1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
|
/* Definitions of target machine for GNU compiler for Intel X86
(386, 486, Pentium).
Copyright (C) 1988, 92, 94, 95, 96, 97, 1998 Free Software Foundation, Inc.
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
/* The purpose of this file is to define the characteristics of the i386,
independent of assembler syntax or operating system.
Three other files build on this one to describe a specific assembler syntax:
bsd386.h, att386.h, and sun386.h.
The actual tm.h file for a particular system should include
this file, and then the file for the appropriate assembler syntax.
Many macros that specify assembler syntax are omitted entirely from
this file because they really belong in the files for particular
assemblers. These include AS1, AS2, AS3, RP, IP, LPREFIX, L_SIZE,
PUT_OP_SIZE, USE_STAR, ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE,
PRINT_B_I_S, and many that start with ASM_ or end in ASM_OP. */
/* Names to predefine in the preprocessor for this target machine. */
#define I386 1
/* Stubs for half-pic support if not OSF/1 reference platform. */
#ifndef HALF_PIC_P
#define HALF_PIC_P() 0
#define HALF_PIC_NUMBER_PTRS 0
#define HALF_PIC_NUMBER_REFS 0
#define HALF_PIC_ENCODE(DECL)
#define HALF_PIC_DECLARE(NAME)
#define HALF_PIC_INIT() error ("half-pic init called on systems that don't support it.")
#define HALF_PIC_ADDRESS_P(X) 0
#define HALF_PIC_PTR(X) X
#define HALF_PIC_FINISH(STREAM)
#endif
/* Define the specific costs for a given cpu */
struct processor_costs {
int add; /* cost of an add instruction */
int lea; /* cost of a lea instruction */
int shift_var; /* variable shift costs */
int shift_const; /* constant shift costs */
int mult_init; /* cost of starting a multiply */
int mult_bit; /* cost of multiply per each bit set */
int divide; /* cost of a divide/mod */
};
extern struct processor_costs *ix86_cost;
/* Run-time compilation parameters selecting different hardware subsets. */
extern int target_flags;
/* Macros used in the machine description to test the flags. */
/* configure can arrange to make this 2, to force a 486. */
#ifndef TARGET_CPU_DEFAULT
#define TARGET_CPU_DEFAULT 0
#endif
/* Masks for the -m switches */
#define MASK_80387 000000000001 /* Hardware floating point */
#define MASK_NOTUSED1 000000000002 /* bit not currently used */
#define MASK_NOTUSED2 000000000004 /* bit not currently used */
#define MASK_RTD 000000000010 /* Use ret that pops args */
#define MASK_ALIGN_DOUBLE 000000000020 /* align doubles to 2 word boundary */
#define MASK_SVR3_SHLIB 000000000040 /* Uninit locals into bss */
#define MASK_IEEE_FP 000000000100 /* IEEE fp comparisons */
#define MASK_FLOAT_RETURNS 000000000200 /* Return float in st(0) */
#define MASK_NO_FANCY_MATH_387 000000000400 /* Disable sin, cos, sqrt */
#define MASK_OMIT_LEAF_FRAME_POINTER 0x00000800 /* omit leaf frame pointers */
/* Temporary codegen switches */
#define MASK_DEBUG_ADDR 000001000000 /* Debug GO_IF_LEGITIMATE_ADDRESS */
#define MASK_NO_WIDE_MULTIPLY 000002000000 /* Disable 32x32->64 multiplies */
#define MASK_NO_MOVE 000004000000 /* Don't generate mem->mem */
#define MASK_NO_PSEUDO 000010000000 /* Move op's args -> pseudos */
#define MASK_DEBUG_ARG 000020000000 /* Debug function_arg */
#define MASK_SCHEDULE_PROLOGUE 000040000000 /* Emit prologue as rtl */
#define MASK_STACK_PROBE 000100000000 /* Enable stack probing */
/* Use the floating point instructions */
#define TARGET_80387 (target_flags & MASK_80387)
/* Compile using ret insn that pops args.
This will not work unless you use prototypes at least
for all functions that can take varying numbers of args. */
#define TARGET_RTD (target_flags & MASK_RTD)
/* Align doubles to a two word boundary. This breaks compatibility with
the published ABI's for structures containing doubles, but produces
faster code on the pentium. */
#define TARGET_ALIGN_DOUBLE (target_flags & MASK_ALIGN_DOUBLE)
/* Put uninitialized locals into bss, not data.
Meaningful only on svr3. */
#define TARGET_SVR3_SHLIB (target_flags & MASK_SVR3_SHLIB)
/* Use IEEE floating point comparisons. These handle correctly the cases
where the result of a comparison is unordered. Normally SIGFPE is
generated in such cases, in which case this isn't needed. */
#define TARGET_IEEE_FP (target_flags & MASK_IEEE_FP)
/* Functions that return a floating point value may return that value
in the 387 FPU or in 386 integer registers. If set, this flag causes
the 387 to be used, which is compatible with most calling conventions. */
#define TARGET_FLOAT_RETURNS_IN_80387 (target_flags & MASK_FLOAT_RETURNS)
/* Disable generation of FP sin, cos and sqrt operations for 387.
This is because FreeBSD lacks these in the math-emulator-code */
#define TARGET_NO_FANCY_MATH_387 (target_flags & MASK_NO_FANCY_MATH_387)
/* Don't create frame pointers for leaf functions */
#define TARGET_OMIT_LEAF_FRAME_POINTER (target_flags & MASK_OMIT_LEAF_FRAME_POINTER)
/* Temporary switches for tuning code generation */
/* Disable 32x32->64 bit multiplies that are used for long long multiplies
and division by constants, but sometimes cause reload problems. */
#define TARGET_NO_WIDE_MULTIPLY (target_flags & MASK_NO_WIDE_MULTIPLY)
#define TARGET_WIDE_MULTIPLY (!TARGET_NO_WIDE_MULTIPLY)
/* Emit/Don't emit prologue as rtl */
#define TARGET_SCHEDULE_PROLOGUE (target_flags & MASK_SCHEDULE_PROLOGUE)
/* Debug GO_IF_LEGITIMATE_ADDRESS */
#define TARGET_DEBUG_ADDR (target_flags & MASK_DEBUG_ADDR)
/* Debug FUNCTION_ARG macros */
#define TARGET_DEBUG_ARG (target_flags & MASK_DEBUG_ARG)
/* Hack macros for tuning code generation */
#define TARGET_MOVE ((target_flags & MASK_NO_MOVE) == 0) /* Don't generate memory->memory */
#define TARGET_PSEUDO ((target_flags & MASK_NO_PSEUDO) == 0) /* Move op's args into pseudos */
#define TARGET_386 (ix86_cpu == PROCESSOR_I386)
#define TARGET_486 (ix86_cpu == PROCESSOR_I486)
#define TARGET_PENTIUM (ix86_cpu == PROCESSOR_PENTIUM)
#define TARGET_PENTIUMPRO (ix86_cpu == PROCESSOR_PENTIUMPRO)
#define TARGET_K6 (ix86_cpu == PROCESSOR_K6)
#define CPUMASK (1 << ix86_cpu)
extern const int x86_use_leave, x86_push_memory, x86_zero_extend_with_and;
extern const int x86_use_bit_test, x86_cmove, x86_deep_branch;
extern const int x86_unroll_strlen, x86_use_q_reg, x86_use_any_reg;
extern const int x86_double_with_add;
#define TARGET_USE_LEAVE (x86_use_leave & CPUMASK)
#define TARGET_PUSH_MEMORY (x86_push_memory & CPUMASK)
#define TARGET_ZERO_EXTEND_WITH_AND (x86_zero_extend_with_and & CPUMASK)
#define TARGET_USE_BIT_TEST (x86_use_bit_test & CPUMASK)
#define TARGET_UNROLL_STRLEN (x86_unroll_strlen & CPUMASK)
#define TARGET_USE_Q_REG (x86_use_q_reg & CPUMASK)
#define TARGET_USE_ANY_REG (x86_use_any_reg & CPUMASK)
#define TARGET_CMOVE (x86_cmove & (1 << ix86_arch))
#define TARGET_DEEP_BRANCH_PREDICTION (x86_deep_branch & CPUMASK)
#define TARGET_DOUBLE_WITH_ADD (x86_double_with_add & CPUMASK)
#define TARGET_STACK_PROBE (target_flags & MASK_STACK_PROBE)
#define TARGET_SWITCHES \
{ { "80387", MASK_80387, "Use hardware fp" }, \
{ "no-80387", -MASK_80387, "Do not use hardware fp" },\
{ "hard-float", MASK_80387, "Use hardware fp" }, \
{ "soft-float", -MASK_80387, "Do not use hardware fp" },\
{ "no-soft-float", MASK_80387, "Use hardware fp" }, \
{ "386", 0, "Same as -mcpu=i386" }, \
{ "486", 0, "Same as -mcpu=i486" }, \
{ "pentium", 0, "Same as -mcpu=pentium" }, \
{ "pentiumpro", 0, "Same as -mcpu=pentiumpro" }, \
{ "rtd", MASK_RTD, "Alternate calling convention" },\
{ "no-rtd", -MASK_RTD, "Use normal calling convention" },\
{ "align-double", MASK_ALIGN_DOUBLE, "Align some doubles on dword boundary" },\
{ "no-align-double", -MASK_ALIGN_DOUBLE, "Align doubles on word boundary" }, \
{ "svr3-shlib", MASK_SVR3_SHLIB, "Uninitialized locals in .bss" }, \
{ "no-svr3-shlib", -MASK_SVR3_SHLIB, "Uninitialized locals in .data" }, \
{ "ieee-fp", MASK_IEEE_FP, "Use IEEE math for fp comparisons" }, \
{ "no-ieee-fp", -MASK_IEEE_FP, "Do not use IEEE math for fp comparisons" }, \
{ "fp-ret-in-387", MASK_FLOAT_RETURNS, "Return values of functions in FPU registers" }, \
{ "no-fp-ret-in-387", -MASK_FLOAT_RETURNS , "Do not return values of functions in FPU registers"}, \
{ "no-fancy-math-387", MASK_NO_FANCY_MATH_387, "Do not generate sin, cos, sqrt for 387" }, \
{ "fancy-math-387", -MASK_NO_FANCY_MATH_387, "Generate sin, cos, sqrt for FPU"}, \
{ "omit-leaf-frame-pointer", MASK_OMIT_LEAF_FRAME_POINTER, "Omit the frame pointer in leaf functions" }, \
{ "no-omit-leaf-frame-pointer",-MASK_OMIT_LEAF_FRAME_POINTER, "" }, \
{ "no-wide-multiply", MASK_NO_WIDE_MULTIPLY, "multiplies of 32 bits constrained to 32 bits" }, \
{ "wide-multiply", -MASK_NO_WIDE_MULTIPLY, "multiplies of 32 bits are 64 bits" }, \
{ "schedule-prologue", MASK_SCHEDULE_PROLOGUE, "Schedule function prologues" }, \
{ "no-schedule-prologue", -MASK_SCHEDULE_PROLOGUE, "" }, \
{ "debug-addr", MASK_DEBUG_ADDR, 0 /* intentionally undoc */ }, \
{ "no-debug-addr", -MASK_DEBUG_ADDR, 0 /* intentionally undoc */ }, \
{ "move", -MASK_NO_MOVE, "Generate mem-mem moves" }, \
{ "no-move", MASK_NO_MOVE, "Don't generate mem-mem moves" }, \
{ "debug-arg", MASK_DEBUG_ARG, 0 /* intentionally undoc */ }, \
{ "no-debug-arg", -MASK_DEBUG_ARG, 0 /* intentionally undoc */ }, \
{ "stack-arg-probe", MASK_STACK_PROBE, "Enable stack probing" }, \
{ "no-stack-arg-probe", -MASK_STACK_PROBE, "" }, \
{ "windows", 0, 0 /* intentionally undoc */ }, \
{ "dll", 0, 0 /* intentionally undoc */ }, \
SUBTARGET_SWITCHES \
{ "", MASK_SCHEDULE_PROLOGUE | TARGET_DEFAULT, 0 }}
/* Which processor to schedule for. The cpu attribute defines a list that
mirrors this list, so changes to i386.md must be made at the same time. */
enum processor_type
{PROCESSOR_I386, /* 80386 */
PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
PROCESSOR_PENTIUM,
PROCESSOR_PENTIUMPRO,
PROCESSOR_K6};
#define PROCESSOR_I386_STRING "i386"
#define PROCESSOR_I486_STRING "i486"
#define PROCESSOR_I586_STRING "i586"
#define PROCESSOR_PENTIUM_STRING "pentium"
#define PROCESSOR_I686_STRING "i686"
#define PROCESSOR_PENTIUMPRO_STRING "pentiumpro"
#define PROCESSOR_K6_STRING "k6"
extern enum processor_type ix86_cpu;
extern int ix86_arch;
/* Define the default processor. This is overridden by other tm.h files. */
#define PROCESSOR_DEFAULT (enum processor_type) TARGET_CPU_DEFAULT
#define PROCESSOR_DEFAULT_STRING \
(PROCESSOR_DEFAULT == PROCESSOR_I486 ? PROCESSOR_I486_STRING \
: PROCESSOR_DEFAULT == PROCESSOR_PENTIUM ? PROCESSOR_PENTIUM_STRING \
: PROCESSOR_DEFAULT == PROCESSOR_PENTIUMPRO ? PROCESSOR_PENTIUMPRO_STRING \
: PROCESSOR_DEFAULT == PROCESSOR_K6 ? PROCESSOR_K6_STRING \
: PROCESSOR_I386_STRING)
/* This macro is similar to `TARGET_SWITCHES' but defines names of
command options that have values. Its definition is an
initializer with a subgrouping for each command option.
