summaryrefslogtreecommitdiff
path: root/gcc/config/iq2000/iq2000.c
blob: 9f45b1d36837bd8af2295e175e360939f025e947 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
/* Subroutines used for code generation on Vitesse IQ2000 processors
   Copyright (C) 2003-2014 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.

GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "stor-layout.h"
#include "calls.h"
#include "varasm.h"
#include "rtl.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "insn-config.h"
#include "conditions.h"
#include "output.h"
#include "insn-attr.h"
#include "flags.h"
#include "hashtab.h"
#include "hash-set.h"
#include "vec.h"
#include "machmode.h"
#include "input.h"
#include "function.h"
#include "expr.h"
#include "optabs.h"
#include "libfuncs.h"
#include "recog.h"
#include "diagnostic-core.h"
#include "reload.h"
#include "ggc.h"
#include "tm_p.h"
#include "debug.h"
#include "target.h"
#include "target-def.h"
#include "langhooks.h"
#include "dominance.h"
#include "cfg.h"
#include "cfgrtl.h"
#include "cfganal.h"
#include "lcm.h"
#include "cfgbuild.h"
#include "cfgcleanup.h"
#include "predict.h"
#include "basic-block.h"
#include "df.h"
#include "builtins.h"

/* Enumeration for all of the relational tests, so that we can build
   arrays indexed by the test type, and not worry about the order
   of EQ, NE, etc.  */

enum internal_test
  {
    ITEST_EQ,
    ITEST_NE,
    ITEST_GT,
    ITEST_GE,
    ITEST_LT,
    ITEST_LE,
    ITEST_GTU,
    ITEST_GEU,
    ITEST_LTU,
    ITEST_LEU,
    ITEST_MAX
  };

struct constant;


/* Structure to be filled in by compute_frame_size with register
   save masks, and offsets for the current function.  */

struct iq2000_frame_info
{
  long total_size;		/* # bytes that the entire frame takes up.  */
  long var_size;		/* # bytes that variables take up.  */
  long args_size;		/* # bytes that outgoing arguments take up.  */
  long extra_size;		/* # bytes of extra gunk.  */
  int  gp_reg_size;		/* # bytes needed to store gp regs.  */
  int  fp_reg_size;		/* # bytes needed to store fp regs.  */
  long mask;			/* Mask of saved gp registers.  */
  long gp_save_offset;		/* Offset from vfp to store gp registers.  */
  long fp_save_offset;		/* Offset from vfp to store fp registers.  */
  long gp_sp_offset;		/* Offset from new sp to store gp registers.  */
  long fp_sp_offset;		/* Offset from new sp to store fp registers.  */
  int  initialized;		/* != 0 if frame size already calculated.  */
  int  num_gp;			/* Number of gp registers saved.  */
} iq2000_frame_info;

struct GTY(()) machine_function
{
  /* Current frame information, calculated by compute_frame_size.  */
  long total_size;		/* # bytes that the entire frame takes up.  */
  long var_size;		/* # bytes that variables take up.  */
  long args_size;		/* # bytes that outgoing arguments take up.  */
  long extra_size;		/* # bytes of extra gunk.  */
  int  gp_reg_size;		/* # bytes needed to store gp regs.  */
  int  fp_reg_size;		/* # bytes needed to store fp regs.  */
  long mask;			/* Mask of saved gp registers.  */
  long gp_save_offset;		/* Offset from vfp to store gp registers.  */
  long fp_save_offset;		/* Offset from vfp to store fp registers.  */
  long gp_sp_offset;		/* Offset from new sp to store gp registers.  */
  long fp_sp_offset;		/* Offset from new sp to store fp registers.  */
  int  initialized;		/* != 0 if frame size already calculated.  */
  int  num_gp;			/* Number of gp registers saved.  */
};

/* Global variables for machine-dependent things.  */

/* List of all IQ2000 punctuation characters used by iq2000_print_operand.  */
static char iq2000_print_operand_punct[256];

/* Which instruction set architecture to use.  */
int iq2000_isa;

/* Local variables.  */

/* The next branch instruction is a branch likely, not branch normal.  */
static int iq2000_branch_likely;

/* Count of delay slots and how many are filled.  */
static int dslots_load_total;
static int dslots_load_filled;
static int dslots_jump_total;

/* # of nops needed by previous insn.  */
static int dslots_number_nops;

/* Number of 1/2/3 word references to data items (i.e., not jal's).  */
static int num_refs[3];

/* Registers to check for load delay.  */
static rtx iq2000_load_reg;
static rtx iq2000_load_reg2;
static rtx iq2000_load_reg3;
static rtx iq2000_load_reg4;

/* Mode used for saving/restoring general purpose registers.  */
static machine_mode gpr_mode;


/* Initialize the GCC target structure.  */
static struct machine_function* iq2000_init_machine_status (void);
static void iq2000_option_override    (void);
static section *iq2000_select_rtx_section (machine_mode, rtx,
					   unsigned HOST_WIDE_INT);
static void iq2000_init_builtins      (void);
static rtx  iq2000_expand_builtin     (tree, rtx, rtx, machine_mode, int);
static bool iq2000_return_in_memory   (const_tree, const_tree);
static void iq2000_setup_incoming_varargs (cumulative_args_t,
					   machine_mode, tree, int *,
					   int);
static bool iq2000_rtx_costs          (rtx, int, int, int, int *, bool);
static int  iq2000_address_cost       (rtx, machine_mode, addr_space_t,
				       bool);
static section *iq2000_select_section (tree, int, unsigned HOST_WIDE_INT);
static rtx  iq2000_legitimize_address (rtx, rtx, machine_mode);
static bool iq2000_pass_by_reference  (cumulative_args_t, machine_mode,
				       const_tree, bool);
static int  iq2000_arg_partial_bytes  (cumulative_args_t, machine_mode,
				       tree, bool);
static rtx iq2000_function_arg	      (cumulative_args_t,
				       machine_mode, const_tree, bool);
static void iq2000_function_arg_advance (cumulative_args_t,
					 machine_mode, const_tree, bool);
static unsigned int iq2000_function_arg_boundary (machine_mode,
						  const_tree);
static void iq2000_va_start	      (tree, rtx);
static bool iq2000_legitimate_address_p (machine_mode, rtx, bool);
static bool iq2000_can_eliminate      (const int, const int);
static void iq2000_asm_trampoline_template (FILE *);
static void iq2000_trampoline_init    (rtx, tree, rtx);
static rtx iq2000_function_value      (const_tree, const_tree, bool);
static rtx iq2000_libcall_value       (machine_mode, const_rtx);
static void iq2000_print_operand      (FILE *, rtx, int);
static void iq2000_print_operand_address (FILE *, rtx);
static bool iq2000_print_operand_punct_valid_p (unsigned char code);

#undef  TARGET_INIT_BUILTINS
#define TARGET_INIT_BUILTINS 		iq2000_init_builtins
#undef  TARGET_EXPAND_BUILTIN
#define TARGET_EXPAND_BUILTIN 		iq2000_expand_builtin
#undef  TARGET_ASM_SELECT_RTX_SECTION
#define TARGET_ASM_SELECT_RTX_SECTION	iq2000_select_rtx_section
#undef  TARGET_OPTION_OVERRIDE
#define TARGET_OPTION_OVERRIDE		iq2000_option_override
#undef  TARGET_RTX_COSTS
#define TARGET_RTX_COSTS		iq2000_rtx_costs
#undef  TARGET_ADDRESS_COST
#define TARGET_ADDRESS_COST		iq2000_address_cost
#undef  TARGET_ASM_SELECT_SECTION
#define TARGET_ASM_SELECT_SECTION	iq2000_select_section

#undef TARGET_LEGITIMIZE_ADDRESS
#define TARGET_LEGITIMIZE_ADDRESS	iq2000_legitimize_address

/* The assembler supports switchable .bss sections, but
   iq2000_select_section doesn't yet make use of them.  */
#undef  TARGET_HAVE_SWITCHABLE_BSS_SECTIONS
#define TARGET_HAVE_SWITCHABLE_BSS_SECTIONS false

#undef  TARGET_PRINT_OPERAND
#define TARGET_PRINT_OPERAND		iq2000_print_operand
#undef  TARGET_PRINT_OPERAND_ADDRESS
#define TARGET_PRINT_OPERAND_ADDRESS	iq2000_print_operand_address
#undef  TARGET_PRINT_OPERAND_PUNCT_VALID_P
#define TARGET_PRINT_OPERAND_PUNCT_VALID_P iq2000_print_operand_punct_valid_p

#undef  TARGET_PROMOTE_FUNCTION_MODE
#define TARGET_PROMOTE_FUNCTION_MODE	default_promote_function_mode_always_promote
#undef  TARGET_PROMOTE_PROTOTYPES
#define TARGET_PROMOTE_PROTOTYPES	hook_bool_const_tree_true

#undef TARGET_FUNCTION_VALUE
#define TARGET_FUNCTION_VALUE 		iq2000_function_value
#undef TARGET_LIBCALL_VALUE
#define TARGET_LIBCALL_VALUE		iq2000_libcall_value
#undef  TARGET_RETURN_IN_MEMORY
#define TARGET_RETURN_IN_MEMORY		iq2000_return_in_memory
#undef  TARGET_PASS_BY_REFERENCE
#define TARGET_PASS_BY_REFERENCE	iq2000_pass_by_reference
#undef  TARGET_CALLEE_COPIES
#define TARGET_CALLEE_COPIES		hook_callee_copies_named
#undef  TARGET_ARG_PARTIAL_BYTES
#define TARGET_ARG_PARTIAL_BYTES	iq2000_arg_partial_bytes
#undef  TARGET_FUNCTION_ARG
#define TARGET_FUNCTION_ARG		iq2000_function_arg
#undef  TARGET_FUNCTION_ARG_ADVANCE
#define TARGET_FUNCTION_ARG_ADVANCE	iq2000_function_arg_advance
#undef  TARGET_FUNCTION_ARG_BOUNDARY
#define TARGET_FUNCTION_ARG_BOUNDARY	iq2000_function_arg_boundary

#undef  TARGET_SETUP_INCOMING_VARARGS
#define TARGET_SETUP_INCOMING_VARARGS	iq2000_setup_incoming_varargs
#undef  TARGET_STRICT_ARGUMENT_NAMING
#define TARGET_STRICT_ARGUMENT_NAMING	hook_bool_CUMULATIVE_ARGS_true

#undef	TARGET_EXPAND_BUILTIN_VA_START
#define	TARGET_EXPAND_BUILTIN_VA_START	iq2000_va_start

#undef TARGET_LEGITIMATE_ADDRESS_P
#define TARGET_LEGITIMATE_ADDRESS_P	iq2000_legitimate_address_p

#undef TARGET_CAN_ELIMINATE
#define TARGET_CAN_ELIMINATE            iq2000_can_eliminate

#undef  TARGET_ASM_TRAMPOLINE_TEMPLATE
#define TARGET_ASM_TRAMPOLINE_TEMPLATE	iq2000_asm_trampoline_template
#undef  TARGET_TRAMPOLINE_INIT
#define TARGET_TRAMPOLINE_INIT		iq2000_trampoline_init

struct gcc_target targetm = TARGET_INITIALIZER;

/* Return nonzero if we split the address into high and low parts.  */

int
iq2000_check_split (rtx address, machine_mode mode)
{
  /* This is the same check used in simple_memory_operand.
     We use it here because LO_SUM is not offsettable.  */
  if (GET_MODE_SIZE (mode) > (unsigned) UNITS_PER_WORD)
    return 0;

  if ((GET_CODE (address) == SYMBOL_REF)
      || (GET_CODE (address) == CONST
	  && GET_CODE (XEXP (XEXP (address, 0), 0)) == SYMBOL_REF)
      || GET_CODE (address) == LABEL_REF)
    return 1;

  return 0;
}

/* Return nonzero if REG is valid for MODE.  */

int
iq2000_reg_mode_ok_for_base_p (rtx reg,
			       machine_mode mode ATTRIBUTE_UNUSED,
			       int strict)
{
  return (strict
	  ? REGNO_MODE_OK_FOR_BASE_P (REGNO (reg), mode)
	  : GP_REG_OR_PSEUDO_NONSTRICT_P (REGNO (reg), mode));
}

/* Return a nonzero value if XINSN is a legitimate address for a
   memory operand of the indicated MODE.  STRICT is nonzero if this
   function is called during reload.  */

bool
iq2000_legitimate_address_p (machine_mode mode, rtx xinsn, bool strict)
{
  if (TARGET_DEBUG_A_MODE)
    {
      GO_PRINTF2 ("\n========== legitimate_address_p, %sstrict\n",
		  strict ? "" : "not ");
      GO_DEBUG_RTX (xinsn);
    }

  /* Check for constant before stripping off SUBREG, so that we don't
     accept (subreg (const_int)) which will fail to reload.  */
  if (CONSTANT_ADDRESS_P (xinsn)
      && ! (iq2000_check_split (xinsn, mode))
      && ! (GET_CODE (xinsn) == CONST_INT && ! SMALL_INT (xinsn)))
    return 1;

  while (GET_CODE (xinsn) == SUBREG)
    xinsn = SUBREG_REG (xinsn);

  if (GET_CODE (xinsn) == REG
      && iq2000_reg_mode_ok_for_base_p (xinsn, mode, strict))
    return 1;

  if (GET_CODE (xinsn) == LO_SUM)
    {
      rtx xlow0 = XEXP (xinsn, 0);
      rtx xlow1 = XEXP (xinsn, 1);

      while (GET_CODE (xlow0) == SUBREG)
	xlow0 = SUBREG_REG (xlow0);
      if (GET_CODE (xlow0) == REG
	  && iq2000_reg_mode_ok_for_base_p (xlow0, mode, strict)
	  && iq2000_check_split (xlow1, mode))
	return 1;
    }

  if (GET_CODE (xinsn) == PLUS)
    {
      rtx xplus0 = XEXP (xinsn, 0);
      rtx xplus1 = XEXP (xinsn, 1);
      enum rtx_code code0;
      enum rtx_code code1;

      while (GET_CODE (xplus0) == SUBREG)
	xplus0 = SUBREG_REG (xplus0);
      code0 = GET_CODE (xplus0);

      while (GET_CODE (xplus1) == SUBREG)
	xplus1 = SUBREG_REG (xplus1);
      code1 = GET_CODE (xplus1);

      if (code0 == REG
	  && iq2000_reg_mode_ok_for_base_p (xplus0, mode, strict))
	{
	  if (code1 == CONST_INT && SMALL_INT (xplus1)
	      && SMALL_INT_UNSIGNED (xplus1) /* No negative offsets */)
	    return 1;
	}
    }

  if (TARGET_DEBUG_A_MODE)
    GO_PRINTF ("Not a machine_mode mode, legitimate address\n");

  /* The address was not legitimate.  */
  return 0;
}

/* Returns an operand string for the given instruction's delay slot,
   after updating filled delay slot statistics.

   We assume that operands[0] is the target register that is set.

