x003f0000, 0x800f0000, 0x001f0000, 0x80070000,
0x000f0000, 0x80030000, 0x00070000, 0x80010000,
0x00030000
};
static const unsigned int umips_swm_encoding[17] = {
25, 24, 9, 23, 8, 22, 7, 21, 6, 20, 5, 19, 4, 18, 3, 17, 2
};
/* Try to use a microMIPS LWM or SWM instruction to save or restore
as many GPRs in *MASK as possible. *OFFSET is the offset from the
stack pointer of the topmost save slot.
Remove from *MASK all registers that were handled using LWM and SWM.
Update *OFFSET so that it points to the first unused save slot. */
static bool
umips_build_save_restore (mips_save_restore_fn fn,
unsigned *mask, HOST_WIDE_INT *offset)
{
int nregs;
unsigned int i, j;
rtx pattern, set, reg, mem;
HOST_WIDE_INT this_offset;
rtx this_base;
/* Try matching $16 to $31 (s0 to ra). */
for (i = 0; i < ARRAY_SIZE (umips_swm_mask); i++)
if ((*mask & 0xffff0000) == umips_swm_mask[i])
break;
if (i == ARRAY_SIZE (umips_swm_mask))
return false;
/* Get the offset of the lowest save slot. */
nregs = (umips_swm_encoding[i] & 0xf) + (umips_swm_encoding[i] >> 4);
this_offset = *offset - UNITS_PER_WORD * (nregs - 1);
/* LWM/SWM can only support offsets from -2048 to 2047. */
if (!UMIPS_12BIT_OFFSET_P (this_offset))
return false;
/* Create the final PARALLEL. */
pattern = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (nregs));
this_base = stack_pointer_rtx;
/* For registers $16-$23 and $30. */
for (j = 0; j < (umips_swm_encoding[i] & 0xf); j++)
{
HOST_WIDE_INT offset = this_offset + j * UNITS_PER_WORD;
mem = gen_frame_mem (SImode, plus_constant (Pmode, this_base, offset));
unsigned int regno = (j != 8) ? 16 + j : 30;
*mask &= ~(1 << regno);
reg = gen_rtx_REG (SImode, regno);
if (fn == mips_save_reg)
set = mips_frame_set (mem, reg);
else
{
set = gen_rtx_SET (reg, mem);
mips_add_cfa_restore (reg);
}
XVECEXP (pattern, 0, j) = set;
}
/* For register $31. */
if (umips_swm_encoding[i] >> 4)
{
HOST_WIDE_INT offset = this_offset + j * UNITS_PER_WORD;
*mask &= ~(1 << 31);
mem = gen_frame_mem (SImode, plus_constant (Pmode, this_base, offset));
reg = gen_rtx_REG (SImode, 31);
if (fn == mips_save_reg)
set = mips_frame_set (mem, reg);
else
{
set = gen_rtx_SET (reg, mem);
mips_add_cfa_restore (reg);
}
XVECEXP (pattern, 0, j) = set;
}
pattern = emit_insn (pattern);
if (fn == mips_save_reg)
RTX_FRAME_RELATED_P (pattern) = 1;
/* Adjust the last offset. */
*offset -= UNITS_PER_WORD * nregs;
return true;
}
/* Call FN for each register that is saved by the current function.
SP_OFFSET is the offset of the current stack pointer from the start
of the frame. */
static void
mips_for_each_saved_gpr_and_fpr (HOST_WIDE_INT sp_offset,
mips_save_restore_fn fn)
{
machine_mode fpr_mode;
int regno;
const struct mips_frame_info *frame = &cfun->machine->frame;
HOST_WIDE_INT offset;
unsigned int mask;
/* Save registers starting from high to low. The debuggers prefer at least
the return register be stored at func+4, and also it allows us not to
need a nop in the epilogue if at least one register is reloaded in
addition to return address. */
offset = frame->gp_sp_offset - sp_offset;
mask = frame->mask;
if (TARGET_MICROMIPS)
umips_build_save_restore (fn, &mask, &offset);
for (regno = GP_REG_LAST; regno >= GP_REG_FIRST; regno--)
if (BITSET_P (mask, regno - GP_REG_FIRST))
{
/* Record the ra offset for use by mips_function_profiler. */
if (regno == RETURN_ADDR_REGNUM)
cfun->machine->frame.ra_fp_offset = offset + sp_offset;
mips_save_restore_reg (word_mode, regno, offset, fn);
offset -= UNITS_PER_WORD;
}
/* This loop must iterate over the same space as its companion in
mips_compute_frame_info. */
offset = cfun->machine->frame.fp_sp_offset - sp_offset;
fpr_mode = (TARGET_SINGLE_FLOAT ? SFmode : DFmode);
for (regno = FP_REG_LAST - MAX_FPRS_PER_FMT + 1;
regno >= FP_REG_FIRST;
regno -= MAX_FPRS_PER_FMT)
if (BITSET_P (cfun->machine->frame.fmask, regno - FP_REG_FIRST))
{
if (!TARGET_FLOAT64 && TARGET_DOUBLE_FLOAT
&& (fixed_regs[regno] || fixed_regs[regno + 1]))
{
if (fixed_regs[regno])
mips_save_restore_reg (SFmode, regno + 1, offset, fn);
else
mips_save_restore_reg (SFmode, regno, offset, fn);
}
else
mips_save_restore_reg (fpr_mode, regno, offset, fn);
offset -= GET_MODE_SIZE (fpr_mode);
}
}
/* Return true if a move between register REGNO and its save slot (MEM)
can be done in a single move. LOAD_P is true if we are loading
from the slot, false if we are storing to it. */
static bool
mips_direct_save_slot_move_p (unsigned int regno, rtx mem, bool load_p)
{
/* There is a specific MIPS16 instruction for saving $31 to the stack. */
if (TARGET_MIPS16 && !load_p && regno == RETURN_ADDR_REGNUM)
return false;
return mips_secondary_reload_class (REGNO_REG_CLASS (regno),
GET_MODE (mem), mem, load_p) == NO_REGS;
}
/* Emit a move from SRC to DEST, given that one of them is a register
save slot and that the other is a register. TEMP is a temporary
GPR of the same mode that is available if need be. */
void
mips_emit_save_slot_move (rtx dest, rtx src, rtx temp)
{
unsigned int regno;
rtx mem;
if (REG_P (src))
{
regno = REGNO (src);
mem = dest;
}
else
{
regno = REGNO (dest);
mem = src;
}
if (regno == cfun->machine->global_pointer && !mips_must_initialize_gp_p ())
{
/* We don't yet know whether we'll need this instruction or not.
Postpone the decision by emitting a ghost move. This move
is specifically not frame-related; only the split version is. */
if (TARGET_64BIT)
emit_insn (gen_move_gpdi (dest, src));
else
emit_insn (gen_move_gpsi (dest, src));
return;
}
if (regno == HI_REGNUM)
{
if (REG_P (dest))
{
mips_emit_move (temp, src);
if (TARGET_64BIT)
emit_insn (gen_mthidi_ti (gen_rtx_REG (TImode, MD_REG_FIRST),
temp, gen_rtx_REG (DImode, LO_REGNUM)));
else
emit_insn (gen_mthisi_di (gen_rtx_REG (DImode, MD_REG_FIRST),
temp, gen_rtx_REG (SImode, LO_REGNUM)));
}
else
{
if (TARGET_64BIT)
emit_insn (gen_mfhidi_ti (temp,
gen_rtx_REG (TImode, MD_REG_FIRST)));
else
emit_insn (gen_mfhisi_di (temp,
gen_rtx_REG (DImode, MD_REG_FIRST)));
mips_emit_move (dest, temp);
}
}
else if (mips_direct_save_slot_move_p (regno, mem, mem == src))
mips_emit_move (dest, src);
else
{
gcc_assert (!reg_overlap_mentioned_p (dest, temp));
mips_emit_move (temp, src);
mips_emit_move (dest, temp);
}
if (MEM_P (dest))
mips_set_frame_expr (mips_frame_set (dest, src));
}
/* If we're generating n32 or n64 abicalls, and the current function
does not use $28 as its global pointer, emit a cplocal directive.
Use pic_offset_table_rtx as the argument to the directive. */
static void
mips_output_cplocal (void)
{
if (!TARGET_EXPLICIT_RELOCS
&& mips_must_initialize_gp_p ()
&& cfun->machine->global_pointer != GLOBAL_POINTER_REGNUM)
output_asm_insn (".cplocal %+", 0);
}
/* Implement TARGET_OUTPUT_FUNCTION_PROLOGUE. */
static void
mips_output_function_prologue (FILE *file, HOST_WIDE_INT size ATTRIBUTE_UNUSED)
{
const char *fnname;
/* In MIPS16 mode, we may need to generate a non-MIPS16 stub to handle
floating-point arguments. */
if (TARGET_MIPS16
&& TARGET_HARD_FLOAT_ABI
&& crtl->args.info.fp_code != 0)
mips16_build_function_stub ();
/* Get the function name the same way that toplev.c does before calling
assemble_start_function. This is needed so that the name used here
exactly matches the name used in ASM_DECLARE_FUNCTION_NAME. */
fnname = XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0);
mips_start_function_definition (fnname, TARGET_MIPS16);
/* Output MIPS-specific frame information. */
if (!flag_inhibit_size_directive)
{
const struct mips_frame_info *frame;
frame = &cfun->machine->frame;
/* .frame FRAMEREG, FRAMESIZE, RETREG. */
fprintf (file,
"\t.frame\t%s," HOST_WIDE_INT_PRINT_DEC ",%s\t\t"
"# vars= " HOST_WIDE_INT_PRINT_DEC
", regs= %d/%d"
", args= " HOST_WIDE_INT_PRINT_DEC
", gp= " HOST_WIDE_INT_PRINT_DEC "\n",
reg_names[frame_pointer_needed
? HARD_FRAME_POINTER_REGNUM
: STACK_POINTER_REGNUM],
(frame_pointer_needed
? frame->total_size - frame->hard_frame_pointer_offset
: frame->total_size),
reg_names[RETURN_ADDR_REGNUM],
frame->var_size,
frame->num_gp, frame->num_fp,
frame->args_size,
frame->cprestore_size);
/* .mask MASK, OFFSET. */
fprintf (file, "\t.mask\t0x%08x," HOST_WIDE_INT_PRINT_DEC "\n",
frame->mask, frame->gp_save_offset);
/* .fmask MASK, OFFSET. */
fprintf (file, "\t.fmask\t0x%08x," HOST_WIDE_INT_PRINT_DEC "\n",
frame->fmask, frame->fp_save_offset);
}
/* Handle the initialization of $gp for SVR4 PIC, if applicable.
Also emit the ".set noreorder; .set nomacro" sequence for functions
that need it. */
if (mips_must_initialize_gp_p ()
&& mips_current_loadgp_style () == LOADGP_OLDABI)
{
if (TARGET_MIPS16)
{
/* This is a fixed-form sequence. The position of the
first two instructions is important because of the
way _gp_disp is defined. */
output_asm_insn ("li\t$2,%%hi(_gp_disp)", 0);
output_asm_insn ("addiu\t$3,$pc,%%lo(_gp_disp)", 0);
output_asm_insn ("sll\t$2,16", 0);
output_asm_insn ("addu\t$2,$3", 0);
}
else
{
/* .cpload must be in a .set noreorder but not a
.set nomacro block. */
mips_push_asm_switch (&mips_noreorder);
output_asm_insn (".cpload\t%^", 0);
if (!cfun->machine->all_noreorder_p)
mips_pop_asm_switch (&mips_noreorder);
else
mips_push_asm_switch (&mips_nomacro);
}
}
else if (cfun->machine->all_noreorder_p)
{
mips_push_asm_switch (&mips_noreorder);
mips_push_asm_switch (&mips_nomacro);
}
/* Tell the assembler which register we're using as the global
pointer. This is needed for thunks, since they can use either
explicit relocs or assembler macros. */
mips_output_cplocal ();
}
/* Implement TARGET_OUTPUT_FUNCTION_EPILOGUE. */
static void
mips_output_function_epilogue (FILE *file ATTRIBUTE_UNUSED,
HOST_WIDE_INT size ATTRIBUTE_UNUSED)
{
const char *fnname;
/* Reinstate the normal $gp. */
SET_REGNO (pic_offset_table_rtx, GLOBAL_POINTER_REGNUM);
mips_output_cplocal ();
if (cfun->machine->all_noreorder_p)
{
mips_pop_asm_switch (&mips_nomacro);
mips_pop_asm_switch (&mips_noreorder);
}
/* Get the function name the same way that toplev.c does before calling
assemble_start_function. This is needed so that the name used here
exactly matches the name used in ASM_DECLARE_FUNCTION_NAME. */
fnname = XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0);
mips_end_function_definition (fnname);
}
/* Emit an optimisation barrier for accesses to the current frame. */
static void
mips_frame_barrier (void)
{
emit_clobber (gen_frame_mem (BLKmode, stack_pointer_rtx));
}
/* The __gnu_local_gp symbol. */
static GTY(()) rtx mips_gnu_local_gp;
/* If we're generating n32 or n64 abicalls, emit instructions
to set up the global pointer. */
static void
mips_emit_loadgp (void)
{
rtx addr, offset, incoming_address, base, index, pic_reg;
pic_reg = TARGET_MIPS16 ? MIPS16_PIC_TEMP : pic_offset_table_rtx;
switch (mips_current_loadgp_style ())
{
case LOADGP_ABSOLUTE:
if (mips_gnu_local_gp == NULL)
{
mips_gnu_local_gp = gen_rtx_SYMBOL_REF (Pmode, "__gnu_local_gp");
SYMBOL_REF_FLAGS (mips_gnu_local_gp) |= SYMBOL_FLAG_LOCAL;
}
emit_insn (PMODE_INSN (gen_loadgp_absolute,
(pic_reg, mips_gnu_local_gp)));
break;
case LOADGP_OLDABI:
/* Added by mips_output_function_prologue. */
break;
case LOADGP_NEWABI:
addr = XEXP (DECL_RTL (current_function_decl), 0);
offset = mips_unspec_address (addr, SYMBOL_GOTOFF_LOADGP);
incoming_address = gen_rtx_REG (Pmode, PIC_FUNCTION_ADDR_REGNUM);
emit_insn (PMODE_INSN (gen_loadgp_newabi,
(pic_reg, offset, incoming_address)));
break;
case LOADGP_RTP:
base = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (VXWORKS_GOTT_BASE));
index = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (VXWORKS_GOTT_INDEX));
emit_insn (PMODE_INSN (gen_loadgp_rtp, (pic_reg, base, index)));
break;
default:
return;
}
if (TARGET_MIPS16)
emit_insn (PMODE_INSN (gen_copygp_mips16,
(pic_offset_table_rtx, pic_reg)));
/* Emit a blockage if there are implicit uses of the GP register.
This includes profiled functions, because FUNCTION_PROFILE uses
a jal macro. */
if (!TARGET_EXPLICIT_RELOCS || crtl->profile)
emit_insn (gen_loadgp_blockage ());
}
#define PROBE_INTERVAL (1 << STACK_CHECK_PROBE_INTERVAL_EXP)
#if PROBE_INTERVAL > 32768
#error Cannot use indexed addressing mode for stack probing
#endif
/* Emit code to probe a range of stack addresses from FIRST to FIRST+SIZE,
inclusive. These are offsets from the current stack pointer. */
static void
mips_emit_probe_stack_range (HOST_WIDE_INT first, HOST_WIDE_INT size)
{
if (TARGET_MIPS16)
sorry ("-fstack-check=specific not implemented for MIPS16");
/* See if we have a constant small number of probes to generate. If so,
that's the easy case. */
if (first + size <= 32768)
{
HOST_WIDE_INT i;
/* Probe at FIRST + N * PROBE_INTERVAL for values of N from 1 until
it exceeds SIZE. If only one probe is needed, this will not
generate any code. Then probe at FIRST + SIZE. */
for (i = PROBE_INTERVAL; i < size; i += PROBE_INTERVAL)
emit_stack_probe (plus_constant (Pmode, stack_pointer_rtx,
-(first + i)));
emit_stack_probe (plus_constant (Pmode, stack_pointer_rtx,
-(first + size)));
}
/* Otherwise, do the same as above, but in a loop. Note that we must be
extra careful with variables wrapping around because we might be at
the very top (or the very bottom) of the address space and we have
to be able to handle this case properly; in particular, we use an
equality test for the loop condition. */
else
{
HOST_WIDE_INT rounded_size;
rtx r3 = MIPS_PROLOGUE_TEMP (Pmode);
rtx r12 = MIPS_PROLOGUE_TEMP2 (Pmode);
/* Sanity check for the addressing mode we're going to use. */
gcc_assert (first <= 32768);
/* Step 1: round SIZE to the previous multiple of the interval. */
rounded_size = size & -PROBE_INTERVAL;
/* Step 2: compute initial and final value of the loop counter. */
/* TEST_ADDR = SP + FIRST. */
emit_insn (gen_rtx_SET (r3, plus_constant (Pmode, stack_pointer_rtx,
-first)));
/* LAST_ADDR = SP + FIRST + ROUNDED_SIZE. */
if (rounded_size > 32768)
{
emit_move_insn (r12, GEN_INT (rounded_size));
emit_insn (gen_rtx_SET (r12, gen_rtx_MINUS (Pmode, r3, r12)));
}
else
emit_insn (gen_rtx_SET (r12, plus_constant (Pmode, r3,
-rounded_size)));
/* Step 3: the loop
while (TEST_ADDR != LAST_ADDR)
{
TEST_ADDR = TEST_ADDR + PROBE_INTERVAL
probe at TEST_ADDR
}
probes at FIRST + N * PROBE_INTERVAL for values of N from 1
until it is equal to ROUNDED_SIZE. */
emit_insn (PMODE_INSN (gen_probe_stack_range, (r3, r3, r12)));
/* Step 4: probe at FIRST + SIZE if we cannot assert at compile-time
that SIZE is equal to ROUNDED_SIZE. */
if (size != rounded_size)
emit_stack_probe (plus_constant (Pmode, r12, rounded_size - size));
}
/* Make sure nothing is scheduled before we are done. */
emit_insn (gen_blockage ());
}
/* Probe a range of stack addresses from REG1 to REG2 inclusive. These are
absolute addresses. */
const char *
mips_output_probe_stack_range (rtx reg1, rtx reg2)
{
static int labelno = 0;
char loop_lab[32], end_lab[32], tmp[64];
rtx xops[2];
ASM_GENERATE_INTERNAL_LABEL (loop_lab, "LPSRL", labelno);
ASM_GENERATE_INTERNAL_LABEL (end_lab, "LPSRE", labelno++);
ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, loop_lab);
/* Jump to END_LAB if TEST_ADDR == LAST_ADDR. */
xops[0] = reg1;
xops[1] = reg2;
strcpy (tmp, "%(%<beq\t%0,%1,");
output_asm_insn (strcat (tmp, &end_lab[1]), xops);
/* TEST_ADDR = TEST_ADDR + PROBE_INTERVAL. */
xops[1] = GEN_INT (-PROBE_INTERVAL);
if (TARGET_64BIT && TARGET_LONG64)
output_asm_insn ("daddiu\t%0,%0,%1", xops);
else
output_asm_insn ("addiu\t%0,%0,%1", xops);
/* Probe at TEST_ADDR and branch. */
fprintf (asm_out_file, "\tb\t");
assemble_name_raw (asm_out_file, loop_lab);
fputc ('\n', asm_out_file);
if (TARGET_64BIT)
output_asm_insn ("sd\t$0,0(%0)%)", xops);
else
output_asm_insn ("sw\t$0,0(%0)%)", xops);
ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, end_lab);
return "";
}
/* Return true if X contains a kernel register. */
static bool
mips_refers_to_kernel_reg_p (const_rtx x)
{
subrtx_iterator::array_type array;
FOR_EACH_SUBRTX (iter, array, x, NONCONST)
if (REG_P (*iter) && KERNEL_REG_P (REGNO (*iter)))
return true;
return false;
}
/* Expand the "prologue" pattern. */
void
mips_expand_prologue (void)
{
const struct mips_frame_info *frame;
HOST_WIDE_INT size;
unsigned int nargs;
if (cfun->machine->global_pointer != INVALID_REGNUM)
{
/* Check whether an insn uses pic_offset_table_rtx, either explicitly
or implicitly. If so, we can commit to using a global pointer
straight away, otherwise we need to defer the decision. */
if (mips_cfun_has_inflexible_gp_ref_p ()
|| mips_cfun_has_flexible_gp_ref_p ())
{
cfun->machine->must_initialize_gp_p = true;
cfun->machine->must_restore_gp_when_clobbered_p = true;
}
SET_REGNO (pic_offset_table_rtx, cfun->machine->global_pointer);
}
frame = &cfun->machine->frame;
size = frame->total_size;
if (flag_stack_usage_info)
current_function_static_stack_size = size;
if (flag_stack_check == STATIC_BUILTIN_STACK_CHECK)
{
if (crtl->is_leaf && !cfun->calls_alloca)
{
if (size > PROBE_INTERVAL && size > STACK_CHECK_PROTECT)
mips_emit_probe_stack_range (STACK_CHECK_PROTECT,
size - STACK_CHECK_PROTECT);
}
else if (size > 0)
mips_emit_probe_stack_range (STACK_CHECK_PROTECT, size);
}
/* Save the registers. Allocate up to MIPS_MAX_FIRST_STACK_STEP
bytes beforehand; this is enough to cover the register save area
without going out of range. */
if (((frame->mask | frame->fmask | frame->acc_mask) != 0)
|| frame->num_cop0_regs > 0)
{
HOST_WIDE_INT step1;
step1 = MIN (size, MIPS_MAX_FIRST_STACK_STEP);
if (GENERATE_MIPS16E_SAVE_RESTORE)
{
HOST_WIDE_INT offset;
unsigned int mask, regno;
/* Try to merge argument stores into the save instruction. */
nargs = mips16e_collect_argument_saves ();
/* Build the save instruction. */
mask = frame->mask;
rtx insn = mips16e_build_save_restore (false, &mask, &offset,
nargs, step1);
RTX_FRAME_RELATED_P (emit_insn (insn)) = 1;
mips_frame_barrier ();
size -= step1;
/* Check if we need to save other registers. */
for (regno = GP_REG_FIRST; regno < GP_REG_LAST; regno++)
if (BITSET_P (mask, regno - GP_REG_FIRST))
{
offset -= UNITS_PER_WORD;
mips_save_restore_reg (word_mode, regno,
offset, mips_save_reg);
}
}
else
{
if (cfun->machine->interrupt_handler_p)
{
HOST_WIDE_INT offset;
rtx mem;
/* If this interrupt is using a shadow register set, we need to
get the stack pointer from the previous register set. */
if (cfun->machine->use_shadow_register_set == SHADOW_SET_YES)
emit_insn (PMODE_INSN (gen_mips_rdpgpr, (stack_pointer_rtx,
stack_pointer_rtx)));
if (!cfun->machine->keep_interrupts_masked_p)
{
if (cfun->machine->int_mask == INT_MASK_EIC)
/* Move from COP0 Cause to K0. */
emit_insn (gen_cop0_move (gen_rtx_REG (SImode, K0_REG_NUM),
gen_rtx_REG (SImode, COP0_CAUSE_REG_NUM)));
}
/* Move from COP0 EPC to K1. */
emit_insn (gen_cop0_move (gen_rtx_REG (SImode, K1_REG_NUM),
gen_rtx_REG (SImode,
COP0_EPC_REG_NUM)));
/* Allocate the first part of the frame. */
rtx insn = gen_add3_insn (stack_pointer_rtx, stack_pointer_rtx,
GEN_INT (-step1));
RTX_FRAME_RELATED_P (emit_insn (insn)) = 1;
mips_frame_barrier ();
size -= step1;
/* Start at the uppermost location for saving. */
offset = frame->cop0_sp_offset - size;
/* Push EPC into its stack slot. */
mem = gen_frame_mem (word_mode,
plus_constant (Pmode, stack_pointer_rtx,
offset));
mips_emit_move (mem, gen_rtx_REG (word_mode, K1_REG_NUM));
offset -= UNITS_PER_WORD;
/* Move from COP0 Status to K1. */
emit_insn (gen_cop0_move (gen_rtx_REG (SImode, K1_REG_NUM),
gen_rtx_REG (SImode,
COP0_STATUS_REG_NUM)));
/* Right justify the RIPL in k0. */
if (!cfun->machine->keep_interrupts_masked_p
&& cfun->machine->int_mask == INT_MASK_EIC)
emit_insn (gen_lshrsi3 (gen_rtx_REG (SImode, K0_REG_NUM),
gen_rtx_REG (SImode, K0_REG_NUM),
GEN_INT (CAUSE_IPL)));
/* Push Status into its stack slot. */
mem = gen_frame_mem (word_mode,
plus_constant (Pmode, stack_pointer_rtx,
offset));
mips_emit_move (mem, gen_rtx_REG (word_mode, K1_REG_NUM));
offset -= UNITS_PER_WORD;
/* Insert the RIPL into our copy of SR (k1) as the new IPL. */
if (!cfun->machine->keep_interrupts_masked_p
&& cfun->machine->int_mask == INT_MASK_EIC)
emit_insn (gen_insvsi (gen_rtx_REG (SImode, K1_REG_NUM),
GEN_INT (6),
GEN_INT (SR_IPL),
gen_rtx_REG (SImode, K0_REG_NUM)));
/* Clear all interrupt mask bits up to and including the
handler's interrupt line. */
if (!cfun->machine->keep_interrupts_masked_p
&& cfun->machine->int_mask != INT_MASK_EIC)
emit_insn (gen_insvsi (gen_rtx_REG (SImode, K1_REG_NUM),
GEN_INT (cfun->machine->int_mask + 1),
GEN_INT (SR_IM0),
gen_rtx_REG (SImode, GP_REG_FIRST)));
if (!cfun->machine->keep_interrupts_masked_p)
/* Enable interrupts by clearing the KSU ERL and EXL bits.
IE is already the correct value, so we don't have to do
anything explicit. */
emit_insn (gen_insvsi (gen_rtx_REG (SImode, K1_REG_NUM),
GEN_INT (4),
GEN_INT (SR_EXL),
gen_rtx_REG (SImode, GP_REG_FIRST)));
else
/* Disable interrupts by clearing the KSU, ERL, EXL,
and IE bits. */
emit_insn (gen_insvsi (gen_rtx_REG (SImode, K1_REG_NUM),
GEN_INT (5),
GEN_INT (SR_IE),
gen_rtx_REG (SImode, GP_REG_FIRST)));
if (TARGET_HARD_FLOAT)
/* Disable COP1 for hard-float. This will lead to an exception
if floating-point code is executed in an ISR. */
emit_insn (gen_insvsi (gen_rtx_REG (SImode, K1_REG_NUM),
GEN_INT (1),
GEN_INT (SR_COP1),
gen_rtx_REG (SImode, GP_REG_FIRST)));
}
else
{
rtx insn = gen_add3_insn (stack_pointer_rtx,
stack_pointer_rtx,
GEN_INT (-step1));
RTX_FRAME_RELATED_P (emit_insn (insn)) = 1;
mips_frame_barrier ();
size -= step1;
}
mips_for_each_saved_acc (size, mips_save_reg);
mips_for_each_saved_gpr_and_fpr (size, mips_save_reg);
}
}
/* Allocate the rest of the frame. */
if (size > 0)
{
if (SMALL_OPERAND (-size))
RTX_FRAME_RELATED_P (emit_insn (gen_add3_insn (stack_pointer_rtx,
stack_pointer_rtx,
GEN_INT (-size)))) = 1;
else
{
mips_emit_move (MIPS_PROLOGUE_TEMP (Pmode), GEN_INT (size));
if (TARGET_MIPS16)
{
/* There are no instructions to add or subtract registers
from the stack pointer, so use the frame pointer as a
temporary. We should always be using a frame pointer
in this case anyway. */
gcc_assert (frame_pointer_needed);
mips_emit_move (hard_frame_pointer_rtx, stack_pointer_rtx);
emit_insn (gen_sub3_insn (hard_frame_pointer_rtx,
hard_frame_pointer_rtx,
MIPS_PROLOGUE_TEMP (Pmode)));
mips_emit_move (stack_pointer_rtx, hard_frame_pointer_rtx);
}
else
emit_insn (gen_sub3_insn (stack_pointer_rtx,
stack_pointer_rtx,
MIPS_PROLOGUE_TEMP (Pmode)));
/* Describe the combined effect of the previous instructions. */
mips_set_frame_expr
(gen_rtx_SET (stack_pointer_rtx,
plus_constant (Pmode, stack_pointer_rtx, -size)));
}
mips_frame_barrier ();
}
/* Set up the frame pointer, if we're using one. */
if (frame_pointer_needed)
{
HOST_WIDE_INT offset;
offset = frame->hard_frame_pointer_offset;
if (offset == 0)
{
rtx insn = mips_emit_move (hard_frame_pointer_rtx, stack_pointer_rtx);
RTX_FRAME_RELATED_P (insn) = 1;
}
else if (SMALL_OPERAND (offset))
{
rtx insn = gen_add3_insn (hard_frame_pointer_rtx,
stack_pointer_rtx, GEN_INT (offset));
RTX_FRAME_RELATED_P (emit_insn (insn)) = 1;
}
else
{
mips_emit_move (MIPS_PROLOGUE_TEMP (Pmode), GEN_INT (offset));
mips_emit_move (hard_frame_pointer_rtx, stack_pointer_rtx);
emit_insn (gen_add3_insn (hard_frame_pointer_rtx,
hard_frame_pointer_rtx,
MIPS_PROLOGUE_TEMP (Pmode)));
mips_set_frame_expr
(gen_rtx_SET (hard_frame_pointer_rtx,
plus_constant (Pmode, stack_pointer_rtx, offset)));
}
}
mips_emit_loadgp ();
/* Initialize the $gp save slot. */
if (mips_cfun_has_cprestore_slot_p ())
{
rtx base, mem, gp, temp;
HOST_WIDE_INT offset;
mips_get_cprestore_base_and_offset (&base, &offset, false);
mem = gen_frame_mem (Pmode, plus_constant (Pmode, base, offset));
gp = TARGET_MIPS16 ? MIPS16_PIC_TEMP : pic_offset_table_rtx;
temp = (SMALL_OPERAND (offset)
? gen_rtx_SCRATCH (Pmode)
: MIPS_PROLOGUE_TEMP (Pmode));
emit_insn (PMODE_INSN (gen_potential_cprestore,
(mem, GEN_INT (offset), gp, temp)));
mips_get_cprestore_base_and_offset (&base, &offset, true);
mem = gen_frame_mem (Pmode, plus_constant (Pmode, base, offset));
emit_insn (PMODE_INSN (gen_use_cprestore, (mem)));
}
/* We need to search back to the last use of K0 or K1. */
if (cfun->machine->interrupt_handler_p)
{
rtx_insn *insn;
for (insn = get_last_insn (); insn != NULL_RTX; insn = PREV_INSN (insn))
if (INSN_P (insn)
&& mips_refers_to_kernel_reg_p (PATTERN (insn)))
break;
/* Emit a move from K1 to COP0 Status after insn. */
gcc_assert (insn != NULL_RTX);
emit_insn_after (gen_cop0_move (gen_rtx_REG (SImode, COP0_STATUS_REG_NUM),
gen_rtx_REG (SImode, K1_REG_NUM)),
insn);
}
/* If we are profiling, make sure no instructions are scheduled before
the call to mcount. */
if (crtl->profile)
emit_insn (gen_blockage ());
}
/* Attach all pending register saves to the previous instruction.
Return that instruction. */
static rtx_insn *
mips_epilogue_emit_cfa_restores (void)
{
rtx_insn *insn;
insn = get_last_insn ();
gcc_assert (insn && !REG_NOTES (insn));
if (mips_epilogue.cfa_restores)
{
RTX_FRAME_RELATED_P (insn) = 1;
REG_NOTES (insn) = mips_epilogue.cfa_restores;
mips_epilogue.cfa_restores = 0;
}
return insn;
}
/* Like mips_epilogue_emit_cfa_restores, but also record that the CFA is
now at REG + OFFSET. */
static void
mips_epilogue_set_cfa (rtx reg, HOST_WIDE_INT offset)
{
rtx_insn *insn;
insn = mips_epilogue_emit_cfa_restores ();
if (reg != mips_epilogue.cfa_reg || offset != mips_epilogue.cfa_offset)
{
RTX_FRAME_RELATED_P (insn) = 1;
REG_NOTES (insn) = alloc_reg_note (REG_CFA_DEF_CFA,
plus_constant (Pmode, reg, offset),
REG_NOTES (insn));
mips_epilogue.cfa_reg = reg;
mips_epilogue.cfa_offset = offset;
}
}
/* Emit instructions to restore register REG from slot MEM. Also update
the cfa_restores list. */
static void
mips_restore_reg (rtx reg, rtx mem)
{
/* There's no MIPS16 instruction to load $31 directly. Load into
$7 instead and adjust the return insn appropriately. */
if (TARGET_MIPS16 && REGNO (reg) == RETURN_ADDR_REGNUM)
reg = gen_rtx_REG (GET_MODE (reg), GP_REG_FIRST + 7);
else if (GET_MODE (reg) == DFmode
&& (!TARGET_FLOAT64
|| mips_abi == ABI_32))
{
mips_add_cfa_restore (mips_subword (reg, true));
mips_add_cfa_restore (mips_subword (reg, false));
}
else
mips_add_cfa_restore (reg);
mips_emit_save_slot_move (reg, mem, MIPS_EPILOGUE_TEMP (GET_MODE (reg)));
if (REGNO (reg) == REGNO (mips_epilogue.cfa_reg))
/* The CFA is currently defined in terms of the register whose
value we have just restored. Redefine the CFA in terms of
the stack pointer. */
mips_epilogue_set_cfa (stack_pointer_rtx,
mips_epilogue.cfa_restore_sp_offset);
}
/* Emit code to set the stack pointer to BASE + OFFSET, given that
BASE + OFFSET is NEW_FRAME_SIZE bytes below the top of the frame.
BASE, if not the stack pointer, is available as a temporary. */
static void
mips_deallocate_stack (rtx base, rtx offset, HOST_WIDE_INT new_frame_size)
{
if (base == stack_pointer_rtx && offset == const0_rtx)
return;
mips_frame_barrier ();
if (offset == const0_rtx)
{
emit_move_insn (stack_pointer_rtx, base);
mips_epilogue_set_cfa (stack_pointer_rtx, new_frame_size);
}
else if (TARGET_MIPS16 && base != stack_pointer_rtx)
{
emit_insn (gen_add3_insn (base, base, offset));
mips_epilogue_set_cfa (base, new_frame_size);
emit_move_insn (stack_pointer_rtx, base);
}
else
{
emit_insn (gen_add3_insn (stack_pointer_rtx, base, offset));
mips_epilogue_set_cfa (stack_pointer_rtx, new_frame_size);
}
}
/* Emit any instructions needed before a return. */
void
mips_expand_before_return (void)
{
/* When using a call-clobbered gp, we start out with unified call
insns that include instructions to restore the gp. We then split
these unified calls after reload. These split calls explicitly
clobber gp, so there is no need to define
PIC_OFFSET_TABLE_REG_CALL_CLOBBERED.
For consistency, we should also insert an explicit clobber of $28
before return insns, so that the post-reload optimizers know that
the register is not live on exit. */
if (TARGET_CALL_CLOBBERED_GP)
emit_clobber (pic_offset_table_rtx);
}
/* Expand an "epilogue" or "sibcall_epilogue" pattern; SIBCALL_P
says which. */
void
mips_expand_epilogue (bool sibcall_p)
{
const struct mips_frame_info *frame;
HOST_WIDE_INT step1, step2;
rtx base, adjust;
rtx_insn *insn;
bool use_jraddiusp_p = false;
if (!sibcall_p && mips_can_use_return_insn ())
{
emit_jump_insn (gen_return ());
return;
}
/* In MIPS16 mode, if the return value should go into a floating-point
register, we need to call a helper routine to copy it over. */
if (mips16_cfun_returns_in_fpr_p ())
mips16_copy_fpr_return_value ();
/* Split the frame into two. STEP1 is the amount of stack we should
deallocate before restoring the registers. STEP2 is the amount we
should deallocate afterwards.
Start off by assuming that no registers need to be restored. */
frame = &cfun->machine->frame;
step1 = frame->total_size;
step2 = 0;
/* Work out which register holds the frame address. */
if (!frame_pointer_needed)
base = stack_pointer_rtx;
else
{
base = hard_frame_pointer_rtx;
step1 -= frame->hard_frame_pointer_offset;
}
mips_epilogue.cfa_reg = base;
mips_epilogue.cfa_offset = step1;
mips_epilogue.cfa_restores = NULL_RTX;
/* If we need to restore registers, deallocate as much stack as
possible in the second step without going out of range. */
if ((frame->mask | frame->fmask | frame->acc_mask) != 0
|| frame->num_cop0_regs > 0)
{
step2 = MIN (step1, MIPS_MAX_FIRST_STACK_STEP);
step1 -= step2;
}
/* Get an rtx for STEP1 that we can add to BASE. */
adjust = GEN_INT (step1);
if (!SMALL_OPERAND (step1))
{
mips_emit_move (MIPS_EPILOGUE_TEMP (Pmode), adjust);
adjust = MIPS_EPILOGUE_TEMP (Pmode);
}
mips_deallocate_stack (base, adjust, step2);
/* If we're using addressing macros, $gp is implicitly used by all
SYMBOL_REFs. We must emit a blockage insn before restoring $gp
from the stack. */
if (TARGET_CALL_SAVED_GP && !TARGET_EXPLICIT_RELOCS)
emit_insn (gen_blockage ());
mips_epilogue.cfa_restore_sp_offset = step2;
if (GENERATE_MIPS16E_SAVE_RESTORE && frame->mask != 0)
{
unsigned int regno, mask;
HOST_WIDE_INT offset;
rtx restore;
/* Generate the restore instruction. */
mask = frame->mask;
restore = mips16e_build_save_restore (true, &mask, &offset, 0, step2);
/* Restore any other registers manually. */
for (regno = GP_REG_FIRST; regno < GP_REG_LAST; regno++)
if (BITSET_P (mask, regno - GP_REG_FIRST))
{
offset -= UNITS_PER_WORD;
mips_save_restore_reg (word_mode, regno, offset, mips_restore_reg);
}
/* Restore the remaining registers and deallocate the final bit
of the frame. */
mips_frame_barrier ();
emit_insn (restore);
mips_epilogue_set_cfa (stack_pointer_rtx, 0);
}
else
{
/* Restore the registers. */
mips_for_each_saved_acc (frame->total_size - step2, mips_restore_reg);
mips_for_each_saved_gpr_and_fpr (frame->total_size - step2,
mips_restore_reg);
if (cfun->machine->interrupt_handler_p)
{
HOST_WIDE_INT offset;
rtx mem;
offset = frame->cop0_sp_offset - (frame->total_size - step2);
/* Restore the original EPC. */
mem = gen_frame_mem (word_mode,
plus_constant (Pmode, stack_pointer_rtx,
offset));
mips_emit_move (gen_rtx_REG (word_mode, K1_REG_NUM), mem);
offset -= UNITS_PER_WORD;
/* Move to COP0 EPC. */
emit_insn (gen_cop0_move (gen_rtx_REG (SImode, COP0_EPC_REG_NUM),
gen_rtx_REG (SImode, K1_REG_NUM)));
/* Restore the original Status. */
mem = gen_frame_mem (word_mode,
plus_constant (Pmode, stack_pointer_rtx,
offset));
mips_emit_move (gen_rtx_REG (word_mode, K1_REG_NUM), mem);
offset -= UNITS_PER_WORD;
/* If we don't use shadow register set, we need to update SP. */
if (cfun->machine->use_shadow_register_set == SHADOW_SET_NO)
mips_deallocate_stack (stack_pointer_rtx, GEN_INT (step2), 0);
else
/* The choice of position is somewhat arbitrary in this case. */
mips_epilogue_emit_cfa_restores ();
/* Move to COP0 Status. */
emit_insn (gen_cop0_move (gen_rtx_REG (SImode, COP0_STATUS_REG_NUM),
gen_rtx_REG (SImode, K1_REG_NUM)));
}
else if (TARGET_MICROMIPS
&& !crtl->calls_eh_return
&& !sibcall_p
&& step2 > 0
&& mips_unsigned_immediate_p (step2, 5, 2))
use_jraddiusp_p = true;
else
/* Deallocate the final bit of the frame. */
mips_deallocate_stack (stack_pointer_rtx, GEN_INT (step2), 0);
}
if (!use_jraddiusp_p)
gcc_assert (!mips_epilogue.cfa_restores);
/* Add in the __builtin_eh_return stack adjustment. We need to
use a temporary in MIPS16 code. */
if (crtl->calls_eh_return)
{
if (TARGET_MIPS16)
{
mips_emit_move (MIPS_EPILOGUE_TEMP (Pmode), stack_pointer_rtx);
emit_insn (gen_add3_insn (MIPS_EPILOGUE_TEMP (Pmode),
MIPS_EPILOGUE_TEMP (Pmode),
EH_RETURN_STACKADJ_RTX));
mips_emit_move (stack_pointer_rtx, MIPS_EPILOGUE_TEMP (Pmode));
}
else
emit_insn (gen_add3_insn (stack_pointer_rtx,
stack_pointer_rtx,
EH_RETURN_STACKADJ_RTX));
}
if (!sibcall_p)
{
mips_expand_before_return ();
if (cfun->machine->interrupt_handler_p)
{
/* Interrupt handlers generate eret or deret. */
if (cfun->machine->use_debug_exception_return_p)
emit_jump_insn (gen_mips_deret ());
else
emit_jump_insn (gen_mips_eret ());
}
else
{
rtx pat;
/* When generating MIPS16 code, the normal
mips_for_each_saved_gpr_and_fpr path will restore the return
address into $7 rather than $31. */
if (TARGET_MIPS16
&& !GENERATE_MIPS16E_SAVE_RESTORE
&& BITSET_P (frame->mask, RETURN_ADDR_REGNUM))
{
/* simple_returns cannot rely on values that are only available
on paths through the epilogue (because return paths that do
not pass through the epilogue may nevertheless reuse a
simple_return that occurs at the end of the epilogue).
