1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
|
/* Subroutines used for code generation on the Mitsubishi M32R cpu.
Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002
Free Software Foundation, Inc.
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "config.h"
#include "system.h"
#include "tree.h"
#include "rtl.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "real.h"
#include "insn-config.h"
#include "conditions.h"
#include "output.h"
#include "insn-attr.h"
#include "flags.h"
#include "expr.h"
#include "function.h"
#include "recog.h"
#include "toplev.h"
#include "ggc.h"
#include "tm_p.h"
#include "target.h"
#include "target-def.h"
/* Save the operands last given to a compare for use when we
generate a scc or bcc insn. */
rtx m32r_compare_op0, m32r_compare_op1;
/* Array of valid operand punctuation characters. */
char m32r_punct_chars[256];
/* Selected code model. */
const char * m32r_model_string = M32R_MODEL_DEFAULT;
enum m32r_model m32r_model;
/* Selected SDA support. */
const char * m32r_sdata_string = M32R_SDATA_DEFAULT;
enum m32r_sdata m32r_sdata;
/* Scheduler support */
static int m32r_sched_odd_word_p;
/* Forward declaration. */
static void init_reg_tables PARAMS ((void));
static void block_move_call PARAMS ((rtx, rtx, rtx));
static int m32r_is_insn PARAMS ((rtx));
const struct attribute_spec m32r_attribute_table[];
static tree m32r_handle_model_attribute PARAMS ((tree *, tree, tree, int, bool *));
static void m32r_output_function_prologue PARAMS ((FILE *, HOST_WIDE_INT));
static void m32r_output_function_epilogue PARAMS ((FILE *, HOST_WIDE_INT));
static int m32r_adjust_cost PARAMS ((rtx, rtx, rtx, int));
static int m32r_adjust_priority PARAMS ((rtx, int));
static void m32r_sched_init PARAMS ((FILE *, int, int));
static int m32r_sched_reorder PARAMS ((FILE *, int, rtx *, int *, int));
static int m32r_variable_issue PARAMS ((FILE *, int, rtx, int));
static int m32r_issue_rate PARAMS ((void));
static void m32r_select_section PARAMS ((tree, int, unsigned HOST_WIDE_INT));
static void m32r_encode_section_info PARAMS ((tree, int));
static const char *m32r_strip_name_encoding PARAMS ((const char *));
static void init_idents PARAMS ((void));
/* Initialize the GCC target structure. */
#undef TARGET_ATTRIBUTE_TABLE
#define TARGET_ATTRIBUTE_TABLE m32r_attribute_table
#undef TARGET_ASM_ALIGNED_HI_OP
#define TARGET_ASM_ALIGNED_HI_OP "\t.hword\t"
#undef TARGET_ASM_ALIGNED_SI_OP
#define TARGET_ASM_ALIGNED_SI_OP "\t.word\t"
#undef TARGET_ASM_FUNCTION_PROLOGUE
#define TARGET_ASM_FUNCTION_PROLOGUE m32r_output_function_prologue
#undef TARGET_ASM_FUNCTION_EPILOGUE
#define TARGET_ASM_FUNCTION_EPILOGUE m32r_output_function_epilogue
#undef TARGET_SCHED_ADJUST_COST
#define TARGET_SCHED_ADJUST_COST m32r_adjust_cost
#undef TARGET_SCHED_ADJUST_PRIORITY
#define TARGET_SCHED_ADJUST_PRIORITY m32r_adjust_priority
#undef TARGET_SCHED_ISSUE_RATE
#define TARGET_SCHED_ISSUE_RATE m32r_issue_rate
#undef TARGET_SCHED_VARIABLE_ISSUE
#define TARGET_SCHED_VARIABLE_ISSUE m32r_variable_issue
#undef TARGET_SCHED_INIT
#define TARGET_SCHED_INIT m32r_sched_init
#undef TARGET_SCHED_REORDER
#define TARGET_SCHED_REORDER m32r_sched_reorder
#undef TARGET_ENCODE_SECTION_INFO
#define TARGET_ENCODE_SECTION_INFO m32r_encode_section_info
#undef TARGET_STRIP_NAME_ENCODING
#define TARGET_STRIP_NAME_ENCODING m32r_strip_name_encoding
struct gcc_target targetm = TARGET_INITIALIZER;
/* Called by OVERRIDE_OPTIONS to initialize various things. */
void
m32r_init ()
{
init_reg_tables ();
/* Initialize array for PRINT_OPERAND_PUNCT_VALID_P. */
memset (m32r_punct_chars, 0, sizeof (m32r_punct_chars));
m32r_punct_chars['#'] = 1;
m32r_punct_chars['@'] = 1; /* ??? no longer used */
/* Provide default value if not specified. */
if (!g_switch_set)
g_switch_value = SDATA_DEFAULT_SIZE;
if (strcmp (m32r_model_string, "small") == 0)
m32r_model = M32R_MODEL_SMALL;
else if (strcmp (m32r_model_string, "medium") == 0)
m32r_model = M32R_MODEL_MEDIUM;
else if (strcmp (m32r_model_string, "large") == 0)
m32r_model = M32R_MODEL_LARGE;
else
error ("bad value (%s) for -mmodel switch", m32r_model_string);
if (strcmp (m32r_sdata_string, "none") == 0)
m32r_sdata = M32R_SDATA_NONE;
else if (strcmp (m32r_sdata_string, "sdata") == 0)
m32r_sdata = M32R_SDATA_SDATA;
else if (strcmp (m32r_sdata_string, "use") == 0)
m32r_sdata = M32R_SDATA_USE;
else
error ("bad value (%s) for -msdata switch", m32r_sdata_string);
}
/* Vectors to keep interesting information about registers where it can easily
be got. We use to use the actual mode value as the bit number, but there
is (or may be) more than 32 modes now. Instead we use two tables: one
indexed by hard register number, and one indexed by mode. */
/* The purpose of m32r_mode_class is to shrink the range of modes so that
they all fit (as bit numbers) in a 32 bit word (again). Each real mode is
mapped into one m32r_mode_class mode. */
enum m32r_mode_class
{
C_MODE,
S_MODE, D_MODE, T_MODE, O_MODE,
SF_MODE, DF_MODE, TF_MODE, OF_MODE, A_MODE
};
/* Modes for condition codes. */
#define C_MODES (1 << (int) C_MODE)
/* Modes for single-word and smaller quantities. */
#define S_MODES ((1 << (int) S_MODE) | (1 << (int) SF_MODE))
/* Modes for double-word and smaller quantities. */
#define D_MODES (S_MODES | (1 << (int) D_MODE) | (1 << DF_MODE))
/* Modes for quad-word and smaller quantities. */
#define T_MODES (D_MODES | (1 << (int) T_MODE) | (1 << (int) TF_MODE))
/* Modes for accumulators. */
#define A_MODES (1 << (int) A_MODE)
/* Value is 1 if register/mode pair is acceptable on arc. */
const unsigned int m32r_hard_regno_mode_ok[FIRST_PSEUDO_REGISTER] =
{
T_MODES, T_MODES, T_MODES, T_MODES, T_MODES, T_MODES, T_MODES, T_MODES,
T_MODES, T_MODES, T_MODES, T_MODES, T_MODES, S_MODES, S_MODES, S_MODES,
S_MODES, C_MODES, A_MODES, A_MODES
};
unsigned int m32r_mode_class [NUM_MACHINE_MODES];
enum reg_class m32r_regno_reg_class[FIRST_PSEUDO_REGISTER];
static void
init_reg_tables ()
{
int i;
for (i = 0; i < NUM_MACHINE_MODES; i++)
{
switch (GET_MODE_CLASS (i))
{
case MODE_INT:
case MODE_PARTIAL_INT:
case MODE_COMPLEX_INT:
if (GET_MODE_SIZE (i) <= 4)
m32r_mode_class[i] = 1 << (int) S_MODE;
else if (GET_MODE_SIZE (i) == 8)
m32r_mode_class[i] = 1 << (int) D_MODE;
else if (GET_MODE_SIZE (i) == 16)
m32r_mode_class[i] = 1 << (int) T_MODE;
else if (GET_MODE_SIZE (i) == 32)
m32r_mode_class[i] = 1 << (int) O_MODE;
else
m32r_mode_class[i] = 0;
break;
case MODE_FLOAT:
case MODE_COMPLEX_FLOAT:
if (GET_MODE_SIZE (i) <= 4)
m32r_mode_class[i] = 1 << (int) SF_MODE;
else if (GET_MODE_SIZE (i) == 8)
m32r_mode_class[i] = 1 << (int) DF_MODE;
else if (GET_MODE_SIZE (i) == 16)
m32r_mode_class[i] = 1 << (int) TF_MODE;
else if (GET_MODE_SIZE (i) == 32)
m32r_mode_class[i] = 1 << (int) OF_MODE;
else
m32r_mode_class[i] = 0;
break;
case MODE_CC:
default:
/* mode_class hasn't been initialized yet for EXTRA_CC_MODES, so
we must explicitly check for them here. */
if (i == (int) CCmode)
m32r_mode_class[i] = 1 << (int) C_MODE;
else
m32r_mode_class[i] = 0;
break;
}
}
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
{
if (GPR_P (i))
m32r_regno_reg_class[i] = GENERAL_REGS;
else if (i == ARG_POINTER_REGNUM)
m32r_regno_reg_class[i] = GENERAL_REGS;
else
m32r_regno_reg_class[i] = NO_REGS;
}
}
/* M32R specific attribute support.
interrupt - for interrupt functions
model - select code model used to access object
small: addresses use 24 bits, use bl to make calls
medium: addresses use 32 bits, use bl to make calls
large: addresses use 32 bits, use seth/add3/jl to make calls
Grep for MODEL in m32r.h for more info.
