1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
|
/* Target Code for R8C/M16C/M32C
Copyright (C) 2005, 2006, 2007
Free Software Foundation, Inc.
Contributed by Red Hat.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 2, or (at your
option) any later version.
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "rtl.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "real.h"
#include "insn-config.h"
#include "conditions.h"
#include "insn-flags.h"
#include "output.h"
#include "insn-attr.h"
#include "flags.h"
#include "recog.h"
#include "reload.h"
#include "toplev.h"
#include "obstack.h"
#include "tree.h"
#include "expr.h"
#include "optabs.h"
#include "except.h"
#include "function.h"
#include "ggc.h"
#include "target.h"
#include "target-def.h"
#include "tm_p.h"
#include "langhooks.h"
#include "tree-gimple.h"
/* Prototypes */
/* Used by m32c_pushm_popm. */
typedef enum
{
PP_pushm,
PP_popm,
PP_justcount
} Push_Pop_Type;
static tree interrupt_handler (tree *, tree, tree, int, bool *);
static tree function_vector_handler (tree *, tree, tree, int, bool *);
static int interrupt_p (tree node);
static bool m32c_asm_integer (rtx, unsigned int, int);
static int m32c_comp_type_attributes (tree, tree);
static bool m32c_fixed_condition_code_regs (unsigned int *, unsigned int *);
static struct machine_function *m32c_init_machine_status (void);
static void m32c_insert_attributes (tree, tree *);
static bool m32c_pass_by_reference (CUMULATIVE_ARGS *, enum machine_mode,
tree, bool);
static bool m32c_promote_prototypes (tree);
static int m32c_pushm_popm (Push_Pop_Type);
static bool m32c_strict_argument_naming (CUMULATIVE_ARGS *);
static rtx m32c_struct_value_rtx (tree, int);
static rtx m32c_subreg (enum machine_mode, rtx, enum machine_mode, int);
static int need_to_save (int);
int current_function_special_page_vector (rtx);
#define SYMBOL_FLAG_FUNCVEC_FUNCTION (SYMBOL_FLAG_MACH_DEP << 0)
#define streq(a,b) (strcmp ((a), (b)) == 0)
/* Internal support routines */
/* Debugging statements are tagged with DEBUG0 only so that they can
be easily enabled individually, by replacing the '0' with '1' as
needed. */
#define DEBUG0 0
#define DEBUG1 1
#if DEBUG0
/* This is needed by some of the commented-out debug statements
below. */
static char const *class_names[LIM_REG_CLASSES] = REG_CLASS_NAMES;
#endif
static int class_contents[LIM_REG_CLASSES][1] = REG_CLASS_CONTENTS;
/* These are all to support encode_pattern(). */
static char pattern[30], *patternp;
static GTY(()) rtx patternr[30];
#define RTX_IS(x) (streq (pattern, x))
/* Some macros to simplify the logic throughout this file. */
#define IS_MEM_REGNO(regno) ((regno) >= MEM0_REGNO && (regno) <= MEM7_REGNO)
#define IS_MEM_REG(rtx) (GET_CODE (rtx) == REG && IS_MEM_REGNO (REGNO (rtx)))
#define IS_CR_REGNO(regno) ((regno) >= SB_REGNO && (regno) <= PC_REGNO)
#define IS_CR_REG(rtx) (GET_CODE (rtx) == REG && IS_CR_REGNO (REGNO (rtx)))
/* We do most RTX matching by converting the RTX into a string, and
using string compares. This vastly simplifies the logic in many of
the functions in this file.
On exit, pattern[] has the encoded string (use RTX_IS("...") to
compare it) and patternr[] has pointers to the nodes in the RTX
corresponding to each character in the encoded string. The latter
is mostly used by print_operand().
Unrecognized patterns have '?' in them; this shows up when the
assembler complains about syntax errors.
*/
static void
encode_pattern_1 (rtx x)
{
int i;
if (patternp == pattern + sizeof (pattern) - 2)
{
patternp[-1] = '?';
return;
}
patternr[patternp - pattern] = x;
switch (GET_CODE (x))
{
case REG:
*patternp++ = 'r';
break;
case SUBREG:
if (GET_MODE_SIZE (GET_MODE (x)) !=
GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
*patternp++ = 'S';
encode_pattern_1 (XEXP (x, 0));
break;
case MEM:
*patternp++ = 'm';
case CONST:
encode_pattern_1 (XEXP (x, 0));
break;
case PLUS:
*patternp++ = '+';
encode_pattern_1 (XEXP (x, 0));
encode_pattern_1 (XEXP (x, 1));
break;
case PRE_DEC:
*patternp++ = '>';
encode_pattern_1 (XEXP (x, 0));
break;
case POST_INC:
*patternp++ = '<';
encode_pattern_1 (XEXP (x, 0));
break;
case LO_SUM:
*patternp++ = 'L';
encode_pattern_1 (XEXP (x, 0));
encode_pattern_1 (XEXP (x, 1));
break;
case HIGH:
*patternp++ = 'H';
encode_pattern_1 (XEXP (x, 0));
break;
case SYMBOL_REF:
*patternp++ = 's';
break;
case LABEL_REF:
*patternp++ = 'l';
break;
case CODE_LABEL:
*patternp++ = 'c';
break;
case CONST_INT:
case CONST_DOUBLE:
*patternp++ = 'i';
break;
case UNSPEC:
*patternp++ = 'u';
*patternp++ = '0' + XCINT (x, 1, UNSPEC);
for (i = 0; i < XVECLEN (x, 0); i++)
encode_pattern_1 (XVECEXP (x, 0, i));
break;
case USE:
*patternp++ = 'U';
break;
case PARALLEL:
*patternp++ = '|';
for (i = 0; i < XVECLEN (x, 0); i++)
encode_pattern_1 (XVECEXP (x, 0, i));
break;
case EXPR_LIST:
*patternp++ = 'E';
encode_pattern_1 (XEXP (x, 0));
if (XEXP (x, 1))
encode_pattern_1 (XEXP (x, 1));
break;
default:
*patternp++ = '?';
#if DEBUG0
fprintf (stderr, "can't encode pattern %s\n",
GET_RTX_NAME (GET_CODE (x)));
debug_rtx (x);
gcc_unreachable ();
#endif
break;
}
}
static void
encode_pattern (rtx x)
{
patternp = pattern;
encode_pattern_1 (x);
*patternp = 0;
}
/* Since register names indicate the mode they're used in, we need a
way to determine which name to refer to the register with. Called
by print_operand(). */
static const char *
reg_name_with_mode (int regno, enum machine_mode mode)
{
int mlen = GET_MODE_SIZE (mode);
if (regno == R0_REGNO && mlen == 1)
return "r0l";
if (regno == R0_REGNO && (mlen == 3 || mlen == 4))
return "r2r0";
if (regno == R0_REGNO && mlen == 6)
return "r2r1r0";
if (regno == R0_REGNO && mlen == 8)
return "r3r1r2r0";
if (regno == R1_REGNO && mlen == 1)
return "r1l";
if (regno == R1_REGNO && (mlen == 3 || mlen == 4))
return "r3r1";
if (regno == A0_REGNO && TARGET_A16 && (mlen == 3 || mlen == 4))
return "a1a0";
return reg_names[regno];
}
/* How many bytes a register uses on stack when it's pushed. We need
to know this because the push opcode needs to explicitly indicate
the size of the register, even though the name of the register
already tells it that. Used by m32c_output_reg_{push,pop}, which
is only used through calls to ASM_OUTPUT_REG_{PUSH,POP}. */
static int
reg_push_size (int regno)
{
switch (regno)
{
case R0_REGNO:
case R1_REGNO:
return 2;
case R2_REGNO:
case R3_REGNO:
case FLG_REGNO:
return 2;
case A0_REGNO:
case A1_REGNO:
case SB_REGNO:
case FB_REGNO:
case SP_REGNO:
if (TARGET_A16)
return 2;
else
return 3;
default:
gcc_unreachable ();
}
}
static int *class_sizes = 0;
/* Given two register classes, find the largest intersection between
them. If there is no intersection, return RETURNED_IF_EMPTY
instead. */
static int
reduce_class (int original_class, int limiting_class, int returned_if_empty)
{
int cc = class_contents[original_class][0];
int i, best = NO_REGS;
int best_size = 0;
if (original_class == limiting_class)
return original_class;
if (!class_sizes)
{
int r;
class_sizes = (int *) xmalloc (LIM_REG_CLASSES * sizeof (int));
for (i = 0; i < LIM_REG_CLASSES; i++)
{
class_sizes[i] = 0;
for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
if (class_contents[i][0] & (1 << r))
class_sizes[i]++;
}
}
cc &= class_contents[limiting_class][0];
for (i = 0; i < LIM_REG_CLASSES; i++)
{
int ic = class_contents[i][0];
if ((~cc & ic) == 0)
if (best_size < class_sizes[i])
{
best = i;
best_size = class_sizes[i];
}
}
if (best == NO_REGS)
return returned_if_empty;
return best;
}
/* Returns TRUE If there are any registers that exist in both register
classes. */
static int
classes_intersect (int class1, int class2)
{
return class_contents[class1][0] & class_contents[class2][0];
}
/* Used by m32c_register_move_cost to determine if a move is
impossibly expensive. */
static int
class_can_hold_mode (int class, enum machine_mode mode)
{
/* Cache the results: 0=untested 1=no 2=yes */
static char results[LIM_REG_CLASSES][MAX_MACHINE_MODE];
if (results[class][mode] == 0)
{
int r, n, i;
results[class][mode] = 1;
for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
if (class_contents[class][0] & (1 << r)
&& HARD_REGNO_MODE_OK (r, mode))
{
int ok = 1;
n = HARD_REGNO_NREGS (r, mode);
for (i = 1; i < n; i++)
if (!(class_contents[class][0] & (1 << (r + i))))
ok = 0;
if (ok)
{
results[class][mode] = 2;
break;
}
}
}
#if DEBUG0
fprintf (stderr, "class %s can hold %s? %s\n",
class_names[class], mode_name[mode],
(results[class][mode] == 2) ? "yes" : "no");
#endif
return results[class][mode] == 2;
}
/* Run-time Target Specification. */
/* Memregs are memory locations that gcc treats like general
registers, as there are a limited number of true registers and the
m32c families can use memory in most places that registers can be
used.
However, since memory accesses are more expensive than registers,
we allow the user to limit the number of memregs available, in
order to try to persuade gcc to try harder to use real registers.
Memregs are provided by m32c-lib1.S.
*/
int target_memregs = 16;
static bool target_memregs_set = FALSE;
int ok_to_change_target_memregs = TRUE;
#undef TARGET_HANDLE_OPTION
#define TARGET_HANDLE_OPTION m32c_handle_option
static bool
m32c_handle_option (size_t code,
const char *arg ATTRIBUTE_UNUSED,
int value ATTRIBUTE_UNUSED)
{
if (code == OPT_memregs_)
{
target_memregs_set = TRUE;
target_memregs = atoi (arg);
}
return TRUE;
}
/* Implements OVERRIDE_OPTIONS. We limit memregs to 0..16, and
provide a default. */
void
m32c_override_options (void)
{
if (target_memregs_set)
{
if (target_memregs < 0 || target_memregs > 16)
error ("invalid target memregs value '%d'", target_memregs);
}
else
target_memregs = 16;
}
/* Defining data structures for per-function information */
/* The usual; we set up our machine_function data. */
static struct machine_function *
m32c_init_machine_status (void)
{
struct machine_function *machine;
machine =
(machine_function *) ggc_alloc_cleared (sizeof (machine_function));
return machine;
}
/* Implements INIT_EXPANDERS. We just set up to call the above
function. */
void
m32c_init_expanders (void)
{
init_machine_status = m32c_init_machine_status;
}
/* Storage Layout */
#undef TARGET_PROMOTE_FUNCTION_RETURN
#define TARGET_PROMOTE_FUNCTION_RETURN m32c_promote_function_return
bool
m32c_promote_function_return (tree fntype ATTRIBUTE_UNUSED)
{
return false;
}
/* Register Basics */
/* Basic Characteristics of Registers */
/* Whether a mode fits in a register is complex enough to warrant a
table. */
static struct
{
char qi_regs;
char hi_regs;
char pi_regs;
char si_regs;
char di_regs;
} nregs_table[FIRST_PSEUDO_REGISTER] =
{
{ 1, 1, 2, 2, 4 }, /* r0 */
{ 0, 1, 0, 0, 0 }, /* r2 */
{ 1, 1, 2, 2, 0 }, /* r1 */
{ 0, 1, 0, 0, 0 }, /* r3 */
{ 0, 1, 1, 0, 0 }, /* a0 */
{ 0, 1, 1, 0, 0 }, /* a1 */
{ 0, 1, 1, 0, 0 }, /* sb */
{ 0, 1, 1, 0, 0 }, /* fb */
{ 0, 1, 1, 0, 0 }, /* sp */
{ 1, 1, 1, 0, 0 }, /* pc */
{ 0, 0, 0, 0, 0 }, /* fl */
{ 1, 1, 1, 0, 0 }, /* ap */
{ 1, 1, 2, 2, 4 }, /* mem0 */
{ 1, 1, 2, 2, 4 }, /* mem1 */
{ 1, 1, 2, 2, 4 }, /* mem2 */
{ 1, 1, 2, 2, 4 }, /* mem3 */
{ 1, 1, 2, 2, 4 }, /* mem4 */
{ 1, 1, 2, 2, 0 }, /* mem5 */
{ 1, 1, 2, 2, 0 }, /* mem6 */
{ 1, 1, 0, 0, 0 }, /* mem7 */
};
/* Implements CONDITIONAL_REGISTER_USAGE. We adjust the number of
available memregs, and select which registers need to be preserved
across calls based on the chip family. */
void
m32c_conditional_register_usage (void)
{
int i;
if (0 <= target_memregs && target_memregs <= 16)
{
/* The command line option is bytes, but our "registers" are
16-bit words. */
for (i = target_memregs/2; i < 8; i++)
{
fixed_regs[MEM0_REGNO + i] = 1;
CLEAR_HARD_REG_BIT (reg_class_contents[MEM_REGS], MEM0_REGNO + i);
}
}
/* M32CM and M32C preserve more registers across function calls. */
if (TARGET_A24)
{
call_used_regs[R1_REGNO] = 0;
call_used_regs[R2_REGNO] = 0;
call_used_regs[R3_REGNO] = 0;
call_used_regs[A0_REGNO] = 0;
call_used_regs[A1_REGNO] = 0;
}
}
/* How Values Fit in Registers */
/* Implements HARD_REGNO_NREGS. This is complicated by the fact that
different registers are different sizes from each other, *and* may
be different sizes in different chip families. */
int
m32c_hard_regno_nregs (int regno, enum machine_mode mode)
{
if (regno == FLG_REGNO && mode == CCmode)
return 1;
if (regno >= FIRST_PSEUDO_REGISTER)
return ((GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD);
if (regno >= MEM0_REGNO && regno <= MEM7_REGNO)
return (GET_MODE_SIZE (mode) + 1) / 2;
if (GET_MODE_SIZE (mode) <= 1)
return nregs_table[regno].qi_regs;
if (GET_MODE_SIZE (mode) <= 2)
return nregs_table[regno].hi_regs;
if (regno == A0_REGNO && mode == PSImode && TARGET_A16)
return 2;
if ((GET_MODE_SIZE (mode) <= 3 || mode == PSImode) && TARGET_A24)
return nregs_table[regno].pi_regs;
if (GET_MODE_SIZE (mode) <= 4)
return nregs_table[regno].si_regs;
if (GET_MODE_SIZE (mode) <= 8)
return nregs_table[regno].di_regs;
return 0;
}
/* Implements HARD_REGNO_MODE_OK. The above function does the work
already; just test its return value. */
int
m32c_hard_regno_ok (int regno, enum machine_mode mode)
{
return m32c_hard_regno_nregs (regno, mode) != 0;
}
/* Implements MODES_TIEABLE_P. In general, modes aren't tieable since
registers are all different sizes. However, since most modes are
bigger than our registers anyway, it's easier to implement this
function that way, leaving QImode as the only unique case. */
int
m32c_modes_tieable_p (enum machine_mode m1, enum machine_mode m2)
{
if (GET_MODE_SIZE (m1) == GET_MODE_SIZE (m2))
return 1;
#if 0
if (m1 == QImode || m2 == QImode)
return 0;
#endif
return 1;
}
/* Register Classes */
/* Implements REGNO_REG_CLASS. */
enum machine_mode
m32c_regno_reg_class (int regno)
{
switch (regno)
{
case R0_REGNO:
return R0_REGS;
case R1_REGNO:
return R1_REGS;
case R2_REGNO:
return R2_REGS;
case R3_REGNO:
return R3_REGS;
case A0_REGNO:
case A1_REGNO:
return A_REGS;
case SB_REGNO:
return SB_REGS;
case FB_REGNO:
return FB_REGS;
case SP_REGNO:
return SP_REGS;
case FLG_REGNO:
return FLG_REGS;
default:
if (IS_MEM_REGNO (regno))
return MEM_REGS;
return ALL_REGS;
}
}
/* Implements REG_CLASS_FROM_CONSTRAINT. Note that some constraints only match
for certain chip families. */
int
m32c_reg_class_from_constraint (char c ATTRIBUTE_UNUSED, const char *s)
{
if (memcmp (s, "Rsp", 3) == 0)
return SP_REGS;
if (memcmp (s, "Rfb", 3) == 0)
return FB_REGS;
if (memcmp (s, "Rsb", 3) == 0)
return SB_REGS;
if (memcmp (s, "Rcr", 3) == 0)
return TARGET_A16 ? CR_REGS : NO_REGS;
if (memcmp (s, "Rcl", 3) == 0)
return TARGET_A24 ? CR_REGS : NO_REGS;
if (memcmp (s, "R0w", 3) == 0)
return R0_REGS;