   In order to check the next insn, most of this functionality is moved
   to FINAL_PRESCAN_INSN, and we just set the global variables that
   it needs.  */

const char *
iq2000_fill_delay_slot (const char *ret, enum delay_type type, rtx operands[],
			rtx_insn *cur_insn)
{
  rtx set_reg;
  machine_mode mode;
  rtx_insn *next_insn = cur_insn ? NEXT_INSN (cur_insn) : NULL;
  int num_nops;

  if (type == DELAY_LOAD || type == DELAY_FCMP)
    num_nops = 1;

  else
    num_nops = 0;

  /* Make sure that we don't put nop's after labels.  */
  next_insn = NEXT_INSN (cur_insn);
  while (next_insn != 0
	 && (NOTE_P (next_insn) || LABEL_P (next_insn)))
    next_insn = NEXT_INSN (next_insn);

  dslots_load_total += num_nops;
  if (TARGET_DEBUG_C_MODE
      || type == DELAY_NONE
      || operands == 0
      || cur_insn == 0
      || next_insn == 0
      || LABEL_P (next_insn)
      || (set_reg = operands[0]) == 0)
    {
      dslots_number_nops = 0;
      iq2000_load_reg  = 0;
      iq2000_load_reg2 = 0;
      iq2000_load_reg3 = 0;
      iq2000_load_reg4 = 0;

      return ret;
    }

  set_reg = operands[0];
  if (set_reg == 0)
    return ret;

  while (GET_CODE (set_reg) == SUBREG)
    set_reg = SUBREG_REG (set_reg);

  mode = GET_MODE (set_reg);
  dslots_number_nops = num_nops;
  iq2000_load_reg = set_reg;
  if (GET_MODE_SIZE (mode)
      > (unsigned) (UNITS_PER_WORD))
    iq2000_load_reg2 = gen_rtx_REG (SImode, REGNO (set_reg) + 1);
  else
    iq2000_load_reg2 = 0;

  return ret;
}

/* Determine whether a memory reference takes one (based off of the GP
   pointer), two (normal), or three (label + reg) instructions, and bump the
   appropriate counter for -mstats.  */

static void
iq2000_count_memory_refs (rtx op, int num)
{
  int additional = 0;
  int n_words = 0;
  rtx addr, plus0, plus1;
  enum rtx_code code0, code1;
  int looping;

  if (TARGET_DEBUG_B_MODE)
    {
      fprintf (stderr, "\n========== iq2000_count_memory_refs:\n");
      debug_rtx (op);
    }

  /* Skip MEM if passed, otherwise handle movsi of address.  */
  addr = (GET_CODE (op) != MEM) ? op : XEXP (op, 0);

  /* Loop, going through the address RTL.  */
  do
    {
      looping = FALSE;
      switch (GET_CODE (addr))
	{
	case REG:
	case CONST_INT:
	case LO_SUM:
	  break;

	case PLUS:
	  plus0 = XEXP (addr, 0);
	  plus1 = XEXP (addr, 1);
	  code0 = GET_CODE (plus0);
	  code1 = GET_CODE (plus1);

	  if (code0 == REG)
	    {
	      additional++;
	      addr = plus1;
	      looping = 1;
	      continue;
	    }

	  if (code0 == CONST_INT)
	    {
	      addr = plus1;
	      looping = 1;
	      continue;
	    }

	  if (code1 == REG)
	    {
	      additional++;
	      addr = plus0;
	      looping = 1;
	      continue;
	    }

	  if (code1 == CONST_INT)
	    {
	      addr = plus0;
	      looping = 1;
	      continue;
	    }

	  if (code0 == SYMBOL_REF || code0 == LABEL_REF || code0 == CONST)
	    {
	      addr = plus0;
	      looping = 1;
	      continue;
	    }

	  if (code1 == SYMBOL_REF || code1 == LABEL_REF || code1 == CONST)
	    {
	      addr = plus1;
	      looping = 1;
	      continue;
	    }

	  break;

	case LABEL_REF:
	  n_words = 2;		/* Always 2 words.  */
	  break;

	case CONST:
	  addr = XEXP (addr, 0);
	  looping = 1;
	  continue;

	case SYMBOL_REF:
	  n_words = SYMBOL_REF_FLAG (addr) ? 1 : 2;
	  break;

	default:
	  break;
	}
    }
  while (looping);

  if (n_words == 0)
    return;

  n_words += additional;
  if (n_words > 3)
    n_words = 3;

  num_refs[n_words-1] += num;
}

/* Abort after printing out a specific insn.  */

static void
abort_with_insn (rtx insn, const char * reason)
{
  error (reason);
  debug_rtx (insn);
  fancy_abort (__FILE__, __LINE__, __FUNCTION__);
}

/* Return the appropriate instructions to move one operand to another.  */

const char *
iq2000_move_1word (rtx operands[], rtx_insn *insn, int unsignedp)
{
  const char *ret = 0;
  rtx op0 = operands[0];
  rtx op1 = operands[1];
  enum rtx_code code0 = GET_CODE (op0);
  enum rtx_code code1 = GET_CODE (op1);
  machine_mode mode = GET_MODE (op0);
  int subreg_offset0 = 0;
  int subreg_offset1 = 0;
  enum delay_type delay = DELAY_NONE;

  while (code0 == SUBREG)
    {
      subreg_offset0 += subreg_regno_offset (REGNO (SUBREG_REG (op0)),
					     GET_MODE (SUBREG_REG (op0)),
					     SUBREG_BYTE (op0),
					     GET_MODE (op0));
      op0 = SUBREG_REG (op0);
      code0 = GET_CODE (op0);
    }

  while (code1 == SUBREG)
    {
      subreg_offset1 += subreg_regno_offset (REGNO (SUBREG_REG (op1)),
					     GET_MODE (SUBREG_REG (op1)),
					     SUBREG_BYTE (op1),
					     GET_MODE (op1));
      op1 = SUBREG_REG (op1);
      code1 = GET_CODE (op1);
    }

  /* For our purposes, a condition code mode is the same as SImode.  */
  if (mode == CCmode)
    mode = SImode;

  if (code0 == REG)
    {
      int regno0 = REGNO (op0) + subreg_offset0;

      if (code1 == REG)
	{
	  int regno1 = REGNO (op1) + subreg_offset1;

	  /* Do not do anything for assigning a register to itself */
	  if (regno0 == regno1)
	    ret = "";

	  else if (GP_REG_P (regno0))
	    {
	      if (GP_REG_P (regno1))
		ret = "or\t%0,%%0,%1";
	    }

	}

      else if (code1 == MEM)
	{
	  delay = DELAY_LOAD;

	  if (TARGET_STATS)
	    iq2000_count_memory_refs (op1, 1);

	  if (GP_REG_P (regno0))
	    {
	      /* For loads, use the mode of the memory item, instead of the
		 target, so zero/sign extend can use this code as well.  */
	      switch (GET_MODE (op1))
		{
		default:
		  break;
		case SFmode:
		  ret = "lw\t%0,%1";
		  break;
		case SImode:
		case CCmode:
		  ret = "lw\t%0,%1";
		  break;
		case HImode:
		  ret = (unsignedp) ? "lhu\t%0,%1" : "lh\t%0,%1";
		  break;
		case QImode:
		  ret = (unsignedp) ? "lbu\t%0,%1" : "lb\t%0,%1";
		  break;
		}
	    }
	}

      else if (code1 == CONST_INT
	       || (code1 == CONST_DOUBLE
		   && GET_MODE (op1) == VOIDmode))
	{
	  if (code1 == CONST_DOUBLE)
	    {
	      /* This can happen when storing constants into long long
                 bitfields.  Just store the least significant word of
                 the value.  */
	      operands[1] = op1 = GEN_INT (CONST_DOUBLE_LOW (op1));
	    }

	  if (INTVAL (op1) == 0)
	    {
	      if (GP_REG_P (regno0))
		ret = "or\t%0,%%0,%z1";
	    }
	 else if (GP_REG_P (regno0))
	    {
	      if (SMALL_INT_UNSIGNED (op1))
		ret = "ori\t%0,%%0,%x1\t\t\t# %1";
	      else if (SMALL_INT (op1))
		ret = "addiu\t%0,%%0,%1\t\t\t# %1";
	      else
		ret = "lui\t%0,%X1\t\t\t# %1\n\tori\t%0,%0,%x1";
	    }
	}

      else if (code1 == CONST_DOUBLE && mode == SFmode)
	{
	  if (op1 == CONST0_RTX (SFmode))
	    {
	      if (GP_REG_P (regno0))
		ret = "or\t%0,%%0,%.";
	    }

	  else
	    {
	      delay = DELAY_LOAD;
	      ret = "li.s\t%0,%1";
	    }
	}

      else if (code1 == LABEL_REF)
	{
	  if (TARGET_STATS)
	    iq2000_count_memory_refs (op1, 1);

	  ret = "la\t%0,%a1";
	}

      else if (code1 == SYMBOL_REF || code1 == CONST)
	{
	  if (TARGET_STATS)
	    iq2000_count_memory_refs (op1, 1);

	  ret = "la\t%0,%a1";
	}

      else if (code1 == PLUS)
	{
	  rtx add_op0 = XEXP (op1, 0);
	  rtx add_op1 = XEXP (op1, 1);

	  if (GET_CODE (XEXP (op1, 1)) == REG
	      && GET_CODE (XEXP (op1, 0)) == CONST_INT)
	    add_op0 = XEXP (op1, 1), add_op1 = XEXP (op1, 0);

	  operands[2] = add_op0;
	  operands[3] = add_op1;
	  ret = "add%:\t%0,%2,%3";
	}

      else if (code1 == HIGH)
	{
	  operands[1] = XEXP (op1, 0);
	  ret = "lui\t%0,%%hi(%1)";
	}
    }

  else if (code0 == MEM)
    {
      if (TARGET_STATS)
	iq2000_count_memory_refs (op0, 1);

      if (code1 == REG)
	{
	  int regno1 = REGNO (op1) + subreg_offset1;

	  if (GP_REG_P (regno1))
	    {
	      switch (mode)
		{
		case SFmode: ret = "sw\t%1,%0"; break;
		case SImode: ret = "sw\t%1,%0"; break;
		case HImode: ret = "sh\t%1,%0"; break;
		case QImode: ret = "sb\t%1,%0"; break;
		default: break;
		}
	    }
	}

      else if (code1 == CONST_INT && INTVAL (op1) == 0)
	{
	  switch (mode)
	    {
	    case SFmode: ret = "sw\t%z1,%0"; break;
	    case SImode: ret = "sw\t%z1,%0"; break;
	    case HImode: ret = "sh\t%z1,%0"; break;
	    case QImode: ret = "sb\t%z1,%0"; break;
	    default: break;
	    }
	}

      else if (code1 == CONST_DOUBLE && op1 == CONST0_RTX (mode))
	{
	  switch (mode)
	    {
	    case SFmode: ret = "sw\t%.,%0"; break;
	    case SImode: ret = "sw\t%.,%0"; break;
	    case HImode: ret = "sh\t%.,%0"; break;
	    case QImode: ret = "sb\t%.,%0"; break;
	    default: break;
	    }
	}
    }

  if (ret == 0)
    {
      abort_with_insn (insn, "Bad move");
      return 0;
    }

  if (delay != DELAY_NONE)
    return iq2000_fill_delay_slot (ret, delay, operands, insn);

  return ret;
}

/* Provide the costs of an addressing mode that contains ADDR.  */

static int
iq2000_address_cost (rtx addr, machine_mode mode, addr_space_t as,
		     bool speed)
{
  switch (GET_CODE (addr))
    {
    case LO_SUM:
      return 1;

    case LABEL_REF:
      return 2;

    case CONST:
      {
	rtx offset = const0_rtx;

	addr = eliminate_constant_term (XEXP (addr, 0), & offset);
	if (GET_CODE (addr) == LABEL_REF)
	  return 2;

	if (GET_CODE (addr) != SYMBOL_REF)
	  return 4;

	if (! SMALL_INT (offset))
	  return 2;
      }

      /* Fall through.  */

    case SYMBOL_REF:
      return SYMBOL_REF_FLAG (addr) ? 1 : 2;

    case PLUS:
      {
	rtx plus0 = XEXP (addr, 0);
	rtx plus1 = XEXP (addr, 1);

	if (GET_CODE (plus0) != REG && GET_CODE (plus1) == REG)
	  plus0 = XEXP (addr, 1), plus1 = XEXP (addr, 0);

	if (GET_CODE (plus0) != REG)
	  break;

	switch (GET_CODE (plus1))
	  {
	  case CONST_INT:
	    return SMALL_INT (plus1) ? 1 : 2;

	  case CONST:
	  case SYMBOL_REF:
	  case LABEL_REF:
	  case HIGH:
	  case LO_SUM:
	    return iq2000_address_cost (plus1, mode, as, speed) + 1;

	  default:
	    break;
	  }
      }

    default:
      break;
    }

  return 4;
}

/* Make normal rtx_code into something we can index from an array.  */

static enum internal_test
map_test_to_internal_test (enum rtx_code test_code)
{
  enum internal_test test = ITEST_MAX;

  switch (test_code)
    {
    case EQ:  test = ITEST_EQ;  break;
    case NE:  test = ITEST_NE;  break;
    case GT:  test = ITEST_GT;  break;
    case GE:  test = ITEST_GE;  break;
    case LT:  test = ITEST_LT;  break;
    case LE:  test = ITEST_LE;  break;
    case GTU: test = ITEST_GTU; break;
    case GEU: test = ITEST_GEU; break;
    case LTU: test = ITEST_LTU; break;
    case LEU: test = ITEST_LEU; break;
    default:			break;
    }

  return test;
}

/* Generate the code to do a TEST_CODE comparison on two integer values CMP0
   and CMP1.  P_INVERT is NULL or ptr if branch needs to reverse its test.
   The return value RESULT is:
   (reg:SI xx)		The pseudo register the comparison is in
   0		       	No register, generate a simple branch.  */

rtx
gen_int_relational (enum rtx_code test_code, rtx result, rtx cmp0, rtx cmp1,
		    int *p_invert)
{
  struct cmp_info
  {
    enum rtx_code test_code;	/* Code to use in instruction (LT vs. LTU).  */
    int const_low;		/* Low bound of constant we can accept.  */
    int const_high;		/* High bound of constant we can accept.  */
    int const_add;		/* Constant to add (convert LE -> LT).  */
    int reverse_regs;		/* Reverse registers in test.  */
    int invert_const;		/* != 0 if invert value if cmp1 is constant.  */
    int invert_reg;		/* != 0 if invert value if cmp1 is register.  */
    int unsignedp;		/* != 0 for unsigned comparisons.  */
  };

  static struct cmp_info info[ (int)ITEST_MAX ] =
  {
    { XOR,	 0,  65535,  0,	 0,  0,	 0, 0 },	/* EQ  */
    { XOR,	 0,  65535,  0,	 0,  1,	 1, 0 },	/* NE  */
    { LT,   -32769,  32766,  1,	 1,  1,	 0, 0 },	/* GT  */
    { LT,   -32768,  32767,  0,	 0,  1,	 1, 0 },	/* GE  */
    { LT,   -32768,  32767,  0,	 0,  0,	 0, 0 },	/* LT  */
    { LT,   -32769,  32766,  1,	 1,  0,	 1, 0 },	/* LE  */
    { LTU,  -32769,  32766,  1,	 1,  1,	 0, 1 },	/* GTU */
    { LTU,  -32768,  32767,  0,	 0,  1,	 1, 1 },	/* GEU */
    { LTU,  -32768,  32767,  0,	 0,  0,	 0, 1 },	/* LTU */
    { LTU,  -32769,  32766,  1,	 1,  0,	 1, 1 },	/* LEU */
  };

  enum internal_test test;
  machine_mode mode;
  struct cmp_info *p_info;
  int branch_p;
  int eqne_p;
  int invert;
  rtx reg;
  rtx reg2;

  test = map_test_to_internal_test (test_code);
  gcc_assert (test != ITEST_MAX);

  p_info = &info[(int) test];
  eqne_p = (p_info->test_code == XOR);

  mode = GET_MODE (cmp0);
  if (mode == VOIDmode)
    mode = GET_MODE (cmp1);