*/
static tree small_ident1;
static tree small_ident2;
static tree medium_ident1;
static tree medium_ident2;
static tree large_ident1;
static tree large_ident2;
static void
init_idents ()
{
if (small_ident1 == 0)
{
small_ident1 = get_identifier ("small");
small_ident2 = get_identifier ("__small__");
medium_ident1 = get_identifier ("medium");
medium_ident2 = get_identifier ("__medium__");
large_ident1 = get_identifier ("large");
large_ident2 = get_identifier ("__large__");
}
}
const struct attribute_spec m32r_attribute_table[] =
{
/* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */
{ "interrupt", 0, 0, true, false, false, NULL },
{ "model", 1, 1, true, false, false, m32r_handle_model_attribute },
{ NULL, 0, 0, false, false, false, NULL }
};
/* Handle an "model" attribute; arguments as in
struct attribute_spec.handler. */
static tree
m32r_handle_model_attribute (node, name, args, flags, no_add_attrs)
tree *node ATTRIBUTE_UNUSED;
tree name;
tree args;
int flags ATTRIBUTE_UNUSED;
bool *no_add_attrs;
{
tree arg;
init_idents ();
arg = TREE_VALUE (args);
if (arg != small_ident1
&& arg != small_ident2
&& arg != medium_ident1
&& arg != medium_ident2
&& arg != large_ident1
&& arg != large_ident2)
{
warning ("invalid argument of `%s' attribute",
IDENTIFIER_POINTER (name));
*no_add_attrs = true;
}
return NULL_TREE;
}
/* A C statement or statements to switch to the appropriate
section for output of DECL. DECL is either a `VAR_DECL' node
or a constant of some sort. RELOC indicates whether forming
the initial value of DECL requires link-time relocations. */
static void
m32r_select_section (decl, reloc, align)
tree decl;
int reloc;
unsigned HOST_WIDE_INT align ATTRIBUTE_UNUSED;
{
if (TREE_CODE (decl) == STRING_CST)
{
if (! flag_writable_strings)
readonly_data_section ();
else
data_section ();
}
else if (TREE_CODE (decl) == VAR_DECL)
{
if (SDATA_NAME_P (XSTR (XEXP (DECL_RTL (decl), 0), 0)))
sdata_section ();
else if ((flag_pic && reloc)
|| !TREE_READONLY (decl)
|| TREE_SIDE_EFFECTS (decl)
|| !DECL_INITIAL (decl)
|| (DECL_INITIAL (decl) != error_mark_node
&& !TREE_CONSTANT (DECL_INITIAL (decl))))
data_section ();
else
readonly_data_section ();
}
else
readonly_data_section ();
}
/* Encode section information of DECL, which is either a VAR_DECL,
FUNCTION_DECL, STRING_CST, CONSTRUCTOR, or ???.
For the M32R we want to record:
- whether the object lives in .sdata/.sbss.
objects living in .sdata/.sbss are prefixed with SDATA_FLAG_CHAR
- what code model should be used to access the object
small: recorded with no flag - for space efficiency since they'll
be the most common
medium: prefixed with MEDIUM_FLAG_CHAR
large: prefixed with LARGE_FLAG_CHAR
*/
static void
m32r_encode_section_info (decl, first)
tree decl;
int first;
{
char prefix = 0;
tree model = 0;
if (!first)
return;
switch (TREE_CODE (decl))
{
case VAR_DECL :
case FUNCTION_DECL :
model = lookup_attribute ("model", DECL_ATTRIBUTES (decl));
break;
case STRING_CST :
case CONSTRUCTOR :
/* ??? document all others that can appear here */
default :
return;
}
/* Only mark the object as being small data area addressable if
it hasn't been explicitly marked with a code model.
The user can explicitly put an object in the small data area with the
section attribute. If the object is in sdata/sbss and marked with a
code model do both [put the object in .sdata and mark it as being
addressed with a specific code model - don't mark it as being addressed
with an SDA reloc though]. This is ok and might be useful at times. If
the object doesn't fit the linker will give an error. */
if (! model)
{
if (TREE_CODE_CLASS (TREE_CODE (decl)) == 'd'
&& DECL_SECTION_NAME (decl) != NULL_TREE)
{
char *name = (char *) TREE_STRING_POINTER (DECL_SECTION_NAME (decl));
if (! strcmp (name, ".sdata") || ! strcmp (name, ".sbss"))
{
#if 0 /* ??? There's no reason to disallow this, is there? */
if (TREE_READONLY (decl))
error_with_decl (decl, "const objects cannot go in .sdata/.sbss");
#endif
prefix = SDATA_FLAG_CHAR;
}
}
else
{
if (TREE_CODE (decl) == VAR_DECL
&& ! TREE_READONLY (decl)
&& ! TARGET_SDATA_NONE)
{
int size = int_size_in_bytes (TREE_TYPE (decl));
if (size > 0 && size <= g_switch_value)
prefix = SDATA_FLAG_CHAR;
}
}
}
/* If data area not decided yet, check for a code model. */
if (prefix == 0)
{
if (model)
{
tree id;
init_idents ();
id = TREE_VALUE (TREE_VALUE (model));
if (id == small_ident1 || id == small_ident2)
; /* don't mark the symbol specially */
else if (id == medium_ident1 || id == medium_ident2)
prefix = MEDIUM_FLAG_CHAR;
else if (id == large_ident1 || id == large_ident2)
prefix = LARGE_FLAG_CHAR;
else
abort (); /* shouldn't happen */
}
else
{
if (TARGET_MODEL_SMALL)
; /* don't mark the symbol specially */
else if (TARGET_MODEL_MEDIUM)
prefix = MEDIUM_FLAG_CHAR;
else if (TARGET_MODEL_LARGE)
prefix = LARGE_FLAG_CHAR;
else
abort (); /* shouldn't happen */
}
}
if (prefix != 0)
{
rtx rtl = (TREE_CODE_CLASS (TREE_CODE (decl)) != 'd'
? TREE_CST_RTL (decl) : DECL_RTL (decl));
const char *str = XSTR (XEXP (rtl, 0), 0);
int len = strlen (str);
char *newstr = ggc_alloc (len + 2);
strcpy (newstr + 1, str);
*newstr = prefix;
/* Note - we cannot leave the string in the ggc_alloc'ed space.
It must reside in the stringtable's domain. */
newstr = (char *) ggc_alloc_string (newstr, len + 2);
XSTR (XEXP (rtl, 0), 0) = newstr;
}
}
/* Undo the effects of the above. */
static const char *
m32r_strip_name_encoding (str)
const char *str;
{
str += ENCODED_NAME_P (str);
str += *str == '*';
return str;
}
/* Do anything needed before RTL is emitted for each function. */
void
m32r_init_expanders ()
{
/* ??? At one point there was code here. The function is left in
to make it easy to experiment. */
}
/* Acceptable arguments to the call insn. */
int
call_address_operand (op, mode)
rtx op;
enum machine_mode mode;
{
return symbolic_operand (op, mode);
/* Constants and values in registers are not OK, because
the m32r BL instruction can only support PC relative branching. */
}
int
call_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (GET_CODE (op) != MEM)
return 0;
op = XEXP (op, 0);
return call_address_operand (op, mode);
}
/* Returns 1 if OP is a symbol reference. */
int
symbolic_operand (op, mode)
rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
switch (GET_CODE (op))
{
case SYMBOL_REF:
case LABEL_REF:
case CONST :
return 1;
default:
return 0;
}
}
/* Return 1 if OP is a reference to an object in .sdata/.sbss. */
int
small_data_operand (op, mode)
rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
if (! TARGET_SDATA_USE)
return 0;
if (GET_CODE (op) == SYMBOL_REF)
return SDATA_NAME_P (XSTR (op, 0));
if (GET_CODE (op) == CONST
&& GET_CODE (XEXP (op, 0)) == PLUS
&& GET_CODE (XEXP (XEXP (op, 0), 0)) == SYMBOL_REF
&& GET_CODE (XEXP (XEXP (op, 0), 1)) == CONST_INT
&& INT16_P (INTVAL (XEXP (XEXP (op, 0), 1))))
return SDATA_NAME_P (XSTR (XEXP (XEXP (op, 0), 0), 0));
return 0;
}
/* Return 1 if OP is a symbol that can use 24 bit addressing. */
int
addr24_operand (op, mode)
rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
if (GET_CODE (op) == LABEL_REF)
return TARGET_ADDR24;
if (GET_CODE (op) == SYMBOL_REF)
return (SMALL_NAME_P (XSTR (op, 0))
|| (TARGET_ADDR24
&& (CONSTANT_POOL_ADDRESS_P (op)
|| LIT_NAME_P (XSTR (op, 0)))));
if (GET_CODE (op) == CONST
&& GET_CODE (XEXP (op, 0)) == PLUS
&& GET_CODE (XEXP (XEXP (op, 0), 0)) == SYMBOL_REF
&& GET_CODE (XEXP (XEXP (op, 0), 1)) == CONST_INT
&& UINT24_P (INTVAL (XEXP (XEXP (op, 0), 1))))
{
rtx sym = XEXP (XEXP (op, 0), 0);
return (SMALL_NAME_P (XSTR (sym, 0))
|| (TARGET_ADDR24
&& (CONSTANT_POOL_ADDRESS_P (op)
|| LIT_NAME_P (XSTR (op, 0)))));
}
return 0;
}
/* Return 1 if OP is a symbol that needs 32 bit addressing. */
int
addr32_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (GET_CODE (op) == LABEL_REF)
return TARGET_ADDR32;
if (GET_CODE (op) == SYMBOL_REF)
return (! addr24_operand (op, mode)
&& ! small_data_operand (op, mode));
if (GET_CODE (op) == CONST
&& GET_CODE (XEXP (op, 0)) == PLUS
&& GET_CODE (XEXP (XEXP (op, 0), 0)) == SYMBOL_REF
&& GET_CODE (XEXP (XEXP (op, 0), 1)) == CONST_INT)
{
return (! addr24_operand (op, mode)
&& ! small_data_operand (op, mode));
}
return 0;
}
/* Return 1 if OP is a function that can be called with the `bl' insn. */
int
call26_operand (op, mode)
rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
if (GET_CODE (op) == SYMBOL_REF)
return ! LARGE_NAME_P (XSTR (op, 0));
return TARGET_CALL26;
}
/* Returns 1 if OP is an acceptable operand for seth/add3. */
int
seth_add3_operand (op, mode)
rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
if (GET_CODE (op) == SYMBOL_REF