if (memcmp (s, "R1w", 3) == 0)
return R1_REGS;
if (memcmp (s, "R2w", 3) == 0)
return R2_REGS;
if (memcmp (s, "R3w", 3) == 0)
return R3_REGS;
if (memcmp (s, "R02", 3) == 0)
return R02_REGS;
if (memcmp (s, "R03", 3) == 0)
return R03_REGS;
if (memcmp (s, "Rdi", 3) == 0)
return DI_REGS;
if (memcmp (s, "Rhl", 3) == 0)
return HL_REGS;
if (memcmp (s, "R23", 3) == 0)
return R23_REGS;
if (memcmp (s, "Ra0", 3) == 0)
return A0_REGS;
if (memcmp (s, "Ra1", 3) == 0)
return A1_REGS;
if (memcmp (s, "Raa", 3) == 0)
return A_REGS;
if (memcmp (s, "Raw", 3) == 0)
return TARGET_A16 ? A_REGS : NO_REGS;
if (memcmp (s, "Ral", 3) == 0)
return TARGET_A24 ? A_REGS : NO_REGS;
if (memcmp (s, "Rqi", 3) == 0)
return QI_REGS;
if (memcmp (s, "Rad", 3) == 0)
return AD_REGS;
if (memcmp (s, "Rsi", 3) == 0)
return SI_REGS;
if (memcmp (s, "Rhi", 3) == 0)
return HI_REGS;
if (memcmp (s, "Rhc", 3) == 0)
return HC_REGS;
if (memcmp (s, "Rra", 3) == 0)
return RA_REGS;
if (memcmp (s, "Rfl", 3) == 0)
return FLG_REGS;
if (memcmp (s, "Rmm", 3) == 0)
{
if (fixed_regs[MEM0_REGNO])
return NO_REGS;
return MEM_REGS;
}
/* PSImode registers - i.e. whatever can hold a pointer. */
if (memcmp (s, "Rpi", 3) == 0)
{
if (TARGET_A16)
return HI_REGS;
else
return RA_REGS; /* r2r0 and r3r1 can hold pointers. */
}
/* We handle this one as an EXTRA_CONSTRAINT. */
if (memcmp (s, "Rpa", 3) == 0)
return NO_REGS;
if (*s == 'R')
{
fprintf(stderr, "unrecognized R constraint: %.3s\n", s);
gcc_unreachable();
}
return NO_REGS;
}
/* Implements REGNO_OK_FOR_BASE_P. */
int
m32c_regno_ok_for_base_p (int regno)
{
if (regno == A0_REGNO
|| regno == A1_REGNO || regno >= FIRST_PSEUDO_REGISTER)
return 1;
return 0;
}
#define DEBUG_RELOAD 0
/* Implements PREFERRED_RELOAD_CLASS. In general, prefer general
registers of the appropriate size. */
int
m32c_preferred_reload_class (rtx x, int rclass)
{
int newclass = rclass;
#if DEBUG_RELOAD
fprintf (stderr, "\npreferred_reload_class for %s is ",
class_names[rclass]);
#endif
if (rclass == NO_REGS)
rclass = GET_MODE (x) == QImode ? HL_REGS : R03_REGS;
if (classes_intersect (rclass, CR_REGS))
{
switch (GET_MODE (x))
{
case QImode:
newclass = HL_REGS;
break;
default:
/* newclass = HI_REGS; */
break;
}
}
else if (newclass == QI_REGS && GET_MODE_SIZE (GET_MODE (x)) > 2)
newclass = SI_REGS;
else if (GET_MODE_SIZE (GET_MODE (x)) > 4
&& ~class_contents[rclass][0] & 0x000f)
newclass = DI_REGS;
rclass = reduce_class (rclass, newclass, rclass);
if (GET_MODE (x) == QImode)
rclass = reduce_class (rclass, HL_REGS, rclass);
#if DEBUG_RELOAD
fprintf (stderr, "%s\n", class_names[rclass]);
debug_rtx (x);
if (GET_CODE (x) == MEM
&& GET_CODE (XEXP (x, 0)) == PLUS
&& GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS)
fprintf (stderr, "Glorm!\n");
#endif
return rclass;
}
/* Implements PREFERRED_OUTPUT_RELOAD_CLASS. */
int
m32c_preferred_output_reload_class (rtx x, int rclass)
{
return m32c_preferred_reload_class (x, rclass);
}
/* Implements LIMIT_RELOAD_CLASS. We basically want to avoid using
address registers for reloads since they're needed for address
reloads. */
int
m32c_limit_reload_class (enum machine_mode mode, int rclass)
{
#if DEBUG_RELOAD
fprintf (stderr, "limit_reload_class for %s: %s ->",
mode_name[mode], class_names[rclass]);
#endif
if (mode == QImode)
rclass = reduce_class (rclass, HL_REGS, rclass);
else if (mode == HImode)
rclass = reduce_class (rclass, HI_REGS, rclass);
else if (mode == SImode)
rclass = reduce_class (rclass, SI_REGS, rclass);
if (rclass != A_REGS)
rclass = reduce_class (rclass, DI_REGS, rclass);
#if DEBUG_RELOAD
fprintf (stderr, " %s\n", class_names[rclass]);
#endif
return rclass;
}
/* Implements SECONDARY_RELOAD_CLASS. QImode have to be reloaded in
r0 or r1, as those are the only real QImode registers. CR regs get
reloaded through appropriately sized general or address
registers. */
int
m32c_secondary_reload_class (int rclass, enum machine_mode mode, rtx x)
{
int cc = class_contents[rclass][0];
#if DEBUG0
fprintf (stderr, "\nsecondary reload class %s %s\n",
class_names[rclass], mode_name[mode]);
debug_rtx (x);
#endif
if (mode == QImode
&& GET_CODE (x) == MEM && (cc & ~class_contents[R23_REGS][0]) == 0)
return QI_REGS;
if (classes_intersect (rclass, CR_REGS)
&& GET_CODE (x) == REG
&& REGNO (x) >= SB_REGNO && REGNO (x) <= SP_REGNO)
return TARGET_A16 ? HI_REGS : A_REGS;
return NO_REGS;
}
/* Implements CLASS_LIKELY_SPILLED_P. A_REGS is needed for address
reloads. */
int
m32c_class_likely_spilled_p (int regclass)
{
if (regclass == A_REGS)
return 1;
return reg_class_size[regclass] == 1;
}
/* Implements CLASS_MAX_NREGS. We calculate this according to its
documented meaning, to avoid potential inconsistencies with actual
class definitions. */
int
m32c_class_max_nregs (int regclass, enum machine_mode mode)
{
int rn, max = 0;
for (rn = 0; rn < FIRST_PSEUDO_REGISTER; rn++)
if (class_contents[regclass][0] & (1 << rn))
{
int n = m32c_hard_regno_nregs (rn, mode);
if (max < n)
max = n;
}
return max;
}
/* Implements CANNOT_CHANGE_MODE_CLASS. Only r0 and r1 can change to
QI (r0l, r1l) because the chip doesn't support QI ops on other
registers (well, it does on a0/a1 but if we let gcc do that, reload
suffers). Otherwise, we allow changes to larger modes. */
int
m32c_cannot_change_mode_class (enum machine_mode from,
enum machine_mode to, int rclass)
{
int rn;
#if DEBUG0
fprintf (stderr, "cannot change from %s to %s in %s\n",
mode_name[from], mode_name[to], class_names[rclass]);
#endif
/* If the larger mode isn't allowed in any of these registers, we
can't allow the change. */
for (rn = 0; rn < FIRST_PSEUDO_REGISTER; rn++)
if (class_contents[rclass][0] & (1 << rn))
if (! m32c_hard_regno_ok (rn, to))
return 1;
if (to == QImode)
return (class_contents[rclass][0] & 0x1ffa);
if (class_contents[rclass][0] & 0x0005 /* r0, r1 */
&& GET_MODE_SIZE (from) > 1)
return 0;
if (GET_MODE_SIZE (from) > 2) /* all other regs */
return 0;
return 1;
}
/* Helpers for the rest of the file. */
/* TRUE if the rtx is a REG rtx for the given register. */
#define IS_REG(rtx,regno) (GET_CODE (rtx) == REG \
&& REGNO (rtx) == regno)
/* TRUE if the rtx is a pseudo - specifically, one we can use as a
base register in address calculations (hence the "strict"
argument). */
#define IS_PSEUDO(rtx,strict) (!strict && GET_CODE (rtx) == REG \
&& (REGNO (rtx) == AP_REGNO \
|| REGNO (rtx) >= FIRST_PSEUDO_REGISTER))
/* Implements CONST_OK_FOR_CONSTRAINT_P. Currently, all constant
constraints start with 'I', with the next two characters indicating
the type and size of the range allowed. */
int
m32c_const_ok_for_constraint_p (HOST_WIDE_INT value,
char c ATTRIBUTE_UNUSED, const char *str)
{
/* s=signed u=unsigned n=nonzero m=minus l=log2able,
[sun] bits [SUN] bytes, p=pointer size
I[-0-9][0-9] matches that number */
if (memcmp (str, "Is3", 3) == 0)
{
return (-8 <= value && value <= 7);
}
if (memcmp (str, "IS1", 3) == 0)
{
return (-128 <= value && value <= 127);
}
if (memcmp (str, "IS2", 3) == 0)
{
return (-32768 <= value && value <= 32767);
}
if (memcmp (str, "IU2", 3) == 0)
{
return (0 <= value && value <= 65535);
}
if (memcmp (str, "IU3", 3) == 0)
{
return (0 <= value && value <= 0x00ffffff);
}
if (memcmp (str, "In4", 3) == 0)
{
return (-8 <= value && value && value <= 8);
}
if (memcmp (str, "In5", 3) == 0)
{
return (-16 <= value && value && value <= 16);
}
if (memcmp (str, "In6", 3) == 0)
{
return (-32 <= value && value && value <= 32);
}
if (memcmp (str, "IM2", 3) == 0)
{
return (-65536 <= value && value && value <= -1);
}
if (memcmp (str, "Ilb", 3) == 0)
{
int b = exact_log2 (value);
return (b >= 0 && b <= 7);
}
if (memcmp (str, "Imb", 3) == 0)
{
int b = exact_log2 ((value ^ 0xff) & 0xff);
return (b >= 0 && b <= 7);
}
if (memcmp (str, "Ilw", 3) == 0)
{
int b = exact_log2 (value);
return (b >= 0 && b <= 15);
}
if (memcmp (str, "Imw", 3) == 0)
{
int b = exact_log2 ((value ^ 0xffff) & 0xffff);
return (b >= 0 && b <= 15);
}
if (memcmp (str, "I00", 3) == 0)
{
return (value == 0);
}
return 0;
}
/* Implements EXTRA_CONSTRAINT_STR (see next function too). 'S' is
for memory constraints, plus "Rpa" for PARALLEL rtx's we use for
call return values. */
int
m32c_extra_constraint_p2 (rtx value, char c ATTRIBUTE_UNUSED, const char *str)
{
encode_pattern (value);
if (memcmp (str, "Sd", 2) == 0)
{
/* This is the common "src/dest" address */
rtx r;
if (GET_CODE (value) == MEM && CONSTANT_P (XEXP (value, 0)))
return 1;
if (RTX_IS ("ms") || RTX_IS ("m+si"))
return 1;
if (RTX_IS ("m++rii"))
{
if (REGNO (patternr[3]) == FB_REGNO
&& INTVAL (patternr[4]) == 0)
return 1;
}
if (RTX_IS ("mr"))
r = patternr[1];
else if (RTX_IS ("m+ri") || RTX_IS ("m+rs") || RTX_IS ("m+r+si"))
r = patternr[2];
else
return 0;
if (REGNO (r) == SP_REGNO)
return 0;
return m32c_legitimate_address_p (GET_MODE (value), XEXP (value, 0), 1);
}
else if (memcmp (str, "Sa", 2) == 0)
{
rtx r;
if (RTX_IS ("mr"))
r = patternr[1];
else if (RTX_IS ("m+ri"))
r = patternr[2];
else
return 0;
return (IS_REG (r, A0_REGNO) || IS_REG (r, A1_REGNO));
}
else if (memcmp (str, "Si", 2) == 0)
{
return (RTX_IS ("mi") || RTX_IS ("ms") || RTX_IS ("m+si"));
}
else if (memcmp (str, "Ss", 2) == 0)
{
return ((RTX_IS ("mr")
&& (IS_REG (patternr[1], SP_REGNO)))
|| (RTX_IS ("m+ri") && (IS_REG (patternr[2], SP_REGNO))));
}
else if (memcmp (str, "Sf", 2) == 0)
{
return ((RTX_IS ("mr")
&& (IS_REG (patternr[1], FB_REGNO)))
|| (RTX_IS ("m+ri") && (IS_REG (patternr[2], FB_REGNO))));
}
else if (memcmp (str, "Sb", 2) == 0)
{
return ((RTX_IS ("mr")
&& (IS_REG (patternr[1], SB_REGNO)))
|| (RTX_IS ("m+ri") && (IS_REG (patternr[2], SB_REGNO))));
}
else if (memcmp (str, "Sp", 2) == 0)
{
/* Absolute addresses 0..0x1fff used for bit addressing (I/O ports) */
return (RTX_IS ("mi")
&& !(INTVAL (patternr[1]) & ~0x1fff));
}
else if (memcmp (str, "S1", 2) == 0)
{
return r1h_operand (value, QImode);
}
gcc_assert (str[0] != 'S');
if (memcmp (str, "Rpa", 2) == 0)
return GET_CODE (value) == PARALLEL;
return 0;
}
/* This is for when we're debugging the above. */
int
m32c_extra_constraint_p (rtx value, char c, const char *str)
{
int rv = m32c_extra_constraint_p2 (value, c, str);
#if DEBUG0
fprintf (stderr, "\nconstraint %.*s: %d\n", CONSTRAINT_LEN (c, str), str,
rv);
debug_rtx (value);
#endif
return rv;
}
/* Implements EXTRA_MEMORY_CONSTRAINT. Currently, we only use strings
starting with 'S'. */
int
m32c_extra_memory_constraint (char c, const char *str ATTRIBUTE_UNUSED)
{
return c == 'S';
}
/* Implements EXTRA_ADDRESS_CONSTRAINT. We reserve 'A' strings for these,
but don't currently define any. */
int
m32c_extra_address_constraint (char c, const char *str ATTRIBUTE_UNUSED)
{
return c == 'A';
}
/* STACK AND CALLING */
/* Frame Layout */
/* Implements RETURN_ADDR_RTX. Note that R8C and M16C push 24 bits
(yes, THREE bytes) onto the stack for the return address, but we
don't support pointers bigger than 16 bits on those chips. This
will likely wreak havoc with exception unwinding. FIXME. */
rtx
m32c_return_addr_rtx (int count)
{
enum machine_mode mode;
int offset;
rtx ra_mem;
if (count)
return NULL_RTX;
/* we want 2[$fb] */
if (TARGET_A24)
{
mode = SImode;
offset = 4;
}
else
{
/* FIXME: it's really 3 bytes */
mode = HImode;
offset = 2;
}
ra_mem =
gen_rtx_MEM (mode, plus_constant (gen_rtx_REG (Pmode, FP_REGNO), offset));
return copy_to_mode_reg (mode, ra_mem);
}
/* Implements INCOMING_RETURN_ADDR_RTX. See comment above. */
rtx
m32c_incoming_return_addr_rtx (void)
{
/* we want [sp] */
return gen_rtx_MEM (PSImode, gen_rtx_REG (PSImode, SP_REGNO));
}
/* Exception Handling Support */
/* Implements EH_RETURN_DATA_REGNO. Choose registers able to hold
pointers. */
int
m32c_eh_return_data_regno (int n)
{
switch (n)
{
case 0:
return A0_REGNO;
case 1:
return A1_REGNO;
default:
return INVALID_REGNUM;
}
}
/* Implements EH_RETURN_STACKADJ_RTX. Saved and used later in
m32c_emit_eh_epilogue. */
rtx
m32c_eh_return_stackadj_rtx (void)
{
if (!cfun->machine->eh_stack_adjust)
{
rtx sa;
sa = gen_reg_rtx (Pmode);
cfun->machine->eh_stack_adjust = sa;
}
return cfun->machine->eh_stack_adjust;
}
/* Registers That Address the Stack Frame */
/* Implements DWARF_FRAME_REGNUM and DBX_REGISTER_NUMBER. Note that
the original spec called for dwarf numbers to vary with register
width as well, for example, r0l, r0, and r2r0 would each have
different dwarf numbers. GCC doesn't support this, and we don't do
it, and gdb seems to like it this way anyway. */
unsigned int
m32c_dwarf_frame_regnum (int n)
{
switch (n)
{
case R0_REGNO:
return 5;
case R1_REGNO:
return 6;
case R2_REGNO:
return 7;
case R3_REGNO:
return 8;
case A0_REGNO:
return 9;
case A1_REGNO:
return 10;
case FB_REGNO:
return 11;
case SB_REGNO:
return 19;
case SP_REGNO:
return 12;
case PC_REGNO:
return 13;
default:
return DWARF_FRAME_REGISTERS + 1;
}
}
/* The frame looks like this:
ap -> +------------------------------
| Return address (3 or 4 bytes)
| Saved FB (2 or 4 bytes)
fb -> +------------------------------
| local vars
| register saves fb
| through r0 as needed
sp -> +------------------------------
*/
/* We use this to wrap all emitted insns in the prologue. */
static rtx
F (rtx x)
{
RTX_FRAME_RELATED_P (x) = 1;
return x;
}
/* This maps register numbers to the PUSHM/POPM bitfield, and tells us
how much the stack pointer moves for each, for each cpu family. */
static struct
{
int reg1;
int bit;
int a16_bytes;
int a24_bytes;
} pushm_info[] =
{
/* These are in reverse push (nearest-to-sp) order. */
{ R0_REGNO, 0x80, 2, 2 },
{ R1_REGNO, 0x40, 2, 2 },
{ R2_REGNO, 0x20, 2, 2 },
{ R3_REGNO, 0x10, 2, 2 },
{ A0_REGNO, 0x08, 2, 4 },
{ A1_REGNO, 0x04, 2, 4 },
{ SB_REGNO, 0x02, 2, 4 },
{ FB_REGNO, 0x01, 2, 4 }
};
#define PUSHM_N (sizeof(pushm_info)/sizeof(pushm_info[0]))
/* Returns TRUE if we need to save/restore the given register. We
save everything for exception handlers, so that any register can be
unwound. For interrupt handlers, we save everything if the handler
calls something else (because we don't know what *that* function
might do), but try to be a bit smarter if the handler is a leaf
function. We always save $a0, though, because we use that in the
epilogue to copy $fb to $sp. */
static int
need_to_save (int regno)
{
if (fixed_regs[regno])
return 0;
if (cfun->calls_eh_return)
return 1;
if (regno == FP_REGNO)
return 0;
if (cfun->machine->is_interrupt
&& (!cfun->machine->is_leaf || regno == A0_REGNO))
return 1;
if (df_regs_ever_live_p (regno)
&& (!call_used_regs[regno] || cfun->machine->is_interrupt))
return 1;
return 0;
}
/* This function contains all the intelligence about saving and
restoring registers. It always figures out the register save set.