  /* Eliminate simple branches.  */
  branch_p = (result == 0);
  if (branch_p)
    {
      if (GET_CODE (cmp0) == REG || GET_CODE (cmp0) == SUBREG)
	{
	  /* Comparisons against zero are simple branches.  */
	  if (GET_CODE (cmp1) == CONST_INT && INTVAL (cmp1) == 0)
	    return 0;

	  /* Test for beq/bne.  */
	  if (eqne_p)
	    return 0;
	}

      /* Allocate a pseudo to calculate the value in.  */
      result = gen_reg_rtx (mode);
    }

  /* Make sure we can handle any constants given to us.  */
  if (GET_CODE (cmp0) == CONST_INT)
    cmp0 = force_reg (mode, cmp0);

  if (GET_CODE (cmp1) == CONST_INT)
    {
      HOST_WIDE_INT value = INTVAL (cmp1);

      if (value < p_info->const_low
	  || value > p_info->const_high)
	cmp1 = force_reg (mode, cmp1);
    }

  /* See if we need to invert the result.  */
  invert = (GET_CODE (cmp1) == CONST_INT
	    ? p_info->invert_const : p_info->invert_reg);

  if (p_invert != (int *)0)
    {
      *p_invert = invert;
      invert = 0;
    }

  /* Comparison to constants, may involve adding 1 to change a LT into LE.
     Comparison between two registers, may involve switching operands.  */
  if (GET_CODE (cmp1) == CONST_INT)
    {
      if (p_info->const_add != 0)
	{
	  HOST_WIDE_INT new_const = INTVAL (cmp1) + p_info->const_add;

	  /* If modification of cmp1 caused overflow,
	     we would get the wrong answer if we follow the usual path;
	     thus, x > 0xffffffffU would turn into x > 0U.  */
	  if ((p_info->unsignedp
	       ? (unsigned HOST_WIDE_INT) new_const >
	       (unsigned HOST_WIDE_INT) INTVAL (cmp1)
	       : new_const > INTVAL (cmp1))
	      != (p_info->const_add > 0))
	    {
	      /* This test is always true, but if INVERT is true then
		 the result of the test needs to be inverted so 0 should
		 be returned instead.  */
	      emit_move_insn (result, invert ? const0_rtx : const_true_rtx);
	      return result;
	    }
	  else
	    cmp1 = GEN_INT (new_const);
	}
    }

  else if (p_info->reverse_regs)
    {
      rtx temp = cmp0;
      cmp0 = cmp1;
      cmp1 = temp;
    }

  if (test == ITEST_NE && GET_CODE (cmp1) == CONST_INT && INTVAL (cmp1) == 0)
    reg = cmp0;
  else
    {
      reg = (invert || eqne_p) ? gen_reg_rtx (mode) : result;
      convert_move (reg, gen_rtx_fmt_ee (p_info->test_code, mode, cmp0, cmp1), 0);
    }

  if (test == ITEST_NE)
    {
      convert_move (result, gen_rtx_GTU (mode, reg, const0_rtx), 0);
      if (p_invert != NULL)
	*p_invert = 0;
      invert = 0;
    }

  else if (test == ITEST_EQ)
    {
      reg2 = invert ? gen_reg_rtx (mode) : result;
      convert_move (reg2, gen_rtx_LTU (mode, reg, const1_rtx), 0);
      reg = reg2;
    }

  if (invert)
    {
      rtx one;

      one = const1_rtx;
      convert_move (result, gen_rtx_XOR (mode, reg, one), 0);
    }

  return result;
}

/* Emit the common code for doing conditional branches.
   operand[0] is the label to jump to.
   The comparison operands are saved away by cmp{si,di,sf,df}.  */

void
gen_conditional_branch (rtx operands[], machine_mode mode)
{
  enum rtx_code test_code = GET_CODE (operands[0]);
  rtx cmp0 = operands[1];
  rtx cmp1 = operands[2];
  rtx reg;
  int invert;
  rtx label1, label2;

  invert = 0;
  reg = gen_int_relational (test_code, NULL_RTX, cmp0, cmp1, &invert);

  if (reg)
    {
      cmp0 = reg;
      cmp1 = const0_rtx;
      test_code = NE;
    }
  else if (GET_CODE (cmp1) == CONST_INT && INTVAL (cmp1) != 0)
    /* We don't want to build a comparison against a nonzero
       constant.  */
    cmp1 = force_reg (mode, cmp1);

  /* Generate the branch.  */
  label1 = gen_rtx_LABEL_REF (VOIDmode, operands[3]);
  label2 = pc_rtx;

  if (invert)
    {
      label2 = label1;
      label1 = pc_rtx;
    }

  emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx,
			       gen_rtx_IF_THEN_ELSE (VOIDmode,
						     gen_rtx_fmt_ee (test_code,
								     VOIDmode,
								     cmp0, cmp1),
						     label1, label2)));
}

/* Initialize CUM for a function FNTYPE.  */

void
init_cumulative_args (CUMULATIVE_ARGS *cum, tree fntype,
		      rtx libname ATTRIBUTE_UNUSED)
{
  static CUMULATIVE_ARGS zero_cum;
  tree param;
  tree next_param;

  if (TARGET_DEBUG_D_MODE)
    {
      fprintf (stderr,
	       "\ninit_cumulative_args, fntype = 0x%.8lx", (long) fntype);

      if (!fntype)
	fputc ('\n', stderr);

      else
	{
	  tree ret_type = TREE_TYPE (fntype);

	  fprintf (stderr, ", fntype code = %s, ret code = %s\n",
		   get_tree_code_name (TREE_CODE (fntype)),
		   get_tree_code_name (TREE_CODE (ret_type)));
	}
    }

  *cum = zero_cum;

  /* Determine if this function has variable arguments.  This is
     indicated by the last argument being 'void_type_mode' if there
     are no variable arguments.  The standard IQ2000 calling sequence
     passes all arguments in the general purpose registers in this case.  */

  for (param = fntype ? TYPE_ARG_TYPES (fntype) : 0;
       param != 0; param = next_param)
    {
      next_param = TREE_CHAIN (param);
      if (next_param == 0 && TREE_VALUE (param) != void_type_node)
	cum->gp_reg_found = 1;
    }
}

/* Advance the argument of type TYPE and mode MODE to the next argument
   position in CUM.  */

static void
iq2000_function_arg_advance (cumulative_args_t cum_v, machine_mode mode,
			     const_tree type, bool named)
{
  CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);

  if (TARGET_DEBUG_D_MODE)
    {
      fprintf (stderr,
	       "function_adv({gp reg found = %d, arg # = %2d, words = %2d}, %4s, ",
	       cum->gp_reg_found, cum->arg_number, cum->arg_words,
	       GET_MODE_NAME (mode));
      fprintf (stderr, "%p", (const void *) type);
      fprintf (stderr, ", %d )\n\n", named);
    }

  cum->arg_number++;
  switch (mode)
    {
    case VOIDmode:
      break;

    default:
      gcc_assert (GET_MODE_CLASS (mode) == MODE_COMPLEX_INT
		  || GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT);

      cum->gp_reg_found = 1;
      cum->arg_words += ((GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1)
			 / UNITS_PER_WORD);
      break;

    case BLKmode:
      cum->gp_reg_found = 1;
      cum->arg_words += ((int_size_in_bytes (type) + UNITS_PER_WORD - 1)
			 / UNITS_PER_WORD);
      break;

    case SFmode:
      cum->arg_words ++;
      if (! cum->gp_reg_found && cum->arg_number <= 2)
	cum->fp_code += 1 << ((cum->arg_number - 1) * 2);
      break;

    case DFmode:
      cum->arg_words += 2;
      if (! cum->gp_reg_found && cum->arg_number <= 2)
	cum->fp_code += 2 << ((cum->arg_number - 1) * 2);
      break;

    case DImode:
      cum->gp_reg_found = 1;
      cum->arg_words += 2;
      break;

    case TImode:
      cum->gp_reg_found = 1;
      cum->arg_words += 4;
      break;

    case QImode:
    case HImode:
    case SImode:
      cum->gp_reg_found = 1;
      cum->arg_words ++;
      break;
    }
}

/* Return an RTL expression containing the register for the given mode MODE
   and type TYPE in CUM, or 0 if the argument is to be passed on the stack.  */

static rtx
iq2000_function_arg (cumulative_args_t cum_v, machine_mode mode,
		     const_tree type, bool named)
{
  CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
  rtx ret;
  int regbase = -1;
  int bias = 0;
  unsigned int *arg_words = &cum->arg_words;
  int struct_p = (type != 0
		  && (TREE_CODE (type) == RECORD_TYPE
		      || TREE_CODE (type) == UNION_TYPE
		      || TREE_CODE (type) == QUAL_UNION_TYPE));

  if (TARGET_DEBUG_D_MODE)
    {
      fprintf (stderr,
	       "function_arg( {gp reg found = %d, arg # = %2d, words = %2d}, %4s, ",
	       cum->gp_reg_found, cum->arg_number, cum->arg_words,
	       GET_MODE_NAME (mode));
      fprintf (stderr, "%p", (const void *) type);
      fprintf (stderr, ", %d ) = ", named);
    }


  cum->last_arg_fp = 0;
  switch (mode)
    {
    case SFmode:
      regbase = GP_ARG_FIRST;
      break;

    case DFmode:
      cum->arg_words += cum->arg_words & 1;

      regbase = GP_ARG_FIRST;
      break;

    default:
      gcc_assert (GET_MODE_CLASS (mode) == MODE_COMPLEX_INT
		  || GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT);

      /* Drops through.  */
    case BLKmode:
      if (type != NULL_TREE && TYPE_ALIGN (type) > (unsigned) BITS_PER_WORD)
	cum->arg_words += (cum->arg_words & 1);
      regbase = GP_ARG_FIRST;
      break;

    case VOIDmode:
    case QImode:
    case HImode:
    case SImode:
      regbase = GP_ARG_FIRST;
      break;

    case DImode:
      cum->arg_words += (cum->arg_words & 1);
      regbase = GP_ARG_FIRST;
      break;

    case TImode:
      cum->arg_words += (cum->arg_words & 3);
      regbase = GP_ARG_FIRST;
      break;
    }

  if (*arg_words >= (unsigned) MAX_ARGS_IN_REGISTERS)
    {
      if (TARGET_DEBUG_D_MODE)
	fprintf (stderr, "<stack>%s\n", struct_p ? ", [struct]" : "");

      ret = 0;
    }
  else
    {
      gcc_assert (regbase != -1);

      if (! type || TREE_CODE (type) != RECORD_TYPE
	  || ! named  || ! TYPE_SIZE_UNIT (type)
	  || ! tree_fits_uhwi_p (TYPE_SIZE_UNIT (type)))
	ret = gen_rtx_REG (mode, regbase + *arg_words + bias);
      else
	{
	  tree field;

	  for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
	    if (TREE_CODE (field) == FIELD_DECL
		&& TREE_CODE (TREE_TYPE (field)) == REAL_TYPE
		&& TYPE_PRECISION (TREE_TYPE (field)) == BITS_PER_WORD
		&& tree_fits_shwi_p (bit_position (field))
		&& int_bit_position (field) % BITS_PER_WORD == 0)
	      break;

	  /* If the whole struct fits a DFmode register,
	     we don't need the PARALLEL.  */
	  if (! field || mode == DFmode)
	    ret = gen_rtx_REG (mode, regbase + *arg_words + bias);
	  else
	    {
	      unsigned int chunks;
	      HOST_WIDE_INT bitpos;
	      unsigned int regno;
	      unsigned int i;

	      /* ??? If this is a packed structure, then the last hunk won't
		 be 64 bits.  */
	      chunks
		= tree_to_uhwi (TYPE_SIZE_UNIT (type)) / UNITS_PER_WORD;
	      if (chunks + *arg_words + bias > (unsigned) MAX_ARGS_IN_REGISTERS)
		chunks = MAX_ARGS_IN_REGISTERS - *arg_words - bias;

	      /* Assign_parms checks the mode of ENTRY_PARM, so we must
		 use the actual mode here.  */
	      ret = gen_rtx_PARALLEL (mode, rtvec_alloc (chunks));

	      bitpos = 0;
	      regno = regbase + *arg_words + bias;
	      field = TYPE_FIELDS (type);
	      for (i = 0; i < chunks; i++)
		{
		  rtx reg;

		  for (; field; field = DECL_CHAIN (field))
		    if (TREE_CODE (field) == FIELD_DECL
			&& int_bit_position (field) >= bitpos)
		      break;

		  if (field
		      && int_bit_position (field) == bitpos
		      && TREE_CODE (TREE_TYPE (field)) == REAL_TYPE
		      && TYPE_PRECISION (TREE_TYPE (field)) == BITS_PER_WORD)
		    reg = gen_rtx_REG (DFmode, regno++);
		  else
		    reg = gen_rtx_REG (word_mode, regno);

		  XVECEXP (ret, 0, i)
		    = gen_rtx_EXPR_LIST (VOIDmode, reg,
					 GEN_INT (bitpos / BITS_PER_UNIT));

		  bitpos += 64;
		  regno++;
		}
	    }
	}

      if (TARGET_DEBUG_D_MODE)
	fprintf (stderr, "%s%s\n", reg_names[regbase + *arg_words + bias],
		 struct_p ? ", [struct]" : "");
    }