|| GET_CODE (op) == LABEL_REF)
return 1;
if (GET_CODE (op) == CONST
&& GET_CODE (XEXP (op, 0)) == PLUS
&& GET_CODE (XEXP (XEXP (op, 0), 0)) == SYMBOL_REF
&& GET_CODE (XEXP (XEXP (op, 0), 1)) == CONST_INT
&& INT16_P (INTVAL (XEXP (XEXP (op, 0), 1))))
return 1;
return 0;
}
/* Return true if OP is a signed 8 bit immediate value. */
int
int8_operand (op, mode)
rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
if (GET_CODE (op) != CONST_INT)
return 0;
return INT8_P (INTVAL (op));
}
/* Return true if OP is a signed 16 bit immediate value
useful in comparisons. */
int
cmp_int16_operand (op, mode)
rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
if (GET_CODE (op) != CONST_INT)
return 0;
return CMP_INT16_P (INTVAL (op));
}
/* Return true if OP is an unsigned 16 bit immediate value. */
int
uint16_operand (op, mode)
rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
if (GET_CODE (op) != CONST_INT)
return 0;
return UINT16_P (INTVAL (op));
}
/* Return true if OP is a register or signed 16 bit value. */
int
reg_or_int16_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (GET_CODE (op) == REG || GET_CODE (op) == SUBREG)
return register_operand (op, mode);
if (GET_CODE (op) != CONST_INT)
return 0;
return INT16_P (INTVAL (op));
}
/* Return true if OP is a register or an unsigned 16 bit value. */
int
reg_or_uint16_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (GET_CODE (op) == REG || GET_CODE (op) == SUBREG)
return register_operand (op, mode);
if (GET_CODE (op) != CONST_INT)
return 0;
return UINT16_P (INTVAL (op));
}
/* Return true if OP is a register or an integer value that can be
used is SEQ/SNE. We can use either XOR of the value or ADD of
the negative of the value for the constant. Don't allow 0,
because that is special cased. */
int
reg_or_eq_int16_operand (op, mode)
rtx op;
enum machine_mode mode;
{
HOST_WIDE_INT value;
if (GET_CODE (op) == REG || GET_CODE (op) == SUBREG)
return register_operand (op, mode);
if (GET_CODE (op) != CONST_INT)
return 0;
value = INTVAL (op);
return (value != 0) && (UINT16_P (value) || CMP_INT16_P (-value));
}
/* Return true if OP is a register or signed 16 bit value for compares. */
int
reg_or_cmp_int16_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (GET_CODE (op) == REG || GET_CODE (op) == SUBREG)
return register_operand (op, mode);
if (GET_CODE (op) != CONST_INT)
return 0;
return CMP_INT16_P (INTVAL (op));
}
/* Return true if OP is a register or the constant 0. */
int
reg_or_zero_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (GET_CODE (op) == REG || GET_CODE (op) == SUBREG)
return register_operand (op, mode);
if (GET_CODE (op) != CONST_INT)
return 0;
return INTVAL (op) == 0;
}
/* Return true if OP is a const_int requiring two instructions to load. */
int
two_insn_const_operand (op, mode)
rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
if (GET_CODE (op) != CONST_INT)
return 0;
if (INT16_P (INTVAL (op))
|| UINT24_P (INTVAL (op))
|| UPPER16_P (INTVAL (op)))
return 0;
return 1;
}
/* Return true if OP is an acceptable argument for a single word
move source. */
int
move_src_operand (op, mode)
rtx op;
enum machine_mode mode;
{
switch (GET_CODE (op))
{
case SYMBOL_REF :
case CONST :
return addr24_operand (op, mode);
case CONST_INT :
/* ??? We allow more cse opportunities if we only allow constants
loadable with one insn, and split the rest into two. The instances
where this would help should be rare and the current way is
simpler. */
if (HOST_BITS_PER_WIDE_INT > 32)
{
HOST_WIDE_INT rest = INTVAL (op) >> 31;
return (rest == 0 || rest == -1);
}
else
return 1;
case LABEL_REF :
return TARGET_ADDR24;
case CONST_DOUBLE :
if (mode == SFmode)
return 1;
else if (mode == SImode)
{
/* Large unsigned constants are represented as const_double's. */
unsigned HOST_WIDE_INT low, high;
low = CONST_DOUBLE_LOW (op);
high = CONST_DOUBLE_HIGH (op);
return high == 0 && low <= 0xffffffff;
}
else
return 0;
case REG :
return register_operand (op, mode);
case SUBREG :
/* (subreg (mem ...) ...) can occur here if the inner part was once a
pseudo-reg and is now a stack slot. */
if (GET_CODE (SUBREG_REG (op)) == MEM)
return address_operand (XEXP (SUBREG_REG (op), 0), mode);
else
return register_operand (op, mode);
case MEM :
if (GET_CODE (XEXP (op, 0)) == PRE_INC
|| GET_CODE (XEXP (op, 0)) == PRE_DEC)
return 0; /* loads can't do pre-{inc,dec} */
return address_operand (XEXP (op, 0), mode);
default :
return 0;
}
}
/* Return true if OP is an acceptable argument for a double word
move source. */
int
move_double_src_operand (op, mode)
rtx op;
enum machine_mode mode;
{
switch (GET_CODE (op))
{
case CONST_INT :
case CONST_DOUBLE :
return 1;
case REG :
return register_operand (op, mode);
case SUBREG :
/* (subreg (mem ...) ...) can occur here if the inner part was once a
pseudo-reg and is now a stack slot. */
if (GET_CODE (SUBREG_REG (op)) == MEM)
return move_double_src_operand (SUBREG_REG (op), mode);
else
return register_operand (op, mode);
case MEM :
/* Disallow auto inc/dec for now. */
if (GET_CODE (XEXP (op, 0)) == PRE_DEC
|| GET_CODE (XEXP (op, 0)) == PRE_INC)
return 0;
return address_operand (XEXP (op, 0), mode);
default :
return 0;
}
}
/* Return true if OP is an acceptable argument for a move destination. */
int
move_dest_operand (op, mode)
rtx op;
enum machine_mode mode;
{
switch (GET_CODE (op))
{
case REG :
return register_operand (op, mode);
case SUBREG :
/* (subreg (mem ...) ...) can occur here if the inner part was once a
pseudo-reg and is now a stack slot. */
if (GET_CODE (SUBREG_REG (op)) == MEM)
return address_operand (XEXP (SUBREG_REG (op), 0), mode);
else
return register_operand (op, mode);
case MEM :
if (GET_CODE (XEXP (op, 0)) == POST_INC)
return 0; /* stores can't do post inc */
return address_operand (XEXP (op, 0), mode);
default :
return 0;
}
}
/* Return 1 if OP is a DImode const we want to handle inline.
This must match the code in the movdi pattern.
It is used by the 'G' CONST_DOUBLE_OK_FOR_LETTER. */
int
easy_di_const (op)
rtx op;
{
rtx high_rtx, low_rtx;
HOST_WIDE_INT high, low;
split_double (op, &high_rtx, &low_rtx);
high = INTVAL (high_rtx);
low = INTVAL (low_rtx);
/* Pick constants loadable with 2 16 bit `ldi' insns. */
if (high >= -128 && high <= 127
&& low >= -128 && low <= 127)
return 1;
return 0;
}
/* Return 1 if OP is a DFmode const we want to handle inline.
This must match the code in the movdf pattern.
It is used by the 'H' CONST_DOUBLE_OK_FOR_LETTER. */
int
easy_df_const (op)
rtx op;
{
REAL_VALUE_TYPE r;
long l[2];
REAL_VALUE_FROM_CONST_DOUBLE (r, op);
REAL_VALUE_TO_TARGET_DOUBLE (r, l);
if (l[0] == 0 && l[1] == 0)
return 1;
if ((l[0] & 0xffff) == 0 && l[1] == 0)
return 1;
return 0;
}
/* Return 1 if OP is an EQ or NE comparison operator. */
int
eqne_comparison_operator (op, mode)
rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
enum rtx_code code = GET_CODE (op);
if (GET_RTX_CLASS (code) != '<')
return 0;
return (code == EQ || code == NE);
}
/* Return 1 if OP is a signed comparison operator. */
int
signed_comparison_operator (op, mode)
rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
enum rtx_code code = GET_CODE (op);
if (GET_RTX_CLASS (code) != '<')
return 0;
return (code == EQ || code == NE
|| code == LT || code == LE || code == GT || code == GE);
}
/* Return 1 if OP is (mem (reg ...)).
This is used in insn length calcs. */
int
memreg_operand (op, mode)
rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
return GET_CODE (op) == MEM && GET_CODE (XEXP (op, 0)) == REG;
}
/* Return true if OP is an acceptable input argument for a zero/sign extend
operation. */
int
extend_operand (op, mode)
rtx op;
enum machine_mode mode;
{
rtx addr;
switch (GET_CODE (op))
{
case REG :
case SUBREG :
return register_operand (op, mode);
case MEM :
addr = XEXP (op, 0);
if (GET_CODE (addr) == PRE_INC || GET_CODE (addr) == PRE_DEC)
return 0; /* loads can't do pre inc/pre dec */
return address_operand (addr, mode);
default :
return 0;
}
}
/* Return nonzero if the operand is an insn that is a small insn.
Allow const_int 0 as well, which is a placeholder for NOP slots. */
int
small_insn_p (op, mode)
rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
if (GET_CODE (op) == CONST_INT && INTVAL (op) == 0)
return 1;
if (! INSN_P (op))
return 0;
return get_attr_length (op) == 2;
}
/* Return nonzero if the operand is an insn that is a large insn. */
int
large_insn_p (op, mode)
rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
if (! INSN_P (op))
return 0;
return get_attr_length (op) != 2;
}
/* Comparisons. */
/* X and Y are two things to compare using CODE. Emit the compare insn and
return the rtx for compare [arg0 of the if_then_else].