When called with PP_justcount, it merely returns the size of the
save set (for eliminating the frame pointer, for example). When
called with PP_pushm or PP_popm, it emits the appropriate
instructions for saving (pushm) or restoring (popm) the
registers. */
static int
m32c_pushm_popm (Push_Pop_Type ppt)
{
int reg_mask = 0;
int byte_count = 0, bytes;
int i;
rtx dwarf_set[PUSHM_N];
int n_dwarfs = 0;
int nosave_mask = 0;
if (cfun->return_rtx
&& GET_CODE (cfun->return_rtx) == PARALLEL
&& !(cfun->calls_eh_return || cfun->machine->is_interrupt))
{
rtx exp = XVECEXP (cfun->return_rtx, 0, 0);
rtx rv = XEXP (exp, 0);
int rv_bytes = GET_MODE_SIZE (GET_MODE (rv));
if (rv_bytes > 2)
nosave_mask |= 0x20; /* PSI, SI */
else
nosave_mask |= 0xf0; /* DF */
if (rv_bytes > 4)
nosave_mask |= 0x50; /* DI */
}
for (i = 0; i < (int) PUSHM_N; i++)
{
/* Skip if neither register needs saving. */
if (!need_to_save (pushm_info[i].reg1))
continue;
if (pushm_info[i].bit & nosave_mask)
continue;
reg_mask |= pushm_info[i].bit;
bytes = TARGET_A16 ? pushm_info[i].a16_bytes : pushm_info[i].a24_bytes;
if (ppt == PP_pushm)
{
enum machine_mode mode = (bytes == 2) ? HImode : SImode;
rtx addr;
/* Always use stack_pointer_rtx instead of calling
rtx_gen_REG ourselves. Code elsewhere in GCC assumes
that there is a single rtx representing the stack pointer,
namely stack_pointer_rtx, and uses == to recognize it. */
addr = stack_pointer_rtx;
if (byte_count != 0)
addr = gen_rtx_PLUS (GET_MODE (addr), addr, GEN_INT (byte_count));
dwarf_set[n_dwarfs++] =
gen_rtx_SET (VOIDmode,
gen_rtx_MEM (mode, addr),
gen_rtx_REG (mode, pushm_info[i].reg1));
F (dwarf_set[n_dwarfs - 1]);
}
byte_count += bytes;
}
if (cfun->machine->is_interrupt)
{
cfun->machine->intr_pushm = reg_mask & 0xfe;
reg_mask = 0;
byte_count = 0;
}
if (cfun->machine->is_interrupt)
for (i = MEM0_REGNO; i <= MEM7_REGNO; i++)
if (need_to_save (i))
{
byte_count += 2;
cfun->machine->intr_pushmem[i - MEM0_REGNO] = 1;
}
if (ppt == PP_pushm && byte_count)
{
rtx note = gen_rtx_SEQUENCE (VOIDmode, rtvec_alloc (n_dwarfs + 1));
rtx pushm;
if (reg_mask)
{
XVECEXP (note, 0, 0)
= gen_rtx_SET (VOIDmode,
stack_pointer_rtx,
gen_rtx_PLUS (GET_MODE (stack_pointer_rtx),
stack_pointer_rtx,
GEN_INT (-byte_count)));
F (XVECEXP (note, 0, 0));
for (i = 0; i < n_dwarfs; i++)
XVECEXP (note, 0, i + 1) = dwarf_set[i];
pushm = F (emit_insn (gen_pushm (GEN_INT (reg_mask))));
REG_NOTES (pushm) = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR, note,
REG_NOTES (pushm));
}
if (cfun->machine->is_interrupt)
for (i = MEM0_REGNO; i <= MEM7_REGNO; i++)
if (cfun->machine->intr_pushmem[i - MEM0_REGNO])
{
if (TARGET_A16)
pushm = emit_insn (gen_pushhi_16 (gen_rtx_REG (HImode, i)));
else
pushm = emit_insn (gen_pushhi_24 (gen_rtx_REG (HImode, i)));
F (pushm);
}
}
if (ppt == PP_popm && byte_count)
{
if (cfun->machine->is_interrupt)
for (i = MEM7_REGNO; i >= MEM0_REGNO; i--)
if (cfun->machine->intr_pushmem[i - MEM0_REGNO])
{
if (TARGET_A16)
emit_insn (gen_pophi_16 (gen_rtx_REG (HImode, i)));
else
emit_insn (gen_pophi_24 (gen_rtx_REG (HImode, i)));
}
if (reg_mask)
emit_insn (gen_popm (GEN_INT (reg_mask)));
}
return byte_count;
}
/* Implements INITIAL_ELIMINATION_OFFSET. See the comment above that
diagrams our call frame. */
int
m32c_initial_elimination_offset (int from, int to)
{
int ofs = 0;
if (from == AP_REGNO)
{
if (TARGET_A16)
ofs += 5;
else
ofs += 8;
}
if (to == SP_REGNO)
{
ofs += m32c_pushm_popm (PP_justcount);
ofs += get_frame_size ();
}
/* Account for push rounding. */
if (TARGET_A24)
ofs = (ofs + 1) & ~1;
#if DEBUG0
fprintf (stderr, "initial_elimination_offset from=%d to=%d, ofs=%d\n", from,
to, ofs);
#endif
return ofs;
}
/* Passing Function Arguments on the Stack */
#undef TARGET_PROMOTE_PROTOTYPES
#define TARGET_PROMOTE_PROTOTYPES m32c_promote_prototypes
static bool
m32c_promote_prototypes (tree fntype ATTRIBUTE_UNUSED)
{
return 0;
}
/* Implements PUSH_ROUNDING. The R8C and M16C have byte stacks, the
M32C has word stacks. */
int
m32c_push_rounding (int n)
{
if (TARGET_R8C || TARGET_M16C)
return n;
return (n + 1) & ~1;
}
/* Passing Arguments in Registers */
/* Implements FUNCTION_ARG. Arguments are passed partly in registers,
partly on stack. If our function returns a struct, a pointer to a
buffer for it is at the top of the stack (last thing pushed). The
first few real arguments may be in registers as follows:
R8C/M16C: arg1 in r1 if it's QI or HI (else it's pushed on stack)
arg2 in r2 if it's HI (else pushed on stack)
rest on stack
M32C: arg1 in r0 if it's QI or HI (else it's pushed on stack)
rest on stack
Structs are not passed in registers, even if they fit. Only
integer and pointer types are passed in registers.
Note that when arg1 doesn't fit in r1, arg2 may still be passed in
r2 if it fits. */
rtx
m32c_function_arg (CUMULATIVE_ARGS * ca,
enum machine_mode mode, tree type, int named)
{
/* Can return a reg, parallel, or 0 for stack */
rtx rv = NULL_RTX;
#if DEBUG0
fprintf (stderr, "func_arg %d (%s, %d)\n",
ca->parm_num, mode_name[mode], named);
debug_tree (type);
#endif
if (mode == VOIDmode)
return GEN_INT (0);
if (ca->force_mem || !named)
{
#if DEBUG0
fprintf (stderr, "func arg: force %d named %d, mem\n", ca->force_mem,
named);
#endif
return NULL_RTX;
}
if (type && INTEGRAL_TYPE_P (type) && POINTER_TYPE_P (type))
return NULL_RTX;
if (type && AGGREGATE_TYPE_P (type))
return NULL_RTX;
switch (ca->parm_num)
{
case 1:
if (GET_MODE_SIZE (mode) == 1 || GET_MODE_SIZE (mode) == 2)
rv = gen_rtx_REG (mode, TARGET_A16 ? R1_REGNO : R0_REGNO);
break;
case 2:
if (TARGET_A16 && GET_MODE_SIZE (mode) == 2)
rv = gen_rtx_REG (mode, R2_REGNO);
break;
}
#if DEBUG0
debug_rtx (rv);
#endif
return rv;
}
#undef TARGET_PASS_BY_REFERENCE
#define TARGET_PASS_BY_REFERENCE m32c_pass_by_reference
static bool
m32c_pass_by_reference (CUMULATIVE_ARGS * ca ATTRIBUTE_UNUSED,
enum machine_mode mode ATTRIBUTE_UNUSED,
tree type ATTRIBUTE_UNUSED,
bool named ATTRIBUTE_UNUSED)
{
return 0;
}
/* Implements INIT_CUMULATIVE_ARGS. */
void
m32c_init_cumulative_args (CUMULATIVE_ARGS * ca,
tree fntype,
rtx libname ATTRIBUTE_UNUSED,
tree fndecl,
int n_named_args ATTRIBUTE_UNUSED)
{
if (fntype && aggregate_value_p (TREE_TYPE (fntype), fndecl))
ca->force_mem = 1;
else
ca->force_mem = 0;
ca->parm_num = 1;
}
/* Implements FUNCTION_ARG_ADVANCE. force_mem is set for functions
returning structures, so we always reset that. Otherwise, we only
need to know the sequence number of the argument to know what to do
with it. */
void
m32c_function_arg_advance (CUMULATIVE_ARGS * ca,
enum machine_mode mode ATTRIBUTE_UNUSED,
tree type ATTRIBUTE_UNUSED,
int named ATTRIBUTE_UNUSED)
{
if (ca->force_mem)
ca->force_mem = 0;
else
ca->parm_num++;
}
/* Implements FUNCTION_ARG_REGNO_P. */
int
m32c_function_arg_regno_p (int r)
{
if (TARGET_A24)
return (r == R0_REGNO);
return (r == R1_REGNO || r == R2_REGNO);
}
/* HImode and PSImode are the two "native" modes as far as GCC is
concerned, but the chips also support a 32-bit mode which is used
for some opcodes in R8C/M16C and for reset vectors and such. */
#undef TARGET_VALID_POINTER_MODE
#define TARGET_VALID_POINTER_MODE m32c_valid_pointer_mode
static bool
m32c_valid_pointer_mode (enum machine_mode mode)
{
if (mode == HImode
|| mode == PSImode
|| mode == SImode
)
return 1;
return 0;
}
/* How Scalar Function Values Are Returned */
/* Implements LIBCALL_VALUE. Most values are returned in $r0, or some
combination of registers starting there (r2r0 for longs, r3r1r2r0
for long long, r3r2r1r0 for doubles), except that that ABI
currently doesn't work because it ends up using all available
general registers and gcc often can't compile it. So, instead, we
return anything bigger than 16 bits in "mem0" (effectively, a
memory location). */
rtx
m32c_libcall_value (enum machine_mode mode)
{
/* return reg or parallel */
#if 0
/* FIXME: GCC has difficulty returning large values in registers,
because that ties up most of the general registers and gives the
register allocator little to work with. Until we can resolve
this, large values are returned in memory. */
if (mode == DFmode)
{
rtx rv;
rv = gen_rtx_PARALLEL (mode, rtvec_alloc (4));
XVECEXP (rv, 0, 0) = gen_rtx_EXPR_LIST (VOIDmode,
gen_rtx_REG (HImode,
R0_REGNO),
GEN_INT (0));
XVECEXP (rv, 0, 1) = gen_rtx_EXPR_LIST (VOIDmode,
gen_rtx_REG (HImode,
R1_REGNO),
GEN_INT (2));
XVECEXP (rv, 0, 2) = gen_rtx_EXPR_LIST (VOIDmode,
gen_rtx_REG (HImode,
R2_REGNO),
GEN_INT (4));
XVECEXP (rv, 0, 3) = gen_rtx_EXPR_LIST (VOIDmode,
gen_rtx_REG (HImode,
R3_REGNO),
GEN_INT (6));
return rv;
}
if (TARGET_A24 && GET_MODE_SIZE (mode) > 2)
{
rtx rv;
rv = gen_rtx_PARALLEL (mode, rtvec_alloc (1));
XVECEXP (rv, 0, 0) = gen_rtx_EXPR_LIST (VOIDmode,
gen_rtx_REG (mode,
R0_REGNO),
GEN_INT (0));
return rv;
}
#endif
if (GET_MODE_SIZE (mode) > 2)
return gen_rtx_REG (mode, MEM0_REGNO);
return gen_rtx_REG (mode, R0_REGNO);
}
/* Implements FUNCTION_VALUE. Functions and libcalls have the same
conventions. */
rtx
m32c_function_value (tree valtype, tree func ATTRIBUTE_UNUSED)
{
/* return reg or parallel */
enum machine_mode mode = TYPE_MODE (valtype);
return m32c_libcall_value (mode);
}
/* How Large Values Are Returned */
/* We return structures by pushing the address on the stack, even if
we use registers for the first few "real" arguments. */
#undef TARGET_STRUCT_VALUE_RTX
#define TARGET_STRUCT_VALUE_RTX m32c_struct_value_rtx
static rtx
m32c_struct_value_rtx (tree fndecl ATTRIBUTE_UNUSED,
int incoming ATTRIBUTE_UNUSED)
{
return 0;
}
/* Function Entry and Exit */
/* Implements EPILOGUE_USES. Interrupts restore all registers. */
int
m32c_epilogue_uses (int regno ATTRIBUTE_UNUSED)
{
if (cfun->machine->is_interrupt)
return 1;
return 0;
}
/* Implementing the Varargs Macros */
#undef TARGET_STRICT_ARGUMENT_NAMING
#define TARGET_STRICT_ARGUMENT_NAMING m32c_strict_argument_naming
static bool
m32c_strict_argument_naming (CUMULATIVE_ARGS * ca ATTRIBUTE_UNUSED)
{
return 1;
}
/* Trampolines for Nested Functions */
/*
m16c:
1 0000 75C43412 mov.w #0x1234,a0
2 0004 FC000000 jmp.a label
m32c:
1 0000 BC563412 mov.l:s #0x123456,a0
2 0004 CC000000 jmp.a label
*/
/* Implements TRAMPOLINE_SIZE. */
int
m32c_trampoline_size (void)
{
/* Allocate extra space so we can avoid the messy shifts when we
initialize the trampoline; we just write past the end of the
opcode. */
return TARGET_A16 ? 8 : 10;
}
/* Implements TRAMPOLINE_ALIGNMENT. */
int
m32c_trampoline_alignment (void)
{
return 2;
}
/* Implements INITIALIZE_TRAMPOLINE. */
void
m32c_initialize_trampoline (rtx tramp, rtx function, rtx chainval)
{
#define A0(m,i) gen_rtx_MEM (m, plus_constant (tramp, i))
if (TARGET_A16)
{
/* Note: we subtract a "word" because the moves want signed
constants, not unsigned constants. */
emit_move_insn (A0 (HImode, 0), GEN_INT (0xc475 - 0x10000));
emit_move_insn (A0 (HImode, 2), chainval);
emit_move_insn (A0 (QImode, 4), GEN_INT (0xfc - 0x100));
/* We use 16-bit addresses here, but store the zero to turn it
into a 24-bit offset. */
emit_move_insn (A0 (HImode, 5), function);
emit_move_insn (A0 (QImode, 7), GEN_INT (0x00));
}
else
{
/* Note that the PSI moves actually write 4 bytes. Make sure we
write stuff out in the right order, and leave room for the
extra byte at the end. */
emit_move_insn (A0 (QImode, 0), GEN_INT (0xbc - 0x100));
emit_move_insn (A0 (PSImode, 1), chainval);
emit_move_insn (A0 (QImode, 4), GEN_INT (0xcc - 0x100));