  /* We will be called with a mode of VOIDmode after the last argument
     has been seen.  Whatever we return will be passed to the call
     insn.  If we need any shifts for small structures, return them in
     a PARALLEL.  */
  if (mode == VOIDmode)
    {
      if (cum->num_adjusts > 0)
	ret = gen_rtx_PARALLEL ((machine_mode) cum->fp_code,
		       gen_rtvec_v (cum->num_adjusts, cum->adjust));
    }

  return ret;
}

static unsigned int
iq2000_function_arg_boundary (machine_mode mode, const_tree type)
{
  return (type != NULL_TREE
	  ? (TYPE_ALIGN (type) <= PARM_BOUNDARY
	     ? PARM_BOUNDARY
	     : TYPE_ALIGN (type))
	  : (GET_MODE_ALIGNMENT (mode) <= PARM_BOUNDARY
	     ? PARM_BOUNDARY
	     : GET_MODE_ALIGNMENT (mode)));
}

static int
iq2000_arg_partial_bytes (cumulative_args_t cum_v, machine_mode mode,
			  tree type ATTRIBUTE_UNUSED,
			  bool named ATTRIBUTE_UNUSED)
{
  CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);

  if (mode == DImode && cum->arg_words == MAX_ARGS_IN_REGISTERS - 1)
    {
      if (TARGET_DEBUG_D_MODE)
	fprintf (stderr, "iq2000_arg_partial_bytes=%d\n", UNITS_PER_WORD);
      return UNITS_PER_WORD;
    }

  return 0;
}

/* Implement va_start.  */

static void
iq2000_va_start (tree valist, rtx nextarg)
{
  int int_arg_words;
  /* Find out how many non-float named formals.  */
  int gpr_save_area_size;
  /* Note UNITS_PER_WORD is 4 bytes.  */
  int_arg_words = crtl->args.info.arg_words;

  if (int_arg_words < 8 )
    /* Adjust for the prologue's economy measure.  */
    gpr_save_area_size = (8 - int_arg_words) * UNITS_PER_WORD;
  else
    gpr_save_area_size = 0;

  /* Everything is in the GPR save area, or in the overflow
     area which is contiguous with it.  */
  nextarg = plus_constant (Pmode, nextarg, - gpr_save_area_size);
  std_expand_builtin_va_start (valist, nextarg);
}

/* Allocate a chunk of memory for per-function machine-dependent data.  */

static struct machine_function *
iq2000_init_machine_status (void)
{
  return ggc_cleared_alloc<machine_function> ();
}

/* Detect any conflicts in the switches.  */

static void
iq2000_option_override (void)
{
  target_flags &= ~MASK_GPOPT;

  iq2000_isa = IQ2000_ISA_DEFAULT;

  /* Identify the processor type.  */

  iq2000_print_operand_punct['?'] = 1;
  iq2000_print_operand_punct['#'] = 1;
  iq2000_print_operand_punct['&'] = 1;
  iq2000_print_operand_punct['!'] = 1;
  iq2000_print_operand_punct['*'] = 1;
  iq2000_print_operand_punct['@'] = 1;
  iq2000_print_operand_punct['.'] = 1;
  iq2000_print_operand_punct['('] = 1;
  iq2000_print_operand_punct[')'] = 1;
  iq2000_print_operand_punct['['] = 1;
  iq2000_print_operand_punct[']'] = 1;
  iq2000_print_operand_punct['<'] = 1;
  iq2000_print_operand_punct['>'] = 1;
  iq2000_print_operand_punct['{'] = 1;
  iq2000_print_operand_punct['}'] = 1;
  iq2000_print_operand_punct['^'] = 1;
  iq2000_print_operand_punct['$'] = 1;
  iq2000_print_operand_punct['+'] = 1;
  iq2000_print_operand_punct['~'] = 1;

  /* Save GPR registers in word_mode sized hunks.  word_mode hasn't been
     initialized yet, so we can't use that here.  */
  gpr_mode = SImode;

  /* Function to allocate machine-dependent function status.  */
  init_machine_status = iq2000_init_machine_status;
}

/* The arg pointer (which is eliminated) points to the virtual frame pointer,
   while the frame pointer (which may be eliminated) points to the stack
   pointer after the initial adjustments.  */

HOST_WIDE_INT
iq2000_debugger_offset (rtx addr, HOST_WIDE_INT offset)
{
  rtx offset2 = const0_rtx;
  rtx reg = eliminate_constant_term (addr, & offset2);

  if (offset == 0)
    offset = INTVAL (offset2);

  if (reg == stack_pointer_rtx || reg == frame_pointer_rtx
      || reg == hard_frame_pointer_rtx)
    {
      HOST_WIDE_INT frame_size = (!cfun->machine->initialized)
				  ? compute_frame_size (get_frame_size ())
				  : cfun->machine->total_size;

      offset = offset - frame_size;
    }

  return offset;
}

/* If defined, a C statement to be executed just prior to the output of
   assembler code for INSN, to modify the extracted operands so they will be
   output differently.

   Here the argument OPVEC is the vector containing the operands extracted
   from INSN, and NOPERANDS is the number of elements of the vector which
   contain meaningful data for this insn.  The contents of this vector are
   what will be used to convert the insn template into assembler code, so you
   can change the assembler output by changing the contents of the vector.

   We use it to check if the current insn needs a nop in front of it because
   of load delays, and also to update the delay slot statistics.  */

void
final_prescan_insn (rtx_insn *insn, rtx opvec[] ATTRIBUTE_UNUSED,
		    int noperands ATTRIBUTE_UNUSED)
{
  if (dslots_number_nops > 0)
    {
      rtx pattern = PATTERN (insn);
      int length = get_attr_length (insn);

      /* Do we need to emit a NOP?  */
      if (length == 0
	  || (iq2000_load_reg != 0 && reg_mentioned_p (iq2000_load_reg,  pattern))
	  || (iq2000_load_reg2 != 0 && reg_mentioned_p (iq2000_load_reg2, pattern))
	  || (iq2000_load_reg3 != 0 && reg_mentioned_p (iq2000_load_reg3, pattern))
	  || (iq2000_load_reg4 != 0
	      && reg_mentioned_p (iq2000_load_reg4, pattern)))
	fputs ("\tnop\n", asm_out_file);

      else
	dslots_load_filled ++;

      while (--dslots_number_nops > 0)
	fputs ("\tnop\n", asm_out_file);

      iq2000_load_reg = 0;
      iq2000_load_reg2 = 0;
      iq2000_load_reg3 = 0;
      iq2000_load_reg4 = 0;
    }

  if (   (JUMP_P (insn)
       || CALL_P (insn)
       || (GET_CODE (PATTERN (insn)) == RETURN))
	   && NEXT_INSN (PREV_INSN (insn)) == insn)
    {
      rtx_insn *nop_insn = emit_insn_after (gen_nop (), insn);

      INSN_ADDRESSES_NEW (nop_insn, -1);
    }
  
  if (TARGET_STATS
      && (JUMP_P (insn) || CALL_P (insn)))
    dslots_jump_total ++;
}

/* Return the bytes needed to compute the frame pointer from the current
   stack pointer where SIZE is the # of var. bytes allocated.

   IQ2000 stack frames look like:

             Before call		        After call
        +-----------------------+	+-----------------------+
   high |			|       |      			|
   mem. |		        |	|			|
        |  caller's temps.    	|       |  caller's temps.    	|
	|       		|       |       	        |
        +-----------------------+	+-----------------------+
 	|       		|	|		        |
        |  arguments on stack.  |	|  arguments on stack.  |
	|       		|	|			|
        +-----------------------+	+-----------------------+
 	|  4 words to save     	|	|  4 words to save	|
	|  arguments passed	|	|  arguments passed	|
	|  in registers, even	|	|  in registers, even	|
    SP->|  if not passed.       |  VFP->|  if not passed.	|
	+-----------------------+       +-----------------------+
					|		        |
                                        |  fp register save     |
					|			|
					+-----------------------+
					|		        |
                                        |  gp register save     |
                                        |       		|
					+-----------------------+
					|			|
					|  local variables	|
					|			|
					+-----------------------+
					|			|
                                        |  alloca allocations   |
        				|			|
					+-----------------------+
					|			|
					|  GP save for V.4 abi	|
					|			|
					+-----------------------+
					|			|
                                        |  arguments on stack   |
        				|		        |
					+-----------------------+
                                        |  4 words to save      |
					|  arguments passed     |
                                        |  in registers, even   |
   low                              SP->|  if not passed.       |
   memory        			+-----------------------+  */

HOST_WIDE_INT
compute_frame_size (HOST_WIDE_INT size)
{
  int regno;
  HOST_WIDE_INT total_size;	/* # bytes that the entire frame takes up.  */
  HOST_WIDE_INT var_size;	/* # bytes that variables take up.  */
  HOST_WIDE_INT args_size;	/* # bytes that outgoing arguments take up.  */
  HOST_WIDE_INT extra_size;	/* # extra bytes.  */
  HOST_WIDE_INT gp_reg_rounded;	/* # bytes needed to store gp after rounding.  */
  HOST_WIDE_INT gp_reg_size;	/* # bytes needed to store gp regs.  */
  HOST_WIDE_INT fp_reg_size;	/* # bytes needed to store fp regs.  */
  long mask;			/* mask of saved gp registers.  */

  gp_reg_size = 0;
  fp_reg_size = 0;
  mask = 0;
  extra_size = IQ2000_STACK_ALIGN ((0));
  var_size = IQ2000_STACK_ALIGN (size);
  args_size = IQ2000_STACK_ALIGN (crtl->outgoing_args_size);

  /* If a function dynamically allocates the stack and
     has 0 for STACK_DYNAMIC_OFFSET then allocate some stack space.  */
  if (args_size == 0 && cfun->calls_alloca)
    args_size = 4 * UNITS_PER_WORD;

  total_size = var_size + args_size + extra_size;

  /* Calculate space needed for gp registers.  */
  for (regno = GP_REG_FIRST; regno <= GP_REG_LAST; regno++)
    {
      if (MUST_SAVE_REGISTER (regno))
	{
	  gp_reg_size += GET_MODE_SIZE (gpr_mode);
	  mask |= 1L << (regno - GP_REG_FIRST);
	}
    }

  /* We need to restore these for the handler.  */
  if (crtl->calls_eh_return)
    {
      unsigned int i;

      for (i = 0; ; ++i)
	{
	  regno = EH_RETURN_DATA_REGNO (i);
	  if (regno == (int) INVALID_REGNUM)
	    break;
	  gp_reg_size += GET_MODE_SIZE (gpr_mode);
	  mask |= 1L << (regno - GP_REG_FIRST);
	}
    }

  gp_reg_rounded = IQ2000_STACK_ALIGN (gp_reg_size);
  total_size += gp_reg_rounded + IQ2000_STACK_ALIGN (fp_reg_size);

  /* The gp reg is caller saved, so there is no need for leaf routines 
     (total_size == extra_size) to save the gp reg.  */
  if (total_size == extra_size
      && ! profile_flag)
    total_size = extra_size = 0;

  total_size += IQ2000_STACK_ALIGN (crtl->args.pretend_args_size);

  /* Save other computed information.  */
  cfun->machine->total_size = total_size;
  cfun->machine->var_size = var_size;
  cfun->machine->args_size = args_size;
  cfun->machine->extra_size = extra_size;
  cfun->machine->gp_reg_size = gp_reg_size;
  cfun->machine->fp_reg_size = fp_reg_size;
  cfun->machine->mask = mask;
  cfun->machine->initialized = reload_completed;
  cfun->machine->num_gp = gp_reg_size / UNITS_PER_WORD;

  if (mask)
    {
      unsigned long offset;

      offset = (args_size + extra_size + var_size
		+ gp_reg_size - GET_MODE_SIZE (gpr_mode));

      cfun->machine->gp_sp_offset = offset;
      cfun->machine->gp_save_offset = offset - total_size;
    }
  else
    {
      cfun->machine->gp_sp_offset = 0;
      cfun->machine->gp_save_offset = 0;
    }

  cfun->machine->fp_sp_offset = 0;
  cfun->machine->fp_save_offset = 0;

  /* Ok, we're done.  */
  return total_size;
}


/* We can always eliminate to the frame pointer.  We can eliminate to the
   stack pointer unless a frame pointer is needed.  */

bool
iq2000_can_eliminate (const int from, const int to)
{
  return (from == RETURN_ADDRESS_POINTER_REGNUM
          && (! leaf_function_p ()
              || (to == GP_REG_FIRST + 31 && leaf_function_p ())))
          || (from != RETURN_ADDRESS_POINTER_REGNUM
              && (to == HARD_FRAME_POINTER_REGNUM
                  || (to == STACK_POINTER_REGNUM
                      && ! frame_pointer_needed)));
}

/* Implement INITIAL_ELIMINATION_OFFSET.  FROM is either the frame
   pointer, argument pointer, or return address pointer.  TO is either
   the stack pointer or hard frame pointer.  */

int
iq2000_initial_elimination_offset (int from, int to ATTRIBUTE_UNUSED)
{
  int offset;

  compute_frame_size (get_frame_size ());				 
  if ((from) == FRAME_POINTER_REGNUM) 
    (offset) = 0; 
  else if ((from) == ARG_POINTER_REGNUM) 
    (offset) = (cfun->machine->total_size); 
  else if ((from) == RETURN_ADDRESS_POINTER_REGNUM) 
    {
      if (leaf_function_p ()) 
	(offset) = 0; 
      else (offset) = cfun->machine->gp_sp_offset 
	     + ((UNITS_PER_WORD - (POINTER_SIZE / BITS_PER_UNIT)) 
		* (BYTES_BIG_ENDIAN != 0)); 
    }
  else
    gcc_unreachable ();

  return offset;
}

/* Common code to emit the insns (or to write the instructions to a file)
   to save/restore registers.  
   Other parts of the code assume that IQ2000_TEMP1_REGNUM (aka large_reg)
   is not modified within save_restore_insns.  */

#define BITSET_P(VALUE,BIT) (((VALUE) & (1L << (BIT))) != 0)

/* Emit instructions to load the value (SP + OFFSET) into IQ2000_TEMP2_REGNUM
   and return an rtl expression for the register.  Write the assembly
   instructions directly to FILE if it is not null, otherwise emit them as
   rtl.