Use a normal return here instead. */
rtx reg = gen_rtx_REG (Pmode, GP_REG_FIRST + 7);
pat = gen_return_internal (reg);
}
else if (use_jraddiusp_p)
pat = gen_jraddiusp (GEN_INT (step2));
else
{
rtx reg = gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM);
pat = gen_simple_return_internal (reg);
}
emit_jump_insn (pat);
if (use_jraddiusp_p)
mips_epilogue_set_cfa (stack_pointer_rtx, step2);
}
}
/* Search from the beginning to the first use of K0 or K1. */
if (cfun->machine->interrupt_handler_p
&& !cfun->machine->keep_interrupts_masked_p)
{
for (insn = get_insns (); insn != NULL_RTX; insn = NEXT_INSN (insn))
if (INSN_P (insn)
&& mips_refers_to_kernel_reg_p (PATTERN (insn)))
break;
gcc_assert (insn != NULL_RTX);
/* Insert disable interrupts before the first use of K0 or K1. */
emit_insn_before (gen_mips_di (), insn);
emit_insn_before (gen_mips_ehb (), insn);
}
}
/* Return nonzero if this function is known to have a null epilogue.
This allows the optimizer to omit jumps to jumps if no stack
was created. */
bool
mips_can_use_return_insn (void)
{
/* Interrupt handlers need to go through the epilogue. */
if (cfun->machine->interrupt_handler_p)
return false;
if (!reload_completed)
return false;
if (crtl->profile)
return false;
/* In MIPS16 mode, a function that returns a floating-point value
needs to arrange to copy the return value into the floating-point
registers. */
if (mips16_cfun_returns_in_fpr_p ())
return false;
return cfun->machine->frame.total_size == 0;
}
/* Return true if register REGNO can store a value of mode MODE.
The result of this function is cached in mips_hard_regno_mode_ok. */
static bool
mips_hard_regno_mode_ok_p (unsigned int regno, machine_mode mode)
{
unsigned int size;
enum mode_class mclass;
if (mode == CCV2mode)
return (ISA_HAS_8CC
&& ST_REG_P (regno)
&& (regno - ST_REG_FIRST) % 2 == 0);
if (mode == CCV4mode)
return (ISA_HAS_8CC
&& ST_REG_P (regno)
&& (regno - ST_REG_FIRST) % 4 == 0);
if (mode == CCmode)
return ISA_HAS_8CC ? ST_REG_P (regno) : regno == FPSW_REGNUM;
size = GET_MODE_SIZE (mode);
mclass = GET_MODE_CLASS (mode);
if (GP_REG_P (regno) && mode != CCFmode)
return ((regno - GP_REG_FIRST) & 1) == 0 || size <= UNITS_PER_WORD;
if (FP_REG_P (regno)
&& (((regno - FP_REG_FIRST) % MAX_FPRS_PER_FMT) == 0
|| (MIN_FPRS_PER_FMT == 1 && size <= UNITS_PER_FPREG)))
{
/* Deny use of odd-numbered registers for 32-bit data for
the o32 FP64A ABI. */
if (TARGET_O32_FP64A_ABI && size <= 4 && (regno & 1) != 0)
return false;
/* The FPXX ABI requires double-precision values to be placed in
even-numbered registers. Disallow odd-numbered registers with
CCFmode because CCFmode double-precision compares will write a
64-bit value to a register. */
if (mode == CCFmode)
return !(TARGET_FLOATXX && (regno & 1) != 0);
/* Allow 64-bit vector modes for Loongson-2E/2F. */
if (TARGET_LOONGSON_VECTORS
&& (mode == V2SImode
|| mode == V4HImode
|| mode == V8QImode
|| mode == DImode))
return true;
if (mclass == MODE_FLOAT
|| mclass == MODE_COMPLEX_FLOAT
|| mclass == MODE_VECTOR_FLOAT)
return size <= UNITS_PER_FPVALUE;
/* Allow integer modes that fit into a single register. We need
to put integers into FPRs when using instructions like CVT
and TRUNC. There's no point allowing sizes smaller than a word,
because the FPU has no appropriate load/store instructions. */
if (mclass == MODE_INT)
return size >= MIN_UNITS_PER_WORD && size <= UNITS_PER_FPREG;
}
/* Don't allow vector modes in accumulators. */
if (ACC_REG_P (regno)
&& !VECTOR_MODE_P (mode)
&& (INTEGRAL_MODE_P (mode) || ALL_FIXED_POINT_MODE_P (mode)))
{
if (MD_REG_P (regno))
{
/* After a multiplication or division, clobbering HI makes
the value of LO unpredictable, and vice versa. This means
that, for all interesting cases, HI and LO are effectively
a single register.
We model this by requiring that any value that uses HI
also uses LO. */
if (size <= UNITS_PER_WORD * 2)
return regno == (size <= UNITS_PER_WORD ? LO_REGNUM : MD_REG_FIRST);
}
else
{
/* DSP accumulators do not have the same restrictions as
HI and LO, so we can treat them as normal doubleword
registers. */
if (size <= UNITS_PER_WORD)
return true;
if (size <= UNITS_PER_WORD * 2
&& ((regno - DSP_ACC_REG_FIRST) & 1) == 0)
return true;
}
}
if (ALL_COP_REG_P (regno))
return mclass == MODE_INT && size <= UNITS_PER_WORD;
if (regno == GOT_VERSION_REGNUM)
return mode == SImode;
return false;
}
/* Return nonzero if register OLD_REG can be renamed to register NEW_REG. */
bool
mips_hard_regno_rename_ok (unsigned int old_reg ATTRIBUTE_UNUSED,
unsigned int new_reg)
{
/* Interrupt functions can only use registers that have already been
saved by the prologue, even if they would normally be call-clobbered. */
if (cfun->machine->interrupt_handler_p && !df_regs_ever_live_p (new_reg))
return false;
return true;
}
/* Return nonzero if register REGNO can be used as a scratch register
in peephole2. */
bool
mips_hard_regno_scratch_ok (unsigned int regno)
{
/* See mips_hard_regno_rename_ok. */
if (cfun->machine->interrupt_handler_p && !df_regs_ever_live_p (regno))
return false;
return true;
}
/* Implement HARD_REGNO_NREGS. */
unsigned int
mips_hard_regno_nregs (int regno, machine_mode mode)
{
if (ST_REG_P (regno))
/* The size of FP status registers is always 4, because they only hold
CCmode values, and CCmode is always considered to be 4 bytes wide. */
return (GET_MODE_SIZE (mode) + 3) / 4;
if (FP_REG_P (regno))
return (GET_MODE_SIZE (mode) + UNITS_PER_FPREG - 1) / UNITS_PER_FPREG;
/* All other registers are word-sized. */
return (GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
}
/* Implement CLASS_MAX_NREGS, taking the maximum of the cases
in mips_hard_regno_nregs. */
int
mips_class_max_nregs (enum reg_class rclass, machine_mode mode)
{
int size;
HARD_REG_SET left;
size = 0x8000;
COPY_HARD_REG_SET (left, reg_class_contents[(int) rclass]);
if (hard_reg_set_intersect_p (left, reg_class_contents[(int) ST_REGS]))
{
if (HARD_REGNO_MODE_OK (ST_REG_FIRST, mode))
size = MIN (size, 4);
AND_COMPL_HARD_REG_SET (left, reg_class_contents[(int) ST_REGS]);
}
if (hard_reg_set_intersect_p (left, reg_class_contents[(int) FP_REGS]))
{
if (HARD_REGNO_MODE_OK (FP_REG_FIRST, mode))
size = MIN (size, UNITS_PER_FPREG);
AND_COMPL_HARD_REG_SET (left, reg_class_contents[(int) FP_REGS]);
}
if (!hard_reg_set_empty_p (left))
size = MIN (size, UNITS_PER_WORD);
return (GET_MODE_SIZE (mode) + size - 1) / size;
}
/* Implement CANNOT_CHANGE_MODE_CLASS. */
bool
mips_cannot_change_mode_class (machine_mode from,
machine_mode to,
enum reg_class rclass)
{
/* Allow conversions between different Loongson integer vectors,
and between those vectors and DImode. */
if (GET_MODE_SIZE (from) == 8 && GET_MODE_SIZE (to) == 8
&& INTEGRAL_MODE_P (from) && INTEGRAL_MODE_P (to))
return false;
/* Otherwise, there are several problems with changing the modes of
values in floating-point registers:
- When a multi-word value is stored in paired floating-point
registers, the first register always holds the low word. We
therefore can't allow FPRs to change between single-word and
multi-word modes on big-endian targets.
- GCC assumes that each word of a multiword register can be
accessed individually using SUBREGs. This is not true for
floating-point registers if they are bigger than a word.
- Loading a 32-bit value into a 64-bit floating-point register
will not sign-extend the value, despite what LOAD_EXTEND_OP
says. We can't allow FPRs to change from SImode to a wider
mode on 64-bit targets.
- If the FPU has already interpreted a value in one format, we
must not ask it to treat the value as having a different
format.
We therefore disallow all mode changes involving FPRs. */
return reg_classes_intersect_p (FP_REGS, rclass);
}
/* Implement target hook small_register_classes_for_mode_p. */
static bool
mips_small_register_classes_for_mode_p (machine_mode mode
ATTRIBUTE_UNUSED)
{
return TARGET_MIPS16;
}
/* Return true if moves in mode MODE can use the FPU's mov.fmt instruction. */
static bool
mips_mode_ok_for_mov_fmt_p (machine_mode mode)
{
switch (mode)
{
case CCFmode:
case SFmode:
return TARGET_HARD_FLOAT;
case DFmode:
return TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT;
case V2SFmode:
return TARGET_HARD_FLOAT && TARGET_PAIRED_SINGLE_FLOAT;
default:
return false;
}
}
/* Implement MODES_TIEABLE_P. */
bool
mips_modes_tieable_p (machine_mode mode1, machine_mode mode2)
{
/* FPRs allow no mode punning, so it's not worth tying modes if we'd
prefer to put one of them in FPRs. */
return (mode1 == mode2
|| (!mips_mode_ok_for_mov_fmt_p (mode1)
&& !mips_mode_ok_for_mov_fmt_p (mode2)));
}
/* Implement TARGET_PREFERRED_RELOAD_CLASS. */
static reg_class_t
mips_preferred_reload_class (rtx x, reg_class_t rclass)
{
if (mips_dangerous_for_la25_p (x) && reg_class_subset_p (LEA_REGS, rclass))
return LEA_REGS;
if (reg_class_subset_p (FP_REGS, rclass)
&& mips_mode_ok_for_mov_fmt_p (GET_MODE (x)))
return FP_REGS;
if (reg_class_subset_p (GR_REGS, rclass))
rclass = GR_REGS;
if (TARGET_MIPS16 && reg_class_subset_p (M16_REGS, rclass))
rclass = M16_REGS;
return rclass;
}
/* RCLASS is a class involved in a REGISTER_MOVE_COST calculation.
Return a "canonical" class to represent it in later calculations. */
static reg_class_t
mips_canonicalize_move_class (reg_class_t rclass)
{
/* All moves involving accumulator registers have the same cost. */
if (reg_class_subset_p (rclass, ACC_REGS))
rclass = ACC_REGS;
/* Likewise promote subclasses of general registers to the most
interesting containing class. */
if (TARGET_MIPS16 && reg_class_subset_p (rclass, M16_REGS))
rclass = M16_REGS;
else if (reg_class_subset_p (rclass, GENERAL_REGS))
rclass = GENERAL_REGS;
return rclass;
}
/* Return the cost of moving a value from a register of class FROM to a GPR.
Return 0 for classes that are unions of other classes handled by this
function. */
static int
mips_move_to_gpr_cost (reg_class_t from)
{
switch (from)
{
case M16_REGS:
case GENERAL_REGS:
/* A MIPS16 MOVE instruction, or a non-MIPS16 MOVE macro. */
return 2;
case ACC_REGS:
/* MFLO and MFHI. */
return 6;
case FP_REGS:
/* MFC1, etc. */
return 4;
case COP0_REGS:
case COP2_REGS:
case COP3_REGS:
/* This choice of value is historical. */
return 5;
default:
return 0;
}
}
/* Return the cost of moving a value from a GPR to a register of class TO.
Return 0 for classes that are unions of other classes handled by this
function. */
static int
mips_move_from_gpr_cost (reg_class_t to)
{
switch (to)
{
case M16_REGS:
case GENERAL_REGS:
/* A MIPS16 MOVE instruction, or a non-MIPS16 MOVE macro. */
return 2;
case ACC_REGS:
/* MTLO and MTHI. */
return 6;
case FP_REGS:
/* MTC1, etc. */
return 4;
case COP0_REGS:
case COP2_REGS:
case COP3_REGS:
/* This choice of value is historical. */
return 5;
default:
return 0;
}
}
/* Implement TARGET_REGISTER_MOVE_COST. Return 0 for classes that are the
maximum of the move costs for subclasses; regclass will work out
the maximum for us. */
static int
mips_register_move_cost (machine_mode mode,
reg_class_t from, reg_class_t to)
{
reg_class_t dregs;
int cost1, cost2;
from = mips_canonicalize_move_class (from);
to = mips_canonicalize_move_class (to);
/* Handle moves that can be done without using general-purpose registers. */
if (from == FP_REGS)
{
if (to == FP_REGS && mips_mode_ok_for_mov_fmt_p (mode))
/* MOV.FMT. */
return 4;
}
/* Handle cases in which only one class deviates from the ideal. */
dregs = TARGET_MIPS16 ? M16_REGS : GENERAL_REGS;
if (from == dregs)
return mips_move_from_gpr_cost (to);
if (to == dregs)
return mips_move_to_gpr_cost (from);
/* Handles cases that require a GPR temporary. */
cost1 = mips_move_to_gpr_cost (from);
if (cost1 != 0)
{
cost2 = mips_move_from_gpr_cost (to);
if (cost2 != 0)
return cost1 + cost2;
}
return 0;
}
/* Implement TARGET_REGISTER_PRIORITY. */
static int
mips_register_priority (int hard_regno)
{
/* Treat MIPS16 registers with higher priority than other regs. */
if (TARGET_MIPS16
&& TEST_HARD_REG_BIT (reg_class_contents[M16_REGS], hard_regno))
return 1;
return 0;
}
/* Implement TARGET_MEMORY_MOVE_COST. */
static int
mips_memory_move_cost (machine_mode mode, reg_class_t rclass, bool in)
{
return (mips_cost->memory_latency
+ memory_move_secondary_cost (mode, rclass, in));
}
/* Implement SECONDARY_MEMORY_NEEDED. */
bool
mips_secondary_memory_needed (enum reg_class class1, enum reg_class class2,
machine_mode mode)
{
/* Ignore spilled pseudos. */
if (lra_in_progress && (class1 == NO_REGS || class2 == NO_REGS))
return false;
if (((class1 == FP_REGS) != (class2 == FP_REGS))
&& ((TARGET_FLOATXX && !ISA_HAS_MXHC1)
|| TARGET_O32_FP64A_ABI)
&& GET_MODE_SIZE (mode) >= 8)
return true;
return false;
}
/* Return the register class required for a secondary register when
copying between one of the registers in RCLASS and value X, which
has mode MODE. X is the source of the move if IN_P, otherwise it
is the destination. Return NO_REGS if no secondary register is
needed. */
enum reg_class
mips_secondary_reload_class (enum reg_class rclass,
machine_mode mode, rtx x, bool)
{
int regno;
/* If X is a constant that cannot be loaded into $25, it must be loaded
into some other GPR. No other register class allows a direct move. */
if (mips_dangerous_for_la25_p (x))
return reg_class_subset_p (rclass, LEA_REGS) ? NO_REGS : LEA_REGS;
regno = true_regnum (x);
if (TARGET_MIPS16)
{
/* In MIPS16 mode, every move must involve a member of M16_REGS. */
if (!reg_class_subset_p (rclass, M16_REGS) && !M16_REG_P (regno))
return M16_REGS;
return NO_REGS;
}
/* Copying from accumulator registers to anywhere other than a general
register requires a temporary general register. */
if (reg_class_subset_p (rclass, ACC_REGS))
return GP_REG_P (regno) ? NO_REGS : GR_REGS;
if (ACC_REG_P (regno))
return reg_class_subset_p (rclass, GR_REGS) ? NO_REGS : GR_REGS;
if (reg_class_subset_p (rclass, FP_REGS))
{
if (regno < 0
|| (MEM_P (x)
&& (GET_MODE_SIZE (mode) == 4 || GET_MODE_SIZE (mode) == 8)))
/* In this case we can use lwc1, swc1, ldc1 or sdc1. We'll use
pairs of lwc1s and swc1s if ldc1 and sdc1 are not supported. */
return NO_REGS;
if (GP_REG_P (regno) || x == CONST0_RTX (mode))
/* In this case we can use mtc1, mfc1, dmtc1 or dmfc1. */
return NO_REGS;
if (CONSTANT_P (x) && !targetm.cannot_force_const_mem (mode, x))
/* We can force the constant to memory and use lwc1
and ldc1. As above, we will use pairs of lwc1s if
ldc1 is not supported. */
return NO_REGS;
if (FP_REG_P (regno) && mips_mode_ok_for_mov_fmt_p (mode))
/* In this case we can use mov.fmt. */
return NO_REGS;
/* Otherwise, we need to reload through an integer register. */
return GR_REGS;
}
if (FP_REG_P (regno))
return reg_class_subset_p (rclass, GR_REGS) ? NO_REGS : GR_REGS;
return NO_REGS;
}
/* Implement TARGET_MODE_REP_EXTENDED. */
static int
mips_mode_rep_extended (machine_mode mode, machine_mode mode_rep)
{
/* On 64-bit targets, SImode register values are sign-extended to DImode. */
if (TARGET_64BIT && mode == SImode && mode_rep == DImode)
return SIGN_EXTEND;
return UNKNOWN;
}
/* Implement TARGET_VALID_POINTER_MODE. */
static bool
mips_valid_pointer_mode (machine_mode mode)
{
return mode == SImode || (TARGET_64BIT && mode == DImode);
}
/* Implement TARGET_VECTOR_MODE_SUPPORTED_P. */
static bool
mips_vector_mode_supported_p (machine_mode mode)
{
switch (mode)
{
case V2SFmode:
return TARGET_PAIRED_SINGLE_FLOAT;
case V2HImode:
case V4QImode:
case V2HQmode:
case V2UHQmode:
case V2HAmode:
case V2UHAmode:
case V4QQmode:
case V4UQQmode:
return TARGET_DSP;
case V2SImode:
case V4HImode:
case V8QImode:
return TARGET_LOONGSON_VECTORS;
default:
return false;
}
}
/* Implement TARGET_SCALAR_MODE_SUPPORTED_P. */
static bool
mips_scalar_mode_supported_p (machine_mode mode)
{
if (ALL_FIXED_POINT_MODE_P (mode)
&& GET_MODE_PRECISION (mode) <= 2 * BITS_PER_WORD)
return true;
return default_scalar_mode_supported_p (mode);
}
/* Implement TARGET_VECTORIZE_PREFERRED_SIMD_MODE. */
static machine_mode
mips_preferred_simd_mode (machine_mode mode ATTRIBUTE_UNUSED)
{
if (TARGET_PAIRED_SINGLE_FLOAT
&& mode == SFmode)
return V2SFmode;
return word_mode;
}
/* Implement TARGET_INIT_LIBFUNCS. */
static void
mips_init_libfuncs (void)
{
if (TARGET_FIX_VR4120)
{
/* Register the special divsi3 and modsi3 functions needed to work
around VR4120 division errata. */
set_optab_libfunc (sdiv_optab, SImode, "__vr4120_divsi3");
set_optab_libfunc (smod_optab, SImode, "__vr4120_modsi3");
}
if (TARGET_MIPS16 && TARGET_HARD_FLOAT_ABI)
{
/* Register the MIPS16 -mhard-float stubs. */
set_optab_libfunc (add_optab, SFmode, "__mips16_addsf3");
set_optab_libfunc (sub_optab, SFmode, "__mips16_subsf3");
set_optab_libfunc (smul_optab, SFmode, "__mips16_mulsf3");
set_optab_libfunc (sdiv_optab, SFmode, "__mips16_divsf3");
set_optab_libfunc (eq_optab, SFmode, "__mips16_eqsf2");
set_optab_libfunc (ne_optab, SFmode, "__mips16_nesf2");
set_optab_libfunc (gt_optab, SFmode, "__mips16_gtsf2");
set_optab_libfunc (ge_optab, SFmode, "__mips16_gesf2");
set_optab_libfunc (lt_optab, SFmode, "__mips16_ltsf2");
set_optab_libfunc (le_optab, SFmode, "__mips16_lesf2");
set_optab_libfunc (unord_optab, SFmode, "__mips16_unordsf2");
set_conv_libfunc (sfix_optab, SImode, SFmode, "__mips16_fix_truncsfsi");
set_conv_libfunc (sfloat_optab, SFmode, SImode, "__mips16_floatsisf");
set_conv_libfunc (ufloat_optab, SFmode, SImode, "__mips16_floatunsisf");
if (TARGET_DOUBLE_FLOAT)
{
set_optab_libfunc (add_optab, DFmode, "__mips16_adddf3");
set_optab_libfunc (sub_optab, DFmode, "__mips16_subdf3");
set_optab_libfunc (smul_optab, DFmode, "__mips16_muldf3");
set_optab_libfunc (sdiv_optab, DFmode, "__mips16_divdf3");
set_optab_libfunc (eq_optab, DFmode, "__mips16_eqdf2");
set_optab_libfunc (ne_optab, DFmode, "__mips16_nedf2");
set_optab_libfunc (gt_optab, DFmode, "__mips16_gtdf2");
set_optab_libfunc (ge_optab, DFmode, "__mips16_gedf2");
set_optab_libfunc (lt_optab, DFmode, "__mips16_ltdf2");
set_optab_libfunc (le_optab, DFmode, "__mips16_ledf2");
set_optab_libfunc (unord_optab, DFmode, "__mips16_unorddf2");
set_conv_libfunc (sext_optab, DFmode, SFmode,
"__mips16_extendsfdf2");
set_conv_libfunc (trunc_optab, SFmode, DFmode,
"__mips16_truncdfsf2");
set_conv_libfunc (sfix_optab, SImode, DFmode,
"__mips16_fix_truncdfsi");
set_conv_libfunc (sfloat_optab, DFmode, SImode,
"__mips16_floatsidf");
set_conv_libfunc (ufloat_optab, DFmode, SImode,
"__mips16_floatunsidf");
}
}
/* The MIPS16 ISA does not have an encoding for "sync", so we rely
on an external non-MIPS16 routine to implement __sync_synchronize.
Similarly for the rest of the ll/sc libfuncs. */
if (TARGET_MIPS16)
{
synchronize_libfunc = init_one_libfunc ("__sync_synchronize");
init_sync_libfuncs (UNITS_PER_WORD);
}
}
/* Build up a multi-insn sequence that loads label TARGET into $AT. */
static void
mips_process_load_label (rtx target)
{
rtx base, gp, intop;
HOST_WIDE_INT offset;
mips_multi_start ();
switch (mips_abi)
{
case ABI_N32:
mips_multi_add_insn ("lw\t%@,%%got_page(%0)(%+)", target, 0);
mips_multi_add_insn ("addiu\t%@,%@,%%got_ofst(%0)", target, 0);
break;
case ABI_64:
mips_multi_add_insn ("ld\t%@,%%got_page(%0)(%+)", target, 0);
mips_multi_add_insn ("daddiu\t%@,%@,%%got_ofst(%0)", target, 0);
break;
default:
gp = pic_offset_table_rtx;
if (mips_cfun_has_cprestore_slot_p ())
{
gp = gen_rtx_REG (Pmode, AT_REGNUM);
mips_get_cprestore_base_and_offset (&base, &offset, true);
if (!SMALL_OPERAND (offset))
{
intop = GEN_INT (CONST_HIGH_PART (offset));
mips_multi_add_insn ("lui\t%0,%1", gp, intop, 0);
mips_multi_add_insn ("addu\t%0,%0,%1", gp, base, 0);
base = gp;
offset = CONST_LOW_PART (offset);
}
intop = GEN_INT (offset);
if (ISA_HAS_LOAD_DELAY)
mips_multi_add_insn ("lw\t%0,%1(%2)%#", gp, intop, base, 0);
else
mips_multi_add_insn ("lw\t%0,%1(%2)", gp, intop, base, 0);
}
if (ISA_HAS_LOAD_DELAY)
mips_multi_add_insn ("lw\t%@,%%got(%0)(%1)%#", target, gp, 0);
else
mips_multi_add_insn ("lw\t%@,%%got(%0)(%1)", target, gp, 0);
mips_multi_add_insn ("addiu\t%@,%@,%%lo(%0)", target, 0);
break;
}
}
/* Return the number of instructions needed to load a label into $AT. */
static unsigned int
mips_load_label_num_insns (void)
{
if (cfun->machine->load_label_num_insns == 0)
{
mips_process_load_label (pc_rtx);
cfun->machine->load_label_num_insns = mips_multi_num_insns;
}
return cfun->machine->load_label_num_insns;
}
/* Emit an asm sequence to start a noat block and load the address
of a label into $1. */
void
mips_output_load_label (rtx target)
{
mips_push_asm_switch (&mips_noat);
if (TARGET_EXPLICIT_RELOCS)
{
mips_process_load_label (target);
mips_multi_write ();
}
else
{
if (Pmode == DImode)
output_asm_insn ("dla\t%@,%0", &target);
else
output_asm_insn ("la\t%@,%0", &target);
}
}
/* Return the length of INSN. LENGTH is the initial length computed by
attributes in the machine-description file. */
int
mips_adjust_insn_length (rtx_insn *insn, int length)
{
/* mips.md uses MAX_PIC_BRANCH_LENGTH as a placeholder for the length
of a PIC long-branch sequence. Substitute the correct value. */
if (length == MAX_PIC_BRANCH_LENGTH
&& JUMP_P (insn)
&& INSN_CODE (insn) >= 0
&& get_attr_type (insn) == TYPE_BRANCH)
{
/* Add the branch-over instruction and its delay slot, if this
is a conditional branch. */
length = simplejump_p (insn) ? 0 : 8;
/* Add the size of a load into $AT. */
length += BASE_INSN_LENGTH * mips_load_label_num_insns ();
/* Add the length of an indirect jump, ignoring the delay slot. */
length += TARGET_COMPRESSION ? 2 : 4;
}
/* A unconditional jump has an unfilled delay slot if it is not part
of a sequence. A conditional jump normally has a delay slot, but
does not on MIPS16. */
if (CALL_P (insn) || (TARGET_MIPS16 ? simplejump_p (insn) : JUMP_P (insn)))
length += TARGET_MIPS16 ? 2 : 4;
/* See how many nops might be needed to avoid hardware hazards. */
if (!cfun->machine->ignore_hazard_length_p
&& INSN_P (insn)
&& INSN_CODE (insn) >= 0)
switch (get_attr_hazard (insn))
{
case HAZARD_NONE:
break;
case HAZARD_DELAY:
case HAZARD_FORBIDDEN_SLOT:
length += NOP_INSN_LENGTH;
break;
case HAZARD_HILO:
length += NOP_INSN_LENGTH * 2;
break;
}
return length;
}
/* Return the asm template for a call. OPERANDS are the operands, TARGET_OPNO
is the operand number of the target. SIZE_OPNO is the operand number of
the argument size operand that can optionally hold the call attributes. If
SIZE_OPNO is not -1 and the call is indirect, use the function symbol from
the call attributes to attach a R_MIPS_JALR relocation to the call. LINK_P
indicates whether the jump is a call and needs to set the link register.
When generating GOT code without explicit relocation operators, all calls
should use assembly macros. Otherwise, all indirect calls should use "jr"
or "jalr"; we will arrange to restore $gp afterwards if necessary. Finally,
we can only generate direct calls for -mabicalls by temporarily switching
to non-PIC mode.
For microMIPS jal(r), we try to generate jal(r)s when a 16-bit
instruction is in the delay slot of jal(r).
Where compact branches are available, we try to use them if the delay slot
has a NOP (or equivalently delay slots were not enabled for the instruction
anyway). */
const char *
mips_output_jump (rtx *operands, int target_opno, int size_opno, bool link_p)
{
static char buffer[300];
char *s = buffer;
bool reg_p = REG_P (operands[target_opno]);
const char *and_link = link_p ? "al" : "";
const char *reg = reg_p ? "r" : "";
const char *compact = "";
const char *nop = "%/";
const char *short_delay = link_p ? "%!" : "";
const char *insn_name = TARGET_CB_NEVER || reg_p ? "j" : "b";
/* Compact branches can only be described when the ISA has support for them
as both the compact formatter '%:' and the delay slot NOP formatter '%/'
work as a mutually exclusive pair. I.e. a NOP is never required if a
compact form is available. */
if (!final_sequence
&& (TARGET_CB_MAYBE
|| (ISA_HAS_JRC && !link_p && reg_p)))
{
compact = "c";
nop = "";
}
if (TARGET_USE_GOT && !TARGET_EXPLICIT_RELOCS)
sprintf (s, "%%*%s%s\t%%%d%%/", insn_name, and_link, target_opno);
else
{
if (!reg_p && TARGET_ABICALLS_PIC2)
s += sprintf (s, ".option\tpic0\n\t");
if (reg_p && mips_get_pic_call_symbol (operands, size_opno))
{
s += sprintf (s, "%%*.reloc\t1f,R_MIPS_JALR,%%%d\n1:\t", size_opno);
/* Not sure why this shouldn't permit a short delay but it did not
allow it before so we still don't allow it. */
short_delay = "";
}
else
s += sprintf (s, "%%*");
s += sprintf (s, "%s%s%s%s%s\t%%%d%s", insn_name, and_link, reg, compact, short_delay,
target_opno, nop);
if (!reg_p && TARGET_ABICALLS_PIC2)
s += sprintf (s, "\n\t.option\tpic2");
}
return buffer;
}
/* Return the assembly code for INSN, which has the operands given by
OPERANDS, and which branches to OPERANDS[0] if some condition is true.
BRANCH_IF_TRUE is the asm template that should be used if OPERANDS[0]
is in range of a direct branch. BRANCH_IF_FALSE is an inverted
version of BRANCH_IF_TRUE. */
const char *
mips_output_conditional_branch (rtx_insn *insn, rtx *operands,
const char *branch_if_true,
const char *branch_if_false)
{
unsigned int length;
rtx taken;
gcc_assert (LABEL_P (operands[0]));
length = get_attr_length (insn);
if (length <= 8)
{
/* Just a simple conditional branch. */
mips_branch_likely = (final_sequence && INSN_ANNULLED_BRANCH_P (insn));
return branch_if_true;
}
/* Generate a reversed branch around a direct jump. This fallback does
not use branch-likely instructions. */
mips_branch_likely = false;
rtx_code_label *not_taken = gen_label_rtx ();
taken = operands[0];
/* Generate the reversed branch to NOT_TAKEN. */
operands[0] = not_taken;
output_asm_insn (branch_if_false, operands);
/* If INSN has a delay slot, we must provide delay slots for both the
branch to NOT_TAKEN and the conditional jump. We must also ensure
that INSN's delay slot is executed in the appropriate cases. */
if (final_sequence)
{
/* This first delay slot will always be executed, so use INSN's
delay slot if is not annulled. */
if (!INSN_ANNULLED_BRANCH_P (insn))
{
final_scan_insn (final_sequence->insn (1),
asm_out_file, optimize, 1, NULL);
final_sequence->insn (1)->set_deleted ();
}
else
output_asm_insn ("nop", 0);
fprintf (asm_out_file, "\n");
}
/* Output the unconditional branch to TAKEN. */
if (TARGET_ABSOLUTE_JUMPS && TARGET_CB_MAYBE)
{
/* Add a hazard nop. */
if (!final_sequence)
{
output_asm_insn ("nop\t\t# hazard nop", 0);
fprintf (asm_out_file, "\n");
}
output_asm_insn (MIPS_ABSOLUTE_JUMP ("bc\t%0"), &taken);
}
else if (TARGET_ABSOLUTE_JUMPS)
output_asm_insn (MIPS_ABSOLUTE_JUMP ("j\t%0%/"), &taken);
else
{
mips_output_load_label (taken);
if (TARGET_CB_MAYBE)
output_asm_insn ("jrc\t%@%]", 0);
else
output_asm_insn ("jr\t%@%]%/", 0);
}
/* Now deal with its delay slot; see above. */
if (final_sequence)
{
/* This delay slot will only be executed if the branch is taken.
Use INSN's delay slot if is annulled. */
if (INSN_ANNULLED_BRANCH_P (insn))
{
final_scan_insn (final_sequence->insn (1),
asm_out_file, optimize, 1, NULL);
final_sequence->insn (1)->set_deleted ();
}
else if (TARGET_CB_NEVER)
output_asm_insn ("nop", 0);
fprintf (asm_out_file, "\n");
}
/* Output NOT_TAKEN. */
targetm.asm_out.internal_label (asm_out_file, "L",
CODE_LABEL_NUMBER (not_taken));
return "";
}
/* Return the assembly code for INSN, which branches to OPERANDS[0]
if some equality condition is true. The condition is given by
OPERANDS[1] if !INVERTED_P, otherwise it is the inverse of
OPERANDS[1]. OPERANDS[2] is the comparison's first operand;
OPERANDS[3] is the second operand and may be zero or a register. */
const char *
mips_output_equal_conditional_branch (rtx_insn* insn, rtx *operands,
bool inverted_p)
{
const char *branch[2];
/* For a simple BNEZ or BEQZ microMIPSr3 branch. */
if (TARGET_MICROMIPS
&& mips_isa_rev <= 5
&& operands[3] == const0_rtx
&& get_attr_length (insn) <= 8)
{
if (mips_cb == MIPS_CB_OPTIMAL)
{
branch[!inverted_p] = "%*b%C1z%:\t%2,%0";
branch[inverted_p] = "%*b%N1z%:\t%2,%0";
}
else
{
branch[!inverted_p] = "%*b%C1z\t%2,%0%/";
branch[inverted_p] = "%*b%N1z\t%2,%0%/";
}
}
else if (TARGET_CB_MAYBE)
{
if (operands[3] == const0_rtx)
{
branch[!inverted_p] = MIPS_BRANCH_C ("b%C1z", "%2,%0");
branch[inverted_p] = MIPS_BRANCH_C ("b%N1z", "%2,%0");
}
else if (REGNO (operands[2]) != REGNO (operands[3]))
{
branch[!inverted_p] = MIPS_BRANCH_C ("b%C1", "%2,%3,%0");
branch[inverted_p] = MIPS_BRANCH_C ("b%N1", "%2,%3,%0");
}
else
{
/* This case is degenerate. It should not happen, but does. */
if (GET_CODE (operands[1]) == NE)
inverted_p = !inverted_p;
branch[!inverted_p] = MIPS_BRANCH_C ("b", "%0");
branch[inverted_p] = "%*\t\t# branch never";
}
}
else
{
branch[!inverted_p] = MIPS_BRANCH ("b%C1", "%2,%z3,%0");
branch[inverted_p] = MIPS_BRANCH ("b%N1", "%2,%z3,%0");
}
return mips_output_conditional_branch (insn, operands, branch[1], branch[0]);
}
/* Return the assembly code for INSN, which branches to OPERANDS[0]
if some ordering condition is true. The condition is given by
OPERANDS[1] if !INVERTED_P, otherwise it is the inverse of
OPERANDS[1]. OPERANDS[2] is the comparison's first operand;
OPERANDS[3] is the second operand and may be zero or a register. */
const char *
mips_output_order_conditional_branch (rtx_insn *insn, rtx *operands,
bool inverted_p)
{
const char *branch[2];
/* Make BRANCH[1] branch to OPERANDS[0] when the condition is true.
Make BRANCH[0] branch on the inverse condition. */
if (operands[3] != const0_rtx)
{
/* Handle degenerate cases that should not, but do, occur. */
if (REGNO (operands[2]) == REGNO (operands[3]))
{
switch (GET_CODE (operands[1]))
{
case LT:
case LTU:
inverted_p = !inverted_p;
/* Fall through. */
case GE:
case GEU:
branch[!inverted_p] = MIPS_BRANCH_C ("b", "%0");
branch[inverted_p] = "%*\t\t# branch never";
break;
default:
gcc_unreachable ();
}
}
else
{
branch[!inverted_p] = MIPS_BRANCH_C ("b%C1", "%2,%3,%0");
branch[inverted_p] = MIPS_BRANCH_C ("b%N1", "%2,%3,%0");
}
}
else
{
switch (GET_CODE (operands[1]))
{
/* These cases are equivalent to comparisons against zero. */
case LEU:
inverted_p = !inverted_p;
/* Fall through. */
case GTU:
if (TARGET_CB_MAYBE)
{
branch[!inverted_p] = MIPS_BRANCH_C ("bnez", "%2,%0");
branch[inverted_p] = MIPS_BRANCH_C ("beqz", "%2,%0");
}
else
{
branch[!inverted_p] = MIPS_BRANCH ("bne", "%2,%.,%0");
branch[inverted_p] = MIPS_BRANCH ("beq", "%2,%.,%0");
}
break;
/* These cases are always true or always false. */
case LTU:
inverted_p = !inverted_p;
/* Fall through. */
case GEU:
if (TARGET_CB_MAYBE)
{
branch[!inverted_p] = MIPS_BRANCH_C ("b", "%0");
branch[inverted_p] = "%*\t\t# branch never";
}
else
{
branch[!inverted_p] = MIPS_BRANCH ("beq", "%.,%.,%0");
branch[inverted_p] = MIPS_BRANCH ("bne", "%.,%.,%0");
}
break;
default:
if (TARGET_CB_MAYBE)
{
branch[!inverted_p] = MIPS_BRANCH_C ("b%C1z", "%2,%0");
branch[inverted_p] = MIPS_BRANCH_C ("b%N1z", "%2,%0");
}
else
{
branch[!inverted_p] = MIPS_BRANCH ("b%C1z", "%2,%0");
branch[inverted_p] = MIPS_BRANCH ("b%N1z", "%2,%0");
}
break;
}
}
return mips_output_conditional_branch (insn, operands, branch[1], branch[0]);
}
/* Start a block of code that needs access to the LL, SC and SYNC
instructions. */
static void
mips_start_ll_sc_sync_block (void)
{
if (!ISA_HAS_LL_SC)
{
output_asm_insn (".set\tpush", 0);
if (TARGET_64BIT)
output_asm_insn (".set\tmips3", 0);
else
output_asm_insn (".set\tmips2", 0);
}
}
/* End a block started by mips_start_ll_sc_sync_block. */
static void
mips_end_ll_sc_sync_block (void)
{
if (!ISA_HAS_LL_SC)
output_asm_insn (".set\tpop", 0);
}
/* Output and/or return the asm template for a sync instruction. */
const char *
mips_output_sync (void)
{
mips_start_ll_sc_sync_block ();
output_asm_insn ("sync", 0);
mips_end_ll_sc_sync_block ();
return "";
}
/* Return the asm template associated with sync_insn1 value TYPE.
IS_64BIT_P is true if we want a 64-bit rather than 32-bit operation. */
static const char *
mips_sync_insn1_template (enum attr_sync_insn1 type, bool is_64bit_p)
{
switch (type)
{
case SYNC_INSN1_MOVE:
return "move\t%0,%z2";
case SYNC_INSN1_LI:
return "li\t%0,%2";
case SYNC_INSN1_ADDU:
return is_64bit_p ? "daddu\t%0,%1,%z2" : "addu\t%0,%1,%z2";
case SYNC_INSN1_ADDIU:
return is_64bit_p ? "daddiu\t%0,%1,%2" : "addiu\t%0,%1,%2";
case SYNC_INSN1_SUBU:
return is_64bit_p ? "dsubu\t%0,%1,%z2" : "subu\t%0,%1,%z2";
case SYNC_INSN1_AND:
return "and\t%0,%1,%z2";
case SYNC_INSN1_ANDI:
return "andi\t%0,%1,%2";
case SYNC_INSN1_OR:
return "or\t%0,%1,%z2";
case SYNC_INSN1_ORI:
return "ori\t%0,%1,%2";
case SYNC_INSN1_XOR:
return "xor\t%0,%1,%z2";
case SYNC_INSN1_XORI:
return "xori\t%0,%1,%2";
}
gcc_unreachable ();
}
/* Return the asm template associated with sync_insn2 value TYPE. */
static const char *
mips_sync_insn2_template (enum attr_sync_insn2 type)
{
switch (type)
{
case SYNC_INSN2_NOP:
gcc_unreachable ();
case SYNC_INSN2_AND:
return "and\t%0,%1,%z2";
case SYNC_INSN2_XOR:
return "xor\t%0,%1,%z2";
case SYNC_INSN2_NOT:
return "nor\t%0,%1,%.";
}
gcc_unreachable ();
}
/* OPERANDS are the operands to a sync loop instruction and INDEX is
the value of the one of the sync_* attributes. Return the operand
referred to by the attribute, or DEFAULT_VALUE if the insn doesn't
have the associated attribute. */
static rtx
mips_get_sync_operand (rtx *operands, int index, rtx default_value)
{
if (index > 0)
default_value = operands[index - 1];
return default_value;
}
/* INSN is a sync loop with operands OPERANDS. Build up a multi-insn
sequence for it. */
static void
mips_process_sync_loop (rtx_insn *insn, rtx *operands)
{
rtx at, mem, oldval, newval, inclusive_mask, exclusive_mask;
rtx required_oldval, insn1_op2, tmp1, tmp2, tmp3, cmp;
unsigned int tmp3_insn;
enum attr_sync_insn1 insn1;
enum attr_sync_insn2 insn2;
bool is_64bit_p;
int memmodel_attr;
enum memmodel model;
/* Read an operand from the sync_WHAT attribute and store it in
variable WHAT. DEFAULT is the default value if no attribute
is specified. */
#define READ_OPERAND(WHAT, DEFAULT) \
WHAT = mips_get_sync_operand (operands, (int) get_attr_sync_##WHAT (insn), \
DEFAULT)
/* Read the memory. */
READ_OPERAND (mem, 0);
gcc_assert (mem);
is_64bit_p = (GET_MODE_BITSIZE (GET_MODE (mem)) == 64);
/* Read the other attributes. */
at = gen_rtx_REG (GET_MODE (mem), AT_REGNUM);
READ_OPERAND (oldval, at);
READ_OPERAND (cmp, 0);
READ_OPERAND (newval, at);
READ_OPERAND (inclusive_mask, 0);
READ_OPERAND (exclusive_mask, 0);
READ_OPERAND (required_oldval, 0);
READ_OPERAND (insn1_op2, 0);
insn1 = get_attr_sync_insn1 (insn);
insn2 = get_attr_sync_insn2 (insn);
/* Don't bother setting CMP result that is never used. */
if (cmp && find_reg_note (insn, REG_UNUSED, cmp))
cmp = 0;
memmodel_attr = get_attr_sync_memmodel (insn);
switch (memmodel_attr)
{
case 10:
model = MEMMODEL_ACQ_REL;
break;
case 11:
model = MEMMODEL_ACQUIRE;
break;
default:
model = memmodel_from_int (INTVAL (operands[memmodel_attr]));
}
mips_multi_start ();
/* Output the release side of the memory barrier. */
if (need_atomic_barrier_p (model, true))
{
if (required_oldval == 0 && TARGET_OCTEON)
{
/* Octeon doesn't reorder reads, so a full barrier can be
created by using SYNCW to order writes combined with the
write from the following SC. When the SC successfully
completes, we know that all preceding writes are also
committed to the coherent memory system. It is possible
for a single SYNCW to fail, but a pair of them will never
fail, so we use two. */
mips_multi_add_insn ("syncw", NULL);
mips_multi_add_insn ("syncw", NULL);
}
else
mips_multi_add_insn ("sync", NULL);
}
/* Output the branch-back label. */
mips_multi_add_label ("1:");
/* OLDVAL = *MEM. */
mips_multi_add_insn (is_64bit_p ? "lld\t%0,%1" : "ll\t%0,%1",
oldval, mem, NULL);
/* if ((OLDVAL & INCLUSIVE_MASK) != REQUIRED_OLDVAL) goto 2. */
if (required_oldval)
{
if (inclusive_mask == 0)
tmp1 = oldval;
else
{
gcc_assert (oldval != at);
mips_multi_add_insn ("and\t%0,%1,%2",
at, oldval, inclusive_mask, NULL);
tmp1 = at;
}
if (TARGET_CB_NEVER)
mips_multi_add_insn ("bne\t%0,%z1,2f", tmp1, required_oldval, NULL);
/* CMP = 0 [delay slot]. */
if (cmp)
mips_multi_add_insn ("li\t%0,0", cmp, NULL);
if (TARGET_CB_MAYBE && required_oldval == const0_rtx)
mips_multi_add_insn ("bnezc\t%0,2f", tmp1, NULL);
else if (TARGET_CB_MAYBE)
mips_multi_add_insn ("bnec\t%0,%1,2f", tmp1, required_oldval, NULL);
}
/* $TMP1 = OLDVAL & EXCLUSIVE_MASK. */
if (exclusive_mask == 0)
tmp1 = const0_rtx;
else
{
gcc_assert (oldval != at);
mips_multi_add_insn ("and\t%0,%1,%z2",
at, oldval, exclusive_mask, NULL);
tmp1 = at;
}
/* $TMP2 = INSN1 (OLDVAL, INSN1_OP2).