emit_move_insn (A0 (PSImode, 5), function);
}
#undef A0
}
/* Implicit Calls to Library Routines */
#undef TARGET_INIT_LIBFUNCS
#define TARGET_INIT_LIBFUNCS m32c_init_libfuncs
static void
m32c_init_libfuncs (void)
{
if (TARGET_A24)
{
/* We do this because the M32C has an HImode operand, but the
M16C has an 8-bit operand. Since gcc looks at the match data
and not the expanded rtl, we have to reset the array so that
the right modes are found. */
setcc_gen_code[EQ] = CODE_FOR_seq_24;
setcc_gen_code[NE] = CODE_FOR_sne_24;
setcc_gen_code[GT] = CODE_FOR_sgt_24;
setcc_gen_code[GE] = CODE_FOR_sge_24;
setcc_gen_code[LT] = CODE_FOR_slt_24;
setcc_gen_code[LE] = CODE_FOR_sle_24;
setcc_gen_code[GTU] = CODE_FOR_sgtu_24;
setcc_gen_code[GEU] = CODE_FOR_sgeu_24;
setcc_gen_code[LTU] = CODE_FOR_sltu_24;
setcc_gen_code[LEU] = CODE_FOR_sleu_24;
}
}
/* Addressing Modes */
/* Used by GO_IF_LEGITIMATE_ADDRESS. The r8c/m32c family supports a
wide range of non-orthogonal addressing modes, including the
ability to double-indirect on *some* of them. Not all insns
support all modes, either, but we rely on predicates and
constraints to deal with that. */
int
m32c_legitimate_address_p (enum machine_mode mode, rtx x, int strict)
{
int mode_adjust;
if (CONSTANT_P (x))
return 1;
/* Wide references to memory will be split after reload, so we must
ensure that all parts of such splits remain legitimate
addresses. */
mode_adjust = GET_MODE_SIZE (mode) - 1;
/* allowing PLUS yields mem:HI(plus:SI(mem:SI(plus:SI in m32c_split_move */
if (GET_CODE (x) == PRE_DEC
|| GET_CODE (x) == POST_INC || GET_CODE (x) == PRE_MODIFY)
{
return (GET_CODE (XEXP (x, 0)) == REG
&& REGNO (XEXP (x, 0)) == SP_REGNO);
}
#if 0
/* This is the double indirection detection, but it currently
doesn't work as cleanly as this code implies, so until we've had
a chance to debug it, leave it disabled. */
if (TARGET_A24 && GET_CODE (x) == MEM && GET_CODE (XEXP (x, 0)) != PLUS)
{
#if DEBUG_DOUBLE
fprintf (stderr, "double indirect\n");
#endif
x = XEXP (x, 0);
}
#endif
encode_pattern (x);
if (RTX_IS ("r"))
{
/* Most indexable registers can be used without displacements,
although some of them will be emitted with an explicit zero
to please the assembler. */
switch (REGNO (patternr[0]))
{
case A0_REGNO:
case A1_REGNO:
case SB_REGNO:
case FB_REGNO:
case SP_REGNO:
return 1;
default:
if (IS_PSEUDO (patternr[0], strict))
return 1;
return 0;
}
}
if (RTX_IS ("+ri"))
{
/* This is more interesting, because different base registers
allow for different displacements - both range and signedness
- and it differs from chip series to chip series too. */
int rn = REGNO (patternr[1]);
HOST_WIDE_INT offs = INTVAL (patternr[2]);
switch (rn)
{
case A0_REGNO:
case A1_REGNO:
case SB_REGNO:
/* The syntax only allows positive offsets, but when the
offsets span the entire memory range, we can simulate
negative offsets by wrapping. */
if (TARGET_A16)
return (offs >= -65536 && offs <= 65535 - mode_adjust);
if (rn == SB_REGNO)
return (offs >= 0 && offs <= 65535 - mode_adjust);
/* A0 or A1 */
return (offs >= -16777216 && offs <= 16777215);
case FB_REGNO:
if (TARGET_A16)
return (offs >= -128 && offs <= 127 - mode_adjust);
return (offs >= -65536 && offs <= 65535 - mode_adjust);
case SP_REGNO:
return (offs >= -128 && offs <= 127 - mode_adjust);
default:
if (IS_PSEUDO (patternr[1], strict))
return 1;
return 0;
}
}
if (RTX_IS ("+rs") || RTX_IS ("+r+si"))
{
rtx reg = patternr[1];
/* We don't know where the symbol is, so only allow base
registers which support displacements spanning the whole
address range. */
switch (REGNO (reg))
{
case A0_REGNO:
case A1_REGNO:
/* $sb needs a secondary reload, but since it's involved in
memory address reloads too, we don't deal with it very
well. */
/* case SB_REGNO: */
return 1;
default:
if (IS_PSEUDO (reg, strict))
return 1;
return 0;
}
}
return 0;
}
/* Implements REG_OK_FOR_BASE_P. */
int
m32c_reg_ok_for_base_p (rtx x, int strict)
{
if (GET_CODE (x) != REG)
return 0;
switch (REGNO (x))
{
case A0_REGNO:
case A1_REGNO:
case SB_REGNO:
case FB_REGNO:
case SP_REGNO:
return 1;
default:
if (IS_PSEUDO (x, strict))
return 1;
return 0;
}
}
/* We have three choices for choosing fb->aN offsets. If we choose -128,
we need one MOVA -128[fb],aN opcode and 16-bit aN displacements,
like this:
EB 4B FF mova -128[$fb],$a0
D8 0C FF FF mov.w:Q #0,-1[$a0]
Alternately, we subtract the frame size, and hopefully use 8-bit aN
displacements:
7B F4 stc $fb,$a0
77 54 00 01 sub #256,$a0
D8 08 01 mov.w:Q #0,1[$a0]
If we don't offset (i.e. offset by zero), we end up with:
7B F4 stc $fb,$a0
D8 0C 00 FF mov.w:Q #0,-256[$a0]
We have to subtract *something* so that we have a PLUS rtx to mark
that we've done this reload. The -128 offset will never result in
an 8-bit aN offset, and the payoff for the second case is five
loads *if* those loads are within 256 bytes of the other end of the
frame, so the third case seems best. Note that we subtract the
zero, but detect that in the addhi3 pattern. */
#define BIG_FB_ADJ 0
/* Implements LEGITIMIZE_ADDRESS. The only address we really have to
worry about is frame base offsets, as $fb has a limited
displacement range. We deal with this by attempting to reload $fb
itself into an address register; that seems to result in the best
code. */
int
m32c_legitimize_address (rtx * x ATTRIBUTE_UNUSED,
rtx oldx ATTRIBUTE_UNUSED,
enum machine_mode mode ATTRIBUTE_UNUSED)
{
#if DEBUG0
fprintf (stderr, "m32c_legitimize_address for mode %s\n", mode_name[mode]);
debug_rtx (*x);
fprintf (stderr, "\n");
#endif
if (GET_CODE (*x) == PLUS
&& GET_CODE (XEXP (*x, 0)) == REG
&& REGNO (XEXP (*x, 0)) == FB_REGNO
&& GET_CODE (XEXP (*x, 1)) == CONST_INT
&& (INTVAL (XEXP (*x, 1)) < -128
|| INTVAL (XEXP (*x, 1)) > (128 - GET_MODE_SIZE (mode))))
{
/* reload FB to A_REGS */
rtx temp = gen_reg_rtx (Pmode);
*x = copy_rtx (*x);
emit_insn (gen_rtx_SET (VOIDmode, temp, XEXP (*x, 0)));
XEXP (*x, 0) = temp;
return 1;
}
return 0;
}
/* Implements LEGITIMIZE_RELOAD_ADDRESS. See comment above. */
int
m32c_legitimize_reload_address (rtx * x,
enum machine_mode mode,
int opnum,
int type, int ind_levels ATTRIBUTE_UNUSED)
{
#if DEBUG0
fprintf (stderr, "\nm32c_legitimize_reload_address for mode %s\n",
mode_name[mode]);
debug_rtx (*x);
#endif
/* At one point, this function tried to get $fb copied to an address
register, which in theory would maximize sharing, but gcc was
*also* still trying to reload the whole address, and we'd run out
of address registers. So we let gcc do the naive (but safe)
reload instead, when the above function doesn't handle it for
us.
The code below is a second attempt at the above. */
if (GET_CODE (*x) == PLUS
&& GET_CODE (XEXP (*x, 0)) == REG
&& REGNO (XEXP (*x, 0)) == FB_REGNO
&& GET_CODE (XEXP (*x, 1)) == CONST_INT
&& (INTVAL (XEXP (*x, 1)) < -128
|| INTVAL (XEXP (*x, 1)) > (128 - GET_MODE_SIZE (mode))))
{
rtx sum;
int offset = INTVAL (XEXP (*x, 1));
int adjustment = -BIG_FB_ADJ;
sum = gen_rtx_PLUS (Pmode, XEXP (*x, 0),
GEN_INT (adjustment));
*x = gen_rtx_PLUS (Pmode, sum, GEN_INT (offset - adjustment));
if (type == RELOAD_OTHER)
type = RELOAD_FOR_OTHER_ADDRESS;
push_reload (sum, NULL_RTX, &XEXP (*x, 0), NULL,
A_REGS, Pmode, VOIDmode, 0, 0, opnum,
type);
return 1;
}
if (GET_CODE (*x) == PLUS
&& GET_CODE (XEXP (*x, 0)) == PLUS
&& GET_CODE (XEXP (XEXP (*x, 0), 0)) == REG
&& REGNO (XEXP (XEXP (*x, 0), 0)) == FB_REGNO
&& GET_CODE (XEXP (XEXP (*x, 0), 1)) == CONST_INT
&& GET_CODE (XEXP (*x, 1)) == CONST_INT
)
{
if (type == RELOAD_OTHER)
type = RELOAD_FOR_OTHER_ADDRESS;
push_reload (XEXP (*x, 0), NULL_RTX, &XEXP (*x, 0), NULL,
A_REGS, Pmode, VOIDmode, 0, 0, opnum,
type);
return 1;
}
return 0;
}
/* Implements LEGITIMATE_CONSTANT_P. We split large constants anyway,
so we can allow anything. */
int
m32c_legitimate_constant_p (rtx x ATTRIBUTE_UNUSED)
{
return 1;
}
/* Condition Code Status */
#undef TARGET_FIXED_CONDITION_CODE_REGS
#define TARGET_FIXED_CONDITION_CODE_REGS m32c_fixed_condition_code_regs
static bool
m32c_fixed_condition_code_regs (unsigned int *p1, unsigned int *p2)
{
*p1 = FLG_REGNO;
*p2 = INVALID_REGNUM;
return true;
}
/* Describing Relative Costs of Operations */
/* Implements REGISTER_MOVE_COST. We make impossible moves
prohibitively expensive, like trying to put QIs in r2/r3 (there are
no opcodes to do that). We also discourage use of mem* registers
since they're really memory. */
int
m32c_register_move_cost (enum machine_mode mode, int from, int to)
{
int cost = COSTS_N_INSNS (3);
int cc = class_contents[from][0] | class_contents[to][0];
/* FIXME: pick real values, but not 2 for now. */
if (mode == QImode && (cc & class_contents[R23_REGS][0]))
{
if (!(cc & ~class_contents[R23_REGS][0]))
cost = COSTS_N_INSNS (1000);
else
cost = COSTS_N_INSNS (80);
}
if (!class_can_hold_mode (from, mode) || !class_can_hold_mode (to, mode))
cost = COSTS_N_INSNS (1000);
if (classes_intersect (from, CR_REGS))
cost += COSTS_N_INSNS (5);
if (classes_intersect (to, CR_REGS))
cost += COSTS_N_INSNS (5);
if (from == MEM_REGS || to == MEM_REGS)
cost += COSTS_N_INSNS (50);
else if (classes_intersect (from, MEM_REGS)
|| classes_intersect (to, MEM_REGS))
cost += COSTS_N_INSNS (10);
#if DEBUG0
fprintf (stderr, "register_move_cost %s from %s to %s = %d\n",
mode_name[mode], class_names[from], class_names[to], cost);
#endif
return cost;
}
/* Implements MEMORY_MOVE_COST. */
int
m32c_memory_move_cost (enum machine_mode mode ATTRIBUTE_UNUSED,
int reg_class ATTRIBUTE_UNUSED,
int in ATTRIBUTE_UNUSED)
{
/* FIXME: pick real values. */
return COSTS_N_INSNS (10);
}
/* Here we try to describe when we use multiple opcodes for one RTX so
that gcc knows when to use them. */
#undef TARGET_RTX_COSTS
#define TARGET_RTX_COSTS m32c_rtx_costs
static bool
m32c_rtx_costs (rtx x, int code, int outer_code, int *total)
{
switch (code)
{
case REG:
if (REGNO (x) >= MEM0_REGNO && REGNO (x) <= MEM7_REGNO)
*total += COSTS_N_INSNS (500);
else
*total += COSTS_N_INSNS (1);
return true;
case ASHIFT:
case LSHIFTRT:
case ASHIFTRT:
if (GET_CODE (XEXP (x, 1)) != CONST_INT)
{
/* mov.b r1l, r1h */
*total += COSTS_N_INSNS (1);
return true;
}
if (INTVAL (XEXP (x, 1)) > 8
|| INTVAL (XEXP (x, 1)) < -8)
{
/* mov.b #N, r1l */
/* mov.b r1l, r1h */
*total += COSTS_N_INSNS (2);
return true;
}
return true;
case LE:
case LEU:
case LT:
case LTU:
case GT:
case GTU:
case GE:
case GEU:
case NE:
case EQ:
if (outer_code == SET)
{
*total += COSTS_N_INSNS (2);
return true;
}
break;
case ZERO_EXTRACT:
{
rtx dest = XEXP (x, 0);
rtx addr = XEXP (dest, 0);
switch (GET_CODE (addr))
{
case CONST_INT:
*total += COSTS_N_INSNS (1);
break;
case SYMBOL_REF:
*total += COSTS_N_INSNS (3);
break;
default:
*total += COSTS_N_INSNS (2);
break;
}
return true;
}
break;
default:
/* Reasonable default. */
if (TARGET_A16 && GET_MODE(x) == SImode)
*total += COSTS_N_INSNS (2);
break;
}
return false;
}
#undef TARGET_ADDRESS_COST
#define TARGET_ADDRESS_COST m32c_address_cost
static int
m32c_address_cost (rtx addr)
{
/* fprintf(stderr, "\naddress_cost\n");
debug_rtx(addr);*/
switch (GET_CODE (addr))
{
case CONST_INT:
return COSTS_N_INSNS(1);
case SYMBOL_REF:
return COSTS_N_INSNS(3);
case REG:
return COSTS_N_INSNS(2);
default:
return 0;
}
}
/* Defining the Output Assembler Language */
/* The Overall Framework of an Assembler File */
#undef TARGET_HAVE_NAMED_SECTIONS
#define TARGET_HAVE_NAMED_SECTIONS true
/* Output of Data */
/* We may have 24 bit sizes, which is the native address size.
