summaryrefslogtreecommitdiff
path: root/gcc/config/lm32/lm32.c
blob: 4288ed285d92648ede5e466ac1927f3c3260093f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
/* Subroutines used for code generation on the Lattice Mico32 architecture.
   Contributed by Jon Beniston <jon@beniston.com>

   Copyright (C) 2009 Free Software Foundation, Inc.

   This file is part of GCC.

   GCC is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published
   by the Free Software Foundation; either version 3, or (at your
   option) any later version.

   GCC is distributed in the hope that it will be useful, but WITHOUT
   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
   or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
   License for more details.

   You should have received a copy of the GNU General Public License
   along with GCC; see the file COPYING3.  If not see
   <http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "rtl.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "basic-block.h"
#include "insn-config.h"
#include "conditions.h"
#include "insn-flags.h"
#include "insn-attr.h"
#include "insn-codes.h"
#include "recog.h"
#include "output.h"
#include "tree.h"
#include "expr.h"
#include "flags.h"
#include "reload.h"
#include "tm_p.h"
#include "function.h"
#include "toplev.h"
#include "optabs.h"
#include "libfuncs.h"
#include "ggc.h"
#include "target.h"
#include "target-def.h"
#include "langhooks.h"
#include "tm-constrs.h"
#include "df.h"

struct lm32_frame_info
{
  HOST_WIDE_INT total_size;	/* number of bytes of entire frame.  */
  HOST_WIDE_INT callee_size;	/* number of bytes to save callee saves.  */
  HOST_WIDE_INT pretend_size;	/* number of bytes we pretend caller did.  */
  HOST_WIDE_INT args_size;	/* number of bytes for outgoing arguments.  */
  HOST_WIDE_INT locals_size;	/* number of bytes for local variables.  */
  unsigned int reg_save_mask;	/* mask of saved registers.  */
};

/* Prototypes for static functions.  */
static rtx emit_add (rtx dest, rtx src0, rtx src1);
static void expand_save_restore (struct lm32_frame_info *info, int op);
static void stack_adjust (HOST_WIDE_INT amount);
static bool lm32_in_small_data_p (const_tree);
static void lm32_setup_incoming_varargs (CUMULATIVE_ARGS * cum,
					 enum machine_mode mode, tree type,
					 int *pretend_size, int no_rtl);
static bool lm32_rtx_costs (rtx x, int code, int outer_code, int *total,
			    bool speed);
static bool lm32_can_eliminate (const int, const int);
static bool
lm32_legitimate_address_p (enum machine_mode mode, rtx x, bool strict);
static HOST_WIDE_INT lm32_compute_frame_size (int size);

#undef TARGET_ADDRESS_COST
#define TARGET_ADDRESS_COST hook_int_rtx_bool_0
#undef TARGET_RTX_COSTS
#define TARGET_RTX_COSTS lm32_rtx_costs
#undef TARGET_IN_SMALL_DATA_P
#define TARGET_IN_SMALL_DATA_P lm32_in_small_data_p
#undef TARGET_PROMOTE_FUNCTION_MODE
#define TARGET_PROMOTE_FUNCTION_MODE default_promote_function_mode_always_promote
#undef TARGET_SETUP_INCOMING_VARARGS
#define TARGET_SETUP_INCOMING_VARARGS lm32_setup_incoming_varargs
#undef TARGET_PROMOTE_PROTOTYPES
#define TARGET_PROMOTE_PROTOTYPES hook_bool_const_tree_true
#undef TARGET_MIN_ANCHOR_OFFSET
#define TARGET_MIN_ANCHOR_OFFSET -0x8000
#undef TARGET_MAX_ANCHOR_OFFSET
#define TARGET_MAX_ANCHOR_OFFSET 0x7fff
#undef TARGET_CAN_ELIMINATE
#define TARGET_CAN_ELIMINATE lm32_can_eliminate
#undef TARGET_LEGITIMATE_ADDRESS_P
#define TARGET_LEGITIMATE_ADDRESS_P lm32_legitimate_address_p

struct gcc_target targetm = TARGET_INITIALIZER;

/* Current frame information calculated by lm32_compute_frame_size.  */
static struct lm32_frame_info current_frame_info;

/* Return non-zero if the given return type should be returned in memory.  */

int
lm32_return_in_memory (tree type)
{
  HOST_WIDE_INT size;

  if (!AGGREGATE_TYPE_P (type))
    {
      /* All simple types are returned in registers.  */
      return 0;
    }

  size = int_size_in_bytes (type);
  if (size >= 0 && size <= UNITS_PER_WORD)
    {
      /* If it can fit in one register.  */
      return 0;
    }

  return 1;
}

/* Generate an emit a word sized add instruction.  */

static rtx
emit_add (rtx dest, rtx src0, rtx src1)
{
  rtx insn;
  insn = emit_insn (gen_addsi3 (dest, src0, src1));
  return insn;
}