   This function is a subroutine of save_restore_insns.  It is used when
   OFFSET is too large to add in a single instruction.  */

static rtx
iq2000_add_large_offset_to_sp (HOST_WIDE_INT offset)
{
  rtx reg = gen_rtx_REG (Pmode, IQ2000_TEMP2_REGNUM);
  rtx offset_rtx = GEN_INT (offset);

  emit_move_insn (reg, offset_rtx);
  emit_insn (gen_addsi3 (reg, reg, stack_pointer_rtx));
  return reg;
}

/* Make INSN frame related and note that it performs the frame-related
   operation DWARF_PATTERN.  */

static void
iq2000_annotate_frame_insn (rtx_insn *insn, rtx dwarf_pattern)
{
  RTX_FRAME_RELATED_P (insn) = 1;
  REG_NOTES (insn) = alloc_EXPR_LIST (REG_FRAME_RELATED_EXPR,
				      dwarf_pattern,
				      REG_NOTES (insn));
}

/* Emit a move instruction that stores REG in MEM.  Make the instruction
   frame related and note that it stores REG at (SP + OFFSET).  */

static void
iq2000_emit_frame_related_store (rtx mem, rtx reg, HOST_WIDE_INT offset)
{
  rtx dwarf_address = plus_constant (Pmode, stack_pointer_rtx, offset);
  rtx dwarf_mem = gen_rtx_MEM (GET_MODE (reg), dwarf_address);

  iq2000_annotate_frame_insn (emit_move_insn (mem, reg),
			    gen_rtx_SET (GET_MODE (reg), dwarf_mem, reg));
}

/* Emit instructions to save/restore registers, as determined by STORE_P.  */

static void
save_restore_insns (int store_p)
{
  long mask = cfun->machine->mask;
  int regno;
  rtx base_reg_rtx;
  HOST_WIDE_INT base_offset;
  HOST_WIDE_INT gp_offset;
  HOST_WIDE_INT end_offset;

  gcc_assert (!frame_pointer_needed
	      || BITSET_P (mask, HARD_FRAME_POINTER_REGNUM - GP_REG_FIRST));

  if (mask == 0)
    {
      base_reg_rtx = 0, base_offset  = 0;
      return;
    }

  /* Save registers starting from high to low.  The debuggers prefer at least
     the return register be stored at func+4, and also it allows us not to
     need a nop in the epilog if at least one register is reloaded in
     addition to return address.  */

  /* Save GP registers if needed.  */
  /* Pick which pointer to use as a base register.  For small frames, just
     use the stack pointer.  Otherwise, use a temporary register.  Save 2
     cycles if the save area is near the end of a large frame, by reusing
     the constant created in the prologue/epilogue to adjust the stack
     frame.  */

  gp_offset = cfun->machine->gp_sp_offset;
  end_offset
    = gp_offset - (cfun->machine->gp_reg_size
		   - GET_MODE_SIZE (gpr_mode));

  if (gp_offset < 0 || end_offset < 0)
    internal_error
      ("gp_offset (%ld) or end_offset (%ld) is less than zero",
       (long) gp_offset, (long) end_offset);

  else if (gp_offset < 32768)
    base_reg_rtx = stack_pointer_rtx, base_offset  = 0;
  else
    {
      int regno;
      int reg_save_count = 0;

      for (regno = GP_REG_LAST; regno >= GP_REG_FIRST; regno--)
	if (BITSET_P (mask, regno - GP_REG_FIRST)) reg_save_count += 1;
      base_offset = gp_offset - ((reg_save_count - 1) * 4);
      base_reg_rtx = iq2000_add_large_offset_to_sp (base_offset);
    }

  for (regno = GP_REG_LAST; regno >= GP_REG_FIRST; regno--)
    {
      if (BITSET_P (mask, regno - GP_REG_FIRST))
	{
	  rtx reg_rtx;
	  rtx mem_rtx
	    = gen_rtx_MEM (gpr_mode,
		       gen_rtx_PLUS (Pmode, base_reg_rtx,
				GEN_INT (gp_offset - base_offset)));

	  reg_rtx = gen_rtx_REG (gpr_mode, regno);

	  if (store_p)
	    iq2000_emit_frame_related_store (mem_rtx, reg_rtx, gp_offset);
	  else 
	    {
	      emit_move_insn (reg_rtx, mem_rtx);
	    }
	  gp_offset -= GET_MODE_SIZE (gpr_mode);
	}
    }
}

/* Expand the prologue into a bunch of separate insns.  */

void
iq2000_expand_prologue (void)
{
  int regno;
  HOST_WIDE_INT tsize;
  int last_arg_is_vararg_marker = 0;
  tree fndecl = current_function_decl;
  tree fntype = TREE_TYPE (fndecl);
  tree fnargs = DECL_ARGUMENTS (fndecl);
  rtx next_arg_reg;
  int i;
  tree next_arg;
  tree cur_arg;
  CUMULATIVE_ARGS args_so_far_v;
  cumulative_args_t args_so_far;
  int store_args_on_stack = (iq2000_can_use_return_insn ());

  /* If struct value address is treated as the first argument.  */
  if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
      && !cfun->returns_pcc_struct
      && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
    {
      tree type = build_pointer_type (fntype);
      tree function_result_decl = build_decl (BUILTINS_LOCATION,
					      PARM_DECL, NULL_TREE, type);

      DECL_ARG_TYPE (function_result_decl) = type;
      DECL_CHAIN (function_result_decl) = fnargs;
      fnargs = function_result_decl;
    }

  /* For arguments passed in registers, find the register number
     of the first argument in the variable part of the argument list,
     otherwise GP_ARG_LAST+1.  Note also if the last argument is
     the varargs special argument, and treat it as part of the
     variable arguments.

     This is only needed if store_args_on_stack is true.  */
  INIT_CUMULATIVE_ARGS (args_so_far_v, fntype, NULL_RTX, 0, 0);
  args_so_far = pack_cumulative_args (&args_so_far_v);
  regno = GP_ARG_FIRST;

  for (cur_arg = fnargs; cur_arg != 0; cur_arg = next_arg)
    {
      tree passed_type = DECL_ARG_TYPE (cur_arg);
      machine_mode passed_mode = TYPE_MODE (passed_type);
      rtx entry_parm;

      if (TREE_ADDRESSABLE (passed_type))
	{
	  passed_type = build_pointer_type (passed_type);
	  passed_mode = Pmode;
	}

      entry_parm = iq2000_function_arg (args_so_far, passed_mode,
					passed_type, true);

      iq2000_function_arg_advance (args_so_far, passed_mode,
				   passed_type, true);
      next_arg = DECL_CHAIN (cur_arg);

      if (entry_parm && store_args_on_stack)
	{
	  if (next_arg == 0
	      && DECL_NAME (cur_arg)
	      && ((0 == strcmp (IDENTIFIER_POINTER (DECL_NAME (cur_arg)),
				"__builtin_va_alist"))
		  || (0 == strcmp (IDENTIFIER_POINTER (DECL_NAME (cur_arg)),
				   "va_alist"))))
	    {
	      last_arg_is_vararg_marker = 1;
	      break;
	    }
	  else
	    {
	      int words;

	      gcc_assert (GET_CODE (entry_parm) == REG);

	      /* Passed in a register, so will get homed automatically.  */
	      if (GET_MODE (entry_parm) == BLKmode)
		words = (int_size_in_bytes (passed_type) + 3) / 4;
	      else
		words = (GET_MODE_SIZE (GET_MODE (entry_parm)) + 3) / 4;

	      regno = REGNO (entry_parm) + words - 1;
	    }
	}
      else
	{
	  regno = GP_ARG_LAST+1;
	  break;
	}
    }

  /* In order to pass small structures by value in registers we need to
     shift the value into the high part of the register.
     iq2000_unction_arg has encoded a PARALLEL rtx, holding a vector of
     adjustments to be made as the next_arg_reg variable, so we split up
     the insns, and emit them separately.  */
  next_arg_reg = iq2000_function_arg (args_so_far, VOIDmode,
				      void_type_node, true);
  if (next_arg_reg != 0 && GET_CODE (next_arg_reg) == PARALLEL)
    {
      rtvec adjust = XVEC (next_arg_reg, 0);
      int num = GET_NUM_ELEM (adjust);

      for (i = 0; i < num; i++)
	{
	  rtx pattern;

	  pattern = RTVEC_ELT (adjust, i);
	  if (GET_CODE (pattern) != SET
	      || GET_CODE (SET_SRC (pattern)) != ASHIFT)
	    abort_with_insn (pattern, "Insn is not a shift");
	  PUT_CODE (SET_SRC (pattern), ASHIFTRT);

	  emit_insn (pattern);
	}
    }

  tsize = compute_frame_size (get_frame_size ());

  /* If this function is a varargs function, store any registers that
     would normally hold arguments ($4 - $7) on the stack.  */
  if (store_args_on_stack
      && (stdarg_p (fntype)
	  || last_arg_is_vararg_marker))
    {
      int offset = (regno - GP_ARG_FIRST) * UNITS_PER_WORD;
      rtx ptr = stack_pointer_rtx;

      for (; regno <= GP_ARG_LAST; regno++)
	{
	  if (offset != 0)
	    ptr = gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (offset));
	  emit_move_insn (gen_rtx_MEM (gpr_mode, ptr),
			  gen_rtx_REG (gpr_mode, regno));

	  offset += GET_MODE_SIZE (gpr_mode);
	}
    }

  if (tsize > 0)
    {
      rtx tsize_rtx = GEN_INT (tsize);
      rtx adjustment_rtx, dwarf_pattern;
      rtx_insn *insn;

      if (tsize > 32767)
	{
	  adjustment_rtx = gen_rtx_REG (Pmode, IQ2000_TEMP1_REGNUM);
	  emit_move_insn (adjustment_rtx, tsize_rtx);
	}
      else
	adjustment_rtx = tsize_rtx;

      insn = emit_insn (gen_subsi3 (stack_pointer_rtx, stack_pointer_rtx,
				    adjustment_rtx));

      dwarf_pattern = gen_rtx_SET (Pmode, stack_pointer_rtx,
				   plus_constant (Pmode, stack_pointer_rtx,
						  -tsize));

      iq2000_annotate_frame_insn (insn, dwarf_pattern);

      save_restore_insns (1);

      if (frame_pointer_needed)
	{
	  rtx_insn *insn = 0;

	  insn = emit_insn (gen_movsi (hard_frame_pointer_rtx,
				       stack_pointer_rtx));

	  if (insn)
	    RTX_FRAME_RELATED_P (insn) = 1;
	}
    }

  emit_insn (gen_blockage ());
}

/* Expand the epilogue into a bunch of separate insns.  */

void
iq2000_expand_epilogue (void)
{
  HOST_WIDE_INT tsize = cfun->machine->total_size;
  rtx tsize_rtx = GEN_INT (tsize);
  rtx tmp_rtx = (rtx)0;

  if (iq2000_can_use_return_insn ())
    {
      emit_jump_insn (gen_return ());
      return;
    }

  if (tsize > 32767)
    {
      tmp_rtx = gen_rtx_REG (Pmode, IQ2000_TEMP1_REGNUM);
      emit_move_insn (tmp_rtx, tsize_rtx);
      tsize_rtx = tmp_rtx;
    }

  if (tsize > 0)
    {
      if (frame_pointer_needed)
	{
	  emit_insn (gen_blockage ());

	  emit_insn (gen_movsi (stack_pointer_rtx, hard_frame_pointer_rtx));
	}

      save_restore_insns (0);

      if (crtl->calls_eh_return)
	{
	  rtx eh_ofs = EH_RETURN_STACKADJ_RTX;
	  emit_insn (gen_addsi3 (eh_ofs, eh_ofs, tsize_rtx));
	  tsize_rtx = eh_ofs;
	}

      emit_insn (gen_blockage ());

      if (tsize != 0 || crtl->calls_eh_return)
	{
	  emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
				 tsize_rtx));
	}
    }

  if (crtl->calls_eh_return)
    {
      /* Perform the additional bump for __throw.  */
      emit_move_insn (gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
		      stack_pointer_rtx);
      emit_use (gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM));
      emit_jump_insn (gen_eh_return_internal ());
    }
  else
      emit_jump_insn (gen_return_internal (gen_rtx_REG (Pmode,
						  GP_REG_FIRST + 31)));
}

void
iq2000_expand_eh_return (rtx address)
{
  HOST_WIDE_INT gp_offset = cfun->machine->gp_sp_offset;
  rtx scratch;

  scratch = plus_constant (Pmode, stack_pointer_rtx, gp_offset);
  emit_move_insn (gen_rtx_MEM (GET_MODE (address), scratch), address);
}

/* Return nonzero if this function is known to have a null epilogue.
   This allows the optimizer to omit jumps to jumps if no stack
   was created.  */

int
iq2000_can_use_return_insn (void)
{
  if (! reload_completed)
    return 0;

  if (df_regs_ever_live_p (31) || profile_flag)
    return 0;

  if (cfun->machine->initialized)
    return cfun->machine->total_size == 0;

  return compute_frame_size (get_frame_size ()) == 0;
}

/* Choose the section to use for the constant rtx expression X that has
   mode MODE.  */

static section *
iq2000_select_rtx_section (machine_mode mode, rtx x ATTRIBUTE_UNUSED,
			   unsigned HOST_WIDE_INT align)
{
  /* For embedded applications, always put constants in read-only data,
     in order to reduce RAM usage.  */
  return mergeable_constant_section (mode, align, 0);
}

/* Choose the section to use for DECL.  RELOC is true if its value contains
   any relocatable expression.

   Some of the logic used here needs to be replicated in
   ENCODE_SECTION_INFO in iq2000.h so that references to these symbols
   are done correctly.  */

static section *
iq2000_select_section (tree decl, int reloc ATTRIBUTE_UNUSED,
		       unsigned HOST_WIDE_INT align ATTRIBUTE_UNUSED)
{
  if (TARGET_EMBEDDED_DATA)
    {
      /* For embedded applications, always put an object in read-only data
	 if possible, in order to reduce RAM usage.  */
      if ((TREE_CODE (decl) == VAR_DECL
	   && TREE_READONLY (decl) && !TREE_SIDE_EFFECTS (decl)
	   && DECL_INITIAL (decl)
	   && (DECL_INITIAL (decl) == error_mark_node
	       || TREE_CONSTANT (DECL_INITIAL (decl))))
	  /* Deal with calls from output_constant_def_contents.  */
	  || TREE_CODE (decl) != VAR_DECL)
	return readonly_data_section;
      else
	return data_section;
    }
  else
    {
      /* For hosted applications, always put an object in small data if
	 possible, as this gives the best performance.  */
      if ((TREE_CODE (decl) == VAR_DECL
	   && TREE_READONLY (decl) && !TREE_SIDE_EFFECTS (decl)
	   && DECL_INITIAL (decl)
	   && (DECL_INITIAL (decl) == error_mark_node
	       || TREE_CONSTANT (DECL_INITIAL (decl))))
	  /* Deal with calls from output_constant_def_contents.  */
	  || TREE_CODE (decl) != VAR_DECL)
	return readonly_data_section;
      else
	return data_section;
    }
}
/* Return register to use for a function return value with VALTYPE for function
   FUNC.  */

static rtx
iq2000_function_value (const_tree valtype,
		       const_tree fn_decl_or_type,
		       bool outgoing ATTRIBUTE_UNUSED)
{
  int reg = GP_RETURN;
  machine_mode mode = TYPE_MODE (valtype);
  int unsignedp = TYPE_UNSIGNED (valtype);
  const_tree func = fn_decl_or_type;

  if (fn_decl_or_type
      && !DECL_P (fn_decl_or_type))
    fn_decl_or_type = NULL;

  /* Since we promote return types, we must promote the mode here too.  */
  mode = promote_function_mode (valtype, mode, &unsignedp, func, 1);

  return gen_rtx_REG (mode, reg);
}

/* Worker function for TARGET_LIBCALL_VALUE.  */

static rtx
iq2000_libcall_value (machine_mode mode, const_rtx fun ATTRIBUTE_UNUSED)
{
  return gen_rtx_REG (((GET_MODE_CLASS (mode) != MODE_INT
	                || GET_MODE_SIZE (mode) >= 4)
	               ? mode : SImode),
	              GP_RETURN);
}

/* Worker function for FUNCTION_VALUE_REGNO_P.