Each subgrouping contains a string constant, that defines the
fixed part of the option name, and the address of a variable. The
variable, type `char *', is set to the variable part of the given
option if the fixed part matches. The actual option name is made
by appending `-m' to the specified name. */
#define TARGET_OPTIONS \
{ { "cpu=", &ix86_cpu_string, "Schedule code for given CPU"}, \
{ "arch=", &ix86_arch_string, "Generate code for given CPU"}, \
{ "reg-alloc=", &i386_reg_alloc_order, "Control allocation order of integer registers" }, \
{ "regparm=", &i386_regparm_string, "Number of registers used to pass integer arguments" }, \
{ "align-loops=", &i386_align_loops_string, "Loop code aligned to this power of 2" }, \
{ "align-jumps=", &i386_align_jumps_string, "Jump targets are aligned to this power of 2" }, \
{ "align-functions=", &i386_align_funcs_string, "Function starts are aligned to this power of 2" }, \
{ "preferred-stack-boundary=", &i386_preferred_stack_boundary_string, "Attempt to keep stack aligned to this power of 2" }, \
{ "branch-cost=", &i386_branch_cost_string, "Branches are this expensive (1-5, arbitrary units)" }, \
SUBTARGET_OPTIONS \
}
/* Sometimes certain combinations of command options do not make
sense on a particular target machine. You can define a macro
`OVERRIDE_OPTIONS' to take account of this. This macro, if
defined, is executed once just after all the command options have
been parsed.
Don't use this macro to turn on various extra optimizations for
`-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
#define OVERRIDE_OPTIONS override_options ()
/* These are meant to be redefined in the host dependent files */
#define SUBTARGET_SWITCHES
#define SUBTARGET_OPTIONS
/* Define this to change the optimizations performed by default. */
#define OPTIMIZATION_OPTIONS(LEVEL,SIZE) optimization_options(LEVEL,SIZE)
/* Specs for the compiler proper */
#ifndef CC1_CPU_SPEC
#define CC1_CPU_SPEC "\
%{!mcpu*: \
%{m386:-mcpu=i386 -march=i386} \
%{m486:-mcpu=i486 -march=i486} \
%{mpentium:-mcpu=pentium} \
%{mpentiumpro:-mcpu=pentiumpro}}"
#endif
#define CPP_486_SPEC "%{!ansi:-Di486} -D__i486 -D__i486__"
#define CPP_586_SPEC "%{!ansi:-Di586 -Dpentium} \
-D__i586 -D__i586__ -D__pentium -D__pentium__"
#define CPP_K6_SPEC "%{!ansi:-Di586 -Dk6} \
-D__i586 -D__i586__ -D__k6 -D__k6__"
#define CPP_686_SPEC "%{!ansi:-Di686 -Dpentiumpro} \
-D__i686 -D__i686__ -D__pentiumpro -D__pentiumpro__"
#ifndef CPP_CPU_DEFAULT_SPEC
#if TARGET_CPU_DEFAULT == 1
#define CPP_CPU_DEFAULT_SPEC "%(cpp_486)"
#endif
#if TARGET_CPU_DEFAULT == 2
#define CPP_CPU_DEFAULT_SPEC "%(cpp_586)"
#endif
#if TARGET_CPU_DEFAULT == 3
#define CPP_CPU_DEFAULT_SPEC "%(cpp_686)"
#endif
#if TARGET_CPU_DEFAULT == 4
#define CPP_CPU_DEFAULT_SPEC "%(cpp_k6)"
#endif
#ifndef CPP_CPU_DEFAULT_SPEC
#define CPP_CPU_DEFAULT_SPEC ""
#endif
#endif /* CPP_CPU_DEFAULT_SPEC */
#ifndef CPP_CPU_SPEC
#define CPP_CPU_SPEC "\
-Acpu(i386) -Amachine(i386) \
%{!ansi:-Di386} -D__i386 -D__i386__ \
%{mcpu=i486:%(cpp_486)} %{m486:%(cpp_486)} \
%{mpentium:%(cpp_586)} %{mcpu=pentium:%(cpp_586)} \
%{mpentiumpro:%(cpp_686)} %{mcpu=pentiumpro:%(cpp_686)} \
%{mcpu=k6:%(cpp_k6)} \
%{!mcpu*:%{!m486:%{!mpentium*:%(cpp_cpu_default)}}}"
#endif
#ifndef CC1_SPEC
#define CC1_SPEC "%(cc1_spec) "
#endif
/* This macro defines names of additional specifications to put in the
specs that can be used in various specifications like CC1_SPEC. Its
definition is an initializer with a subgrouping for each command option.
Each subgrouping contains a string constant, that defines the
specification name, and a string constant that used by the GNU CC driver
program.
Do not define this macro if it does not need to do anything. */
#ifndef SUBTARGET_EXTRA_SPECS
#define SUBTARGET_EXTRA_SPECS
#endif
#define EXTRA_SPECS \
{ "cpp_486", CPP_486_SPEC}, \
{ "cpp_586", CPP_586_SPEC}, \
{ "cpp_k6", CPP_K6_SPEC}, \
{ "cpp_686", CPP_686_SPEC}, \
{ "cpp_cpu_default", CPP_CPU_DEFAULT_SPEC }, \
{ "cpp_cpu", CPP_CPU_SPEC }, \
{ "cc1_cpu", CC1_CPU_SPEC }, \
SUBTARGET_EXTRA_SPECS
/* target machine storage layout */
/* Define for XFmode extended real floating point support.
This will automatically cause REAL_ARITHMETIC to be defined. */
#define LONG_DOUBLE_TYPE_SIZE 96
/* Define if you don't want extended real, but do want to use the
software floating point emulator for REAL_ARITHMETIC and
decimal <-> binary conversion. */
/* #define REAL_ARITHMETIC */
/* Define this if most significant byte of a word is the lowest numbered. */
/* That is true on the 80386. */
#define BITS_BIG_ENDIAN 0
/* Define this if most significant byte of a word is the lowest numbered. */
/* That is not true on the 80386. */
#define BYTES_BIG_ENDIAN 0
/* Define this if most significant word of a multiword number is the lowest
numbered. */
/* Not true for 80386 */
#define WORDS_BIG_ENDIAN 0
/* number of bits in an addressable storage unit */
#define BITS_PER_UNIT 8
/* Width in bits of a "word", which is the contents of a machine register.
Note that this is not necessarily the width of data type `int';
if using 16-bit ints on a 80386, this would still be 32.
But on a machine with 16-bit registers, this would be 16. */
#define BITS_PER_WORD 32
/* Width of a word, in units (bytes). */
#define UNITS_PER_WORD 4
/* Width in bits of a pointer.
See also the macro `Pmode' defined below. */
#define POINTER_SIZE 32
/* Allocation boundary (in *bits*) for storing arguments in argument list. */
#define PARM_BOUNDARY 32
/* Boundary (in *bits*) on which the stack pointer must be aligned. */
#define STACK_BOUNDARY 32
/* Boundary (in *bits*) on which the stack pointer preferrs to be
aligned; the compiler cannot rely on having this alignment. */
#define PREFERRED_STACK_BOUNDARY i386_preferred_stack_boundary
/* Allocation boundary (in *bits*) for the code of a function.
For i486, we get better performance by aligning to a cache
line (i.e. 16 byte) boundary. */
#define FUNCTION_BOUNDARY (1 << (i386_align_funcs + 3))
/* Alignment of field after `int : 0' in a structure. */
#define EMPTY_FIELD_BOUNDARY 32
/* Minimum size in bits of the largest boundary to which any
and all fundamental data types supported by the hardware
might need to be aligned. No data type wants to be aligned
rounder than this. The i386 supports 64-bit floating point
quantities, but these can be aligned on any 32-bit boundary.
The published ABIs say that doubles should be aligned on word
boundaries, but the Pentium gets better performance with them
aligned on 64 bit boundaries. */
#define BIGGEST_ALIGNMENT (TARGET_ALIGN_DOUBLE ? 64 : 32)
/* If defined, a C expression to compute the alignment given to a
constant that is being placed in memory. CONSTANT is the constant
and ALIGN is the alignment that the object would ordinarily have.
The value of this macro is used instead of that alignment to align
the object.
If this macro is not defined, then ALIGN is used.
The typical use of this macro is to increase alignment for string
constants to be word aligned so that `strcpy' calls that copy
constants can be done inline. */
#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
(TREE_CODE (EXP) == REAL_CST \
? ((TYPE_MODE (TREE_TYPE (EXP)) == DFmode && (ALIGN) < 64) \
? 64 \
: (TYPE_MODE (TREE_TYPE (EXP)) == XFmode && (ALIGN) < 128) \
? 128 \
: (ALIGN)) \
: TREE_CODE (EXP) == STRING_CST \
? ((TREE_STRING_LENGTH (EXP) >= 31 && (ALIGN) < 256) \
? 256 \
: (ALIGN)) \
: (ALIGN))
/* If defined, a C expression to compute the alignment for a static
variable. TYPE is the data type, and ALIGN is the alignment that
the object would ordinarily have. The value of this macro is used
instead of that alignment to align the object.
If this macro is not defined, then ALIGN is used.
One use of this macro is to increase alignment of medium-size
data to make it all fit in fewer cache lines. Another is to
cause character arrays to be word-aligned so that `strcpy' calls
that copy constants to character arrays can be done inline. */
#define DATA_ALIGNMENT(TYPE, ALIGN) \
((AGGREGATE_TYPE_P (TYPE) \
&& TYPE_SIZE (TYPE) \
&& TREE_CODE (TYPE_SIZE (TYPE)) == INTEGER_CST \
&& (TREE_INT_CST_LOW (TYPE_SIZE (TYPE)) >= 256 \
|| TREE_INT_CST_HIGH (TYPE_SIZE (TYPE))) && (ALIGN) < 256) \
? 256 \
: TREE_CODE (TYPE) == ARRAY_TYPE \
? ((TYPE_MODE (TREE_TYPE (TYPE)) == DFmode && (ALIGN) < 64) \
? 64 \
: (TYPE_MODE (TREE_TYPE (TYPE)) == XFmode && (ALIGN) < 128) \
? 128 \
: (ALIGN)) \
: TREE_CODE (TYPE) == COMPLEX_TYPE \
? ((TYPE_MODE (TYPE) == DCmode && (ALIGN) < 64) \
? 64 \
: (TYPE_MODE (TYPE) == XCmode && (ALIGN) < 128) \
? 128 \
: (ALIGN)) \
: ((TREE_CODE (TYPE) == RECORD_TYPE \
|| TREE_CODE (TYPE) == UNION_TYPE \
|| TREE_CODE (TYPE) == QUAL_UNION_TYPE) \
&& TYPE_FIELDS (TYPE)) \
? ((DECL_MODE (TYPE_FIELDS (TYPE)) == DFmode && (ALIGN) < 64) \
? 64 \
: (DECL_MODE (TYPE_FIELDS (TYPE)) == XFmode && (ALIGN) < 128) \
? 128 \
: (ALIGN)) \
: TREE_CODE (TYPE) == REAL_TYPE \
? ((TYPE_MODE (TYPE) == DFmode && (ALIGN) < 64) \
? 64 \
: (TYPE_MODE (TYPE) == XFmode && (ALIGN) < 128) \
? 128 \
: (ALIGN)) \
: (ALIGN))
/* If defined, a C expression to compute the alignment for a local
variable. TYPE is the data type, and ALIGN is the alignment that
the object would ordinarily have. The value of this macro is used
instead of that alignment to align the object.
If this macro is not defined, then ALIGN is used.
One use of this macro is to increase alignment of medium-size
data to make it all fit in fewer cache lines. */
#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
(TREE_CODE (TYPE) == ARRAY_TYPE \
? ((TYPE_MODE (TREE_TYPE (TYPE)) == DFmode && (ALIGN) < 64) \
? 64 \
: (TYPE_MODE (TREE_TYPE (TYPE)) == XFmode && (ALIGN) < 128) \
? 128 \
: (ALIGN)) \
: TREE_CODE (TYPE) == COMPLEX_TYPE \
? ((TYPE_MODE (TYPE) == DCmode && (ALIGN) < 64) \
? 64 \
: (TYPE_MODE (TYPE) == XCmode && (ALIGN) < 128) \
? 128 \
: (ALIGN)) \
: ((TREE_CODE (TYPE) == RECORD_TYPE \
|| TREE_CODE (TYPE) == UNION_TYPE \
|| TREE_CODE (TYPE) == QUAL_UNION_TYPE) \
&& TYPE_FIELDS (TYPE)) \
? ((DECL_MODE (TYPE_FIELDS (TYPE)) == DFmode && (ALIGN) < 64) \
? 64 \
: (DECL_MODE (TYPE_FIELDS (TYPE)) == XFmode && (ALIGN) < 128) \
? 128 \
: (ALIGN)) \
: TREE_CODE (TYPE) == REAL_TYPE \
? ((TYPE_MODE (TYPE) == DFmode && (ALIGN) < 64) \
? 64 \
: (TYPE_MODE (TYPE) == XFmode && (ALIGN) < 128) \
? 128 \
: (ALIGN)) \
: (ALIGN))
/* Set this non-zero if move instructions will actually fail to work
when given unaligned data. */
#define STRICT_ALIGNMENT 0
/* If bit field type is int, don't let it cross an int,
and give entire struct the alignment of an int. */
/* Required on the 386 since it doesn't have bitfield insns. */
#define PCC_BITFIELD_TYPE_MATTERS 1
/* Maximum power of 2 that code can be aligned to. */
#define MAX_CODE_ALIGN 6 /* 64 byte alignment */
/* Align loop starts for optimal branching. */
#define LOOP_ALIGN(LABEL) (i386_align_loops)
#define LOOP_ALIGN_MAX_SKIP (i386_align_loops_string ? 0 : 7)
/* This is how to align an instruction for optimal branching.