/* Generate the code to compare (and possibly branch) two integer values
   TEST_CODE is the comparison code we are trying to emulate 
     (or implement directly)
   RESULT is where to store the result of the comparison, 
     or null to emit a branch
   CMP0 CMP1 are the two comparison operands
   DESTINATION is the destination of the branch, or null to only compare
   */

static void
gen_int_relational (enum rtx_code code,	
		    rtx result,	
		    rtx cmp0,	
		    rtx cmp1,	
		    rtx destination)	
{
  enum machine_mode mode;
  int branch_p;

  mode = GET_MODE (cmp0);
  if (mode == VOIDmode)
    mode = GET_MODE (cmp1);

  /* Is this a branch or compare.  */
  branch_p = (destination != 0);

  /* Instruction set doesn't support LE or LT, so swap operands and use 
     GE, GT.  */
  switch (code)
    {
    case LE:
    case LT:
    case LEU:
    case LTU:
      code = swap_condition (code);
      rtx temp = cmp0;
      cmp0 = cmp1;
      cmp1 = temp;
      break;
    default:
      break;
    }

  if (branch_p)
    {
      rtx insn;

      /* Operands must be in registers.  */
      if (!register_operand (cmp0, mode))
	cmp0 = force_reg (mode, cmp0);
      if (!register_operand (cmp1, mode))
	cmp1 = force_reg (mode, cmp1);

      /* Generate conditional branch instruction.  */
      rtx cond = gen_rtx_fmt_ee (code, mode, cmp0, cmp1);
      rtx label = gen_rtx_LABEL_REF (VOIDmode, destination);
      insn = gen_rtx_SET (VOIDmode, pc_rtx,
			  gen_rtx_IF_THEN_ELSE (VOIDmode,
						cond, label, pc_rtx));
      emit_jump_insn (insn);
    }
  else
    {
      /* We can't have const_ints in cmp0, other than 0.  */
      if ((GET_CODE (cmp0) == CONST_INT) && (INTVAL (cmp0) != 0))
	cmp0 = force_reg (mode, cmp0);

      /* If the comparison is against an int not in legal range
         move it into a register.  */
      if (GET_CODE (cmp1) == CONST_INT)
	{
	  switch (code)
	    {
	    case EQ:
	    case NE:
	    case LE:
	    case LT:
	    case GE:
	    case GT:
	      if (!satisfies_constraint_K (cmp1))
		cmp1 = force_reg (mode, cmp1);
	      break;
	    case LEU:
	    case LTU:
	    case GEU:
	    case GTU:
	      if (!satisfies_constraint_L (cmp1))
		cmp1 = force_reg (mode, cmp1);
	      break;
	    default:
	      gcc_unreachable ();
	    }
	}

      /* Generate compare instruction.  */
      emit_move_insn (result, gen_rtx_fmt_ee (code, mode, cmp0, cmp1));
    }
}

/* Try performing the comparison in OPERANDS[1], whose arms are OPERANDS[2]
   and OPERAND[3].  Store the result in OPERANDS[0].  */

void
lm32_expand_scc (rtx operands[])
{
  rtx target = operands[0];
  enum rtx_code code = GET_CODE (operands[1]);
  rtx op0 = operands[2];
  rtx op1 = operands[3];

  gen_int_relational (code, target, op0, op1, NULL_RTX);  
}

/* Compare OPERANDS[1] with OPERANDS[2] using comparison code
   CODE and jump to OPERANDS[3] if the condition holds.  */

void
lm32_expand_conditional_branch (rtx operands[])
{
  enum rtx_code code = GET_CODE (operands[0]);
  rtx op0 = operands[1];
  rtx op1 = operands[2];
  rtx destination = operands[3];

  gen_int_relational (code, NULL_RTX, op0, op1, destination);  
}

/* Generate and emit RTL to save or restore callee save registers.  */
static void
expand_save_restore (struct lm32_frame_info *info, int op)
{
  unsigned int reg_save_mask = info->reg_save_mask;
  int regno;
  HOST_WIDE_INT offset;
  rtx insn;