   On the IQ2000, R2 and R3 are the only register thus used.  */

bool
iq2000_function_value_regno_p (const unsigned int regno)
{
  return (regno == GP_RETURN);
}


/* Return true when an argument must be passed by reference.  */

static bool
iq2000_pass_by_reference (cumulative_args_t cum_v, machine_mode mode,
			  const_tree type, bool named ATTRIBUTE_UNUSED)
{
  CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
  int size;

  /* We must pass by reference if we would be both passing in registers
     and the stack.  This is because any subsequent partial arg would be
     handled incorrectly in this case.  */
  if (cum && targetm.calls.must_pass_in_stack (mode, type))
     {
       /* Don't pass the actual CUM to FUNCTION_ARG, because we would
	  get double copies of any offsets generated for small structs
	  passed in registers.  */
       CUMULATIVE_ARGS temp;

       temp = *cum;
       if (iq2000_function_arg (pack_cumulative_args (&temp), mode, type, named)
	   != 0)
	 return 1;
     }

  if (type == NULL_TREE || mode == DImode || mode == DFmode)
    return 0;

  size = int_size_in_bytes (type);
  return size == -1 || size > UNITS_PER_WORD;
}

/* Return the length of INSN.  LENGTH is the initial length computed by
   attributes in the machine-description file.  */

int
iq2000_adjust_insn_length (rtx_insn *insn, int length)
{
  /* A unconditional jump has an unfilled delay slot if it is not part
     of a sequence.  A conditional jump normally has a delay slot.  */
  if (simplejump_p (insn)
      || (   (JUMP_P (insn)
	   || CALL_P (insn))))
    length += 4;

  return length;
}

/* Output assembly instructions to perform a conditional branch.

   INSN is the branch instruction.  OPERANDS[0] is the condition.
   OPERANDS[1] is the target of the branch.  OPERANDS[2] is the target
   of the first operand to the condition.  If TWO_OPERANDS_P is
   nonzero the comparison takes two operands; OPERANDS[3] will be the
   second operand.

   If INVERTED_P is nonzero we are to branch if the condition does
   not hold.  If FLOAT_P is nonzero this is a floating-point comparison.

   LENGTH is the length (in bytes) of the sequence we are to generate.
   That tells us whether to generate a simple conditional branch, or a
   reversed conditional branch around a `jr' instruction.  */

char *
iq2000_output_conditional_branch (rtx_insn *insn, rtx * operands,
				  int two_operands_p, int float_p,
				  int inverted_p, int length)
{
  static char buffer[200];
  /* The kind of comparison we are doing.  */
  enum rtx_code code = GET_CODE (operands[0]);
  /* Nonzero if the opcode for the comparison needs a `z' indicating
     that it is a comparison against zero.  */
  int need_z_p;
  /* A string to use in the assembly output to represent the first
     operand.  */
  const char *op1 = "%z2";
  /* A string to use in the assembly output to represent the second
     operand.  Use the hard-wired zero register if there's no second
     operand.  */
  const char *op2 = (two_operands_p ? ",%z3" : ",%.");
  /* The operand-printing string for the comparison.  */
  const char *comp = (float_p ? "%F0" : "%C0");
  /* The operand-printing string for the inverted comparison.  */
  const char *inverted_comp = (float_p ? "%W0" : "%N0");

  /* Likely variants of each branch instruction annul the instruction
     in the delay slot if the branch is not taken.  */
  iq2000_branch_likely = (final_sequence && INSN_ANNULLED_BRANCH_P (insn));

  if (!two_operands_p)
    {
      /* To compute whether than A > B, for example, we normally
	 subtract B from A and then look at the sign bit.  But, if we
	 are doing an unsigned comparison, and B is zero, we don't
	 have to do the subtraction.  Instead, we can just check to
	 see if A is nonzero.  Thus, we change the CODE here to
	 reflect the simpler comparison operation.  */
      switch (code)
	{
	case GTU:
	  code = NE;
	  break;

	case LEU:
	  code = EQ;
	  break;

	case GEU:
	  /* A condition which will always be true.  */
	  code = EQ;
	  op1 = "%.";
	  break;

	case LTU:
	  /* A condition which will always be false.  */
	  code = NE;
	  op1 = "%.";
	  break;

	default:
	  /* Not a special case.  */
	  break;
	}
    }

  /* Relative comparisons are always done against zero.  But
     equality comparisons are done between two operands, and therefore
     do not require a `z' in the assembly language output.  */
  need_z_p = (!float_p && code != EQ && code != NE);
  /* For comparisons against zero, the zero is not provided
     explicitly.  */
  if (need_z_p)
    op2 = "";

  /* Begin by terminating the buffer.  That way we can always use
     strcat to add to it.  */
  buffer[0] = '\0';

  switch (length)
    {
    case 4:
    case 8:
      /* Just a simple conditional branch.  */
      if (float_p)
	sprintf (buffer, "b%s%%?\t%%Z2%%1",
		 inverted_p ? inverted_comp : comp);
      else
	sprintf (buffer, "b%s%s%%?\t%s%s,%%1",
		 inverted_p ? inverted_comp : comp,
		 need_z_p ? "z" : "",
		 op1,
		 op2);
      return buffer;

    case 12:
    case 16:
      {
	/* Generate a reversed conditional branch around ` j'
	   instruction:

		.set noreorder
		.set nomacro
		bc    l
		nop
		j     target
		.set macro
		.set reorder
	     l:

	   Because we have to jump four bytes *past* the following
	   instruction if this branch was annulled, we can't just use
	   a label, as in the picture above; there's no way to put the
	   label after the next instruction, as the assembler does not
	   accept `.L+4' as the target of a branch.  (We can't just
	   wait until the next instruction is output; it might be a
	   macro and take up more than four bytes.  Once again, we see
	   why we want to eliminate macros.)

	   If the branch is annulled, we jump four more bytes that we
	   would otherwise; that way we skip the annulled instruction
	   in the delay slot.  */

	const char *target
	  = ((iq2000_branch_likely || length == 16) ? ".+16" : ".+12");
	char *c;

	c = strchr (buffer, '\0');
	/* Generate the reversed comparison.  This takes four
	   bytes.  */
	if (float_p)
	  sprintf (c, "b%s\t%%Z2%s",
		   inverted_p ? comp : inverted_comp,
		   target);
	else
	  sprintf (c, "b%s%s\t%s%s,%s",
		   inverted_p ? comp : inverted_comp,
		   need_z_p ? "z" : "",
		   op1,
		   op2,
		   target);
	strcat (c, "\n\tnop\n\tj\t%1");
	if (length == 16)
	  /* The delay slot was unfilled.  Since we're inside
	     .noreorder, the assembler will not fill in the NOP for
	     us, so we must do it ourselves.  */
	  strcat (buffer, "\n\tnop");
	return buffer;
      }

    default:
      gcc_unreachable ();
    }

  /* NOTREACHED */
  return 0;
}

#define def_builtin(NAME, TYPE, CODE)					\
  add_builtin_function ((NAME), (TYPE), (CODE), BUILT_IN_MD,	\
		       NULL, NULL_TREE)

static void
iq2000_init_builtins (void)
{
  tree void_ftype, void_ftype_int, void_ftype_int_int;
  tree void_ftype_int_int_int;
  tree int_ftype_int, int_ftype_int_int, int_ftype_int_int_int;
  tree int_ftype_int_int_int_int;

  /* func () */
  void_ftype
    = build_function_type_list (void_type_node, NULL_TREE);

  /* func (int) */
  void_ftype_int
    = build_function_type_list (void_type_node, integer_type_node, NULL_TREE);

  /* void func (int, int) */
  void_ftype_int_int
    = build_function_type_list (void_type_node,
                                integer_type_node,
                                integer_type_node,
                                NULL_TREE);

  /* int func (int) */
  int_ftype_int
    = build_function_type_list (integer_type_node,
                                integer_type_node, NULL_TREE);

  /* int func (int, int) */
  int_ftype_int_int
    = build_function_type_list (integer_type_node,
                                integer_type_node,
                                integer_type_node,
                                NULL_TREE);

  /* void func (int, int, int) */
  void_ftype_int_int_int
    = build_function_type_list (void_type_node,
                                integer_type_node,
                                integer_type_node,
                                integer_type_node,
                                NULL_TREE);

  /* int func (int, int, int) */
  int_ftype_int_int_int
    = build_function_type_list (integer_type_node,
                                integer_type_node,
                                integer_type_node,
                                integer_type_node,
                                NULL_TREE);

  /* int func (int, int, int, int) */
  int_ftype_int_int_int_int
    = build_function_type_list (integer_type_node,
                                integer_type_node,
                                integer_type_node,
                                integer_type_node,
                                integer_type_node,
                                NULL_TREE);

  def_builtin ("__builtin_ado16", int_ftype_int_int, IQ2000_BUILTIN_ADO16);
  def_builtin ("__builtin_ram", int_ftype_int_int_int_int, IQ2000_BUILTIN_RAM);
  def_builtin ("__builtin_chkhdr", void_ftype_int_int, IQ2000_BUILTIN_CHKHDR);
  def_builtin ("__builtin_pkrl", void_ftype_int_int, IQ2000_BUILTIN_PKRL);
  def_builtin ("__builtin_cfc0", int_ftype_int, IQ2000_BUILTIN_CFC0);
  def_builtin ("__builtin_cfc1", int_ftype_int, IQ2000_BUILTIN_CFC1);
  def_builtin ("__builtin_cfc2", int_ftype_int, IQ2000_BUILTIN_CFC2);
  def_builtin ("__builtin_cfc3", int_ftype_int, IQ2000_BUILTIN_CFC3);
  def_builtin ("__builtin_ctc0", void_ftype_int_int, IQ2000_BUILTIN_CTC0);
  def_builtin ("__builtin_ctc1", void_ftype_int_int, IQ2000_BUILTIN_CTC1);
  def_builtin ("__builtin_ctc2", void_ftype_int_int, IQ2000_BUILTIN_CTC2);
  def_builtin ("__builtin_ctc3", void_ftype_int_int, IQ2000_BUILTIN_CTC3);
  def_builtin ("__builtin_mfc0", int_ftype_int, IQ2000_BUILTIN_MFC0);
  def_builtin ("__builtin_mfc1", int_ftype_int, IQ2000_BUILTIN_MFC1);
  def_builtin ("__builtin_mfc2", int_ftype_int, IQ2000_BUILTIN_MFC2);
  def_builtin ("__builtin_mfc3", int_ftype_int, IQ2000_BUILTIN_MFC3);
  def_builtin ("__builtin_mtc0", void_ftype_int_int, IQ2000_BUILTIN_MTC0);
  def_builtin ("__builtin_mtc1", void_ftype_int_int, IQ2000_BUILTIN_MTC1);
  def_builtin ("__builtin_mtc2", void_ftype_int_int, IQ2000_BUILTIN_MTC2);
  def_builtin ("__builtin_mtc3", void_ftype_int_int, IQ2000_BUILTIN_MTC3);
  def_builtin ("__builtin_lur", void_ftype_int_int, IQ2000_BUILTIN_LUR);
  def_builtin ("__builtin_rb", void_ftype_int_int, IQ2000_BUILTIN_RB);
  def_builtin ("__builtin_rx", void_ftype_int_int, IQ2000_BUILTIN_RX);
  def_builtin ("__builtin_srrd", void_ftype_int, IQ2000_BUILTIN_SRRD);
  def_builtin ("__builtin_srwr", void_ftype_int_int, IQ2000_BUILTIN_SRWR);
  def_builtin ("__builtin_wb", void_ftype_int_int, IQ2000_BUILTIN_WB);
  def_builtin ("__builtin_wx", void_ftype_int_int, IQ2000_BUILTIN_WX);
  def_builtin ("__builtin_luc32l", void_ftype_int_int, IQ2000_BUILTIN_LUC32L);
  def_builtin ("__builtin_luc64", void_ftype_int_int, IQ2000_BUILTIN_LUC64);
  def_builtin ("__builtin_luc64l", void_ftype_int_int, IQ2000_BUILTIN_LUC64L);
  def_builtin ("__builtin_luk", void_ftype_int_int, IQ2000_BUILTIN_LUK);
  def_builtin ("__builtin_lulck", void_ftype_int, IQ2000_BUILTIN_LULCK);
  def_builtin ("__builtin_lum32", void_ftype_int_int, IQ2000_BUILTIN_LUM32);
  def_builtin ("__builtin_lum32l", void_ftype_int_int, IQ2000_BUILTIN_LUM32L);
  def_builtin ("__builtin_lum64", void_ftype_int_int, IQ2000_BUILTIN_LUM64);
  def_builtin ("__builtin_lum64l", void_ftype_int_int, IQ2000_BUILTIN_LUM64L);
  def_builtin ("__builtin_lurl", void_ftype_int_int, IQ2000_BUILTIN_LURL);
  def_builtin ("__builtin_mrgb", int_ftype_int_int_int, IQ2000_BUILTIN_MRGB);
  def_builtin ("__builtin_srrdl", void_ftype_int, IQ2000_BUILTIN_SRRDL);
  def_builtin ("__builtin_srulck", void_ftype_int, IQ2000_BUILTIN_SRULCK);
  def_builtin ("__builtin_srwru", void_ftype_int_int, IQ2000_BUILTIN_SRWRU);
  def_builtin ("__builtin_trapqfl", void_ftype, IQ2000_BUILTIN_TRAPQFL);
  def_builtin ("__builtin_trapqne", void_ftype, IQ2000_BUILTIN_TRAPQNE);
  def_builtin ("__builtin_traprel", void_ftype_int, IQ2000_BUILTIN_TRAPREL);
  def_builtin ("__builtin_wbu", void_ftype_int_int_int, IQ2000_BUILTIN_WBU);
  def_builtin ("__builtin_syscall", void_ftype, IQ2000_BUILTIN_SYSCALL);
}