We can ignore moves if $TMP4 != INSN1_OP2, since we'll still emit
at least one instruction in that case. */
if (insn1 == SYNC_INSN1_MOVE
&& (tmp1 != const0_rtx || insn2 != SYNC_INSN2_NOP))
tmp2 = insn1_op2;
else
{
mips_multi_add_insn (mips_sync_insn1_template (insn1, is_64bit_p),
newval, oldval, insn1_op2, NULL);
tmp2 = newval;
}
/* $TMP3 = INSN2 ($TMP2, INCLUSIVE_MASK). */
if (insn2 == SYNC_INSN2_NOP)
tmp3 = tmp2;
else
{
mips_multi_add_insn (mips_sync_insn2_template (insn2),
newval, tmp2, inclusive_mask, NULL);
tmp3 = newval;
}
tmp3_insn = mips_multi_last_index ();
/* $AT = $TMP1 | $TMP3. */
if (tmp1 == const0_rtx || tmp3 == const0_rtx)
{
mips_multi_set_operand (tmp3_insn, 0, at);
tmp3 = at;
}
else
{
gcc_assert (tmp1 != tmp3);
mips_multi_add_insn ("or\t%0,%1,%2", at, tmp1, tmp3, NULL);
}
/* if (!commit (*MEM = $AT)) goto 1.
This will sometimes be a delayed branch; see the write code below
for details. */
mips_multi_add_insn (is_64bit_p ? "scd\t%0,%1" : "sc\t%0,%1", at, mem, NULL);
/* When using branch likely (-mfix-r10000), the delay slot instruction
will be annulled on false. The normal delay slot instructions
calculate the overall result of the atomic operation and must not
be annulled. To ensure this behaviour unconditionally use a NOP
in the delay slot for the branch likely case. */
if (TARGET_CB_MAYBE)
mips_multi_add_insn ("beqzc\t%0,1b", at, NULL);
else
mips_multi_add_insn ("beq%?\t%0,%.,1b%~", at, NULL);
/* if (INSN1 != MOVE && INSN1 != LI) NEWVAL = $TMP3 [delay slot]. */
if (insn1 != SYNC_INSN1_MOVE && insn1 != SYNC_INSN1_LI && tmp3 != newval)
{
mips_multi_copy_insn (tmp3_insn);
mips_multi_set_operand (mips_multi_last_index (), 0, newval);
}
else if (!(required_oldval && cmp) && !mips_branch_likely)
mips_multi_add_insn ("nop", NULL);
/* CMP = 1 -- either standalone or in a delay slot. */
if (required_oldval && cmp)
mips_multi_add_insn ("li\t%0,1", cmp, NULL);
/* Output the acquire side of the memory barrier. */
if (TARGET_SYNC_AFTER_SC && need_atomic_barrier_p (model, false))
mips_multi_add_insn ("sync", NULL);
/* Output the exit label, if needed. */
if (required_oldval)
mips_multi_add_label ("2:");
#undef READ_OPERAND
}
/* Output and/or return the asm template for sync loop INSN, which has
the operands given by OPERANDS. */
const char *
mips_output_sync_loop (rtx_insn *insn, rtx *operands)
{
/* Use branch-likely instructions to work around the LL/SC R10000
errata. */
mips_branch_likely = TARGET_FIX_R10000;
mips_process_sync_loop (insn, operands);
mips_push_asm_switch (&mips_noreorder);
mips_push_asm_switch (&mips_nomacro);
mips_push_asm_switch (&mips_noat);
mips_start_ll_sc_sync_block ();
mips_multi_write ();
mips_end_ll_sc_sync_block ();
mips_pop_asm_switch (&mips_noat);
mips_pop_asm_switch (&mips_nomacro);
mips_pop_asm_switch (&mips_noreorder);
return "";
}
/* Return the number of individual instructions in sync loop INSN,
which has the operands given by OPERANDS. */
unsigned int
mips_sync_loop_insns (rtx_insn *insn, rtx *operands)
{
/* Use branch-likely instructions to work around the LL/SC R10000
errata. */
mips_branch_likely = TARGET_FIX_R10000;
mips_process_sync_loop (insn, operands);
return mips_multi_num_insns;
}
/* Return the assembly code for DIV or DDIV instruction DIVISION, which has
the operands given by OPERANDS. Add in a divide-by-zero check if needed.
When working around R4000 and R4400 errata, we need to make sure that
the division is not immediately followed by a shift[1][2]. We also
need to stop the division from being put into a branch delay slot[3].
The easiest way to avoid both problems is to add a nop after the
division. When a divide-by-zero check is needed, this nop can be
used to fill the branch delay slot.
[1] If a double-word or a variable shift executes immediately
after starting an integer division, the shift may give an
incorrect result. See quotations of errata #16 and #28 from
"MIPS R4000PC/SC Errata, Processor Revision 2.2 and 3.0"
in mips.md for details.
[2] A similar bug to [1] exists for all revisions of the
R4000 and the R4400 when run in an MC configuration.
From "MIPS R4000MC Errata, Processor Revision 2.2 and 3.0":
"19. In this following sequence:
ddiv (or ddivu or div or divu)
dsll32 (or dsrl32, dsra32)
if an MPT stall occurs, while the divide is slipping the cpu
pipeline, then the following double shift would end up with an
incorrect result.
Workaround: The compiler needs to avoid generating any
sequence with divide followed by extended double shift."
This erratum is also present in "MIPS R4400MC Errata, Processor
Revision 1.0" and "MIPS R4400MC Errata, Processor Revision 2.0
& 3.0" as errata #10 and #4, respectively.
[3] From "MIPS R4000PC/SC Errata, Processor Revision 2.2 and 3.0"
(also valid for MIPS R4000MC processors):
"52. R4000SC: This bug does not apply for the R4000PC.
There are two flavors of this bug:
1) If the instruction just after divide takes an RF exception
(tlb-refill, tlb-invalid) and gets an instruction cache
miss (both primary and secondary) and the line which is
currently in secondary cache at this index had the first
data word, where the bits 5..2 are set, then R4000 would
get a wrong result for the div.
##1
nop
div r8, r9
------------------- # end-of page. -tlb-refill
nop
##2
nop
div r8, r9
------------------- # end-of page. -tlb-invalid
nop
2) If the divide is in the taken branch delay slot, where the
target takes RF exception and gets an I-cache miss for the
exception vector or where I-cache miss occurs for the
target address, under the above mentioned scenarios, the
div would get wrong results.
##1
j r2 # to next page mapped or unmapped
div r8,r9 # this bug would be there as long
# as there is an ICache miss and
nop # the "data pattern" is present
##2
beq r0, r0, NextPage # to Next page
div r8,r9
nop
This bug is present for div, divu, ddiv, and ddivu
instructions.
Workaround: For item 1), OS could make sure that the next page
after the divide instruction is also mapped. For item 2), the
compiler could make sure that the divide instruction is not in
the branch delay slot."
These processors have PRId values of 0x00004220 and 0x00004300 for
the R4000 and 0x00004400, 0x00004500 and 0x00004600 for the R4400. */
const char *
mips_output_division (const char *division, rtx *operands)
{
const char *s;
s = division;
if (TARGET_FIX_R4000 || TARGET_FIX_R4400)
{
output_asm_insn (s, operands);
s = "nop";
}
if (TARGET_CHECK_ZERO_DIV)
{
if (TARGET_MIPS16)
{
output_asm_insn (s, operands);
s = "bnez\t%2,1f\n\tbreak\t7\n1:";
}
else if (GENERATE_DIVIDE_TRAPS)
{
/* Avoid long replay penalty on load miss by putting the trap before
the divide. */
if (TUNE_74K)
output_asm_insn ("teq\t%2,%.,7", operands);
else
{
output_asm_insn (s, operands);
s = "teq\t%2,%.,7";
}
}
else
{
output_asm_insn ("%(bne\t%2,%.,1f", operands);
output_asm_insn (s, operands);
s = "break\t7%)\n1:";
}
}
return s;
}
/* Return true if destination of IN_INSN is used as add source in
OUT_INSN. Both IN_INSN and OUT_INSN are of type fmadd. Example:
madd.s dst, x, y, z
madd.s a, dst, b, c */
bool
mips_fmadd_bypass (rtx_insn *out_insn, rtx_insn *in_insn)
{
int dst_reg, src_reg;
gcc_assert (get_attr_type (in_insn) == TYPE_FMADD);
gcc_assert (get_attr_type (out_insn) == TYPE_FMADD);
extract_insn (in_insn);
dst_reg = REG_P (recog_data.operand[0]);
extract_insn (out_insn);
src_reg = REG_P (recog_data.operand[1]);
if (dst_reg == src_reg)
return true;
return false;
}
/* Return true if IN_INSN is a multiply-add or multiply-subtract
instruction and if OUT_INSN assigns to the accumulator operand. */
bool
mips_linked_madd_p (rtx_insn *out_insn, rtx_insn *in_insn)
{
enum attr_accum_in accum_in;
int accum_in_opnum;
rtx accum_in_op;
if (recog_memoized (in_insn) < 0)
return false;
accum_in = get_attr_accum_in (in_insn);
if (accum_in == ACCUM_IN_NONE)
return false;
accum_in_opnum = accum_in - ACCUM_IN_0;
extract_insn (in_insn);
gcc_assert (accum_in_opnum < recog_data.n_operands);
accum_in_op = recog_data.operand[accum_in_opnum];
return reg_set_p (accum_in_op, out_insn);
}
/* True if the dependency between OUT_INSN and IN_INSN is on the store
data rather than the address. We need this because the cprestore
pattern is type "store", but is defined using an UNSPEC_VOLATILE,
which causes the default routine to abort. We just return false
for that case. */
bool
mips_store_data_bypass_p (rtx_insn *out_insn, rtx_insn *in_insn)
{
if (GET_CODE (PATTERN (in_insn)) == UNSPEC_VOLATILE)
return false;
return store_data_bypass_p (out_insn, in_insn);
}
/* Variables and flags used in scheduler hooks when tuning for
Loongson 2E/2F. */
static struct
{
/* Variables to support Loongson 2E/2F round-robin [F]ALU1/2 dispatch
strategy. */
/* If true, then next ALU1/2 instruction will go to ALU1. */
bool alu1_turn_p;
/* If true, then next FALU1/2 unstruction will go to FALU1. */
bool falu1_turn_p;
/* Codes to query if [f]alu{1,2}_core units are subscribed or not. */
int alu1_core_unit_code;
int alu2_core_unit_code;
int falu1_core_unit_code;
int falu2_core_unit_code;
/* True if current cycle has a multi instruction.
This flag is used in mips_ls2_dfa_post_advance_cycle. */
bool cycle_has_multi_p;
/* Instructions to subscribe ls2_[f]alu{1,2}_turn_enabled units.
These are used in mips_ls2_dfa_post_advance_cycle to initialize
DFA state.
E.g., when alu1_turn_enabled_insn is issued it makes next ALU1/2
instruction to go ALU1. */
rtx_insn *alu1_turn_enabled_insn;
rtx_insn *alu2_turn_enabled_insn;
rtx_insn *falu1_turn_enabled_insn;
rtx_insn *falu2_turn_enabled_insn;
} mips_ls2;
/* Implement TARGET_SCHED_ADJUST_COST. We assume that anti and output
dependencies have no cost, except on the 20Kc where output-dependence
is treated like input-dependence. */
static int
mips_adjust_cost (rtx_insn *insn ATTRIBUTE_UNUSED, rtx link,
rtx_insn *dep ATTRIBUTE_UNUSED, int cost)
{
if (REG_NOTE_KIND (link) == REG_DEP_OUTPUT
&& TUNE_20KC)
return cost;
if (REG_NOTE_KIND (link) != 0)
return 0;
return cost;
}
/* Return the number of instructions that can be issued per cycle. */
static int
mips_issue_rate (void)
{
switch (mips_tune)
{
case PROCESSOR_74KC:
case PROCESSOR_74KF2_1:
case PROCESSOR_74KF1_1:
case PROCESSOR_74KF3_2:
/* The 74k is not strictly quad-issue cpu, but can be seen as one
by the scheduler. It can issue 1 ALU, 1 AGEN and 2 FPU insns,
but in reality only a maximum of 3 insns can be issued as
floating-point loads and stores also require a slot in the
AGEN pipe. */
case PROCESSOR_R10000:
/* All R10K Processors are quad-issue (being the first MIPS
processors to support this feature). */
return 4;
case PROCESSOR_20KC:
case PROCESSOR_R4130:
case PROCESSOR_R5400:
case PROCESSOR_R5500:
case PROCESSOR_R5900:
case PROCESSOR_R7000:
case PROCESSOR_R9000:
case PROCESSOR_OCTEON:
case PROCESSOR_OCTEON2:
case PROCESSOR_OCTEON3:
case PROCESSOR_I6400:
return 2;
case PROCESSOR_SB1:
case PROCESSOR_SB1A:
/* This is actually 4, but we get better performance if we claim 3.
This is partly because of unwanted speculative code motion with the
larger number, and partly because in most common cases we can't
reach the theoretical max of 4. */
return 3;
case PROCESSOR_LOONGSON_2E:
case PROCESSOR_LOONGSON_2F:
case PROCESSOR_LOONGSON_3A:
case PROCESSOR_P5600:
return 4;
case PROCESSOR_XLP:
return (reload_completed ? 4 : 3);
default:
return 1;
}
}
/* Implement TARGET_SCHED_INIT_DFA_POST_CYCLE_INSN hook for Loongson2. */
static void
mips_ls2_init_dfa_post_cycle_insn (void)
{
start_sequence ();
emit_insn (gen_ls2_alu1_turn_enabled_insn ());
mips_ls2.alu1_turn_enabled_insn = get_insns ();
end_sequence ();
start_sequence ();
emit_insn (gen_ls2_alu2_turn_enabled_insn ());
mips_ls2.alu2_turn_enabled_insn = get_insns ();
end_sequence ();
start_sequence ();
emit_insn (gen_ls2_falu1_turn_enabled_insn ());
mips_ls2.falu1_turn_enabled_insn = get_insns ();
end_sequence ();
start_sequence ();
emit_insn (gen_ls2_falu2_turn_enabled_insn ());
mips_ls2.falu2_turn_enabled_insn = get_insns ();
end_sequence ();
mips_ls2.alu1_core_unit_code = get_cpu_unit_code ("ls2_alu1_core");
mips_ls2.alu2_core_unit_code = get_cpu_unit_code ("ls2_alu2_core");
mips_ls2.falu1_core_unit_code = get_cpu_unit_code ("ls2_falu1_core");
mips_ls2.falu2_core_unit_code = get_cpu_unit_code ("ls2_falu2_core");
}
/* Implement TARGET_SCHED_INIT_DFA_POST_CYCLE_INSN hook.
Init data used in mips_dfa_post_advance_cycle. */
static void
mips_init_dfa_post_cycle_insn (void)
{
if (TUNE_LOONGSON_2EF)
mips_ls2_init_dfa_post_cycle_insn ();
}
/* Initialize STATE when scheduling for Loongson 2E/2F.
Support round-robin dispatch scheme by enabling only one of
ALU1/ALU2 and one of FALU1/FALU2 units for ALU1/2 and FALU1/2 instructions
respectively. */
static void
mips_ls2_dfa_post_advance_cycle (state_t state)
{
if (cpu_unit_reservation_p (state, mips_ls2.alu1_core_unit_code))
{
/* Though there are no non-pipelined ALU1 insns,
we can get an instruction of type 'multi' before reload. */
gcc_assert (mips_ls2.cycle_has_multi_p);
mips_ls2.alu1_turn_p = false;
}
mips_ls2.cycle_has_multi_p = false;
if (cpu_unit_reservation_p (state, mips_ls2.alu2_core_unit_code))
/* We have a non-pipelined alu instruction in the core,
adjust round-robin counter. */
mips_ls2.alu1_turn_p = true;
if (mips_ls2.alu1_turn_p)
{
if (state_transition (state, mips_ls2.alu1_turn_enabled_insn) >= 0)
gcc_unreachable ();
}
else
{
if (state_transition (state, mips_ls2.alu2_turn_enabled_insn) >= 0)
gcc_unreachable ();
}
if (cpu_unit_reservation_p (state, mips_ls2.falu1_core_unit_code))
{
/* There are no non-pipelined FALU1 insns. */
gcc_unreachable ();
mips_ls2.falu1_turn_p = false;
}
if (cpu_unit_reservation_p (state, mips_ls2.falu2_core_unit_code))
/* We have a non-pipelined falu instruction in the core,
adjust round-robin counter. */
mips_ls2.falu1_turn_p = true;
if (mips_ls2.falu1_turn_p)
{
if (state_transition (state, mips_ls2.falu1_turn_enabled_insn) >= 0)
gcc_unreachable ();
}
else
{
if (state_transition (state, mips_ls2.falu2_turn_enabled_insn) >= 0)
gcc_unreachable ();
}
}
/* Implement TARGET_SCHED_DFA_POST_ADVANCE_CYCLE.
This hook is being called at the start of each cycle. */
static void
mips_dfa_post_advance_cycle (void)
{
if (TUNE_LOONGSON_2EF)
mips_ls2_dfa_post_advance_cycle (curr_state);
}
/* Implement TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD. This should
be as wide as the scheduling freedom in the DFA. */
static int
mips_multipass_dfa_lookahead (void)
{
/* Can schedule up to 4 of the 6 function units in any one cycle. */
if (TUNE_SB1)
return 4;
if (TUNE_LOONGSON_2EF || TUNE_LOONGSON_3A)
return 4;
if (TUNE_OCTEON)
return 2;
if (TUNE_P5600 || TUNE_I6400)
return 4;
return 0;
}
/* Remove the instruction at index LOWER from ready queue READY and
reinsert it in front of the instruction at index HIGHER. LOWER must
be <= HIGHER. */
static void
mips_promote_ready (rtx_insn **ready, int lower, int higher)
{
rtx_insn *new_head;
int i;
new_head = ready[lower];
for (i = lower; i < higher; i++)
ready[i] = ready[i + 1];
ready[i] = new_head;
}
/* If the priority of the instruction at POS2 in the ready queue READY
is within LIMIT units of that of the instruction at POS1, swap the
instructions if POS2 is not already less than POS1. */
static void
mips_maybe_swap_ready (rtx_insn **ready, int pos1, int pos2, int limit)
{
if (pos1 < pos2
&& INSN_PRIORITY (ready[pos1]) + limit >= INSN_PRIORITY (ready[pos2]))
{
rtx_insn *temp;
temp = ready[pos1];
ready[pos1] = ready[pos2];
ready[pos2] = temp;
}
}
/* Used by TUNE_MACC_CHAINS to record the last scheduled instruction
that may clobber hi or lo. */
static rtx_insn *mips_macc_chains_last_hilo;
/* A TUNE_MACC_CHAINS helper function. Record that instruction INSN has
been scheduled, updating mips_macc_chains_last_hilo appropriately. */
static void
mips_macc_chains_record (rtx_insn *insn)
{
if (get_attr_may_clobber_hilo (insn))
mips_macc_chains_last_hilo = insn;
}
/* A TUNE_MACC_CHAINS helper function. Search ready queue READY, which
has NREADY elements, looking for a multiply-add or multiply-subtract
instruction that is cumulative with mips_macc_chains_last_hilo.
If there is one, promote it ahead of anything else that might
clobber hi or lo. */
static void
mips_macc_chains_reorder (rtx_insn **ready, int nready)
{
int i, j;
if (mips_macc_chains_last_hilo != 0)
for (i = nready - 1; i >= 0; i--)
if (mips_linked_madd_p (mips_macc_chains_last_hilo, ready[i]))
{
for (j = nready - 1; j > i; j--)
if (recog_memoized (ready[j]) >= 0
&& get_attr_may_clobber_hilo (ready[j]))
{
mips_promote_ready (ready, i, j);
break;
}
break;
}
}
/* The last instruction to be scheduled. */
static rtx_insn *vr4130_last_insn;
/* A note_stores callback used by vr4130_true_reg_dependence_p. DATA
points to an rtx that is initially an instruction. Nullify the rtx
if the instruction uses the value of register X. */
static void
vr4130_true_reg_dependence_p_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED,
void *data)
{
rtx *insn_ptr;
insn_ptr = (rtx *) data;
if (REG_P (x)
&& *insn_ptr != 0
&& reg_referenced_p (x, PATTERN (*insn_ptr)))
*insn_ptr = 0;
}
/* Return true if there is true register dependence between vr4130_last_insn
and INSN. */
static bool
vr4130_true_reg_dependence_p (rtx insn)
{
note_stores (PATTERN (vr4130_last_insn),
vr4130_true_reg_dependence_p_1, &insn);
return insn == 0;
}
/* A TUNE_MIPS4130 helper function. Given that INSN1 is at the head of
the ready queue and that INSN2 is the instruction after it, return
true if it is worth promoting INSN2 ahead of INSN1. Look for cases
in which INSN1 and INSN2 can probably issue in parallel, but for
which (INSN2, INSN1) should be less sensitive to instruction
alignment than (INSN1, INSN2). See 4130.md for more details. */
static bool
vr4130_swap_insns_p (rtx_insn *insn1, rtx_insn *insn2)
{
sd_iterator_def sd_it;
dep_t dep;
/* Check for the following case:
1) there is some other instruction X with an anti dependence on INSN1;
2) X has a higher priority than INSN2; and
3) X is an arithmetic instruction (and thus has no unit restrictions).
If INSN1 is the last instruction blocking X, it would better to
choose (INSN1, X) over (INSN2, INSN1). */
FOR_EACH_DEP (insn1, SD_LIST_FORW, sd_it, dep)
if (DEP_TYPE (dep) == REG_DEP_ANTI
&& INSN_PRIORITY (DEP_CON (dep)) > INSN_PRIORITY (insn2)
&& recog_memoized (DEP_CON (dep)) >= 0
&& get_attr_vr4130_class (DEP_CON (dep)) == VR4130_CLASS_ALU)
return false;
if (vr4130_last_insn != 0
&& recog_memoized (insn1) >= 0
&& recog_memoized (insn2) >= 0)
{
/* See whether INSN1 and INSN2 use different execution units,
or if they are both ALU-type instructions. If so, they can
probably execute in parallel. */
enum attr_vr4130_class class1 = get_attr_vr4130_class (insn1);
enum attr_vr4130_class class2 = get_attr_vr4130_class (insn2);
if (class1 != class2 || class1 == VR4130_CLASS_ALU)
{
/* If only one of the instructions has a dependence on
vr4130_last_insn, prefer to schedule the other one first. */
bool dep1_p = vr4130_true_reg_dependence_p (insn1);
bool dep2_p = vr4130_true_reg_dependence_p (insn2);
if (dep1_p != dep2_p)
return dep1_p;
/* Prefer to schedule INSN2 ahead of INSN1 if vr4130_last_insn
is not an ALU-type instruction and if INSN1 uses the same
execution unit. (Note that if this condition holds, we already
know that INSN2 uses a different execution unit.) */
if (class1 != VR4130_CLASS_ALU
&& recog_memoized (vr4130_last_insn) >= 0
&& class1 == get_attr_vr4130_class (vr4130_last_insn))
return true;
}
}
return false;
}
/* A TUNE_MIPS4130 helper function. (READY, NREADY) describes a ready
queue with at least two instructions. Swap the first two if
vr4130_swap_insns_p says that it could be worthwhile. */
static void
vr4130_reorder (rtx_insn **ready, int nready)
{
if (vr4130_swap_insns_p (ready[nready - 1], ready[nready - 2]))
mips_promote_ready (ready, nready - 2, nready - 1);
}
/* Record whether last 74k AGEN instruction was a load or store. */
static enum attr_type mips_last_74k_agen_insn = TYPE_UNKNOWN;
/* Initialize mips_last_74k_agen_insn from INSN. A null argument
resets to TYPE_UNKNOWN state. */
static void
mips_74k_agen_init (rtx_insn *insn)
{
if (!insn || CALL_P (insn) || JUMP_P (insn))
mips_last_74k_agen_insn = TYPE_UNKNOWN;
else
{
enum attr_type type = get_attr_type (insn);
if (type == TYPE_LOAD || type == TYPE_STORE)
mips_last_74k_agen_insn = type;
}
}
/* A TUNE_74K helper function. The 74K AGEN pipeline likes multiple
loads to be grouped together, and multiple stores to be grouped
together. Swap things around in the ready queue to make this happen. */
static void
mips_74k_agen_reorder (rtx_insn **ready, int nready)
{
int i;
int store_pos, load_pos;
store_pos = -1;
load_pos = -1;
for (i = nready - 1; i >= 0; i--)
{
rtx_insn *insn = ready[i];
if (USEFUL_INSN_P (insn))
switch (get_attr_type (insn))
{
case TYPE_STORE:
if (store_pos == -1)
store_pos = i;
break;
case TYPE_LOAD:
if (load_pos == -1)
load_pos = i;
break;
default:
break;
}
}
if (load_pos == -1 || store_pos == -1)
return;
switch (mips_last_74k_agen_insn)
{
case TYPE_UNKNOWN:
/* Prefer to schedule loads since they have a higher latency. */
case TYPE_LOAD:
/* Swap loads to the front of the queue. */
mips_maybe_swap_ready (ready, load_pos, store_pos, 4);
break;
case TYPE_STORE:
/* Swap stores to the front of the queue. */
mips_maybe_swap_ready (ready, store_pos, load_pos, 4);
break;
default:
break;
}
}
/* Implement TARGET_SCHED_INIT. */
static void
mips_sched_init (FILE *file ATTRIBUTE_UNUSED, int verbose ATTRIBUTE_UNUSED,
int max_ready ATTRIBUTE_UNUSED)
{
mips_macc_chains_last_hilo = 0;
vr4130_last_insn = 0;
mips_74k_agen_init (NULL);
/* When scheduling for Loongson2, branch instructions go to ALU1,
therefore basic block is most likely to start with round-robin counter
pointed to ALU2. */
mips_ls2.alu1_turn_p = false;
mips_ls2.falu1_turn_p = true;
}
/* Subroutine used by TARGET_SCHED_REORDER and TARGET_SCHED_REORDER2. */
static void
mips_sched_reorder_1 (FILE *file ATTRIBUTE_UNUSED, int verbose ATTRIBUTE_UNUSED,
rtx_insn **ready, int *nreadyp, int cycle ATTRIBUTE_UNUSED)
{
if (!reload_completed
&& TUNE_MACC_CHAINS
&& *nreadyp > 0)
mips_macc_chains_reorder (ready, *nreadyp);
if (reload_completed
&& TUNE_MIPS4130
&& !TARGET_VR4130_ALIGN
&& *nreadyp > 1)
vr4130_reorder (ready, *nreadyp);
if (TUNE_74K)
mips_74k_agen_reorder (ready, *nreadyp);
}
/* Implement TARGET_SCHED_REORDER. */
static int
mips_sched_reorder (FILE *file ATTRIBUTE_UNUSED, int verbose ATTRIBUTE_UNUSED,
rtx_insn **ready, int *nreadyp, int cycle ATTRIBUTE_UNUSED)
{
mips_sched_reorder_1 (file, verbose, ready, nreadyp, cycle);
return mips_issue_rate ();
}
/* Implement TARGET_SCHED_REORDER2. */
static int
mips_sched_reorder2 (FILE *file ATTRIBUTE_UNUSED, int verbose ATTRIBUTE_UNUSED,
rtx_insn **ready, int *nreadyp, int cycle ATTRIBUTE_UNUSED)
{
mips_sched_reorder_1 (file, verbose, ready, nreadyp, cycle);
return cached_can_issue_more;
}
/* Update round-robin counters for ALU1/2 and FALU1/2. */
static void
mips_ls2_variable_issue (rtx_insn *insn)
{
if (mips_ls2.alu1_turn_p)
{
if (cpu_unit_reservation_p (curr_state, mips_ls2.alu1_core_unit_code))
mips_ls2.alu1_turn_p = false;
}
else
{
if (cpu_unit_reservation_p (curr_state, mips_ls2.alu2_core_unit_code))
mips_ls2.alu1_turn_p = true;
}
if (mips_ls2.falu1_turn_p)
{
if (cpu_unit_reservation_p (curr_state, mips_ls2.falu1_core_unit_code))
mips_ls2.falu1_turn_p = false;
}
else
{
if (cpu_unit_reservation_p (curr_state, mips_ls2.falu2_core_unit_code))
mips_ls2.falu1_turn_p = true;
}
if (recog_memoized (insn) >= 0)
mips_ls2.cycle_has_multi_p |= (get_attr_type (insn) == TYPE_MULTI);
}
/* Implement TARGET_SCHED_VARIABLE_ISSUE. */
static int
mips_variable_issue (FILE *file ATTRIBUTE_UNUSED, int verbose ATTRIBUTE_UNUSED,
rtx_insn *insn, int more)
{
/* Ignore USEs and CLOBBERs; don't count them against the issue rate. */
if (USEFUL_INSN_P (insn))
{
if (get_attr_type (insn) != TYPE_GHOST)
more--;
if (!reload_completed && TUNE_MACC_CHAINS)
mips_macc_chains_record (insn);
vr4130_last_insn = insn;
if (TUNE_74K)
mips_74k_agen_init (insn);
else if (TUNE_LOONGSON_2EF)
mips_ls2_variable_issue (insn);
}
/* Instructions of type 'multi' should all be split before
the second scheduling pass. */
gcc_assert (!reload_completed
|| recog_memoized (insn) < 0
|| get_attr_type (insn) != TYPE_MULTI);
cached_can_issue_more = more;
return more;
}
/* Given that we have an rtx of the form (prefetch ... WRITE LOCALITY),
return the first operand of the associated PREF or PREFX insn. */
rtx
mips_prefetch_cookie (rtx write, rtx locality)
{
/* store_streamed / load_streamed. */
if (INTVAL (locality) <= 0)
return GEN_INT (INTVAL (write) + 4);
/* store / load. */
if (INTVAL (locality) <= 2)
return write;
/* store_retained / load_retained. */
return GEN_INT (INTVAL (write) + 6);
}
/* Flags that indicate when a built-in function is available.
BUILTIN_AVAIL_NON_MIPS16
The function is available on the current target if !TARGET_MIPS16.
BUILTIN_AVAIL_MIPS16
The function is available on the current target if TARGET_MIPS16. */
#define BUILTIN_AVAIL_NON_MIPS16 1
#define BUILTIN_AVAIL_MIPS16 2
/* Declare an availability predicate for built-in functions that
require non-MIPS16 mode and also require COND to be true.
NAME is the main part of the predicate's name. */
#define AVAIL_NON_MIPS16(NAME, COND) \
static unsigned int \
mips_builtin_avail_##NAME (void) \
{ \
return (COND) ? BUILTIN_AVAIL_NON_MIPS16 : 0; \
}
/* Declare an availability predicate for built-in functions that
support both MIPS16 and non-MIPS16 code and also require COND
to be true. NAME is the main part of the predicate's name. */
#define AVAIL_ALL(NAME, COND) \
static unsigned int \
mips_builtin_avail_##NAME (void) \
{ \
return (COND) ? BUILTIN_AVAIL_NON_MIPS16 | BUILTIN_AVAIL_MIPS16 : 0; \
}
/* This structure describes a single built-in function. */
struct mips_builtin_description {
/* The code of the main .md file instruction. See mips_builtin_type
for more information. */
enum insn_code icode;
/* The floating-point comparison code to use with ICODE, if any. */
enum mips_fp_condition cond;
/* The name of the built-in function. */
const char *name;
/* Specifies how the function should be expanded. */
enum mips_builtin_type builtin_type;
/* The function's prototype. */
enum mips_function_type function_type;
/* Whether the function is available. */
unsigned int (*avail) (void);
};
AVAIL_ALL (hard_float, TARGET_HARD_FLOAT_ABI)
AVAIL_NON_MIPS16 (paired_single, TARGET_PAIRED_SINGLE_FLOAT)
AVAIL_NON_MIPS16 (sb1_paired_single, TARGET_SB1 && TARGET_PAIRED_SINGLE_FLOAT)
AVAIL_NON_MIPS16 (mips3d, TARGET_MIPS3D)
AVAIL_NON_MIPS16 (dsp, TARGET_DSP)
AVAIL_NON_MIPS16 (dspr2, TARGET_DSPR2)
AVAIL_NON_MIPS16 (dsp_32, !TARGET_64BIT && TARGET_DSP)
AVAIL_NON_MIPS16 (dsp_64, TARGET_64BIT && TARGET_DSP)
AVAIL_NON_MIPS16 (dspr2_32, !TARGET_64BIT && TARGET_DSPR2)
AVAIL_NON_MIPS16 (loongson, TARGET_LOONGSON_VECTORS)
AVAIL_NON_MIPS16 (cache, TARGET_CACHE_BUILTIN)
/* Construct a mips_builtin_description from the given arguments.
INSN is the name of the associated instruction pattern, without the
leading CODE_FOR_mips_.
CODE is the floating-point condition code associated with the
function. It can be 'f' if the field is not applicable.
NAME is the name of the function itself, without the leading
"__builtin_mips_".
BUILTIN_TYPE and FUNCTION_TYPE are mips_builtin_description fields.
AVAIL is the name of the availability predicate, without the leading
mips_builtin_avail_. */
#define MIPS_BUILTIN(INSN, COND, NAME, BUILTIN_TYPE, \
FUNCTION_TYPE, AVAIL) \
{ CODE_FOR_mips_ ## INSN, MIPS_FP_COND_ ## COND, \
"__builtin_mips_" NAME, BUILTIN_TYPE, FUNCTION_TYPE, \
mips_builtin_avail_ ## AVAIL }
/* Define __builtin_mips_<INSN>, which is a MIPS_BUILTIN_DIRECT function
mapped to instruction CODE_FOR_mips_<INSN>, FUNCTION_TYPE and AVAIL
are as for MIPS_BUILTIN. */
#define DIRECT_BUILTIN(INSN, FUNCTION_TYPE, AVAIL) \
MIPS_BUILTIN (INSN, f, #INSN, MIPS_BUILTIN_DIRECT, FUNCTION_TYPE, AVAIL)
/* Define __builtin_mips_<INSN>_<COND>_{s,d} functions, both of which
are subject to mips_builtin_avail_<AVAIL>. */
#define CMP_SCALAR_BUILTINS(INSN, COND, AVAIL) \
MIPS_BUILTIN (INSN ## _cond_s, COND, #INSN "_" #COND "_s", \
MIPS_BUILTIN_CMP_SINGLE, MIPS_INT_FTYPE_SF_SF, AVAIL), \
MIPS_BUILTIN (INSN ## _cond_d, COND, #INSN "_" #COND "_d", \
MIPS_BUILTIN_CMP_SINGLE, MIPS_INT_FTYPE_DF_DF, AVAIL)
/* Define __builtin_mips_{any,all,upper,lower}_<INSN>_<COND>_ps.
The lower and upper forms are subject to mips_builtin_avail_<AVAIL>
while the any and all forms are subject to mips_builtin_avail_mips3d. */
#define CMP_PS_BUILTINS(INSN, COND, AVAIL) \
MIPS_BUILTIN (INSN ## _cond_ps, COND, "any_" #INSN "_" #COND "_ps", \
MIPS_BUILTIN_CMP_ANY, MIPS_INT_FTYPE_V2SF_V2SF, \
mips3d), \
MIPS_BUILTIN (INSN ## _cond_ps, COND, "all_" #INSN "_" #COND "_ps", \
MIPS_BUILTIN_CMP_ALL, MIPS_INT_FTYPE_V2SF_V2SF, \
mips3d), \
MIPS_BUILTIN (INSN ## _cond_ps, COND, "lower_" #INSN "_" #COND "_ps", \
MIPS_BUILTIN_CMP_LOWER, MIPS_INT_FTYPE_V2SF_V2SF, \
AVAIL), \
MIPS_BUILTIN (INSN ## _cond_ps, COND, "upper_" #INSN "_" #COND "_ps", \
MIPS_BUILTIN_CMP_UPPER, MIPS_INT_FTYPE_V2SF_V2SF, \
AVAIL)
/* Define __builtin_mips_{any,all}_<INSN>_<COND>_4s. The functions
are subject to mips_builtin_avail_mips3d. */
#define CMP_4S_BUILTINS(INSN, COND) \
MIPS_BUILTIN (INSN ## _cond_4s, COND, "any_" #INSN "_" #COND "_4s", \
MIPS_BUILTIN_CMP_ANY, \
MIPS_INT_FTYPE_V2SF_V2SF_V2SF_V2SF, mips3d), \
MIPS_BUILTIN (INSN ## _cond_4s, COND, "all_" #INSN "_" #COND "_4s", \
MIPS_BUILTIN_CMP_ALL, \
MIPS_INT_FTYPE_V2SF_V2SF_V2SF_V2SF, mips3d)
/* Define __builtin_mips_mov{t,f}_<INSN>_<COND>_ps. The comparison
instruction requires mips_builtin_avail_<AVAIL>. */
#define MOVTF_BUILTINS(INSN, COND, AVAIL) \
MIPS_BUILTIN (INSN ## _cond_ps, COND, "movt_" #INSN "_" #COND "_ps", \
MIPS_BUILTIN_MOVT, MIPS_V2SF_FTYPE_V2SF_V2SF_V2SF_V2SF, \
AVAIL), \
MIPS_BUILTIN (INSN ## _cond_ps, COND, "movf_" #INSN "_" #COND "_ps", \
MIPS_BUILTIN_MOVF, MIPS_V2SF_FTYPE_V2SF_V2SF_V2SF_V2SF, \
AVAIL)
/* Define all the built-in functions related to C.cond.fmt condition COND. */
#define CMP_BUILTINS(COND) \
MOVTF_BUILTINS (c, COND, paired_single), \
MOVTF_BUILTINS (cabs, COND, mips3d), \
CMP_SCALAR_BUILTINS (cabs, COND, mips3d), \
CMP_PS_BUILTINS (c, COND, paired_single), \
CMP_PS_BUILTINS (cabs, COND, mips3d), \
CMP_4S_BUILTINS (c, COND), \
CMP_4S_BUILTINS (cabs, COND)
/* Define __builtin_mips_<INSN>, which is a MIPS_BUILTIN_DIRECT_NO_TARGET
function mapped to instruction CODE_FOR_mips_<INSN>, FUNCTION_TYPE
and AVAIL are as for MIPS_BUILTIN. */
#define DIRECT_NO_TARGET_BUILTIN(INSN, FUNCTION_TYPE, AVAIL) \
MIPS_BUILTIN (INSN, f, #INSN, MIPS_BUILTIN_DIRECT_NO_TARGET, \
FUNCTION_TYPE, AVAIL)
/* Define __builtin_mips_bposge<VALUE>. <VALUE> is 32 for the MIPS32 DSP
branch instruction. AVAIL is as for MIPS_BUILTIN. */
#define BPOSGE_BUILTIN(VALUE, AVAIL) \
MIPS_BUILTIN (bposge, f, "bposge" #VALUE, \
MIPS_BUILTIN_BPOSGE ## VALUE, MIPS_SI_FTYPE_VOID, AVAIL)
/* Define a Loongson MIPS_BUILTIN_DIRECT function __builtin_loongson_<FN_NAME>
for instruction CODE_FOR_loongson_<INSN>. FUNCTION_TYPE is a
builtin_description field. */
#define LOONGSON_BUILTIN_ALIAS(INSN, FN_NAME, FUNCTION_TYPE) \
{ CODE_FOR_loongson_ ## INSN, MIPS_FP_COND_f, \
"__builtin_loongson_" #FN_NAME, MIPS_BUILTIN_DIRECT, \
FUNCTION_TYPE, mips_builtin_avail_loongson }
/* Define a Loongson MIPS_BUILTIN_DIRECT function __builtin_loongson_<INSN>
for instruction CODE_FOR_loongson_<INSN>. FUNCTION_TYPE is a
builtin_description field. */
#define LOONGSON_BUILTIN(INSN, FUNCTION_TYPE) \
LOONGSON_BUILTIN_ALIAS (INSN, INSN, FUNCTION_TYPE)
/* Like LOONGSON_BUILTIN, but add _<SUFFIX> to the end of the function name.