  /* Callee saves are below locals and above outgoing arguments.  */
  offset = info->args_size + info->callee_size;
  for (regno = 0; regno <= 31; regno++)
    {
      if ((reg_save_mask & (1 << regno)) != 0)
	{
	  rtx offset_rtx;
	  rtx mem;
	  
	  offset_rtx = GEN_INT (offset);
	  if (satisfies_constraint_K (offset_rtx))
	    {	
              mem = gen_rtx_MEM (word_mode,
                                 gen_rtx_PLUS (Pmode,
                                               stack_pointer_rtx,
                                               offset_rtx));
            }
          else
            {
              /* r10 is caller saved so it can be used as a temp reg.  */
              rtx r10;        
               
              r10 = gen_rtx_REG (word_mode, 10);
              insn = emit_move_insn (r10, offset_rtx);
              if (op == 0)
                RTX_FRAME_RELATED_P (insn) = 1;
              insn = emit_add (r10, r10, stack_pointer_rtx);
              if (op == 0)
                RTX_FRAME_RELATED_P (insn) = 1;                
              mem = gen_rtx_MEM (word_mode, r10);
            }                                                 	    
	    	    
	  if (op == 0)
	    insn = emit_move_insn (mem, gen_rtx_REG (word_mode, regno));
	  else
	    insn = emit_move_insn (gen_rtx_REG (word_mode, regno), mem);
        
	  /* only prologue instructions which set the sp fp or save a
	     register should be marked as frame related.  */
	  if (op == 0)
	    RTX_FRAME_RELATED_P (insn) = 1;
	  offset -= UNITS_PER_WORD;
	}
    }
}

static void
stack_adjust (HOST_WIDE_INT amount)
{
  rtx insn;

  if (!IN_RANGE (amount, -32776, 32768))
    {
      /* r10 is caller saved so it can be used as a temp reg.  */
      rtx r10;
      r10 = gen_rtx_REG (word_mode, 10);
      insn = emit_move_insn (r10, GEN_INT (amount));
      if (amount < 0)
	RTX_FRAME_RELATED_P (insn) = 1;
      insn = emit_add (stack_pointer_rtx, stack_pointer_rtx, r10);
      if (amount < 0)
	RTX_FRAME_RELATED_P (insn) = 1;
    }
  else
    {
      insn = emit_add (stack_pointer_rtx,
		       stack_pointer_rtx, GEN_INT (amount));
      if (amount < 0)
	RTX_FRAME_RELATED_P (insn) = 1;
    }
}


/* Create and emit instructions for a functions prologue.  */
void
lm32_expand_prologue (void)
{
  rtx insn;

  lm32_compute_frame_size (get_frame_size ());

  if (current_frame_info.total_size > 0)
    {
      /* Add space on stack new frame.  */
      stack_adjust (-current_frame_info.total_size);

      /* Save callee save registers.  */
      if (current_frame_info.reg_save_mask != 0)
	expand_save_restore (&current_frame_info, 0);

      /* Setup frame pointer if it's needed.  */
      if (frame_pointer_needed == 1)
	{
	  /* Load offset - Don't use total_size, as that includes pretend_size, 
             which isn't part of this frame?  */
	  insn =
	    emit_move_insn (frame_pointer_rtx,
			    GEN_INT (current_frame_info.args_size +
				     current_frame_info.callee_size +
				     current_frame_info.locals_size));
	  RTX_FRAME_RELATED_P (insn) = 1;

	  /* Add in sp.  */
	  insn = emit_add (frame_pointer_rtx,
			   frame_pointer_rtx, stack_pointer_rtx);
	  RTX_FRAME_RELATED_P (insn) = 1;
	}

      /* Prevent prologue from being scheduled into function body.  */
      emit_insn (gen_blockage ());
    }
}

/* Create an emit instructions for a functions epilogue.  */
void
lm32_expand_epilogue (void)
{
  rtx ra_rtx = gen_rtx_REG (Pmode, RA_REGNUM);

  lm32_compute_frame_size (get_frame_size ());

  if (current_frame_info.total_size > 0)
    {
      /* Prevent stack code from being reordered.  */
      emit_insn (gen_blockage ());

      /* Restore callee save registers.  */
      if (current_frame_info.reg_save_mask != 0)
	expand_save_restore (&current_frame_info, 1);

      /* Deallocate stack.  */
      stack_adjust (current_frame_info.total_size);

      /* Return to calling function.  */
      emit_jump_insn (gen_return_internal (ra_rtx));
    }
  else
    {
      /* Return to calling function.  */
      emit_jump_insn (gen_return_internal (ra_rtx));
    }
}

/* Return the bytes needed to compute the frame pointer from the current
   stack pointer.  */
static HOST_WIDE_INT
lm32_compute_frame_size (int size)
{
  int regno;
  HOST_WIDE_INT total_size, locals_size, args_size, pretend_size, callee_size;
  unsigned int reg_save_mask;

  locals_size = size;
  args_size = crtl->outgoing_args_size;
  pretend_size = crtl->args.pretend_args_size;
  callee_size = 0;
  reg_save_mask = 0;