On i486 we'll get better performance by aligning on a
cache line (i.e. 16 byte) boundary. */
#define LABEL_ALIGN_AFTER_BARRIER(LABEL) (i386_align_jumps)
#define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP (i386_align_jumps_string ? 0 : 7)
/* Standard register usage. */
/* This processor has special stack-like registers. See reg-stack.c
for details. */
#define STACK_REGS
#define IS_STACK_MODE(mode) (mode==DFmode || mode==SFmode || mode==XFmode)
/* Number of actual hardware registers.
The hardware registers are assigned numbers for the compiler
from 0 to just below FIRST_PSEUDO_REGISTER.
All registers that the compiler knows about must be given numbers,
even those that are not normally considered general registers.
In the 80386 we give the 8 general purpose registers the numbers 0-7.
We number the floating point registers 8-15.
Note that registers 0-7 can be accessed as a short or int,
while only 0-3 may be used with byte `mov' instructions.
Reg 16 does not correspond to any hardware register, but instead
appears in the RTL as an argument pointer prior to reload, and is
eliminated during reloading in favor of either the stack or frame
pointer. */
#define FIRST_PSEUDO_REGISTER 17
/* 1 for registers that have pervasive standard uses
and are not available for the register allocator.
On the 80386, the stack pointer is such, as is the arg pointer. */
#define FIXED_REGISTERS \
/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7,arg*/ \
{ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1 }
/* 1 for registers not available across function calls.
These must include the FIXED_REGISTERS and also any
registers that can be used without being saved.
The latter must include the registers where values are returned
and the register where structure-value addresses are passed.
Aside from that, you can include as many other registers as you like. */
#define CALL_USED_REGISTERS \
/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7,arg*/ \
{ 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }
/* Order in which to allocate registers. Each register must be
listed once, even those in FIXED_REGISTERS. List frame pointer
late and fixed registers last. Note that, in general, we prefer
registers listed in CALL_USED_REGISTERS, keeping the others
available for storage of persistent values.
Three different versions of REG_ALLOC_ORDER have been tried:
If the order is edx, ecx, eax, ... it produces a slightly faster compiler,
but slower code on simple functions returning values in eax.
If the order is eax, ecx, edx, ... it causes reload to abort when compiling
perl 4.036 due to not being able to create a DImode register (to hold a 2
word union).
If the order is eax, edx, ecx, ... it produces better code for simple
functions, and a slightly slower compiler. Users complained about the code
generated by allocating edx first, so restore the 'natural' order of things. */
#define REG_ALLOC_ORDER \
/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7,arg*/ \
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 }
/* A C statement (sans semicolon) to choose the order in which to
allocate hard registers for pseudo-registers local to a basic
block.
Store the desired register order in the array `reg_alloc_order'.
Element 0 should be the register to allocate first; element 1, the
next register; and so on.
The macro body should not assume anything about the contents of
`reg_alloc_order' before execution of the macro.
On most machines, it is not necessary to define this macro. */
#define ORDER_REGS_FOR_LOCAL_ALLOC order_regs_for_local_alloc ()
/* Macro to conditionally modify fixed_regs/call_used_regs. */
#define CONDITIONAL_REGISTER_USAGE \
{ \
if (flag_pic) \
{ \
fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
} \
if (! TARGET_80387 && ! TARGET_FLOAT_RETURNS_IN_80387) \
{ \
int i; \
HARD_REG_SET x; \
COPY_HARD_REG_SET (x, reg_class_contents[(int)FLOAT_REGS]); \
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++ ) \
if (TEST_HARD_REG_BIT (x, i)) \
fixed_regs[i] = call_used_regs[i] = 1; \
} \
}
/* Return number of consecutive hard regs needed starting at reg REGNO
to hold something of mode MODE.
This is ordinarily the length in words of a value of mode MODE
but can be less for certain modes in special long registers.
Actually there are no two word move instructions for consecutive
registers. And only registers 0-3 may have mov byte instructions
applied to them.
*/
#define HARD_REGNO_NREGS(REGNO, MODE) \
(FP_REGNO_P (REGNO) ? 1 \
: ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
On the 80386, the first 4 cpu registers can hold any mode
while the floating point registers may hold only floating point.
Make it clear that the fp regs could not hold a 16-byte float. */
/* The casts to int placate a compiler on a microvax,
for cross-compiler testing. */
#define HARD_REGNO_MODE_OK(REGNO, MODE) \
((REGNO) < 4 ? 1 \
: FP_REGNO_P (REGNO) \
? (((int) GET_MODE_CLASS (MODE) == (int) MODE_FLOAT \
|| (int) GET_MODE_CLASS (MODE) == (int) MODE_COMPLEX_FLOAT) \
&& GET_MODE_UNIT_SIZE (MODE) <= (LONG_DOUBLE_TYPE_SIZE == 96 ? 12 : 8))\
: (int) (MODE) != (int) QImode ? 1 \
: (reload_in_progress | reload_completed) == 1)
/* Value is 1 if it is a good idea to tie two pseudo registers
when one has mode MODE1 and one has mode MODE2.
If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
for any hard reg, then this must be 0 for correct output. */
#define MODES_TIEABLE_P(MODE1, MODE2) \
((MODE1) == (MODE2) \
|| ((MODE1) == SImode && (MODE2) == HImode) \
|| ((MODE1) == HImode && (MODE2) == SImode))
/* Specify the registers used for certain standard purposes.
The values of these macros are register numbers. */
/* on the 386 the pc register is %eip, and is not usable as a general
register. The ordinary mov instructions won't work */
/* #define PC_REGNUM */
/* Register to use for pushing function arguments. */
#define STACK_POINTER_REGNUM 7
/* Base register for access to local variables of the function. */
#define FRAME_POINTER_REGNUM 6
/* First floating point reg */
#define FIRST_FLOAT_REG 8
/* First & last stack-like regs */
#define FIRST_STACK_REG FIRST_FLOAT_REG
#define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
/* Value should be nonzero if functions must have frame pointers.
Zero means the frame pointer need not be set up (and parms
may be accessed via the stack pointer) in functions that seem suitable.
This is computed in `reload', in reload1.c. */
#define FRAME_POINTER_REQUIRED (TARGET_OMIT_LEAF_FRAME_POINTER && !leaf_function_p ())
/* Base register for access to arguments of the function. */
#define ARG_POINTER_REGNUM 16
/* Register in which static-chain is passed to a function. */
#define STATIC_CHAIN_REGNUM 2
/* Register to hold the addressing base for position independent
code access to data items. */
#define PIC_OFFSET_TABLE_REGNUM 3
/* Register in which address to store a structure value
arrives in the function. On the 386, the prologue
copies this from the stack to register %eax. */
#define STRUCT_VALUE_INCOMING 0
/* Place in which caller passes the structure value address.
0 means push the value on the stack like an argument. */
#define STRUCT_VALUE 0
/* A C expression which can inhibit the returning of certain function
values in registers, based on the type of value. A nonzero value
says to return the function value in memory, just as large
structures are always returned. Here TYPE will be a C expression
of type `tree', representing the data type of the value.
Note that values of mode `BLKmode' must be explicitly handled by
this macro. Also, the option `-fpcc-struct-return' takes effect
regardless of this macro. On most systems, it is possible to
leave the macro undefined; this causes a default definition to be
used, whose value is the constant 1 for `BLKmode' values, and 0
otherwise.
Do not use this macro to indicate that structures and unions
should always be returned in memory. You should instead use
`DEFAULT_PCC_STRUCT_RETURN' to indicate this. */
#define RETURN_IN_MEMORY(TYPE) \
((TYPE_MODE (TYPE) == BLKmode) || int_size_in_bytes (TYPE) > 12)
/* Define the classes of registers for register constraints in the
machine description. Also define ranges of constants.
One of the classes must always be named ALL_REGS and include all hard regs.
If there is more than one class, another class must be named NO_REGS
and contain no registers.
The name GENERAL_REGS must be the name of a class (or an alias for
another name such as ALL_REGS). This is the class of registers
that is allowed by "g" or "r" in a register constraint.
Also, registers outside this class are allocated only when
instructions express preferences for them.
The classes must be numbered in nondecreasing order; that is,
a larger-numbered class must never be contained completely
in a smaller-numbered class.
For any two classes, it is very desirable that there be another
class that represents their union.
It might seem that class BREG is unnecessary, since no useful 386
opcode needs reg %ebx. But some systems pass args to the OS in ebx,
and the "b" register constraint is useful in asms for syscalls. */
enum reg_class
{
NO_REGS,
AREG, DREG, CREG, BREG,
AD_REGS, /* %eax/%edx for DImode */
Q_REGS, /* %eax %ebx %ecx %edx */
SIREG, DIREG,
INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
FLOAT_REGS,
ALL_REGS, LIM_REG_CLASSES
};
#define N_REG_CLASSES (int) LIM_REG_CLASSES
#define FLOAT_CLASS_P(CLASS) (reg_class_subset_p (CLASS, FLOAT_REGS))
/* Give names of register classes as strings for dump file. */
#define REG_CLASS_NAMES \
{ "NO_REGS", \
"AREG", "DREG", "CREG", "BREG", \
"AD_REGS", \
"Q_REGS", \
"SIREG", "DIREG", \
"INDEX_REGS", \
"GENERAL_REGS", \
"FP_TOP_REG", "FP_SECOND_REG", \
"FLOAT_REGS", \
"ALL_REGS" }
/* Define which registers fit in which classes.
This is an initializer for a vector of HARD_REG_SET
of length N_REG_CLASSES. */
#define REG_CLASS_CONTENTS \
{ {0}, \
{0x1}, {0x2}, {0x4}, {0x8}, /* AREG, DREG, CREG, BREG */ \
{0x3}, /* AD_REGS */ \
{0xf}, /* Q_REGS */ \
{0x10}, {0x20}, /* SIREG, DIREG */ \
{0x7f}, /* INDEX_REGS */ \
{0x100ff}, /* GENERAL_REGS */ \
{0x0100}, {0x0200}, /* FP_TOP_REG, FP_SECOND_REG */ \
{0xff00}, /* FLOAT_REGS */ \
{0x1ffff}}
/* The same information, inverted:
Return the class number of the smallest class containing
reg number REGNO. This could be a conditional expression
or could index an array. */
#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
/* When defined, the compiler allows registers explicitly used in the
rtl to be used as spill registers but prevents the compiler from
extending the lifetime of these registers. */
#define SMALL_REGISTER_CLASSES 1
#define QI_REG_P(X) \
(REG_P (X) && REGNO (X) < 4)
#define NON_QI_REG_P(X) \
(REG_P (X) && REGNO (X) >= 4 && REGNO (X) < FIRST_PSEUDO_REGISTER)
#define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
#define FP_REGNO_P(n) ((n) >= FIRST_STACK_REG && (n) <= LAST_STACK_REG)
#define STACK_REG_P(xop) (REG_P (xop) && \
REGNO (xop) >= FIRST_STACK_REG && \
REGNO (xop) <= LAST_STACK_REG)
#define NON_STACK_REG_P(xop) (REG_P (xop) && ! STACK_REG_P (xop))
#define STACK_TOP_P(xop) (REG_P (xop) && REGNO (xop) == FIRST_STACK_REG)
/* 1 if register REGNO can magically overlap other regs.
Note that nonzero values work only in very special circumstances. */
/* #define OVERLAPPING_REGNO_P(REGNO) FP_REGNO_P (REGNO) */
/* The class value for index registers, and the one for base regs. */
#define INDEX_REG_CLASS INDEX_REGS
#define BASE_REG_CLASS GENERAL_REGS
/* Get reg_class from a letter such as appears in the machine description. */
#define REG_CLASS_FROM_LETTER(C) \
((C) == 'r' ? GENERAL_REGS : \
(C) == 'q' ? Q_REGS : \
(C) == 'f' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
? FLOAT_REGS \
: NO_REGS) : \
(C) == 't' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
? FP_TOP_REG \
: NO_REGS) : \
(C) == 'u' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
? FP_SECOND_REG \
: NO_REGS) : \
(C) == 'a' ? AREG : \
(C) == 'b' ? BREG : \
(C) == 'c' ? CREG : \
(C) == 'd' ? DREG : \
(C) == 'A' ? AD_REGS : \
(C) == 'D' ? DIREG : \
(C) == 'S' ? SIREG : NO_REGS)
/* The letters I, J, K, L and M in a register constraint string
can be used to stand for particular ranges of immediate operands.
This macro defines what the ranges are.
C is the letter, and VALUE is a constant value.
Return 1 if VALUE is in the range specified by C.
I is for non-DImode shifts.
J is for DImode shifts.
K and L are for an `andsi' optimization.
M is for shifts that can be executed by the "lea" opcode.