We use functions of this form when the same insn can be usefully applied
to more than one datatype. */
#define LOONGSON_BUILTIN_SUFFIX(INSN, SUFFIX, FUNCTION_TYPE) \
LOONGSON_BUILTIN_ALIAS (INSN, INSN ## _ ## SUFFIX, FUNCTION_TYPE)
#define CODE_FOR_mips_sqrt_ps CODE_FOR_sqrtv2sf2
#define CODE_FOR_mips_addq_ph CODE_FOR_addv2hi3
#define CODE_FOR_mips_addu_qb CODE_FOR_addv4qi3
#define CODE_FOR_mips_subq_ph CODE_FOR_subv2hi3
#define CODE_FOR_mips_subu_qb CODE_FOR_subv4qi3
#define CODE_FOR_mips_mul_ph CODE_FOR_mulv2hi3
#define CODE_FOR_mips_mult CODE_FOR_mulsidi3_32bit
#define CODE_FOR_mips_multu CODE_FOR_umulsidi3_32bit
#define CODE_FOR_loongson_packsswh CODE_FOR_vec_pack_ssat_v2si
#define CODE_FOR_loongson_packsshb CODE_FOR_vec_pack_ssat_v4hi
#define CODE_FOR_loongson_packushb CODE_FOR_vec_pack_usat_v4hi
#define CODE_FOR_loongson_paddw CODE_FOR_addv2si3
#define CODE_FOR_loongson_paddh CODE_FOR_addv4hi3
#define CODE_FOR_loongson_paddb CODE_FOR_addv8qi3
#define CODE_FOR_loongson_paddsh CODE_FOR_ssaddv4hi3
#define CODE_FOR_loongson_paddsb CODE_FOR_ssaddv8qi3
#define CODE_FOR_loongson_paddush CODE_FOR_usaddv4hi3
#define CODE_FOR_loongson_paddusb CODE_FOR_usaddv8qi3
#define CODE_FOR_loongson_pmaxsh CODE_FOR_smaxv4hi3
#define CODE_FOR_loongson_pmaxub CODE_FOR_umaxv8qi3
#define CODE_FOR_loongson_pminsh CODE_FOR_sminv4hi3
#define CODE_FOR_loongson_pminub CODE_FOR_uminv8qi3
#define CODE_FOR_loongson_pmulhuh CODE_FOR_umulv4hi3_highpart
#define CODE_FOR_loongson_pmulhh CODE_FOR_smulv4hi3_highpart
#define CODE_FOR_loongson_pmullh CODE_FOR_mulv4hi3
#define CODE_FOR_loongson_psllh CODE_FOR_ashlv4hi3
#define CODE_FOR_loongson_psllw CODE_FOR_ashlv2si3
#define CODE_FOR_loongson_psrlh CODE_FOR_lshrv4hi3
#define CODE_FOR_loongson_psrlw CODE_FOR_lshrv2si3
#define CODE_FOR_loongson_psrah CODE_FOR_ashrv4hi3
#define CODE_FOR_loongson_psraw CODE_FOR_ashrv2si3
#define CODE_FOR_loongson_psubw CODE_FOR_subv2si3
#define CODE_FOR_loongson_psubh CODE_FOR_subv4hi3
#define CODE_FOR_loongson_psubb CODE_FOR_subv8qi3
#define CODE_FOR_loongson_psubsh CODE_FOR_sssubv4hi3
#define CODE_FOR_loongson_psubsb CODE_FOR_sssubv8qi3
#define CODE_FOR_loongson_psubush CODE_FOR_ussubv4hi3
#define CODE_FOR_loongson_psubusb CODE_FOR_ussubv8qi3
static const struct mips_builtin_description mips_builtins[] = {
#define MIPS_GET_FCSR 0
DIRECT_BUILTIN (get_fcsr, MIPS_USI_FTYPE_VOID, hard_float),
#define MIPS_SET_FCSR 1
DIRECT_NO_TARGET_BUILTIN (set_fcsr, MIPS_VOID_FTYPE_USI, hard_float),
DIRECT_BUILTIN (pll_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, paired_single),
DIRECT_BUILTIN (pul_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, paired_single),
DIRECT_BUILTIN (plu_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, paired_single),
DIRECT_BUILTIN (puu_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, paired_single),
DIRECT_BUILTIN (cvt_ps_s, MIPS_V2SF_FTYPE_SF_SF, paired_single),
DIRECT_BUILTIN (cvt_s_pl, MIPS_SF_FTYPE_V2SF, paired_single),
DIRECT_BUILTIN (cvt_s_pu, MIPS_SF_FTYPE_V2SF, paired_single),
DIRECT_BUILTIN (abs_ps, MIPS_V2SF_FTYPE_V2SF, paired_single),
DIRECT_BUILTIN (alnv_ps, MIPS_V2SF_FTYPE_V2SF_V2SF_INT, paired_single),
DIRECT_BUILTIN (addr_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, mips3d),
DIRECT_BUILTIN (mulr_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, mips3d),
DIRECT_BUILTIN (cvt_pw_ps, MIPS_V2SF_FTYPE_V2SF, mips3d),
DIRECT_BUILTIN (cvt_ps_pw, MIPS_V2SF_FTYPE_V2SF, mips3d),
DIRECT_BUILTIN (recip1_s, MIPS_SF_FTYPE_SF, mips3d),
DIRECT_BUILTIN (recip1_d, MIPS_DF_FTYPE_DF, mips3d),
DIRECT_BUILTIN (recip1_ps, MIPS_V2SF_FTYPE_V2SF, mips3d),
DIRECT_BUILTIN (recip2_s, MIPS_SF_FTYPE_SF_SF, mips3d),
DIRECT_BUILTIN (recip2_d, MIPS_DF_FTYPE_DF_DF, mips3d),
DIRECT_BUILTIN (recip2_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, mips3d),
DIRECT_BUILTIN (rsqrt1_s, MIPS_SF_FTYPE_SF, mips3d),
DIRECT_BUILTIN (rsqrt1_d, MIPS_DF_FTYPE_DF, mips3d),
DIRECT_BUILTIN (rsqrt1_ps, MIPS_V2SF_FTYPE_V2SF, mips3d),
DIRECT_BUILTIN (rsqrt2_s, MIPS_SF_FTYPE_SF_SF, mips3d),
DIRECT_BUILTIN (rsqrt2_d, MIPS_DF_FTYPE_DF_DF, mips3d),
DIRECT_BUILTIN (rsqrt2_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, mips3d),
MIPS_FP_CONDITIONS (CMP_BUILTINS),
/* Built-in functions for the SB-1 processor. */
DIRECT_BUILTIN (sqrt_ps, MIPS_V2SF_FTYPE_V2SF, sb1_paired_single),
/* Built-in functions for the DSP ASE (32-bit and 64-bit). */
DIRECT_BUILTIN (addq_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dsp),
DIRECT_BUILTIN (addq_s_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dsp),
DIRECT_BUILTIN (addq_s_w, MIPS_SI_FTYPE_SI_SI, dsp),
DIRECT_BUILTIN (addu_qb, MIPS_V4QI_FTYPE_V4QI_V4QI, dsp),
DIRECT_BUILTIN (addu_s_qb, MIPS_V4QI_FTYPE_V4QI_V4QI, dsp),
DIRECT_BUILTIN (subq_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dsp),
DIRECT_BUILTIN (subq_s_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dsp),
DIRECT_BUILTIN (subq_s_w, MIPS_SI_FTYPE_SI_SI, dsp),
DIRECT_BUILTIN (subu_qb, MIPS_V4QI_FTYPE_V4QI_V4QI, dsp),
DIRECT_BUILTIN (subu_s_qb, MIPS_V4QI_FTYPE_V4QI_V4QI, dsp),
DIRECT_BUILTIN (addsc, MIPS_SI_FTYPE_SI_SI, dsp),
DIRECT_BUILTIN (addwc, MIPS_SI_FTYPE_SI_SI, dsp),
DIRECT_BUILTIN (modsub, MIPS_SI_FTYPE_SI_SI, dsp),
DIRECT_BUILTIN (raddu_w_qb, MIPS_SI_FTYPE_V4QI, dsp),
DIRECT_BUILTIN (absq_s_ph, MIPS_V2HI_FTYPE_V2HI, dsp),
DIRECT_BUILTIN (absq_s_w, MIPS_SI_FTYPE_SI, dsp),
DIRECT_BUILTIN (precrq_qb_ph, MIPS_V4QI_FTYPE_V2HI_V2HI, dsp),
DIRECT_BUILTIN (precrq_ph_w, MIPS_V2HI_FTYPE_SI_SI, dsp),
DIRECT_BUILTIN (precrq_rs_ph_w, MIPS_V2HI_FTYPE_SI_SI, dsp),
DIRECT_BUILTIN (precrqu_s_qb_ph, MIPS_V4QI_FTYPE_V2HI_V2HI, dsp),
DIRECT_BUILTIN (preceq_w_phl, MIPS_SI_FTYPE_V2HI, dsp),
DIRECT_BUILTIN (preceq_w_phr, MIPS_SI_FTYPE_V2HI, dsp),
DIRECT_BUILTIN (precequ_ph_qbl, MIPS_V2HI_FTYPE_V4QI, dsp),
DIRECT_BUILTIN (precequ_ph_qbr, MIPS_V2HI_FTYPE_V4QI, dsp),
DIRECT_BUILTIN (precequ_ph_qbla, MIPS_V2HI_FTYPE_V4QI, dsp),
DIRECT_BUILTIN (precequ_ph_qbra, MIPS_V2HI_FTYPE_V4QI, dsp),
DIRECT_BUILTIN (preceu_ph_qbl, MIPS_V2HI_FTYPE_V4QI, dsp),
DIRECT_BUILTIN (preceu_ph_qbr, MIPS_V2HI_FTYPE_V4QI, dsp),
DIRECT_BUILTIN (preceu_ph_qbla, MIPS_V2HI_FTYPE_V4QI, dsp),
DIRECT_BUILTIN (preceu_ph_qbra, MIPS_V2HI_FTYPE_V4QI, dsp),
DIRECT_BUILTIN (shll_qb, MIPS_V4QI_FTYPE_V4QI_SI, dsp),
DIRECT_BUILTIN (shll_ph, MIPS_V2HI_FTYPE_V2HI_SI, dsp),
DIRECT_BUILTIN (shll_s_ph, MIPS_V2HI_FTYPE_V2HI_SI, dsp),
DIRECT_BUILTIN (shll_s_w, MIPS_SI_FTYPE_SI_SI, dsp),
DIRECT_BUILTIN (shrl_qb, MIPS_V4QI_FTYPE_V4QI_SI, dsp),
DIRECT_BUILTIN (shra_ph, MIPS_V2HI_FTYPE_V2HI_SI, dsp),
DIRECT_BUILTIN (shra_r_ph, MIPS_V2HI_FTYPE_V2HI_SI, dsp),
DIRECT_BUILTIN (shra_r_w, MIPS_SI_FTYPE_SI_SI, dsp),
DIRECT_BUILTIN (muleu_s_ph_qbl, MIPS_V2HI_FTYPE_V4QI_V2HI, dsp),
DIRECT_BUILTIN (muleu_s_ph_qbr, MIPS_V2HI_FTYPE_V4QI_V2HI, dsp),
DIRECT_BUILTIN (mulq_rs_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dsp),
DIRECT_BUILTIN (muleq_s_w_phl, MIPS_SI_FTYPE_V2HI_V2HI, dsp),
DIRECT_BUILTIN (muleq_s_w_phr, MIPS_SI_FTYPE_V2HI_V2HI, dsp),
DIRECT_BUILTIN (bitrev, MIPS_SI_FTYPE_SI, dsp),
DIRECT_BUILTIN (insv, MIPS_SI_FTYPE_SI_SI, dsp),
DIRECT_BUILTIN (repl_qb, MIPS_V4QI_FTYPE_SI, dsp),
DIRECT_BUILTIN (repl_ph, MIPS_V2HI_FTYPE_SI, dsp),
DIRECT_NO_TARGET_BUILTIN (cmpu_eq_qb, MIPS_VOID_FTYPE_V4QI_V4QI, dsp),
DIRECT_NO_TARGET_BUILTIN (cmpu_lt_qb, MIPS_VOID_FTYPE_V4QI_V4QI, dsp),
DIRECT_NO_TARGET_BUILTIN (cmpu_le_qb, MIPS_VOID_FTYPE_V4QI_V4QI, dsp),
DIRECT_BUILTIN (cmpgu_eq_qb, MIPS_SI_FTYPE_V4QI_V4QI, dsp),
DIRECT_BUILTIN (cmpgu_lt_qb, MIPS_SI_FTYPE_V4QI_V4QI, dsp),
DIRECT_BUILTIN (cmpgu_le_qb, MIPS_SI_FTYPE_V4QI_V4QI, dsp),
DIRECT_NO_TARGET_BUILTIN (cmp_eq_ph, MIPS_VOID_FTYPE_V2HI_V2HI, dsp),
DIRECT_NO_TARGET_BUILTIN (cmp_lt_ph, MIPS_VOID_FTYPE_V2HI_V2HI, dsp),
DIRECT_NO_TARGET_BUILTIN (cmp_le_ph, MIPS_VOID_FTYPE_V2HI_V2HI, dsp),
DIRECT_BUILTIN (pick_qb, MIPS_V4QI_FTYPE_V4QI_V4QI, dsp),
DIRECT_BUILTIN (pick_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dsp),
DIRECT_BUILTIN (packrl_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dsp),
DIRECT_NO_TARGET_BUILTIN (wrdsp, MIPS_VOID_FTYPE_SI_SI, dsp),
DIRECT_BUILTIN (rddsp, MIPS_SI_FTYPE_SI, dsp),
DIRECT_BUILTIN (lbux, MIPS_SI_FTYPE_POINTER_SI, dsp),
DIRECT_BUILTIN (lhx, MIPS_SI_FTYPE_POINTER_SI, dsp),
DIRECT_BUILTIN (lwx, MIPS_SI_FTYPE_POINTER_SI, dsp),
BPOSGE_BUILTIN (32, dsp),
/* The following are for the MIPS DSP ASE REV 2 (32-bit and 64-bit). */
DIRECT_BUILTIN (absq_s_qb, MIPS_V4QI_FTYPE_V4QI, dspr2),
DIRECT_BUILTIN (addu_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dspr2),
DIRECT_BUILTIN (addu_s_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dspr2),
DIRECT_BUILTIN (adduh_qb, MIPS_V4QI_FTYPE_V4QI_V4QI, dspr2),
DIRECT_BUILTIN (adduh_r_qb, MIPS_V4QI_FTYPE_V4QI_V4QI, dspr2),
DIRECT_BUILTIN (append, MIPS_SI_FTYPE_SI_SI_SI, dspr2),
DIRECT_BUILTIN (balign, MIPS_SI_FTYPE_SI_SI_SI, dspr2),
DIRECT_BUILTIN (cmpgdu_eq_qb, MIPS_SI_FTYPE_V4QI_V4QI, dspr2),
DIRECT_BUILTIN (cmpgdu_lt_qb, MIPS_SI_FTYPE_V4QI_V4QI, dspr2),
DIRECT_BUILTIN (cmpgdu_le_qb, MIPS_SI_FTYPE_V4QI_V4QI, dspr2),
DIRECT_BUILTIN (mul_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dspr2),
DIRECT_BUILTIN (mul_s_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dspr2),
DIRECT_BUILTIN (mulq_rs_w, MIPS_SI_FTYPE_SI_SI, dspr2),
DIRECT_BUILTIN (mulq_s_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dspr2),
DIRECT_BUILTIN (mulq_s_w, MIPS_SI_FTYPE_SI_SI, dspr2),
DIRECT_BUILTIN (precr_qb_ph, MIPS_V4QI_FTYPE_V2HI_V2HI, dspr2),
DIRECT_BUILTIN (precr_sra_ph_w, MIPS_V2HI_FTYPE_SI_SI_SI, dspr2),
DIRECT_BUILTIN (precr_sra_r_ph_w, MIPS_V2HI_FTYPE_SI_SI_SI, dspr2),
DIRECT_BUILTIN (prepend, MIPS_SI_FTYPE_SI_SI_SI, dspr2),
DIRECT_BUILTIN (shra_qb, MIPS_V4QI_FTYPE_V4QI_SI, dspr2),
DIRECT_BUILTIN (shra_r_qb, MIPS_V4QI_FTYPE_V4QI_SI, dspr2),
DIRECT_BUILTIN (shrl_ph, MIPS_V2HI_FTYPE_V2HI_SI, dspr2),
DIRECT_BUILTIN (subu_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dspr2),
DIRECT_BUILTIN (subu_s_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dspr2),
DIRECT_BUILTIN (subuh_qb, MIPS_V4QI_FTYPE_V4QI_V4QI, dspr2),
DIRECT_BUILTIN (subuh_r_qb, MIPS_V4QI_FTYPE_V4QI_V4QI, dspr2),
DIRECT_BUILTIN (addqh_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dspr2),
DIRECT_BUILTIN (addqh_r_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dspr2),
DIRECT_BUILTIN (addqh_w, MIPS_SI_FTYPE_SI_SI, dspr2),
DIRECT_BUILTIN (addqh_r_w, MIPS_SI_FTYPE_SI_SI, dspr2),
DIRECT_BUILTIN (subqh_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dspr2),
DIRECT_BUILTIN (subqh_r_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dspr2),
DIRECT_BUILTIN (subqh_w, MIPS_SI_FTYPE_SI_SI, dspr2),
DIRECT_BUILTIN (subqh_r_w, MIPS_SI_FTYPE_SI_SI, dspr2),
/* Built-in functions for the DSP ASE (32-bit only). */
DIRECT_BUILTIN (dpau_h_qbl, MIPS_DI_FTYPE_DI_V4QI_V4QI, dsp_32),
DIRECT_BUILTIN (dpau_h_qbr, MIPS_DI_FTYPE_DI_V4QI_V4QI, dsp_32),
DIRECT_BUILTIN (dpsu_h_qbl, MIPS_DI_FTYPE_DI_V4QI_V4QI, dsp_32),
DIRECT_BUILTIN (dpsu_h_qbr, MIPS_DI_FTYPE_DI_V4QI_V4QI, dsp_32),
DIRECT_BUILTIN (dpaq_s_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, dsp_32),
DIRECT_BUILTIN (dpsq_s_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, dsp_32),
DIRECT_BUILTIN (mulsaq_s_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, dsp_32),
DIRECT_BUILTIN (dpaq_sa_l_w, MIPS_DI_FTYPE_DI_SI_SI, dsp_32),
DIRECT_BUILTIN (dpsq_sa_l_w, MIPS_DI_FTYPE_DI_SI_SI, dsp_32),
DIRECT_BUILTIN (maq_s_w_phl, MIPS_DI_FTYPE_DI_V2HI_V2HI, dsp_32),
DIRECT_BUILTIN (maq_s_w_phr, MIPS_DI_FTYPE_DI_V2HI_V2HI, dsp_32),
DIRECT_BUILTIN (maq_sa_w_phl, MIPS_DI_FTYPE_DI_V2HI_V2HI, dsp_32),
DIRECT_BUILTIN (maq_sa_w_phr, MIPS_DI_FTYPE_DI_V2HI_V2HI, dsp_32),
DIRECT_BUILTIN (extr_w, MIPS_SI_FTYPE_DI_SI, dsp_32),
DIRECT_BUILTIN (extr_r_w, MIPS_SI_FTYPE_DI_SI, dsp_32),
DIRECT_BUILTIN (extr_rs_w, MIPS_SI_FTYPE_DI_SI, dsp_32),
DIRECT_BUILTIN (extr_s_h, MIPS_SI_FTYPE_DI_SI, dsp_32),
DIRECT_BUILTIN (extp, MIPS_SI_FTYPE_DI_SI, dsp_32),
DIRECT_BUILTIN (extpdp, MIPS_SI_FTYPE_DI_SI, dsp_32),
DIRECT_BUILTIN (shilo, MIPS_DI_FTYPE_DI_SI, dsp_32),
DIRECT_BUILTIN (mthlip, MIPS_DI_FTYPE_DI_SI, dsp_32),
DIRECT_BUILTIN (madd, MIPS_DI_FTYPE_DI_SI_SI, dsp_32),
DIRECT_BUILTIN (maddu, MIPS_DI_FTYPE_DI_USI_USI, dsp_32),
DIRECT_BUILTIN (msub, MIPS_DI_FTYPE_DI_SI_SI, dsp_32),
DIRECT_BUILTIN (msubu, MIPS_DI_FTYPE_DI_USI_USI, dsp_32),
DIRECT_BUILTIN (mult, MIPS_DI_FTYPE_SI_SI, dsp_32),
DIRECT_BUILTIN (multu, MIPS_DI_FTYPE_USI_USI, dsp_32),
/* Built-in functions for the DSP ASE (64-bit only). */
DIRECT_BUILTIN (ldx, MIPS_DI_FTYPE_POINTER_SI, dsp_64),
/* The following are for the MIPS DSP ASE REV 2 (32-bit only). */
DIRECT_BUILTIN (dpa_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, dspr2_32),
DIRECT_BUILTIN (dps_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, dspr2_32),
DIRECT_BUILTIN (mulsa_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, dspr2_32),
DIRECT_BUILTIN (dpax_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, dspr2_32),
DIRECT_BUILTIN (dpsx_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, dspr2_32),
DIRECT_BUILTIN (dpaqx_s_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, dspr2_32),
DIRECT_BUILTIN (dpaqx_sa_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, dspr2_32),
DIRECT_BUILTIN (dpsqx_s_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, dspr2_32),
DIRECT_BUILTIN (dpsqx_sa_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, dspr2_32),
/* Builtin functions for ST Microelectronics Loongson-2E/2F cores. */
LOONGSON_BUILTIN (packsswh, MIPS_V4HI_FTYPE_V2SI_V2SI),
LOONGSON_BUILTIN (packsshb, MIPS_V8QI_FTYPE_V4HI_V4HI),
LOONGSON_BUILTIN (packushb, MIPS_UV8QI_FTYPE_UV4HI_UV4HI),
LOONGSON_BUILTIN_SUFFIX (paddw, u, MIPS_UV2SI_FTYPE_UV2SI_UV2SI),
LOONGSON_BUILTIN_SUFFIX (paddh, u, MIPS_UV4HI_FTYPE_UV4HI_UV4HI),
LOONGSON_BUILTIN_SUFFIX (paddb, u, MIPS_UV8QI_FTYPE_UV8QI_UV8QI),
LOONGSON_BUILTIN_SUFFIX (paddw, s, MIPS_V2SI_FTYPE_V2SI_V2SI),
LOONGSON_BUILTIN_SUFFIX (paddh, s, MIPS_V4HI_FTYPE_V4HI_V4HI),
LOONGSON_BUILTIN_SUFFIX (paddb, s, MIPS_V8QI_FTYPE_V8QI_V8QI),
LOONGSON_BUILTIN_SUFFIX (paddd, u, MIPS_UDI_FTYPE_UDI_UDI),
LOONGSON_BUILTIN_SUFFIX (paddd, s, MIPS_DI_FTYPE_DI_DI),
LOONGSON_BUILTIN (paddsh, MIPS_V4HI_FTYPE_V4HI_V4HI),
LOONGSON_BUILTIN (paddsb, MIPS_V8QI_FTYPE_V8QI_V8QI),
LOONGSON_BUILTIN (paddush, MIPS_UV4HI_FTYPE_UV4HI_UV4HI),
LOONGSON_BUILTIN (paddusb, MIPS_UV8QI_FTYPE_UV8QI_UV8QI),
LOONGSON_BUILTIN_ALIAS (pandn_d, pandn_ud, MIPS_UDI_FTYPE_UDI_UDI),
LOONGSON_BUILTIN_ALIAS (pandn_w, pandn_uw, MIPS_UV2SI_FTYPE_UV2SI_UV2SI),
LOONGSON_BUILTIN_ALIAS (pandn_h, pandn_uh, MIPS_UV4HI_FTYPE_UV4HI_UV4HI),
LOONGSON_BUILTIN_ALIAS (pandn_b, pandn_ub, MIPS_UV8QI_FTYPE_UV8QI_UV8QI),
LOONGSON_BUILTIN_ALIAS (pandn_d, pandn_sd, MIPS_DI_FTYPE_DI_DI),
LOONGSON_BUILTIN_ALIAS (pandn_w, pandn_sw, MIPS_V2SI_FTYPE_V2SI_V2SI),
LOONGSON_BUILTIN_ALIAS (pandn_h, pandn_sh, MIPS_V4HI_FTYPE_V4HI_V4HI),
LOONGSON_BUILTIN_ALIAS (pandn_b, pandn_sb, MIPS_V8QI_FTYPE_V8QI_V8QI),
LOONGSON_BUILTIN (pavgh, MIPS_UV4HI_FTYPE_UV4HI_UV4HI),
LOONGSON_BUILTIN (pavgb, MIPS_UV8QI_FTYPE_UV8QI_UV8QI),
LOONGSON_BUILTIN_SUFFIX (pcmpeqw, u, MIPS_UV2SI_FTYPE_UV2SI_UV2SI),
LOONGSON_BUILTIN_SUFFIX (pcmpeqh, u, MIPS_UV4HI_FTYPE_UV4HI_UV4HI),
LOONGSON_BUILTIN_SUFFIX (pcmpeqb, u, MIPS_UV8QI_FTYPE_UV8QI_UV8QI),
LOONGSON_BUILTIN_SUFFIX (pcmpeqw, s, MIPS_V2SI_FTYPE_V2SI_V2SI),
LOONGSON_BUILTIN_SUFFIX (pcmpeqh, s, MIPS_V4HI_FTYPE_V4HI_V4HI),
LOONGSON_BUILTIN_SUFFIX (pcmpeqb, s, MIPS_V8QI_FTYPE_V8QI_V8QI),
LOONGSON_BUILTIN_SUFFIX (pcmpgtw, u, MIPS_UV2SI_FTYPE_UV2SI_UV2SI),
LOONGSON_BUILTIN_SUFFIX (pcmpgth, u, MIPS_UV4HI_FTYPE_UV4HI_UV4HI),
LOONGSON_BUILTIN_SUFFIX (pcmpgtb, u, MIPS_UV8QI_FTYPE_UV8QI_UV8QI),
LOONGSON_BUILTIN_SUFFIX (pcmpgtw, s, MIPS_V2SI_FTYPE_V2SI_V2SI),
LOONGSON_BUILTIN_SUFFIX (pcmpgth, s, MIPS_V4HI_FTYPE_V4HI_V4HI),
LOONGSON_BUILTIN_SUFFIX (pcmpgtb, s, MIPS_V8QI_FTYPE_V8QI_V8QI),
LOONGSON_BUILTIN_SUFFIX (pextrh, u, MIPS_UV4HI_FTYPE_UV4HI_USI),
LOONGSON_BUILTIN_SUFFIX (pextrh, s, MIPS_V4HI_FTYPE_V4HI_USI),
LOONGSON_BUILTIN_SUFFIX (pinsrh_0, u, MIPS_UV4HI_FTYPE_UV4HI_UV4HI),
LOONGSON_BUILTIN_SUFFIX (pinsrh_1, u, MIPS_UV4HI_FTYPE_UV4HI_UV4HI),
LOONGSON_BUILTIN_SUFFIX (pinsrh_2, u, MIPS_UV4HI_FTYPE_UV4HI_UV4HI),
LOONGSON_BUILTIN_SUFFIX (pinsrh_3, u, MIPS_UV4HI_FTYPE_UV4HI_UV4HI),
LOONGSON_BUILTIN_SUFFIX (pinsrh_0, s, MIPS_V4HI_FTYPE_V4HI_V4HI),
LOONGSON_BUILTIN_SUFFIX (pinsrh_1, s, MIPS_V4HI_FTYPE_V4HI_V4HI),
LOONGSON_BUILTIN_SUFFIX (pinsrh_2, s, MIPS_V4HI_FTYPE_V4HI_V4HI),
LOONGSON_BUILTIN_SUFFIX (pinsrh_3, s, MIPS_V4HI_FTYPE_V4HI_V4HI),
LOONGSON_BUILTIN (pmaddhw, MIPS_V2SI_FTYPE_V4HI_V4HI),
LOONGSON_BUILTIN (pmaxsh, MIPS_V4HI_FTYPE_V4HI_V4HI),
LOONGSON_BUILTIN (pmaxub, MIPS_UV8QI_FTYPE_UV8QI_UV8QI),
LOONGSON_BUILTIN (pminsh, MIPS_V4HI_FTYPE_V4HI_V4HI),
LOONGSON_BUILTIN (pminub, MIPS_UV8QI_FTYPE_UV8QI_UV8QI),
LOONGSON_BUILTIN_SUFFIX (pmovmskb, u, MIPS_UV8QI_FTYPE_UV8QI),
LOONGSON_BUILTIN_SUFFIX (pmovmskb, s, MIPS_V8QI_FTYPE_V8QI),
LOONGSON_BUILTIN (pmulhuh, MIPS_UV4HI_FTYPE_UV4HI_UV4HI),
LOONGSON_BUILTIN (pmulhh, MIPS_V4HI_FTYPE_V4HI_V4HI),
LOONGSON_BUILTIN (pmullh, MIPS_V4HI_FTYPE_V4HI_V4HI),
LOONGSON_BUILTIN (pmuluw, MIPS_UDI_FTYPE_UV2SI_UV2SI),
LOONGSON_BUILTIN (pasubub, MIPS_UV8QI_FTYPE_UV8QI_UV8QI),
LOONGSON_BUILTIN (biadd, MIPS_UV4HI_FTYPE_UV8QI),
LOONGSON_BUILTIN (psadbh, MIPS_UV4HI_FTYPE_UV8QI_UV8QI),
LOONGSON_BUILTIN_SUFFIX (pshufh, u, MIPS_UV4HI_FTYPE_UV4HI_UQI),
LOONGSON_BUILTIN_SUFFIX (pshufh, s, MIPS_V4HI_FTYPE_V4HI_UQI),
LOONGSON_BUILTIN_SUFFIX (psllh, u, MIPS_UV4HI_FTYPE_UV4HI_UQI),
LOONGSON_BUILTIN_SUFFIX (psllh, s, MIPS_V4HI_FTYPE_V4HI_UQI),
LOONGSON_BUILTIN_SUFFIX (psllw, u, MIPS_UV2SI_FTYPE_UV2SI_UQI),
LOONGSON_BUILTIN_SUFFIX (psllw, s, MIPS_V2SI_FTYPE_V2SI_UQI),
LOONGSON_BUILTIN_SUFFIX (psrah, u, MIPS_UV4HI_FTYPE_UV4HI_UQI),
LOONGSON_BUILTIN_SUFFIX (psrah, s, MIPS_V4HI_FTYPE_V4HI_UQI),
LOONGSON_BUILTIN_SUFFIX (psraw, u, MIPS_UV2SI_FTYPE_UV2SI_UQI),
LOONGSON_BUILTIN_SUFFIX (psraw, s, MIPS_V2SI_FTYPE_V2SI_UQI),
LOONGSON_BUILTIN_SUFFIX (psrlh, u, MIPS_UV4HI_FTYPE_UV4HI_UQI),
LOONGSON_BUILTIN_SUFFIX (psrlh, s, MIPS_V4HI_FTYPE_V4HI_UQI),
LOONGSON_BUILTIN_SUFFIX (psrlw, u, MIPS_UV2SI_FTYPE_UV2SI_UQI),
LOONGSON_BUILTIN_SUFFIX (psrlw, s, MIPS_V2SI_FTYPE_V2SI_UQI),
LOONGSON_BUILTIN_SUFFIX (psubw, u, MIPS_UV2SI_FTYPE_UV2SI_UV2SI),
LOONGSON_BUILTIN_SUFFIX (psubh, u, MIPS_UV4HI_FTYPE_UV4HI_UV4HI),
LOONGSON_BUILTIN_SUFFIX (psubb, u, MIPS_UV8QI_FTYPE_UV8QI_UV8QI),
LOONGSON_BUILTIN_SUFFIX (psubw, s, MIPS_V2SI_FTYPE_V2SI_V2SI),
LOONGSON_BUILTIN_SUFFIX (psubh, s, MIPS_V4HI_FTYPE_V4HI_V4HI),
LOONGSON_BUILTIN_SUFFIX (psubb, s, MIPS_V8QI_FTYPE_V8QI_V8QI),
LOONGSON_BUILTIN_SUFFIX (psubd, u, MIPS_UDI_FTYPE_UDI_UDI),
LOONGSON_BUILTIN_SUFFIX (psubd, s, MIPS_DI_FTYPE_DI_DI),
LOONGSON_BUILTIN (psubsh, MIPS_V4HI_FTYPE_V4HI_V4HI),
LOONGSON_BUILTIN (psubsb, MIPS_V8QI_FTYPE_V8QI_V8QI),
LOONGSON_BUILTIN (psubush, MIPS_UV4HI_FTYPE_UV4HI_UV4HI),
LOONGSON_BUILTIN (psubusb, MIPS_UV8QI_FTYPE_UV8QI_UV8QI),
LOONGSON_BUILTIN_SUFFIX (punpckhbh, u, MIPS_UV8QI_FTYPE_UV8QI_UV8QI),
LOONGSON_BUILTIN_SUFFIX (punpckhhw, u, MIPS_UV4HI_FTYPE_UV4HI_UV4HI),
LOONGSON_BUILTIN_SUFFIX (punpckhwd, u, MIPS_UV2SI_FTYPE_UV2SI_UV2SI),
LOONGSON_BUILTIN_SUFFIX (punpckhbh, s, MIPS_V8QI_FTYPE_V8QI_V8QI),
LOONGSON_BUILTIN_SUFFIX (punpckhhw, s, MIPS_V4HI_FTYPE_V4HI_V4HI),
LOONGSON_BUILTIN_SUFFIX (punpckhwd, s, MIPS_V2SI_FTYPE_V2SI_V2SI),
LOONGSON_BUILTIN_SUFFIX (punpcklbh, u, MIPS_UV8QI_FTYPE_UV8QI_UV8QI),
LOONGSON_BUILTIN_SUFFIX (punpcklhw, u, MIPS_UV4HI_FTYPE_UV4HI_UV4HI),
LOONGSON_BUILTIN_SUFFIX (punpcklwd, u, MIPS_UV2SI_FTYPE_UV2SI_UV2SI),
LOONGSON_BUILTIN_SUFFIX (punpcklbh, s, MIPS_V8QI_FTYPE_V8QI_V8QI),
LOONGSON_BUILTIN_SUFFIX (punpcklhw, s, MIPS_V4HI_FTYPE_V4HI_V4HI),
LOONGSON_BUILTIN_SUFFIX (punpcklwd, s, MIPS_V2SI_FTYPE_V2SI_V2SI),
/* Sundry other built-in functions. */
DIRECT_NO_TARGET_BUILTIN (cache, MIPS_VOID_FTYPE_SI_CVPOINTER, cache)
};
/* Index I is the function declaration for mips_builtins[I], or null if the
function isn't defined on this target. */
static GTY(()) tree mips_builtin_decls[ARRAY_SIZE (mips_builtins)];
/* MODE is a vector mode whose elements have type TYPE. Return the type
of the vector itself. */
static tree
mips_builtin_vector_type (tree type, machine_mode mode)
{
static tree types[2 * (int) MAX_MACHINE_MODE];
int mode_index;
mode_index = (int) mode;
if (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type))
mode_index += MAX_MACHINE_MODE;
if (types[mode_index] == NULL_TREE)
types[mode_index] = build_vector_type_for_mode (type, mode);
return types[mode_index];
}
/* Return a type for 'const volatile void *'. */
static tree
mips_build_cvpointer_type (void)
{
static tree cache;
if (cache == NULL_TREE)
cache = build_pointer_type (build_qualified_type
(void_type_node,
TYPE_QUAL_CONST | TYPE_QUAL_VOLATILE));
return cache;
}
/* Source-level argument types. */
#define MIPS_ATYPE_VOID void_type_node
#define MIPS_ATYPE_INT integer_type_node
#define MIPS_ATYPE_POINTER ptr_type_node
#define MIPS_ATYPE_CVPOINTER mips_build_cvpointer_type ()
/* Standard mode-based argument types. */
#define MIPS_ATYPE_UQI unsigned_intQI_type_node
#define MIPS_ATYPE_SI intSI_type_node
#define MIPS_ATYPE_USI unsigned_intSI_type_node
#define MIPS_ATYPE_DI intDI_type_node
#define MIPS_ATYPE_UDI unsigned_intDI_type_node
#define MIPS_ATYPE_SF float_type_node
#define MIPS_ATYPE_DF double_type_node
/* Vector argument types. */
#define MIPS_ATYPE_V2SF mips_builtin_vector_type (float_type_node, V2SFmode)
#define MIPS_ATYPE_V2HI mips_builtin_vector_type (intHI_type_node, V2HImode)
#define MIPS_ATYPE_V2SI mips_builtin_vector_type (intSI_type_node, V2SImode)
#define MIPS_ATYPE_V4QI mips_builtin_vector_type (intQI_type_node, V4QImode)
#define MIPS_ATYPE_V4HI mips_builtin_vector_type (intHI_type_node, V4HImode)
#define MIPS_ATYPE_V8QI mips_builtin_vector_type (intQI_type_node, V8QImode)
#define MIPS_ATYPE_UV2SI \
mips_builtin_vector_type (unsigned_intSI_type_node, V2SImode)
#define MIPS_ATYPE_UV4HI \
mips_builtin_vector_type (unsigned_intHI_type_node, V4HImode)
#define MIPS_ATYPE_UV8QI \
mips_builtin_vector_type (unsigned_intQI_type_node, V8QImode)
/* MIPS_FTYPE_ATYPESN takes N MIPS_FTYPES-like type codes and lists
their associated MIPS_ATYPEs. */
#define MIPS_FTYPE_ATYPES1(A, B) \
MIPS_ATYPE_##A, MIPS_ATYPE_##B
#define MIPS_FTYPE_ATYPES2(A, B, C) \
MIPS_ATYPE_##A, MIPS_ATYPE_##B, MIPS_ATYPE_##C
#define MIPS_FTYPE_ATYPES3(A, B, C, D) \
MIPS_ATYPE_##A, MIPS_ATYPE_##B, MIPS_ATYPE_##C, MIPS_ATYPE_##D
#define MIPS_FTYPE_ATYPES4(A, B, C, D, E) \
MIPS_ATYPE_##A, MIPS_ATYPE_##B, MIPS_ATYPE_##C, MIPS_ATYPE_##D, \
MIPS_ATYPE_##E
/* Return the function type associated with function prototype TYPE. */
static tree
mips_build_function_type (enum mips_function_type type)
{
static tree types[(int) MIPS_MAX_FTYPE_MAX];
if (types[(int) type] == NULL_TREE)
switch (type)
{
#define DEF_MIPS_FTYPE(NUM, ARGS) \
case MIPS_FTYPE_NAME##NUM ARGS: \
types[(int) type] \
= build_function_type_list (MIPS_FTYPE_ATYPES##NUM ARGS, \
NULL_TREE); \
break;
#include "config/mips/mips-ftypes.def"
#undef DEF_MIPS_FTYPE
default:
gcc_unreachable ();
}
return types[(int) type];
}
/* Implement TARGET_INIT_BUILTINS. */
static void
mips_init_builtins (void)
{
const struct mips_builtin_description *d;
unsigned int i;
/* Iterate through all of the bdesc arrays, initializing all of the
builtin functions. */
for (i = 0; i < ARRAY_SIZE (mips_builtins); i++)
{
d = &mips_builtins[i];
if (d->avail ())
mips_builtin_decls[i]
= add_builtin_function (d->name,
mips_build_function_type (d->function_type),
i, BUILT_IN_MD, NULL, NULL);
}
}
/* Implement TARGET_BUILTIN_DECL. */
static tree
mips_builtin_decl (unsigned int code, bool initialize_p ATTRIBUTE_UNUSED)
{
if (code >= ARRAY_SIZE (mips_builtins))
return error_mark_node;
return mips_builtin_decls[code];
}
/* Take argument ARGNO from EXP's argument list and convert it into
an expand operand. Store the operand in *OP. */
static void
mips_prepare_builtin_arg (struct expand_operand *op, tree exp,
unsigned int argno)
{
tree arg;
rtx value;
arg = CALL_EXPR_ARG (exp, argno);
value = expand_normal (arg);
create_input_operand (op, value, TYPE_MODE (TREE_TYPE (arg)));
}
/* Expand instruction ICODE as part of a built-in function sequence.
Use the first NOPS elements of OPS as the instruction's operands.
HAS_TARGET_P is true if operand 0 is a target; it is false if the
instruction has no target.
Return the target rtx if HAS_TARGET_P, otherwise return const0_rtx. */
static rtx
mips_expand_builtin_insn (enum insn_code icode, unsigned int nops,
struct expand_operand *ops, bool has_target_p)
{
if (!maybe_expand_insn (icode, nops, ops))
{
error ("invalid argument to built-in function");
return has_target_p ? gen_reg_rtx (ops[0].mode) : const0_rtx;
}
return has_target_p ? ops[0].value : const0_rtx;
}
/* Expand a floating-point comparison for built-in function call EXP.