  /* Build mask that actually determines which regsiters we save
     and calculate size required to store them in the stack.  */
  for (regno = 1; regno < SP_REGNUM; regno++)
    {
      if (df_regs_ever_live_p (regno) && !call_used_regs[regno])
	{
	  reg_save_mask |= 1 << regno;
	  callee_size += UNITS_PER_WORD;
	}
    }
  if (df_regs_ever_live_p (RA_REGNUM) || !current_function_is_leaf
      || !optimize)
    {
      reg_save_mask |= 1 << RA_REGNUM;
      callee_size += UNITS_PER_WORD;
    }
  if (!(reg_save_mask & (1 << FP_REGNUM)) && frame_pointer_needed)
    {
      reg_save_mask |= 1 << FP_REGNUM;
      callee_size += UNITS_PER_WORD;
    }

  /* Compute total frame size.  */
  total_size = pretend_size + args_size + locals_size + callee_size;

  /* Align frame to appropriate boundary.  */
  total_size = (total_size + 3) & ~3;

  /* Save computed information.  */
  current_frame_info.total_size = total_size;
  current_frame_info.callee_size = callee_size;
  current_frame_info.pretend_size = pretend_size;
  current_frame_info.locals_size = locals_size;
  current_frame_info.args_size = args_size;
  current_frame_info.reg_save_mask = reg_save_mask;

  return total_size;
}

void
lm32_print_operand (FILE * file, rtx op, int letter)
{
  enum rtx_code code;

  code = GET_CODE (op);

  if (code == SIGN_EXTEND)
    op = XEXP (op, 0), code = GET_CODE (op);
  else if (code == REG || code == SUBREG)
    {
      int regnum;

      if (code == REG)
	regnum = REGNO (op);
      else
	regnum = true_regnum (op);

      fprintf (file, "%s", reg_names[regnum]);
    }
  else if (code == HIGH)
    output_addr_const (file, XEXP (op, 0));  
  else if (code == MEM)
    output_address (XEXP (op, 0));
  else if (letter == 'z' && GET_CODE (op) == CONST_INT && INTVAL (op) == 0)
    fprintf (file, "%s", reg_names[0]);
  else if (GET_CODE (op) == CONST_DOUBLE)
    {
      if ((CONST_DOUBLE_LOW (op) != 0) || (CONST_DOUBLE_HIGH (op) != 0))
	output_operand_lossage ("Only 0.0 can be loaded as an immediate");
      else
	fprintf (file, "0");
    }
  else if (code == EQ)
    fprintf (file, "e  ");
  else if (code == NE)
    fprintf (file, "ne ");
  else if (code == GT)
    fprintf (file, "g  ");
  else if (code == GTU)
    fprintf (file, "gu ");
  else if (code == LT)
    fprintf (file, "l  ");
  else if (code == LTU)
    fprintf (file, "lu ");
  else if (code == GE)
    fprintf (file, "ge ");
  else if (code == GEU)
    fprintf (file, "geu");
  else if (code == LE)
    fprintf (file, "le ");
  else if (code == LEU)
    fprintf (file, "leu");
  else
    output_addr_const (file, op);
}

/* A C compound statement to output to stdio stream STREAM the
   assembler syntax for an instruction operand that is a memory
   reference whose address is ADDR.  ADDR is an RTL expression.

   On some machines, the syntax for a symbolic address depends on
   the section that the address refers to.  On these machines,
   define the macro `ENCODE_SECTION_INFO' to store the information
   into the `symbol_ref', and then check for it here.  */

void
lm32_print_operand_address (FILE * file, rtx addr)
{
  switch (GET_CODE (addr))
    {
    case REG:
      fprintf (file, "(%s+0)", reg_names[REGNO (addr)]);
      break;

    case MEM:
      output_address (XEXP (addr, 0));
      break;

    case PLUS:
      {
	rtx arg0 = XEXP (addr, 0);
	rtx arg1 = XEXP (addr, 1);

	if (GET_CODE (arg0) == REG && CONSTANT_P (arg1))
	  {
	    if (GET_CODE (arg1) == CONST_INT)
	      fprintf (file, "(%s+%ld)", reg_names[REGNO (arg0)],
		       INTVAL (arg1));
	    else
	      {
		fprintf (file, "(%s+", reg_names[REGNO (arg0)]);
		output_addr_const (file, arg1);
		fprintf (file, ")");
	      }
	  }
	else if (CONSTANT_P (arg0) && CONSTANT_P (arg1))
	  output_addr_const (file, addr);
	else
	  fatal_insn ("bad operand", addr);
      }
      break;

    case SYMBOL_REF:
      if (SYMBOL_REF_SMALL_P (addr))
	{
	  fprintf (file, "gp(");
	  output_addr_const (file, addr);
	  fprintf (file, ")");
	}
      else
	fatal_insn ("can't use non gp relative absolute address", addr);
      break;

    default:
      fatal_insn ("invalid addressing mode", addr);
      break;
    }
}

/* Determine where to put an argument to a function.
   Value is zero to push the argument on the stack,
   or a hard register in which to store the argument.