*/
#define CONST_OK_FOR_LETTER_P(VALUE, C) \
((C) == 'I' ? (VALUE) >= 0 && (VALUE) <= 31 : \
(C) == 'J' ? (VALUE) >= 0 && (VALUE) <= 63 : \
(C) == 'K' ? (VALUE) == 0xff : \
(C) == 'L' ? (VALUE) == 0xffff : \
(C) == 'M' ? (VALUE) >= 0 && (VALUE) <= 3 : \
(C) == 'N' ? (VALUE) >= 0 && (VALUE) <= 255 :\
(C) == 'O' ? (VALUE) >= 0 && (VALUE) <= 32 : \
0)
/* Similar, but for floating constants, and defining letters G and H.
Here VALUE is the CONST_DOUBLE rtx itself. We allow constants even if
TARGET_387 isn't set, because the stack register converter may need to
load 0.0 into the function value register. */
#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
((C) == 'G' ? standard_80387_constant_p (VALUE) : 0)
/* Place additional restrictions on the register class to use when it
is necessary to be able to hold a value of mode MODE in a reload
register for which class CLASS would ordinarily be used. */
#define LIMIT_RELOAD_CLASS(MODE, CLASS) \
((MODE) == QImode && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS) \
? Q_REGS : (CLASS))
/* Given an rtx X being reloaded into a reg required to be
in class CLASS, return the class of reg to actually use.
In general this is just CLASS; but on some machines
in some cases it is preferable to use a more restrictive class.
On the 80386 series, we prevent floating constants from being
reloaded into floating registers (since no move-insn can do that)
and we ensure that QImodes aren't reloaded into the esi or edi reg. */
/* Put float CONST_DOUBLE in the constant pool instead of fp regs.
QImode must go into class Q_REGS.
Narrow ALL_REGS to GENERAL_REGS. This supports allowing movsf and
movdf to do mem-to-mem moves through integer regs. */
#define PREFERRED_RELOAD_CLASS(X,CLASS) \
(GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) != VOIDmode \
? (standard_80387_constant_p (X) \
? reg_class_subset_p (CLASS, FLOAT_REGS) ? CLASS : FLOAT_REGS \
: NO_REGS) \
: GET_MODE (X) == QImode && ! reg_class_subset_p (CLASS, Q_REGS) ? Q_REGS \
: ((CLASS) == ALL_REGS \
&& GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) ? GENERAL_REGS \
: (CLASS))
/* If we are copying between general and FP registers, we need a memory
location. */
#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
((FLOAT_CLASS_P (CLASS1) && ! FLOAT_CLASS_P (CLASS2)) \
|| (! FLOAT_CLASS_P (CLASS1) && FLOAT_CLASS_P (CLASS2)))
/* Return the maximum number of consecutive registers
needed to represent mode MODE in a register of class CLASS. */
/* On the 80386, this is the size of MODE in words,
except in the FP regs, where a single reg is always enough. */
#define CLASS_MAX_NREGS(CLASS, MODE) \
(FLOAT_CLASS_P (CLASS) ? 1 : \
((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
/* A C expression whose value is nonzero if pseudos that have been
assigned to registers of class CLASS would likely be spilled
because registers of CLASS are needed for spill registers.
The default value of this macro returns 1 if CLASS has exactly one
register and zero otherwise. On most machines, this default
should be used. Only define this macro to some other expression
if pseudo allocated by `local-alloc.c' end up in memory because
their hard registers were needed for spill registers. If this
macro returns nonzero for those classes, those pseudos will only
be allocated by `global.c', which knows how to reallocate the
pseudo to another register. If there would not be another
register available for reallocation, you should not change the
definition of this macro since the only effect of such a
definition would be to slow down register allocation. */
#define CLASS_LIKELY_SPILLED_P(CLASS) \
(((CLASS) == AREG) \
|| ((CLASS) == DREG) \
|| ((CLASS) == CREG) \
|| ((CLASS) == BREG) \
|| ((CLASS) == AD_REGS) \
|| ((CLASS) == SIREG) \
|| ((CLASS) == DIREG))
/* Stack layout; function entry, exit and calling. */
/* Define this if pushing a word on the stack
makes the stack pointer a smaller address. */
#define STACK_GROWS_DOWNWARD
/* Define this if the nominal address of the stack frame
is at the high-address end of the local variables;
that is, each additional local variable allocated
goes at a more negative offset in the frame. */
#define FRAME_GROWS_DOWNWARD
/* Offset within stack frame to start allocating local variables at.
If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
first local allocated. Otherwise, it is the offset to the BEGINNING
of the first local allocated. */
#define STARTING_FRAME_OFFSET 0
/* If we generate an insn to push BYTES bytes,
this says how many the stack pointer really advances by.
On 386 pushw decrements by exactly 2 no matter what the position was.
On the 386 there is no pushb; we use pushw instead, and this
has the effect of rounding up to 2. */
#define PUSH_ROUNDING(BYTES) (((BYTES) + 1) & (-2))
/* Offset of first parameter from the argument pointer register value. */
#define FIRST_PARM_OFFSET(FNDECL) 0
/* Value is the number of bytes of arguments automatically
popped when returning from a subroutine call.
FUNDECL is the declaration node of the function (as a tree),
FUNTYPE is the data type of the function (as a tree),
or for a library call it is an identifier node for the subroutine name.
SIZE is the number of bytes of arguments passed on the stack.
On the 80386, the RTD insn may be used to pop them if the number
of args is fixed, but if the number is variable then the caller
must pop them all. RTD can't be used for library calls now
because the library is compiled with the Unix compiler.
Use of RTD is a selectable option, since it is incompatible with
standard Unix calling sequences. If the option is not selected,
the caller must always pop the args.
The attribute stdcall is equivalent to RTD on a per module basis. */
#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) \
(i386_return_pops_args (FUNDECL, FUNTYPE, SIZE))
/* Define how to find the value returned by a function.
VALTYPE is the data type of the value (as a tree).
If the precise function being called is known, FUNC is its FUNCTION_DECL;
otherwise, FUNC is 0. */
#define FUNCTION_VALUE(VALTYPE, FUNC) \
gen_rtx_REG (TYPE_MODE (VALTYPE), \
VALUE_REGNO (TYPE_MODE (VALTYPE)))
/* Define how to find the value returned by a library function
assuming the value has mode MODE. */
#define LIBCALL_VALUE(MODE) \
gen_rtx_REG (MODE, VALUE_REGNO (MODE))
/* Define the size of the result block used for communication between
untyped_call and untyped_return. The block contains a DImode value
followed by the block used by fnsave and frstor. */
#define APPLY_RESULT_SIZE (8+108)
/* 1 if N is a possible register number for function argument passing. */
#define FUNCTION_ARG_REGNO_P(N) ((N) >= 0 && (N) < REGPARM_MAX)
/* Define a data type for recording info about an argument list
during the scan of that argument list. This data type should
hold all necessary information about the function itself
and about the args processed so far, enough to enable macros
such as FUNCTION_ARG to determine where the next arg should go. */
typedef struct i386_args {
int words; /* # words passed so far */
int nregs; /* # registers available for passing */
int regno; /* next available register number */
} CUMULATIVE_ARGS;
/* Initialize a variable CUM of type CUMULATIVE_ARGS
for a call to a function whose data type is FNTYPE.
For a library call, FNTYPE is 0. */
#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
(init_cumulative_args (&CUM, FNTYPE, LIBNAME))
/* Update the data in CUM to advance over an argument
of mode MODE and data type TYPE.
(TYPE is null for libcalls where that information may not be available.) */
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
(function_arg_advance (&CUM, MODE, TYPE, NAMED))
/* Define where to put the arguments to a function.
Value is zero to push the argument on the stack,
or a hard register in which to store the argument.
MODE is the argument's machine mode.
TYPE is the data type of the argument (as a tree).
This is null for libcalls where that information may
not be available.
CUM is a variable of type CUMULATIVE_ARGS which gives info about
the preceding args and about the function being called.
NAMED is nonzero if this argument is a named parameter
(otherwise it is an extra parameter matching an ellipsis). */
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
(function_arg (&CUM, MODE, TYPE, NAMED))
/* For an arg passed partly in registers and partly in memory,
this is the number of registers used.
For args passed entirely in registers or entirely in memory, zero. */
#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
(function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED))
/* This macro is invoked just before the start of a function.
It is used here to output code for -fpic that will load the
return address into %ebx. */
#undef ASM_OUTPUT_FUNCTION_PREFIX
#define ASM_OUTPUT_FUNCTION_PREFIX(FILE, FNNAME) \
asm_output_function_prefix (FILE, FNNAME)
/* This macro generates the assembly code for function entry.
FILE is a stdio stream to output the code to.
SIZE is an int: how many units of temporary storage to allocate.
Refer to the array `regs_ever_live' to determine which registers
to save; `regs_ever_live[I]' is nonzero if register number I
is ever used in the function. This macro is responsible for
knowing which registers should not be saved even if used. */
#define FUNCTION_PROLOGUE(FILE, SIZE) \
function_prologue (FILE, SIZE)
/* Output assembler code to FILE to increment profiler label # LABELNO
for profiling a function entry. */
#define FUNCTION_PROFILER(FILE, LABELNO) \
{ \
if (flag_pic) \
{ \
fprintf (FILE, "\tleal %sP%d@GOTOFF(%%ebx),%%edx\n", \
LPREFIX, (LABELNO)); \
fprintf (FILE, "\tcall *_mcount@GOT(%%ebx)\n"); \
} \
else \
{ \
fprintf (FILE, "\tmovl $%sP%d,%%edx\n", LPREFIX, (LABELNO)); \
fprintf (FILE, "\tcall _mcount\n"); \
} \
}
/* There are three profiling modes for basic blocks available.
The modes are selected at compile time by using the options
-a or -ax of the gnu compiler.
The variable `profile_block_flag' will be set according to the
selected option.
profile_block_flag == 0, no option used:
No profiling done.
profile_block_flag == 1, -a option used.
Count frequency of execution of every basic block.
profile_block_flag == 2, -ax option used.
Generate code to allow several different profiling modes at run time.
Available modes are:
Produce a trace of all basic blocks.
Count frequency of jump instructions executed.
In every mode it is possible to start profiling upon entering
certain functions and to disable profiling of some other functions.
The result of basic-block profiling will be written to a file `bb.out'.
If the -ax option is used parameters for the profiling will be read
from file `bb.in'.
*/
/* The following macro shall output assembler code to FILE
to initialize basic-block profiling.
If profile_block_flag == 2
Output code to call the subroutine `__bb_init_trace_func'
and pass two parameters to it. The first parameter is
the address of a block allocated in the object module.
The second parameter is the number of the first basic block
of the function.
The name of the block is a local symbol made with this statement:
ASM_GENERATE_INTERNAL_LABEL (BUFFER, "LPBX", 0);
Of course, since you are writing the definition of
`ASM_GENERATE_INTERNAL_LABEL' as well as that of this macro, you
can take a short cut in the definition of this macro and use the
name that you know will result.
The number of the first basic block of the function is
passed to the macro in BLOCK_OR_LABEL.
If described in a virtual assembler language the code to be
output looks like:
parameter1 <- LPBX0
parameter2 <- BLOCK_OR_LABEL
call __bb_init_trace_func
else if profile_block_flag != 0
Output code to call the subroutine `__bb_init_func'
and pass one single parameter to it, which is the same
as the first parameter to `__bb_init_trace_func'.
The first word of this parameter is a flag which will be nonzero if
the object module has already been initialized. So test this word
first, and do not call `__bb_init_func' if the flag is nonzero.
Note: When profile_block_flag == 2 the test need not be done
but `__bb_init_trace_func' *must* be called.
BLOCK_OR_LABEL may be used to generate a label number as a
branch destination in case `__bb_init_func' will not be called.
If described in a virtual assembler language the code to be
output looks like:
cmp (LPBX0),0
jne local_label
parameter1 <- LPBX0
call __bb_init_func
local_label:
*/
#undef FUNCTION_BLOCK_PROFILER
#define FUNCTION_BLOCK_PROFILER(FILE, BLOCK_OR_LABEL) \
do \
{ \
static int num_func = 0; \
rtx xops[8]; \
char block_table[80], false_label[80]; \
\
ASM_GENERATE_INTERNAL_LABEL (block_table, "LPBX", 0); \
\
xops[1] = gen_rtx_SYMBOL_REF (VOIDmode, block_table); \
xops[5] = stack_pointer_rtx; \
xops[7] = gen_rtx_REG (Pmode, 0); /* eax */ \
\
CONSTANT_POOL_ADDRESS_P (xops[1]) = TRUE; \
\
switch (profile_block_flag) \
{ \
\
case 2: \
\
xops[2] = GEN_INT ((BLOCK_OR_LABEL)); \
xops[3] = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (VOIDmode, "__bb_init_trace_func")); \
xops[6] = GEN_INT (8); \
\
output_asm_insn (AS1(push%L2,%2), xops); \
if (!flag_pic) \
output_asm_insn (AS1(push%L1,%1), xops); \
else \
{ \
output_asm_insn (AS2 (lea%L7,%a1,%7), xops); \
output_asm_insn (AS1 (push%L7,%7), xops); \
} \
\
output_asm_insn (AS1(call,%P3), xops); \
output_asm_insn (AS2(add%L0,%6,%5), xops); \
\
break; \
\
default: \
\
ASM_GENERATE_INTERNAL_LABEL (false_label, "LPBZ", num_func); \
\
xops[0] = const0_rtx; \
xops[2] = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (VOIDmode, false_label)); \
xops[3] = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (VOIDmode, "__bb_init_func")); \
xops[4] = gen_rtx_MEM (Pmode, xops[1]); \
xops[6] = GEN_INT (4); \
\
CONSTANT_POOL_ADDRESS_P (xops[2]) = TRUE; \
\
output_asm_insn (AS2(cmp%L4,%0,%4), xops); \
output_asm_insn (AS1(jne,%2), xops); \
\
if (!flag_pic) \
output_asm_insn (AS1(push%L1,%1), xops); \
else \
{ \
output_asm_insn (AS2 (lea%L7,%a1,%7), xops); \
output_asm_insn (AS1 (push%L7,%7), xops); \
} \
\
output_asm_insn (AS1(call,%P3), xops); \
output_asm_insn (AS2(add%L0,%6,%5), xops); \
ASM_OUTPUT_INTERNAL_LABEL (FILE, "LPBZ", num_func); \
num_func++; \
\
break; \
\
} \
} \
while (0)
/* The following macro shall output assembler code to FILE
to increment a counter associated with basic block number BLOCKNO.