If need_compare is true then the comparison insn must be generated, rather
than being susummed into the following branch instruction. */
rtx
gen_compare (code, x, y, need_compare)
enum rtx_code code;
rtx x, y;
int need_compare;
{
enum rtx_code compare_code, branch_code;
rtx cc_reg = gen_rtx_REG (CCmode, CARRY_REGNUM);
int must_swap = 0;
switch (code)
{
case EQ: compare_code = EQ; branch_code = NE; break;
case NE: compare_code = EQ; branch_code = EQ; break;
case LT: compare_code = LT; branch_code = NE; break;
case LE: compare_code = LT; branch_code = EQ; must_swap = 1; break;
case GT: compare_code = LT; branch_code = NE; must_swap = 1; break;
case GE: compare_code = LT; branch_code = EQ; break;
case LTU: compare_code = LTU; branch_code = NE; break;
case LEU: compare_code = LTU; branch_code = EQ; must_swap = 1; break;
case GTU: compare_code = LTU; branch_code = NE; must_swap = 1; break;
case GEU: compare_code = LTU; branch_code = EQ; break;
default:
abort ();
}
if (need_compare)
{
switch (compare_code)
{
case EQ:
if (GET_CODE (y) == CONST_INT
&& CMP_INT16_P (INTVAL (y)) /* reg equal to small const. */
&& y != const0_rtx)
{
rtx tmp = gen_reg_rtx (SImode);
emit_insn (gen_cmp_ne_small_const_insn (tmp, x, y));
x = tmp;
y = const0_rtx;
}
else if (CONSTANT_P (y)) /* reg equal to const. */
{
rtx tmp = force_reg (GET_MODE (x), y);
y = tmp;
}
if (register_operand (y, SImode) /* reg equal to reg. */
|| y == const0_rtx) /* req equal to zero. */
{
emit_insn (gen_cmp_eqsi_insn (x, y));
return gen_rtx (code, CCmode, cc_reg, const0_rtx);
}
break;
case LT:
if (register_operand (y, SImode)
|| (GET_CODE (y) == CONST_INT && CMP_INT16_P (INTVAL (y))))
{
rtx tmp = gen_reg_rtx (SImode); /* reg compared to reg. */
switch (code)
{
case LT:
emit_insn (gen_cmp_ltsi_insn (x, y));
code = EQ;
break;
case LE:
if (y == const0_rtx)
tmp = const1_rtx;
else
emit_insn (gen_cmp_ne_small_const_insn (tmp, y, const1_rtx));
emit_insn (gen_cmp_ltsi_insn (x, tmp));
code = EQ;
break;
case GT:
if (GET_CODE (y) == CONST_INT)
tmp = gen_rtx (PLUS, SImode, y, const1_rtx);
else
emit_insn (gen_cmp_ne_small_const_insn (tmp, y, const1_rtx));
emit_insn (gen_cmp_ltsi_insn (x, tmp));
code = NE;
break;
case GE:
emit_insn (gen_cmp_ltsi_insn (x, y));
code = NE;
break;
default:
abort ();
}
return gen_rtx (code, CCmode, cc_reg, const0_rtx);
}
break;
case LTU:
if (register_operand (y, SImode)
|| (GET_CODE (y) == CONST_INT && CMP_INT16_P (INTVAL (y))))
{
rtx tmp = gen_reg_rtx (SImode); /* reg (unsigned) compared to reg. */
switch (code)
{
case LTU:
emit_insn (gen_cmp_ltusi_insn (x, y));
code = EQ;
break;
case LEU:
if (y == const0_rtx)
tmp = const1_rtx;
else
emit_insn (gen_cmp_ne_small_const_insn (tmp, y, const1_rtx));
emit_insn (gen_cmp_ltusi_insn (x, tmp));
code = EQ;
break;
case GTU:
if (GET_CODE (y) == CONST_INT)
tmp = gen_rtx (PLUS, SImode, y, const1_rtx);
else
emit_insn (gen_cmp_ne_small_const_insn (tmp, y, const1_rtx));
emit_insn (gen_cmp_ltusi_insn (x, tmp));
code = NE;
break;
case GEU:
emit_insn (gen_cmp_ltusi_insn (x, y));
code = NE;
break;
default:
abort();
}
return gen_rtx (code, CCmode, cc_reg, const0_rtx);
}
break;
default:
abort();
}
}
else
{
/* reg/reg equal comparison */
if (compare_code == EQ
&& register_operand (y, SImode))
return gen_rtx (code, CCmode, x, y);
/* reg/zero signed comparison */
if ((compare_code == EQ || compare_code == LT)
&& y == const0_rtx)
return gen_rtx (code, CCmode, x, y);
/* reg/smallconst equal comparison */
if (compare_code == EQ
&& GET_CODE (y) == CONST_INT
&& CMP_INT16_P (INTVAL (y)))
{
rtx tmp = gen_reg_rtx (SImode);
emit_insn (gen_cmp_ne_small_const_insn (tmp, x, y));
return gen_rtx (code, CCmode, tmp, const0_rtx);
}
/* reg/const equal comparison */
if (compare_code == EQ
&& CONSTANT_P (y))
{
rtx tmp = force_reg (GET_MODE (x), y);
return gen_rtx (code, CCmode, x, tmp);
}
}
if (CONSTANT_P (y))
{
if (must_swap)
y = force_reg (GET_MODE (x), y);
else
{
int ok_const =
(code == LTU || code == LEU || code == GTU || code == GEU)
? uint16_operand (y, GET_MODE (y))
: reg_or_cmp_int16_operand (y, GET_MODE (y));
if (! ok_const)
y = force_reg (GET_MODE (x), y);
}
}
switch (compare_code)
{
case EQ :
emit_insn (gen_cmp_eqsi_insn (must_swap ? y : x, must_swap ? x : y));
break;
case LT :
emit_insn (gen_cmp_ltsi_insn (must_swap ? y : x, must_swap ? x : y));
break;
case LTU :
emit_insn (gen_cmp_ltusi_insn (must_swap ? y : x, must_swap ? x : y));
break;
default:
abort ();
}
return gen_rtx (branch_code, VOIDmode, cc_reg, CONST0_RTX (CCmode));
}
/* Split a 2 word move (DI or DF) into component parts. */
rtx
gen_split_move_double (operands)
rtx operands[];
{
enum machine_mode mode = GET_MODE (operands[0]);
rtx dest = operands[0];
rtx src = operands[1];
rtx val;
/* We might have (SUBREG (MEM)) here, so just get rid of the
subregs to make this code simpler. It is safe to call
alter_subreg any time after reload. */
if (GET_CODE (dest) == SUBREG)
alter_subreg (&dest);
if (GET_CODE (src) == SUBREG)
alter_subreg (&src);
start_sequence ();
if (GET_CODE (dest) == REG)
{
int dregno = REGNO (dest);
/* reg = reg */
if (GET_CODE (src) == REG)
{
int sregno = REGNO (src);
int reverse = (dregno == sregno + 1);
/* We normally copy the low-numbered register first. However, if
the first register operand 0 is the same as the second register of
operand 1, we must copy in the opposite order. */
emit_insn (gen_rtx_SET (VOIDmode,
operand_subword (dest, reverse, TRUE, mode),
operand_subword (src, reverse, TRUE, mode)));
emit_insn (gen_rtx_SET (VOIDmode,
operand_subword (dest, !reverse, TRUE, mode),
operand_subword (src, !reverse, TRUE, mode)));
}
/* reg = constant */
else if (GET_CODE (src) == CONST_INT || GET_CODE (src) == CONST_DOUBLE)
{
rtx words[2];
split_double (src, &words[0], &words[1]);
emit_insn (gen_rtx_SET (VOIDmode,
operand_subword (dest, 0, TRUE, mode),
words[0]));
emit_insn (gen_rtx_SET (VOIDmode,
operand_subword (dest, 1, TRUE, mode),
words[1]));
}
/* reg = mem */
else if (GET_CODE (src) == MEM)
{
/* If the high-address word is used in the address, we must load it
last. Otherwise, load it first. */
int reverse
= (refers_to_regno_p (dregno, dregno + 1, XEXP (src, 0), 0) != 0);
/* We used to optimize loads from single registers as
ld r1,r3+; ld r2,r3
if r3 were not used subsequently. However, the REG_NOTES aren't
propigated correctly by the reload phase, and it can cause bad
code to be generated. We could still try:
ld r1,r3+; ld r2,r3; addi r3,-4
which saves 2 bytes and doesn't force longword alignment. */
emit_insn (gen_rtx_SET (VOIDmode,
operand_subword (dest, reverse, TRUE, mode),
adjust_address (src, SImode,
reverse * UNITS_PER_WORD)));
emit_insn (gen_rtx_SET (VOIDmode,
operand_subword (dest, !reverse, TRUE, mode),
adjust_address (src, SImode,
!reverse * UNITS_PER_WORD)));
}
else
abort ();
}
/* mem = reg */
/* We used to optimize loads from single registers as
st r1,r3; st r2,+r3
if r3 were not used subsequently. However, the REG_NOTES aren't
propigated correctly by the reload phase, and it can cause bad
code to be generated. We could still try:
st r1,r3; st r2,+r3; addi r3,-4
which saves 2 bytes and doesn't force longword alignment. */
else if (GET_CODE (dest) == MEM && GET_CODE (src) == REG)
{
emit_insn (gen_rtx_SET (VOIDmode,
adjust_address (dest, SImode, 0),
operand_subword (src, 0, TRUE, mode)));
emit_insn (gen_rtx_SET (VOIDmode,
adjust_address (dest, SImode, UNITS_PER_WORD),
operand_subword (src, 1, TRUE, mode)));
}
else
abort ();
val = get_insns ();
end_sequence ();
return val;
}
/* Implements the FUNCTION_ARG_PARTIAL_NREGS macro. */
int
function_arg_partial_nregs (cum, mode, type, named)
CUMULATIVE_ARGS *cum;
enum machine_mode mode;
tree type;
int named ATTRIBUTE_UNUSED;
{
int ret;
unsigned int size =
(((mode == BLKmode && type)
? (unsigned int) int_size_in_bytes (type)
: GET_MODE_SIZE (mode)) + UNITS_PER_WORD - 1)
/ UNITS_PER_WORD;
if (*cum >= M32R_MAX_PARM_REGS)
ret = 0;
else if (*cum + size > M32R_MAX_PARM_REGS)
ret = (*cum + size) - M32R_MAX_PARM_REGS;
else
ret = 0;
return ret;
}
/* Do any needed setup for a variadic function. For the M32R, we must
create a register parameter block, and then copy any anonymous arguments
in registers to memory.