   MODE is the argument's machine mode.
   TYPE is the data type of the argument (as a tree).
    This is null for libcalls where that information may
    not be available.
   CUM is a variable of type CUMULATIVE_ARGS which gives info about
    the preceding args and about the function being called.
   NAMED is nonzero if this argument is a named parameter
    (otherwise it is an extra parameter matching an ellipsis).  */

rtx
lm32_function_arg (CUMULATIVE_ARGS cum, enum machine_mode mode,
		   tree type, int named)
{
  if (mode == VOIDmode)
    /* Compute operand 2 of the call insn.  */
    return GEN_INT (0);

  if (targetm.calls.must_pass_in_stack (mode, type))
    return NULL_RTX;

  if (!named || (cum + LM32_NUM_REGS2 (mode, type) > LM32_NUM_ARG_REGS))
    return NULL_RTX;

  return gen_rtx_REG (mode, cum + LM32_FIRST_ARG_REG);
}

HOST_WIDE_INT
lm32_compute_initial_elimination_offset (int from, int to)
{
  HOST_WIDE_INT offset = 0;

  switch (from)
    {
    case ARG_POINTER_REGNUM:
      switch (to)
	{
	case FRAME_POINTER_REGNUM:
	  offset = 0;
	  break;
	case STACK_POINTER_REGNUM:
	  offset =
	    lm32_compute_frame_size (get_frame_size ()) -
	    current_frame_info.pretend_size;
	  break;
	default:
	  gcc_unreachable ();
	}
      break;
    default:
      gcc_unreachable ();
    }

  return offset;
}

static void
lm32_setup_incoming_varargs (CUMULATIVE_ARGS * cum, enum machine_mode mode,
			     tree type, int *pretend_size, int no_rtl)
{
  int first_anon_arg;
  tree fntype;
  int stdarg_p;

  fntype = TREE_TYPE (current_function_decl);
  stdarg_p = (TYPE_ARG_TYPES (fntype) != 0
	      && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
		  != void_type_node));

  if (stdarg_p)
    first_anon_arg = *cum + LM32_FIRST_ARG_REG;
  else
    {
      /* this is the common case, we have been passed details setup
         for the last named argument, we want to skip over the
         registers, if any used in passing this named paramter in
         order to determine which is the first registers used to pass
         anonymous arguments.  */
      int size;

      if (mode == BLKmode)
	size = int_size_in_bytes (type);
      else
	size = GET_MODE_SIZE (mode);

      first_anon_arg =
	*cum + LM32_FIRST_ARG_REG +
	((size + UNITS_PER_WORD - 1) / UNITS_PER_WORD);
    }

  if ((first_anon_arg < (LM32_FIRST_ARG_REG + LM32_NUM_ARG_REGS)) && !no_rtl)
    {
      int first_reg_offset = first_anon_arg;
      int size = LM32_FIRST_ARG_REG + LM32_NUM_ARG_REGS - first_anon_arg;
      rtx regblock;

      regblock = gen_rtx_MEM (BLKmode,
			      plus_constant (arg_pointer_rtx,
					     FIRST_PARM_OFFSET (0)));
      move_block_from_reg (first_reg_offset, regblock, size);

      *pretend_size = size * UNITS_PER_WORD;
    }
}

/* Override command line options.  */
void
lm32_override_options (void)
{
  /* We must have sign-extend enabled if barrel-shift isn't.  */
  if (!TARGET_BARREL_SHIFT_ENABLED && !TARGET_SIGN_EXTEND_ENABLED)
    target_flags |= MASK_SIGN_EXTEND_ENABLED;
}