If profile_block_flag == 2
Output code to initialize the global structure `__bb' and
call the function `__bb_trace_func' which will increment the
counter.
`__bb' consists of two words. In the first word the number
of the basic block has to be stored. In the second word
the address of a block allocated in the object module
has to be stored.
The basic block number is given by BLOCKNO.
The address of the block is given by the label created with
ASM_GENERATE_INTERNAL_LABEL (BUFFER, "LPBX", 0);
by FUNCTION_BLOCK_PROFILER.
Of course, since you are writing the definition of
`ASM_GENERATE_INTERNAL_LABEL' as well as that of this macro, you
can take a short cut in the definition of this macro and use the
name that you know will result.
If described in a virtual assembler language the code to be
output looks like:
move BLOCKNO -> (__bb)
move LPBX0 -> (__bb+4)
call __bb_trace_func
Note that function `__bb_trace_func' must not change the
machine state, especially the flag register. To grant
this, you must output code to save and restore registers
either in this macro or in the macros MACHINE_STATE_SAVE
and MACHINE_STATE_RESTORE. The last two macros will be
used in the function `__bb_trace_func', so you must make
sure that the function prologue does not change any
register prior to saving it with MACHINE_STATE_SAVE.
else if profile_block_flag != 0
Output code to increment the counter directly.
Basic blocks are numbered separately from zero within each
compiled object module. The count associated with block number
BLOCKNO is at index BLOCKNO in an array of words; the name of
this array is a local symbol made with this statement:
ASM_GENERATE_INTERNAL_LABEL (BUFFER, "LPBX", 2);
Of course, since you are writing the definition of
`ASM_GENERATE_INTERNAL_LABEL' as well as that of this macro, you
can take a short cut in the definition of this macro and use the
name that you know will result.
If described in a virtual assembler language the code to be
output looks like:
inc (LPBX2+4*BLOCKNO)
*/
#define BLOCK_PROFILER(FILE, BLOCKNO) \
do \
{ \
rtx xops[8], cnt_rtx; \
char counts[80]; \
char *block_table = counts; \
\
switch (profile_block_flag) \
{ \
\
case 2: \
\
ASM_GENERATE_INTERNAL_LABEL (block_table, "LPBX", 0); \
\
xops[1] = gen_rtx_SYMBOL_REF (VOIDmode, block_table); \
xops[2] = GEN_INT ((BLOCKNO)); \
xops[3] = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (VOIDmode, "__bb_trace_func")); \
xops[4] = gen_rtx_SYMBOL_REF (VOIDmode, "__bb"); \
xops[5] = plus_constant (xops[4], 4); \
xops[0] = gen_rtx_MEM (SImode, xops[4]); \
xops[6] = gen_rtx_MEM (SImode, xops[5]); \
\
CONSTANT_POOL_ADDRESS_P (xops[1]) = TRUE; \
\
fprintf(FILE, "\tpushf\n"); \
output_asm_insn (AS2(mov%L0,%2,%0), xops); \
if (flag_pic) \
{ \
xops[7] = gen_rtx_REG (Pmode, 0); /* eax */ \
output_asm_insn (AS1(push%L7,%7), xops); \
output_asm_insn (AS2(lea%L7,%a1,%7), xops); \
output_asm_insn (AS2(mov%L6,%7,%6), xops); \
output_asm_insn (AS1(pop%L7,%7), xops); \
} \
else \
output_asm_insn (AS2(mov%L6,%1,%6), xops); \
output_asm_insn (AS1(call,%P3), xops); \
fprintf(FILE, "\tpopf\n"); \
\
break; \
\
default: \
\
ASM_GENERATE_INTERNAL_LABEL (counts, "LPBX", 2); \
cnt_rtx = gen_rtx_SYMBOL_REF (VOIDmode, counts); \
SYMBOL_REF_FLAG (cnt_rtx) = TRUE; \
\
if (BLOCKNO) \
cnt_rtx = plus_constant (cnt_rtx, (BLOCKNO)*4); \
\
if (flag_pic) \
cnt_rtx = gen_rtx_PLUS (Pmode, pic_offset_table_rtx, cnt_rtx); \
\
xops[0] = gen_rtx_MEM (SImode, cnt_rtx); \
output_asm_insn (AS1(inc%L0,%0), xops); \
\
break; \
\
} \
} \
while (0)
/* The following macro shall output assembler code to FILE
to indicate a return from function during basic-block profiling.
If profiling_block_flag == 2:
Output assembler code to call function `__bb_trace_ret'.
Note that function `__bb_trace_ret' must not change the
machine state, especially the flag register. To grant
this, you must output code to save and restore registers
either in this macro or in the macros MACHINE_STATE_SAVE_RET
and MACHINE_STATE_RESTORE_RET. The last two macros will be
used in the function `__bb_trace_ret', so you must make
sure that the function prologue does not change any
register prior to saving it with MACHINE_STATE_SAVE_RET.
else if profiling_block_flag != 0:
The macro will not be used, so it need not distinguish
these cases.
*/
#define FUNCTION_BLOCK_PROFILER_EXIT(FILE) \
do \
{ \
rtx xops[1]; \
\
xops[0] = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (VOIDmode, "__bb_trace_ret")); \
\
output_asm_insn (AS1(call,%P0), xops); \
\
} \
while (0)
/* The function `__bb_trace_func' is called in every basic block
and is not allowed to change the machine state. Saving (restoring)
the state can either be done in the BLOCK_PROFILER macro,
before calling function (rsp. after returning from function)
`__bb_trace_func', or it can be done inside the function by
defining the macros:
MACHINE_STATE_SAVE(ID)
MACHINE_STATE_RESTORE(ID)
In the latter case care must be taken, that the prologue code
of function `__bb_trace_func' does not already change the
state prior to saving it with MACHINE_STATE_SAVE.
The parameter `ID' is a string identifying a unique macro use.
On the i386 the initialization code at the begin of
function `__bb_trace_func' contains a `sub' instruction
therefore we handle save and restore of the flag register
in the BLOCK_PROFILER macro. */
#define MACHINE_STATE_SAVE(ID) \
asm (" pushl %eax"); \
asm (" pushl %ecx"); \
asm (" pushl %edx"); \
asm (" pushl %esi");
#define MACHINE_STATE_RESTORE(ID) \
asm (" popl %esi"); \
asm (" popl %edx"); \
asm (" popl %ecx"); \
asm (" popl %eax");
/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
the stack pointer does not matter. The value is tested only in
functions that have frame pointers.
No definition is equivalent to always zero. */
/* Note on the 386 it might be more efficient not to define this since
we have to restore it ourselves from the frame pointer, in order to
use pop */
#define EXIT_IGNORE_STACK 1
/* This macro generates the assembly code for function exit,
on machines that need it. If FUNCTION_EPILOGUE is not defined
then individual return instructions are generated for each
return statement. Args are same as for FUNCTION_PROLOGUE.
The function epilogue should not depend on the current stack pointer!
It should use the frame pointer only. This is mandatory because
of alloca; we also take advantage of it to omit stack adjustments
before returning.
If the last non-note insn in the function is a BARRIER, then there
is no need to emit a function prologue, because control does not fall
off the end. This happens if the function ends in an "exit" call, or
if a `return' insn is emitted directly into the function. */
#if 0
#define FUNCTION_BEGIN_EPILOGUE(FILE) \
do { \
rtx last = get_last_insn (); \
if (last && GET_CODE (last) == NOTE) \
last = prev_nonnote_insn (last); \
/* if (! last || GET_CODE (last) != BARRIER) \
function_epilogue (FILE, SIZE);*/ \
} while (0)
#endif
#define FUNCTION_EPILOGUE(FILE, SIZE) \
function_epilogue (FILE, SIZE)
/* Output assembler code for a block containing the constant parts
of a trampoline, leaving space for the variable parts. */
/* On the 386, the trampoline contains two instructions:
mov #STATIC,ecx
jmp FUNCTION
The trampoline is generated entirely at runtime. The operand of JMP
is the address of FUNCTION relative to the instruction following the
JMP (which is 5 bytes long). */
/* Length in units of the trampoline for entering a nested function. */
#define TRAMPOLINE_SIZE 10
/* Emit RTL insns to initialize the variable parts of a trampoline.
FNADDR is an RTX for the address of the function's pure code.
CXT is an RTX for the static chain value for the function. */
#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
{ \
/* Compute offset from the end of the jmp to the target function. */ \
rtx disp = expand_binop (SImode, sub_optab, FNADDR, \
plus_constant (TRAMP, 10), \
NULL_RTX, 1, OPTAB_DIRECT); \
emit_move_insn (gen_rtx_MEM (QImode, TRAMP), GEN_INT (0xb9)); \
emit_move_insn (gen_rtx_MEM (SImode, plus_constant (TRAMP, 1)), CXT); \
emit_move_insn (gen_rtx_MEM (QImode, plus_constant (TRAMP, 5)), GEN_INT (0xe9));\
emit_move_insn (gen_rtx_MEM (SImode, plus_constant (TRAMP, 6)), disp); \
}
/* Definitions for register eliminations.
This is an array of structures. Each structure initializes one pair
of eliminable registers. The "from" register number is given first,
followed by "to". Eliminations of the same "from" register are listed
in order of preference.
We have two registers that can be eliminated on the i386. First, the
frame pointer register can often be eliminated in favor of the stack
pointer register. Secondly, the argument pointer register can always be
eliminated; it is replaced with either the stack or frame pointer. */
#define ELIMINABLE_REGS \
{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
{ ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
/* Given FROM and TO register numbers, say whether this elimination is allowed.
Frame pointer elimination is automatically handled.
For the i386, if frame pointer elimination is being done, we would like to
convert ap into sp, not fp.
All other eliminations are valid. */
#define CAN_ELIMINATE(FROM, TO) \
((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
? ! frame_pointer_needed \
: 1)
/* Define the offset between two registers, one to be eliminated, and the other
its replacement, at the start of a routine. */
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
{ \
if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM) \
(OFFSET) = 8; /* Skip saved PC and previous frame pointer */ \
else \
{ \
int nregs; \
int offset; \
int preferred_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT; \
HOST_WIDE_INT tsize = ix86_compute_frame_size (get_frame_size (), \
&nregs); \
\
(OFFSET) = (tsize + nregs * UNITS_PER_WORD); \
\
offset = 4; \
if (frame_pointer_needed) \
offset += UNITS_PER_WORD; \
\
if ((FROM) == ARG_POINTER_REGNUM) \
(OFFSET) += offset; \
else \
(OFFSET) -= ((offset + preferred_alignment - 1) \
& -preferred_alignment) - offset; \
} \
}
/* Addressing modes, and classification of registers for them. */
/* #define HAVE_POST_INCREMENT 0 */
/* #define HAVE_POST_DECREMENT 0 */
/* #define HAVE_PRE_DECREMENT 0 */
/* #define HAVE_PRE_INCREMENT 0 */
/* Macros to check register numbers against specific register classes. */
/* These assume that REGNO is a hard or pseudo reg number.
They give nonzero only if REGNO is a hard reg of the suitable class
or a pseudo reg currently allocated to a suitable hard reg.
Since they use reg_renumber, they are safe only once reg_renumber
has been allocated, which happens in local-alloc.c. */
#define REGNO_OK_FOR_INDEX_P(REGNO) \
((REGNO) < STACK_POINTER_REGNUM \
|| (unsigned) reg_renumber[REGNO] < STACK_POINTER_REGNUM)
#define REGNO_OK_FOR_BASE_P(REGNO) \
((REGNO) <= STACK_POINTER_REGNUM \
|| (REGNO) == ARG_POINTER_REGNUM \
|| (unsigned) reg_renumber[REGNO] <= STACK_POINTER_REGNUM)
#define REGNO_OK_FOR_SIREG_P(REGNO) ((REGNO) == 4 || reg_renumber[REGNO] == 4)
#define REGNO_OK_FOR_DIREG_P(REGNO) ((REGNO) == 5 || reg_renumber[REGNO] == 5)
/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
and check its validity for a certain class.
We have two alternate definitions for each of them.
The usual definition accepts all pseudo regs; the other rejects
them unless they have been allocated suitable hard regs.
The symbol REG_OK_STRICT causes the latter definition to be used.