The first NARGS arguments are the values to be compared. ICODE is
the .md pattern that does the comparison and COND is the condition
that is being tested. Return an rtx for the result. */
static rtx
mips_expand_builtin_compare_1 (enum insn_code icode,
enum mips_fp_condition cond,
tree exp, int nargs)
{
struct expand_operand ops[MAX_RECOG_OPERANDS];
rtx output;
int opno, argno;
/* The instruction should have a target operand, an operand for each
argument, and an operand for COND. */
gcc_assert (nargs + 2 == insn_data[(int) icode].n_generator_args);
output = mips_allocate_fcc (insn_data[(int) icode].operand[0].mode);
opno = 0;
create_fixed_operand (&ops[opno++], output);
for (argno = 0; argno < nargs; argno++)
mips_prepare_builtin_arg (&ops[opno++], exp, argno);
create_integer_operand (&ops[opno++], (int) cond);
return mips_expand_builtin_insn (icode, opno, ops, true);
}
/* Expand a MIPS_BUILTIN_DIRECT or MIPS_BUILTIN_DIRECT_NO_TARGET function;
HAS_TARGET_P says which. EXP is the CALL_EXPR that calls the function
and ICODE is the code of the associated .md pattern. TARGET, if nonnull,
suggests a good place to put the result. */
static rtx
mips_expand_builtin_direct (enum insn_code icode, rtx target, tree exp,
bool has_target_p)
{
struct expand_operand ops[MAX_RECOG_OPERANDS];
int opno, argno;
/* Map any target to operand 0. */
opno = 0;
if (has_target_p)
create_output_operand (&ops[opno++], target, TYPE_MODE (TREE_TYPE (exp)));
/* Map the arguments to the other operands. */
gcc_assert (opno + call_expr_nargs (exp)
== insn_data[icode].n_generator_args);
for (argno = 0; argno < call_expr_nargs (exp); argno++)
mips_prepare_builtin_arg (&ops[opno++], exp, argno);
return mips_expand_builtin_insn (icode, opno, ops, has_target_p);
}
/* Expand a __builtin_mips_movt_*_ps or __builtin_mips_movf_*_ps
function; TYPE says which. EXP is the CALL_EXPR that calls the
function, ICODE is the instruction that should be used to compare
the first two arguments, and COND is the condition it should test.
TARGET, if nonnull, suggests a good place to put the result. */
static rtx
mips_expand_builtin_movtf (enum mips_builtin_type type,
enum insn_code icode, enum mips_fp_condition cond,
rtx target, tree exp)
{
struct expand_operand ops[4];
rtx cmp_result;
cmp_result = mips_expand_builtin_compare_1 (icode, cond, exp, 2);
create_output_operand (&ops[0], target, TYPE_MODE (TREE_TYPE (exp)));
if (type == MIPS_BUILTIN_MOVT)
{
mips_prepare_builtin_arg (&ops[2], exp, 2);
mips_prepare_builtin_arg (&ops[1], exp, 3);
}
else
{
mips_prepare_builtin_arg (&ops[1], exp, 2);
mips_prepare_builtin_arg (&ops[2], exp, 3);
}
create_fixed_operand (&ops[3], cmp_result);
return mips_expand_builtin_insn (CODE_FOR_mips_cond_move_tf_ps,
4, ops, true);
}
/* Move VALUE_IF_TRUE into TARGET if CONDITION is true; move VALUE_IF_FALSE
into TARGET otherwise. Return TARGET. */
static rtx
mips_builtin_branch_and_move (rtx condition, rtx target,
rtx value_if_true, rtx value_if_false)
{
rtx_code_label *true_label, *done_label;
true_label = gen_label_rtx ();
done_label = gen_label_rtx ();
/* First assume that CONDITION is false. */
mips_emit_move (target, value_if_false);
/* Branch to TRUE_LABEL if CONDITION is true and DONE_LABEL otherwise. */
emit_jump_insn (gen_condjump (condition, true_label));
emit_jump_insn (gen_jump (done_label));
emit_barrier ();
/* Fix TARGET if CONDITION is true. */
emit_label (true_label);
mips_emit_move (target, value_if_true);
emit_label (done_label);
return target;
}
/* Expand a comparison built-in function of type BUILTIN_TYPE. EXP is
the CALL_EXPR that calls the function, ICODE is the code of the
comparison instruction, and COND is the condition it should test.
TARGET, if nonnull, suggests a good place to put the boolean result. */
static rtx
mips_expand_builtin_compare (enum mips_builtin_type builtin_type,
enum insn_code icode, enum mips_fp_condition cond,
rtx target, tree exp)
{
rtx offset, condition, cmp_result;
if (target == 0 || GET_MODE (target) != SImode)
target = gen_reg_rtx (SImode);
cmp_result = mips_expand_builtin_compare_1 (icode, cond, exp,
call_expr_nargs (exp));
/* If the comparison sets more than one register, we define the result
to be 0 if all registers are false and -1 if all registers are true.
The value of the complete result is indeterminate otherwise. */
switch (builtin_type)
{
case MIPS_BUILTIN_CMP_ALL:
condition = gen_rtx_NE (VOIDmode, cmp_result, constm1_rtx);
return mips_builtin_branch_and_move (condition, target,
const0_rtx, const1_rtx);
case MIPS_BUILTIN_CMP_UPPER:
case MIPS_BUILTIN_CMP_LOWER:
offset = GEN_INT (builtin_type == MIPS_BUILTIN_CMP_UPPER);
condition = gen_single_cc (cmp_result, offset);
return mips_builtin_branch_and_move (condition, target,
const1_rtx, const0_rtx);
default:
condition = gen_rtx_NE (VOIDmode, cmp_result, const0_rtx);
return mips_builtin_branch_and_move (condition, target,
const1_rtx, const0_rtx);
}
}
/* Expand a bposge built-in function of type BUILTIN_TYPE. TARGET,
if nonnull, suggests a good place to put the boolean result. */
static rtx
mips_expand_builtin_bposge (enum mips_builtin_type builtin_type, rtx target)
{
rtx condition, cmp_result;
int cmp_value;
if (target == 0 || GET_MODE (target) != SImode)
target = gen_reg_rtx (SImode);
cmp_result = gen_rtx_REG (CCDSPmode, CCDSP_PO_REGNUM);
if (builtin_type == MIPS_BUILTIN_BPOSGE32)
cmp_value = 32;
else
gcc_assert (0);
condition = gen_rtx_GE (VOIDmode, cmp_result, GEN_INT (cmp_value));
return mips_builtin_branch_and_move (condition, target,
const1_rtx, const0_rtx);
}
/* Implement TARGET_EXPAND_BUILTIN. */
static rtx
mips_expand_builtin (tree exp, rtx target, rtx subtarget ATTRIBUTE_UNUSED,
machine_mode mode, int ignore)
{
tree fndecl;
unsigned int fcode, avail;
const struct mips_builtin_description *d;
fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
fcode = DECL_FUNCTION_CODE (fndecl);
gcc_assert (fcode < ARRAY_SIZE (mips_builtins));
d = &mips_builtins[fcode];
avail = d->avail ();
gcc_assert (avail != 0);
if (TARGET_MIPS16 && !(avail & BUILTIN_AVAIL_MIPS16))
{
error ("built-in function %qE not supported for MIPS16",
DECL_NAME (fndecl));
return ignore ? const0_rtx : CONST0_RTX (mode);
}
switch (d->builtin_type)
{
case MIPS_BUILTIN_DIRECT:
return mips_expand_builtin_direct (d->icode, target, exp, true);
case MIPS_BUILTIN_DIRECT_NO_TARGET:
return mips_expand_builtin_direct (d->icode, target, exp, false);
case MIPS_BUILTIN_MOVT:
case MIPS_BUILTIN_MOVF:
return mips_expand_builtin_movtf (d->builtin_type, d->icode,
d->cond, target, exp);
case MIPS_BUILTIN_CMP_ANY:
case MIPS_BUILTIN_CMP_ALL:
case MIPS_BUILTIN_CMP_UPPER:
case MIPS_BUILTIN_CMP_LOWER:
case MIPS_BUILTIN_CMP_SINGLE:
return mips_expand_builtin_compare (d->builtin_type, d->icode,
d->cond, target, exp);
case MIPS_BUILTIN_BPOSGE32:
return mips_expand_builtin_bposge (d->builtin_type, target);
}
gcc_unreachable ();
}
/* An entry in the MIPS16 constant pool. VALUE is the pool constant,
MODE is its mode, and LABEL is the CODE_LABEL associated with it. */
struct mips16_constant {
struct mips16_constant *next;
rtx value;
rtx_code_label *label;
machine_mode mode;
};
/* Information about an incomplete MIPS16 constant pool. FIRST is the
first constant, HIGHEST_ADDRESS is the highest address that the first
byte of the pool can have, and INSN_ADDRESS is the current instruction
address. */
struct mips16_constant_pool {
struct mips16_constant *first;
int highest_address;
int insn_address;
};
/* Add constant VALUE to POOL and return its label. MODE is the
value's mode (used for CONST_INTs, etc.). */
static rtx_code_label *
mips16_add_constant (struct mips16_constant_pool *pool,
rtx value, machine_mode mode)
{
struct mips16_constant **p, *c;
bool first_of_size_p;
/* See whether the constant is already in the pool. If so, return the
existing label, otherwise leave P pointing to the place where the
constant should be added.
Keep the pool sorted in increasing order of mode size so that we can
reduce the number of alignments needed. */
first_of_size_p = true;
for (p = &pool->first; *p != 0; p = &(*p)->next)
{
if (mode == (*p)->mode && rtx_equal_p (value, (*p)->value))
return (*p)->label;
if (GET_MODE_SIZE (mode) < GET_MODE_SIZE ((*p)->mode))
break;
if (GET_MODE_SIZE (mode) == GET_MODE_SIZE ((*p)->mode))
first_of_size_p = false;
}
/* In the worst case, the constant needed by the earliest instruction
will end up at the end of the pool. The entire pool must then be
accessible from that instruction.
When adding the first constant, set the pool's highest address to
the address of the first out-of-range byte. Adjust this address
downwards each time a new constant is added. */
if (pool->first == 0)
/* For LWPC, ADDIUPC and DADDIUPC, the base PC value is the address
of the instruction with the lowest two bits clear. The base PC
value for LDPC has the lowest three bits clear. Assume the worst
case here; namely that the PC-relative instruction occupies the
last 2 bytes in an aligned word. */
pool->highest_address = pool->insn_address - (UNITS_PER_WORD - 2) + 0x8000;
pool->highest_address -= GET_MODE_SIZE (mode);
if (first_of_size_p)
/* Take into account the worst possible padding due to alignment. */
pool->highest_address -= GET_MODE_SIZE (mode) - 1;
/* Create a new entry. */
c = XNEW (struct mips16_constant);
c->value = value;
c->mode = mode;
c->label = gen_label_rtx ();
c->next = *p;
*p = c;
return c->label;
}
/* Output constant VALUE after instruction INSN and return the last
instruction emitted. MODE is the mode of the constant. */
static rtx_insn *
mips16_emit_constants_1 (machine_mode mode, rtx value, rtx_insn *insn)
{
if (SCALAR_INT_MODE_P (mode) || ALL_SCALAR_FIXED_POINT_MODE_P (mode))
{
rtx size = GEN_INT (GET_MODE_SIZE (mode));
return emit_insn_after (gen_consttable_int (value, size), insn);
}
if (SCALAR_FLOAT_MODE_P (mode))
return emit_insn_after (gen_consttable_float (value), insn);
if (VECTOR_MODE_P (mode))
{
int i;
for (i = 0; i < CONST_VECTOR_NUNITS (value); i++)
insn = mips16_emit_constants_1 (GET_MODE_INNER (mode),
CONST_VECTOR_ELT (value, i), insn);
return insn;
}
gcc_unreachable ();
}
/* Dump out the constants in CONSTANTS after INSN. */
static void
mips16_emit_constants (struct mips16_constant *constants, rtx_insn *insn)
{
struct mips16_constant *c, *next;
int align;
align = 0;
for (c = constants; c != NULL; c = next)
{
/* If necessary, increase the alignment of PC. */
if (align < GET_MODE_SIZE (c->mode))
{
int align_log = floor_log2 (GET_MODE_SIZE (c->mode));
insn = emit_insn_after (gen_align (GEN_INT (align_log)), insn);
}
align = GET_MODE_SIZE (c->mode);
insn = emit_label_after (c->label, insn);
insn = mips16_emit_constants_1 (c->mode, c->value, insn);
next = c->next;
free (c);
}
emit_barrier_after (insn);
}
/* Return the length of instruction INSN. */
static int
mips16_insn_length (rtx_insn *insn)
{
if (JUMP_TABLE_DATA_P (insn))
{
rtx body = PATTERN (insn);
if (GET_CODE (body) == ADDR_VEC)
return GET_MODE_SIZE (GET_MODE (body)) * XVECLEN (body, 0);
else if (GET_CODE (body) == ADDR_DIFF_VEC)
return GET_MODE_SIZE (GET_MODE (body)) * XVECLEN (body, 1);
else
gcc_unreachable ();
}
return get_attr_length (insn);
}
/* If *X is a symbolic constant that refers to the constant pool, add
the constant to POOL and rewrite *X to use the constant's label. */
static void
mips16_rewrite_pool_constant (struct mips16_constant_pool *pool, rtx *x)
{
rtx base, offset;
rtx_code_label *label;
split_const (*x, &base, &offset);
if (GET_CODE (base) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (base))
{
label = mips16_add_constant (pool, copy_rtx (get_pool_constant (base)),
get_pool_mode (base));
base = gen_rtx_LABEL_REF (Pmode, label);
*x = mips_unspec_address_offset (base, offset, SYMBOL_PC_RELATIVE);
}
}
/* Rewrite INSN so that constant pool references refer to the constant's
label instead. */
static void
mips16_rewrite_pool_refs (rtx_insn *insn, struct mips16_constant_pool *pool)
{
subrtx_ptr_iterator::array_type array;
FOR_EACH_SUBRTX_PTR (iter, array, &PATTERN (insn), ALL)
{
rtx *loc = *iter;
if (force_to_mem_operand (*loc, Pmode))
{
rtx mem = force_const_mem (GET_MODE (*loc), *loc);
validate_change (insn, loc, mem, false);
}
if (MEM_P (*loc))
{
mips16_rewrite_pool_constant (pool, &XEXP (*loc, 0));
iter.skip_subrtxes ();
}
else
{
if (TARGET_MIPS16_TEXT_LOADS)
mips16_rewrite_pool_constant (pool, loc);
if (GET_CODE (*loc) == CONST
/* Don't rewrite the __mips16_rdwr symbol. */
|| (GET_CODE (*loc) == UNSPEC
&& XINT (*loc, 1) == UNSPEC_TLS_GET_TP))
iter.skip_subrtxes ();
}
}
}
/* Return whether CFG is used in mips_reorg. */
static bool
mips_cfg_in_reorg (void)
{
return (mips_r10k_cache_barrier != R10K_CACHE_BARRIER_NONE
|| TARGET_RELAX_PIC_CALLS);
}
/* Build MIPS16 constant pools. Split the instructions if SPLIT_P,
otherwise assume that they are already split. */
static void
mips16_lay_out_constants (bool split_p)
{
struct mips16_constant_pool pool;
rtx_insn *insn, *barrier;
if (!TARGET_MIPS16_PCREL_LOADS)
return;
if (split_p)
{
if (mips_cfg_in_reorg ())
split_all_insns ();
else
split_all_insns_noflow ();
}
barrier = 0;
memset (&pool, 0, sizeof (pool));
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
{
/* Rewrite constant pool references in INSN. */
if (USEFUL_INSN_P (insn))
mips16_rewrite_pool_refs (insn, &pool);
pool.insn_address += mips16_insn_length (insn);
if (pool.first != NULL)
{
/* If there are no natural barriers between the first user of
the pool and the highest acceptable address, we'll need to
create a new instruction to jump around the constant pool.
In the worst case, this instruction will be 4 bytes long.
If it's too late to do this transformation after INSN,
do it immediately before INSN. */
if (barrier == 0 && pool.insn_address + 4 > pool.highest_address)
{
rtx_code_label *label;
rtx_insn *jump;
label = gen_label_rtx ();
jump = emit_jump_insn_before (gen_jump (label), insn);
JUMP_LABEL (jump) = label;
LABEL_NUSES (label) = 1;
barrier = emit_barrier_after (jump);
emit_label_after (label, barrier);
pool.insn_address += 4;
}
/* See whether the constant pool is now out of range of the first
user. If so, output the constants after the previous barrier.
Note that any instructions between BARRIER and INSN (inclusive)
will use negative offsets to refer to the pool. */
if (pool.insn_address > pool.highest_address)
{
mips16_emit_constants (pool.first, barrier);
pool.first = NULL;
barrier = 0;
}
else if (BARRIER_P (insn))
barrier = insn;
}
}
mips16_emit_constants (pool.first, get_last_insn ());
}
/* Return true if it is worth r10k_simplify_address's while replacing
an address with X. We are looking for constants, and for addresses
at a known offset from the incoming stack pointer. */
static bool
r10k_simplified_address_p (rtx x)
{
if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1)))
x = XEXP (x, 0);
return x == virtual_incoming_args_rtx || CONSTANT_P (x);
}
/* X is an expression that appears in INSN. Try to use the UD chains
to simplify it, returning the simplified form on success and the
original form otherwise. Replace the incoming value of $sp with
virtual_incoming_args_rtx (which should never occur in X otherwise). */
static rtx
r10k_simplify_address (rtx x, rtx_insn *insn)
{
rtx newx, op0, op1, set, note;
rtx_insn *def_insn;
df_ref use, def;
struct df_link *defs;
newx = NULL_RTX;
if (UNARY_P (x))
{
op0 = r10k_simplify_address (XEXP (x, 0), insn);
if (op0 != XEXP (x, 0))
newx = simplify_gen_unary (GET_CODE (x), GET_MODE (x),
op0, GET_MODE (XEXP (x, 0)));
}
else if (BINARY_P (x))
{
op0 = r10k_simplify_address (XEXP (x, 0), insn);
op1 = r10k_simplify_address (XEXP (x, 1), insn);
if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
newx = simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
}
else if (GET_CODE (x) == LO_SUM)
{
/* LO_SUMs can be offset from HIGHs, if we know they won't
overflow. See mips_classify_address for the rationale behind
the lax check. */
op0 = r10k_simplify_address (XEXP (x, 0), insn);
if (GET_CODE (op0) == HIGH)
newx = XEXP (x, 1);
}
else if (REG_P (x))
{
/* Uses are recorded by regno_reg_rtx, not X itself. */
use = df_find_use (insn, regno_reg_rtx[REGNO (x)]);
gcc_assert (use);
defs = DF_REF_CHAIN (use);
/* Require a single definition. */
if (defs && defs->next == NULL)
{
def = defs->ref;
if (DF_REF_IS_ARTIFICIAL (def))
{
/* Replace the incoming value of $sp with
virtual_incoming_args_rtx. */
if (x == stack_pointer_rtx
&& DF_REF_BB (def) == ENTRY_BLOCK_PTR_FOR_FN (cfun))
newx = virtual_incoming_args_rtx;
}
else if (dominated_by_p (CDI_DOMINATORS, DF_REF_BB (use),
DF_REF_BB (def)))
{
/* Make sure that DEF_INSN is a single set of REG. */
def_insn = DF_REF_INSN (def);
if (NONJUMP_INSN_P (def_insn))
{
set = single_set (def_insn);
if (set && rtx_equal_p (SET_DEST (set), x))
{
/* Prefer to use notes, since the def-use chains
are often shorter. */
note = find_reg_equal_equiv_note (def_insn);
if (note)
newx = XEXP (note, 0);
else
newx = SET_SRC (set);
newx = r10k_simplify_address (newx, def_insn);
}
}
}
}
}
if (newx && r10k_simplified_address_p (newx))
return newx;
return x;
}
/* Return true if ADDRESS is known to be an uncached address
on R10K systems. */
static bool
r10k_uncached_address_p (unsigned HOST_WIDE_INT address)
{
unsigned HOST_WIDE_INT upper;
/* Check for KSEG1. */
if (address + 0x60000000 < 0x20000000)
return true;
/* Check for uncached XKPHYS addresses. */
if (Pmode == DImode)
{
upper = (address >> 40) & 0xf9ffff;
if (upper == 0x900000 || upper == 0xb80000)
return true;
}
return false;
}
/* Return true if we can prove that an access to address X in instruction
INSN would be safe from R10K speculation. This X is a general
expression; it might not be a legitimate address. */
static bool
r10k_safe_address_p (rtx x, rtx_insn *insn)
{
rtx base, offset;
HOST_WIDE_INT offset_val;
x = r10k_simplify_address (x, insn);
/* Check for references to the stack frame. It doesn't really matter
how much of the frame has been allocated at INSN; -mr10k-cache-barrier
allows us to assume that accesses to any part of the eventual frame
is safe from speculation at any point in the function. */
mips_split_plus (x, &base, &offset_val);
if (base == virtual_incoming_args_rtx
&& offset_val >= -cfun->machine->frame.total_size
&& offset_val < cfun->machine->frame.args_size)
return true;
/* Check for uncached addresses. */
if (CONST_INT_P (x))
return r10k_uncached_address_p (INTVAL (x));
/* Check for accesses to a static object. */
split_const (x, &base, &offset);
return offset_within_block_p (base, INTVAL (offset));
}
/* Return true if a MEM with MEM_EXPR EXPR and MEM_OFFSET OFFSET is
an in-range access to an automatic variable, or to an object with
a link-time-constant address. */
static bool
r10k_safe_mem_expr_p (tree expr, unsigned HOST_WIDE_INT offset)
{
HOST_WIDE_INT bitoffset, bitsize;
tree inner, var_offset;
machine_mode mode;
int unsigned_p, volatile_p;
inner = get_inner_reference (expr, &bitsize, &bitoffset, &var_offset, &mode,
&unsigned_p, &volatile_p, false);
if (!DECL_P (inner) || !DECL_SIZE_UNIT (inner) || var_offset)
return false;
offset += bitoffset / BITS_PER_UNIT;
return offset < tree_to_uhwi (DECL_SIZE_UNIT (inner));
}
/* Return true if X contains a MEM that is not safe from R10K speculation.
INSN is the instruction that contains X. */
static bool
r10k_needs_protection_p_1 (rtx x, rtx_insn *insn)
{
subrtx_var_iterator::array_type array;
FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
{
rtx mem = *iter;
if (MEM_P (mem))
{
if ((MEM_EXPR (mem)
&& MEM_OFFSET_KNOWN_P (mem)
&& r10k_safe_mem_expr_p (MEM_EXPR (mem), MEM_OFFSET (mem)))
|| r10k_safe_address_p (XEXP (mem, 0), insn))
iter.skip_subrtxes ();
else
return true;
}
}
return false;
}
/* A note_stores callback for which DATA points to an instruction pointer.
If *DATA is nonnull, make it null if it X contains a MEM that is not
safe from R10K speculation. */
static void
r10k_needs_protection_p_store (rtx x, const_rtx pat ATTRIBUTE_UNUSED,
void *data)
{
rtx_insn **insn_ptr;
insn_ptr = (rtx_insn **) data;
if (*insn_ptr && r10k_needs_protection_p_1 (x, *insn_ptr))
*insn_ptr = NULL;
}
/* X is the pattern of a call instruction. Return true if the call is
not to a declared function. */
static bool
r10k_needs_protection_p_call (const_rtx x)
{
subrtx_iterator::array_type array;
FOR_EACH_SUBRTX (iter, array, x, NONCONST)
{
const_rtx mem = *iter;
if (MEM_P (mem))
{
const_rtx addr = XEXP (mem, 0);
if (GET_CODE (addr) == SYMBOL_REF && SYMBOL_REF_DECL (addr))
iter.skip_subrtxes ();
else
return true;
}
}
return false;
}
/* Return true if instruction INSN needs to be protected by an R10K
cache barrier. */
static bool
r10k_needs_protection_p (rtx_insn *insn)
{
if (CALL_P (insn))
return r10k_needs_protection_p_call (PATTERN (insn));
if (mips_r10k_cache_barrier == R10K_CACHE_BARRIER_STORE)
{
note_stores (PATTERN (insn), r10k_needs_protection_p_store, &insn);
return insn == NULL_RTX;
}
return r10k_needs_protection_p_1 (PATTERN (insn), insn);
}
/* Return true if BB is only reached by blocks in PROTECTED_BBS and if every
edge is unconditional. */
static bool
r10k_protected_bb_p (basic_block bb, sbitmap protected_bbs)
{
edge_iterator ei;
edge e;
FOR_EACH_EDGE (e, ei, bb->preds)
if (!single_succ_p (e->src)
|| !bitmap_bit_p (protected_bbs, e->src->index)
|| (e->flags & EDGE_COMPLEX) != 0)
return false;
return true;
}
/* Implement -mr10k-cache-barrier= for the current function. */
static void
r10k_insert_cache_barriers (void)
{
int *rev_post_order;
unsigned int i, n;
basic_block bb;
sbitmap protected_bbs;
rtx_insn *insn, *end;
rtx unprotected_region;
if (TARGET_MIPS16)
{
sorry ("%qs does not support MIPS16 code", "-mr10k-cache-barrier");
return;
}
/* Calculate dominators. */
calculate_dominance_info (CDI_DOMINATORS);
/* Bit X of PROTECTED_BBS is set if the last operation in basic block
X is protected by a cache barrier. */
protected_bbs = sbitmap_alloc (last_basic_block_for_fn (cfun));
bitmap_clear (protected_bbs);
/* Iterate over the basic blocks in reverse post-order. */
rev_post_order = XNEWVEC (int, last_basic_block_for_fn (cfun));
n = pre_and_rev_post_order_compute (NULL, rev_post_order, false);
for (i = 0; i < n; i++)
{
bb = BASIC_BLOCK_FOR_FN (cfun, rev_post_order[i]);
/* If this block is only reached by unconditional edges, and if the
source of every edge is protected, the beginning of the block is
also protected. */
if (r10k_protected_bb_p (bb, protected_bbs))
unprotected_region = NULL_RTX;
else
unprotected_region = pc_rtx;
end = NEXT_INSN (BB_END (bb));
/* UNPROTECTED_REGION is:
- null if we are processing a protected region,
- pc_rtx if we are processing an unprotected region but have
not yet found the first instruction in it
- the first instruction in an unprotected region otherwise. */
for (insn = BB_HEAD (bb); insn != end; insn = NEXT_INSN (insn))
{
if (unprotected_region && USEFUL_INSN_P (insn))
{
if (recog_memoized (insn) == CODE_FOR_mips_cache)
/* This CACHE instruction protects the following code. */
unprotected_region = NULL_RTX;
else
{
/* See if INSN is the first instruction in this
unprotected region. */
if (unprotected_region == pc_rtx)
unprotected_region = insn;
/* See if INSN needs to be protected. If so,
we must insert a cache barrier somewhere between
PREV_INSN (UNPROTECTED_REGION) and INSN. It isn't
clear which position is better performance-wise,
but as a tie-breaker, we assume that it is better
to allow delay slots to be back-filled where
possible, and that it is better not to insert
barriers in the middle of already-scheduled code.
We therefore insert the barrier at the beginning
of the region. */
if (r10k_needs_protection_p (insn))
{
emit_insn_before (gen_r10k_cache_barrier (),
unprotected_region);
unprotected_region = NULL_RTX;
}
}
}
if (CALL_P (insn))
/* The called function is not required to protect the exit path.
The code that follows a call is therefore unprotected. */
unprotected_region = pc_rtx;
}
/* Record whether the end of this block is protected. */
if (unprotected_region == NULL_RTX)
bitmap_set_bit (protected_bbs, bb->index);
}
XDELETEVEC (rev_post_order);
sbitmap_free (protected_bbs);
free_dominance_info (CDI_DOMINATORS);
}
/* If INSN is a call, return the underlying CALL expr. Return NULL_RTX
otherwise. If INSN has two call rtx, then store the second one in
SECOND_CALL. */
static rtx
mips_call_expr_from_insn (rtx_insn *insn, rtx *second_call)
{
rtx x;
rtx x2;
if (!CALL_P (insn))
return NULL_RTX;
x = PATTERN (insn);
if (GET_CODE (x) == PARALLEL)
{
/* Calls returning complex values have two CALL rtx. Look for the second
one here, and return it via the SECOND_CALL arg. */
x2 = XVECEXP (x, 0, 1);
if (GET_CODE (x2) == SET)
x2 = XEXP (x2, 1);
if (GET_CODE (x2) == CALL)
*second_call = x2;
x = XVECEXP (x, 0, 0);
}
if (GET_CODE (x) == SET)
x = XEXP (x, 1);
gcc_assert (GET_CODE (x) == CALL);
return x;
}
/* REG is set in DEF. See if the definition is one of the ways we load a
register with a symbol address for a mips_use_pic_fn_addr_reg_p call.
If it is, return the symbol reference of the function, otherwise return
NULL_RTX.
If RECURSE_P is true, use mips_find_pic_call_symbol to interpret
the values of source registers, otherwise treat such registers as
having an unknown value. */
static rtx
mips_pic_call_symbol_from_set (df_ref def, rtx reg, bool recurse_p)
{
rtx_insn *def_insn;
rtx set;
if (DF_REF_IS_ARTIFICIAL (def))
return NULL_RTX;
def_insn = DF_REF_INSN (def);
set = single_set (def_insn);
if (set && rtx_equal_p (SET_DEST (set), reg))
{
rtx note, src, symbol;
/* First see whether the source is a plain symbol. This is used
when calling symbols that are not lazily bound. */
src = SET_SRC (set);
if (GET_CODE (src) == SYMBOL_REF)
return src;
/* Handle %call16 references. */
symbol = mips_strip_unspec_call (src);
if (symbol)
{
gcc_assert (GET_CODE (symbol) == SYMBOL_REF);
return symbol;
}
/* If we have something more complicated, look for a
REG_EQUAL or REG_EQUIV note. */
note = find_reg_equal_equiv_note (def_insn);
if (note && GET_CODE (XEXP (note, 0)) == SYMBOL_REF)
return XEXP (note, 0);
/* Follow at most one simple register copy. Such copies are
interesting in cases like:
for (...)
{
locally_binding_fn (...);
}
and:
locally_binding_fn (...);
...
locally_binding_fn (...);
where the load of locally_binding_fn can legitimately be
hoisted or shared. However, we do not expect to see complex
chains of copies, so a full worklist solution to the problem
would probably be overkill. */
if (recurse_p && REG_P (src))
return mips_find_pic_call_symbol (def_insn, src, false);
}
return NULL_RTX;
}
/* Find the definition of the use of REG in INSN. See if the definition
is one of the ways we load a register with a symbol address for a
mips_use_pic_fn_addr_reg_p call. If it is return the symbol reference
of the function, otherwise return NULL_RTX. RECURSE_P is as for
mips_pic_call_symbol_from_set. */
static rtx
mips_find_pic_call_symbol (rtx_insn *insn, rtx reg, bool recurse_p)
{
df_ref use;
struct df_link *defs;
rtx symbol;
use = df_find_use (insn, regno_reg_rtx[REGNO (reg)]);
if (!use)
return NULL_RTX;
defs = DF_REF_CHAIN (use);
if (!defs)
return NULL_RTX;
symbol = mips_pic_call_symbol_from_set (defs->ref, reg, recurse_p);
if (!symbol)
return NULL_RTX;
/* If we have more than one definition, they need to be identical. */
for (defs = defs->next; defs; defs = defs->next)
{
rtx other;
other = mips_pic_call_symbol_from_set (defs->ref, reg, recurse_p);
if (!rtx_equal_p (symbol, other))
return NULL_RTX;
}
return symbol;
}
/* Replace the args_size operand of the call expression CALL with the
call-attribute UNSPEC and fill in SYMBOL as the function symbol. */
static void
mips_annotate_pic_call_expr (rtx call, rtx symbol)
{
rtx args_size;
args_size = XEXP (call, 1);
XEXP (call, 1) = gen_rtx_UNSPEC (GET_MODE (args_size),
gen_rtvec (2, args_size, symbol),
UNSPEC_CALL_ATTR);
}
/* OPERANDS[ARGS_SIZE_OPNO] is the arg_size operand of a CALL expression. See
if instead of the arg_size argument it contains the call attributes. If
yes return true along with setting OPERANDS[ARGS_SIZE_OPNO] to the function
symbol from the call attributes. Also return false if ARGS_SIZE_OPNO is
-1. */
bool
mips_get_pic_call_symbol (rtx *operands, int args_size_opno)
{
rtx args_size, symbol;
if (!TARGET_RELAX_PIC_CALLS || args_size_opno == -1)
return false;
args_size = operands[args_size_opno];
if (GET_CODE (args_size) != UNSPEC)
return false;
gcc_assert (XINT (args_size, 1) == UNSPEC_CALL_ATTR);
symbol = XVECEXP (args_size, 0, 1);
gcc_assert (GET_CODE (symbol) == SYMBOL_REF);
operands[args_size_opno] = symbol;
return true;
}
/* Use DF to annotate PIC indirect calls with the function symbol they
dispatch to. */
static void
mips_annotate_pic_calls (void)
{
basic_block bb;
rtx_insn *insn;
FOR_EACH_BB_FN (bb, cfun)
FOR_BB_INSNS (bb, insn)
{
rtx call, reg, symbol, second_call;
second_call = 0;
call = mips_call_expr_from_insn (insn, &second_call);
if (!call)
continue;
gcc_assert (MEM_P (XEXP (call, 0)));
reg = XEXP (XEXP (call, 0), 0);
if (!REG_P (reg))
continue;
symbol = mips_find_pic_call_symbol (insn, reg, true);
if (symbol)
{
mips_annotate_pic_call_expr (call, symbol);
if (second_call)
mips_annotate_pic_call_expr (second_call, symbol);
}
}
}
/* A temporary variable used by note_uses callbacks, etc. */
static rtx_insn *mips_sim_insn;
/* A structure representing the state of the processor pipeline.
Used by the mips_sim_* family of functions. */
struct mips_sim {
/* The maximum number of instructions that can be issued in a cycle.
(Caches mips_issue_rate.) */
unsigned int issue_rate;
/* The current simulation time. */
unsigned int time;
/* How many more instructions can be issued in the current cycle. */
unsigned int insns_left;
/* LAST_SET[X].INSN is the last instruction to set register X.
LAST_SET[X].TIME is the time at which that instruction was issued.
INSN is null if no instruction has yet set register X. */
struct {
rtx_insn *insn;
unsigned int time;
} last_set[FIRST_PSEUDO_REGISTER];
/* The pipeline's current DFA state. */
state_t dfa_state;
};
/* Reset STATE to the initial simulation state. */
static void
mips_sim_reset (struct mips_sim *state)
{
curr_state = state->dfa_state;
state->time = 0;
state->insns_left = state->issue_rate;
memset (&state->last_set, 0, sizeof (state->last_set));
state_reset (curr_state);
targetm.sched.init (0, false, 0);
advance_state (curr_state);
}
/* Initialize STATE before its first use. DFA_STATE points to an
allocated but uninitialized DFA state. */
static void
mips_sim_init (struct mips_sim *state, state_t dfa_state)
{
if (targetm.sched.init_dfa_pre_cycle_insn)
targetm.sched.init_dfa_pre_cycle_insn ();
if (targetm.sched.init_dfa_post_cycle_insn)
targetm.sched.init_dfa_post_cycle_insn ();
state->issue_rate = mips_issue_rate ();
state->dfa_state = dfa_state;
mips_sim_reset (state);
}
/* Advance STATE by one clock cycle. */
static void
mips_sim_next_cycle (struct mips_sim *state)
{
curr_state = state->dfa_state;
state->time++;
state->insns_left = state->issue_rate;
advance_state (curr_state);
}
/* Advance simulation state STATE until instruction INSN can read
register REG. */
static void
mips_sim_wait_reg (struct mips_sim *state, rtx_insn *insn, rtx reg)
{
unsigned int regno, end_regno;
end_regno = END_REGNO (reg);
for (regno = REGNO (reg); regno < end_regno; regno++)
if (state->last_set[regno].insn != 0)
{
unsigned int t;
t = (state->last_set[regno].time
+ insn_latency (state->last_set[regno].insn, insn));
while (state->time < t)
mips_sim_next_cycle (state);
}
}
/* A note_uses callback. For each register in *X, advance simulation
state DATA until mips_sim_insn can read the register's value. */
static void
mips_sim_wait_regs_1 (rtx *x, void *data)
{
subrtx_var_iterator::array_type array;
FOR_EACH_SUBRTX_VAR (iter, array, *x, NONCONST)
if (REG_P (*iter))
mips_sim_wait_reg ((struct mips_sim *) data, mips_sim_insn, *iter);
}
/* Advance simulation state STATE until all of INSN's register
dependencies are satisfied. */
static void
mips_sim_wait_regs (struct mips_sim *state, rtx_insn *insn)
{
mips_sim_insn = insn;
note_uses (&PATTERN (insn), mips_sim_wait_regs_1, state);
}
/* Advance simulation state STATE until the units required by
instruction INSN are available. */
static void
mips_sim_wait_units (struct mips_sim *state, rtx_insn *insn)
{
state_t tmp_state;
tmp_state = alloca (state_size ());
while (state->insns_left == 0
|| (memcpy (tmp_state, state->dfa_state, state_size ()),
state_transition (tmp_state, insn) >= 0))
mips_sim_next_cycle (state);
}
/* Advance simulation state STATE until INSN is ready to issue. */
static void
mips_sim_wait_insn (struct mips_sim *state, rtx_insn *insn)
{
mips_sim_wait_regs (state, insn);
mips_sim_wait_units (state, insn);
}
/* mips_sim_insn has just set X. Update the LAST_SET array
in simulation state DATA. */
static void
mips_sim_record_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
{
struct mips_sim *state;
state = (struct mips_sim *) data;
if (REG_P (x))
{
unsigned int regno, end_regno;
end_regno = END_REGNO (x);
for (regno = REGNO (x); regno < end_regno; regno++)
{
state->last_set[regno].insn = mips_sim_insn;
state->last_set[regno].time = state->time;
}
}
}
/* Issue instruction INSN in scheduler state STATE. Assume that INSN
can issue immediately (i.e., that mips_sim_wait_insn has already
been called). */
static void
mips_sim_issue_insn (struct mips_sim *state, rtx_insn *insn)
{
curr_state = state->dfa_state;
state_transition (curr_state, insn);
state->insns_left = targetm.sched.variable_issue (0, false, insn,
state->insns_left);
mips_sim_insn = insn;
note_stores (PATTERN (insn), mips_sim_record_set, state);
}
/* Simulate issuing a NOP in state STATE. */
static void
mips_sim_issue_nop (struct mips_sim *state)
{
if (state->insns_left == 0)
mips_sim_next_cycle (state);
state->insns_left--;
}
/* Update simulation state STATE so that it's ready to accept the instruction
after INSN. INSN should be part of the main rtl chain, not a member of a
SEQUENCE. */
static void
mips_sim_finish_insn (struct mips_sim *state, rtx_insn *insn)
{
/* If INSN is a jump with an implicit delay slot, simulate a nop. */
if (JUMP_P (insn))
mips_sim_issue_nop (state);
switch (GET_CODE (SEQ_BEGIN (insn)))
{
case CODE_LABEL:
case CALL_INSN:
/* We can't predict the processor state after a call or label. */
mips_sim_reset (state);
break;
case JUMP_INSN:
/* The delay slots of branch likely instructions are only executed
when the branch is taken. Therefore, if the caller has simulated
the delay slot instruction, STATE does not really reflect the state
of the pipeline for the instruction after the delay slot. Also,
branch likely instructions tend to incur a penalty when not taken,
so there will probably be an extra delay between the branch and
the instruction after the delay slot. */
if (INSN_ANNULLED_BRANCH_P (SEQ_BEGIN (insn)))
mips_sim_reset (state);
break;
default:
break;
}
}
/* Use simulator state STATE to calculate the execution time of
instruction sequence SEQ. */
static unsigned int
mips_seq_time (struct mips_sim *state, rtx_insn *seq)
{
mips_sim_reset (state);
for (rtx_insn *insn = seq; insn; insn = NEXT_INSN (insn))
{
mips_sim_wait_insn (state, insn);
mips_sim_issue_insn (state, insn);
}
return state->time;
}
/* Return the execution-time cost of mips_tuning_info.fast_mult_zero_zero_p
setting SETTING, using STATE to simulate instruction sequences. */
static unsigned int
mips_mult_zero_zero_cost (struct mips_sim *state, bool setting)
{
mips_tuning_info.fast_mult_zero_zero_p = setting;
start_sequence ();
machine_mode dword_mode = TARGET_64BIT ? TImode : DImode;
rtx hilo = gen_rtx_REG (dword_mode, MD_REG_FIRST);
mips_emit_move_or_split (hilo, const0_rtx, SPLIT_FOR_SPEED);
/* If the target provides mulsidi3_32bit then that's the most likely
consumer of the result. Test for bypasses. */
if (dword_mode == DImode && HAVE_maddsidi4)
{
rtx gpr = gen_rtx_REG (SImode, GP_REG_FIRST + 4);
emit_insn (gen_maddsidi4 (hilo, gpr, gpr, hilo));
}
unsigned int time = mips_seq_time (state, get_insns ());
end_sequence ();
return time;
}
/* Check the relative speeds of "MULT $0,$0" and "MTLO $0; MTHI $0"
and set up mips_tuning_info.fast_mult_zero_zero_p accordingly.
Prefer MULT -- which is shorter -- in the event of a tie. */
static void
mips_set_fast_mult_zero_zero_p (struct mips_sim *state)
{
if (TARGET_MIPS16 || !ISA_HAS_HILO)
/* No MTLO or MTHI available for MIPS16. Also, when there are no HI or LO
registers then there is no reason to zero them, arbitrarily choose to
say that "MULT $0,$0" would be faster. */
mips_tuning_info.fast_mult_zero_zero_p = true;
else
{
unsigned int true_time = mips_mult_zero_zero_cost (state, true);
unsigned int false_time = mips_mult_zero_zero_cost (state, false);
mips_tuning_info.fast_mult_zero_zero_p = (true_time <= false_time);
}
}
/* Set up costs based on the current architecture and tuning settings. */
static void
mips_set_tuning_info (void)
{
if (mips_tuning_info.initialized_p
&& mips_tuning_info.arch == mips_arch
&& mips_tuning_info.tune == mips_tune
&& mips_tuning_info.mips16_p == TARGET_MIPS16)
return;
mips_tuning_info.arch = mips_arch;
mips_tuning_info.tune = mips_tune;
mips_tuning_info.mips16_p = TARGET_MIPS16;
mips_tuning_info.initialized_p = true;
dfa_start ();
struct mips_sim state;
mips_sim_init (&state, alloca (state_size ()));
mips_set_fast_mult_zero_zero_p (&state);
dfa_finish ();
}
/* Implement TARGET_EXPAND_TO_RTL_HOOK. */
static void
mips_expand_to_rtl_hook (void)
{
/* We need to call this at a point where we can safely create sequences
of instructions, so TARGET_OVERRIDE_OPTIONS is too early. We also
need to call it at a point where the DFA infrastructure is not
already in use, so we can't just call it lazily on demand.