/* Builtin for ICODE having ARGCOUNT args in EXP where each arg
   has an rtx CODE.  */

static rtx
expand_one_builtin (enum insn_code icode, rtx target, tree exp,
		    enum rtx_code *code, int argcount)
{
  rtx pat;
  tree arg [5];
  rtx op [5];
  machine_mode mode [5];
  int i;

  mode[0] = insn_data[icode].operand[0].mode;
  for (i = 0; i < argcount; i++)
    {
      arg[i] = CALL_EXPR_ARG (exp, i);
      op[i] = expand_normal (arg[i]);
      mode[i] = insn_data[icode].operand[i].mode;
      if (code[i] == CONST_INT && GET_CODE (op[i]) != CONST_INT)
	error ("argument %qd is not a constant", i + 1);
      if (code[i] == REG
	  && ! (*insn_data[icode].operand[i].predicate) (op[i], mode[i]))
	op[i] = copy_to_mode_reg (mode[i], op[i]);
    }

  if (insn_data[icode].operand[0].constraint[0] == '=')
    {
      if (target == 0
	  || GET_MODE (target) != mode[0]
	  || ! (*insn_data[icode].operand[0].predicate) (target, mode[0]))
	target = gen_reg_rtx (mode[0]);
    }
  else
    target = 0;

  switch (argcount)
    {
    case 0:
	pat = GEN_FCN (icode) (target);
    case 1:
      if (target)
	pat = GEN_FCN (icode) (target, op[0]);
      else
	pat = GEN_FCN (icode) (op[0]);
      break;
    case 2:
      if (target)
	pat = GEN_FCN (icode) (target, op[0], op[1]);
      else
	pat = GEN_FCN (icode) (op[0], op[1]);
      break;
    case 3:
      if (target)
	pat = GEN_FCN (icode) (target, op[0], op[1], op[2]);
      else
	pat = GEN_FCN (icode) (op[0], op[1], op[2]);
      break;
    case 4:
      if (target)
	pat = GEN_FCN (icode) (target, op[0], op[1], op[2], op[3]);
      else
	pat = GEN_FCN (icode) (op[0], op[1], op[2], op[3]);
      break;
    default:
      gcc_unreachable ();
    }
  
  if (! pat)
    return 0;
  emit_insn (pat);
  return target;
}

/* Expand an expression EXP that calls a built-in function,
   with result going to TARGET if that's convenient
   (and in mode MODE if that's convenient).
   SUBTARGET may be used as the target for computing one of EXP's operands.
   IGNORE is nonzero if the value is to be ignored.  */

static rtx
iq2000_expand_builtin (tree exp, rtx target, rtx subtarget ATTRIBUTE_UNUSED,
		       machine_mode mode ATTRIBUTE_UNUSED,
		       int ignore ATTRIBUTE_UNUSED)
{
  tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
  int fcode = DECL_FUNCTION_CODE (fndecl);
  enum rtx_code code [5];

  code[0] = REG;
  code[1] = REG;
  code[2] = REG;
  code[3] = REG;
  code[4] = REG;
  switch (fcode)
    {
    default:
      break;
      
    case IQ2000_BUILTIN_ADO16:
      return expand_one_builtin (CODE_FOR_ado16, target, exp, code, 2);

    case IQ2000_BUILTIN_RAM:
      code[1] = CONST_INT;
      code[2] = CONST_INT;
      code[3] = CONST_INT;
      return expand_one_builtin (CODE_FOR_ram, target, exp, code, 4);
      
    case IQ2000_BUILTIN_CHKHDR:
      return expand_one_builtin (CODE_FOR_chkhdr, target, exp, code, 2);
      
    case IQ2000_BUILTIN_PKRL:
      return expand_one_builtin (CODE_FOR_pkrl, target, exp, code, 2);

    case IQ2000_BUILTIN_CFC0:
      code[0] = CONST_INT;
      return expand_one_builtin (CODE_FOR_cfc0, target, exp, code, 1);

    case IQ2000_BUILTIN_CFC1:
      code[0] = CONST_INT;
      return expand_one_builtin (CODE_FOR_cfc1, target, exp, code, 1);

    case IQ2000_BUILTIN_CFC2:
      code[0] = CONST_INT;
      return expand_one_builtin (CODE_FOR_cfc2, target, exp, code, 1);

    case IQ2000_BUILTIN_CFC3:
      code[0] = CONST_INT;
      return expand_one_builtin (CODE_FOR_cfc3, target, exp, code, 1);

    case IQ2000_BUILTIN_CTC0:
      code[1] = CONST_INT;
      return expand_one_builtin (CODE_FOR_ctc0, target, exp, code, 2);

    case IQ2000_BUILTIN_CTC1:
      code[1] = CONST_INT;
      return expand_one_builtin (CODE_FOR_ctc1, target, exp, code, 2);

    case IQ2000_BUILTIN_CTC2:
      code[1] = CONST_INT;
      return expand_one_builtin (CODE_FOR_ctc2, target, exp, code, 2);

    case IQ2000_BUILTIN_CTC3:
      code[1] = CONST_INT;
      return expand_one_builtin (CODE_FOR_ctc3, target, exp, code, 2);

    case IQ2000_BUILTIN_MFC0:
      code[0] = CONST_INT;
      return expand_one_builtin (CODE_FOR_mfc0, target, exp, code, 1);

    case IQ2000_BUILTIN_MFC1:
      code[0] = CONST_INT;
      return expand_one_builtin (CODE_FOR_mfc1, target, exp, code, 1);

    case IQ2000_BUILTIN_MFC2:
      code[0] = CONST_INT;
      return expand_one_builtin (CODE_FOR_mfc2, target, exp, code, 1);

    case IQ2000_BUILTIN_MFC3:
      code[0] = CONST_INT;
      return expand_one_builtin (CODE_FOR_mfc3, target, exp, code, 1);

    case IQ2000_BUILTIN_MTC0:
      code[1] = CONST_INT;
      return expand_one_builtin (CODE_FOR_mtc0, target, exp, code, 2);

    case IQ2000_BUILTIN_MTC1:
      code[1] = CONST_INT;
      return expand_one_builtin (CODE_FOR_mtc1, target, exp, code, 2);

    case IQ2000_BUILTIN_MTC2:
      code[1] = CONST_INT;
      return expand_one_builtin (CODE_FOR_mtc2, target, exp, code, 2);

    case IQ2000_BUILTIN_MTC3:
      code[1] = CONST_INT;
      return expand_one_builtin (CODE_FOR_mtc3, target, exp, code, 2);

    case IQ2000_BUILTIN_LUR:
      return expand_one_builtin (CODE_FOR_lur, target, exp, code, 2);

    case IQ2000_BUILTIN_RB:
      return expand_one_builtin (CODE_FOR_rb, target, exp, code, 2);

    case IQ2000_BUILTIN_RX:
      return expand_one_builtin (CODE_FOR_rx, target, exp, code, 2);

    case IQ2000_BUILTIN_SRRD:
      return expand_one_builtin (CODE_FOR_srrd, target, exp, code, 1);

    case IQ2000_BUILTIN_SRWR:
      return expand_one_builtin (CODE_FOR_srwr, target, exp, code, 2);

    case IQ2000_BUILTIN_WB:
      return expand_one_builtin (CODE_FOR_wb, target, exp, code, 2);

    case IQ2000_BUILTIN_WX:
      return expand_one_builtin (CODE_FOR_wx, target, exp, code, 2);

    case IQ2000_BUILTIN_LUC32L:
      return expand_one_builtin (CODE_FOR_luc32l, target, exp, code, 2);

    case IQ2000_BUILTIN_LUC64:
      return expand_one_builtin (CODE_FOR_luc64, target, exp, code, 2);

    case IQ2000_BUILTIN_LUC64L:
      return expand_one_builtin (CODE_FOR_luc64l, target, exp, code, 2);

    case IQ2000_BUILTIN_LUK:
      return expand_one_builtin (CODE_FOR_luk, target, exp, code, 2);

    case IQ2000_BUILTIN_LULCK:
      return expand_one_builtin (CODE_FOR_lulck, target, exp, code, 1);

    case IQ2000_BUILTIN_LUM32:
      return expand_one_builtin (CODE_FOR_lum32, target, exp, code, 2);

    case IQ2000_BUILTIN_LUM32L:
      return expand_one_builtin (CODE_FOR_lum32l, target, exp, code, 2);

    case IQ2000_BUILTIN_LUM64:
      return expand_one_builtin (CODE_FOR_lum64, target, exp, code, 2);

    case IQ2000_BUILTIN_LUM64L:
      return expand_one_builtin (CODE_FOR_lum64l, target, exp, code, 2);

    case IQ2000_BUILTIN_LURL:
      return expand_one_builtin (CODE_FOR_lurl, target, exp, code, 2);

    case IQ2000_BUILTIN_MRGB:
      code[2] = CONST_INT;
      return expand_one_builtin (CODE_FOR_mrgb, target, exp, code, 3);

    case IQ2000_BUILTIN_SRRDL:
      return expand_one_builtin (CODE_FOR_srrdl, target, exp, code, 1);

    case IQ2000_BUILTIN_SRULCK:
      return expand_one_builtin (CODE_FOR_srulck, target, exp, code, 1);

    case IQ2000_BUILTIN_SRWRU:
      return expand_one_builtin (CODE_FOR_srwru, target, exp, code, 2);

    case IQ2000_BUILTIN_TRAPQFL:
      return expand_one_builtin (CODE_FOR_trapqfl, target, exp, code, 0);

    case IQ2000_BUILTIN_TRAPQNE:
      return expand_one_builtin (CODE_FOR_trapqne, target, exp, code, 0);

    case IQ2000_BUILTIN_TRAPREL:
      return expand_one_builtin (CODE_FOR_traprel, target, exp, code, 1);

    case IQ2000_BUILTIN_WBU:
      return expand_one_builtin (CODE_FOR_wbu, target, exp, code, 3);

    case IQ2000_BUILTIN_SYSCALL:
      return expand_one_builtin (CODE_FOR_syscall, target, exp, code, 0);
    }
  
  return NULL_RTX;
}

/* Worker function for TARGET_RETURN_IN_MEMORY.  */

static bool
iq2000_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED)
{
  return ((int_size_in_bytes (type) > (2 * UNITS_PER_WORD))
	  || (int_size_in_bytes (type) == -1));
}

/* Worker function for TARGET_SETUP_INCOMING_VARARGS.  */

static void
iq2000_setup_incoming_varargs (cumulative_args_t cum_v,
			       machine_mode mode ATTRIBUTE_UNUSED,
			       tree type ATTRIBUTE_UNUSED, int * pretend_size,
			       int no_rtl)
{
  CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
  unsigned int iq2000_off = ! cum->last_arg_fp; 
  unsigned int iq2000_fp_off = cum->last_arg_fp; 

  if ((cum->arg_words < MAX_ARGS_IN_REGISTERS - iq2000_off))
    {
      int iq2000_save_gp_regs 
	= MAX_ARGS_IN_REGISTERS - cum->arg_words - iq2000_off; 
      int iq2000_save_fp_regs 
        = (MAX_ARGS_IN_REGISTERS - cum->fp_arg_words - iq2000_fp_off); 

      if (iq2000_save_gp_regs < 0) 
	iq2000_save_gp_regs = 0; 
      if (iq2000_save_fp_regs < 0) 
	iq2000_save_fp_regs = 0; 

      *pretend_size = ((iq2000_save_gp_regs * UNITS_PER_WORD) 
                      + (iq2000_save_fp_regs * UNITS_PER_FPREG)); 

      if (! (no_rtl)) 
	{
	  if (cum->arg_words < MAX_ARGS_IN_REGISTERS - iq2000_off) 
	    {
	      rtx ptr, mem; 
	      ptr = plus_constant (Pmode, virtual_incoming_args_rtx,
				   - (iq2000_save_gp_regs
				      * UNITS_PER_WORD));
	      mem = gen_rtx_MEM (BLKmode, ptr); 
	      move_block_from_reg 
		(cum->arg_words + GP_ARG_FIRST + iq2000_off, 
		 mem, 
		 iq2000_save_gp_regs);
	    } 
	} 
    }
}

/* A C compound statement to output to stdio stream STREAM the
   assembler syntax for an instruction operand that is a memory
   reference whose address is ADDR.  ADDR is an RTL expression.  */

static void
iq2000_print_operand_address (FILE * file, rtx addr)
{
  if (!addr)
    error ("PRINT_OPERAND_ADDRESS, null pointer");

  else
    switch (GET_CODE (addr))
      {
      case REG:
	if (REGNO (addr) == ARG_POINTER_REGNUM)
	  abort_with_insn (addr, "Arg pointer not eliminated.");

	fprintf (file, "0(%s)", reg_names [REGNO (addr)]);
	break;

      case LO_SUM:
	{
	  rtx arg0 = XEXP (addr, 0);
	  rtx arg1 = XEXP (addr, 1);

	  if (GET_CODE (arg0) != REG)
	    abort_with_insn (addr,
			     "PRINT_OPERAND_ADDRESS, LO_SUM with #1 not REG.");

	  fprintf (file, "%%lo(");
	  iq2000_print_operand_address (file, arg1);
	  fprintf (file, ")(%s)", reg_names [REGNO (arg0)]);
	}
	break;

      case PLUS:
	{
	  rtx reg = 0;
	  rtx offset = 0;
	  rtx arg0 = XEXP (addr, 0);
	  rtx arg1 = XEXP (addr, 1);

	  if (GET_CODE (arg0) == REG)
	    {
	      reg = arg0;
	      offset = arg1;
	      if (GET_CODE (offset) == REG)
		abort_with_insn (addr, "PRINT_OPERAND_ADDRESS, 2 regs");
	    }

	  else if (GET_CODE (arg1) == REG)
	      reg = arg1, offset = arg0;
	  else if (CONSTANT_P (arg0) && CONSTANT_P (arg1))
	    {
	      output_addr_const (file, addr);
	      break;
	    }
	  else
	    abort_with_insn (addr, "PRINT_OPERAND_ADDRESS, no regs");

	  if (! CONSTANT_P (offset))
	    abort_with_insn (addr, "PRINT_OPERAND_ADDRESS, invalid insn #2");

	  if (REGNO (reg) == ARG_POINTER_REGNUM)
	    abort_with_insn (addr, "Arg pointer not eliminated.");

	  output_addr_const (file, offset);
	  fprintf (file, "(%s)", reg_names [REGNO (reg)]);
	}
	break;

      case LABEL_REF:
      case SYMBOL_REF:
      case CONST_INT:
      case CONST:
	output_addr_const (file, addr);
	if (GET_CODE (addr) == CONST_INT)
	  fprintf (file, "(%s)", reg_names [0]);
	break;

      default:
	abort_with_insn (addr, "PRINT_OPERAND_ADDRESS, invalid insn #1");
	break;
    }
}

/* A C compound statement to output to stdio stream FILE the
   assembler syntax for an instruction operand OP.

   LETTER is a value that can be used to specify one of several ways
   of printing the operand.  It is used when identical operands
   must be printed differently depending on the context.  LETTER
   comes from the `%' specification that was used to request
   printing of the operand.  If the specification was just `%DIGIT'
   then LETTER is 0; if the specification was `%LTR DIGIT' then LETTER
   is the ASCII code for LTR.

   If OP is a register, this macro should print the register's name.
   The names can be found in an array `reg_names' whose type is
   `char *[]'.  `reg_names' is initialized from `REGISTER_NAMES'.

   When the machine description has a specification `%PUNCT' (a `%'
   followed by a punctuation character), this macro is called with
   a null pointer for X and the punctuation character for LETTER.