/* Return nonzero if this function is known to have a null epilogue.
   This allows the optimizer to omit jumps to jumps if no stack
   was created.  */
int
lm32_can_use_return (void)
{
  if (!reload_completed)
    return 0;

  if (df_regs_ever_live_p (RA_REGNUM) || crtl->profile)
    return 0;

  if (lm32_compute_frame_size (get_frame_size ()) != 0)
    return 0;

  return 1;
}

/* Support function to determine the return address of the function
   'count' frames back up the stack.  */
rtx
lm32_return_addr_rtx (int count, rtx frame)
{
  rtx r;
  if (count == 0)
    {
      if (!df_regs_ever_live_p (RA_REGNUM))
	r = gen_rtx_REG (Pmode, RA_REGNUM);
      else
	{
	  r = gen_rtx_MEM (Pmode,
			   gen_rtx_PLUS (Pmode, frame,
					 GEN_INT (-2 * UNITS_PER_WORD)));
	  set_mem_alias_set (r, get_frame_alias_set ());
	}
    }
  else if (flag_omit_frame_pointer)
    r = NULL_RTX;
  else
    {
      r = gen_rtx_MEM (Pmode,
		       gen_rtx_PLUS (Pmode, frame,
				     GEN_INT (-2 * UNITS_PER_WORD)));
      set_mem_alias_set (r, get_frame_alias_set ());
    }
  return r;
}

/* Return true if EXP should be placed in the small data section.  */

static bool
lm32_in_small_data_p (const_tree exp)
{
  /* We want to merge strings, so we never consider them small data.  */
  if (TREE_CODE (exp) == STRING_CST)
    return false;

  /* Functions are never in the small data area.  Duh.  */
  if (TREE_CODE (exp) == FUNCTION_DECL)
    return false;

  if (TREE_CODE (exp) == VAR_DECL && DECL_SECTION_NAME (exp))
    {
      const char *section = TREE_STRING_POINTER (DECL_SECTION_NAME (exp));
      if (strcmp (section, ".sdata") == 0 || strcmp (section, ".sbss") == 0)
	return true;
    }
  else
    {
      HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (exp));

      /* If this is an incomplete type with size 0, then we can't put it
         in sdata because it might be too big when completed.  */
      if (size > 0 && (unsigned HOST_WIDE_INT) size <= g_switch_value)
	return true;
    }

  return false;
}

/* Emit straight-line code to move LENGTH bytes from SRC to DEST.
   Assume that the areas do not overlap.  */

static void
lm32_block_move_inline (rtx dest, rtx src, HOST_WIDE_INT length,
			HOST_WIDE_INT alignment)
{
  HOST_WIDE_INT offset, delta;
  unsigned HOST_WIDE_INT bits;
  int i;
  enum machine_mode mode;
  rtx *regs;

  /* Work out how many bits to move at a time.  */
  switch (alignment)
    {
    case 1:
      bits = 8;
      break;
    case 2:
      bits = 16;
      break;
    default:
      bits = 32;
      break;
    }

  mode = mode_for_size (bits, MODE_INT, 0);
  delta = bits / BITS_PER_UNIT;

  /* Allocate a buffer for the temporary registers.  */
  regs = alloca (sizeof (rtx) * length / delta);

  /* Load as many BITS-sized chunks as possible.  */
  for (offset = 0, i = 0; offset + delta <= length; offset += delta, i++)
    {
      regs[i] = gen_reg_rtx (mode);
      emit_move_insn (regs[i], adjust_address (src, mode, offset));
    }

  /* Copy the chunks to the destination.  */
  for (offset = 0, i = 0; offset + delta <= length; offset += delta, i++)
    emit_move_insn (adjust_address (dest, mode, offset), regs[i]);

  /* Mop up any left-over bytes.  */
  if (offset < length)
    {
      src = adjust_address (src, BLKmode, offset);
      dest = adjust_address (dest, BLKmode, offset);
      move_by_pieces (dest, src, length - offset,
		      MIN (MEM_ALIGN (src), MEM_ALIGN (dest)), 0);
    }
}

/* Expand string/block move operations.

   operands[0] is the pointer to the destination.
   operands[1] is the pointer to the source.
   operands[2] is the number of bytes to move.
   operands[3] is the alignment.  */

int
lm32_expand_block_move (rtx * operands)
{
  if ((GET_CODE (operands[2]) == CONST_INT) && (INTVAL (operands[2]) <= 32))
    {
      lm32_block_move_inline (operands[0], operands[1], INTVAL (operands[2]),
			      INTVAL (operands[3]));
      return 1;
    }
  return 0;
}

/* Return TRUE if X references a SYMBOL_REF or LABEL_REF whose symbol
   isn't protected by a PIC unspec.  */
int
nonpic_symbol_mentioned_p (rtx x)
{
  const char *fmt;
  int i;

  if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF
      || GET_CODE (x) == PC)
    return 1;

  /* We don't want to look into the possible MEM location of a
     CONST_DOUBLE, since we're not going to use it, in general.  */
  if (GET_CODE (x) == CONST_DOUBLE)
    return 0;

  if (GET_CODE (x) == UNSPEC)
    return 0;

  fmt = GET_RTX_FORMAT (GET_CODE (x));
  for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'E')
	{
	  int j;