Currently unused, but provided for completeness. */
#undef TARGET_ASM_INTEGER
#define TARGET_ASM_INTEGER m32c_asm_integer
static bool
m32c_asm_integer (rtx x, unsigned int size, int aligned_p)
{
switch (size)
{
case 3:
fprintf (asm_out_file, "\t.3byte\t");
output_addr_const (asm_out_file, x);
fputc ('\n', asm_out_file);
return true;
case 4:
if (GET_CODE (x) == SYMBOL_REF)
{
fprintf (asm_out_file, "\t.long\t");
output_addr_const (asm_out_file, x);
fputc ('\n', asm_out_file);
return true;
}
break;
}
return default_assemble_integer (x, size, aligned_p);
}
/* Output of Assembler Instructions */
/* We use a lookup table because the addressing modes are non-orthogonal. */
static struct
{
char code;
char const *pattern;
char const *format;
}
const conversions[] = {
{ 0, "r", "0" },
{ 0, "mr", "z[1]" },
{ 0, "m+ri", "3[2]" },
{ 0, "m+rs", "3[2]" },
{ 0, "m+r+si", "4+5[2]" },
{ 0, "ms", "1" },
{ 0, "mi", "1" },
{ 0, "m+si", "2+3" },
{ 0, "mmr", "[z[2]]" },
{ 0, "mm+ri", "[4[3]]" },
{ 0, "mm+rs", "[4[3]]" },
{ 0, "mm+r+si", "[5+6[3]]" },
{ 0, "mms", "[[2]]" },
{ 0, "mmi", "[[2]]" },
{ 0, "mm+si", "[4[3]]" },
{ 0, "i", "#0" },
{ 0, "s", "#0" },
{ 0, "+si", "#1+2" },
{ 0, "l", "#0" },
{ 'l', "l", "0" },
{ 'd', "i", "0" },
{ 'd', "s", "0" },
{ 'd', "+si", "1+2" },
{ 'D', "i", "0" },
{ 'D', "s", "0" },
{ 'D', "+si", "1+2" },
{ 'x', "i", "#0" },
{ 'X', "i", "#0" },
{ 'm', "i", "#0" },
{ 'b', "i", "#0" },
{ 'B', "i", "0" },
{ 'p', "i", "0" },
{ 0, 0, 0 }
};
/* This is in order according to the bitfield that pushm/popm use. */
static char const *pushm_regs[] = {
"fb", "sb", "a1", "a0", "r3", "r2", "r1", "r0"
};
/* Implements PRINT_OPERAND. */
void
m32c_print_operand (FILE * file, rtx x, int code)
{
int i, j, b;
const char *comma;
HOST_WIDE_INT ival;
int unsigned_const = 0;
int force_sign;
/* Multiplies; constants are converted to sign-extended format but
we need unsigned, so 'u' and 'U' tell us what size unsigned we
need. */
if (code == 'u')
{
unsigned_const = 2;
code = 0;
}
if (code == 'U')
{
unsigned_const = 1;
code = 0;
}
/* This one is only for debugging; you can put it in a pattern to
force this error. */
if (code == '!')
{
fprintf (stderr, "dj: unreviewed pattern:");
if (current_output_insn)
debug_rtx (current_output_insn);
gcc_unreachable ();
}
/* PSImode operations are either .w or .l depending on the target. */
if (code == '&')
{
if (TARGET_A16)
fprintf (file, "w");
else
fprintf (file, "l");
return;
}
/* Inverted conditionals. */
if (code == 'C')
{
switch (GET_CODE (x))
{
case LE:
fputs ("gt", file);
break;
case LEU:
fputs ("gtu", file);
break;
case LT:
fputs ("ge", file);
break;
case LTU:
fputs ("geu", file);
break;
case GT:
fputs ("le", file);
break;
case GTU:
fputs ("leu", file);
break;
case GE:
fputs ("lt", file);
break;
case GEU:
fputs ("ltu", file);
break;
case NE:
fputs ("eq", file);
break;
case EQ:
fputs ("ne", file);
break;
default:
gcc_unreachable ();
}
return;
}
/* Regular conditionals. */
if (code == 'c')
{
switch (GET_CODE (x))
{
case LE:
fputs ("le", file);
break;
case LEU:
fputs ("leu", file);
break;
case LT:
fputs ("lt", file);
break;
case LTU:
fputs ("ltu", file);
break;
case GT:
fputs ("gt", file);
break;
case GTU:
fputs ("gtu", file);
break;
case GE:
fputs ("ge", file);
break;
case GEU:
fputs ("geu", file);
break;
case NE:
fputs ("ne", file);
break;
case EQ:
fputs ("eq", file);
break;
default:
gcc_unreachable ();
}
return;
}
/* Used in negsi2 to do HImode ops on the two parts of an SImode
operand. */
if (code == 'h' && GET_MODE (x) == SImode)
{
x = m32c_subreg (HImode, x, SImode, 0);
code = 0;
}
if (code == 'H' && GET_MODE (x) == SImode)
{
x = m32c_subreg (HImode, x, SImode, 2);
code = 0;
}
if (code == 'h' && GET_MODE (x) == HImode)
{
x = m32c_subreg (QImode, x, HImode, 0);
code = 0;
}
if (code == 'H' && GET_MODE (x) == HImode)
{
/* We can't actually represent this as an rtx. Do it here. */
if (GET_CODE (x) == REG)
{
switch (REGNO (x))
{
case R0_REGNO:
fputs ("r0h", file);
return;
case R1_REGNO:
fputs ("r1h", file);
return;
default:
gcc_unreachable();
}
}
/* This should be a MEM. */
x = m32c_subreg (QImode, x, HImode, 1);
code = 0;
}
/* This is for BMcond, which always wants word register names. */
if (code == 'h' && GET_MODE (x) == QImode)
{
if (GET_CODE (x) == REG)
x = gen_rtx_REG (HImode, REGNO (x));
code = 0;
}
/* 'x' and 'X' need to be ignored for non-immediates. */
if ((code == 'x' || code == 'X') && GET_CODE (x) != CONST_INT)
code = 0;
encode_pattern (x);
force_sign = 0;
for (i = 0; conversions[i].pattern; i++)
if (conversions[i].code == code
&& streq (conversions[i].pattern, pattern))
{
for (j = 0; conversions[i].format[j]; j++)
/* backslash quotes the next character in the output pattern. */
if (conversions[i].format[j] == '\\')
{
fputc (conversions[i].format[j + 1], file);
j++;
}
/* Digits in the output pattern indicate that the
corresponding RTX is to be output at that point. */
else if (ISDIGIT (conversions[i].format[j]))
{
rtx r = patternr[conversions[i].format[j] - '0'];
switch (GET_CODE (r))
{
case REG:
fprintf (file, "%s",
reg_name_with_mode (REGNO (r), GET_MODE (r)));
break;
case CONST_INT:
switch (code)
{
case 'b':
case 'B':
{
int v = INTVAL (r);
int i = (int) exact_log2 (v);
if (i == -1)
i = (int) exact_log2 ((v ^ 0xffff) & 0xffff);
if (i == -1)
i = (int) exact_log2 ((v ^ 0xff) & 0xff);
/* Bit position. */
fprintf (file, "%d", i);
}
break;
case 'x':
/* Unsigned byte. */
fprintf (file, HOST_WIDE_INT_PRINT_HEX,
INTVAL (r) & 0xff);
break;
case 'X':
/* Unsigned word. */
fprintf (file, HOST_WIDE_INT_PRINT_HEX,
INTVAL (r) & 0xffff);
break;
case 'p':
/* pushm and popm encode a register set into a single byte. */
comma = "";
for (b = 7; b >= 0; b--)
if (INTVAL (r) & (1 << b))
{
fprintf (file, "%s%s", comma, pushm_regs[b]);
comma = ",";
}
break;
case 'm':
/* "Minus". Output -X */
ival = (-INTVAL (r) & 0xffff);
if (ival & 0x8000)
ival = ival - 0x10000;
fprintf (file, HOST_WIDE_INT_PRINT_DEC, ival);
break;
default:
ival = INTVAL (r);
if (conversions[i].format[j + 1] == '[' && ival < 0)
{
/* We can simulate negative displacements by
taking advantage of address space
wrapping when the offset can span the
entire address range. */
rtx base =
patternr[conversions[i].format[j + 2] - '0'];
if (GET_CODE (base) == REG)
switch (REGNO (base))
{
case A0_REGNO:
case A1_REGNO:
if (TARGET_A24)
ival = 0x1000000 + ival;
else
ival = 0x10000 + ival;
break;
case SB_REGNO:
if (TARGET_A16)
ival = 0x10000 + ival;
break;
}
}
else if (code == 'd' && ival < 0 && j == 0)
/* The "mova" opcode is used to do addition by
computing displacements, but again, we need
displacements to be unsigned *if* they're
the only component of the displacement
(i.e. no "symbol-4" type displacement). */
ival = (TARGET_A24 ? 0x1000000 : 0x10000) + ival;
if (conversions[i].format[j] == '0')
{
/* More conversions to unsigned. */
if (unsigned_const == 2)
ival &= 0xffff;
if (unsigned_const == 1)
ival &= 0xff;
}
if (streq (conversions[i].pattern, "mi")
|| streq (conversions[i].pattern, "mmi"))
{
/* Integers used as addresses are unsigned. */
ival &= (TARGET_A24 ? 0xffffff : 0xffff);
}
if (force_sign && ival >= 0)
fputc ('+', file);
fprintf (file, HOST_WIDE_INT_PRINT_DEC, ival);
break;
}
break;
case CONST_DOUBLE:
/* We don't have const_double constants. If it
happens, make it obvious. */
fprintf (file, "[const_double 0x%lx]",
(unsigned long) CONST_DOUBLE_HIGH (r));
break;
case SYMBOL_REF:
assemble_name (file, XSTR (r, 0));
break;
case LABEL_REF:
output_asm_label (r);
break;
default:
fprintf (stderr, "don't know how to print this operand:");
debug_rtx (r);
gcc_unreachable ();
}
}
else
{
if (conversions[i].format[j] == 'z')
{
/* Some addressing modes *must* have a displacement,
so insert a zero here if needed. */
int k;
for (k = j + 1; conversions[i].format[k]; k++)
if (ISDIGIT (conversions[i].format[k]))
{
rtx reg = patternr[conversions[i].format[k] - '0'];
if (GET_CODE (reg) == REG
&& (REGNO (reg) == SB_REGNO
|| REGNO (reg) == FB_REGNO
|| REGNO (reg) == SP_REGNO))
fputc ('0', file);
}
continue;
}
/* Signed displacements off symbols need to have signs
blended cleanly. */
if (conversions[i].format[j] == '+'
&& (!code || code == 'D' || code == 'd')
&& ISDIGIT (conversions[i].format[j + 1])
&& (GET_CODE (patternr[conversions[i].format[j + 1] - '0'])
== CONST_INT))
{
force_sign = 1;
continue;
}
fputc (conversions[i].format[j], file);
}
break;
}
if (!conversions[i].pattern)
{
fprintf (stderr, "unconvertible operand %c `%s'", code ? code : '-',
pattern);
debug_rtx (x);
fprintf (file, "[%c.%s]", code ? code : '-', pattern);
}
return;
}
/* Implements PRINT_OPERAND_PUNCT_VALID_P. See m32c_print_operand
above for descriptions of what these do. */
int
m32c_print_operand_punct_valid_p (int c)
{
if (c == '&' || c == '!')