   The IQ2000 specific codes are:

   'X'  X is CONST_INT, prints upper 16 bits in hexadecimal format = "0x%04x",
   'x'  X is CONST_INT, prints lower 16 bits in hexadecimal format = "0x%04x",
   'd'  output integer constant in decimal,
   'z'	if the operand is 0, use $0 instead of normal operand.
   'D'  print second part of double-word register or memory operand.
   'L'  print low-order register of double-word register operand.
   'M'  print high-order register of double-word register operand.
   'C'  print part of opcode for a branch condition.
   'F'  print part of opcode for a floating-point branch condition.
   'N'  print part of opcode for a branch condition, inverted.
   'W'  print part of opcode for a floating-point branch condition, inverted.
   'A'	Print part of opcode for a bit test condition.
   'P'  Print label for a bit test.
   'p'  Print log for a bit test.
   'B'  print 'z' for EQ, 'n' for NE
   'b'  print 'n' for EQ, 'z' for NE
   'T'  print 'f' for EQ, 't' for NE
   't'  print 't' for EQ, 'f' for NE
   'Z'  print register and a comma, but print nothing for $fcc0
   '?'	Print 'l' if we are to use a branch likely instead of normal branch.
   '@'	Print the name of the assembler temporary register (at or $1).
   '.'	Print the name of the register with a hard-wired zero (zero or $0).
   '$'	Print the name of the stack pointer register (sp or $29).
   '+'	Print the name of the gp register (gp or $28).  */

static void
iq2000_print_operand (FILE *file, rtx op, int letter)
{
  enum rtx_code code;

  if (iq2000_print_operand_punct_valid_p (letter))
    {
      switch (letter)
	{
	case '?':
	  if (iq2000_branch_likely)
	    putc ('l', file);
	  break;

	case '@':
	  fputs (reg_names [GP_REG_FIRST + 1], file);
	  break;

	case '.':
	  fputs (reg_names [GP_REG_FIRST + 0], file);
	  break;

	case '$':
	  fputs (reg_names[STACK_POINTER_REGNUM], file);
	  break;

	case '+':
	  fputs (reg_names[GP_REG_FIRST + 28], file);
	  break;

	default:
	  error ("PRINT_OPERAND: Unknown punctuation '%c'", letter);
	  break;
	}

      return;
    }

  if (! op)
    {
      error ("PRINT_OPERAND null pointer");
      return;
    }

  code = GET_CODE (op);

  if (code == SIGN_EXTEND)
    op = XEXP (op, 0), code = GET_CODE (op);

  if (letter == 'C')
    switch (code)
      {
      case EQ:	fputs ("eq",  file); break;
      case NE:	fputs ("ne",  file); break;
      case GT:	fputs ("gt",  file); break;
      case GE:	fputs ("ge",  file); break;
      case LT:	fputs ("lt",  file); break;
      case LE:	fputs ("le",  file); break;
      case GTU: fputs ("ne", file); break;
      case GEU: fputs ("geu", file); break;
      case LTU: fputs ("ltu", file); break;
      case LEU: fputs ("eq", file); break;
      default:
	abort_with_insn (op, "PRINT_OPERAND, invalid insn for %%C");
      }

  else if (letter == 'N')
    switch (code)
      {
      case EQ:	fputs ("ne",  file); break;
      case NE:	fputs ("eq",  file); break;
      case GT:	fputs ("le",  file); break;
      case GE:	fputs ("lt",  file); break;
      case LT:	fputs ("ge",  file); break;
      case LE:	fputs ("gt",  file); break;
      case GTU: fputs ("leu", file); break;
      case GEU: fputs ("ltu", file); break;
      case LTU: fputs ("geu", file); break;
      case LEU: fputs ("gtu", file); break;
      default:
	abort_with_insn (op, "PRINT_OPERAND, invalid insn for %%N");
      }

  else if (letter == 'F')
    switch (code)
      {
      case EQ: fputs ("c1f", file); break;
      case NE: fputs ("c1t", file); break;
      default:
	abort_with_insn (op, "PRINT_OPERAND, invalid insn for %%F");
      }

  else if (letter == 'W')
    switch (code)
      {
      case EQ: fputs ("c1t", file); break;
      case NE: fputs ("c1f", file); break;
      default:
	abort_with_insn (op, "PRINT_OPERAND, invalid insn for %%W");
      }

  else if (letter == 'A')
    fputs (code == LABEL_REF ? "i" : "in", file);

  else if (letter == 'P')
    {
      if (code == LABEL_REF)
	output_addr_const (file, op);
      else if (code != PC)
	output_operand_lossage ("invalid %%P operand");
    }

  else if (letter == 'p')
    {
      int value;
      if (code != CONST_INT
	  || (value = exact_log2 (INTVAL (op))) < 0)
	output_operand_lossage ("invalid %%p value");
      else
	fprintf (file, "%d", value);
    }

  else if (letter == 'Z')
    {
      gcc_unreachable ();
    }

  else if (code == REG || code == SUBREG)
    {
      int regnum;

      if (code == REG)
	regnum = REGNO (op);
      else
	regnum = true_regnum (op);

      if ((letter == 'M' && ! WORDS_BIG_ENDIAN)
	  || (letter == 'L' && WORDS_BIG_ENDIAN)
	  || letter == 'D')
	regnum++;

      fprintf (file, "%s", reg_names[regnum]);
    }

  else if (code == MEM)
    {
      if (letter == 'D')
	output_address (plus_constant (Pmode, XEXP (op, 0), 4));
      else
	output_address (XEXP (op, 0));
    }

  else if (code == CONST_DOUBLE
	   && GET_MODE_CLASS (GET_MODE (op)) == MODE_FLOAT)
    {
      char s[60];

      real_to_decimal (s, CONST_DOUBLE_REAL_VALUE (op), sizeof (s), 0, 1);
      fputs (s, file);
    }

  else if (letter == 'x' && GET_CODE (op) == CONST_INT)
    fprintf (file, HOST_WIDE_INT_PRINT_HEX, 0xffff & INTVAL(op));

  else if (letter == 'X' && GET_CODE(op) == CONST_INT)
    fprintf (file, HOST_WIDE_INT_PRINT_HEX, 0xffff & (INTVAL (op) >> 16));

  else if (letter == 'd' && GET_CODE(op) == CONST_INT)
    fprintf (file, HOST_WIDE_INT_PRINT_DEC, (INTVAL(op)));

  else if (letter == 'z' && GET_CODE (op) == CONST_INT && INTVAL (op) == 0)
    fputs (reg_names[GP_REG_FIRST], file);

  else if (letter == 'd' || letter == 'x' || letter == 'X')
    output_operand_lossage ("invalid use of %%d, %%x, or %%X");

  else if (letter == 'B')
    fputs (code == EQ ? "z" : "n", file);
  else if (letter == 'b')
    fputs (code == EQ ? "n" : "z", file);
  else if (letter == 'T')
    fputs (code == EQ ? "f" : "t", file);
  else if (letter == 't')
    fputs (code == EQ ? "t" : "f", file);

  else if (code == CONST && GET_CODE (XEXP (op, 0)) == REG)
    {
      iq2000_print_operand (file, XEXP (op, 0), letter);
    }

  else
    output_addr_const (file, op);
}

static bool
iq2000_print_operand_punct_valid_p (unsigned char code)
{
  return iq2000_print_operand_punct[code];
}

/* For the IQ2000, transform:

        memory(X + <large int>)
   into:
        Y = <large int> & ~0x7fff;
        Z = X + Y
        memory (Z + (<large int> & 0x7fff));
*/

rtx
iq2000_legitimize_address (rtx xinsn, rtx old_x ATTRIBUTE_UNUSED,
			   machine_mode mode)
{
  if (TARGET_DEBUG_B_MODE)
    {
      GO_PRINTF ("\n========== LEGITIMIZE_ADDRESS\n");
      GO_DEBUG_RTX (xinsn);
    }

  if (iq2000_check_split (xinsn, mode))
    {
      return gen_rtx_LO_SUM (Pmode,
                             copy_to_mode_reg (Pmode,
                                               gen_rtx_HIGH (Pmode, xinsn)),
                             xinsn);
    }

  if (GET_CODE (xinsn) == PLUS)
    {
      rtx xplus0 = XEXP (xinsn, 0);
      rtx xplus1 = XEXP (xinsn, 1);
      enum rtx_code code0 = GET_CODE (xplus0);
      enum rtx_code code1 = GET_CODE (xplus1);

      if (code0 != REG && code1 == REG)
        {
          xplus0 = XEXP (xinsn, 1);
          xplus1 = XEXP (xinsn, 0);
          code0 = GET_CODE (xplus0);
          code1 = GET_CODE (xplus1);
        }

      if (code0 == REG && REG_MODE_OK_FOR_BASE_P (xplus0, mode)
          && code1 == CONST_INT && !SMALL_INT (xplus1))
        {
          rtx int_reg = gen_reg_rtx (Pmode);
          rtx ptr_reg = gen_reg_rtx (Pmode);

          emit_move_insn (int_reg,
                          GEN_INT (INTVAL (xplus1) & ~ 0x7fff));

          emit_insn (gen_rtx_SET (VOIDmode,
                                  ptr_reg,
                                  gen_rtx_PLUS (Pmode, xplus0, int_reg)));

          return plus_constant (Pmode, ptr_reg, INTVAL (xplus1) & 0x7fff);
        }
    }

  if (TARGET_DEBUG_B_MODE)
    GO_PRINTF ("LEGITIMIZE_ADDRESS could not fix.\n");

  return xinsn;
}


static bool
iq2000_rtx_costs (rtx x, int code, int outer_code ATTRIBUTE_UNUSED,
		  int opno ATTRIBUTE_UNUSED, int * total,
		  bool speed ATTRIBUTE_UNUSED)
{
  machine_mode mode = GET_MODE (x);

  switch (code)
    {
    case MEM:
      {
	int num_words = (GET_MODE_SIZE (mode) > UNITS_PER_WORD) ? 2 : 1;

	if (simple_memory_operand (x, mode))
	  return COSTS_N_INSNS (num_words);

	* total = COSTS_N_INSNS (2 * num_words);
	break;
      }
      
    case FFS:
      * total = COSTS_N_INSNS (6);
      break;

    case AND:
    case IOR:
    case XOR:
    case NOT:
      * total = COSTS_N_INSNS (mode == DImode ? 2 : 1);
      break;

    case ASHIFT:
    case ASHIFTRT:
    case LSHIFTRT:
      if (mode == DImode)
	* total = COSTS_N_INSNS ((GET_CODE (XEXP (x, 1)) == CONST_INT) ? 4 : 12);
      else
	* total = COSTS_N_INSNS (1);
    break;								

    case ABS:
      if (mode == SFmode || mode == DFmode)
	* total = COSTS_N_INSNS (1);
      else
	* total = COSTS_N_INSNS (4);
      break;
    
    case PLUS:
    case MINUS:
      if (mode == SFmode || mode == DFmode)
	* total = COSTS_N_INSNS (6);
      else if (mode == DImode)
	* total = COSTS_N_INSNS (4);
      else
	* total = COSTS_N_INSNS (1);
      break;
    
    case NEG:
      * total = (mode == DImode) ? 4 : 1;
      break;

    case MULT:
      if (mode == SFmode)
	* total = COSTS_N_INSNS (7);
      else if (mode == DFmode)
	* total = COSTS_N_INSNS (8);
      else
	* total = COSTS_N_INSNS (10);
      break;

    case DIV:
    case MOD:
      if (mode == SFmode)
	* total = COSTS_N_INSNS (23);
      else if (mode == DFmode)
	* total = COSTS_N_INSNS (36);
      else
	* total = COSTS_N_INSNS (69);
      break;
      
    case UDIV:
    case UMOD:
      * total = COSTS_N_INSNS (69);
      break;
      
    case SIGN_EXTEND:
      * total = COSTS_N_INSNS (2);
      break;
    
    case ZERO_EXTEND:
      * total = COSTS_N_INSNS (1);
      break;

    case CONST_INT:
      * total = 0;
      break;
    
    case LABEL_REF:
      * total = COSTS_N_INSNS (2);
      break;

    case CONST:
      {
	rtx offset = const0_rtx;
	rtx symref = eliminate_constant_term (XEXP (x, 0), & offset);

	if (GET_CODE (symref) == LABEL_REF)
	  * total = COSTS_N_INSNS (2);
	else if (GET_CODE (symref) != SYMBOL_REF)
	  * total = COSTS_N_INSNS (4);
	/* Let's be paranoid....  */
	else if (INTVAL (offset) < -32768 || INTVAL (offset) > 32767)
	  * total = COSTS_N_INSNS (2);
	else
	  * total = COSTS_N_INSNS (SYMBOL_REF_FLAG (symref) ? 1 : 2);
	break;
      }

    case SYMBOL_REF:
      * total = COSTS_N_INSNS (SYMBOL_REF_FLAG (x) ? 1 : 2);
      break;
    
    case CONST_DOUBLE:
      {
	rtx high, low;
      
	split_double (x, & high, & low);
      
	* total = COSTS_N_INSNS (  (high == CONST0_RTX (GET_MODE (high))
				  || low == CONST0_RTX (GET_MODE (low)))
				   ? 2 : 4);
	break;
      }
    
    default:
      return false;
    }
  return true;
}

/* Worker for TARGET_ASM_TRAMPOLINE_TEMPLATE.  */

static void
iq2000_asm_trampoline_template (FILE *f)
{
  fprintf (f, "\t.word\t0x03e00821\t\t# move   $1,$31\n");
  fprintf (f, "\t.word\t0x04110001\t\t# bgezal $0,.+8\n");
  fprintf (f, "\t.word\t0x00000000\t\t# nop\n");
  if (Pmode == DImode)
    {
      fprintf (f, "\t.word\t0xdfe30014\t\t# ld     $3,20($31)\n");
      fprintf (f, "\t.word\t0xdfe2001c\t\t# ld     $2,28($31)\n");
    }
  else
    {
      fprintf (f, "\t.word\t0x8fe30014\t\t# lw     $3,20($31)\n");
      fprintf (f, "\t.word\t0x8fe20018\t\t# lw     $2,24($31)\n");
    }
  fprintf (f, "\t.word\t0x0060c821\t\t# move   $25,$3 (abicalls)\n");
  fprintf (f, "\t.word\t0x00600008\t\t# jr     $3\n");
  fprintf (f, "\t.word\t0x0020f821\t\t# move   $31,$1\n");
  fprintf (f, "\t.word\t0x00000000\t\t# <function address>\n");
  fprintf (f, "\t.word\t0x00000000\t\t# <static chain value>\n");
}

/* Worker for TARGET_TRAMPOLINE_INIT.  */

static void
iq2000_trampoline_init (rtx m_tramp, tree fndecl, rtx chain_value)
{
  rtx fnaddr = XEXP (DECL_RTL (fndecl), 0);
  rtx mem;

  emit_block_move (m_tramp, assemble_trampoline_template (),
		   GEN_INT (TRAMPOLINE_CODE_SIZE), BLOCK_OP_NORMAL);

  mem = adjust_address (m_tramp, Pmode, TRAMPOLINE_CODE_SIZE);
  emit_move_insn (mem, fnaddr);
  mem = adjust_address (m_tramp, Pmode,
			TRAMPOLINE_CODE_SIZE + GET_MODE_SIZE (Pmode));
  emit_move_insn (mem, chain_value);
}

#include "gt-iq2000.h"