CUM has not been updated for the last named argument which has type TYPE
and mode MODE, and we rely on this fact. */
void
m32r_setup_incoming_varargs (cum, mode, type, pretend_size, no_rtl)
CUMULATIVE_ARGS *cum;
enum machine_mode mode;
tree type;
int *pretend_size;
int no_rtl;
{
int first_anon_arg;
if (no_rtl)
return;
/* All BLKmode values are passed by reference. */
if (mode == BLKmode)
abort ();
first_anon_arg = (ROUND_ADVANCE_CUM (*cum, mode, type)
+ ROUND_ADVANCE_ARG (mode, type));
if (first_anon_arg < M32R_MAX_PARM_REGS)
{
/* Note that first_reg_offset < M32R_MAX_PARM_REGS. */
int first_reg_offset = first_anon_arg;
/* Size in words to "pretend" allocate. */
int size = M32R_MAX_PARM_REGS - first_reg_offset;
rtx regblock;
regblock = gen_rtx_MEM (BLKmode,
plus_constant (arg_pointer_rtx,
FIRST_PARM_OFFSET (0)));
set_mem_alias_set (regblock, get_varargs_alias_set ());
move_block_from_reg (first_reg_offset, regblock,
size, size * UNITS_PER_WORD);
*pretend_size = (size * UNITS_PER_WORD);
}
}
/* Implement `va_arg'. */
rtx
m32r_va_arg (valist, type)
tree valist, type;
{
HOST_WIDE_INT size, rsize;
tree t;
rtx addr_rtx;
size = int_size_in_bytes (type);
rsize = (size + UNITS_PER_WORD - 1) & -UNITS_PER_WORD;
if (size > 8)
{
tree type_ptr, type_ptr_ptr;
/* Pass by reference. */
type_ptr = build_pointer_type (type);
type_ptr_ptr = build_pointer_type (type_ptr);
t = build (POSTINCREMENT_EXPR, va_list_type_node, valist,
build_int_2 (UNITS_PER_WORD, 0));
TREE_SIDE_EFFECTS (t) = 1;
t = build1 (NOP_EXPR, type_ptr_ptr, t);
TREE_SIDE_EFFECTS (t) = 1;
t = build1 (INDIRECT_REF, type_ptr, t);
addr_rtx = expand_expr (t, NULL_RTX, Pmode, EXPAND_NORMAL);
}
else
{
/* Pass by value. */
if (size < UNITS_PER_WORD)
{
/* Care for bigendian correction on the aligned address. */
t = build (PLUS_EXPR, ptr_type_node, valist,
build_int_2 (rsize - size, 0));
addr_rtx = expand_expr (t, NULL_RTX, Pmode, EXPAND_NORMAL);
addr_rtx = copy_to_reg (addr_rtx);
/* Increment AP. */
t = build (PLUS_EXPR, va_list_type_node, valist,
build_int_2 (rsize, 0));
t = build (MODIFY_EXPR, va_list_type_node, valist, t);
TREE_SIDE_EFFECTS (t) = 1;
expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
}
else
{
t = build (POSTINCREMENT_EXPR, va_list_type_node, valist,
build_int_2 (rsize, 0));
TREE_SIDE_EFFECTS (t) = 1;
addr_rtx = expand_expr (t, NULL_RTX, Pmode, EXPAND_NORMAL);
}
}
return addr_rtx;
}
static int
m32r_adjust_cost (insn, link, dep_insn, cost)
rtx insn ATTRIBUTE_UNUSED;
rtx link ATTRIBUTE_UNUSED;
rtx dep_insn ATTRIBUTE_UNUSED;
int cost;
{
return cost;
}
/* Return true if INSN is real instruction bearing insn. */
static int
m32r_is_insn (insn)
rtx insn;
{
return (INSN_P (insn)
&& GET_CODE (PATTERN (insn)) != USE
&& GET_CODE (PATTERN (insn)) != CLOBBER
&& GET_CODE (PATTERN (insn)) != ADDR_VEC);
}
/* Increase the priority of long instructions so that the
short instructions are scheduled ahead of the long ones. */
static int
m32r_adjust_priority (insn, priority)
rtx insn;
int priority;
{
if (m32r_is_insn (insn)
&& get_attr_insn_size (insn) != INSN_SIZE_SHORT)
priority <<= 3;
return priority;
}
/* Initialize for scheduling a group of instructions. */
static void
m32r_sched_init (stream, verbose, max_ready)
FILE * stream ATTRIBUTE_UNUSED;
int verbose ATTRIBUTE_UNUSED;
int max_ready ATTRIBUTE_UNUSED;
{
m32r_sched_odd_word_p = FALSE;
}
/* Reorder the schedulers priority list if needed */
static int
m32r_sched_reorder (stream, verbose, ready, n_readyp, clock)
FILE * stream;
int verbose;
rtx * ready;
int *n_readyp;
int clock ATTRIBUTE_UNUSED;
{
int n_ready = *n_readyp;
if (TARGET_DEBUG)
return m32r_issue_rate ();
if (verbose <= 7)
stream = (FILE *)0;
if (stream)
fprintf (stream,
";;\t\t::: Looking at %d insn(s) on ready list, boundary is %s word\n",
n_ready,
(m32r_sched_odd_word_p) ? "odd" : "even");
if (n_ready > 1)
{
rtx * long_head = (rtx *) alloca (sizeof (rtx) * n_ready);
rtx * long_tail = long_head;
rtx * short_head = (rtx *) alloca (sizeof (rtx) * n_ready);
rtx * short_tail = short_head;
rtx * new_head = (rtx *) alloca (sizeof (rtx) * n_ready);
rtx * new_tail = new_head + (n_ready - 1);
int i;
/* Loop through the instructions, classifing them as short/long. Try
to keep 2 short together and/or 1 long. Note, the ready list is
actually ordered backwards, so keep it in that manner. */
for (i = n_ready-1; i >= 0; i--)
{
rtx insn = ready[i];
if (! m32r_is_insn (insn))
{
/* Dump all current short/long insns just in case. */
while (long_head != long_tail)
*new_tail-- = *long_head++;
while (short_head != short_tail)
*new_tail-- = *short_head++;
*new_tail-- = insn;
if (stream)
fprintf (stream,
";;\t\t::: Skipping non instruction %d\n",
INSN_UID (insn));
}
else
{
if (get_attr_insn_size (insn) != INSN_SIZE_SHORT)
*long_tail++ = insn;
else
*short_tail++ = insn;
}
}
/* If we are on an odd word, emit a single short instruction if
we can */
if (m32r_sched_odd_word_p && short_head != short_tail)
*new_tail-- = *short_head++;
/* Now dump out all of the long instructions */
while (long_head != long_tail)
*new_tail-- = *long_head++;
/* Now dump out all of the short instructions */
while (short_head != short_tail)
*new_tail-- = *short_head++;
if (new_tail+1 != new_head)
abort ();
memcpy (ready, new_head, sizeof (rtx) * n_ready);
if (stream)
{
int i;
fprintf (stream, ";;\t\t::: New ready list: ");
for (i = 0; i < n_ready; i++)
{
rtx insn = ready[i];
fprintf (stream, " %d", INSN_UID (ready[i]));
if (! m32r_is_insn (insn))
fputs ("(?)", stream);
else if (get_attr_insn_size (insn) != INSN_SIZE_SHORT)
fputs ("(l)", stream);
else
fputs ("(s)", stream);
}
fprintf (stream, "\n");
}
}
return m32r_issue_rate ();
}
/* Indicate how many instructions can be issued at the same time.
This is sort of a lie. The m32r can issue only 1 long insn at
once, but it can issue 2 short insns. The default therefore is
set at 2, but this can be overridden by the command line option
-missue-rate=1 */
static int
m32r_issue_rate ()
{
return ((TARGET_LOW_ISSUE_RATE) ? 1 : 2);
}
/* If we have a machine that can issue a variable # of instructions
per cycle, indicate how many more instructions can be issued
after the current one. */
static int
m32r_variable_issue (stream, verbose, insn, how_many)
FILE * stream;
int verbose;
rtx insn;
int how_many;
{
int orig_odd_word_p = m32r_sched_odd_word_p;
int short_p = FALSE;
how_many--;
if (how_many > 0 && !TARGET_DEBUG)
{
if (! m32r_is_insn (insn))
how_many++;
else if (get_attr_insn_size (insn) != INSN_SIZE_SHORT)
{
how_many = 0;
m32r_sched_odd_word_p = 0;
}
else
{
m32r_sched_odd_word_p = !m32r_sched_odd_word_p;
short_p = TRUE;
}
}
if (verbose > 7 && stream)
fprintf (stream,
";;\t\t::: %s insn %d starts on an %s word, can emit %d more instruction(s)\n",
short_p ? "short" : "long",
INSN_UID (insn),
orig_odd_word_p ? "odd" : "even",
how_many);
return how_many;
}
/* Cost functions. */
/* Provide the costs of an addressing mode that contains ADDR.
If ADDR is not a valid address, its cost is irrelevant.
This function is trivial at the moment. This code doesn't live
in m32r.h so it's easy to experiment. */
int
m32r_address_cost (addr)
rtx addr ATTRIBUTE_UNUSED;
{
return 1;
}
/* Type of function DECL.
The result is cached. To reset the cache at the end of a function,
call with DECL = NULL_TREE. */
enum m32r_function_type
m32r_compute_function_type (decl)
tree decl;
{
/* Cached value. */
static enum m32r_function_type fn_type = M32R_FUNCTION_UNKNOWN;
/* Last function we were called for. */
static tree last_fn = NULL_TREE;
/* Resetting the cached value? */
if (decl == NULL_TREE)
{
fn_type = M32R_FUNCTION_UNKNOWN;
last_fn = NULL_TREE;
return fn_type;
}
if (decl == last_fn && fn_type != M32R_FUNCTION_UNKNOWN)
return fn_type;
/* Compute function type. */
fn_type = (lookup_attribute ("interrupt", DECL_ATTRIBUTES (current_function_decl)) != NULL_TREE
? M32R_FUNCTION_INTERRUPT
: M32R_FUNCTION_NORMAL);
last_fn = decl;
return fn_type;
}
/* Function prologue/epilogue handlers. */
/* M32R stack frames look like:
Before call After call
+-----------------------+ +-----------------------+
| | | |
high | local variables, | | local variables, |
mem | reg save area, etc. | | reg save area, etc. |
| | | |
+-----------------------+ +-----------------------+
| | | |
| arguments on stack. | | arguments on stack. |
| | | |
SP+0->+-----------------------+ +-----------------------+
| reg parm save area, |
| only created for |
| variable argument |
| functions |
+-----------------------+
| previous frame ptr |
+-----------------------+
| |
| register save area |
| |
+-----------------------+
| return address |
+-----------------------+
| |
| local variables |
| |
+-----------------------+
| |
| alloca allocations |
| |
+-----------------------+
| |
low | arguments on stack |
memory | |
SP+0->+-----------------------+
Notes:
1) The "reg parm save area" does not exist for non variable argument fns.
2) The "reg parm save area" can be eliminated completely if we saved regs
containing anonymous args separately but that complicates things too
much (so it's not done).
3) The return address is saved after the register save area so as to have as
many insns as possible between the restoration of `lr' and the `jmp lr'.
*/
/* Structure to be filled in by m32r_compute_frame_size with register
save masks, and offsets for the current function. */
struct m32r_frame_info
{
unsigned int total_size; /* # bytes that the entire frame takes up */
unsigned int extra_size; /* # bytes of extra stuff */
unsigned int pretend_size; /* # bytes we push and pretend caller did */
unsigned int args_size; /* # bytes that outgoing arguments take up */
unsigned int reg_size; /* # bytes needed to store regs */
unsigned int var_size; /* # bytes that variables take up */
unsigned int gmask; /* mask of saved gp registers */
unsigned int save_fp; /* nonzero if fp must be saved */
unsigned int save_lr; /* nonzero if lr (return addr) must be saved */
int initialized; /* nonzero if frame size already calculated */
};
/* Current frame information calculated by m32r_compute_frame_size. */
static struct m32r_frame_info current_frame_info;
/* Zero structure to initialize current_frame_info. */
static struct m32r_frame_info zero_frame_info;
#define FRAME_POINTER_MASK (1 << (FRAME_POINTER_REGNUM))
#define RETURN_ADDR_MASK (1 << (RETURN_ADDR_REGNUM))
/* Tell prologue and epilogue if register REGNO should be saved / restored.
The return address and frame pointer are treated separately.
Don't consider them here. */
#define MUST_SAVE_REGISTER(regno, interrupt_p) \
((regno) != RETURN_ADDR_REGNUM && (regno) != FRAME_POINTER_REGNUM \
&& (regs_ever_live[regno] && (!call_used_regs[regno] || interrupt_p)))
#define MUST_SAVE_FRAME_POINTER (regs_ever_live[FRAME_POINTER_REGNUM])
#define MUST_SAVE_RETURN_ADDR (regs_ever_live[RETURN_ADDR_REGNUM] || current_function_profile)
#define SHORT_INSN_SIZE 2 /* size of small instructions */
#define LONG_INSN_SIZE 4 /* size of long instructions */
/* Return the bytes needed to compute the frame pointer from the current
stack pointer.