return 1;
return 0;
}
/* Implements PRINT_OPERAND_ADDRESS. Nothing unusual here. */
void
m32c_print_operand_address (FILE * stream, rtx address)
{
gcc_assert (GET_CODE (address) == MEM);
m32c_print_operand (stream, XEXP (address, 0), 0);
}
/* Implements ASM_OUTPUT_REG_PUSH. Control registers are pushed
differently than general registers. */
void
m32c_output_reg_push (FILE * s, int regno)
{
if (regno == FLG_REGNO)
fprintf (s, "\tpushc\tflg\n");
else
fprintf (s, "\tpush.%c\t%s\n",
" bwll"[reg_push_size (regno)], reg_names[regno]);
}
/* Likewise for ASM_OUTPUT_REG_POP. */
void
m32c_output_reg_pop (FILE * s, int regno)
{
if (regno == FLG_REGNO)
fprintf (s, "\tpopc\tflg\n");
else
fprintf (s, "\tpop.%c\t%s\n",
" bwll"[reg_push_size (regno)], reg_names[regno]);
}
/* Defining target-specific uses of `__attribute__' */
/* Used to simplify the logic below. Find the attributes wherever
they may be. */
#define M32C_ATTRIBUTES(decl) \
(TYPE_P (decl)) ? TYPE_ATTRIBUTES (decl) \
: DECL_ATTRIBUTES (decl) \
? (DECL_ATTRIBUTES (decl)) \
: TYPE_ATTRIBUTES (TREE_TYPE (decl))
/* Returns TRUE if the given tree has the "interrupt" attribute. */
static int
interrupt_p (tree node ATTRIBUTE_UNUSED)
{
tree list = M32C_ATTRIBUTES (node);
while (list)
{
if (is_attribute_p ("interrupt", TREE_PURPOSE (list)))
return 1;
list = TREE_CHAIN (list);
}
return 0;
}
static tree
interrupt_handler (tree * node ATTRIBUTE_UNUSED,
tree name ATTRIBUTE_UNUSED,
tree args ATTRIBUTE_UNUSED,
int flags ATTRIBUTE_UNUSED,
bool * no_add_attrs ATTRIBUTE_UNUSED)
{
return NULL_TREE;
}
/* Returns TRUE if given tree has the "function_vector" attribute. */
int
m32c_special_page_vector_p (tree func)
{
if (TREE_CODE (func) != FUNCTION_DECL)
return 0;
tree list = M32C_ATTRIBUTES (func);
while (list)
{
if (is_attribute_p ("function_vector", TREE_PURPOSE (list)))
return 1;
list = TREE_CHAIN (list);
}
return 0;
}
static tree
function_vector_handler (tree * node ATTRIBUTE_UNUSED,
tree name ATTRIBUTE_UNUSED,
tree args ATTRIBUTE_UNUSED,
int flags ATTRIBUTE_UNUSED,
bool * no_add_attrs ATTRIBUTE_UNUSED)
{
if (TARGET_R8C)
{
/* The attribute is not supported for R8C target. */
warning (OPT_Wattributes,
"`%s' attribute is not supported for R8C target",
IDENTIFIER_POINTER (name));
*no_add_attrs = true;
}
else if (TREE_CODE (*node) != FUNCTION_DECL)
{
/* The attribute must be applied to functions only. */
warning (OPT_Wattributes,
"`%s' attribute applies only to functions",
IDENTIFIER_POINTER (name));
*no_add_attrs = true;
}
else if (TREE_CODE (TREE_VALUE (args)) != INTEGER_CST)
{
/* The argument must be a constant integer. */
warning (OPT_Wattributes,
"`%s' attribute argument not an integer constant",
IDENTIFIER_POINTER (name));
*no_add_attrs = true;
}
else if (TREE_INT_CST_LOW (TREE_VALUE (args)) < 18
|| TREE_INT_CST_LOW (TREE_VALUE (args)) > 255)
{
/* The argument value must be between 18 to 255. */
warning (OPT_Wattributes,
"`%s' attribute argument should be between 18 to 255",
IDENTIFIER_POINTER (name));
*no_add_attrs = true;
}
return NULL_TREE;
}
/* If the function is assigned the attribute 'function_vector', it
returns the function vector number, otherwise returns zero. */
int
current_function_special_page_vector (rtx x)
{
int num;
if ((GET_CODE(x) == SYMBOL_REF)
&& (SYMBOL_REF_FLAGS (x) & SYMBOL_FLAG_FUNCVEC_FUNCTION))
{
tree t = SYMBOL_REF_DECL (x);
if (TREE_CODE (t) != FUNCTION_DECL)
return 0;
tree list = M32C_ATTRIBUTES (t);
while (list)
{
if (is_attribute_p ("function_vector", TREE_PURPOSE (list)))
{
num = TREE_INT_CST_LOW (TREE_VALUE (TREE_VALUE (list)));
return num;
}
list = TREE_CHAIN (list);
}
return 0;
}
else
return 0;
}
#undef TARGET_ATTRIBUTE_TABLE
#define TARGET_ATTRIBUTE_TABLE m32c_attribute_table
static const struct attribute_spec m32c_attribute_table[] = {
{"interrupt", 0, 0, false, false, false, interrupt_handler},
{"function_vector", 1, 1, true, false, false, function_vector_handler},
{0, 0, 0, 0, 0, 0, 0}
};
#undef TARGET_COMP_TYPE_ATTRIBUTES
#define TARGET_COMP_TYPE_ATTRIBUTES m32c_comp_type_attributes
static int
m32c_comp_type_attributes (tree type1 ATTRIBUTE_UNUSED,
tree type2 ATTRIBUTE_UNUSED)
{
/* 0=incompatible 1=compatible 2=warning */
return 1;
}
#undef TARGET_INSERT_ATTRIBUTES
#define TARGET_INSERT_ATTRIBUTES m32c_insert_attributes
static void
m32c_insert_attributes (tree node ATTRIBUTE_UNUSED,
tree * attr_ptr ATTRIBUTE_UNUSED)
{
/* Nothing to do here. */
}
/* Predicates */
/* This is a list of legal subregs of hard regs. */
static const struct {
unsigned char outer_mode_size;
unsigned char inner_mode_size;
unsigned char byte_mask;
unsigned char legal_when;
unsigned int regno;
} legal_subregs[] = {
{1, 2, 0x03, 1, R0_REGNO}, /* r0h r0l */
{1, 2, 0x03, 1, R1_REGNO}, /* r1h r1l */
{1, 2, 0x01, 1, A0_REGNO},
{1, 2, 0x01, 1, A1_REGNO},
{1, 4, 0x01, 1, A0_REGNO},
{1, 4, 0x01, 1, A1_REGNO},
{2, 4, 0x05, 1, R0_REGNO}, /* r2 r0 */
{2, 4, 0x05, 1, R1_REGNO}, /* r3 r1 */
{2, 4, 0x05, 16, A0_REGNO}, /* a1 a0 */
{2, 4, 0x01, 24, A0_REGNO}, /* a1 a0 */
{2, 4, 0x01, 24, A1_REGNO}, /* a1 a0 */
{4, 8, 0x55, 1, R0_REGNO}, /* r3 r1 r2 r0 */
};
/* Returns TRUE if OP is a subreg of a hard reg which we don't
support. */
bool
m32c_illegal_subreg_p (rtx op)
{
int offset;
unsigned int i;
int src_mode, dest_mode;
if (GET_CODE (op) != SUBREG)
return false;
dest_mode = GET_MODE (op);
offset = SUBREG_BYTE (op);
op = SUBREG_REG (op);
src_mode = GET_MODE (op);
if (GET_MODE_SIZE (dest_mode) == GET_MODE_SIZE (src_mode))
return false;
if (GET_CODE (op) != REG)
return false;
if (REGNO (op) >= MEM0_REGNO)
return false;
offset = (1 << offset);
for (i = 0; i < ARRAY_SIZE (legal_subregs); i ++)
if (legal_subregs[i].outer_mode_size == GET_MODE_SIZE (dest_mode)
&& legal_subregs[i].regno == REGNO (op)
&& legal_subregs[i].inner_mode_size == GET_MODE_SIZE (src_mode)
&& legal_subregs[i].byte_mask & offset)
{
switch (legal_subregs[i].legal_when)
{
case 1:
return false;
case 16:
if (TARGET_A16)
return false;
break;
case 24:
if (TARGET_A24)
return false;
break;
}
}
return true;
}
/* Returns TRUE if we support a move between the first two operands.
At the moment, we just want to discourage mem to mem moves until
after reload, because reload has a hard time with our limited
number of address registers, and we can get into a situation where
we need three of them when we only have two. */
bool
m32c_mov_ok (rtx * operands, enum machine_mode mode ATTRIBUTE_UNUSED)
{
rtx op0 = operands[0];
rtx op1 = operands[1];
if (TARGET_A24)
return true;
#define DEBUG_MOV_OK 0
#if DEBUG_MOV_OK
fprintf (stderr, "m32c_mov_ok %s\n", mode_name[mode]);
debug_rtx (op0);
debug_rtx (op1);
#endif
if (GET_CODE (op0) == SUBREG)
op0 = XEXP (op0, 0);
if (GET_CODE (op1) == SUBREG)
op1 = XEXP (op1, 0);
if (GET_CODE (op0) == MEM
&& GET_CODE (op1) == MEM
&& ! reload_completed)
{
#if DEBUG_MOV_OK
fprintf (stderr, " - no, mem to mem\n");
#endif
return false;
}
#if DEBUG_MOV_OK
fprintf (stderr, " - ok\n");
#endif
return true;
}
/* Returns TRUE if two consecutive HImode mov instructions, generated
for moving an immediate double data to a double data type variable
location, can be combined into single SImode mov instruction. */
bool
m32c_immd_dbl_mov (rtx * operands,
enum machine_mode mode ATTRIBUTE_UNUSED)
{
int flag = 0, okflag = 0, offset1 = 0, offset2 = 0, offsetsign = 0;
const char *str1;
const char *str2;
if (GET_CODE (XEXP (operands[0], 0)) == SYMBOL_REF
&& MEM_SCALAR_P (operands[0])
&& !MEM_IN_STRUCT_P (operands[0])
&& GET_CODE (XEXP (operands[2], 0)) == CONST
&& GET_CODE (XEXP (XEXP (operands[2], 0), 0)) == PLUS
&& GET_CODE (XEXP (XEXP (XEXP (operands[2], 0), 0), 0)) == SYMBOL_REF
&& GET_CODE (XEXP (XEXP (XEXP (operands[2], 0), 0), 1)) == CONST_INT
&& MEM_SCALAR_P (operands[2])
&& !MEM_IN_STRUCT_P (operands[2]))
flag = 1;
else if (GET_CODE (XEXP (operands[0], 0)) == CONST
&& GET_CODE (XEXP (XEXP (operands[0], 0), 0)) == PLUS
&& GET_CODE (XEXP (XEXP (XEXP (operands[0], 0), 0), 0)) == SYMBOL_REF
&& MEM_SCALAR_P (operands[0])
&& !MEM_IN_STRUCT_P (operands[0])
&& !(XINT (XEXP (XEXP (XEXP (operands[0], 0), 0), 1), 0) %4)
&& GET_CODE (XEXP (operands[2], 0)) == CONST
&& GET_CODE (XEXP (XEXP (operands[2], 0), 0)) == PLUS
&& GET_CODE (XEXP (XEXP (XEXP (operands[2], 0), 0), 0)) == SYMBOL_REF
&& MEM_SCALAR_P (operands[2])
&& !MEM_IN_STRUCT_P (operands[2]))
flag = 2;
else if (GET_CODE (XEXP (operands[0], 0)) == PLUS
&& GET_CODE (XEXP (XEXP (operands[0], 0), 0)) == REG
&& REGNO (XEXP (XEXP (operands[0], 0), 0)) == FB_REGNO
&& GET_CODE (XEXP (XEXP (operands[0], 0), 1)) == CONST_INT
&& MEM_SCALAR_P (operands[0])
&& !MEM_IN_STRUCT_P (operands[0])
&& !(XINT (XEXP (XEXP (operands[0], 0), 1), 0) %4)
&& REGNO (XEXP (XEXP (operands[2], 0), 0)) == FB_REGNO
&& GET_CODE (XEXP (XEXP (operands[2], 0), 1)) == CONST_INT
&& MEM_SCALAR_P (operands[2])
&& !MEM_IN_STRUCT_P (operands[2]))
flag = 3;
else
return false;
switch (flag)
{
case 1:
str1 = XSTR (XEXP (operands[0], 0), 0);
str2 = XSTR (XEXP (XEXP (XEXP (operands[2], 0), 0), 0), 0);
if (strcmp (str1, str2) == 0)
okflag = 1;
else
okflag = 0;
break;
case 2:
str1 = XSTR (XEXP (XEXP (XEXP (operands[0], 0), 0), 0), 0);
str2 = XSTR (XEXP (XEXP (XEXP (operands[2], 0), 0), 0), 0);
if (strcmp(str1,str2) == 0)
okflag = 1;
else
okflag = 0;
break;
case 3:
offset1 = XINT (XEXP (XEXP (operands[0], 0), 1), 0);
offset2 = XINT (XEXP (XEXP (operands[2], 0), 1), 0);
offsetsign = offset1 >> ((sizeof (offset1) * 8) -1);
if (((offset2-offset1) == 2) && offsetsign != 0)
okflag = 1;
else
okflag = 0;
break;
default:
okflag = 0;
}
if (okflag == 1)
{
HOST_WIDE_INT val;
operands[4] = gen_rtx_MEM (SImode, XEXP (operands[0], 0));
val = (XINT (operands[3], 0) << 16) + (XINT (operands[1], 0) & 0xFFFF);
operands[5] = gen_rtx_CONST_INT (VOIDmode, val);
return true;
}
return false;
}
/* Expanders */
/* Subregs are non-orthogonal for us, because our registers are all
different sizes. */
static rtx
m32c_subreg (enum machine_mode outer,
rtx x, enum machine_mode inner, int byte)
{
int r, nr = -1;
/* Converting MEMs to different types that are the same size, we
just rewrite them. */
if (GET_CODE (x) == SUBREG
&& SUBREG_BYTE (x) == 0
&& GET_CODE (SUBREG_REG (x)) == MEM
&& (GET_MODE_SIZE (GET_MODE (x))
== GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
{
rtx oldx = x;
x = gen_rtx_MEM (GET_MODE (x), XEXP (SUBREG_REG (x), 0));
MEM_COPY_ATTRIBUTES (x, SUBREG_REG (oldx));
}
/* Push/pop get done as smaller push/pops. */
if (GET_CODE (x) == MEM
&& (GET_CODE (XEXP (x, 0)) == PRE_DEC
|| GET_CODE (XEXP (x, 0)) == POST_INC))
return gen_rtx_MEM (outer, XEXP (x, 0));
if (GET_CODE (x) == SUBREG
&& GET_CODE (XEXP (x, 0)) == MEM
&& (GET_CODE (XEXP (XEXP (x, 0), 0)) == PRE_DEC
|| GET_CODE (XEXP (XEXP (x, 0), 0)) == POST_INC))
return gen_rtx_MEM (outer, XEXP (XEXP (x, 0), 0));
if (GET_CODE (x) != REG)
return simplify_gen_subreg (outer, x, inner, byte);
r = REGNO (x);
if (r >= FIRST_PSEUDO_REGISTER || r == AP_REGNO)
return simplify_gen_subreg (outer, x, inner, byte);
if (IS_MEM_REGNO (r))
return simplify_gen_subreg (outer, x, inner, byte);
/* This is where the complexities of our register layout are
described. */
if (byte == 0)
nr = r;
else if (outer == HImode)
{
if (r == R0_REGNO && byte == 2)
nr = R2_REGNO;
else if (r == R0_REGNO && byte == 4)
nr = R1_REGNO;
else if (r == R0_REGNO && byte == 6)
nr = R3_REGNO;
else if (r == R1_REGNO && byte == 2)
nr = R3_REGNO;
else if (r == A0_REGNO && byte == 2)
nr = A1_REGNO;
}
else if (outer == SImode)
{
if (r == R0_REGNO && byte == 0)
nr = R0_REGNO;
else if (r == R0_REGNO && byte == 4)
nr = R1_REGNO;
}
if (nr == -1)
{
fprintf (stderr, "m32c_subreg %s %s %d\n",
mode_name[outer], mode_name[inner], byte);
debug_rtx (x);
gcc_unreachable ();
}
return gen_rtx_REG (outer, nr);
}
/* Used to emit move instructions. We split some moves,
and avoid mem-mem moves. */
int
m32c_prepare_move (rtx * operands, enum machine_mode mode)
