1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
|
/* Copyright (C) 1997-2014 Free Software Foundation, Inc.
Contributed by Red Hat, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "varasm.h"
#include "stor-layout.h"
#include "stringpool.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "rtl.h"
#include "insn-config.h"
#include "conditions.h"
#include "insn-flags.h"
#include "output.h"
#include "insn-attr.h"
#include "flags.h"
#include "recog.h"
#include "reload.h"
#include "expr.h"
#include "obstack.h"
#include "except.h"
#include "hashtab.h"
#include "hash-set.h"
#include "vec.h"
#include "machmode.h"
#include "input.h"
#include "function.h"
#include "insn-codes.h"
#include "optabs.h"
#include "diagnostic-core.h"
#include "predict.h"
#include "dominance.h"
#include "cfg.h"
#include "cfgrtl.h"
#include "cfganal.h"
#include "lcm.h"
#include "cfgbuild.h"
#include "cfgcleanup.h"
#include "basic-block.h"
#include "tm_p.h"
#include "ggc.h"
#include "target.h"
#include "target-def.h"
#include "targhooks.h"
#include "langhooks.h"
#include "df.h"
#include "dumpfile.h"
#include "builtins.h"
#include "ifcvt.h"
#ifndef FRV_INLINE
#define FRV_INLINE inline
#endif
/* The maximum number of distinct NOP patterns. There are three:
nop, fnop and mnop. */
#define NUM_NOP_PATTERNS 3
/* Classification of instructions and units: integer, floating-point/media,
branch and control. */
enum frv_insn_group { GROUP_I, GROUP_FM, GROUP_B, GROUP_C, NUM_GROUPS };
/* The DFA names of the units, in packet order. */
static const char *const frv_unit_names[] =
{
"c",
"i0", "f0",
"i1", "f1",
"i2", "f2",
"i3", "f3",
"b0", "b1"
};
/* The classification of each unit in frv_unit_names[]. */
static const enum frv_insn_group frv_unit_groups[ARRAY_SIZE (frv_unit_names)] =
{
GROUP_C,
GROUP_I, GROUP_FM,
GROUP_I, GROUP_FM,
GROUP_I, GROUP_FM,
GROUP_I, GROUP_FM,
GROUP_B, GROUP_B
};
/* Return the DFA unit code associated with the Nth unit of integer
or floating-point group GROUP, */
#define NTH_UNIT(GROUP, N) frv_unit_codes[(GROUP) + (N) * 2 + 1]
/* Return the number of integer or floating-point unit UNIT
(1 for I1, 2 for F2, etc.). */
#define UNIT_NUMBER(UNIT) (((UNIT) - 1) / 2)
/* The DFA unit number for each unit in frv_unit_names[]. */
static int frv_unit_codes[ARRAY_SIZE (frv_unit_names)];
/* FRV_TYPE_TO_UNIT[T] is the last unit in frv_unit_names[] that can issue
an instruction of type T. The value is ARRAY_SIZE (frv_unit_names) if
no instruction of type T has been seen. */
static unsigned int frv_type_to_unit[TYPE_UNKNOWN + 1];
/* An array of dummy nop INSNs, one for each type of nop that the
target supports. */
static GTY(()) rtx_insn *frv_nops[NUM_NOP_PATTERNS];
/* The number of nop instructions in frv_nops[]. */
static unsigned int frv_num_nops;
/* The type of access. FRV_IO_UNKNOWN means the access can be either
a read or a write. */
enum frv_io_type { FRV_IO_UNKNOWN, FRV_IO_READ, FRV_IO_WRITE };
/* Information about one __builtin_read or __builtin_write access, or
the combination of several such accesses. The most general value
is all-zeros (an unknown access to an unknown address). */
struct frv_io {
enum frv_io_type type;
/* The constant address being accessed, or zero if not known. */
HOST_WIDE_INT const_address;
/* The run-time address, as used in operand 0 of the membar pattern. */
rtx var_address;
};
/* Return true if instruction INSN should be packed with the following
instruction. */
#define PACKING_FLAG_P(INSN) (GET_MODE (INSN) == TImode)
/* Set the value of PACKING_FLAG_P(INSN). */