At present, mips_tuning_info is only needed during post-expand
RTL passes such as split_insns, so this hook should be early enough.
We may need to move the call elsewhere if mips_tuning_info starts
to be used for other things (such as rtx_costs, or expanders that
could be called during gimple optimization). */
mips_set_tuning_info ();
}
/* The VR4130 pipeline issues aligned pairs of instructions together,
but it stalls the second instruction if it depends on the first.
In order to cut down the amount of logic required, this dependence
check is not based on a full instruction decode. Instead, any non-SPECIAL
instruction is assumed to modify the register specified by bits 20-16
(which is usually the "rt" field).
In BEQ, BEQL, BNE and BNEL instructions, the rt field is actually an
input, so we can end up with a false dependence between the branch
and its delay slot. If this situation occurs in instruction INSN,
try to avoid it by swapping rs and rt. */
static void
vr4130_avoid_branch_rt_conflict (rtx_insn *insn)
{
rtx_insn *first, *second;
first = SEQ_BEGIN (insn);
second = SEQ_END (insn);
if (JUMP_P (first)
&& NONJUMP_INSN_P (second)
&& GET_CODE (PATTERN (first)) == SET
&& GET_CODE (SET_DEST (PATTERN (first))) == PC
&& GET_CODE (SET_SRC (PATTERN (first))) == IF_THEN_ELSE)
{
/* Check for the right kind of condition. */
rtx cond = XEXP (SET_SRC (PATTERN (first)), 0);
if ((GET_CODE (cond) == EQ || GET_CODE (cond) == NE)
&& REG_P (XEXP (cond, 0))
&& REG_P (XEXP (cond, 1))
&& reg_referenced_p (XEXP (cond, 1), PATTERN (second))
&& !reg_referenced_p (XEXP (cond, 0), PATTERN (second)))
{
/* SECOND mentions the rt register but not the rs register. */
rtx tmp = XEXP (cond, 0);
XEXP (cond, 0) = XEXP (cond, 1);
XEXP (cond, 1) = tmp;
}
}
}
/* Implement -mvr4130-align. Go through each basic block and simulate the
processor pipeline. If we find that a pair of instructions could execute
in parallel, and the first of those instructions is not 8-byte aligned,
insert a nop to make it aligned. */
static void
vr4130_align_insns (void)
{
struct mips_sim state;
rtx_insn *insn, *subinsn, *last, *last2, *next;
bool aligned_p;
dfa_start ();
/* LAST is the last instruction before INSN to have a nonzero length.
LAST2 is the last such instruction before LAST. */
last = 0;
last2 = 0;
/* ALIGNED_P is true if INSN is known to be at an aligned address. */
aligned_p = true;
mips_sim_init (&state, alloca (state_size ()));
for (insn = get_insns (); insn != 0; insn = next)
{
unsigned int length;
next = NEXT_INSN (insn);
/* See the comment above vr4130_avoid_branch_rt_conflict for details.
This isn't really related to the alignment pass, but we do it on
the fly to avoid a separate instruction walk. */
vr4130_avoid_branch_rt_conflict (insn);
length = get_attr_length (insn);
if (length > 0 && USEFUL_INSN_P (insn))
FOR_EACH_SUBINSN (subinsn, insn)
{
mips_sim_wait_insn (&state, subinsn);
/* If we want this instruction to issue in parallel with the
previous one, make sure that the previous instruction is
aligned. There are several reasons why this isn't worthwhile
when the second instruction is a call:
- Calls are less likely to be performance critical,
- There's a good chance that the delay slot can execute
in parallel with the call.
- The return address would then be unaligned.
In general, if we're going to insert a nop between instructions
X and Y, it's better to insert it immediately after X. That
way, if the nop makes Y aligned, it will also align any labels
between X and Y. */
if (state.insns_left != state.issue_rate
&& !CALL_P (subinsn))
{
if (subinsn == SEQ_BEGIN (insn) && aligned_p)
{
/* SUBINSN is the first instruction in INSN and INSN is
aligned. We want to align the previous instruction
instead, so insert a nop between LAST2 and LAST.
Note that LAST could be either a single instruction
or a branch with a delay slot. In the latter case,
LAST, like INSN, is already aligned, but the delay
slot must have some extra delay that stops it from
issuing at the same time as the branch. We therefore
insert a nop before the branch in order to align its
delay slot. */
gcc_assert (last2);
emit_insn_after (gen_nop (), last2);
aligned_p = false;
}
else if (subinsn != SEQ_BEGIN (insn) && !aligned_p)
{
/* SUBINSN is the delay slot of INSN, but INSN is
currently unaligned. Insert a nop between
LAST and INSN to align it. */
gcc_assert (last);
emit_insn_after (gen_nop (), last);
aligned_p = true;
}
}
mips_sim_issue_insn (&state, subinsn);
}
mips_sim_finish_insn (&state, insn);
/* Update LAST, LAST2 and ALIGNED_P for the next instruction. */
length = get_attr_length (insn);
if (length > 0)
{
/* If the instruction is an asm statement or multi-instruction
mips.md patern, the length is only an estimate. Insert an
8 byte alignment after it so that the following instructions
can be handled correctly. */
if (NONJUMP_INSN_P (SEQ_BEGIN (insn))
&& (recog_memoized (insn) < 0 || length >= 8))
{
next = emit_insn_after (gen_align (GEN_INT (3)), insn);
next = NEXT_INSN (next);
mips_sim_next_cycle (&state);
aligned_p = true;
}
else if (length & 4)
aligned_p = !aligned_p;
last2 = last;
last = insn;
}
/* See whether INSN is an aligned label. */
if (LABEL_P (insn) && label_to_alignment (insn) >= 3)
aligned_p = true;
}
dfa_finish ();
}
/* This structure records that the current function has a LO_SUM
involving SYMBOL_REF or LABEL_REF BASE and that MAX_OFFSET is
the largest offset applied to BASE by all such LO_SUMs. */
struct mips_lo_sum_offset {
rtx base;
HOST_WIDE_INT offset;
};
/* Return a hash value for SYMBOL_REF or LABEL_REF BASE. */
static hashval_t
mips_hash_base (rtx base)
{
int do_not_record_p;
return hash_rtx (base, GET_MODE (base), &do_not_record_p, NULL, false);
}
/* Hashtable helpers. */
struct mips_lo_sum_offset_hasher : free_ptr_hash <mips_lo_sum_offset>
{
typedef rtx_def *compare_type;
static inline hashval_t hash (const mips_lo_sum_offset *);
static inline bool equal (const mips_lo_sum_offset *, const rtx_def *);
};
/* Hash-table callbacks for mips_lo_sum_offsets. */
inline hashval_t
mips_lo_sum_offset_hasher::hash (const mips_lo_sum_offset *entry)
{
return mips_hash_base (entry->base);
}
inline bool
mips_lo_sum_offset_hasher::equal (const mips_lo_sum_offset *entry,
const rtx_def *value)
{
return rtx_equal_p (entry->base, value);
}
typedef hash_table<mips_lo_sum_offset_hasher> mips_offset_table;
/* Look up symbolic constant X in HTAB, which is a hash table of
mips_lo_sum_offsets. If OPTION is NO_INSERT, return true if X can be
paired with a recorded LO_SUM, otherwise record X in the table. */
static bool
mips_lo_sum_offset_lookup (mips_offset_table *htab, rtx x,
enum insert_option option)
{
rtx base, offset;
mips_lo_sum_offset **slot;
struct mips_lo_sum_offset *entry;
/* Split X into a base and offset. */
split_const (x, &base, &offset);
if (UNSPEC_ADDRESS_P (base))
base = UNSPEC_ADDRESS (base);
/* Look up the base in the hash table. */
slot = htab->find_slot_with_hash (base, mips_hash_base (base), option);
if (slot == NULL)
return false;
entry = (struct mips_lo_sum_offset *) *slot;
if (option == INSERT)
{
if (entry == NULL)
{
entry = XNEW (struct mips_lo_sum_offset);
entry->base = base;
entry->offset = INTVAL (offset);
*slot = entry;
}
else
{
if (INTVAL (offset) > entry->offset)
entry->offset = INTVAL (offset);
}
}
return INTVAL (offset) <= entry->offset;
}
/* Search X for LO_SUMs and record them in HTAB. */
static void
mips_record_lo_sums (const_rtx x, mips_offset_table *htab)
{
subrtx_iterator::array_type array;
FOR_EACH_SUBRTX (iter, array, x, NONCONST)
if (GET_CODE (*iter) == LO_SUM)
mips_lo_sum_offset_lookup (htab, XEXP (*iter, 1), INSERT);
}
/* Return true if INSN is a SET of an orphaned high-part relocation.
HTAB is a hash table of mips_lo_sum_offsets that describes all the
LO_SUMs in the current function. */
static bool
mips_orphaned_high_part_p (mips_offset_table *htab, rtx_insn *insn)
{
enum mips_symbol_type type;
rtx x, set;
set = single_set (insn);
if (set)
{
/* Check for %his. */
x = SET_SRC (set);
if (GET_CODE (x) == HIGH
&& absolute_symbolic_operand (XEXP (x, 0), VOIDmode))
return !mips_lo_sum_offset_lookup (htab, XEXP (x, 0), NO_INSERT);
/* Check for local %gots (and %got_pages, which is redundant but OK). */
if (GET_CODE (x) == UNSPEC
&& XINT (x, 1) == UNSPEC_LOAD_GOT
&& mips_symbolic_constant_p (XVECEXP (x, 0, 1),
SYMBOL_CONTEXT_LEA, &type)
&& type == SYMBOL_GOTOFF_PAGE)
return !mips_lo_sum_offset_lookup (htab, XVECEXP (x, 0, 1), NO_INSERT);
}
return false;
}
/* Subroutine of mips_reorg_process_insns. If there is a hazard between
INSN and a previous instruction, avoid it by inserting nops after
instruction AFTER.
*DELAYED_REG and *HILO_DELAY describe the hazards that apply at
this point. If *DELAYED_REG is non-null, INSN must wait a cycle
before using the value of that register. *HILO_DELAY counts the
number of instructions since the last hilo hazard (that is,
the number of instructions since the last MFLO or MFHI).
After inserting nops for INSN, update *DELAYED_REG and *HILO_DELAY
for the next instruction.
LO_REG is an rtx for the LO register, used in dependence checking. */
static void
mips_avoid_hazard (rtx_insn *after, rtx_insn *insn, int *hilo_delay,
rtx *delayed_reg, rtx lo_reg, bool *fs_delay)
{
rtx pattern, set;
int nops, ninsns;
pattern = PATTERN (insn);
/* Do not put the whole function in .set noreorder if it contains
an asm statement. We don't know whether there will be hazards
between the asm statement and the gcc-generated code. */
if (GET_CODE (pattern) == ASM_INPUT || asm_noperands (pattern) >= 0)
cfun->machine->all_noreorder_p = false;
/* Ignore zero-length instructions (barriers and the like). */
ninsns = get_attr_length (insn) / 4;
if (ninsns == 0)
return;
/* Work out how many nops are needed. Note that we only care about
registers that are explicitly mentioned in the instruction's pattern.
It doesn't matter that calls use the argument registers or that they
clobber hi and lo. */
if (*hilo_delay < 2 && reg_set_p (lo_reg, pattern))
nops = 2 - *hilo_delay;
else if (*delayed_reg != 0 && reg_referenced_p (*delayed_reg, pattern))
nops = 1;
/* If processing a forbidden slot hazard then a NOP is required if the
branch instruction was not in a sequence (as the sequence would
imply it is not actually a compact branch anyway) and the current
insn is not an inline asm, and can't go in a delay slot. */
else if (*fs_delay && get_attr_can_delay (insn) == CAN_DELAY_NO
&& GET_CODE (PATTERN (after)) != SEQUENCE
&& GET_CODE (pattern) != ASM_INPUT
&& asm_noperands (pattern) < 0)
nops = 1;
else
nops = 0;
/* Insert the nops between this instruction and the previous one.
Each new nop takes us further from the last hilo hazard. */
*hilo_delay += nops;
while (nops-- > 0)
emit_insn_after (gen_hazard_nop (), after);
/* Set up the state for the next instruction. */
*hilo_delay += ninsns;
*delayed_reg = 0;
*fs_delay = false;
if (INSN_CODE (insn) >= 0)
switch (get_attr_hazard (insn))
{
case HAZARD_NONE:
break;
case HAZARD_FORBIDDEN_SLOT:
if (TARGET_CB_MAYBE)
*fs_delay = true;
break;
case HAZARD_HILO:
*hilo_delay = 0;
break;
case HAZARD_DELAY:
set = single_set (insn);
gcc_assert (set);
*delayed_reg = SET_DEST (set);
break;
}
}
/* Go through the instruction stream and insert nops where necessary.
Also delete any high-part relocations whose partnering low parts
are now all dead. See if the whole function can then be put into
.set noreorder and .set nomacro. */
static void
mips_reorg_process_insns (void)
{
rtx_insn *insn, *last_insn, *subinsn, *next_insn;
rtx lo_reg, delayed_reg;
int hilo_delay;
bool fs_delay;
/* Force all instructions to be split into their final form. */
split_all_insns_noflow ();
/* Recalculate instruction lengths without taking nops into account. */
cfun->machine->ignore_hazard_length_p = true;
shorten_branches (get_insns ());
cfun->machine->all_noreorder_p = true;
/* We don't track MIPS16 PC-relative offsets closely enough to make
a good job of "set .noreorder" code in MIPS16 mode. */
if (TARGET_MIPS16)
cfun->machine->all_noreorder_p = false;
/* Code that doesn't use explicit relocs can't be ".set nomacro". */
if (!TARGET_EXPLICIT_RELOCS)
cfun->machine->all_noreorder_p = false;
/* Profiled functions can't be all noreorder because the profiler
support uses assembler macros. */
if (crtl->profile)
cfun->machine->all_noreorder_p = false;
/* Code compiled with -mfix-vr4120, -mfix-rm7000 or -mfix-24k can't be
all noreorder because we rely on the assembler to work around some
errata. The R5900 too has several bugs. */
if (TARGET_FIX_VR4120
|| TARGET_FIX_RM7000
|| TARGET_FIX_24K
|| TARGET_MIPS5900)
cfun->machine->all_noreorder_p = false;
/* The same is true for -mfix-vr4130 if we might generate MFLO or
MFHI instructions. Note that we avoid using MFLO and MFHI if
the VR4130 MACC and DMACC instructions are available instead;
see the *mfhilo_{si,di}_macc patterns. */
if (TARGET_FIX_VR4130 && !ISA_HAS_MACCHI)
cfun->machine->all_noreorder_p = false;
mips_offset_table htab (37);
/* Make a first pass over the instructions, recording all the LO_SUMs. */
for (insn = get_insns (); insn != 0; insn = NEXT_INSN (insn))
FOR_EACH_SUBINSN (subinsn, insn)
if (USEFUL_INSN_P (subinsn))
{
rtx body = PATTERN (insn);
int noperands = asm_noperands (body);
if (noperands >= 0)
{
rtx *ops = XALLOCAVEC (rtx, noperands);
bool *used = XALLOCAVEC (bool, noperands);
const char *string = decode_asm_operands (body, ops, NULL, NULL,
NULL, NULL);
get_referenced_operands (string, used, noperands);
for (int i = 0; i < noperands; ++i)
if (used[i])
mips_record_lo_sums (ops[i], &htab);
}
else
mips_record_lo_sums (PATTERN (subinsn), &htab);
}
last_insn = 0;
hilo_delay = 2;
delayed_reg = 0;
lo_reg = gen_rtx_REG (SImode, LO_REGNUM);
fs_delay = false;
/* Make a second pass over the instructions. Delete orphaned
high-part relocations or turn them into NOPs. Avoid hazards
by inserting NOPs. */
for (insn = get_insns (); insn != 0; insn = next_insn)
{
next_insn = NEXT_INSN (insn);
if (USEFUL_INSN_P (insn))
{
if (GET_CODE (PATTERN (insn)) == SEQUENCE)
{
/* If we find an orphaned high-part relocation in a delay
slot, it's easier to turn that instruction into a NOP than
to delete it. The delay slot will be a NOP either way. */
FOR_EACH_SUBINSN (subinsn, insn)
if (INSN_P (subinsn))
{
if (mips_orphaned_high_part_p (&htab, subinsn))
{
PATTERN (subinsn) = gen_nop ();
INSN_CODE (subinsn) = CODE_FOR_nop;
}
mips_avoid_hazard (last_insn, subinsn, &hilo_delay,
&delayed_reg, lo_reg, &fs_delay);
}
last_insn = insn;
}
else
{
/* INSN is a single instruction. Delete it if it's an
orphaned high-part relocation. */
if (mips_orphaned_high_part_p (&htab, insn))
delete_insn (insn);
/* Also delete cache barriers if the last instruction
was an annulled branch. INSN will not be speculatively
executed. */
else if (recog_memoized (insn) == CODE_FOR_r10k_cache_barrier
&& last_insn
&& JUMP_P (SEQ_BEGIN (last_insn))
&& INSN_ANNULLED_BRANCH_P (SEQ_BEGIN (last_insn)))
delete_insn (insn);
else
{
mips_avoid_hazard (last_insn, insn, &hilo_delay,
&delayed_reg, lo_reg, &fs_delay);
last_insn = insn;
}
}
}
}
}
/* Return true if the function has a long branch instruction. */
static bool
mips_has_long_branch_p (void)
{
rtx_insn *insn, *subinsn;
int normal_length;
/* We need up-to-date instruction lengths. */
shorten_branches (get_insns ());
/* Look for a branch that is longer than normal. The normal length for
non-MIPS16 branches is 8, because the length includes the delay slot.
It is 4 for MIPS16, because MIPS16 branches are extended instructions,
but they have no delay slot. */
normal_length = (TARGET_MIPS16 ? 4 : 8);
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
FOR_EACH_SUBINSN (subinsn, insn)
if (JUMP_P (subinsn)
&& get_attr_length (subinsn) > normal_length
&& (any_condjump_p (subinsn) || any_uncondjump_p (subinsn)))
return true;
return false;
}
/* If we are using a GOT, but have not decided to use a global pointer yet,
see whether we need one to implement long branches. Convert the ghost
global-pointer instructions into real ones if so. */
static bool
mips_expand_ghost_gp_insns (void)
{
/* Quick exit if we already know that we will or won't need a
global pointer. */
if (!TARGET_USE_GOT
|| cfun->machine->global_pointer == INVALID_REGNUM
|| mips_must_initialize_gp_p ())
return false;
/* Run a full check for long branches. */
if (!mips_has_long_branch_p ())
return false;
/* We've now established that we need $gp. */
cfun->machine->must_initialize_gp_p = true;
split_all_insns_noflow ();
return true;
}
/* Subroutine of mips_reorg to manage passes that require DF. */
static void
mips_df_reorg (void)
{
/* Create def-use chains. */
df_set_flags (DF_EQ_NOTES);
df_chain_add_problem (DF_UD_CHAIN);
df_analyze ();
if (TARGET_RELAX_PIC_CALLS)
mips_annotate_pic_calls ();
if (mips_r10k_cache_barrier != R10K_CACHE_BARRIER_NONE)
r10k_insert_cache_barriers ();
df_finish_pass (false);
}
/* Emit code to load LABEL_REF SRC into MIPS16 register DEST. This is
called very late in mips_reorg, but the caller is required to run
mips16_lay_out_constants on the result. */
static void
mips16_load_branch_target (rtx dest, rtx src)
{
if (TARGET_ABICALLS && !TARGET_ABSOLUTE_ABICALLS)
{
rtx page, low;
if (mips_cfun_has_cprestore_slot_p ())
mips_emit_move (dest, mips_cprestore_slot (dest, true));
else
mips_emit_move (dest, pic_offset_table_rtx);
page = mips_unspec_address (src, SYMBOL_GOTOFF_PAGE);
low = mips_unspec_address (src, SYMBOL_GOT_PAGE_OFST);
emit_insn (gen_rtx_SET (dest,
PMODE_INSN (gen_unspec_got, (dest, page))));
emit_insn (gen_rtx_SET (dest, gen_rtx_LO_SUM (Pmode, dest, low)));
}
else
{
src = mips_unspec_address (src, SYMBOL_ABSOLUTE);
mips_emit_move (dest, src);
}
}
/* If we're compiling a MIPS16 function, look for and split any long branches.
This must be called after all other instruction modifications in
mips_reorg. */
static void
mips16_split_long_branches (void)
{
bool something_changed;
if (!TARGET_MIPS16)
return;
/* Loop until the alignments for all targets are sufficient. */
do
{
rtx_insn *insn;
rtx_jump_insn *jump_insn;
shorten_branches (get_insns ());
something_changed = false;
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
if ((jump_insn = dyn_cast <rtx_jump_insn *> (insn))
&& get_attr_length (jump_insn) > 4
&& (any_condjump_p (jump_insn) || any_uncondjump_p (jump_insn)))
{
rtx old_label, temp, saved_temp;
rtx_code_label *new_label;
rtx target;
rtx_insn *jump, *jump_sequence;
start_sequence ();
/* Free up a MIPS16 register by saving it in $1. */
saved_temp = gen_rtx_REG (Pmode, AT_REGNUM);
temp = gen_rtx_REG (Pmode, GP_REG_FIRST + 2);
emit_move_insn (saved_temp, temp);
/* Load the branch target into TEMP. */
old_label = JUMP_LABEL (jump_insn);
target = gen_rtx_LABEL_REF (Pmode, old_label);
mips16_load_branch_target (temp, target);
/* Jump to the target and restore the register's
original value. */
jump = emit_jump_insn (PMODE_INSN (gen_indirect_jump_and_restore,
(temp, temp, saved_temp)));
JUMP_LABEL (jump) = old_label;
LABEL_NUSES (old_label)++;
/* Rewrite any symbolic references that are supposed to use
a PC-relative constant pool. */
mips16_lay_out_constants (false);
if (simplejump_p (jump_insn))
/* We're going to replace INSN with a longer form. */
new_label = NULL;
else
{
/* Create a branch-around label for the original
instruction. */
new_label = gen_label_rtx ();
emit_label (new_label);
}
jump_sequence = get_insns ();
end_sequence ();
emit_insn_after (jump_sequence, jump_insn);
if (new_label)
invert_jump (jump_insn, new_label, false);
else
delete_insn (jump_insn);
something_changed = true;
}
}
while (something_changed);
}
/* Implement TARGET_MACHINE_DEPENDENT_REORG. */
static void
mips_reorg (void)
{
/* Restore the BLOCK_FOR_INSN pointers, which are needed by DF. Also during
insn splitting in mips16_lay_out_constants, DF insn info is only kept up
to date if the CFG is available. */
if (mips_cfg_in_reorg ())
compute_bb_for_insn ();
mips16_lay_out_constants (true);
if (mips_cfg_in_reorg ())
{
mips_df_reorg ();
free_bb_for_insn ();
}
}
/* We use a machine specific pass to do a second machine dependent reorg
pass after delay branch scheduling. */
static unsigned int
mips_machine_reorg2 (void)
{
mips_reorg_process_insns ();
if (!TARGET_MIPS16
&& TARGET_EXPLICIT_RELOCS
&& TUNE_MIPS4130
&& TARGET_VR4130_ALIGN)
vr4130_align_insns ();
if (mips_expand_ghost_gp_insns ())
/* The expansion could invalidate some of the VR4130 alignment
optimizations, but this should be an extremely rare case anyhow. */
mips_reorg_process_insns ();
mips16_split_long_branches ();
return 0;
}
namespace {
const pass_data pass_data_mips_machine_reorg2 =
{
RTL_PASS, /* type */
"mach2", /* name */
OPTGROUP_NONE, /* optinfo_flags */
TV_MACH_DEP, /* tv_id */
0, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
0, /* todo_flags_finish */
};
class pass_mips_machine_reorg2 : public rtl_opt_pass
{
public:
pass_mips_machine_reorg2(gcc::context *ctxt)
: rtl_opt_pass(pass_data_mips_machine_reorg2, ctxt)
{}
/* opt_pass methods: */
virtual unsigned int execute (function *) { return mips_machine_reorg2 (); }
}; // class pass_mips_machine_reorg2
} // anon namespace
rtl_opt_pass *
make_pass_mips_machine_reorg2 (gcc::context *ctxt)
{
return new pass_mips_machine_reorg2 (ctxt);
}
/* Implement TARGET_ASM_OUTPUT_MI_THUNK. Generate rtl rather than asm text
in order to avoid duplicating too much logic from elsewhere. */
static void
mips_output_mi_thunk (FILE *file, tree thunk_fndecl ATTRIBUTE_UNUSED,
HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset,
tree function)
{
rtx this_rtx, temp1, temp2, fnaddr;
rtx_insn *insn;
bool use_sibcall_p;
/* Pretend to be a post-reload pass while generating rtl. */
reload_completed = 1;
/* Mark the end of the (empty) prologue. */
emit_note (NOTE_INSN_PROLOGUE_END);
/* Determine if we can use a sibcall to call FUNCTION directly. */
fnaddr = XEXP (DECL_RTL (function), 0);
use_sibcall_p = (mips_function_ok_for_sibcall (function, NULL)
&& const_call_insn_operand (fnaddr, Pmode));
/* Determine if we need to load FNADDR from the GOT. */
if (!use_sibcall_p
&& (mips_got_symbol_type_p
(mips_classify_symbol (fnaddr, SYMBOL_CONTEXT_LEA))))
{
/* Pick a global pointer. Use a call-clobbered register if
TARGET_CALL_SAVED_GP. */
cfun->machine->global_pointer
= TARGET_CALL_SAVED_GP ? 15 : GLOBAL_POINTER_REGNUM;
cfun->machine->must_initialize_gp_p = true;
SET_REGNO (pic_offset_table_rtx, cfun->machine->global_pointer);
/* Set up the global pointer for n32 or n64 abicalls. */
mips_emit_loadgp ();
}
/* We need two temporary registers in some cases. */
temp1 = gen_rtx_REG (Pmode, 2);
temp2 = gen_rtx_REG (Pmode, 3);
/* Find out which register contains the "this" pointer. */
if (aggregate_value_p (TREE_TYPE (TREE_TYPE (function)), function))
this_rtx = gen_rtx_REG (Pmode, GP_ARG_FIRST + 1);
else
this_rtx = gen_rtx_REG (Pmode, GP_ARG_FIRST);
/* Add DELTA to THIS_RTX. */
if (delta != 0)
{
rtx offset = GEN_INT (delta);
if (!SMALL_OPERAND (delta))
{
mips_emit_move (temp1, offset);
offset = temp1;
}
emit_insn (gen_add3_insn (this_rtx, this_rtx, offset));
}
/* If needed, add *(*THIS_RTX + VCALL_OFFSET) to THIS_RTX. */
if (vcall_offset != 0)
{
rtx addr;
/* Set TEMP1 to *THIS_RTX. */
mips_emit_move (temp1, gen_rtx_MEM (Pmode, this_rtx));
/* Set ADDR to a legitimate address for *THIS_RTX + VCALL_OFFSET. */
addr = mips_add_offset (temp2, temp1, vcall_offset);
/* Load the offset and add it to THIS_RTX. */
mips_emit_move (temp1, gen_rtx_MEM (Pmode, addr));
emit_insn (gen_add3_insn (this_rtx, this_rtx, temp1));
}
/* Jump to the target function. Use a sibcall if direct jumps are
allowed, otherwise load the address into a register first. */
if (use_sibcall_p)
{
insn = emit_call_insn (gen_sibcall_internal (fnaddr, const0_rtx));
SIBLING_CALL_P (insn) = 1;
}
else
{
/* This is messy. GAS treats "la $25,foo" as part of a call
sequence and may allow a global "foo" to be lazily bound.
The general move patterns therefore reject this combination.
In this context, lazy binding would actually be OK
for TARGET_CALL_CLOBBERED_GP, but it's still wrong for
TARGET_CALL_SAVED_GP; see mips_load_call_address.
We must therefore load the address via a temporary
register if mips_dangerous_for_la25_p.
If we jump to the temporary register rather than $25,
the assembler can use the move insn to fill the jump's
delay slot.
We can use the same technique for MIPS16 code, where $25
is not a valid JR register. */
if (TARGET_USE_PIC_FN_ADDR_REG
&& !TARGET_MIPS16
&& !mips_dangerous_for_la25_p (fnaddr))
temp1 = gen_rtx_REG (Pmode, PIC_FUNCTION_ADDR_REGNUM);
mips_load_call_address (MIPS_CALL_SIBCALL, temp1, fnaddr);
if (TARGET_USE_PIC_FN_ADDR_REG
&& REGNO (temp1) != PIC_FUNCTION_ADDR_REGNUM)
mips_emit_move (gen_rtx_REG (Pmode, PIC_FUNCTION_ADDR_REGNUM), temp1);
emit_jump_insn (gen_indirect_jump (temp1));
}
/* Run just enough of rest_of_compilation. This sequence was
"borrowed" from alpha.c. */
insn = get_insns ();
split_all_insns_noflow ();
mips16_lay_out_constants (true);
shorten_branches (insn);
final_start_function (insn, file, 1);
final (insn, file, 1);
final_end_function ();
/* Clean up the vars set above. Note that final_end_function resets
the global pointer for us. */
reload_completed = 0;
}
/* The last argument passed to mips_set_compression_mode,
or negative if the function hasn't been called yet. */
static unsigned int old_compression_mode = -1;
/* Set up the target-dependent global state for ISA mode COMPRESSION_MODE,
which is either MASK_MIPS16 or MASK_MICROMIPS. */
static void
mips_set_compression_mode (unsigned int compression_mode)
{
if (compression_mode == old_compression_mode)
return;
/* Restore base settings of various flags. */
target_flags = mips_base_target_flags;
flag_schedule_insns = mips_base_schedule_insns;
flag_reorder_blocks_and_partition = mips_base_reorder_blocks_and_partition;
flag_move_loop_invariants = mips_base_move_loop_invariants;
align_loops = mips_base_align_loops;
align_jumps = mips_base_align_jumps;
align_functions = mips_base_align_functions;
target_flags &= ~(MASK_MIPS16 | MASK_MICROMIPS);
target_flags |= compression_mode;
if (compression_mode & MASK_MIPS16)
{
/* Switch to MIPS16 mode. */
target_flags |= MASK_MIPS16;
/* Turn off SYNCI if it was on, MIPS16 doesn't support it. */
target_flags &= ~MASK_SYNCI;
/* Don't run the scheduler before reload, since it tends to
increase register pressure. */
flag_schedule_insns = 0;
/* Don't do hot/cold partitioning. mips16_lay_out_constants expects
the whole function to be in a single section. */
flag_reorder_blocks_and_partition = 0;
/* Don't move loop invariants, because it tends to increase
register pressure. It also introduces an extra move in cases
where the constant is the first operand in a two-operand binary
instruction, or when it forms a register argument to a functon
call. */
flag_move_loop_invariants = 0;
target_flags |= MASK_EXPLICIT_RELOCS;
/* Experiments suggest we get the best overall section-anchor
results from using the range of an unextended LW or SW. Code
that makes heavy use of byte or short accesses can do better
with ranges of 0...31 and 0...63 respectively, but most code is
sensitive to the range of LW and SW instead. */
targetm.min_anchor_offset = 0;
targetm.max_anchor_offset = 127;
targetm.const_anchor = 0;
/* MIPS16 has no BAL instruction. */
target_flags &= ~MASK_RELAX_PIC_CALLS;
/* The R4000 errata don't apply to any known MIPS16 cores.
It's simpler to make the R4000 fixes and MIPS16 mode
mutually exclusive. */
target_flags &= ~MASK_FIX_R4000;
if (flag_pic && !TARGET_OLDABI)
sorry ("MIPS16 PIC for ABIs other than o32 and o64");
if (TARGET_XGOT)
sorry ("MIPS16 -mxgot code");
if (TARGET_HARD_FLOAT_ABI && !TARGET_OLDABI)
sorry ("hard-float MIPS16 code for ABIs other than o32 and o64");
}
else
{
/* Switch to microMIPS or the standard encoding. */
if (TARGET_MICROMIPS)
/* Avoid branch likely. */
target_flags &= ~MASK_BRANCHLIKELY;
/* Provide default values for align_* for 64-bit targets. */
if (TARGET_64BIT)
{
if (align_loops == 0)
align_loops = 8;
if (align_jumps == 0)
align_jumps = 8;
if (align_functions == 0)
align_functions = 8;
}
targetm.min_anchor_offset = -32768;
targetm.max_anchor_offset = 32767;
targetm.const_anchor = 0x8000;
}
/* (Re)initialize MIPS target internals for new ISA. */
mips_init_relocs ();
if (compression_mode & MASK_MIPS16)
{
if (!mips16_globals)
mips16_globals = save_target_globals_default_opts ();
else
restore_target_globals (mips16_globals);
}
else if (compression_mode & MASK_MICROMIPS)
{
if (!micromips_globals)
micromips_globals = save_target_globals_default_opts ();
else
restore_target_globals (micromips_globals);
}
else
restore_target_globals (&default_target_globals);
old_compression_mode = compression_mode;
}
/* Implement TARGET_SET_CURRENT_FUNCTION. Decide whether the current
function should use the MIPS16 or microMIPS ISA and switch modes
accordingly. */
static void
mips_set_current_function (tree fndecl)
{
mips_set_compression_mode (mips_get_compress_mode (fndecl));
}
/* Allocate a chunk of memory for per-function machine-dependent data. */
static struct machine_function *
mips_init_machine_status (void)
{
return ggc_cleared_alloc<machine_function> ();
}
/* Return the processor associated with the given ISA level, or null
if the ISA isn't valid. */
static const struct mips_cpu_info *
mips_cpu_info_from_isa (int isa)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE (mips_cpu_info_table); i++)
if (mips_cpu_info_table[i].isa == isa)
return mips_cpu_info_table + i;
return NULL;
}
/* Return a mips_cpu_info entry determined by an option valued
OPT. */
static const struct mips_cpu_info *
mips_cpu_info_from_opt (int opt)
{
switch (opt)
{
case MIPS_ARCH_OPTION_FROM_ABI:
/* 'from-abi' selects the most compatible architecture for the
given ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit
ABIs. For the EABIs, we have to decide whether we're using
the 32-bit or 64-bit version. */
return mips_cpu_info_from_isa (ABI_NEEDS_32BIT_REGS ? 1
: ABI_NEEDS_64BIT_REGS ? 3
: (TARGET_64BIT ? 3 : 1));
case MIPS_ARCH_OPTION_NATIVE:
gcc_unreachable ();
default:
return &mips_cpu_info_table[opt];
}
}
/* Return a default mips_cpu_info entry, given that no -march= option
was explicitly specified. */
static const struct mips_cpu_info *
mips_default_arch (void)
{
#if defined (MIPS_CPU_STRING_DEFAULT)
unsigned int i;
for (i = 0; i < ARRAY_SIZE (mips_cpu_info_table); i++)
if (strcmp (mips_cpu_info_table[i].name, MIPS_CPU_STRING_DEFAULT) == 0)
return mips_cpu_info_table + i;
gcc_unreachable ();
#elif defined (MIPS_ISA_DEFAULT)
return mips_cpu_info_from_isa (MIPS_ISA_DEFAULT);
#else
/* 'from-abi' makes a good default: you get whatever the ABI
requires. */
return mips_cpu_info_from_opt (MIPS_ARCH_OPTION_FROM_ABI);
#endif
}
/* Set up globals to generate code for the ISA or processor
described by INFO. */
static void
mips_set_architecture (const struct mips_cpu_info *info)
{
if (info != 0)
{
mips_arch_info = info;
mips_arch = info->cpu;
mips_isa = info->isa;
if (mips_isa < 32)
mips_isa_rev = 0;
else
mips_isa_rev = (mips_isa & 31) + 1;
}
}
/* Likewise for tuning. */
static void
mips_set_tune (const struct mips_cpu_info *info)
{
if (info != 0)
{
mips_tune_info = info;
mips_tune = info->cpu;
}
}
/* Implement TARGET_OPTION_OVERRIDE. */
static void
mips_option_override (void)
{
int i, start, regno, mode;
if (global_options_set.x_mips_isa_option)
mips_isa_option_info = &mips_cpu_info_table[mips_isa_option];
#ifdef SUBTARGET_OVERRIDE_OPTIONS
SUBTARGET_OVERRIDE_OPTIONS;
#endif
/* MIPS16 and microMIPS cannot coexist. */
if (TARGET_MICROMIPS && TARGET_MIPS16)
error ("unsupported combination: %s", "-mips16 -mmicromips");
/* Save the base compression state and process flags as though we
were generating uncompressed code. */
mips_base_compression_flags = TARGET_COMPRESSION;
target_flags &= ~TARGET_COMPRESSION;
/* -mno-float overrides -mhard-float and -msoft-float. */
if (TARGET_NO_FLOAT)
{
target_flags |= MASK_SOFT_FLOAT_ABI;
target_flags_explicit |= MASK_SOFT_FLOAT_ABI;
}
if (TARGET_FLIP_MIPS16)
TARGET_INTERLINK_COMPRESSED = 1;
/* Set the small data limit. */
mips_small_data_threshold = (global_options_set.x_g_switch_value
? g_switch_value
: MIPS_DEFAULT_GVALUE);
/* The following code determines the architecture and register size.
Similar code was added to GAS 2.14 (see tc-mips.c:md_after_parse_args()).
The GAS and GCC code should be kept in sync as much as possible. */
if (global_options_set.x_mips_arch_option)
mips_set_architecture (mips_cpu_info_from_opt (mips_arch_option));
if (mips_isa_option_info != 0)
{
if (mips_arch_info == 0)
mips_set_architecture (mips_isa_option_info);
else if (mips_arch_info->isa != mips_isa_option_info->isa)
error ("%<-%s%> conflicts with the other architecture options, "
"which specify a %s processor",
mips_isa_option_info->name,
mips_cpu_info_from_isa (mips_arch_info->isa)->name);
}
if (mips_arch_info == 0)
mips_set_architecture (mips_default_arch ());
if (ABI_NEEDS_64BIT_REGS && !ISA_HAS_64BIT_REGS)
error ("%<-march=%s%> is not compatible with the selected ABI",
mips_arch_info->name);
/* Optimize for mips_arch, unless -mtune selects a different processor. */
if (global_options_set.x_mips_tune_option)
mips_set_tune (mips_cpu_info_from_opt (mips_tune_option));
if (mips_tune_info == 0)
mips_set_tune (mips_arch_info);
if ((target_flags_explicit & MASK_64BIT) != 0)
{
/* The user specified the size of the integer registers. Make sure
it agrees with the ABI and ISA. */
if (TARGET_64BIT && !ISA_HAS_64BIT_REGS)
error ("%<-mgp64%> used with a 32-bit processor");
else if (!TARGET_64BIT && ABI_NEEDS_64BIT_REGS)
error ("%<-mgp32%> used with a 64-bit ABI");
else if (TARGET_64BIT && ABI_NEEDS_32BIT_REGS)
error ("%<-mgp64%> used with a 32-bit ABI");
}
else
{
/* Infer the integer register size from the ABI and processor.