SIZE is the size needed for local variables. */
unsigned int
m32r_compute_frame_size (size)
int size; /* # of var. bytes allocated. */
{
int regno;
unsigned int total_size, var_size, args_size, pretend_size, extra_size;
unsigned int reg_size, frame_size;
unsigned int gmask;
enum m32r_function_type fn_type;
int interrupt_p;
var_size = M32R_STACK_ALIGN (size);
args_size = M32R_STACK_ALIGN (current_function_outgoing_args_size);
pretend_size = current_function_pretend_args_size;
extra_size = FIRST_PARM_OFFSET (0);
total_size = extra_size + pretend_size + args_size + var_size;
reg_size = 0;
gmask = 0;
/* See if this is an interrupt handler. Call used registers must be saved
for them too. */
fn_type = m32r_compute_function_type (current_function_decl);
interrupt_p = M32R_INTERRUPT_P (fn_type);
/* Calculate space needed for registers. */
for (regno = 0; regno < M32R_MAX_INT_REGS; regno++)
{
if (MUST_SAVE_REGISTER (regno, interrupt_p))
{
reg_size += UNITS_PER_WORD;
gmask |= 1 << regno;
}
}
current_frame_info.save_fp = MUST_SAVE_FRAME_POINTER;
current_frame_info.save_lr = MUST_SAVE_RETURN_ADDR;
reg_size += ((current_frame_info.save_fp + current_frame_info.save_lr)
* UNITS_PER_WORD);
total_size += reg_size;
/* ??? Not sure this is necessary, and I don't think the epilogue
handler will do the right thing if this changes total_size. */
total_size = M32R_STACK_ALIGN (total_size);
frame_size = total_size - (pretend_size + reg_size);
/* Save computed information. */
current_frame_info.total_size = total_size;
current_frame_info.extra_size = extra_size;
current_frame_info.pretend_size = pretend_size;
current_frame_info.var_size = var_size;
current_frame_info.args_size = args_size;
current_frame_info.reg_size = reg_size;
current_frame_info.gmask = gmask;
current_frame_info.initialized = reload_completed;
/* Ok, we're done. */
return total_size;
}
/* When the `length' insn attribute is used, this macro specifies the
value to be assigned to the address of the first insn in a
function. If not specified, 0 is used. */
int
m32r_first_insn_address ()
{
if (! current_frame_info.initialized)
m32r_compute_frame_size (get_frame_size ());
return 0;
}
/* Expand the m32r prologue as a series of insns. */
void
m32r_expand_prologue ()
{
int regno;
int frame_size;
unsigned int gmask;
if (! current_frame_info.initialized)
m32r_compute_frame_size (get_frame_size ());
gmask = current_frame_info.gmask;
/* These cases shouldn't happen. Catch them now. */
if (current_frame_info.total_size == 0 && gmask)
abort ();
/* Allocate space for register arguments if this is a variadic function. */
if (current_frame_info.pretend_size != 0)
{
/* Use a HOST_WIDE_INT temporary, since negating an unsigned int gives
the wrong result on a 64-bit host. */
HOST_WIDE_INT pretend_size = current_frame_info.pretend_size;
emit_insn (gen_addsi3 (stack_pointer_rtx,
stack_pointer_rtx,
GEN_INT (-pretend_size)));
}
/* Save any registers we need to and set up fp. */
if (current_frame_info.save_fp)
emit_insn (gen_movsi_push (stack_pointer_rtx, frame_pointer_rtx));
gmask &= ~(FRAME_POINTER_MASK | RETURN_ADDR_MASK);
/* Save any needed call-saved regs (and call-used if this is an
interrupt handler). */
for (regno = 0; regno <= M32R_MAX_INT_REGS; ++regno)
{
if ((gmask & (1 << regno)) != 0)
emit_insn (gen_movsi_push (stack_pointer_rtx,
gen_rtx_REG (Pmode, regno)));
}
if (current_frame_info.save_lr)
emit_insn (gen_movsi_push (stack_pointer_rtx,
gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM)));
/* Allocate the stack frame. */
frame_size = (current_frame_info.total_size
- (current_frame_info.pretend_size
+ current_frame_info.reg_size));
if (frame_size == 0)
; /* nothing to do */
else if (frame_size <= 32768)
emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
GEN_INT (-frame_size)));
else
{
rtx tmp = gen_rtx_REG (Pmode, PROLOGUE_TMP_REGNUM);
emit_insn (gen_movsi (tmp, GEN_INT (frame_size)));
emit_insn (gen_subsi3 (stack_pointer_rtx, stack_pointer_rtx, tmp));
}
if (frame_pointer_needed)
emit_insn (gen_movsi (frame_pointer_rtx, stack_pointer_rtx));
if (current_function_profile)
emit_insn (gen_blockage ());
}
/* Set up the stack and frame pointer (if desired) for the function.
Note, if this is changed, you need to mirror the changes in
m32r_compute_frame_size which calculates the prolog size. */
static void
m32r_output_function_prologue (file, size)
FILE * file;
HOST_WIDE_INT size;
{
enum m32r_function_type fn_type = m32r_compute_function_type (current_function_decl);
/* If this is an interrupt handler, mark it as such. */
if (M32R_INTERRUPT_P (fn_type))
{
fprintf (file, "\t%s interrupt handler\n",
ASM_COMMENT_START);
}
if (! current_frame_info.initialized)
m32r_compute_frame_size (size);
/* This is only for the human reader. */
fprintf (file,
"\t%s PROLOGUE, vars= %d, regs= %d, args= %d, extra= %d\n",
ASM_COMMENT_START,
current_frame_info.var_size,
current_frame_info.reg_size / 4,
current_frame_info.args_size,
current_frame_info.extra_size);
}
/* Do any necessary cleanup after a function to restore stack, frame,
and regs. */
static void
m32r_output_function_epilogue (file, size)
FILE * file;
HOST_WIDE_INT size ATTRIBUTE_UNUSED;
{
int regno;
int noepilogue = FALSE;
int total_size;
enum m32r_function_type fn_type = m32r_compute_function_type (current_function_decl);
/* This is only for the human reader. */
fprintf (file, "\t%s EPILOGUE\n", ASM_COMMENT_START);
if (!current_frame_info.initialized)
abort ();
total_size = current_frame_info.total_size;
if (total_size == 0)
{
rtx insn = get_last_insn ();
/* If the last insn was a BARRIER, we don't have to write any code
because a jump (aka return) was put there. */
if (GET_CODE (insn) == NOTE)
insn = prev_nonnote_insn (insn);
if (insn && GET_CODE (insn) == BARRIER)
noepilogue = TRUE;
}
if (!noepilogue)
{
unsigned int var_size = current_frame_info.var_size;
unsigned int args_size = current_frame_info.args_size;
unsigned int gmask = current_frame_info.gmask;
int can_trust_sp_p = !current_function_calls_alloca;
const char * sp_str = reg_names[STACK_POINTER_REGNUM];
const char * fp_str = reg_names[FRAME_POINTER_REGNUM];
/* The first thing to do is point the sp at the bottom of the register
save area. */
if (can_trust_sp_p)
{
unsigned int reg_offset = var_size + args_size;
if (reg_offset == 0)
; /* nothing to do */
else if (reg_offset < 128)
fprintf (file, "\taddi %s,%s%d\n",
sp_str, IMMEDIATE_PREFIX, reg_offset);
else if (reg_offset < 32768)
fprintf (file, "\tadd3 %s,%s,%s%d\n",
sp_str, sp_str, IMMEDIATE_PREFIX, reg_offset);
else
fprintf (file, "\tld24 %s,%s%d\n\tadd %s,%s\n",
reg_names[PROLOGUE_TMP_REGNUM],
IMMEDIATE_PREFIX, reg_offset,
sp_str, reg_names[PROLOGUE_TMP_REGNUM]);
}
else if (frame_pointer_needed)
{
unsigned int reg_offset = var_size + args_size;
if (reg_offset == 0)
fprintf (file, "\tmv %s,%s\n", sp_str, fp_str);
else if (reg_offset < 32768)
fprintf (file, "\tadd3 %s,%s,%s%d\n",
sp_str, fp_str, IMMEDIATE_PREFIX, reg_offset);
else
fprintf (file, "\tld24 %s,%s%d\n\tadd %s,%s\n",
reg_names[PROLOGUE_TMP_REGNUM],
IMMEDIATE_PREFIX, reg_offset,
sp_str, reg_names[PROLOGUE_TMP_REGNUM]);
}
else
abort ();
if (current_frame_info.save_lr)
fprintf (file, "\tpop %s\n", reg_names[RETURN_ADDR_REGNUM]);
/* Restore any saved registers, in reverse order of course. */
gmask &= ~(FRAME_POINTER_MASK | RETURN_ADDR_MASK);
for (regno = M32R_MAX_INT_REGS - 1; regno >= 0; --regno)
{
if ((gmask & (1L << regno)) != 0)
fprintf (file, "\tpop %s\n", reg_names[regno]);
}
if (current_frame_info.save_fp)
fprintf (file, "\tpop %s\n", fp_str);
/* Remove varargs area if present. */
if (current_frame_info.pretend_size != 0)
fprintf (file, "\taddi %s,%s%d\n",
sp_str, IMMEDIATE_PREFIX, current_frame_info.pretend_size);
/* Emit the return instruction. */
if (M32R_INTERRUPT_P (fn_type))
fprintf (file, "\trte\n");
else
fprintf (file, "\tjmp %s\n", reg_names[RETURN_ADDR_REGNUM]);
}
#if 0 /* no longer needed */
/* Ensure the function cleanly ends on a 32 bit boundary. */
fprintf (file, "\t.fillinsn\n");
#endif
/* Reset state info for each function. */
current_frame_info = zero_frame_info;
m32r_compute_function_type (NULL_TREE);
}
/* Return nonzero if this function is known to have a null or 1 instruction
epilogue. */
int
direct_return ()
{
if (!reload_completed)
return FALSE;
if (! current_frame_info.initialized)
m32r_compute_frame_size (get_frame_size ());
return current_frame_info.total_size == 0;
}
/* PIC */
/* Emit special PIC prologues and epilogues. */
void
m32r_finalize_pic ()
{
/* nothing to do */
}
/* Nested function support. */
/* Emit RTL insns to initialize the variable parts of a trampoline.
FNADDR is an RTX for the address of the function's pure code.