{
if (TARGET_A16 && mode == PSImode)
return m32c_split_move (operands, mode, 1);
if ((GET_CODE (operands[0]) == MEM)
&& (GET_CODE (XEXP (operands[0], 0)) == PRE_MODIFY))
{
rtx pmv = XEXP (operands[0], 0);
rtx dest_reg = XEXP (pmv, 0);
rtx dest_mod = XEXP (pmv, 1);
emit_insn (gen_rtx_SET (Pmode, dest_reg, dest_mod));
operands[0] = gen_rtx_MEM (mode, dest_reg);
}
if (!no_new_pseudos && MEM_P (operands[0]) && MEM_P (operands[1]))
operands[1] = copy_to_mode_reg (mode, operands[1]);
return 0;
}
#define DEBUG_SPLIT 0
/* Returns TRUE if the given PSImode move should be split. We split
for all r8c/m16c moves, since it doesn't support them, and for
POP.L as we can only *push* SImode. */
int
m32c_split_psi_p (rtx * operands)
{
#if DEBUG_SPLIT
fprintf (stderr, "\nm32c_split_psi_p\n");
debug_rtx (operands[0]);
debug_rtx (operands[1]);
#endif
if (TARGET_A16)
{
#if DEBUG_SPLIT
fprintf (stderr, "yes, A16\n");
#endif
return 1;
}
if (GET_CODE (operands[1]) == MEM
&& GET_CODE (XEXP (operands[1], 0)) == POST_INC)
{
#if DEBUG_SPLIT
fprintf (stderr, "yes, pop.l\n");
#endif
return 1;
}
#if DEBUG_SPLIT
fprintf (stderr, "no, default\n");
#endif
return 0;
}
/* Split the given move. SPLIT_ALL is 0 if splitting is optional
(define_expand), 1 if it is not optional (define_insn_and_split),
and 3 for define_split (alternate api). */
int
m32c_split_move (rtx * operands, enum machine_mode mode, int split_all)
{
rtx s[4], d[4];
int parts, si, di, rev = 0;
int rv = 0, opi = 2;
enum machine_mode submode = HImode;
rtx *ops, local_ops[10];
/* define_split modifies the existing operands, but the other two
emit new insns. OPS is where we store the operand pairs, which
we emit later. */
if (split_all == 3)
ops = operands;
else
ops = local_ops;
/* Else HImode. */
if (mode == DImode)
submode = SImode;
/* Before splitting mem-mem moves, force one operand into a
register. */
if (!no_new_pseudos && MEM_P (operands[0]) && MEM_P (operands[1]))
{
#if DEBUG0
fprintf (stderr, "force_reg...\n");
debug_rtx (operands[1]);
#endif
operands[1] = force_reg (mode, operands[1]);
#if DEBUG0
debug_rtx (operands[1]);
#endif
}
parts = 2;
#if DEBUG_SPLIT
fprintf (stderr, "\nsplit_move %d all=%d\n", no_new_pseudos, split_all);
debug_rtx (operands[0]);
debug_rtx (operands[1]);
#endif
/* Note that split_all is not used to select the api after this
point, so it's safe to set it to 3 even with define_insn. */
/* None of the chips can move SI operands to sp-relative addresses,
so we always split those. */
if (m32c_extra_constraint_p (operands[0], 'S', "Ss"))
split_all = 3;
/* We don't need to split these. */
if (TARGET_A24
&& split_all != 3
&& (mode == SImode || mode == PSImode)
&& !(GET_CODE (operands[1]) == MEM
&& GET_CODE (XEXP (operands[1], 0)) == POST_INC))
return 0;
/* First, enumerate the subregs we'll be dealing with. */
for (si = 0; si < parts; si++)
{
d[si] =
m32c_subreg (submode, operands[0], mode,
si * GET_MODE_SIZE (submode));
s[si] =
m32c_subreg (submode, operands[1], mode,
si * GET_MODE_SIZE (submode));
}
/* Split pushes by emitting a sequence of smaller pushes. */
if (GET_CODE (d[0]) == MEM && GET_CODE (XEXP (d[0], 0)) == PRE_DEC)
{
for (si = parts - 1; si >= 0; si--)
{
ops[opi++] = gen_rtx_MEM (submode,
gen_rtx_PRE_DEC (Pmode,
gen_rtx_REG (Pmode,
SP_REGNO)));
ops[opi++] = s[si];
}
rv = 1;
}
/* Likewise for pops. */
else if (GET_CODE (s[0]) == MEM && GET_CODE (XEXP (s[0], 0)) == POST_INC)
{
for (di = 0; di < parts; di++)
{
ops[opi++] = d[di];
ops[opi++] = gen_rtx_MEM (submode,
gen_rtx_POST_INC (Pmode,
gen_rtx_REG (Pmode,
SP_REGNO)));
}
rv = 1;
}
else if (split_all)
{
/* if d[di] == s[si] for any di < si, we'll early clobber. */
for (di = 0; di < parts - 1; di++)
for (si = di + 1; si < parts; si++)
if (reg_mentioned_p (d[di], s[si]))
rev = 1;
if (rev)
for (si = 0; si < parts; si++)
{
ops[opi++] = d[si];
ops[opi++] = s[si];
}
else
for (si = parts - 1; si >= 0; si--)
{
ops[opi++] = d[si];
ops[opi++] = s[si];
}
rv = 1;
}
/* Now emit any moves we may have accumulated. */
if (rv && split_all != 3)
{
int i;
for (i = 2; i < opi; i += 2)
emit_move_insn (ops[i], ops[i + 1]);
}
return rv;
}
/* The m32c has a number of opcodes that act like memcpy, strcmp, and
the like. For the R8C they expect one of the addresses to be in
R1L:An so we need to arrange for that. Otherwise, it's just a
matter of picking out the operands we want and emitting the right
pattern for them. All these expanders, which correspond to
patterns in blkmov.md, must return nonzero if they expand the insn,
or zero if they should FAIL. */
/* This is a memset() opcode. All operands are implied, so we need to
arrange for them to be in the right registers. The opcode wants
addresses, not [mem] syntax. $0 is the destination (MEM:BLK), $1
the count (HI), and $2 the value (QI). */
int
m32c_expand_setmemhi(rtx *operands)
{
rtx desta, count, val;
rtx desto, counto;
desta = XEXP (operands[0], 0);
count = operands[1];
val = operands[2];
desto = gen_reg_rtx (Pmode);
counto = gen_reg_rtx (HImode);
if (GET_CODE (desta) != REG
|| REGNO (desta) < FIRST_PSEUDO_REGISTER)
desta = copy_to_mode_reg (Pmode, desta);
/* This looks like an arbitrary restriction, but this is by far the
most common case. For counts 8..14 this actually results in
smaller code with no speed penalty because the half-sized
constant can be loaded with a shorter opcode. */
if (GET_CODE (count) == CONST_INT
&& GET_CODE (val) == CONST_INT
&& ! (INTVAL (count) & 1)
&& (INTVAL (count) > 1)
&& (INTVAL (val) <= 7 && INTVAL (val) >= -8))
{
unsigned v = INTVAL (val) & 0xff;
v = v | (v << 8);
count = copy_to_mode_reg (HImode, GEN_INT (INTVAL (count) / 2));
val = copy_to_mode_reg (HImode, GEN_INT (v));
if (TARGET_A16)
emit_insn (gen_setmemhi_whi_op (desto, counto, val, desta, count));
else
emit_insn (gen_setmemhi_wpsi_op (desto, counto, val, desta, count));
return 1;
}
/* This is the generalized memset() case. */
if (GET_CODE (val) != REG
|| REGNO (val) < FIRST_PSEUDO_REGISTER)
val = copy_to_mode_reg (QImode, val);
if (GET_CODE (count) != REG
|| REGNO (count) < FIRST_PSEUDO_REGISTER)
count = copy_to_mode_reg (HImode, count);
if (TARGET_A16)
emit_insn (gen_setmemhi_bhi_op (desto, counto, val, desta, count));
else
emit_insn (gen_setmemhi_bpsi_op (desto, counto, val, desta, count));
return 1;
}
/* This is a memcpy() opcode. All operands are implied, so we need to
arrange for them to be in the right registers. The opcode wants
addresses, not [mem] syntax. $0 is the destination (MEM:BLK), $1
is the source (MEM:BLK), and $2 the count (HI). */
int
m32c_expand_movmemhi(rtx *operands)
{
rtx desta, srca, count;
rtx desto, srco, counto;
desta = XEXP (operands[0], 0);
srca = XEXP (operands[1], 0);
count = operands[2];
desto = gen_reg_rtx (Pmode);
srco = gen_reg_rtx (Pmode);
counto = gen_reg_rtx (HImode);
if (GET_CODE (desta) != REG
|| REGNO (desta) < FIRST_PSEUDO_REGISTER)
desta = copy_to_mode_reg (Pmode, desta);
if (GET_CODE (srca) != REG
|| REGNO (srca) < FIRST_PSEUDO_REGISTER)
srca = copy_to_mode_reg (Pmode, srca);
/* Similar to setmem, but we don't need to check the value. */
if (GET_CODE (count) == CONST_INT
&& ! (INTVAL (count) & 1)
&& (INTVAL (count) > 1))
{
count = copy_to_mode_reg (HImode, GEN_INT (INTVAL (count) / 2));
if (TARGET_A16)
emit_insn (gen_movmemhi_whi_op (desto, srco, counto, desta, srca, count));
else
emit_insn (gen_movmemhi_wpsi_op (desto, srco, counto, desta, srca, count));
return 1;
}
/* This is the generalized memset() case. */
if (GET_CODE (count) != REG
|| REGNO (count) < FIRST_PSEUDO_REGISTER)
count = copy_to_mode_reg (HImode, count);
if (TARGET_A16)
emit_insn (gen_movmemhi_bhi_op (desto, srco, counto, desta, srca, count));
else
emit_insn (gen_movmemhi_bpsi_op (desto, srco, counto, desta, srca, count));
return 1;
}
/* This is a stpcpy() opcode. $0 is the destination (MEM:BLK) after
the copy, which should point to the NUL at the end of the string,
$1 is the destination (MEM:BLK), and $2 is the source (MEM:BLK).
Since our opcode leaves the destination pointing *after* the NUL,
we must emit an adjustment. */
int
m32c_expand_movstr(rtx *operands)
{
rtx desta, srca;
rtx desto, srco;
desta = XEXP (operands[1], 0);
srca = XEXP (operands[2], 0);
desto = gen_reg_rtx (Pmode);
srco = gen_reg_rtx (Pmode);
if (GET_CODE (desta) != REG
|| REGNO (desta) < FIRST_PSEUDO_REGISTER)
desta = copy_to_mode_reg (Pmode, desta);
if (GET_CODE (srca) != REG
|| REGNO (srca) < FIRST_PSEUDO_REGISTER)
srca = copy_to_mode_reg (Pmode, srca);
emit_insn (gen_movstr_op (desto, srco, desta, srca));
/* desto ends up being a1, which allows this type of add through MOVA. */
emit_insn (gen_addpsi3 (operands[0], desto, GEN_INT (-1)));
return 1;
}
/* This is a strcmp() opcode. $0 is the destination (HI) which holds
<=>0 depending on the comparison, $1 is one string (MEM:BLK), and
$2 is the other (MEM:BLK). We must do the comparison, and then
convert the flags to a signed integer result. */
int
m32c_expand_cmpstr(rtx *operands)
{
rtx src1a, src2a;
src1a = XEXP (operands[1], 0);
src2a = XEXP (operands[2], 0);
if (GET_CODE (src1a) != REG
|| REGNO (src1a) < FIRST_PSEUDO_REGISTER)
src1a = copy_to_mode_reg (Pmode, src1a);
if (GET_CODE (src2a) != REG
|| REGNO (src2a) < FIRST_PSEUDO_REGISTER)
src2a = copy_to_mode_reg (Pmode, src2a);
emit_insn (gen_cmpstrhi_op (src1a, src2a, src1a, src2a));
emit_insn (gen_cond_to_int (operands[0]));
return 1;
}
typedef rtx (*shift_gen_func)(rtx, rtx, rtx);
static shift_gen_func
shift_gen_func_for (int mode, int code)
{
#define GFF(m,c,f) if (mode == m && code == c) return f
GFF(QImode, ASHIFT, gen_ashlqi3_i);
GFF(QImode, ASHIFTRT, gen_ashrqi3_i);
GFF(QImode, LSHIFTRT, gen_lshrqi3_i);
GFF(HImode, ASHIFT, gen_ashlhi3_i);
GFF(HImode, ASHIFTRT, gen_ashrhi3_i);
GFF(HImode, LSHIFTRT, gen_lshrhi3_i);
GFF(PSImode, ASHIFT, gen_ashlpsi3_i);
GFF(PSImode, ASHIFTRT, gen_ashrpsi3_i);
GFF(PSImode, LSHIFTRT, gen_lshrpsi3_i);
GFF(SImode, ASHIFT, TARGET_A16 ? gen_ashlsi3_16 : gen_ashlsi3_24);
GFF(SImode, ASHIFTRT, TARGET_A16 ? gen_ashrsi3_16 : gen_ashrsi3_24);
GFF(SImode, LSHIFTRT, TARGET_A16 ? gen_lshrsi3_16 : gen_lshrsi3_24);
#undef GFF
gcc_unreachable ();
}
/* The m32c only has one shift, but it takes a signed count. GCC
doesn't want this, so we fake it by negating any shift count when
we're pretending to shift the other way. Also, the shift count is
limited to -8..8. It's slightly better to use two shifts for 9..15
than to load the count into r1h, so we do that too. */
int
m32c_prepare_shift (rtx * operands, int scale, int shift_code)
{
enum machine_mode mode = GET_MODE (operands[0]);
shift_gen_func func = shift_gen_func_for (mode, shift_code);
rtx temp;
if (GET_CODE (operands[2]) == CONST_INT)
{
int maxc = TARGET_A24 && (mode == PSImode || mode == SImode) ? 32 : 8;
int count = INTVAL (operands[2]) * scale;
while (count > maxc)
{
temp = gen_reg_rtx (mode);
emit_insn (func (temp, operands[1], GEN_INT (maxc)));
operands[1] = temp;
count -= maxc;
}
while (count < -maxc)
{
temp = gen_reg_rtx (mode);
emit_insn (func (temp, operands[1], GEN_INT (-maxc)));
operands[1] = temp;
count += maxc;
}
emit_insn (func (operands[0], operands[1], GEN_INT (count)));
return 1;
}
temp = gen_reg_rtx (QImode);
if (scale < 0)
/* The pattern has a NEG that corresponds to this. */
emit_move_insn (temp, gen_rtx_NEG (QImode, operands[2]));
else if (TARGET_A16 && mode == SImode)
/* We do this because the code below may modify this, we don't
want to modify the origin of this value. */
emit_move_insn (temp, operands[2]);
else
/* We'll only use it for the shift, no point emitting a move. */
temp = operands[2];
if (TARGET_A16 && GET_MODE_SIZE (mode) == 4)
{
/* The m16c has a limit of -16..16 for SI shifts, even when the
shift count is in a register. Since there are so many targets
of these shifts, it's better to expand the RTL here than to
call a helper function.