	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
	    if (nonpic_symbol_mentioned_p (XVECEXP (x, i, j)))
	      return 1;
	}
      else if (fmt[i] == 'e' && nonpic_symbol_mentioned_p (XEXP (x, i)))
	return 1;
    }

  return 0;
}

/* Compute a (partial) cost for rtx X.  Return true if the complete
   cost has been computed, and false if subexpressions should be
   scanned.  In either case, *TOTAL contains the cost result.  */

static bool
lm32_rtx_costs (rtx x, int code, int outer_code, int *total, bool speed)
{
  enum machine_mode mode = GET_MODE (x);
  bool small_mode;

  const int arithmetic_latency = 1;
  const int shift_latency = 1;
  const int compare_latency = 2;
  const int multiply_latency = 3;
  const int load_latency = 3;
  const int libcall_size_cost = 5;

  /* Determine if we can handle the given mode size in a single instruction.  */
  small_mode = (mode == QImode) || (mode == HImode) || (mode == SImode);

  switch (code)
    {

    case PLUS:
    case MINUS:
    case AND:
    case IOR:
    case XOR:
    case NOT:
    case NEG:
      if (!speed)
	*total = COSTS_N_INSNS (LM32_NUM_REGS (mode));
      else
	*total =
	  COSTS_N_INSNS (arithmetic_latency + (LM32_NUM_REGS (mode) - 1));
      break;

    case COMPARE:
      if (small_mode)
	{
	  if (!speed)
	    *total = COSTS_N_INSNS (1);
	  else
	    *total = COSTS_N_INSNS (compare_latency);
	}
      else
	{
	  /* FIXME. Guessing here.  */
	  *total = COSTS_N_INSNS (LM32_NUM_REGS (mode) * (2 + 3) / 2);
	}
      break;

    case ASHIFT:
    case ASHIFTRT:
    case LSHIFTRT:
      if (TARGET_BARREL_SHIFT_ENABLED && small_mode)
	{
	  if (!speed)
	    *total = COSTS_N_INSNS (1);
	  else
	    *total = COSTS_N_INSNS (shift_latency);
	}
      else if (TARGET_BARREL_SHIFT_ENABLED)
	{
	  /* FIXME: Guessing here.  */
	  *total = COSTS_N_INSNS (LM32_NUM_REGS (mode) * 4);
	}
      else if (small_mode && GET_CODE (XEXP (x, 1)) == CONST_INT)
	{
	  *total = COSTS_N_INSNS (INTVAL (XEXP (x, 1)));
	}
      else
	{
	  /* Libcall.  */
	  if (!speed)
	    *total = COSTS_N_INSNS (libcall_size_cost);
	  else
	    *total = COSTS_N_INSNS (100);
	}
      break;

    case MULT:
      if (TARGET_MULTIPLY_ENABLED && small_mode)
	{
	  if (!speed)
	    *total = COSTS_N_INSNS (1);
	  else
	    *total = COSTS_N_INSNS (multiply_latency);
	}
      else
	{
	  /* Libcall.  */
	  if (!speed)
	    *total = COSTS_N_INSNS (libcall_size_cost);
	  else
	    *total = COSTS_N_INSNS (100);
	}
      break;

    case DIV:
    case MOD:
    case UDIV:
    case UMOD:
      if (TARGET_DIVIDE_ENABLED && small_mode)
	{
	  if (!speed)
	    *total = COSTS_N_INSNS (1);
	  else
	    {
	      if (GET_CODE (XEXP (x, 1)) == CONST_INT)
		{
		  int cycles = 0;
		  unsigned HOST_WIDE_INT i = INTVAL (XEXP (x, 1));

		  while (i)
		    {
		      i >>= 2;
		      cycles++;
		    }
		  if (IN_RANGE (i, 0, 65536))
		    *total = COSTS_N_INSNS (1 + 1 + cycles);
		  else
		    *total = COSTS_N_INSNS (2 + 1 + cycles);
		  return true;
		}
	      else if (GET_CODE (XEXP (x, 1)) == REG)
		{
		  *total = COSTS_N_INSNS (1 + GET_MODE_SIZE (mode) / 2);
		  return true;
		}
	      else
		{
		  *total = COSTS_N_INSNS (1 + GET_MODE_SIZE (mode) / 2);
		  return false;
		}
	    }
	}
      else
	{
	  /* Libcall.  */
	  if (!speed)
	    *total = COSTS_N_INSNS (libcall_size_cost);
	  else
	    *total = COSTS_N_INSNS (100);
	}
      break;