CXT is an RTX for the static chain value for the function. */
void
m32r_initialize_trampoline (tramp, fnaddr, cxt)
rtx tramp ATTRIBUTE_UNUSED;
rtx fnaddr ATTRIBUTE_UNUSED;
rtx cxt ATTRIBUTE_UNUSED;
{
}
/* Set the cpu type and print out other fancy things,
at the top of the file. */
void
m32r_asm_file_start (file)
FILE * file;
{
if (flag_verbose_asm)
fprintf (file, "%s M32R/D special options: -G %d\n",
ASM_COMMENT_START, g_switch_value);
}
/* Print operand X (an rtx) in assembler syntax to file FILE.
CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
For `%' followed by punctuation, CODE is the punctuation and X is null. */
void
m32r_print_operand (file, x, code)
FILE * file;
rtx x;
int code;
{
rtx addr;
switch (code)
{
/* The 's' and 'p' codes are used by output_block_move() to
indicate post-increment 's'tores and 'p're-increment loads. */
case 's':
if (GET_CODE (x) == REG)
fprintf (file, "@+%s", reg_names [REGNO (x)]);
else
output_operand_lossage ("invalid operand to %%s code");
return;
case 'p':
if (GET_CODE (x) == REG)
fprintf (file, "@%s+", reg_names [REGNO (x)]);
else
output_operand_lossage ("invalid operand to %%p code");
return;
case 'R' :
/* Write second word of DImode or DFmode reference,
register or memory. */
if (GET_CODE (x) == REG)
fputs (reg_names[REGNO (x)+1], file);
else if (GET_CODE (x) == MEM)
{
fprintf (file, "@(");
/* Handle possible auto-increment. Since it is pre-increment and
we have already done it, we can just use an offset of four. */
/* ??? This is taken from rs6000.c I think. I don't think it is
currently necessary, but keep it around. */
if (GET_CODE (XEXP (x, 0)) == PRE_INC
|| GET_CODE (XEXP (x, 0)) == PRE_DEC)
output_address (plus_constant (XEXP (XEXP (x, 0), 0), 4));
else
output_address (plus_constant (XEXP (x, 0), 4));
fputc (')', file);
}
else
output_operand_lossage ("invalid operand to %%R code");
return;
case 'H' : /* High word */
case 'L' : /* Low word */
if (GET_CODE (x) == REG)
{
/* L = least significant word, H = most significant word */
if ((WORDS_BIG_ENDIAN != 0) ^ (code == 'L'))
fputs (reg_names[REGNO (x)], file);
else
fputs (reg_names[REGNO (x)+1], file);
}
else if (GET_CODE (x) == CONST_INT
|| GET_CODE (x) == CONST_DOUBLE)
{
rtx first, second;
split_double (x, &first, &second);
fprintf (file, HOST_WIDE_INT_PRINT_HEX,
code == 'L' ? INTVAL (first) : INTVAL (second));
}
else
output_operand_lossage ("invalid operand to %%H/%%L code");
return;
case 'A' :
{
char str[30];
if (GET_CODE (x) != CONST_DOUBLE
|| GET_MODE_CLASS (GET_MODE (x)) != MODE_FLOAT)
fatal_insn ("bad insn for 'A'", x);
real_to_decimal (str, CONST_DOUBLE_REAL_VALUE (x), sizeof (str), 0, 1);
fprintf (file, "%s", str);
return;
}
case 'B' : /* Bottom half */
case 'T' : /* Top half */
/* Output the argument to a `seth' insn (sets the Top half-word).
For constants output arguments to a seth/or3 pair to set Top and
Bottom halves. For symbols output arguments to a seth/add3 pair to
set Top and Bottom halves. The difference exists because for
constants seth/or3 is more readable but for symbols we need to use
the same scheme as `ld' and `st' insns (16 bit addend is signed). */
switch (GET_CODE (x))
{
case CONST_INT :
case CONST_DOUBLE :
{
rtx first, second;
split_double (x, &first, &second);
x = WORDS_BIG_ENDIAN ? second : first;
fprintf (file,
#if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_INT
"0x%x",
#else
"0x%lx",
#endif
(code == 'B'
? INTVAL (x) & 0xffff
: (INTVAL (x) >> 16) & 0xffff));
}
return;
case CONST :
case SYMBOL_REF :
if (code == 'B'
&& small_data_operand (x, VOIDmode))
{
fputs ("sda(", file);
output_addr_const (file, x);
fputc (')', file);
return;
}
/* fall through */
case LABEL_REF :
fputs (code == 'T' ? "shigh(" : "low(", file);
output_addr_const (file, x);
fputc (')', file);
return;
default :
output_operand_lossage ("invalid operand to %%T/%%B code");
return;
}
break;
case 'U' :
/* ??? wip */
/* Output a load/store with update indicator if appropriate. */
if (GET_CODE (x) == MEM)
{
if (GET_CODE (XEXP (x, 0)) == PRE_INC
|| GET_CODE (XEXP (x, 0)) == PRE_DEC)
fputs (".a", file);
}
else
output_operand_lossage ("invalid operand to %%U code");
return;
case 'N' :
/* Print a constant value negated. */
if (GET_CODE (x) == CONST_INT)
output_addr_const (file, GEN_INT (- INTVAL (x)));
else
output_operand_lossage ("invalid operand to %%N code");
return;
case 'X' :
/* Print a const_int in hex. Used in comments. */
if (GET_CODE (x) == CONST_INT)
fprintf (file,
#if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_INT
"0x%x",
#else
"0x%lx",
#endif
INTVAL (x));
return;
case '#' :
fputs (IMMEDIATE_PREFIX, file);
return;
#if 0 /* ??? no longer used */
case '@' :
fputs (reg_names[SDA_REGNUM], file);
return;
#endif
case 0 :
/* Do nothing special. */
break;
default :
/* Unknown flag. */
output_operand_lossage ("invalid operand output code");
}
switch (GET_CODE (x))
{
case REG :
fputs (reg_names[REGNO (x)], file);
break;
case MEM :
addr = XEXP (x, 0);
if (GET_CODE (addr) == PRE_INC)
{
if (GET_CODE (XEXP (addr, 0)) != REG)
fatal_insn ("pre-increment address is not a register", x);
fprintf (file, "@+%s", reg_names[REGNO (XEXP (addr, 0))]);
}
else if (GET_CODE (addr) == PRE_DEC)
{
if (GET_CODE (XEXP (addr, 0)) != REG)
fatal_insn ("pre-decrement address is not a register", x);
fprintf (file, "@-%s", reg_names[REGNO (XEXP (addr, 0))]);
}
else if (GET_CODE (addr) == POST_INC)
{
if (GET_CODE (XEXP (addr, 0)) != REG)
fatal_insn ("post-increment address is not a register", x);
fprintf (file, "@%s+", reg_names[REGNO (XEXP (addr, 0))]);
}
else
{
fputs ("@(", file);
output_address (XEXP (x, 0));
fputc (')', file);
}
break;
case CONST_DOUBLE :
/* We handle SFmode constants here as output_addr_const doesn't. */
if (GET_MODE (x) == SFmode)
{
REAL_VALUE_TYPE d;
long l;
REAL_VALUE_FROM_CONST_DOUBLE (d, x);
REAL_VALUE_TO_TARGET_SINGLE (d, l);
fprintf (file, "0x%08lx", l);
break;
}
/* Fall through. Let output_addr_const deal with it. */
default :
output_addr_const (file, x);
break;
}
}
/* Print a memory address as an operand to reference that memory location. */
void
m32r_print_operand_address (file, addr)
FILE * file;
rtx addr;
{
register rtx base;
register rtx index = 0;
int offset = 0;
switch (GET_CODE (addr))
{
case REG :
fputs (reg_names[REGNO (addr)], file);
break;
case PLUS :
if (GET_CODE (XEXP (addr, 0)) == CONST_INT)
offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1);
else if (GET_CODE (XEXP (addr, 1)) == CONST_INT)
offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0);
else
base = XEXP (addr, 0), index = XEXP (addr, 1);
if (GET_CODE (base) == REG)
{
/* Print the offset first (if present) to conform to the manual. */
if (index == 0)
{
if (offset != 0)
fprintf (file, "%d,", offset);
fputs (reg_names[REGNO (base)], file);
}
/* The chip doesn't support this, but left in for generality. */
else if (GET_CODE (index) == REG)
fprintf (file, "%s,%s",
reg_names[REGNO (base)], reg_names[REGNO (index)]);
/* Not sure this can happen, but leave in for now. */
else if (GET_CODE (index) == SYMBOL_REF)
{
output_addr_const (file, index);
fputc (',', file);
fputs (reg_names[REGNO (base)], file);
}
else
fatal_insn ("bad address", addr);
}
else if (GET_CODE (base) == LO_SUM)
{
if (index != 0
|| GET_CODE (XEXP (base, 0)) != REG)
abort ();
if (small_data_operand (XEXP (base, 1), VOIDmode))
fputs ("sda(", file);
else
fputs ("low(", file);
output_addr_const (file, plus_constant (XEXP (base, 1), offset));
fputs ("),", file);
fputs (reg_names[REGNO (XEXP (base, 0))], file);
}
else
fatal_insn ("bad address", addr);
break;
case LO_SUM :
if (GET_CODE (XEXP (addr, 0)) != REG)
fatal_insn ("lo_sum not of register", addr);
if (small_data_operand (XEXP (addr, 1), VOIDmode))
fputs ("sda(", file);
else
fputs ("low(", file);
output_addr_const (file, XEXP (addr, 1));
fputs ("),", file);
fputs (reg_names[REGNO (XEXP (addr, 0))], file);
break;
case PRE_INC : /* Assume SImode */
fprintf (file, "+%s", reg_names[REGNO (XEXP (addr, 0))]);
break;
case PRE_DEC : /* Assume SImode */
fprintf (file, "-%s", reg_names[REGNO (XEXP (addr, 0))]);
break;
case POST_INC : /* Assume SImode */
fprintf (file, "%s+", reg_names[REGNO (XEXP (addr, 0))]);
break;
default :
output_addr_const (file, addr);
break;
}
}
/* Return true if the operands are the constants 0 and 1. */
int
zero_and_one (operand1, operand2)
rtx operand1;
rtx operand2;
{
return
GET_CODE (operand1) == CONST_INT
&& GET_CODE (operand2) == CONST_INT
&& ( ((INTVAL (operand1) == 0) && (INTVAL (operand2) == 1))
||((INTVAL (operand1) == 1) && (INTVAL (operand2) == 0)));
}
/* Return nonzero if the operand is suitable for use in a conditional move sequence. */
int
conditional_move_operand (operand, mode)
rtx operand;
enum machine_mode mode;
{
/* Only defined for simple integers so far... */
if (mode != SImode && mode != HImode && mode != QImode)
return FALSE;
/* At the moment we can hanndle moving registers and loading constants. */
/* To be added: Addition/subtraction/bitops/multiplication of registers. */
switch (GET_CODE (operand))
{
case REG:
return 1;
case CONST_INT:
return INT8_P (INTVAL (operand));
default:
#if 0
fprintf (stderr, "Test for cond move op of type: %s\n",
GET_RTX_NAME (GET_CODE (operand)));
#endif
return 0;
}
}
/* Return true if the code is a test of the carry bit */
int
carry_compare_operand (op, mode)
rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
rtx x;
if (GET_MODE (op) != CCmode && GET_MODE (op) != VOIDmode)
return FALSE;
if (GET_CODE (op) != NE && GET_CODE (op) != EQ)
return FALSE;
x = XEXP (op, 0);
if (GET_CODE (x) != REG || REGNO (x) != CARRY_REGNUM)
return FALSE;
x = XEXP (op, 1);
if (GET_CODE (x) != CONST_INT || INTVAL (x) != 0)
return FALSE;
return TRUE;
}
/* Generate the correct assembler code to handle the conditional loading of a
value into a register. It is known that the operands satisfy the
conditional_move_operand() function above. The destination is operand[0].