Most source files want to accept pseudo regs in the hope that
they will get allocated to the class that the insn wants them to be in.
Source files for reload pass need to be strict.
After reload, it makes no difference, since pseudo regs have
been eliminated by then. */
/* Non strict versions, pseudos are ok */
#define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
(REGNO (X) < STACK_POINTER_REGNUM \
|| REGNO (X) >= FIRST_PSEUDO_REGISTER)
#define REG_OK_FOR_BASE_NONSTRICT_P(X) \
(REGNO (X) <= STACK_POINTER_REGNUM \
|| REGNO (X) == ARG_POINTER_REGNUM \
|| REGNO (X) >= FIRST_PSEUDO_REGISTER)
#define REG_OK_FOR_STRREG_NONSTRICT_P(X) \
(REGNO (X) == 4 || REGNO (X) == 5 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
/* Strict versions, hard registers only */
#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
#define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
#define REG_OK_FOR_STRREG_STRICT_P(X) \
(REGNO_OK_FOR_DIREG_P (REGNO (X)) || REGNO_OK_FOR_SIREG_P (REGNO (X)))
#ifndef REG_OK_STRICT
#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P(X)
#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P(X)
#define REG_OK_FOR_STRREG_P(X) REG_OK_FOR_STRREG_NONSTRICT_P(X)
#else
#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P(X)
#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P(X)
#define REG_OK_FOR_STRREG_P(X) REG_OK_FOR_STRREG_STRICT_P(X)
#endif
/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
that is a valid memory address for an instruction.
The MODE argument is the machine mode for the MEM expression
that wants to use this address.
The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
except for CONSTANT_ADDRESS_P which is usually machine-independent.
See legitimize_pic_address in i386.c for details as to what
constitutes a legitimate address when -fpic is used. */
#define MAX_REGS_PER_ADDRESS 2
#define CONSTANT_ADDRESS_P(X) \
(GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
|| GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST)
/* Nonzero if the constant value X is a legitimate general operand.
It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
#define LEGITIMATE_CONSTANT_P(X) \
(GET_CODE (X) == CONST_DOUBLE ? standard_80387_constant_p (X) : 1)
#ifdef REG_OK_STRICT
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
{ \
if (legitimate_address_p (MODE, X, 1)) \
goto ADDR; \
}
#else
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
{ \
if (legitimate_address_p (MODE, X, 0)) \
goto ADDR; \
}
#endif
/* Try machine-dependent ways of modifying an illegitimate address
to be legitimate. If we find one, return the new, valid address.
This macro is used in only one place: `memory_address' in explow.c.
OLDX is the address as it was before break_out_memory_refs was called.
In some cases it is useful to look at this to decide what needs to be done.
MODE and WIN are passed so that this macro can use
GO_IF_LEGITIMATE_ADDRESS.
It is always safe for this macro to do nothing. It exists to recognize
opportunities to optimize the output.
For the 80386, we handle X+REG by loading X into a register R and
using R+REG. R will go in a general reg and indexing will be used.
However, if REG is a broken-out memory address or multiplication,
nothing needs to be done because REG can certainly go in a general reg.
When -fpic is used, special handling is needed for symbolic references.
See comments by legitimize_pic_address in i386.c for details. */
#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
{ \
(X) = legitimize_address (X, OLDX, MODE); \
if (memory_address_p (MODE, X)) \
goto WIN; \
}
#define REWRITE_ADDRESS(x) rewrite_address(x)
/* Nonzero if the constant value X is a legitimate general operand
when generating PIC code. It is given that flag_pic is on and
that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
#define LEGITIMATE_PIC_OPERAND_P(X) \
(! SYMBOLIC_CONST (X) || legitimate_pic_address_disp_p (X))
#define SYMBOLIC_CONST(X) \
(GET_CODE (X) == SYMBOL_REF \
|| GET_CODE (X) == LABEL_REF \
|| (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
/* Go to LABEL if ADDR (a legitimate address expression)
has an effect that depends on the machine mode it is used for.
On the 80386, only postdecrement and postincrement address depend thus
(the amount of decrement or increment being the length of the operand). */
#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == POST_DEC) goto LABEL
/* Define this macro if references to a symbol must be treated
differently depending on something about the variable or
function named by the symbol (such as what section it is in).
On i386, if using PIC, mark a SYMBOL_REF for a non-global symbol
so that we may access it directly in the GOT. */
#define ENCODE_SECTION_INFO(DECL) \
do \
{ \
if (flag_pic) \
{ \
rtx rtl = (TREE_CODE_CLASS (TREE_CODE (DECL)) != 'd' \
? TREE_CST_RTL (DECL) : DECL_RTL (DECL)); \
\
if (TARGET_DEBUG_ADDR \
&& TREE_CODE_CLASS (TREE_CODE (DECL)) == 'd') \
{ \
fprintf (stderr, "Encode %s, public = %d\n", \
IDENTIFIER_POINTER (DECL_NAME (DECL)), \
TREE_PUBLIC (DECL)); \
} \
\
SYMBOL_REF_FLAG (XEXP (rtl, 0)) \
= (TREE_CODE_CLASS (TREE_CODE (DECL)) != 'd' \
|| ! TREE_PUBLIC (DECL)); \
} \
} \
while (0)
/* Initialize data used by insn expanders. This is called from
init_emit, once for each function, before code is generated.
For 386, clear stack slot assignments remembered from previous
functions. */
#define INIT_EXPANDERS clear_386_stack_locals ()
/* The `FINALIZE_PIC' macro serves as a hook to emit these special
codes once the function is being compiled into assembly code, but
not before. (It is not done before, because in the case of
compiling an inline function, it would lead to multiple PIC
prologues being included in functions which used inline functions
and were compiled to assembly language.) */
#define FINALIZE_PIC \
do \
{ \
current_function_uses_pic_offset_table |= profile_flag | profile_block_flag; \
} \
while (0)
/* If defined, a C expression whose value is nonzero if IDENTIFIER
with arguments ARGS is a valid machine specific attribute for DECL.
The attributes in ATTRIBUTES have previously been assigned to DECL. */
#define VALID_MACHINE_DECL_ATTRIBUTE(DECL, ATTRIBUTES, NAME, ARGS) \
(i386_valid_decl_attribute_p (DECL, ATTRIBUTES, NAME, ARGS))
/* If defined, a C expression whose value is nonzero if IDENTIFIER
with arguments ARGS is a valid machine specific attribute for TYPE.
The attributes in ATTRIBUTES have previously been assigned to TYPE. */
#define VALID_MACHINE_TYPE_ATTRIBUTE(TYPE, ATTRIBUTES, NAME, ARGS) \
(i386_valid_type_attribute_p (TYPE, ATTRIBUTES, NAME, ARGS))
/* If defined, a C expression whose value is zero if the attributes on
TYPE1 and TYPE2 are incompatible, one if they are compatible, and
two if they are nearly compatible (which causes a warning to be
generated). */
#define COMP_TYPE_ATTRIBUTES(TYPE1, TYPE2) \
(i386_comp_type_attributes (TYPE1, TYPE2))
/* If defined, a C statement that assigns default attributes to newly
defined TYPE. */
/* #define SET_DEFAULT_TYPE_ATTRIBUTES (TYPE) */
/* Max number of args passed in registers. If this is more than 3, we will
have problems with ebx (register #4), since it is a caller save register and
is also used as the pic register in ELF. So for now, don't allow more than
3 registers to be passed in registers. */
#define REGPARM_MAX 3
/* Specify the machine mode that this machine uses
for the index in the tablejump instruction. */
#define CASE_VECTOR_MODE Pmode
/* Define as C expression which evaluates to nonzero if the tablejump
instruction expects the table to contain offsets from the address of the
table.
Do not define this if the table should contain absolute addresses. */
/* #define CASE_VECTOR_PC_RELATIVE 1 */
/* Specify the tree operation to be used to convert reals to integers.
This should be changed to take advantage of fist --wfs ??
*/
#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
/* This is the kind of divide that is easiest to do in the general case. */
#define EASY_DIV_EXPR TRUNC_DIV_EXPR
/* Define this as 1 if `char' should by default be signed; else as 0. */
#define DEFAULT_SIGNED_CHAR 1
/* Max number of bytes we can move from memory to memory
in one reasonably fast instruction. */
#define MOVE_MAX 4
/* If a memory-to-memory move would take MOVE_RATIO or more simple
move-instruction pairs, we will do a movstr or libcall instead.
Increasing the value will always make code faster, but eventually
incurs high cost in increased code size.
If you don't define this, a reasonable default is used.
Make this large on i386, since the block move is very inefficient with small
blocks, and the hard register needs of the block move require much reload
work. */
#define MOVE_RATIO 5
/* Define if shifts truncate the shift count
which implies one can omit a sign-extension or zero-extension
of a shift count. */
/* On i386, shifts do truncate the count. But bit opcodes don't. */
/* #define SHIFT_COUNT_TRUNCATED */
/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
is done just by pretending it is already truncated. */
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
/* We assume that the store-condition-codes instructions store 0 for false
and some other value for true. This is the value stored for true. */
#define STORE_FLAG_VALUE 1
/* When a prototype says `char' or `short', really pass an `int'.
(The 386 can't easily push less than an int.) */
#define PROMOTE_PROTOTYPES 1
/* Specify the machine mode that pointers have.
After generation of rtl, the compiler makes no further distinction
between pointers and any other objects of this machine mode. */
#define Pmode SImode
/* A function address in a call instruction
is a byte address (for indexing purposes)
so give the MEM rtx a byte's mode. */
#define FUNCTION_MODE QImode
/* A part of a C `switch' statement that describes the relative costs
of constant RTL expressions. It must contain `case' labels for
expression codes `const_int', `const', `symbol_ref', `label_ref'
and `const_double'. Each case must ultimately reach a `return'
statement to return the relative cost of the use of that kind of
constant value in an expression. The cost may depend on the
precise value of the constant, which is available for examination
in X, and the rtx code of the expression in which it is contained,
found in OUTER_CODE.
CODE is the expression code--redundant, since it can be obtained
with `GET_CODE (X)'. */
#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
case CONST_INT: \
return (unsigned) INTVAL (RTX) < 256 ? 0 : 1; \
case CONST: \
case LABEL_REF: \
case SYMBOL_REF: \
return flag_pic && SYMBOLIC_CONST (RTX) ? 2 : 1; \
\
case CONST_DOUBLE: \
{ \
int code; \
if (GET_MODE (RTX) == VOIDmode) \
return 2; \
\
code = standard_80387_constant_p (RTX); \
return code == 1 ? 0 : \
code == 2 ? 1 : \
2; \
}
/* Delete the definition here when TOPLEVEL_COSTS_N_INSNS gets added to cse.c */
#define TOPLEVEL_COSTS_N_INSNS(N) {total = COSTS_N_INSNS (N); break;}
/* Like `CONST_COSTS' but applies to nonconstant RTL expressions.
This can be used, for example, to indicate how costly a multiply
instruction is. In writing this macro, you can use the construct
`COSTS_N_INSNS (N)' to specify a cost equal to N fast
instructions. OUTER_CODE is the code of the expression in which X
is contained.
This macro is optional; do not define it if the default cost
assumptions are adequate for the target machine. */
#define RTX_COSTS(X,CODE,OUTER_CODE) \
case ASHIFT: \
if (GET_CODE (XEXP (X, 1)) == CONST_INT \
&& GET_MODE (XEXP (X, 0)) == SImode) \
{ \
HOST_WIDE_INT value = INTVAL (XEXP (X, 1)); \
\
if (value == 1) \
return COSTS_N_INSNS (ix86_cost->add) \
+ rtx_cost(XEXP (X, 0), OUTER_CODE); \
\
if (value == 2 || value == 3) \
return COSTS_N_INSNS (ix86_cost->lea) \
+ rtx_cost(XEXP (X, 0), OUTER_CODE); \
} \
/* fall through */ \
\
case ROTATE: \
case ASHIFTRT: \
case LSHIFTRT: \
case ROTATERT: \
if (GET_MODE (XEXP (X, 0)) == DImode) \
{ \
if (GET_CODE (XEXP (X, 1)) == CONST_INT) \
{ \
if (INTVAL (XEXP (X, 1)) > 32) \
return COSTS_N_INSNS(ix86_cost->shift_const + 2); \
return COSTS_N_INSNS(ix86_cost->shift_const * 2); \
} \
return ((GET_CODE (XEXP (X, 1)) == AND \
? COSTS_N_INSNS(ix86_cost->shift_var * 2) \
: COSTS_N_INSNS(ix86_cost->shift_var * 6 + 2)) \
+ rtx_cost(XEXP (X, 0), OUTER_CODE)); \
} \
return COSTS_N_INSNS (GET_CODE (XEXP (X, 1)) == CONST_INT \
? ix86_cost->shift_const \
: ix86_cost->shift_var) \
+ rtx_cost(XEXP (X, 0), OUTER_CODE); \
\
case MULT: \
if (GET_CODE (XEXP (X, 1)) == CONST_INT) \
{ \
unsigned HOST_WIDE_INT value = INTVAL (XEXP (X, 1)); \
int nbits = 0; \
\
if (value == 2) \
return COSTS_N_INSNS (ix86_cost->add) \
+ rtx_cost(XEXP (X, 0), OUTER_CODE); \
if (value == 4 || value == 8) \
return COSTS_N_INSNS (ix86_cost->lea) \
+ rtx_cost(XEXP (X, 0), OUTER_CODE); \
\
while (value != 0) \
{ \
nbits++; \
value >>= 1; \
} \
\
if (nbits == 1) \
return COSTS_N_INSNS (ix86_cost->shift_const) \
+ rtx_cost(XEXP (X, 0), OUTER_CODE); \
\
return COSTS_N_INSNS (ix86_cost->mult_init \
+ nbits * ix86_cost->mult_bit) \
+ rtx_cost(XEXP (X, 0), OUTER_CODE); \
} \
\
else /* This is arbitrary */ \
TOPLEVEL_COSTS_N_INSNS (ix86_cost->mult_init \
+ 7 * ix86_cost->mult_bit); \
\
case DIV: \
case UDIV: \
case MOD: \
case UMOD: \
TOPLEVEL_COSTS_N_INSNS (ix86_cost->divide); \
\
case PLUS: \
if (GET_CODE (XEXP (X, 0)) == REG \
&& GET_MODE (XEXP (X, 0)) == SImode \
&& GET_CODE (XEXP (X, 1)) == PLUS) \
return COSTS_N_INSNS (ix86_cost->lea); \
\
/* fall through */ \
case AND: \
case IOR: \
case XOR: \
case MINUS: \
if (GET_MODE (X) == DImode) \
return COSTS_N_INSNS (ix86_cost->add) * 2 \
+ (rtx_cost (XEXP (X, 0), OUTER_CODE) \
<< (GET_MODE (XEXP (X, 0)) != DImode)) \
+ (rtx_cost (XEXP (X, 1), OUTER_CODE) \
<< (GET_MODE (XEXP (X, 1)) != DImode)); \
case NEG: \
case NOT: \
if (GET_MODE (X) == DImode) \
TOPLEVEL_COSTS_N_INSNS (ix86_cost->add * 2) \
TOPLEVEL_COSTS_N_INSNS (ix86_cost->add)
/* An expression giving the cost of an addressing mode that contains
ADDRESS. If not defined, the cost is computed from the ADDRESS
expression and the `CONST_COSTS' values.