    case HIGH:
    case LO_SUM:
      if (!speed)
	*total = COSTS_N_INSNS (1);
      else
	*total = COSTS_N_INSNS (arithmetic_latency);
      break;

    case ZERO_EXTEND:
      if (MEM_P (XEXP (x, 0)))
	*total = COSTS_N_INSNS (0);
      else if (small_mode)
	{
	  if (!speed)
	    *total = COSTS_N_INSNS (1);
	  else
	    *total = COSTS_N_INSNS (arithmetic_latency);
	}
      else
	*total = COSTS_N_INSNS (LM32_NUM_REGS (mode) / 2);
      break;

    case CONST_INT:
      {
	switch (outer_code)
	  {
	  case HIGH:
	  case LO_SUM:
	    *total = COSTS_N_INSNS (0);
	    return true;

	  case AND:
	  case XOR:
	  case IOR:
	  case ASHIFT:
	  case ASHIFTRT:
	  case LSHIFTRT:
	  case ROTATE:
	  case ROTATERT:
	    if (satisfies_constraint_L (x))
	      *total = COSTS_N_INSNS (0);
	    else
	      *total = COSTS_N_INSNS (2);
	    return true;

	  case SET:
	  case PLUS:
	  case MINUS:
	  case COMPARE:
	    if (satisfies_constraint_K (x))
	      *total = COSTS_N_INSNS (0);
	    else
	      *total = COSTS_N_INSNS (2);
	    return true;

	  case MULT:
	    if (TARGET_MULTIPLY_ENABLED)
	      {
	        if (satisfies_constraint_K (x))
	         *total = COSTS_N_INSNS (0);
	        else
	          *total = COSTS_N_INSNS (2);
		return true;
	      }
	    /* Fall through.  */ 

	  default:
            if (satisfies_constraint_K (x))
	      *total = COSTS_N_INSNS (1);
	    else
	      *total = COSTS_N_INSNS (2);
	    return true;
	  }
      }

    case SYMBOL_REF:
    case CONST:
      switch (outer_code)
	{
	case HIGH:
	case LO_SUM:
	  *total = COSTS_N_INSNS (0);
	  return true;

	case MEM:
	case SET:
	  if (g_switch_value)
	    {
	      *total = COSTS_N_INSNS (0);
	      return true;
	    }
	  break;
	}
      /* Fall through.  */

    case LABEL_REF:
    case CONST_DOUBLE:
      *total = COSTS_N_INSNS (2);
      return true;

    case SET:
      *total = COSTS_N_INSNS (1);
      break;

    case MEM:
      if (!speed)
	*total = COSTS_N_INSNS (1);
      else
	*total = COSTS_N_INSNS (load_latency);
      break;

    }

  return false;
}

/* Implemenent TARGET_CAN_ELIMINATE.  */

bool
lm32_can_eliminate (const int from ATTRIBUTE_UNUSED, const int to)
{
  return (to == STACK_POINTER_REGNUM && frame_pointer_needed) ? false : true;
}

/* Implement TARGET_LEGITIMATE_ADDRESS_P.  */

static bool
lm32_legitimate_address_p (enum machine_mode mode ATTRIBUTE_UNUSED, rtx x, bool strict)
{  
   /* (rM) */                                                    
  if (strict && REG_P (x) && STRICT_REG_OK_FOR_BASE_P (x))
    return true;
  if (!strict && REG_P (x) && NONSTRICT_REG_OK_FOR_BASE_P (x))
    return true;
       
  /* (rM)+literal) */                               
  if (GET_CODE (x) == PLUS  
     && REG_P (XEXP (x, 0))                                     
     && ((strict && STRICT_REG_OK_FOR_BASE_P (XEXP (x, 0)))
         || (!strict && NONSTRICT_REG_OK_FOR_BASE_P (XEXP (x, 0))))                           
     && GET_CODE (XEXP (x, 1)) == CONST_INT                      
     && satisfies_constraint_K (XEXP ((x), 1)))
    return true;
              
  /* gp(sym)  */   
  if (GET_CODE (x) == SYMBOL_REF && SYMBOL_REF_SMALL_P (x)) 
    return true;
    
  return false;                                
}

/* Check a move is not memory to memory.  */ 

bool 
lm32_move_ok (enum machine_mode mode, rtx operands[2]) {
  if (memory_operand (operands[0], mode))
    return register_or_zero_operand (operands[1], mode);
  return true;
}

/* Implement LEGITIMATE_CONSTANT_P.  */

bool
lm32_legitimate_constant_p (rtx x)
{
  /* 32-bit addresses require multiple instructions.  */  
  if (!flag_pic && reloc_operand (x, GET_MODE (x)))
    return false; 
  
  return true;
}