The condition is operand [1]. The 'true' value is operand [2] and the
'false' value is operand [3]. */
char *
emit_cond_move (operands, insn)
rtx * operands;
rtx insn ATTRIBUTE_UNUSED;
{
static char buffer [100];
const char * dest = reg_names [REGNO (operands [0])];
buffer [0] = 0;
/* Destination must be a register. */
if (GET_CODE (operands [0]) != REG)
abort();
if (! conditional_move_operand (operands [2], SImode))
abort();
if (! conditional_move_operand (operands [3], SImode))
abort();
/* Check to see if the test is reversed. */
if (GET_CODE (operands [1]) == NE)
{
rtx tmp = operands [2];
operands [2] = operands [3];
operands [3] = tmp;
}
sprintf (buffer, "mvfc %s, cbr", dest);
/* If the true value was '0' then we need to invert the results of the move. */
if (INTVAL (operands [2]) == 0)
sprintf (buffer + strlen (buffer), "\n\txor3 %s, %s, #1",
dest, dest);
return buffer;
}
/* Returns true if the registers contained in the two
rtl expressions are different. */
int
m32r_not_same_reg (a, b)
rtx a;
rtx b;
{
int reg_a = -1;
int reg_b = -2;
while (GET_CODE (a) == SUBREG)
a = SUBREG_REG (a);
if (GET_CODE (a) == REG)
reg_a = REGNO (a);
while (GET_CODE (b) == SUBREG)
b = SUBREG_REG (b);
if (GET_CODE (b) == REG)
reg_b = REGNO (b);
return reg_a != reg_b;
}
/* Use a library function to move some bytes. */
static void
block_move_call (dest_reg, src_reg, bytes_rtx)
rtx dest_reg;
rtx src_reg;
rtx bytes_rtx;
{
/* We want to pass the size as Pmode, which will normally be SImode
but will be DImode if we are using 64 bit longs and pointers. */
if (GET_MODE (bytes_rtx) != VOIDmode
&& GET_MODE (bytes_rtx) != Pmode)
bytes_rtx = convert_to_mode (Pmode, bytes_rtx, 1);
#ifdef TARGET_MEM_FUNCTIONS
emit_library_call (gen_rtx (SYMBOL_REF, Pmode, "memcpy"), 0,
VOIDmode, 3, dest_reg, Pmode, src_reg, Pmode,
convert_to_mode (TYPE_MODE (sizetype), bytes_rtx,
TREE_UNSIGNED (sizetype)),
TYPE_MODE (sizetype));
#else
emit_library_call (gen_rtx (SYMBOL_REF, Pmode, "bcopy"), 0,
VOIDmode, 3, src_reg, Pmode, dest_reg, Pmode,
convert_to_mode (TYPE_MODE (integer_type_node), bytes_rtx,
TREE_UNSIGNED (integer_type_node)),
TYPE_MODE (integer_type_node));
#endif
}
/* The maximum number of bytes to copy using pairs of load/store instructions.
If a block is larger than this then a loop will be generated to copy
MAX_MOVE_BYTES chunks at a time. The value of 32 is a semi-arbitary choice.
A customer uses Dhrystome as their benchmark, and Dhrystone has a 31 byte
string copy in it. */
#define MAX_MOVE_BYTES 32
/* Expand string/block move operations.
operands[0] is the pointer to the destination.
operands[1] is the pointer to the source.
operands[2] is the number of bytes to move.
operands[3] is the alignment. */
void
m32r_expand_block_move (operands)
rtx operands[];
{
rtx orig_dst = operands[0];
rtx orig_src = operands[1];
rtx bytes_rtx = operands[2];
rtx align_rtx = operands[3];
int constp = GET_CODE (bytes_rtx) == CONST_INT;
HOST_WIDE_INT bytes = constp ? INTVAL (bytes_rtx) : 0;
int align = INTVAL (align_rtx);
int leftover;
rtx src_reg;
rtx dst_reg;
if (constp && bytes <= 0)
return;
/* Move the address into scratch registers. */
dst_reg = copy_addr_to_reg (XEXP (orig_dst, 0));
src_reg = copy_addr_to_reg (XEXP (orig_src, 0));
if (align > UNITS_PER_WORD)
align = UNITS_PER_WORD;
/* If we prefer size over speed, always use a function call.
If we do not know the size, use a function call.
If the blocks are not word aligned, use a function call. */
if (optimize_size || ! constp || align != UNITS_PER_WORD)
{
block_move_call (dst_reg, src_reg, bytes_rtx);
return;
}
leftover = bytes % MAX_MOVE_BYTES;
bytes -= leftover;
/* If necessary, generate a loop to handle the bulk of the copy. */
if (bytes)
{
rtx label = NULL_RTX;
rtx final_src = NULL_RTX;
rtx at_a_time = GEN_INT (MAX_MOVE_BYTES);
rtx rounded_total = GEN_INT (bytes);
/* If we are going to have to perform this loop more than
once, then generate a label and compute the address the
source register will contain upon completion of the final
itteration. */
if (bytes > MAX_MOVE_BYTES)
{
final_src = gen_reg_rtx (Pmode);
if (INT16_P(bytes))
emit_insn (gen_addsi3 (final_src, src_reg, rounded_total));
else
{
emit_insn (gen_movsi (final_src, rounded_total));
emit_insn (gen_addsi3 (final_src, final_src, src_reg));
}
label = gen_label_rtx ();
emit_label (label);
}
/* It is known that output_block_move() will update src_reg to point
to the word after the end of the source block, and dst_reg to point
to the last word of the destination block, provided that the block
is MAX_MOVE_BYTES long. */
emit_insn (gen_movstrsi_internal (dst_reg, src_reg, at_a_time));
emit_insn (gen_addsi3 (dst_reg, dst_reg, GEN_INT (4)));
if (bytes > MAX_MOVE_BYTES)
{
emit_insn (gen_cmpsi (src_reg, final_src));
emit_jump_insn (gen_bne (label));
}
}
if (leftover)
emit_insn (gen_movstrsi_internal (dst_reg, src_reg, GEN_INT (leftover)));
}
/* Emit load/stores for a small constant word aligned block_move.
operands[0] is the memory address of the destination.
operands[1] is the memory address of the source.
operands[2] is the number of bytes to move.
operands[3] is a temp register.
operands[4] is a temp register. */
void
m32r_output_block_move (insn, operands)
rtx insn ATTRIBUTE_UNUSED;
rtx operands[];
{
HOST_WIDE_INT bytes = INTVAL (operands[2]);
int first_time;
int got_extra = 0;
if (bytes < 1 || bytes > MAX_MOVE_BYTES)
abort ();
/* We do not have a post-increment store available, so the first set of
stores are done without any increment, then the remaining ones can use
the pre-increment addressing mode.
Note: expand_block_move() also relies upon this behavior when building
loops to copy large blocks. */
first_time = 1;
while (bytes > 0)
{
if (bytes >= 8)
{
if (first_time)
{
output_asm_insn ("ld\t%3, %p1", operands);
output_asm_insn ("ld\t%4, %p1", operands);
output_asm_insn ("st\t%3, @%0", operands);
output_asm_insn ("st\t%4, %s0", operands);
}
else
{
output_asm_insn ("ld\t%3, %p1", operands);
output_asm_insn ("ld\t%4, %p1", operands);
output_asm_insn ("st\t%3, %s0", operands);
output_asm_insn ("st\t%4, %s0", operands);
}
bytes -= 8;
}
else if (bytes >= 4)
{
if (bytes > 4)
got_extra = 1;
output_asm_insn ("ld\t%3, %p1", operands);
if (got_extra)
output_asm_insn ("ld\t%4, %p1", operands);
if (first_time)
output_asm_insn ("st\t%3, @%0", operands);
else
output_asm_insn ("st\t%3, %s0", operands);
bytes -= 4;
}
else
{
/* Get the entire next word, even though we do not want all of it.
The saves us from doing several smaller loads, and we assume that
we cannot cause a page fault when at least part of the word is in
valid memory [since we don't get called if things aren't properly
aligned]. */
int dst_offset = first_time ? 0 : 4;
int last_shift;
rtx my_operands[3];
/* If got_extra is true then we have already loaded
the next word as part of loading and storing the previous word. */
if (! got_extra)
output_asm_insn ("ld\t%4, @%1", operands);
if (bytes >= 2)
{
bytes -= 2;
output_asm_insn ("sra3\t%3, %4, #16", operands);
my_operands[0] = operands[3];
my_operands[1] = GEN_INT (dst_offset);
my_operands[2] = operands[0];
output_asm_insn ("sth\t%0, @(%1,%2)", my_operands);
/* If there is a byte left to store then increment the
destination address and shift the contents of the source
register down by 8 bits. We could not do the address
increment in the store half word instruction, because it does
not have an auto increment mode. */
if (bytes > 0) /* assert (bytes == 1) */
{
dst_offset += 2;
last_shift = 8;
}
}
else
last_shift = 24;
if (bytes > 0)
{
my_operands[0] = operands[4];
my_operands[1] = GEN_INT (last_shift);
output_asm_insn ("srai\t%0, #%1", my_operands);
my_operands[0] = operands[4];
my_operands[1] = GEN_INT (dst_offset);
my_operands[2] = operands[0];
output_asm_insn ("stb\t%0, @(%1,%2)", my_operands);
}
bytes = 0;
}
first_time = 0;
}
}
/* Return true if op is an integer constant, less than or equal to
MAX_MOVE_BYTES. */
int
m32r_block_immediate_operand (op, mode)
rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
if (GET_CODE (op) != CONST_INT
|| INTVAL (op) > MAX_MOVE_BYTES
|| INTVAL (op) <= 0)
return 0;
return 1;
}
|