For most CISC machines, the default cost is a good approximation
of the true cost of the addressing mode. However, on RISC
machines, all instructions normally have the same length and
execution time. Hence all addresses will have equal costs.
In cases where more than one form of an address is known, the form
with the lowest cost will be used. If multiple forms have the
same, lowest, cost, the one that is the most complex will be used.
For example, suppose an address that is equal to the sum of a
register and a constant is used twice in the same basic block.
When this macro is not defined, the address will be computed in a
register and memory references will be indirect through that
register. On machines where the cost of the addressing mode
containing the sum is no higher than that of a simple indirect
reference, this will produce an additional instruction and
possibly require an additional register. Proper specification of
this macro eliminates this overhead for such machines.
Similar use of this macro is made in strength reduction of loops.
ADDRESS need not be valid as an address. In such a case, the cost
is not relevant and can be any value; invalid addresses need not be
assigned a different cost.
On machines where an address involving more than one register is as
cheap as an address computation involving only one register,
defining `ADDRESS_COST' to reflect this can cause two registers to
be live over a region of code where only one would have been if
`ADDRESS_COST' were not defined in that manner. This effect should
be considered in the definition of this macro. Equivalent costs
should probably only be given to addresses with different numbers
of registers on machines with lots of registers.
This macro will normally either not be defined or be defined as a
constant.
For i386, it is better to use a complex address than let gcc copy
the address into a reg and make a new pseudo. But not if the address
requires to two regs - that would mean more pseudos with longer
lifetimes. */
#define ADDRESS_COST(RTX) \
((CONSTANT_P (RTX) \
|| (GET_CODE (RTX) == PLUS && CONSTANT_P (XEXP (RTX, 1)) \
&& REG_P (XEXP (RTX, 0)))) ? 0 \
: REG_P (RTX) ? 1 \
: 2)
/* A C expression for the cost of moving data of mode M between a
register and memory. A value of 2 is the default; this cost is
relative to those in `REGISTER_MOVE_COST'.
If moving between registers and memory is more expensive than
between two registers, you should define this macro to express the
relative cost.
On the i386, copying between floating-point and fixed-point
registers is expensive. */
#define REGISTER_MOVE_COST(CLASS1, CLASS2) \
(((FLOAT_CLASS_P (CLASS1) && ! FLOAT_CLASS_P (CLASS2)) \
|| (! FLOAT_CLASS_P (CLASS1) && FLOAT_CLASS_P (CLASS2))) ? 10 \
: 2)
/* A C expression for the cost of moving data of mode M between a
register and memory. A value of 2 is the default; this cost is
relative to those in `REGISTER_MOVE_COST'.
If moving between registers and memory is more expensive than
between two registers, you should define this macro to express the
relative cost. */
/* #define MEMORY_MOVE_COST(M,C,I) 2 */
/* A C expression for the cost of a branch instruction. A value of 1
is the default; other values are interpreted relative to that. */
#define BRANCH_COST i386_branch_cost
/* Define this macro as a C expression which is nonzero if accessing
less than a word of memory (i.e. a `char' or a `short') is no
faster than accessing a word of memory, i.e., if such access
require more than one instruction or if there is no difference in
cost between byte and (aligned) word loads.
When this macro is not defined, the compiler will access a field by
finding the smallest containing object; when it is defined, a
fullword load will be used if alignment permits. Unless bytes
accesses are faster than word accesses, using word accesses is
preferable since it may eliminate subsequent memory access if
subsequent accesses occur to other fields in the same word of the
structure, but to different bytes. */
#define SLOW_BYTE_ACCESS 0
/* Nonzero if access to memory by shorts is slow and undesirable. */
#define SLOW_SHORT_ACCESS 0
/* Define this macro if zero-extension (of a `char' or `short' to an
`int') can be done faster if the destination is a register that is
known to be zero.
If you define this macro, you must have instruction patterns that
recognize RTL structures like this:
(set (strict_low_part (subreg:QI (reg:SI ...) 0)) ...)
and likewise for `HImode'. */
/* #define SLOW_ZERO_EXTEND */
/* Define this macro to be the value 1 if unaligned accesses have a
cost many times greater than aligned accesses, for example if they
are emulated in a trap handler.
When this macro is non-zero, the compiler will act as if
`STRICT_ALIGNMENT' were non-zero when generating code for block
moves. This can cause significantly more instructions to be
produced. Therefore, do not set this macro non-zero if unaligned
accesses only add a cycle or two to the time for a memory access.
If the value of this macro is always zero, it need not be defined. */
/* #define SLOW_UNALIGNED_ACCESS 0 */
/* Define this macro to inhibit strength reduction of memory
addresses. (On some machines, such strength reduction seems to do
harm rather than good.) */
/* #define DONT_REDUCE_ADDR */
/* Define this macro if it is as good or better to call a constant
function address than to call an address kept in a register.
Desirable on the 386 because a CALL with a constant address is
faster than one with a register address. */
#define NO_FUNCTION_CSE
/* Define this macro if it is as good or better for a function to call
itself with an explicit address than to call an address kept in a
register. */
#define NO_RECURSIVE_FUNCTION_CSE
/* A C statement (sans semicolon) to update the integer variable COST
based on the relationship between INSN that is dependent on
DEP_INSN through the dependence LINK. The default is to make no
adjustment to COST. This can be used for example to specify to
the scheduler that an output- or anti-dependence does not incur
the same cost as a data-dependence. */
#define ADJUST_COST(insn,link,dep_insn,cost) \
(cost) = x86_adjust_cost(insn, link, dep_insn, cost)
#define ADJUST_BLOCKAGE(last_insn,insn,blockage) \
{ \
if (is_fp_store (last_insn) && is_fp_insn (insn) \
&& NEXT_INSN (last_insn) && NEXT_INSN (NEXT_INSN (last_insn)) \
&& NEXT_INSN (NEXT_INSN (NEXT_INSN (last_insn))) \
&& (GET_CODE (NEXT_INSN (last_insn)) == INSN) \
&& (GET_CODE (NEXT_INSN (NEXT_INSN (last_insn))) == JUMP_INSN) \
&& (GET_CODE (NEXT_INSN (NEXT_INSN (NEXT_INSN (last_insn)))) == NOTE) \
&& (NOTE_LINE_NUMBER (NEXT_INSN (NEXT_INSN (NEXT_INSN (last_insn)))) \
== NOTE_INSN_LOOP_END)) \
{ \
(blockage) = 3; \
} \
}
#define ISSUE_RATE ((int)ix86_cpu > (int)PROCESSOR_I486 ? 2 : 1)
/* Add any extra modes needed to represent the condition code.
For the i386, we need separate modes when floating-point equality
comparisons are being done. */
#define EXTRA_CC_MODES CC(CCFPEQmode, "CCFPEQ")
/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
return the mode to be used for the comparison.
For floating-point equality comparisons, CCFPEQmode should be used.
VOIDmode should be used in all other cases. */
#define SELECT_CC_MODE(OP,X,Y) \
(GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
&& ((OP) == EQ || (OP) == NE) ? CCFPEQmode : VOIDmode)
/* Define the information needed to generate branch and scc insns. This is
stored from the compare operation. Note that we can't use "rtx" here
since it hasn't been defined! */
extern struct rtx_def *(*i386_compare_gen)(), *(*i386_compare_gen_eq)();
/* Tell final.c how to eliminate redundant test instructions. */
/* Here we define machine-dependent flags and fields in cc_status
(see `conditions.h'). */
/* Set if the cc value was actually from the 80387 and
we are testing eax directly (i.e. no sahf) */
#define CC_TEST_AX 020000
/* Set if the cc value is actually in the 80387, so a floating point
conditional branch must be output. */
#define CC_IN_80387 04000
/* Set if the CC value was stored in a nonstandard way, so that
the state of equality is indicated by zero in the carry bit. */
#define CC_Z_IN_NOT_C 010000
/* Set if the CC value was actually from the 80387 and loaded directly
into the eflags instead of via eax/sahf. */
#define CC_FCOMI 040000
/* Store in cc_status the expressions
that the condition codes will describe
after execution of an instruction whose pattern is EXP.
Do not alter them if the instruction would not alter the cc's. */
#define NOTICE_UPDATE_CC(EXP, INSN) \
notice_update_cc((EXP))
/* Output a signed jump insn. Use template NORMAL ordinarily, or
FLOAT following a floating point comparison.
Use NO_OV following an arithmetic insn that set the cc's
before a test insn that was deleted.
NO_OV may be zero, meaning final should reinsert the test insn
because the jump cannot be handled properly without it. */
#define OUTPUT_JUMP(NORMAL, FLOAT, NO_OV) \
{ \
if (cc_prev_status.flags & CC_IN_80387) \
return FLOAT; \
if (cc_prev_status.flags & CC_NO_OVERFLOW) \
return NO_OV; \
return NORMAL; \
}
/* Control the assembler format that we output, to the extent
this does not vary between assemblers. */
/* How to refer to registers in assembler output.
This sequence is indexed by compiler's hard-register-number (see above). */
/* In order to refer to the first 8 regs as 32 bit regs prefix an "e"
For non floating point regs, the following are the HImode names.
For float regs, the stack top is sometimes referred to as "%st(0)"
instead of just "%st". PRINT_REG handles this with the "y" code. */
#define HI_REGISTER_NAMES \
{"ax","dx","cx","bx","si","di","bp","sp", \
"st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)","" }
#define REGISTER_NAMES HI_REGISTER_NAMES
/* Table of additional register names to use in user input. */
#define ADDITIONAL_REGISTER_NAMES \
{ { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
{ "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
{ "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
{ "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 } }
/* Note we are omitting these since currently I don't know how
to get gcc to use these, since they want the same but different
number as al, and ax.
*/
/* note the last four are not really qi_registers, but
the md will have to never output movb into one of them
only a movw . There is no movb into the last four regs */
#define QI_REGISTER_NAMES \
{"al", "dl", "cl", "bl", "si", "di", "bp", "sp",}
/* These parallel the array above, and can be used to access bits 8:15
of regs 0 through 3. */
#define QI_HIGH_REGISTER_NAMES \
{"ah", "dh", "ch", "bh", }
/* How to renumber registers for dbx and gdb. */
/* {0,2,1,3,6,7,4,5,12,13,14,15,16,17} */
#define DBX_REGISTER_NUMBER(n) \
((n) == 0 ? 0 : \
(n) == 1 ? 2 : \
(n) == 2 ? 1 : \
(n) == 3 ? 3 : \
(n) == 4 ? 6 : \
(n) == 5 ? 7 : \
(n) == 6 ? 4 : \
(n) == 7 ? 5 : \
(n) + 4)
/* Before the prologue, RA is at 0(%esp). */
#define INCOMING_RETURN_ADDR_RTX \
gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
/* After the prologue, RA is at -4(AP) in the current frame. */
#define RETURN_ADDR_RTX(COUNT, FRAME) \
((COUNT) == 0 \
? gen_rtx_MEM (Pmode, gen_rtx_PLUS (Pmode, arg_pointer_rtx, GEN_INT(-4)))\
: gen_rtx_MEM (Pmode, gen_rtx_PLUS (Pmode, (FRAME), GEN_INT(4))))
/* PC is dbx register 8; let's use that column for RA. */
#define DWARF_FRAME_RETURN_COLUMN 8
/* Before the prologue, the top of the frame is at 4(%esp). */
#define INCOMING_FRAME_SP_OFFSET 4
/* This is how to output the definition of a user-level label named NAME,
such as the label on a static function or variable NAME. */
#define ASM_OUTPUT_LABEL(FILE,NAME) \
(assemble_name (FILE, NAME), fputs (":\n", FILE))
/* This is how to output an assembler line defining a `double' constant. */
#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
do { long l[2]; \
REAL_VALUE_TO_TARGET_DOUBLE (VALUE, l); \
fprintf (FILE, "%s 0x%lx,0x%lx\n", ASM_LONG, l[0], l[1]); \
} while (0)
/* This is how to output a `long double' extended real constant. */
#undef ASM_OUTPUT_LONG_DOUBLE
#define ASM_OUTPUT_LONG_DOUBLE(FILE,VALUE) \
do { long l[3]; \
REAL_VALUE_TO_TARGET_LONG_DOUBLE (VALUE, l); \
fprintf (FILE, "%s 0x%lx,0x%lx,0x%lx\n", ASM_LONG, l[0], l[1], l[2]); \
} while (0)
/* This is how to output an assembler line defining a `float' constant. */
#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
do { long l; \
REAL_VALUE_TO_TARGET_SINGLE (VALUE, l); \
fprintf ((FILE), "%s 0x%lx\n", ASM_LONG, l); \
} while (0)
/* Store in OUTPUT a string (made with alloca) containing
an assembler-name for a local static variable named NAME.