The resulting code looks something like this:
cmp.b r1h,-16
jge.b 1f
shl.l -16,dest
add.b r1h,16
1f: cmp.b r1h,16
jle.b 1f
shl.l 16,dest
sub.b r1h,16
1f: shl.l r1h,dest
We take advantage of the fact that "negative" shifts are
undefined to skip one of the comparisons. */
rtx count;
rtx label, lref, insn, tempvar;
emit_move_insn (operands[0], operands[1]);
count = temp;
label = gen_label_rtx ();
lref = gen_rtx_LABEL_REF (VOIDmode, label);
LABEL_NUSES (label) ++;
tempvar = gen_reg_rtx (mode);
if (shift_code == ASHIFT)
{
/* This is a left shift. We only need check positive counts. */
emit_jump_insn (gen_cbranchqi4 (gen_rtx_LE (VOIDmode, 0, 0),
count, GEN_INT (16), label));
emit_insn (func (tempvar, operands[0], GEN_INT (8)));
emit_insn (func (operands[0], tempvar, GEN_INT (8)));
insn = emit_insn (gen_addqi3 (count, count, GEN_INT (-16)));
emit_label_after (label, insn);
}
else
{
/* This is a right shift. We only need check negative counts. */
emit_jump_insn (gen_cbranchqi4 (gen_rtx_GE (VOIDmode, 0, 0),
count, GEN_INT (-16), label));
emit_insn (func (tempvar, operands[0], GEN_INT (-8)));
emit_insn (func (operands[0], tempvar, GEN_INT (-8)));
insn = emit_insn (gen_addqi3 (count, count, GEN_INT (16)));
emit_label_after (label, insn);
}
operands[1] = operands[0];
emit_insn (func (operands[0], operands[0], count));
return 1;
}
operands[2] = temp;
return 0;
}
/* The m32c has a limited range of operations that work on PSImode
values; we have to expand to SI, do the math, and truncate back to
PSI. Yes, this is expensive, but hopefully gcc will learn to avoid
those cases. */
void
m32c_expand_neg_mulpsi3 (rtx * operands)
{
/* operands: a = b * i */
rtx temp1; /* b as SI */
rtx scale /* i as SI */;
rtx temp2; /* a*b as SI */
temp1 = gen_reg_rtx (SImode);
temp2 = gen_reg_rtx (SImode);
if (GET_CODE (operands[2]) != CONST_INT)
{
scale = gen_reg_rtx (SImode);
emit_insn (gen_zero_extendpsisi2 (scale, operands[2]));
}
else
scale = copy_to_mode_reg (SImode, operands[2]);
emit_insn (gen_zero_extendpsisi2 (temp1, operands[1]));
temp2 = expand_simple_binop (SImode, MULT, temp1, scale, temp2, 1, OPTAB_LIB);
emit_insn (gen_truncsipsi2 (operands[0], temp2));
}
static rtx compare_op0, compare_op1;
void
m32c_pend_compare (rtx *operands)
{
compare_op0 = operands[0];
compare_op1 = operands[1];
}
void
m32c_unpend_compare (void)
{
switch (GET_MODE (compare_op0))
{
case QImode:
emit_insn (gen_cmpqi_op (compare_op0, compare_op1));
case HImode:
emit_insn (gen_cmphi_op (compare_op0, compare_op1));
case PSImode:
emit_insn (gen_cmppsi_op (compare_op0, compare_op1));
default:
/* Just to silence the "missing case" warnings. */ ;
}
}
void
m32c_expand_scc (int code, rtx *operands)
{
enum machine_mode mode = TARGET_A16 ? QImode : HImode;
emit_insn (gen_rtx_SET (mode,
operands[0],
gen_rtx_fmt_ee (code,
mode,
compare_op0,
compare_op1)));
}
/* Pattern Output Functions */
/* Returns a (OP (reg:CC FLG_REGNO) (const_int 0)) from some other
match_operand rtx's OP. */
rtx
m32c_cmp_flg_0 (rtx cmp)
{
return gen_rtx_fmt_ee (GET_CODE (cmp),
GET_MODE (cmp),
gen_rtx_REG (CCmode, FLG_REGNO),
GEN_INT (0));
}
int
m32c_expand_movcc (rtx *operands)
{
rtx rel = operands[1];
rtx cmp;
if (GET_CODE (rel) != EQ && GET_CODE (rel) != NE)
return 1;
if (GET_CODE (operands[2]) != CONST_INT
|| GET_CODE (operands[3]) != CONST_INT)
return 1;
emit_insn (gen_cmpqi(XEXP (rel, 0), XEXP (rel, 1)));
if (GET_CODE (rel) == NE)
{
rtx tmp = operands[2];
operands[2] = operands[3];
operands[3] = tmp;
}
cmp = gen_rtx_fmt_ee (GET_CODE (rel),
GET_MODE (rel),
compare_op0,
compare_op1);
emit_move_insn (operands[0],
gen_rtx_IF_THEN_ELSE (GET_MODE (operands[0]),
cmp,
operands[2],
operands[3]));
return 0;
}
/* Used for the "insv" pattern. Return nonzero to fail, else done. */
int
m32c_expand_insv (rtx *operands)
{
rtx op0, src0, p;
int mask;
if (INTVAL (operands[1]) != 1)
return 1;
/* Our insv opcode (bset, bclr) can only insert a one-bit constant. */
if (GET_CODE (operands[3]) != CONST_INT)
return 1;
if (INTVAL (operands[3]) != 0
&& INTVAL (operands[3]) != 1
&& INTVAL (operands[3]) != -1)
return 1;
mask = 1 << INTVAL (operands[2]);
op0 = operands[0];
if (GET_CODE (op0) == SUBREG
&& SUBREG_BYTE (op0) == 0)
{
rtx sub = SUBREG_REG (op0);
if (GET_MODE (sub) == HImode || GET_MODE (sub) == QImode)
op0 = sub;
}
if (no_new_pseudos
|| (GET_CODE (op0) == MEM && MEM_VOLATILE_P (op0)))
src0 = op0;
else
{
src0 = gen_reg_rtx (GET_MODE (op0));
emit_move_insn (src0, op0);
}
if (GET_MODE (op0) == HImode
&& INTVAL (operands[2]) >= 8
&& GET_MODE (op0) == MEM)
{
/* We are little endian. */
rtx new_mem = gen_rtx_MEM (QImode, plus_constant (XEXP (op0, 0), 1));
MEM_COPY_ATTRIBUTES (new_mem, op0);
mask >>= 8;
}
/* First, we generate a mask with the correct polarity. If we are
storing a zero, we want an AND mask, so invert it. */
if (INTVAL (operands[3]) == 0)
{
/* Storing a zero, use an AND mask */
if (GET_MODE (op0) == HImode)
mask ^= 0xffff;
else
mask ^= 0xff;
}
/* Now we need to properly sign-extend the mask in case we need to
fall back to an AND or OR opcode. */
if (GET_MODE (op0) == HImode)
{
if (mask & 0x8000)
mask -= 0x10000;
}
else
{
if (mask & 0x80)
mask -= 0x100;
}
switch ( (INTVAL (operands[3]) ? 4 : 0)
+ ((GET_MODE (op0) == HImode) ? 2 : 0)
+ (TARGET_A24 ? 1 : 0))
{
case 0: p = gen_andqi3_16 (op0, src0, GEN_INT (mask)); break;
case 1: p = gen_andqi3_24 (op0, src0, GEN_INT (mask)); break;
case 2: p = gen_andhi3_16 (op0, src0, GEN_INT (mask)); break;
case 3: p = gen_andhi3_24 (op0, src0, GEN_INT (mask)); break;
case 4: p = gen_iorqi3_16 (op0, src0, GEN_INT (mask)); break;
case 5: p = gen_iorqi3_24 (op0, src0, GEN_INT (mask)); break;
case 6: p = gen_iorhi3_16 (op0, src0, GEN_INT (mask)); break;
case 7: p = gen_iorhi3_24 (op0, src0, GEN_INT (mask)); break;
}
emit_insn (p);
return 0;
}
const char *
m32c_scc_pattern(rtx *operands, RTX_CODE code)
{
static char buf[30];
if (GET_CODE (operands[0]) == REG
&& REGNO (operands[0]) == R0_REGNO)
{
if (code == EQ)
return "stzx\t#1,#0,r0l";
if (code == NE)
return "stzx\t#0,#1,r0l";
}
sprintf(buf, "bm%s\t0,%%h0\n\tand.b\t#1,%%0", GET_RTX_NAME (code));
return buf;
}
/* Encode symbol attributes of a SYMBOL_REF into its
SYMBOL_REF_FLAGS. */
static void
m32c_encode_section_info (tree decl, rtx rtl, int first)
{
int extra_flags = 0;
default_encode_section_info (decl, rtl, first);
if (TREE_CODE (decl) == FUNCTION_DECL
&& m32c_special_page_vector_p (decl))
extra_flags = SYMBOL_FLAG_FUNCVEC_FUNCTION;
if (extra_flags)
SYMBOL_REF_FLAGS (XEXP (rtl, 0)) |= extra_flags;
}
/* Returns TRUE if the current function is a leaf, and thus we can
determine which registers an interrupt function really needs to
save. The logic below is mostly about finding the insn sequence
that's the function, versus any sequence that might be open for the
current insn. */
static int
m32c_leaf_function_p (void)
{
rtx saved_first, saved_last;
struct sequence_stack *seq;
int rv;
saved_first = cfun->emit->x_first_insn;
saved_last = cfun->emit->x_last_insn;
for (seq = cfun->emit->sequence_stack; seq && seq->next; seq = seq->next)
;
if (seq)
{
cfun->emit->x_first_insn = seq->first;
cfun->emit->x_last_insn = seq->last;
}
rv = leaf_function_p ();
cfun->emit->x_first_insn = saved_first;
cfun->emit->x_last_insn = saved_last;
return rv;
}
/* Returns TRUE if the current function needs to use the ENTER/EXIT
opcodes. If the function doesn't need the frame base or stack
pointer, it can use the simpler RTS opcode. */
static bool
m32c_function_needs_enter (void)
{
rtx insn;
struct sequence_stack *seq;
rtx sp = gen_rtx_REG (Pmode, SP_REGNO);
rtx fb = gen_rtx_REG (Pmode, FB_REGNO);
insn = get_insns ();
for (seq = cfun->emit->sequence_stack;
seq;
insn = seq->first, seq = seq->next);
while (insn)
{
if (reg_mentioned_p (sp, insn))
return true;
if (reg_mentioned_p (fb, insn))
return true;
insn = NEXT_INSN (insn);
}
return false;
}
/* Mark all the subexpressions of the PARALLEL rtx PAR as
frame-related. Return PAR.
dwarf2out.c:dwarf2out_frame_debug_expr ignores sub-expressions of a
PARALLEL rtx other than the first if they do not have the
FRAME_RELATED flag set on them. So this function is handy for
marking up 'enter' instructions. */
static rtx
m32c_all_frame_related (rtx par)
{
int len = XVECLEN (par, 0);
int i;
for (i = 0; i < len; i++)
F (XVECEXP (par, 0, i));
return par;
}
/* Emits the prologue. See the frame layout comment earlier in this
file. We can reserve up to 256 bytes with the ENTER opcode, beyond
that we manually update sp. */
void
m32c_emit_prologue (void)
{
int frame_size, extra_frame_size = 0, reg_save_size;
int complex_prologue = 0;
cfun->machine->is_leaf = m32c_leaf_function_p ();
if (interrupt_p (cfun->decl))
{
cfun->machine->is_interrupt = 1;
complex_prologue = 1;
}
reg_save_size = m32c_pushm_popm (PP_justcount);
if (interrupt_p (cfun->decl))
emit_insn (gen_pushm (GEN_INT (cfun->machine->intr_pushm)));
frame_size =
m32c_initial_elimination_offset (FB_REGNO, SP_REGNO) - reg_save_size;
if (frame_size == 0
&& !cfun->machine->is_interrupt
&& !m32c_function_needs_enter ())
cfun->machine->use_rts = 1;
if (frame_size > 254)
{
extra_frame_size = frame_size - 254;
frame_size = 254;
}
if (cfun->machine->use_rts == 0)
F (emit_insn (m32c_all_frame_related
(TARGET_A16
? gen_prologue_enter_16 (GEN_INT (frame_size))
: gen_prologue_enter_24 (GEN_INT (frame_size)))));
if (extra_frame_size)
{
complex_prologue = 1;
if (TARGET_A16)
F (emit_insn (gen_addhi3 (gen_rtx_REG (HImode, SP_REGNO),
gen_rtx_REG (HImode, SP_REGNO),
GEN_INT (-extra_frame_size))));
else
F (emit_insn (gen_addpsi3 (gen_rtx_REG (PSImode, SP_REGNO),
gen_rtx_REG (PSImode, SP_REGNO),
GEN_INT (-extra_frame_size))));
}
complex_prologue += m32c_pushm_popm (PP_pushm);
/* This just emits a comment into the .s file for debugging. */
if (complex_prologue)
emit_insn (gen_prologue_end ());
}
/* Likewise, for the epilogue. The only exception is that, for
interrupts, we must manually unwind the frame as the REIT opcode
doesn't do that. */
void
m32c_emit_epilogue (void)
{
/* This just emits a comment into the .s file for debugging. */
if (m32c_pushm_popm (PP_justcount) > 0 || cfun->machine->is_interrupt)
emit_insn (gen_epilogue_start ());
m32c_pushm_popm (PP_popm);
if (cfun->machine->is_interrupt)
{
enum machine_mode spmode = TARGET_A16 ? HImode : PSImode;
emit_move_insn (gen_rtx_REG (spmode, A0_REGNO),
gen_rtx_REG (spmode, FP_REGNO));
emit_move_insn (gen_rtx_REG (spmode, SP_REGNO),
gen_rtx_REG (spmode, A0_REGNO));
if (TARGET_A16)
emit_insn (gen_pophi_16 (gen_rtx_REG (HImode, FP_REGNO)));
else
emit_insn (gen_poppsi (gen_rtx_REG (PSImode, FP_REGNO)));
emit_insn (gen_popm (GEN_INT (cfun->machine->intr_pushm)));
emit_jump_insn (gen_epilogue_reit (GEN_INT (TARGET_A16 ? 4 : 6)));
}
else if (cfun->machine->use_rts)
emit_jump_insn (gen_epilogue_rts ());
else
emit_jump_insn (gen_epilogue_exitd (GEN_INT (TARGET_A16 ? 2 : 4)));
emit_barrier ();
}
void
m32c_emit_eh_epilogue (rtx ret_addr)
{
/* R0[R2] has the stack adjustment. R1[R3] has the address to
return to. We have to fudge the stack, pop everything, pop SP
(fudged), and return (fudged). This is actually easier to do in
assembler, so punt to libgcc. */
emit_jump_insn (gen_eh_epilogue (ret_addr, cfun->machine->eh_stack_adjust));
/* emit_insn (gen_rtx_CLOBBER (HImode, gen_rtx_REG (HImode, R0L_REGNO))); */
emit_barrier ();
}
/* Indicate which flags must be properly set for a given conditional. */
static int
flags_needed_for_conditional (rtx cond)
{
switch (GET_CODE (cond))
{
case LE:
case GT:
return FLAGS_OSZ;
case LEU:
case GTU:
return FLAGS_ZC;
case LT:
case GE:
return FLAGS_OS;
case LTU:
case GEU:
return FLAGS_C;
case EQ:
case NE:
return FLAGS_Z;
default:
return FLAGS_N;
}
}
#define DEBUG_CMP 0
/* Returns true if a compare insn is redundant because it would only
set flags that are already set correctly. */
static bool
m32c_compare_redundant (rtx cmp, rtx *operands)
{
int flags_needed;
int pflags;
rtx prev, pp, next;
rtx op0, op1, op2;
#if DEBUG_CMP
int prev_icode, i;
#endif
op0 = operands[0];
op1 = operands[1];
op2 = operands[2];
#if DEBUG_CMP
fprintf(stderr, "\n\033[32mm32c_compare_redundant\033[0m\n");
debug_rtx(cmp);
for (i=0; i<2; i++)
{
fprintf(stderr, "operands[%d] = ", i);
debug_rtx(operands[i]);
}
#endif
next = next_nonnote_insn (cmp);
if (!next || !INSN_P (next))
{
#if DEBUG_CMP
fprintf(stderr, "compare not followed by insn\n");
debug_rtx(next);
#endif
return false;
}
if (GET_CODE (PATTERN (next)) == SET
&& GET_CODE (XEXP ( PATTERN (next), 1)) == IF_THEN_ELSE)
{
next = XEXP (XEXP (PATTERN (next), 1), 0);
}
else if (GET_CODE (PATTERN (next)) == SET)
{
/* If this is a conditional, flags_needed will be something
other than FLAGS_N, which we test below. */
next = XEXP (PATTERN (next), 1);
}
else
{
#if DEBUG_CMP
fprintf(stderr, "compare not followed by conditional\n");
debug_rtx(next);
#endif
return false;
}
#if DEBUG_CMP
fprintf(stderr, "conditional is: ");
debug_rtx(next);
#endif
flags_needed = flags_needed_for_conditional (next);
if (flags_needed == FLAGS_N)
{
#if DEBUG_CMP
fprintf(stderr, "compare not followed by conditional\n");
debug_rtx(next);
#endif
return false;
}
/* Compare doesn't set overflow and carry the same way that
arithmetic instructions do, so we can't replace those. */
if (flags_needed & FLAGS_OC)
return false;
prev = cmp;
do {
prev = prev_nonnote_insn (prev);
if (!prev)
{
#if DEBUG_CMP
fprintf(stderr, "No previous insn.\n");
#endif
return false;
}
if (!INSN_P (prev))
{
#if DEBUG_CMP
fprintf(stderr, "Previous insn is a non-insn.\n");
#endif
return false;
}
pp = PATTERN (prev);
if (GET_CODE (pp) != SET)
{
#if DEBUG_CMP
fprintf(stderr, "Previous insn is not a SET.\n");
#endif
return false;
}
pflags = get_attr_flags (prev);
/* Looking up attributes of previous insns corrupted the recog
tables. */
INSN_UID (cmp) = -1;
recog (PATTERN (cmp), cmp, 0);
if (pflags == FLAGS_N
&& reg_mentioned_p (op0, pp))
{
#if DEBUG_CMP
fprintf(stderr, "intermediate non-flags insn uses op:\n");
debug_rtx(prev);
#endif
return false;
}
} while (pflags == FLAGS_N);
#if DEBUG_CMP
fprintf(stderr, "previous flag-setting insn:\n");
debug_rtx(prev);
debug_rtx(pp);
#endif
if (GET_CODE (pp) == SET
&& GET_CODE (XEXP (pp, 0)) == REG
&& REGNO (XEXP (pp, 0)) == FLG_REGNO
&& GET_CODE (XEXP (pp, 1)) == COMPARE)
{
/* Adjacent cbranches must have the same operands to be
redundant. */
rtx pop0 = XEXP (XEXP (pp, 1), 0);
rtx pop1 = XEXP (XEXP (pp, 1), 1);
#if DEBUG_CMP
fprintf(stderr, "adjacent cbranches\n");
debug_rtx(pop0);
debug_rtx(pop1);
#endif
if (rtx_equal_p (op0, pop0)
&& rtx_equal_p (op1, pop1))
return true;
#if DEBUG_CMP
fprintf(stderr, "prev cmp not same\n");
#endif
return false;
}
/* Else the previous insn must be a SET, with either the source or
dest equal to operands[0], and operands[1] must be zero. */
if (!rtx_equal_p (op1, const0_rtx))
{
#if DEBUG_CMP
fprintf(stderr, "operands[1] not const0_rtx\n");
#endif
return false;
}
if (GET_CODE (pp) != SET)
{
#if DEBUG_CMP
fprintf (stderr, "pp not set\n");
#endif
return false;
}
if (!rtx_equal_p (op0, SET_SRC (pp))
&& !rtx_equal_p (op0, SET_DEST (pp)))
{
#if DEBUG_CMP
fprintf(stderr, "operands[0] not found in set\n");
#endif
return false;
}
#if DEBUG_CMP
fprintf(stderr, "cmp flags %x prev flags %x\n", flags_needed, pflags);
#endif
if ((pflags & flags_needed) == flags_needed)
return true;
return false;
}
/* Return the pattern for a compare. This will be commented out if
the compare is redundant, else a normal pattern is returned. Thus,
the assembler output says where the compare would have been. */
char *
m32c_output_compare (rtx insn, rtx *operands)
{
static char template[] = ";cmp.b\t%1,%0";
/* ^ 5 */
template[5] = " bwll"[GET_MODE_SIZE(GET_MODE(operands[0]))];
if (m32c_compare_redundant (insn, operands))
{
#if DEBUG_CMP
fprintf(stderr, "cbranch: cmp not needed\n");
#endif
return template;
}
#if DEBUG_CMP
fprintf(stderr, "cbranch: cmp needed: `%s'\n", template);
#endif
return template + 1;
}
#undef TARGET_ENCODE_SECTION_INFO
#define TARGET_ENCODE_SECTION_INFO m32c_encode_section_info
/* The Global `targetm' Variable. */
struct gcc_target targetm = TARGET_INITIALIZER;
#include "gt-m32c.h"
|