Restrict ourselves to 32-bit registers if that's all the
processor has, or if the ABI cannot handle 64-bit registers. */
if (ABI_NEEDS_32BIT_REGS || !ISA_HAS_64BIT_REGS)
target_flags &= ~MASK_64BIT;
else
target_flags |= MASK_64BIT;
}
if ((target_flags_explicit & MASK_FLOAT64) != 0)
{
if (mips_isa_rev >= 6 && !TARGET_FLOAT64)
error ("the %qs architecture does not support %<-mfp32%>",
mips_arch_info->name);
else if (TARGET_SINGLE_FLOAT && TARGET_FLOAT64)
error ("unsupported combination: %s", "-mfp64 -msingle-float");
else if (TARGET_64BIT && TARGET_DOUBLE_FLOAT && !TARGET_FLOAT64)
error ("unsupported combination: %s", "-mgp64 -mfp32 -mdouble-float");
else if (!TARGET_64BIT && TARGET_FLOAT64)
{
if (!ISA_HAS_MXHC1)
error ("%<-mgp32%> and %<-mfp64%> can only be combined if"
" the target supports the mfhc1 and mthc1 instructions");
else if (mips_abi != ABI_32)
error ("%<-mgp32%> and %<-mfp64%> can only be combined when using"
" the o32 ABI");
}
}
else
{
/* -msingle-float selects 32-bit float registers. On r6 and later,
-mdouble-float selects 64-bit float registers, since the old paired
register model is not supported. In other cases the float registers
should be the same size as the integer ones. */
if (mips_isa_rev >= 6 && TARGET_DOUBLE_FLOAT && !TARGET_FLOATXX)
target_flags |= MASK_FLOAT64;
else if (TARGET_64BIT && TARGET_DOUBLE_FLOAT)
target_flags |= MASK_FLOAT64;
else
target_flags &= ~MASK_FLOAT64;
}
if (mips_abi != ABI_32 && TARGET_FLOATXX)
error ("%<-mfpxx%> can only be used with the o32 ABI");
else if (TARGET_FLOAT64 && TARGET_FLOATXX)
error ("unsupported combination: %s", "-mfp64 -mfpxx");
else if (ISA_MIPS1 && !TARGET_FLOAT32)
error ("%<-march=%s%> requires %<-mfp32%>", mips_arch_info->name);
else if (TARGET_FLOATXX && !mips_lra_flag)
error ("%<-mfpxx%> requires %<-mlra%>");
/* End of code shared with GAS. */
/* The R5900 FPU only supports single precision. */
if (TARGET_MIPS5900 && TARGET_HARD_FLOAT_ABI && TARGET_DOUBLE_FLOAT)
error ("unsupported combination: %s",
"-march=r5900 -mhard-float -mdouble-float");
/* If a -mlong* option was given, check that it matches the ABI,
otherwise infer the -mlong* setting from the other options. */
if ((target_flags_explicit & MASK_LONG64) != 0)
{
if (TARGET_LONG64)
{
if (mips_abi == ABI_N32)
error ("%qs is incompatible with %qs", "-mabi=n32", "-mlong64");
else if (mips_abi == ABI_32)
error ("%qs is incompatible with %qs", "-mabi=32", "-mlong64");
else if (mips_abi == ABI_O64 && TARGET_ABICALLS)
/* We have traditionally allowed non-abicalls code to use
an LP64 form of o64. However, it would take a bit more
effort to support the combination of 32-bit GOT entries
and 64-bit pointers, so we treat the abicalls case as
an error. */
error ("the combination of %qs and %qs is incompatible with %qs",
"-mabi=o64", "-mabicalls", "-mlong64");
}
else
{
if (mips_abi == ABI_64)
error ("%qs is incompatible with %qs", "-mabi=64", "-mlong32");
}
}
else
{
if ((mips_abi == ABI_EABI && TARGET_64BIT) || mips_abi == ABI_64)
target_flags |= MASK_LONG64;
else
target_flags &= ~MASK_LONG64;
}
if (!TARGET_OLDABI)
flag_pcc_struct_return = 0;
/* Decide which rtx_costs structure to use. */
if (optimize_size)
mips_cost = &mips_rtx_cost_optimize_size;
else
mips_cost = &mips_rtx_cost_data[mips_tune];
/* If the user hasn't specified a branch cost, use the processor's
default. */
if (mips_branch_cost == 0)
mips_branch_cost = mips_cost->branch_cost;
/* If neither -mbranch-likely nor -mno-branch-likely was given
on the command line, set MASK_BRANCHLIKELY based on the target
architecture and tuning flags. Annulled delay slots are a
size win, so we only consider the processor-specific tuning
for !optimize_size. */
if ((target_flags_explicit & MASK_BRANCHLIKELY) == 0)
{
if (ISA_HAS_BRANCHLIKELY
&& (optimize_size
|| (mips_tune_info->tune_flags & PTF_AVOID_BRANCHLIKELY) == 0))
target_flags |= MASK_BRANCHLIKELY;
else
target_flags &= ~MASK_BRANCHLIKELY;
}
else if (TARGET_BRANCHLIKELY && !ISA_HAS_BRANCHLIKELY)
warning (0, "the %qs architecture does not support branch-likely"
" instructions", mips_arch_info->name);
/* If the user hasn't specified -mimadd or -mno-imadd set
MASK_IMADD based on the target architecture and tuning
flags. */
if ((target_flags_explicit & MASK_IMADD) == 0)
{
if (ISA_HAS_MADD_MSUB &&
(mips_tune_info->tune_flags & PTF_AVOID_IMADD) == 0)
target_flags |= MASK_IMADD;
else
target_flags &= ~MASK_IMADD;
}
else if (TARGET_IMADD && !ISA_HAS_MADD_MSUB)
warning (0, "the %qs architecture does not support madd or msub"
" instructions", mips_arch_info->name);
/* If neither -modd-spreg nor -mno-odd-spreg was given on the command
line, set MASK_ODD_SPREG based on the ISA and ABI. */
if ((target_flags_explicit & MASK_ODD_SPREG) == 0)
{
/* Disable TARGET_ODD_SPREG when using the o32 FPXX ABI. */
if (!ISA_HAS_ODD_SPREG || TARGET_FLOATXX)
target_flags &= ~MASK_ODD_SPREG;
else
target_flags |= MASK_ODD_SPREG;
}
else if (TARGET_ODD_SPREG && !ISA_HAS_ODD_SPREG)
warning (0, "the %qs architecture does not support odd single-precision"
" registers", mips_arch_info->name);
if (!TARGET_ODD_SPREG && TARGET_64BIT)
{
error ("unsupported combination: %s", "-mgp64 -mno-odd-spreg");
/* Allow compilation to continue further even though invalid output
will be produced. */
target_flags |= MASK_ODD_SPREG;
}
if (!ISA_HAS_COMPACT_BRANCHES && mips_cb == MIPS_CB_ALWAYS)
{
error ("unsupported combination: %qs%s %s",
mips_arch_info->name, TARGET_MICROMIPS ? " -mmicromips" : "",
"-mcompact-branches=always");
}
else if (!ISA_HAS_DELAY_SLOTS && mips_cb == MIPS_CB_NEVER)
{
error ("unsupported combination: %qs%s %s",
mips_arch_info->name, TARGET_MICROMIPS ? " -mmicromips" : "",
"-mcompact-branches=never");
}
/* Require explicit relocs for MIPS R6 onwards. This enables simplification
of the compact branch and jump support through the backend. */
if (!TARGET_EXPLICIT_RELOCS && mips_isa_rev >= 6)
{
error ("unsupported combination: %qs %s",
mips_arch_info->name, "-mno-explicit-relocs");
}
/* The effect of -mabicalls isn't defined for the EABI. */
if (mips_abi == ABI_EABI && TARGET_ABICALLS)
{
error ("unsupported combination: %s", "-mabicalls -mabi=eabi");
target_flags &= ~MASK_ABICALLS;
}
/* PIC requires -mabicalls. */
if (flag_pic)
{
if (mips_abi == ABI_EABI)
error ("cannot generate position-independent code for %qs",
"-mabi=eabi");
else if (!TARGET_ABICALLS)
error ("position-independent code requires %qs", "-mabicalls");
}
if (TARGET_ABICALLS_PIC2)
/* We need to set flag_pic for executables as well as DSOs
because we may reference symbols that are not defined in
the final executable. (MIPS does not use things like
copy relocs, for example.)
There is a body of code that uses __PIC__ to distinguish
between -mabicalls and -mno-abicalls code. The non-__PIC__
variant is usually appropriate for TARGET_ABICALLS_PIC0, as
long as any indirect jumps use $25. */
flag_pic = 1;
/* -mvr4130-align is a "speed over size" optimization: it usually produces
faster code, but at the expense of more nops. Enable it at -O3 and
above. */
if (optimize > 2 && (target_flags_explicit & MASK_VR4130_ALIGN) == 0)
target_flags |= MASK_VR4130_ALIGN;
/* Prefer a call to memcpy over inline code when optimizing for size,
though see MOVE_RATIO in mips.h. */
if (optimize_size && (target_flags_explicit & MASK_MEMCPY) == 0)
target_flags |= MASK_MEMCPY;
/* If we have a nonzero small-data limit, check that the -mgpopt
setting is consistent with the other target flags. */
if (mips_small_data_threshold > 0)
{
if (!TARGET_GPOPT)
{
if (!TARGET_EXPLICIT_RELOCS)
error ("%<-mno-gpopt%> needs %<-mexplicit-relocs%>");
TARGET_LOCAL_SDATA = false;
TARGET_EXTERN_SDATA = false;
}
else
{
if (TARGET_VXWORKS_RTP)
warning (0, "cannot use small-data accesses for %qs", "-mrtp");
if (TARGET_ABICALLS)
warning (0, "cannot use small-data accesses for %qs",
"-mabicalls");
}
}
/* Set NaN and ABS defaults. */
if (mips_nan == MIPS_IEEE_754_DEFAULT && !ISA_HAS_IEEE_754_LEGACY)
mips_nan = MIPS_IEEE_754_2008;
if (mips_abs == MIPS_IEEE_754_DEFAULT && !ISA_HAS_IEEE_754_LEGACY)
mips_abs = MIPS_IEEE_754_2008;
/* Check for IEEE 754 legacy/2008 support. */
if ((mips_nan == MIPS_IEEE_754_LEGACY
|| mips_abs == MIPS_IEEE_754_LEGACY)
&& !ISA_HAS_IEEE_754_LEGACY)
warning (0, "the %qs architecture does not support %<-m%s=legacy%>",
mips_arch_info->name,
mips_nan == MIPS_IEEE_754_LEGACY ? "nan" : "abs");
if ((mips_nan == MIPS_IEEE_754_2008
|| mips_abs == MIPS_IEEE_754_2008)
&& !ISA_HAS_IEEE_754_2008)
warning (0, "the %qs architecture does not support %<-m%s=2008%>",
mips_arch_info->name,
mips_nan == MIPS_IEEE_754_2008 ? "nan" : "abs");
/* Pre-IEEE 754-2008 MIPS hardware has a quirky almost-IEEE format
for all its floating point. */
if (mips_nan != MIPS_IEEE_754_2008)
{
REAL_MODE_FORMAT (SFmode) = &mips_single_format;
REAL_MODE_FORMAT (DFmode) = &mips_double_format;
REAL_MODE_FORMAT (TFmode) = &mips_quad_format;
}
/* Make sure that the user didn't turn off paired single support when
MIPS-3D support is requested. */
if (TARGET_MIPS3D
&& (target_flags_explicit & MASK_PAIRED_SINGLE_FLOAT)
&& !TARGET_PAIRED_SINGLE_FLOAT)
error ("%<-mips3d%> requires %<-mpaired-single%>");
/* If TARGET_MIPS3D, enable MASK_PAIRED_SINGLE_FLOAT. */
if (TARGET_MIPS3D)
target_flags |= MASK_PAIRED_SINGLE_FLOAT;
/* Make sure that when TARGET_PAIRED_SINGLE_FLOAT is true, TARGET_FLOAT64
and TARGET_HARD_FLOAT_ABI are both true. */
if (TARGET_PAIRED_SINGLE_FLOAT && !(TARGET_FLOAT64 && TARGET_HARD_FLOAT_ABI))
{
error ("%qs must be used with %qs",
TARGET_MIPS3D ? "-mips3d" : "-mpaired-single",
TARGET_HARD_FLOAT_ABI ? "-mfp64" : "-mhard-float");
target_flags &= ~MASK_PAIRED_SINGLE_FLOAT;
TARGET_MIPS3D = 0;
}
/* Make sure that -mpaired-single is only used on ISAs that support it.
We must disable it otherwise since it relies on other ISA properties
like ISA_HAS_8CC having their normal values. */
if (TARGET_PAIRED_SINGLE_FLOAT && !ISA_HAS_PAIRED_SINGLE)
{
error ("the %qs architecture does not support paired-single"
" instructions", mips_arch_info->name);
target_flags &= ~MASK_PAIRED_SINGLE_FLOAT;
TARGET_MIPS3D = 0;
}
if (mips_r10k_cache_barrier != R10K_CACHE_BARRIER_NONE
&& !TARGET_CACHE_BUILTIN)
{
error ("%qs requires a target that provides the %qs instruction",
"-mr10k-cache-barrier", "cache");
mips_r10k_cache_barrier = R10K_CACHE_BARRIER_NONE;
}
/* If TARGET_DSPR2, enable TARGET_DSP. */
if (TARGET_DSPR2)
TARGET_DSP = true;
if (TARGET_DSP && mips_isa_rev >= 6)
{
error ("the %qs architecture does not support DSP instructions",
mips_arch_info->name);
TARGET_DSP = false;
TARGET_DSPR2 = false;
}
/* .eh_frame addresses should be the same width as a C pointer.
Most MIPS ABIs support only one pointer size, so the assembler
will usually know exactly how big an .eh_frame address is.
Unfortunately, this is not true of the 64-bit EABI. The ABI was
originally defined to use 64-bit pointers (i.e. it is LP64), and
this is still the default mode. However, we also support an n32-like
ILP32 mode, which is selected by -mlong32. The problem is that the
assembler has traditionally not had an -mlong option, so it has
traditionally not known whether we're using the ILP32 or LP64 form.
As it happens, gas versions up to and including 2.19 use _32-bit_
addresses for EABI64 .cfi_* directives. This is wrong for the
default LP64 mode, so we can't use the directives by default.
Moreover, since gas's current behavior is at odds with gcc's
default behavior, it seems unwise to rely on future versions
of gas behaving the same way. We therefore avoid using .cfi
directives for -mlong32 as well. */
if (mips_abi == ABI_EABI && TARGET_64BIT)
flag_dwarf2_cfi_asm = 0;
/* .cfi_* directives generate a read-only section, so fall back on
manual .eh_frame creation if we need the section to be writable. */
if (TARGET_WRITABLE_EH_FRAME)
flag_dwarf2_cfi_asm = 0;
mips_init_print_operand_punct ();
/* Set up array to map GCC register number to debug register number.
Ignore the special purpose register numbers. */
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
{
mips_dbx_regno[i] = IGNORED_DWARF_REGNUM;
if (GP_REG_P (i) || FP_REG_P (i) || ALL_COP_REG_P (i))
mips_dwarf_regno[i] = i;
else
mips_dwarf_regno[i] = INVALID_REGNUM;
}
start = GP_DBX_FIRST - GP_REG_FIRST;
for (i = GP_REG_FIRST; i <= GP_REG_LAST; i++)
mips_dbx_regno[i] = i + start;
start = FP_DBX_FIRST - FP_REG_FIRST;
for (i = FP_REG_FIRST; i <= FP_REG_LAST; i++)
mips_dbx_regno[i] = i + start;
/* Accumulator debug registers use big-endian ordering. */
mips_dbx_regno[HI_REGNUM] = MD_DBX_FIRST + 0;
mips_dbx_regno[LO_REGNUM] = MD_DBX_FIRST + 1;
mips_dwarf_regno[HI_REGNUM] = MD_REG_FIRST + 0;
mips_dwarf_regno[LO_REGNUM] = MD_REG_FIRST + 1;
for (i = DSP_ACC_REG_FIRST; i <= DSP_ACC_REG_LAST; i += 2)
{
mips_dwarf_regno[i + TARGET_LITTLE_ENDIAN] = i;
mips_dwarf_regno[i + TARGET_BIG_ENDIAN] = i + 1;
}
/* Set up mips_hard_regno_mode_ok. */
for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
mips_hard_regno_mode_ok[mode][regno]
= mips_hard_regno_mode_ok_p (regno, (machine_mode) mode);
/* Function to allocate machine-dependent function status. */
init_machine_status = &mips_init_machine_status;
/* Default to working around R4000 errata only if the processor
was selected explicitly. */
if ((target_flags_explicit & MASK_FIX_R4000) == 0
&& strcmp (mips_arch_info->name, "r4000") == 0)
target_flags |= MASK_FIX_R4000;
/* Default to working around R4400 errata only if the processor
was selected explicitly. */
if ((target_flags_explicit & MASK_FIX_R4400) == 0
&& strcmp (mips_arch_info->name, "r4400") == 0)
target_flags |= MASK_FIX_R4400;
/* Default to working around R10000 errata only if the processor
was selected explicitly. */
if ((target_flags_explicit & MASK_FIX_R10000) == 0
&& strcmp (mips_arch_info->name, "r10000") == 0)
target_flags |= MASK_FIX_R10000;
/* Make sure that branch-likely instructions available when using
-mfix-r10000. The instructions are not available if either:
1. -mno-branch-likely was passed.
2. The selected ISA does not support branch-likely and
the command line does not include -mbranch-likely. */
if (TARGET_FIX_R10000
&& ((target_flags_explicit & MASK_BRANCHLIKELY) == 0
? !ISA_HAS_BRANCHLIKELY
: !TARGET_BRANCHLIKELY))
sorry ("%qs requires branch-likely instructions", "-mfix-r10000");
if (TARGET_SYNCI && !ISA_HAS_SYNCI)
{
warning (0, "the %qs architecture does not support the synci "
"instruction", mips_arch_info->name);
target_flags &= ~MASK_SYNCI;
}
/* Only optimize PIC indirect calls if they are actually required. */
if (!TARGET_USE_GOT || !TARGET_EXPLICIT_RELOCS)
target_flags &= ~MASK_RELAX_PIC_CALLS;
/* Save base state of options. */
mips_base_target_flags = target_flags;
mips_base_schedule_insns = flag_schedule_insns;
mips_base_reorder_blocks_and_partition = flag_reorder_blocks_and_partition;
mips_base_move_loop_invariants = flag_move_loop_invariants;
mips_base_align_loops = align_loops;
mips_base_align_jumps = align_jumps;
mips_base_align_functions = align_functions;
/* Now select the ISA mode.
Do all CPP-sensitive stuff in uncompressed mode; we'll switch modes
later if required. */
mips_set_compression_mode (0);
/* We register a second machine specific reorg pass after delay slot
filling. Registering the pass must be done at start up. It's
convenient to do it here. */
opt_pass *new_pass = make_pass_mips_machine_reorg2 (g);
struct register_pass_info insert_pass_mips_machine_reorg2 =
{
new_pass, /* pass */
"dbr", /* reference_pass_name */
1, /* ref_pass_instance_number */
PASS_POS_INSERT_AFTER /* po_op */
};
register_pass (&insert_pass_mips_machine_reorg2);
if (TARGET_HARD_FLOAT_ABI && TARGET_MIPS5900)
REAL_MODE_FORMAT (SFmode) = &spu_single_format;
}
/* Swap the register information for registers I and I + 1, which
currently have the wrong endianness. Note that the registers'
fixedness and call-clobberedness might have been set on the
command line. */
static void
mips_swap_registers (unsigned int i)
{
int tmpi;
const char *tmps;
#define SWAP_INT(X, Y) (tmpi = (X), (X) = (Y), (Y) = tmpi)
#define SWAP_STRING(X, Y) (tmps = (X), (X) = (Y), (Y) = tmps)
SWAP_INT (fixed_regs[i], fixed_regs[i + 1]);
SWAP_INT (call_used_regs[i], call_used_regs[i + 1]);
SWAP_INT (call_really_used_regs[i], call_really_used_regs[i + 1]);
SWAP_STRING (reg_names[i], reg_names[i + 1]);
#undef SWAP_STRING
#undef SWAP_INT
}
/* Implement TARGET_CONDITIONAL_REGISTER_USAGE. */
static void
mips_conditional_register_usage (void)
{
if (ISA_HAS_DSP)
{
/* These DSP control register fields are global. */
global_regs[CCDSP_PO_REGNUM] = 1;
global_regs[CCDSP_SC_REGNUM] = 1;
}
else
AND_COMPL_HARD_REG_SET (accessible_reg_set,
reg_class_contents[(int) DSP_ACC_REGS]);
if (!ISA_HAS_HILO)
AND_COMPL_HARD_REG_SET (accessible_reg_set,
reg_class_contents[(int) MD_REGS]);
if (!TARGET_HARD_FLOAT)
{
AND_COMPL_HARD_REG_SET (accessible_reg_set,
reg_class_contents[(int) FP_REGS]);
AND_COMPL_HARD_REG_SET (accessible_reg_set,
reg_class_contents[(int) ST_REGS]);
}
else if (!ISA_HAS_8CC)
{
/* We only have a single condition-code register. We implement
this by fixing all the condition-code registers and generating
RTL that refers directly to ST_REG_FIRST. */
AND_COMPL_HARD_REG_SET (accessible_reg_set,
reg_class_contents[(int) ST_REGS]);
if (!ISA_HAS_CCF)
SET_HARD_REG_BIT (accessible_reg_set, FPSW_REGNUM);
fixed_regs[FPSW_REGNUM] = call_used_regs[FPSW_REGNUM] = 1;
}
if (TARGET_MIPS16)
{
/* In MIPS16 mode, we prohibit the unused $s registers, since they
are call-saved, and saving them via a MIPS16 register would
probably waste more time than just reloading the value.
We permit the $t temporary registers when optimizing for speed
but not when optimizing for space because using them results in
code that is larger (but faster) then not using them. We do
allow $24 (t8) because it is used in CMP and CMPI instructions
and $25 (t9) because it is used as the function call address in
SVR4 PIC code. */
fixed_regs[18] = call_used_regs[18] = 1;
fixed_regs[19] = call_used_regs[19] = 1;
fixed_regs[20] = call_used_regs[20] = 1;
fixed_regs[21] = call_used_regs[21] = 1;
fixed_regs[22] = call_used_regs[22] = 1;
fixed_regs[23] = call_used_regs[23] = 1;
fixed_regs[26] = call_used_regs[26] = 1;
fixed_regs[27] = call_used_regs[27] = 1;
fixed_regs[30] = call_used_regs[30] = 1;
if (optimize_size)
{
fixed_regs[8] = call_used_regs[8] = 1;
fixed_regs[9] = call_used_regs[9] = 1;
fixed_regs[10] = call_used_regs[10] = 1;
fixed_regs[11] = call_used_regs[11] = 1;
fixed_regs[12] = call_used_regs[12] = 1;
fixed_regs[13] = call_used_regs[13] = 1;
fixed_regs[14] = call_used_regs[14] = 1;
fixed_regs[15] = call_used_regs[15] = 1;
}
/* Do not allow HI and LO to be treated as register operands.
There are no MTHI or MTLO instructions (or any real need
for them) and one-way registers cannot easily be reloaded. */
AND_COMPL_HARD_REG_SET (operand_reg_set,
reg_class_contents[(int) MD_REGS]);
}
/* $f20-$f23 are call-clobbered for n64. */
if (mips_abi == ABI_64)
{
int regno;
for (regno = FP_REG_FIRST + 20; regno < FP_REG_FIRST + 24; regno++)
call_really_used_regs[regno] = call_used_regs[regno] = 1;
}
/* Odd registers in the range $f21-$f31 (inclusive) are call-clobbered
for n32 and o32 FP64. */
if (mips_abi == ABI_N32
|| (mips_abi == ABI_32
&& TARGET_FLOAT64))
{
int regno;
for (regno = FP_REG_FIRST + 21; regno <= FP_REG_FIRST + 31; regno+=2)
call_really_used_regs[regno] = call_used_regs[regno] = 1;
}
/* Make sure that double-register accumulator values are correctly
ordered for the current endianness. */
if (TARGET_LITTLE_ENDIAN)
{
unsigned int regno;
mips_swap_registers (MD_REG_FIRST);
for (regno = DSP_ACC_REG_FIRST; regno <= DSP_ACC_REG_LAST; regno += 2)
mips_swap_registers (regno);
}
}
/* Implement EH_USES. */
bool
mips_eh_uses (unsigned int regno)
{
if (reload_completed && !TARGET_ABSOLUTE_JUMPS)
{
/* We need to force certain registers to be live in order to handle
PIC long branches correctly. See mips_must_initialize_gp_p for
details. */
if (mips_cfun_has_cprestore_slot_p ())
{
if (regno == CPRESTORE_SLOT_REGNUM)
return true;
}
else
{
if (cfun->machine->global_pointer == regno)
return true;
}
}
return false;
}
/* Implement EPILOGUE_USES. */
bool
mips_epilogue_uses (unsigned int regno)
{
/* Say that the epilogue uses the return address register. Note that
in the case of sibcalls, the values "used by the epilogue" are
considered live at the start of the called function. */
if (regno == RETURN_ADDR_REGNUM)
return true;
/* If using a GOT, say that the epilogue also uses GOT_VERSION_REGNUM.
See the comment above load_call<mode> for details. */
if (TARGET_USE_GOT && (regno) == GOT_VERSION_REGNUM)
return true;
/* An interrupt handler must preserve some registers that are
ordinarily call-clobbered. */
if (cfun->machine->interrupt_handler_p
&& mips_interrupt_extra_call_saved_reg_p (regno))
return true;
return false;
}
/* Return true if INSN needs to be wrapped in ".set noat".
INSN has NOPERANDS operands, stored in OPVEC. */
static bool
mips_need_noat_wrapper_p (rtx_insn *insn, rtx *opvec, int noperands)
{
if (recog_memoized (insn) >= 0)
{
subrtx_iterator::array_type array;
for (int i = 0; i < noperands; i++)
FOR_EACH_SUBRTX (iter, array, opvec[i], NONCONST)
if (REG_P (*iter) && REGNO (*iter) == AT_REGNUM)
return true;
}
return false;
}
/* Implement FINAL_PRESCAN_INSN. */
void
mips_final_prescan_insn (rtx_insn *insn, rtx *opvec, int noperands)
{
if (mips_need_noat_wrapper_p (insn, opvec, noperands))
mips_push_asm_switch (&mips_noat);
}
/* Implement TARGET_ASM_FINAL_POSTSCAN_INSN. */
static void
mips_final_postscan_insn (FILE *file ATTRIBUTE_UNUSED, rtx_insn *insn,
rtx *opvec, int noperands)
{
if (mips_need_noat_wrapper_p (insn, opvec, noperands))
mips_pop_asm_switch (&mips_noat);
}
/* Return the function that is used to expand the <u>mulsidi3 pattern.
EXT_CODE is the code of the extension used. Return NULL if widening
multiplication shouldn't be used. */
mulsidi3_gen_fn
mips_mulsidi3_gen_fn (enum rtx_code ext_code)
{
bool signed_p;
signed_p = ext_code == SIGN_EXTEND;
if (TARGET_64BIT)
{
/* Don't use widening multiplication with MULT when we have DMUL. Even
with the extension of its input operands DMUL is faster. Note that
the extension is not needed for signed multiplication. In order to
ensure that we always remove the redundant sign-extension in this
case we still expand mulsidi3 for DMUL. */
if (ISA_HAS_R6DMUL)
return signed_p ? gen_mulsidi3_64bit_r6dmul : NULL;
if (ISA_HAS_DMUL3)
return signed_p ? gen_mulsidi3_64bit_dmul : NULL;
if (TARGET_MIPS16)
return (signed_p
? gen_mulsidi3_64bit_mips16
: gen_umulsidi3_64bit_mips16);
if (TARGET_FIX_R4000)
return NULL;
return signed_p ? gen_mulsidi3_64bit : gen_umulsidi3_64bit;
}
else
{
if (ISA_HAS_R6MUL)
return (signed_p ? gen_mulsidi3_32bit_r6 : gen_umulsidi3_32bit_r6);
if (TARGET_MIPS16)
return (signed_p
? gen_mulsidi3_32bit_mips16
: gen_umulsidi3_32bit_mips16);
if (TARGET_FIX_R4000 && !ISA_HAS_DSP)
return signed_p ? gen_mulsidi3_32bit_r4000 : gen_umulsidi3_32bit_r4000;
return signed_p ? gen_mulsidi3_32bit : gen_umulsidi3_32bit;
}
}
/* Return true if PATTERN matches the kind of instruction generated by
umips_build_save_restore. SAVE_P is true for store. */
bool
umips_save_restore_pattern_p (bool save_p, rtx pattern)
{
int n;
unsigned int i;
HOST_WIDE_INT first_offset = 0;
rtx first_base = 0;
unsigned int regmask = 0;
for (n = 0; n < XVECLEN (pattern, 0); n++)
{
rtx set, reg, mem, this_base;
HOST_WIDE_INT this_offset;
/* Check that we have a SET. */
set = XVECEXP (pattern, 0, n);
if (GET_CODE (set) != SET)
return false;
/* Check that the SET is a load (if restoring) or a store
(if saving). */
mem = save_p ? SET_DEST (set) : SET_SRC (set);
if (!MEM_P (mem) || MEM_VOLATILE_P (mem))
return false;
/* Check that the address is the sum of base and a possibly-zero
constant offset. Determine if the offset is in range. */
mips_split_plus (XEXP (mem, 0), &this_base, &this_offset);
if (!REG_P (this_base))
return false;
if (n == 0)
{
if (!UMIPS_12BIT_OFFSET_P (this_offset))
return false;
first_base = this_base;
first_offset = this_offset;
}
else
{
/* Check that the save slots are consecutive. */
if (REGNO (this_base) != REGNO (first_base)
|| this_offset != first_offset + UNITS_PER_WORD * n)
return false;
}
/* Check that SET's other operand is a register. */
reg = save_p ? SET_SRC (set) : SET_DEST (set);
if (!REG_P (reg))
return false;
regmask |= 1 << REGNO (reg);
}
for (i = 0; i < ARRAY_SIZE (umips_swm_mask); i++)
if (regmask == umips_swm_mask[i])
return true;
return false;
}
/* Return the assembly instruction for microMIPS LWM or SWM.
SAVE_P and PATTERN are as for umips_save_restore_pattern_p. */
const char *
umips_output_save_restore (bool save_p, rtx pattern)
{
static char buffer[300];
char *s;
int n;
HOST_WIDE_INT offset;
rtx base, mem, set, last_set, last_reg;
/* Parse the pattern. */
gcc_assert (umips_save_restore_pattern_p (save_p, pattern));
s = strcpy (buffer, save_p ? "swm\t" : "lwm\t");
s += strlen (s);
n = XVECLEN (pattern, 0);
set = XVECEXP (pattern, 0, 0);
mem = save_p ? SET_DEST (set) : SET_SRC (set);
mips_split_plus (XEXP (mem, 0), &base, &offset);
last_set = XVECEXP (pattern, 0, n - 1);
last_reg = save_p ? SET_SRC (last_set) : SET_DEST (last_set);
if (REGNO (last_reg) == 31)
n--;
gcc_assert (n <= 9);
if (n == 0)
;
else if (n == 1)
s += sprintf (s, "%s,", reg_names[16]);
else if (n < 9)
s += sprintf (s, "%s-%s,", reg_names[16], reg_names[15 + n]);
else if (n == 9)
s += sprintf (s, "%s-%s,%s,", reg_names[16], reg_names[23],
reg_names[30]);
if (REGNO (last_reg) == 31)
s += sprintf (s, "%s,", reg_names[31]);
s += sprintf (s, "%d(%s)", (int)offset, reg_names[REGNO (base)]);
return buffer;
}
/* Return true if MEM1 and MEM2 use the same base register, and the
offset of MEM2 equals the offset of MEM1 plus 4. FIRST_REG is the
register into (from) which the contents of MEM1 will be loaded
(stored), depending on the value of LOAD_P.
SWAP_P is true when the 1st and 2nd instructions are swapped. */
static bool
umips_load_store_pair_p_1 (bool load_p, bool swap_p,
rtx first_reg, rtx mem1, rtx mem2)
{
rtx base1, base2;
HOST_WIDE_INT offset1, offset2;
if (!MEM_P (mem1) || !MEM_P (mem2))
return false;
mips_split_plus (XEXP (mem1, 0), &base1, &offset1);
mips_split_plus (XEXP (mem2, 0), &base2, &offset2);
if (!REG_P (base1) || !rtx_equal_p (base1, base2))
return false;
/* Avoid invalid load pair instructions. */
if (load_p && REGNO (first_reg) == REGNO (base1))
return false;
/* We must avoid this case for anti-dependence.
Ex: lw $3, 4($3)
lw $2, 0($3)
first_reg is $2, but the base is $3. */
if (load_p
&& swap_p
&& REGNO (first_reg) + 1 == REGNO (base1))
return false;
if (offset2 != offset1 + 4)
return false;
if (!UMIPS_12BIT_OFFSET_P (offset1))
return false;
return true;
}
bool
mips_load_store_bonding_p (rtx *operands, machine_mode mode, bool load_p)
{
rtx reg1, reg2, mem1, mem2, base1, base2;
enum reg_class rc1, rc2;
HOST_WIDE_INT offset1, offset2;
if (load_p)
{
reg1 = operands[0];
reg2 = operands[2];
mem1 = operands[1];
mem2 = operands[3];
}
else
{
reg1 = operands[1];
reg2 = operands[3];
mem1 = operands[0];
mem2 = operands[2];
}
if (mips_address_insns (XEXP (mem1, 0), mode, false) == 0
|| mips_address_insns (XEXP (mem2, 0), mode, false) == 0)
return false;
mips_split_plus (XEXP (mem1, 0), &base1, &offset1);
mips_split_plus (XEXP (mem2, 0), &base2, &offset2);
/* Base regs do not match. */
if (!REG_P (base1) || !rtx_equal_p (base1, base2))
return false;
/* Either of the loads is clobbering base register. It is legitimate to bond
loads if second load clobbers base register. However, hardware does not
support such bonding. */
if (load_p
&& (REGNO (reg1) == REGNO (base1)
|| (REGNO (reg2) == REGNO (base1))))
return false;
/* Loading in same registers. */
if (load_p
&& REGNO (reg1) == REGNO (reg2))
return false;
/* The loads/stores are not of same type. */
rc1 = REGNO_REG_CLASS (REGNO (reg1));
rc2 = REGNO_REG_CLASS (REGNO (reg2));
if (rc1 != rc2
&& !reg_class_subset_p (rc1, rc2)
&& !reg_class_subset_p (rc2, rc1))
return false;
if (abs (offset1 - offset2) != GET_MODE_SIZE (mode))
return false;
return true;
}
/* OPERANDS describes the operands to a pair of SETs, in the order
dest1, src1, dest2, src2. Return true if the operands can be used
in an LWP or SWP instruction; LOAD_P says which. */
bool
umips_load_store_pair_p (bool load_p, rtx *operands)
{
rtx reg1, reg2, mem1, mem2;
if (load_p)
{
reg1 = operands[0];
reg2 = operands[2];
mem1 = operands[1];
mem2 = operands[3];
}
else
{
reg1 = operands[1];
reg2 = operands[3];
mem1 = operands[0];
mem2 = operands[2];
}
if (REGNO (reg2) == REGNO (reg1) + 1)
return umips_load_store_pair_p_1 (load_p, false, reg1, mem1, mem2);
if (REGNO (reg1) == REGNO (reg2) + 1)
return umips_load_store_pair_p_1 (load_p, true, reg2, mem2, mem1);
return false;
}
/* Return the assembly instruction for a microMIPS LWP or SWP in which
the first register is REG and the first memory slot is MEM.
LOAD_P is true for LWP. */
static void
umips_output_load_store_pair_1 (bool load_p, rtx reg, rtx mem)
{
rtx ops[] = {reg, mem};
if (load_p)
output_asm_insn ("lwp\t%0,%1", ops);
else
output_asm_insn ("swp\t%0,%1", ops);
}
/* Output the assembly instruction for a microMIPS LWP or SWP instruction.
LOAD_P and OPERANDS are as for umips_load_store_pair_p. */
void
umips_output_load_store_pair (bool load_p, rtx *operands)
{
rtx reg1, reg2, mem1, mem2;
if (load_p)
{
reg1 = operands[0];
reg2 = operands[2];
mem1 = operands[1];
mem2 = operands[3];
}
else
{
reg1 = operands[1];
reg2 = operands[3];
mem1 = operands[0];
mem2 = operands[2];
}
if (REGNO (reg2) == REGNO (reg1) + 1)
{
umips_output_load_store_pair_1 (load_p, reg1, mem1);
return;
}
gcc_assert (REGNO (reg1) == REGNO (reg2) + 1);
umips_output_load_store_pair_1 (load_p, reg2, mem2);
}
/* Return true if REG1 and REG2 match the criteria for a movep insn. */
bool
umips_movep_target_p (rtx reg1, rtx reg2)
{
int regno1, regno2, pair;
unsigned int i;
static const int match[8] = {
0x00000060, /* 5, 6 */
0x000000a0, /* 5, 7 */
0x000000c0, /* 6, 7 */
0x00200010, /* 4, 21 */
0x00400010, /* 4, 22 */
0x00000030, /* 4, 5 */
0x00000050, /* 4, 6 */
0x00000090 /* 4, 7 */
};
if (!REG_P (reg1) || !REG_P (reg2))
return false;
regno1 = REGNO (reg1);
regno2 = REGNO (reg2);
if (!GP_REG_P (regno1) || !GP_REG_P (regno2))
return false;
pair = (1 << regno1) | (1 << regno2);
for (i = 0; i < ARRAY_SIZE (match); i++)
if (pair == match[i])
return true;
return false;
}
/* Return the size in bytes of the trampoline code, padded to
TRAMPOLINE_ALIGNMENT bits. The static chain pointer and target
function address immediately follow. */
int
mips_trampoline_code_size (void)
{
if (TARGET_USE_PIC_FN_ADDR_REG)
return 4 * 4;
else if (ptr_mode == DImode)
return 8 * 4;
else if (ISA_HAS_LOAD_DELAY)
return 6 * 4;
else
return 4 * 4;
}
/* Implement TARGET_TRAMPOLINE_INIT. */
static void
mips_trampoline_init (rtx m_tramp, tree fndecl, rtx chain_value)
{
rtx addr, end_addr, high, low, opcode, mem;
rtx trampoline[8];
unsigned int i, j;
HOST_WIDE_INT end_addr_offset, static_chain_offset, target_function_offset;
/* Work out the offsets of the pointers from the start of the
trampoline code. */
end_addr_offset = mips_trampoline_code_size ();
static_chain_offset = end_addr_offset;
target_function_offset = static_chain_offset + GET_MODE_SIZE (ptr_mode);
/* Get pointers to the beginning and end of the code block. */
addr = force_reg (Pmode, XEXP (m_tramp, 0));
end_addr = mips_force_binary (Pmode, PLUS, addr, GEN_INT (end_addr_offset));
#define OP(X) gen_int_mode (X, SImode)
/* Build up the code in TRAMPOLINE. */
i = 0;
if (TARGET_USE_PIC_FN_ADDR_REG)
{
/* $25 contains the address of the trampoline. Emit code of the form:
l[wd] $1, target_function_offset($25)
l[wd] $static_chain, static_chain_offset($25)
jr $1
move $25,$1. */
trampoline[i++] = OP (MIPS_LOAD_PTR (AT_REGNUM,
target_function_offset,
PIC_FUNCTION_ADDR_REGNUM));
trampoline[i++] = OP (MIPS_LOAD_PTR (STATIC_CHAIN_REGNUM,
static_chain_offset,
PIC_FUNCTION_ADDR_REGNUM));
trampoline[i++] = OP (MIPS_JR (AT_REGNUM));
trampoline[i++] = OP (MIPS_MOVE (PIC_FUNCTION_ADDR_REGNUM, AT_REGNUM));
}
else if (ptr_mode == DImode)
{
/* It's too cumbersome to create the full 64-bit address, so let's
instead use:
move $1, $31
bal 1f
nop
1: l[wd] $25, target_function_offset - 12($31)
l[wd] $static_chain, static_chain_offset - 12($31)
jr $25
move $31, $1
where 12 is the offset of "1:" from the start of the code block. */
trampoline[i++] = OP (MIPS_MOVE (AT_REGNUM, RETURN_ADDR_REGNUM));
trampoline[i++] = OP (MIPS_BAL (1));
trampoline[i++] = OP (MIPS_NOP);
trampoline[i++] = OP (MIPS_LOAD_PTR (PIC_FUNCTION_ADDR_REGNUM,
target_function_offset - 12,
RETURN_ADDR_REGNUM));
trampoline[i++] = OP (MIPS_LOAD_PTR (STATIC_CHAIN_REGNUM,
static_chain_offset - 12,
RETURN_ADDR_REGNUM));
trampoline[i++] = OP (MIPS_JR (PIC_FUNCTION_ADDR_REGNUM));
trampoline[i++] = OP (MIPS_MOVE (RETURN_ADDR_REGNUM, AT_REGNUM));
}
else
{
/* If the target has load delays, emit:
lui $1, %hi(end_addr)
lw $25, %lo(end_addr + ...)($1)
lw $static_chain, %lo(end_addr + ...)($1)
jr $25
nop
Otherwise emit:
lui $1, %hi(end_addr)
lw $25, %lo(end_addr + ...)($1)
jr $25
lw $static_chain, %lo(end_addr + ...)($1). */
/* Split END_ADDR into %hi and %lo values. Trampolines are aligned
to 64 bits, so the %lo value will have the bottom 3 bits clear. */
high = expand_simple_binop (SImode, PLUS, end_addr, GEN_INT (0x8000),
NULL, false, OPTAB_WIDEN);
high = expand_simple_binop (SImode, LSHIFTRT, high, GEN_INT (16),
NULL, false, OPTAB_WIDEN);
low = convert_to_mode (SImode, gen_lowpart (HImode, end_addr), true);
/* Emit the LUI. */
opcode = OP (MIPS_LUI (AT_REGNUM, 0));
trampoline[i++] = expand_simple_binop (SImode, IOR, opcode, high,
NULL, false, OPTAB_WIDEN);
/* Emit the load of the target function. */
opcode = OP (MIPS_LOAD_PTR (PIC_FUNCTION_ADDR_REGNUM,
target_function_offset - end_addr_offset,
AT_REGNUM));
trampoline[i++] = expand_simple_binop (SImode, IOR, opcode, low,
NULL, false, OPTAB_WIDEN);
/* Emit the JR here, if we can. */
if (!ISA_HAS_LOAD_DELAY)
trampoline[i++] = OP (MIPS_JR (PIC_FUNCTION_ADDR_REGNUM));
/* Emit the load of the static chain register. */
opcode = OP (MIPS_LOAD_PTR (STATIC_CHAIN_REGNUM,
static_chain_offset - end_addr_offset,
AT_REGNUM));
trampoline[i++] = expand_simple_binop (SImode, IOR, opcode, low,
NULL, false, OPTAB_WIDEN);
/* Emit the JR, if we couldn't above. */
if (ISA_HAS_LOAD_DELAY)
{
trampoline[i++] = OP (MIPS_JR (PIC_FUNCTION_ADDR_REGNUM));
trampoline[i++] = OP (MIPS_NOP);
}
}
#undef OP
/* If we are using compact branches we don't have delay slots so
place the instruction that was in the delay slot before the JRC
instruction. */
if (TARGET_CB_ALWAYS)
{
rtx temp;
temp = trampoline[i-2];
trampoline[i-2] = trampoline[i-1];
trampoline[i-1] = temp;
}
/* Copy the trampoline code. Leave any padding uninitialized. */
for (j = 0; j < i; j++)
{
mem = adjust_address (m_tramp, SImode, j * GET_MODE_SIZE (SImode));
mips_emit_move (mem, trampoline[j]);
}
/* Set up the static chain pointer field. */
mem = adjust_address (m_tramp, ptr_mode, static_chain_offset);
mips_emit_move (mem, chain_value);
/* Set up the target function field. */
mem = adjust_address (m_tramp, ptr_mode, target_function_offset);
mips_emit_move (mem, XEXP (DECL_RTL (fndecl), 0));
/* Flush the code part of the trampoline. */
emit_insn (gen_add3_insn (end_addr, addr, GEN_INT (TRAMPOLINE_SIZE)));
emit_insn (gen_clear_cache (addr, end_addr));
}
/* Implement FUNCTION_PROFILER. */
void mips_function_profiler (FILE *file)
{
if (TARGET_MIPS16)
sorry ("mips16 function profiling");
if (TARGET_LONG_CALLS)
{
/* For TARGET_LONG_CALLS use $3 for the address of _mcount. */
if (Pmode == DImode)
fprintf (file, "\tdla\t%s,_mcount\n", reg_names[3]);
else
fprintf (file, "\tla\t%s,_mcount\n", reg_names[3]);
}
mips_push_asm_switch (&mips_noat);
fprintf (file, "\tmove\t%s,%s\t\t# save current return address\n",
reg_names[AT_REGNUM], reg_names[RETURN_ADDR_REGNUM]);
/* _mcount treats $2 as the static chain register. */
if (cfun->static_chain_decl != NULL)
fprintf (file, "\tmove\t%s,%s\n", reg_names[2],
reg_names[STATIC_CHAIN_REGNUM]);
if (TARGET_MCOUNT_RA_ADDRESS)
{
/* If TARGET_MCOUNT_RA_ADDRESS load $12 with the address of the
ra save location. */
if (cfun->machine->frame.ra_fp_offset == 0)
/* ra not saved, pass zero. */
fprintf (file, "\tmove\t%s,%s\n", reg_names[12], reg_names[0]);
else
fprintf (file, "\t%s\t%s," HOST_WIDE_INT_PRINT_DEC "(%s)\n",
Pmode == DImode ? "dla" : "la", reg_names[12],
cfun->machine->frame.ra_fp_offset,
reg_names[STACK_POINTER_REGNUM]);
}
if (!TARGET_NEWABI)
fprintf (file,
"\t%s\t%s,%s,%d\t\t# _mcount pops 2 words from stack\n",
TARGET_64BIT ? "dsubu" : "subu",
reg_names[STACK_POINTER_REGNUM],
reg_names[STACK_POINTER_REGNUM],
Pmode == DImode ? 16 : 8);
if (TARGET_LONG_CALLS)
fprintf (file, "\tjalr\t%s\n", reg_names[3]);
else
fprintf (file, "\tjal\t_mcount\n");
mips_pop_asm_switch (&mips_noat);
/* _mcount treats $2 as the static chain register. */
if (cfun->static_chain_decl != NULL)
fprintf (file, "\tmove\t%s,%s\n", reg_names[STATIC_CHAIN_REGNUM],
reg_names[2]);
}
/* Implement TARGET_SHIFT_TRUNCATION_MASK. We want to keep the default
behaviour of TARGET_SHIFT_TRUNCATION_MASK for non-vector modes even
when TARGET_LOONGSON_VECTORS is true. */
static unsigned HOST_WIDE_INT
mips_shift_truncation_mask (machine_mode mode)
{
if (TARGET_LOONGSON_VECTORS && VECTOR_MODE_P (mode))
return 0;
return GET_MODE_BITSIZE (mode) - 1;
}
/* Implement TARGET_PREPARE_PCH_SAVE. */
static void
mips_prepare_pch_save (void)
{
/* We are called in a context where the current MIPS16 vs. non-MIPS16
setting should be irrelevant. The question then is: which setting
makes most sense at load time?