LABELNO is an integer which is different for each call. */
#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
/* This is how to output an assembler line defining an `int' constant. */
#define ASM_OUTPUT_INT(FILE,VALUE) \
( fprintf (FILE, "%s ", ASM_LONG), \
output_addr_const (FILE,(VALUE)), \
putc('\n',FILE))
/* Likewise for `char' and `short' constants. */
/* is this supposed to do align too?? */
#define ASM_OUTPUT_SHORT(FILE,VALUE) \
( fprintf (FILE, "%s ", ASM_SHORT), \
output_addr_const (FILE,(VALUE)), \
putc('\n',FILE))
/*
#define ASM_OUTPUT_SHORT(FILE,VALUE) \
( fprintf (FILE, "%s ", ASM_BYTE_OP), \
output_addr_const (FILE,(VALUE)), \
fputs (",", FILE), \
output_addr_const (FILE,(VALUE)), \
fputs (" >> 8\n",FILE))
*/
#define ASM_OUTPUT_CHAR(FILE,VALUE) \
( fprintf (FILE, "%s ", ASM_BYTE_OP), \
output_addr_const (FILE, (VALUE)), \
putc ('\n', FILE))
/* This is how to output an assembler line for a numeric constant byte. */
#define ASM_OUTPUT_BYTE(FILE,VALUE) \
fprintf ((FILE), "%s 0x%x\n", ASM_BYTE_OP, (VALUE))
/* This is how to output an insn to push a register on the stack.
It need not be very fast code. */
#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
fprintf (FILE, "\tpushl %%e%s\n", reg_names[REGNO])
/* This is how to output an insn to pop a register from the stack.
It need not be very fast code. */
#define ASM_OUTPUT_REG_POP(FILE,REGNO) \
fprintf (FILE, "\tpopl %%e%s\n", reg_names[REGNO])
/* This is how to output an element of a case-vector that is absolute.
*/
#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
fprintf (FILE, "%s %s%d\n", ASM_LONG, LPREFIX, VALUE)
/* This is how to output an element of a case-vector that is relative.
We don't use these on the 386 yet, because the ATT assembler can't do
forward reference the differences.
*/
#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
fprintf (FILE, "\t.word %s%d-%s%d\n",LPREFIX, VALUE,LPREFIX, REL)
/* Define the parentheses used to group arithmetic operations
in assembler code. */
#define ASM_OPEN_PAREN ""
#define ASM_CLOSE_PAREN ""
/* Define results of standard character escape sequences. */
#define TARGET_BELL 007
#define TARGET_BS 010
#define TARGET_TAB 011
#define TARGET_NEWLINE 012
#define TARGET_VT 013
#define TARGET_FF 014
#define TARGET_CR 015
/* Print operand X (an rtx) in assembler syntax to file FILE.
CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
The CODE z takes the size of operand from the following digit, and
outputs b,w,or l respectively.
On the 80386, we use several such letters:
f -- float insn (print a CONST_DOUBLE as a float rather than in hex).
L,W,B,Q,S,T -- print the opcode suffix for specified size of operand.
R -- print the prefix for register names.
z -- print the opcode suffix for the size of the current operand.
* -- print a star (in certain assembler syntax)
P -- if PIC, print an @PLT suffix.
X -- don't print any sort of PIC '@' suffix for a symbol.
J -- print jump insn for arithmetic_comparison_operator.
s -- ??? something to do with double shifts. not actually used, afaik.
C -- print a conditional move suffix corresponding to the op code.
c -- likewise, but reverse the condition.
F,f -- likewise, but for floating-point. */
#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
((CODE) == '*' || (CODE) == '_')
/* Print the name of a register based on its machine mode and number.
If CODE is 'w', pretend the mode is HImode.
If CODE is 'b', pretend the mode is QImode.
If CODE is 'k', pretend the mode is SImode.
If CODE is 'h', pretend the reg is the `high' byte register.
If CODE is 'y', print "st(0)" instead of "st", if the reg is stack op. */
extern char *hi_reg_name[];
extern char *qi_reg_name[];
extern char *qi_high_reg_name[];
#define PRINT_REG(X, CODE, FILE) \
do { if (REGNO (X) == ARG_POINTER_REGNUM) \
abort (); \
fprintf (FILE, "%s", RP); \
switch ((CODE == 'w' ? 2 \
: CODE == 'b' ? 1 \
: CODE == 'k' ? 4 \
: CODE == 'y' ? 3 \
: CODE == 'h' ? 0 \
: GET_MODE_SIZE (GET_MODE (X)))) \
{ \
case 3: \
if (STACK_TOP_P (X)) \
{ \
fputs ("st(0)", FILE); \
break; \
} \
case 4: \
case 8: \
case 12: \
if (! FP_REG_P (X)) fputs ("e", FILE); \
case 2: \
fputs (hi_reg_name[REGNO (X)], FILE); \
break; \
case 1: \
fputs (qi_reg_name[REGNO (X)], FILE); \
break; \
case 0: \
fputs (qi_high_reg_name[REGNO (X)], FILE); \
break; \
} \
} while (0)
#define PRINT_OPERAND(FILE, X, CODE) \
print_operand (FILE, X, CODE)
#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
print_operand_address (FILE, ADDR)
/* Print the name of a register for based on its machine mode and number.
This macro is used to print debugging output.
This macro is different from PRINT_REG in that it may be used in
programs that are not linked with aux-output.o. */
#define DEBUG_PRINT_REG(X, CODE, FILE) \
do { static char *hi_name[] = HI_REGISTER_NAMES; \
static char *qi_name[] = QI_REGISTER_NAMES; \
fprintf (FILE, "%d %s", REGNO (X), RP); \
if (REGNO (X) == ARG_POINTER_REGNUM) \
{ fputs ("argp", FILE); break; } \
if (STACK_TOP_P (X)) \
{ fputs ("st(0)", FILE); break; } \
if (FP_REG_P (X)) \
{ fputs (hi_name[REGNO(X)], FILE); break; } \
switch (GET_MODE_SIZE (GET_MODE (X))) \
{ \
default: \
fputs ("e", FILE); \
case 2: \
fputs (hi_name[REGNO (X)], FILE); \
break; \
case 1: \
fputs (qi_name[REGNO (X)], FILE); \
break; \
} \
} while (0)
/* Output the prefix for an immediate operand, or for an offset operand. */
#define PRINT_IMMED_PREFIX(FILE) fputs (IP, (FILE))
#define PRINT_OFFSET_PREFIX(FILE) fputs (IP, (FILE))
/* Routines in libgcc that return floats must return them in an fp reg,
just as other functions do which return such values.
These macros make that happen. */
#define FLOAT_VALUE_TYPE float
#define INTIFY(FLOATVAL) FLOATVAL
/* Nonzero if INSN magically clobbers register REGNO. */
/* #define INSN_CLOBBERS_REGNO_P(INSN, REGNO) \
(FP_REGNO_P (REGNO) \
&& (GET_CODE (INSN) == JUMP_INSN || GET_CODE (INSN) == BARRIER))
*/
/* a letter which is not needed by the normal asm syntax, which
we can use for operand syntax in the extended asm */
#define ASM_OPERAND_LETTER '#'
#define RET return ""
#define AT_SP(mode) (gen_rtx_MEM ((mode), stack_pointer_rtx))
/* Helper macros to expand a binary/unary operator if needed */
#define IX86_EXPAND_BINARY_OPERATOR(OP, MODE, OPERANDS) \
do { \
if (!ix86_expand_binary_operator (OP, MODE, OPERANDS)) \
FAIL; \
} while (0)
#define IX86_EXPAND_UNARY_OPERATOR(OP, MODE, OPERANDS) \
do { \
if (!ix86_expand_unary_operator (OP, MODE, OPERANDS,)) \
FAIL; \
} while (0)
/* Functions in i386.c */
extern void override_options ();
extern void order_regs_for_local_alloc ();
extern char *output_strlen_unroll ();
extern struct rtx_def *i386_sext16_if_const ();
extern int i386_aligned_p ();
extern int i386_cc_probably_useless_p ();
extern int i386_valid_decl_attribute_p ();
extern int i386_valid_type_attribute_p ();
extern int i386_return_pops_args ();
extern int i386_comp_type_attributes ();
extern void init_cumulative_args ();
extern void function_arg_advance ();
extern struct rtx_def *function_arg ();
extern int function_arg_partial_nregs ();
extern char *output_strlen_unroll ();
extern char *singlemove_string ();
extern char *output_move_double ();
extern char *output_move_pushmem ();
extern int standard_80387_constant_p ();
extern char *output_move_const_single ();
extern int symbolic_operand ();
extern int call_insn_operand ();
extern int expander_call_insn_operand ();
extern int symbolic_reference_mentioned_p ();
extern int ix86_expand_binary_operator ();
extern int ix86_binary_operator_ok ();
extern int ix86_expand_unary_operator ();
extern int ix86_unary_operator_ok ();
extern void emit_pic_move ();
extern void function_prologue ();
extern int simple_386_epilogue ();
extern void function_epilogue ();
extern int legitimate_address_p ();
extern struct rtx_def *legitimize_pic_address ();
extern struct rtx_def *legitimize_address ();
extern void print_operand ();
extern void print_operand_address ();
extern void notice_update_cc ();
extern void split_di ();
extern int binary_387_op ();
extern int shift_op ();
extern int VOIDmode_compare_op ();
extern char *output_387_binary_op ();
extern char *output_fix_trunc ();
extern void output_float_extend ();
extern char *output_float_compare ();
extern char *output_fp_cc0_set ();
extern void save_386_machine_status ();
extern void restore_386_machine_status ();
extern void clear_386_stack_locals ();
extern struct rtx_def *assign_386_stack_local ();
extern int is_mul ();
extern int is_div ();
extern int last_to_set_cc ();
extern int doesnt_set_condition_code ();
extern int sets_condition_code ();
extern int str_immediate_operand ();
extern int is_fp_insn ();
extern int is_fp_dest ();
extern int is_fp_store ();
extern int agi_dependent ();
extern int reg_mentioned_in_mem ();
extern char *output_int_conditional_move ();
extern char *output_fp_conditional_move ();
extern int ix86_can_use_return_insn_p ();
extern int small_shift_operand ();
extern char *output_ashl ();
extern int memory_address_info ();
#ifdef NOTYET
extern struct rtx_def *copy_all_rtx ();
extern void rewrite_address ();
#endif
/* Variables in i386.c */
extern const char *ix86_cpu_string; /* for -mcpu=<xxx> */
extern const char *ix86_arch_string; /* for -march=<xxx> */
extern const char *i386_reg_alloc_order; /* register allocation order */
extern const char *i386_regparm_string; /* # registers to use to pass args */
extern const char *i386_align_loops_string; /* power of two alignment for loops */
extern const char *i386_align_jumps_string; /* power of two alignment for non-loop jumps */
extern const char *i386_align_funcs_string; /* power of two alignment for functions */
extern const char *i386_preferred_stack_boundary_string;/* power of two alignment for stack boundary */
extern const char *i386_branch_cost_string; /* values 1-5: see jump.c */
extern int i386_regparm; /* i386_regparm_string as a number */
extern int i386_align_loops; /* power of two alignment for loops */
extern int i386_align_jumps; /* power of two alignment for non-loop jumps */
extern int i386_align_funcs; /* power of two alignment for functions */
extern int i386_preferred_stack_boundary; /* preferred stack boundary alignment in bits */
extern int i386_branch_cost; /* values 1-5: see jump.c */
extern char *hi_reg_name[]; /* names for 16 bit regs */
extern char *qi_reg_name[]; /* names for 8 bit regs (low) */
extern char *qi_high_reg_name[]; /* names for 8 bit regs (high) */
extern enum reg_class regclass_map[]; /* smalled class containing REGNO */
extern struct rtx_def *i386_compare_op0; /* operand 0 for comparisons */
extern struct rtx_def *i386_compare_op1; /* operand 1 for comparisons */
/* External variables used */
extern int optimize; /* optimization level */
extern int obey_regdecls; /* TRUE if stupid register allocation */
/* External functions used */
extern struct rtx_def *force_operand ();
/*
Local variables:
version-control: t
End:
*/
|