The PCH is loaded before the first token is read. We should never
have switched into MIPS16 mode by that point, and thus should not
have populated mips16_globals. Nor can we load the entire contents
of mips16_globals from the PCH file, because mips16_globals contains
a combination of GGC and non-GGC data.
There is therefore no point in trying save the GGC part of
mips16_globals to the PCH file, or to preserve MIPS16ness across
the PCH save and load. The loading compiler would not have access
to the non-GGC parts of mips16_globals (either from the PCH file,
or from a copy that the loading compiler generated itself) and would
have to call target_reinit anyway.
It therefore seems best to switch back to non-MIPS16 mode at
save time, and to ensure that mips16_globals remains null after
a PCH load. */
mips_set_compression_mode (0);
mips16_globals = 0;
}
/* Generate or test for an insn that supports a constant permutation. */
#define MAX_VECT_LEN 8
struct expand_vec_perm_d
{
rtx target, op0, op1;
unsigned char perm[MAX_VECT_LEN];
machine_mode vmode;
unsigned char nelt;
bool one_vector_p;
bool testing_p;
};
/* Construct (set target (vec_select op0 (parallel perm))) and
return true if that's a valid instruction in the active ISA. */
static bool
mips_expand_vselect (rtx target, rtx op0,
const unsigned char *perm, unsigned nelt)
{
rtx rperm[MAX_VECT_LEN], x;
rtx_insn *insn;
unsigned i;
for (i = 0; i < nelt; ++i)
rperm[i] = GEN_INT (perm[i]);
x = gen_rtx_PARALLEL (VOIDmode, gen_rtvec_v (nelt, rperm));
x = gen_rtx_VEC_SELECT (GET_MODE (target), op0, x);
x = gen_rtx_SET (target, x);
insn = emit_insn (x);
if (recog_memoized (insn) < 0)
{
remove_insn (insn);
return false;
}
return true;
}
/* Similar, but generate a vec_concat from op0 and op1 as well. */
static bool
mips_expand_vselect_vconcat (rtx target, rtx op0, rtx op1,
const unsigned char *perm, unsigned nelt)
{
machine_mode v2mode;
rtx x;
v2mode = GET_MODE_2XWIDER_MODE (GET_MODE (op0));
x = gen_rtx_VEC_CONCAT (v2mode, op0, op1);
return mips_expand_vselect (target, x, perm, nelt);
}
/* Recognize patterns for even-odd extraction. */
static bool
mips_expand_vpc_loongson_even_odd (struct expand_vec_perm_d *d)
{
unsigned i, odd, nelt = d->nelt;
rtx t0, t1, t2, t3;
if (!(TARGET_HARD_FLOAT && TARGET_LOONGSON_VECTORS))
return false;
/* Even-odd for V2SI/V2SFmode is matched by interleave directly. */
if (nelt < 4)
return false;
odd = d->perm[0];
if (odd > 1)
return false;
for (i = 1; i < nelt; ++i)
if (d->perm[i] != i * 2 + odd)
return false;
if (d->testing_p)
return true;
/* We need 2*log2(N)-1 operations to achieve odd/even with interleave. */
t0 = gen_reg_rtx (d->vmode);
t1 = gen_reg_rtx (d->vmode);
switch (d->vmode)
{
case V4HImode:
emit_insn (gen_loongson_punpckhhw (t0, d->op0, d->op1));
emit_insn (gen_loongson_punpcklhw (t1, d->op0, d->op1));
if (odd)
emit_insn (gen_loongson_punpckhhw (d->target, t1, t0));
else
emit_insn (gen_loongson_punpcklhw (d->target, t1, t0));
break;
case V8QImode:
t2 = gen_reg_rtx (d->vmode);
t3 = gen_reg_rtx (d->vmode);
emit_insn (gen_loongson_punpckhbh (t0, d->op0, d->op1));
emit_insn (gen_loongson_punpcklbh (t1, d->op0, d->op1));
emit_insn (gen_loongson_punpckhbh (t2, t1, t0));
emit_insn (gen_loongson_punpcklbh (t3, t1, t0));
if (odd)
emit_insn (gen_loongson_punpckhbh (d->target, t3, t2));
else
emit_insn (gen_loongson_punpcklbh (d->target, t3, t2));
break;
default:
gcc_unreachable ();
}
return true;
}
/* Recognize patterns for the Loongson PSHUFH instruction. */
static bool
mips_expand_vpc_loongson_pshufh (struct expand_vec_perm_d *d)
{
unsigned i, mask;
rtx rmask;
if (!(TARGET_HARD_FLOAT && TARGET_LOONGSON_VECTORS))
return false;
if (d->vmode != V4HImode)
return false;
if (d->testing_p)
return true;
/* Convert the selector into the packed 8-bit form for pshufh. */
/* Recall that loongson is little-endian only. No big-endian
adjustment required. */
for (i = mask = 0; i < 4; i++)
mask |= (d->perm[i] & 3) << (i * 2);
rmask = force_reg (SImode, GEN_INT (mask));
if (d->one_vector_p)
emit_insn (gen_loongson_pshufh (d->target, d->op0, rmask));
else
{
rtx t0, t1, x, merge, rmerge[4];
t0 = gen_reg_rtx (V4HImode);
t1 = gen_reg_rtx (V4HImode);
emit_insn (gen_loongson_pshufh (t1, d->op1, rmask));
emit_insn (gen_loongson_pshufh (t0, d->op0, rmask));
for (i = 0; i < 4; ++i)
rmerge[i] = (d->perm[i] & 4 ? constm1_rtx : const0_rtx);
merge = gen_rtx_CONST_VECTOR (V4HImode, gen_rtvec_v (4, rmerge));
merge = force_reg (V4HImode, merge);
x = gen_rtx_AND (V4HImode, merge, t1);
emit_insn (gen_rtx_SET (t1, x));
x = gen_rtx_NOT (V4HImode, merge);
x = gen_rtx_AND (V4HImode, x, t0);
emit_insn (gen_rtx_SET (t0, x));
x = gen_rtx_IOR (V4HImode, t0, t1);
emit_insn (gen_rtx_SET (d->target, x));
}
return true;
}
/* Recognize broadcast patterns for the Loongson. */
static bool
mips_expand_vpc_loongson_bcast (struct expand_vec_perm_d *d)
{
unsigned i, elt;
rtx t0, t1;
if (!(TARGET_HARD_FLOAT && TARGET_LOONGSON_VECTORS))
return false;
/* Note that we've already matched V2SI via punpck and V4HI via pshufh. */
if (d->vmode != V8QImode)
return false;
if (!d->one_vector_p)
return false;
elt = d->perm[0];
for (i = 1; i < 8; ++i)
if (d->perm[i] != elt)
return false;
if (d->testing_p)
return true;
/* With one interleave we put two of the desired element adjacent. */
t0 = gen_reg_rtx (V8QImode);
if (elt < 4)
emit_insn (gen_loongson_punpcklbh (t0, d->op0, d->op0));
else
emit_insn (gen_loongson_punpckhbh (t0, d->op0, d->op0));
/* Shuffle that one HImode element into all locations. */
elt &= 3;
elt *= 0x55;
t1 = gen_reg_rtx (V4HImode);
emit_insn (gen_loongson_pshufh (t1, gen_lowpart (V4HImode, t0),
force_reg (SImode, GEN_INT (elt))));
emit_move_insn (d->target, gen_lowpart (V8QImode, t1));
return true;
}
static bool
mips_expand_vec_perm_const_1 (struct expand_vec_perm_d *d)
{
unsigned int i, nelt = d->nelt;
unsigned char perm2[MAX_VECT_LEN];
if (d->one_vector_p)
{
/* Try interleave with alternating operands. */
memcpy (perm2, d->perm, sizeof(perm2));
for (i = 1; i < nelt; i += 2)
perm2[i] += nelt;
if (mips_expand_vselect_vconcat (d->target, d->op0, d->op1, perm2, nelt))
return true;
}
else
{
if (mips_expand_vselect_vconcat (d->target, d->op0, d->op1,
d->perm, nelt))
return true;
/* Try again with swapped operands. */
for (i = 0; i < nelt; ++i)
perm2[i] = (d->perm[i] + nelt) & (2 * nelt - 1);
if (mips_expand_vselect_vconcat (d->target, d->op1, d->op0, perm2, nelt))
return true;
}
if (mips_expand_vpc_loongson_even_odd (d))
return true;
if (mips_expand_vpc_loongson_pshufh (d))
return true;
if (mips_expand_vpc_loongson_bcast (d))
return true;
return false;
}
/* Expand a vec_perm_const pattern. */
bool
mips_expand_vec_perm_const (rtx operands[4])
{
struct expand_vec_perm_d d;
int i, nelt, which;
unsigned char orig_perm[MAX_VECT_LEN];
rtx sel;
bool ok;
d.target = operands[0];
d.op0 = operands[1];
d.op1 = operands[2];
sel = operands[3];
d.vmode = GET_MODE (d.target);
gcc_assert (VECTOR_MODE_P (d.vmode));
d.nelt = nelt = GET_MODE_NUNITS (d.vmode);
d.testing_p = false;
for (i = which = 0; i < nelt; ++i)
{
rtx e = XVECEXP (sel, 0, i);
int ei = INTVAL (e) & (2 * nelt - 1);
which |= (ei < nelt ? 1 : 2);
orig_perm[i] = ei;
}
memcpy (d.perm, orig_perm, MAX_VECT_LEN);
switch (which)
{
default:
gcc_unreachable();
case 3:
d.one_vector_p = false;
if (!rtx_equal_p (d.op0, d.op1))
break;
/* FALLTHRU */
case 2:
for (i = 0; i < nelt; ++i)
d.perm[i] &= nelt - 1;
d.op0 = d.op1;
d.one_vector_p = true;
break;
case 1:
d.op1 = d.op0;
d.one_vector_p = true;
break;
}
ok = mips_expand_vec_perm_const_1 (&d);
/* If we were given a two-vector permutation which just happened to
have both input vectors equal, we folded this into a one-vector
permutation. There are several loongson patterns that are matched
via direct vec_select+vec_concat expansion, but we do not have
support in mips_expand_vec_perm_const_1 to guess the adjustment
that should be made for a single operand. Just try again with
the original permutation. */
if (!ok && which == 3)
{
d.op0 = operands[1];
d.op1 = operands[2];
d.one_vector_p = false;
memcpy (d.perm, orig_perm, MAX_VECT_LEN);
ok = mips_expand_vec_perm_const_1 (&d);
}
return ok;
}
/* Implement TARGET_VECTORIZE_VEC_PERM_CONST_OK. */
static bool
mips_vectorize_vec_perm_const_ok (machine_mode vmode,
const unsigned char *sel)
{
struct expand_vec_perm_d d;
unsigned int i, nelt, which;
bool ret;
d.vmode = vmode;
d.nelt = nelt = GET_MODE_NUNITS (d.vmode);
d.testing_p = true;
memcpy (d.perm, sel, nelt);
/* Categorize the set of elements in the selector. */
for (i = which = 0; i < nelt; ++i)
{
unsigned char e = d.perm[i];
gcc_assert (e < 2 * nelt);
which |= (e < nelt ? 1 : 2);
}
/* For all elements from second vector, fold the elements to first. */
if (which == 2)
for (i = 0; i < nelt; ++i)
d.perm[i] -= nelt;
/* Check whether the mask can be applied to the vector type. */
d.one_vector_p = (which != 3);
d.target = gen_raw_REG (d.vmode, LAST_VIRTUAL_REGISTER + 1);
d.op1 = d.op0 = gen_raw_REG (d.vmode, LAST_VIRTUAL_REGISTER + 2);
if (!d.one_vector_p)
d.op1 = gen_raw_REG (d.vmode, LAST_VIRTUAL_REGISTER + 3);
start_sequence ();
ret = mips_expand_vec_perm_const_1 (&d);
end_sequence ();
return ret;
}
/* Expand an integral vector unpack operation. */
void
mips_expand_vec_unpack (rtx operands[2], bool unsigned_p, bool high_p)
{
machine_mode imode = GET_MODE (operands[1]);
rtx (*unpack) (rtx, rtx, rtx);
rtx (*cmpgt) (rtx, rtx, rtx);
rtx tmp, dest, zero;
switch (imode)
{
case V8QImode:
if (high_p)
unpack = gen_loongson_punpckhbh;
else
unpack = gen_loongson_punpcklbh;
cmpgt = gen_loongson_pcmpgtb;
break;
case V4HImode:
if (high_p)
unpack = gen_loongson_punpckhhw;
else
unpack = gen_loongson_punpcklhw;
cmpgt = gen_loongson_pcmpgth;
break;
default:
gcc_unreachable ();
}
zero = force_reg (imode, CONST0_RTX (imode));
if (unsigned_p)
tmp = zero;
else
{
tmp = gen_reg_rtx (imode);
emit_insn (cmpgt (tmp, zero, operands[1]));
}
dest = gen_reg_rtx (imode);
emit_insn (unpack (dest, operands[1], tmp));
emit_move_insn (operands[0], gen_lowpart (GET_MODE (operands[0]), dest));
}
/* A subroutine of mips_expand_vec_init, match constant vector elements. */
static inline bool
mips_constant_elt_p (rtx x)
{
return CONST_INT_P (x) || GET_CODE (x) == CONST_DOUBLE;
}
/* A subroutine of mips_expand_vec_init, expand via broadcast. */
static void
mips_expand_vi_broadcast (machine_mode vmode, rtx target, rtx elt)
{
struct expand_vec_perm_d d;
rtx t1;
bool ok;
if (elt != const0_rtx)
elt = force_reg (GET_MODE_INNER (vmode), elt);
if (REG_P (elt))
elt = gen_lowpart (DImode, elt);
t1 = gen_reg_rtx (vmode);
switch (vmode)
{
case V8QImode:
emit_insn (gen_loongson_vec_init1_v8qi (t1, elt));
break;
case V4HImode:
emit_insn (gen_loongson_vec_init1_v4hi (t1, elt));
break;
default:
gcc_unreachable ();
}
memset (&d, 0, sizeof (d));
d.target = target;
d.op0 = t1;
d.op1 = t1;
d.vmode = vmode;
d.nelt = GET_MODE_NUNITS (vmode);
d.one_vector_p = true;
ok = mips_expand_vec_perm_const_1 (&d);
gcc_assert (ok);
}
/* A subroutine of mips_expand_vec_init, replacing all of the non-constant
elements of VALS with zeros, copy the constant vector to TARGET. */
static void
mips_expand_vi_constant (machine_mode vmode, unsigned nelt,
rtx target, rtx vals)
{
rtvec vec = shallow_copy_rtvec (XVEC (vals, 0));
unsigned i;
for (i = 0; i < nelt; ++i)
{
if (!mips_constant_elt_p (RTVEC_ELT (vec, i)))
RTVEC_ELT (vec, i) = const0_rtx;
}
emit_move_insn (target, gen_rtx_CONST_VECTOR (vmode, vec));
}
/* A subroutine of mips_expand_vec_init, expand via pinsrh. */
static void
mips_expand_vi_loongson_one_pinsrh (rtx target, rtx vals, unsigned one_var)
{
mips_expand_vi_constant (V4HImode, 4, target, vals);
emit_insn (gen_vec_setv4hi (target, target, XVECEXP (vals, 0, one_var),
GEN_INT (one_var)));
}
/* A subroutine of mips_expand_vec_init, expand anything via memory. */
static void
mips_expand_vi_general (machine_mode vmode, machine_mode imode,
unsigned nelt, unsigned nvar, rtx target, rtx vals)
{
rtx mem = assign_stack_temp (vmode, GET_MODE_SIZE (vmode));
unsigned int i, isize = GET_MODE_SIZE (imode);
if (nvar < nelt)
mips_expand_vi_constant (vmode, nelt, mem, vals);
for (i = 0; i < nelt; ++i)
{
rtx x = XVECEXP (vals, 0, i);
if (!mips_constant_elt_p (x))
emit_move_insn (adjust_address (mem, imode, i * isize), x);
}
emit_move_insn (target, mem);
}
/* Expand a vector initialization. */
void
mips_expand_vector_init (rtx target, rtx vals)
{
machine_mode vmode = GET_MODE (target);
machine_mode imode = GET_MODE_INNER (vmode);
unsigned i, nelt = GET_MODE_NUNITS (vmode);
unsigned nvar = 0, one_var = -1u;
bool all_same = true;
rtx x;
for (i = 0; i < nelt; ++i)
{
x = XVECEXP (vals, 0, i);
if (!mips_constant_elt_p (x))
nvar++, one_var = i;
if (i > 0 && !rtx_equal_p (x, XVECEXP (vals, 0, 0)))
all_same = false;
}
/* Load constants from the pool, or whatever's handy. */
if (nvar == 0)
{
emit_move_insn (target, gen_rtx_CONST_VECTOR (vmode, XVEC (vals, 0)));
return;
}
/* For two-part initialization, always use CONCAT. */
if (nelt == 2)
{
rtx op0 = force_reg (imode, XVECEXP (vals, 0, 0));
rtx op1 = force_reg (imode, XVECEXP (vals, 0, 1));
x = gen_rtx_VEC_CONCAT (vmode, op0, op1);
emit_insn (gen_rtx_SET (target, x));
return;
}
/* Loongson is the only cpu with vectors with more elements. */
gcc_assert (TARGET_HARD_FLOAT && TARGET_LOONGSON_VECTORS);
/* If all values are identical, broadcast the value. */
if (all_same)
{
mips_expand_vi_broadcast (vmode, target, XVECEXP (vals, 0, 0));
return;
}
/* If we've only got one non-variable V4HImode, use PINSRH. */
if (nvar == 1 && vmode == V4HImode)
{
mips_expand_vi_loongson_one_pinsrh (target, vals, one_var);
return;
}
mips_expand_vi_general (vmode, imode, nelt, nvar, target, vals);
}
/* Expand a vector reduction. */
void
mips_expand_vec_reduc (rtx target, rtx in, rtx (*gen)(rtx, rtx, rtx))
{
machine_mode vmode = GET_MODE (in);
unsigned char perm2[2];
rtx last, next, fold, x;
bool ok;
last = in;
fold = gen_reg_rtx (vmode);
switch (vmode)
{
case V2SFmode:
/* Use PUL/PLU to produce { L, H } op { H, L }.
By reversing the pair order, rather than a pure interleave high,
we avoid erroneous exceptional conditions that we might otherwise
produce from the computation of H op H. */
perm2[0] = 1;
perm2[1] = 2;
ok = mips_expand_vselect_vconcat (fold, last, last, perm2, 2);
gcc_assert (ok);
break;
case V2SImode:
/* Use interleave to produce { H, L } op { H, H }. */
emit_insn (gen_loongson_punpckhwd (fold, last, last));
break;
case V4HImode:
/* Perform the first reduction with interleave,
and subsequent reductions with shifts. */
emit_insn (gen_loongson_punpckhwd_hi (fold, last, last));
next = gen_reg_rtx (vmode);
emit_insn (gen (next, last, fold));
last = next;
fold = gen_reg_rtx (vmode);
x = force_reg (SImode, GEN_INT (16));
emit_insn (gen_vec_shr_v4hi (fold, last, x));
break;
case V8QImode:
emit_insn (gen_loongson_punpckhwd_qi (fold, last, last));
next = gen_reg_rtx (vmode);
emit_insn (gen (next, last, fold));
last = next;
fold = gen_reg_rtx (vmode);
x = force_reg (SImode, GEN_INT (16));
emit_insn (gen_vec_shr_v8qi (fold, last, x));
next = gen_reg_rtx (vmode);
emit_insn (gen (next, last, fold));
last = next;
fold = gen_reg_rtx (vmode);
x = force_reg (SImode, GEN_INT (8));
emit_insn (gen_vec_shr_v8qi (fold, last, x));
break;
default:
gcc_unreachable ();
}
emit_insn (gen (target, last, fold));
}
/* Expand a vector minimum/maximum. */
void
mips_expand_vec_minmax (rtx target, rtx op0, rtx op1,
rtx (*cmp) (rtx, rtx, rtx), bool min_p)
{
machine_mode vmode = GET_MODE (target);
rtx tc, t0, t1, x;
tc = gen_reg_rtx (vmode);
t0 = gen_reg_rtx (vmode);
t1 = gen_reg_rtx (vmode);
/* op0 > op1 */
emit_insn (cmp (tc, op0, op1));
x = gen_rtx_AND (vmode, tc, (min_p ? op1 : op0));
emit_insn (gen_rtx_SET (t0, x));
x = gen_rtx_NOT (vmode, tc);
x = gen_rtx_AND (vmode, x, (min_p ? op0 : op1));
emit_insn (gen_rtx_SET (t1, x));
x = gen_rtx_IOR (vmode, t0, t1);
emit_insn (gen_rtx_SET (target, x));
}
/* Implement HARD_REGNO_CALLER_SAVE_MODE. */
machine_mode
mips_hard_regno_caller_save_mode (unsigned int regno,
unsigned int nregs,
machine_mode mode)
{
/* For performance, avoid saving/restoring upper parts of a register
by returning MODE as save mode when the mode is known. */
if (mode == VOIDmode)
return choose_hard_reg_mode (regno, nregs, false);
else
return mode;
}
/* Implement TARGET_CASE_VALUES_THRESHOLD. */
unsigned int
mips_case_values_threshold (void)
{
/* In MIPS16 mode using a larger case threshold generates smaller code. */
if (TARGET_MIPS16 && optimize_size)
return 10;
else
return default_case_values_threshold ();
}
/* Implement TARGET_ATOMIC_ASSIGN_EXPAND_FENV. */
static void
mips_atomic_assign_expand_fenv (tree *hold, tree *clear, tree *update)
{
if (!TARGET_HARD_FLOAT_ABI)
return;
tree exceptions_var = create_tmp_var (MIPS_ATYPE_USI);
tree fcsr_orig_var = create_tmp_var (MIPS_ATYPE_USI);
tree fcsr_mod_var = create_tmp_var (MIPS_ATYPE_USI);
tree get_fcsr = mips_builtin_decls[MIPS_GET_FCSR];
tree set_fcsr = mips_builtin_decls[MIPS_SET_FCSR];
tree get_fcsr_hold_call = build_call_expr (get_fcsr, 0);
tree hold_assign_orig = build2 (MODIFY_EXPR, MIPS_ATYPE_USI,
fcsr_orig_var, get_fcsr_hold_call);
tree hold_mod_val = build2 (BIT_AND_EXPR, MIPS_ATYPE_USI, fcsr_orig_var,
build_int_cst (MIPS_ATYPE_USI, 0xfffff003));
tree hold_assign_mod = build2 (MODIFY_EXPR, MIPS_ATYPE_USI,
fcsr_mod_var, hold_mod_val);
tree set_fcsr_hold_call = build_call_expr (set_fcsr, 1, fcsr_mod_var);
tree hold_all = build2 (COMPOUND_EXPR, MIPS_ATYPE_USI,
hold_assign_orig, hold_assign_mod);
*hold = build2 (COMPOUND_EXPR, void_type_node, hold_all,
set_fcsr_hold_call);
*clear = build_call_expr (set_fcsr, 1, fcsr_mod_var);
tree get_fcsr_update_call = build_call_expr (get_fcsr, 0);
*update = build2 (MODIFY_EXPR, MIPS_ATYPE_USI,
exceptions_var, get_fcsr_update_call);
tree set_fcsr_update_call = build_call_expr (set_fcsr, 1, fcsr_orig_var);
*update = build2 (COMPOUND_EXPR, void_type_node, *update,
set_fcsr_update_call);
tree atomic_feraiseexcept
= builtin_decl_implicit (BUILT_IN_ATOMIC_FERAISEEXCEPT);
tree int_exceptions_var = fold_convert (integer_type_node,
exceptions_var);
tree atomic_feraiseexcept_call = build_call_expr (atomic_feraiseexcept,
1, int_exceptions_var);
*update = build2 (COMPOUND_EXPR, void_type_node, *update,
atomic_feraiseexcept_call);
}
/* Implement TARGET_SPILL_CLASS. */
static reg_class_t
mips_spill_class (reg_class_t rclass ATTRIBUTE_UNUSED,
machine_mode mode ATTRIBUTE_UNUSED)
{
if (TARGET_MIPS16)
return SPILL_REGS;
return NO_REGS;
}
/* Implement TARGET_LRA_P. */
static bool
mips_lra_p (void)
{
return mips_lra_flag;
}
/* Implement TARGET_IRA_CHANGE_PSEUDO_ALLOCNO_CLASS. */
static reg_class_t
mips_ira_change_pseudo_allocno_class (int regno, reg_class_t allocno_class)
{
/* LRA will allocate an FPR for an integer mode pseudo instead of spilling
to memory if an FPR is present in the allocno class. It is rare that
we actually need to place an integer mode value in an FPR so where
possible limit the allocation to GR_REGS. This will slightly pessimize
code that involves integer to/from float conversions as these will have
to reload into FPRs in LRA. Such reloads are sometimes eliminated and
sometimes only partially eliminated. We choose to take this penalty
in order to eliminate usage of FPRs in code that does not use floating
point data.
This change has a similar effect to increasing the cost of FPR->GPR
register moves for integer modes so that they are higher than the cost
of memory but changing the allocno class is more reliable.
This is also similar to forbidding integer mode values in FPRs entirely
but this would lead to an inconsistency in the integer to/from float
instructions that say integer mode values must be placed in FPRs. */
if (INTEGRAL_MODE_P (PSEUDO_REGNO_MODE (regno)) && allocno_class == ALL_REGS)
return GR_REGS;
return allocno_class;
}
/* Initialize the GCC target structure. */
#undef TARGET_ASM_ALIGNED_HI_OP
#define TARGET_ASM_ALIGNED_HI_OP "\t.half\t"
#undef TARGET_ASM_ALIGNED_SI_OP
#define TARGET_ASM_ALIGNED_SI_OP "\t.word\t"
#undef TARGET_ASM_ALIGNED_DI_OP
#define TARGET_ASM_ALIGNED_DI_OP "\t.dword\t"
#undef TARGET_OPTION_OVERRIDE
#define TARGET_OPTION_OVERRIDE mips_option_override
#undef TARGET_LEGITIMIZE_ADDRESS
#define TARGET_LEGITIMIZE_ADDRESS mips_legitimize_address
#undef TARGET_ASM_FUNCTION_PROLOGUE
#define TARGET_ASM_FUNCTION_PROLOGUE mips_output_function_prologue
#undef TARGET_ASM_FUNCTION_EPILOGUE
#define TARGET_ASM_FUNCTION_EPILOGUE mips_output_function_epilogue
#undef TARGET_ASM_SELECT_RTX_SECTION
#define TARGET_ASM_SELECT_RTX_SECTION mips_select_rtx_section
#undef TARGET_ASM_FUNCTION_RODATA_SECTION
#define TARGET_ASM_FUNCTION_RODATA_SECTION mips_function_rodata_section
#undef TARGET_SCHED_INIT
#define TARGET_SCHED_INIT mips_sched_init
#undef TARGET_SCHED_REORDER
#define TARGET_SCHED_REORDER mips_sched_reorder
#undef TARGET_SCHED_REORDER2
#define TARGET_SCHED_REORDER2 mips_sched_reorder2
#undef TARGET_SCHED_VARIABLE_ISSUE
#define TARGET_SCHED_VARIABLE_ISSUE mips_variable_issue
#undef TARGET_SCHED_ADJUST_COST
#define TARGET_SCHED_ADJUST_COST mips_adjust_cost
#undef TARGET_SCHED_ISSUE_RATE
#define TARGET_SCHED_ISSUE_RATE mips_issue_rate
#undef TARGET_SCHED_INIT_DFA_POST_CYCLE_INSN
#define TARGET_SCHED_INIT_DFA_POST_CYCLE_INSN mips_init_dfa_post_cycle_insn
#undef TARGET_SCHED_DFA_POST_ADVANCE_CYCLE
#define TARGET_SCHED_DFA_POST_ADVANCE_CYCLE mips_dfa_post_advance_cycle
#undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD
#define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD \
mips_multipass_dfa_lookahead
#undef TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P
#define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P \
mips_small_register_classes_for_mode_p
#undef TARGET_FUNCTION_OK_FOR_SIBCALL
#define TARGET_FUNCTION_OK_FOR_SIBCALL mips_function_ok_for_sibcall
#undef TARGET_INSERT_ATTRIBUTES
#define TARGET_INSERT_ATTRIBUTES mips_insert_attributes
#undef TARGET_MERGE_DECL_ATTRIBUTES
#define TARGET_MERGE_DECL_ATTRIBUTES mips_merge_decl_attributes
#undef TARGET_CAN_INLINE_P
#define TARGET_CAN_INLINE_P mips_can_inline_p
#undef TARGET_SET_CURRENT_FUNCTION
#define TARGET_SET_CURRENT_FUNCTION mips_set_current_function
#undef TARGET_VALID_POINTER_MODE
#define TARGET_VALID_POINTER_MODE mips_valid_pointer_mode
#undef TARGET_REGISTER_MOVE_COST
#define TARGET_REGISTER_MOVE_COST mips_register_move_cost
#undef TARGET_REGISTER_PRIORITY
#define TARGET_REGISTER_PRIORITY mips_register_priority
#undef TARGET_MEMORY_MOVE_COST
#define TARGET_MEMORY_MOVE_COST mips_memory_move_cost
#undef TARGET_RTX_COSTS
#define TARGET_RTX_COSTS mips_rtx_costs
#undef TARGET_ADDRESS_COST
#define TARGET_ADDRESS_COST mips_address_cost
#undef TARGET_IN_SMALL_DATA_P
#define TARGET_IN_SMALL_DATA_P mips_in_small_data_p
#undef TARGET_MACHINE_DEPENDENT_REORG
#define TARGET_MACHINE_DEPENDENT_REORG mips_reorg
#undef TARGET_PREFERRED_RELOAD_CLASS
#define TARGET_PREFERRED_RELOAD_CLASS mips_preferred_reload_class
#undef TARGET_EXPAND_TO_RTL_HOOK
#define TARGET_EXPAND_TO_RTL_HOOK mips_expand_to_rtl_hook
#undef TARGET_ASM_FILE_START
#define TARGET_ASM_FILE_START mips_file_start
#undef TARGET_ASM_FILE_START_FILE_DIRECTIVE
#define TARGET_ASM_FILE_START_FILE_DIRECTIVE true
#undef TARGET_ASM_CODE_END
#define TARGET_ASM_CODE_END mips_code_end
#undef TARGET_INIT_LIBFUNCS
#define TARGET_INIT_LIBFUNCS mips_init_libfuncs
#undef TARGET_BUILD_BUILTIN_VA_LIST
#define TARGET_BUILD_BUILTIN_VA_LIST mips_build_builtin_va_list
#undef TARGET_EXPAND_BUILTIN_VA_START
#define TARGET_EXPAND_BUILTIN_VA_START mips_va_start
#undef TARGET_GIMPLIFY_VA_ARG_EXPR
#define TARGET_GIMPLIFY_VA_ARG_EXPR mips_gimplify_va_arg_expr
#undef TARGET_PROMOTE_FUNCTION_MODE
#define TARGET_PROMOTE_FUNCTION_MODE default_promote_function_mode_always_promote
#undef TARGET_PROMOTE_PROTOTYPES
#define TARGET_PROMOTE_PROTOTYPES hook_bool_const_tree_true
#undef TARGET_FUNCTION_VALUE
#define TARGET_FUNCTION_VALUE mips_function_value
#undef TARGET_LIBCALL_VALUE
#define TARGET_LIBCALL_VALUE mips_libcall_value
#undef TARGET_FUNCTION_VALUE_REGNO_P
#define TARGET_FUNCTION_VALUE_REGNO_P mips_function_value_regno_p
#undef TARGET_RETURN_IN_MEMORY
#define TARGET_RETURN_IN_MEMORY mips_return_in_memory
#undef TARGET_RETURN_IN_MSB
#define TARGET_RETURN_IN_MSB mips_return_in_msb
#undef TARGET_ASM_OUTPUT_MI_THUNK
#define TARGET_ASM_OUTPUT_MI_THUNK mips_output_mi_thunk
#undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
#define TARGET_ASM_CAN_OUTPUT_MI_THUNK hook_bool_const_tree_hwi_hwi_const_tree_true
#undef TARGET_PRINT_OPERAND
#define TARGET_PRINT_OPERAND mips_print_operand
#undef TARGET_PRINT_OPERAND_ADDRESS
#define TARGET_PRINT_OPERAND_ADDRESS mips_print_operand_address
#undef TARGET_PRINT_OPERAND_PUNCT_VALID_P
#define TARGET_PRINT_OPERAND_PUNCT_VALID_P mips_print_operand_punct_valid_p
#undef TARGET_SETUP_INCOMING_VARARGS
#define TARGET_SETUP_INCOMING_VARARGS mips_setup_incoming_varargs
#undef TARGET_STRICT_ARGUMENT_NAMING
#define TARGET_STRICT_ARGUMENT_NAMING mips_strict_argument_naming
#undef TARGET_MUST_PASS_IN_STACK
#define TARGET_MUST_PASS_IN_STACK must_pass_in_stack_var_size
#undef TARGET_PASS_BY_REFERENCE
#define TARGET_PASS_BY_REFERENCE mips_pass_by_reference
#undef TARGET_CALLEE_COPIES
#define TARGET_CALLEE_COPIES mips_callee_copies
#undef TARGET_ARG_PARTIAL_BYTES
#define TARGET_ARG_PARTIAL_BYTES mips_arg_partial_bytes
#undef TARGET_FUNCTION_ARG
#define TARGET_FUNCTION_ARG mips_function_arg
#undef TARGET_FUNCTION_ARG_ADVANCE
#define TARGET_FUNCTION_ARG_ADVANCE mips_function_arg_advance
#undef TARGET_FUNCTION_ARG_BOUNDARY
#define TARGET_FUNCTION_ARG_BOUNDARY mips_function_arg_boundary
#undef TARGET_GET_RAW_RESULT_MODE
#define TARGET_GET_RAW_RESULT_MODE mips_get_reg_raw_mode
#undef TARGET_GET_RAW_ARG_MODE
#define TARGET_GET_RAW_ARG_MODE mips_get_reg_raw_mode
#undef TARGET_MODE_REP_EXTENDED
#define TARGET_MODE_REP_EXTENDED mips_mode_rep_extended
#undef TARGET_VECTOR_MODE_SUPPORTED_P
#define TARGET_VECTOR_MODE_SUPPORTED_P mips_vector_mode_supported_p
#undef TARGET_SCALAR_MODE_SUPPORTED_P
#define TARGET_SCALAR_MODE_SUPPORTED_P mips_scalar_mode_supported_p
#undef TARGET_VECTORIZE_PREFERRED_SIMD_MODE
#define TARGET_VECTORIZE_PREFERRED_SIMD_MODE mips_preferred_simd_mode
#undef TARGET_INIT_BUILTINS
#define TARGET_INIT_BUILTINS mips_init_builtins
#undef TARGET_BUILTIN_DECL
#define TARGET_BUILTIN_DECL mips_builtin_decl
#undef TARGET_EXPAND_BUILTIN
#define TARGET_EXPAND_BUILTIN mips_expand_builtin
#undef TARGET_HAVE_TLS
#define TARGET_HAVE_TLS HAVE_AS_TLS
#undef TARGET_CANNOT_FORCE_CONST_MEM
#define TARGET_CANNOT_FORCE_CONST_MEM mips_cannot_force_const_mem
#undef TARGET_LEGITIMATE_CONSTANT_P
#define TARGET_LEGITIMATE_CONSTANT_P mips_legitimate_constant_p
#undef TARGET_ENCODE_SECTION_INFO
#define TARGET_ENCODE_SECTION_INFO mips_encode_section_info
#undef TARGET_ATTRIBUTE_TABLE
#define TARGET_ATTRIBUTE_TABLE mips_attribute_table
/* All our function attributes are related to how out-of-line copies should
be compiled or called. They don't in themselves prevent inlining. */
#undef TARGET_FUNCTION_ATTRIBUTE_INLINABLE_P
#define TARGET_FUNCTION_ATTRIBUTE_INLINABLE_P hook_bool_const_tree_true
#undef TARGET_EXTRA_LIVE_ON_ENTRY
#define TARGET_EXTRA_LIVE_ON_ENTRY mips_extra_live_on_entry
#undef TARGET_USE_BLOCKS_FOR_CONSTANT_P
#define TARGET_USE_BLOCKS_FOR_CONSTANT_P mips_use_blocks_for_constant_p
#undef TARGET_USE_ANCHORS_FOR_SYMBOL_P
#define TARGET_USE_ANCHORS_FOR_SYMBOL_P mips_use_anchors_for_symbol_p
#undef TARGET_COMP_TYPE_ATTRIBUTES
#define TARGET_COMP_TYPE_ATTRIBUTES mips_comp_type_attributes
#ifdef HAVE_AS_DTPRELWORD
#undef TARGET_ASM_OUTPUT_DWARF_DTPREL
#define TARGET_ASM_OUTPUT_DWARF_DTPREL mips_output_dwarf_dtprel
#endif
#undef TARGET_DWARF_REGISTER_SPAN
#define TARGET_DWARF_REGISTER_SPAN mips_dwarf_register_span
#undef TARGET_DWARF_FRAME_REG_MODE
#define TARGET_DWARF_FRAME_REG_MODE mips_dwarf_frame_reg_mode
#undef TARGET_ASM_FINAL_POSTSCAN_INSN
#define TARGET_ASM_FINAL_POSTSCAN_INSN mips_final_postscan_insn
#undef TARGET_LEGITIMATE_ADDRESS_P
#define TARGET_LEGITIMATE_ADDRESS_P mips_legitimate_address_p
#undef TARGET_FRAME_POINTER_REQUIRED
#define TARGET_FRAME_POINTER_REQUIRED mips_frame_pointer_required
#undef TARGET_CAN_ELIMINATE
#define TARGET_CAN_ELIMINATE mips_can_eliminate
#undef TARGET_CONDITIONAL_REGISTER_USAGE
#define TARGET_CONDITIONAL_REGISTER_USAGE mips_conditional_register_usage
#undef TARGET_TRAMPOLINE_INIT
#define TARGET_TRAMPOLINE_INIT mips_trampoline_init
#undef TARGET_ASM_OUTPUT_SOURCE_FILENAME
#define TARGET_ASM_OUTPUT_SOURCE_FILENAME mips_output_filename
#undef TARGET_SHIFT_TRUNCATION_MASK
#define TARGET_SHIFT_TRUNCATION_MASK mips_shift_truncation_mask
#undef TARGET_PREPARE_PCH_SAVE
#define TARGET_PREPARE_PCH_SAVE mips_prepare_pch_save
#undef TARGET_VECTORIZE_VEC_PERM_CONST_OK
#define TARGET_VECTORIZE_VEC_PERM_CONST_OK mips_vectorize_vec_perm_const_ok
#undef TARGET_CASE_VALUES_THRESHOLD
#define TARGET_CASE_VALUES_THRESHOLD mips_case_values_threshold
#undef TARGET_ATOMIC_ASSIGN_EXPAND_FENV
#define TARGET_ATOMIC_ASSIGN_EXPAND_FENV mips_atomic_assign_expand_fenv
#undef TARGET_CALL_FUSAGE_CONTAINS_NON_CALLEE_CLOBBERS
#define TARGET_CALL_FUSAGE_CONTAINS_NON_CALLEE_CLOBBERS true
#undef TARGET_USE_BY_PIECES_INFRASTRUCTURE_P
#define TARGET_USE_BY_PIECES_INFRASTRUCTURE_P \
mips_use_by_pieces_infrastructure_p
#undef TARGET_SPILL_CLASS
#define TARGET_SPILL_CLASS mips_spill_class
#undef TARGET_LRA_P
#define TARGET_LRA_P mips_lra_p
#undef TARGET_IRA_CHANGE_PSEUDO_ALLOCNO_CLASS
#define TARGET_IRA_CHANGE_PSEUDO_ALLOCNO_CLASS mips_ira_change_pseudo_allocno_class
#undef TARGET_HARD_REGNO_SCRATCH_OK
#define TARGET_HARD_REGNO_SCRATCH_OK mips_hard_regno_scratch_ok
struct gcc_target targetm = TARGET_INITIALIZER;
#include "gt-mips.h"
|