#define SET_PACKING_FLAG(INSN) PUT_MODE (INSN, TImode)
#define CLEAR_PACKING_FLAG(INSN) PUT_MODE (INSN, VOIDmode)
/* Loop with REG set to each hard register in rtx X. */
#define FOR_EACH_REGNO(REG, X) \
for (REG = REGNO (X); \
REG < REGNO (X) + HARD_REGNO_NREGS (REGNO (X), GET_MODE (X)); \
REG++)
/* This structure contains machine specific function data. */
struct GTY(()) machine_function
{
/* True if we have created an rtx that relies on the stack frame. */
int frame_needed;
/* True if this function contains at least one __builtin_{read,write}*. */
bool has_membar_p;
};
/* Temporary register allocation support structure. */
typedef struct frv_tmp_reg_struct
{
HARD_REG_SET regs; /* possible registers to allocate */
int next_reg[N_REG_CLASSES]; /* next register to allocate per class */
}
frv_tmp_reg_t;
/* Register state information for VLIW re-packing phase. */
#define REGSTATE_CC_MASK 0x07 /* Mask to isolate CCn for cond exec */
#define REGSTATE_MODIFIED 0x08 /* reg modified in current VLIW insn */
#define REGSTATE_IF_TRUE 0x10 /* reg modified in cond exec true */
#define REGSTATE_IF_FALSE 0x20 /* reg modified in cond exec false */
#define REGSTATE_IF_EITHER (REGSTATE_IF_TRUE | REGSTATE_IF_FALSE)
typedef unsigned char regstate_t;
/* Used in frv_frame_accessor_t to indicate the direction of a register-to-
memory move. */
enum frv_stack_op
{
FRV_LOAD,
FRV_STORE
};
/* Information required by frv_frame_access. */
typedef struct
{
/* This field is FRV_LOAD if registers are to be loaded from the stack and
FRV_STORE if they should be stored onto the stack. FRV_STORE implies
the move is being done by the prologue code while FRV_LOAD implies it
is being done by the epilogue. */
enum frv_stack_op op;
/* The base register to use when accessing the stack. This may be the
frame pointer, stack pointer, or a temporary. The choice of register
depends on which part of the frame is being accessed and how big the
frame is. */
rtx base;
/* The offset of BASE from the bottom of the current frame, in bytes. */
int base_offset;
} frv_frame_accessor_t;
/* Conditional execution support gathered together in one structure. */
typedef struct
{
/* Linked list of insns to add if the conditional execution conversion was
successful. Each link points to an EXPR_LIST which points to the pattern
of the insn to add, and the insn to be inserted before. */
rtx added_insns_list;
/* Identify which registers are safe to allocate for if conversions to
conditional execution. We keep the last allocated register in the
register classes between COND_EXEC statements. This will mean we allocate
different registers for each different COND_EXEC group if we can. This
might allow the scheduler to intermix two different COND_EXEC sections. */
frv_tmp_reg_t tmp_reg;
/* For nested IFs, identify which CC registers are used outside of setting
via a compare isnsn, and using via a check insn. This will allow us to
know if we can rewrite the register to use a different register that will
be paired with the CR register controlling the nested IF-THEN blocks. */
HARD_REG_SET nested_cc_ok_rewrite;
/* Temporary registers allocated to hold constants during conditional
execution. */
rtx scratch_regs[FIRST_PSEUDO_REGISTER];
/* Current number of temp registers available. */
int cur_scratch_regs;
/* Number of nested conditional execution blocks. */
int num_nested_cond_exec;
/* Map of insns that set up constants in scratch registers. */
bitmap scratch_insns_bitmap;
/* Conditional execution test register (CC0..CC7). */
rtx cr_reg;
/* Conditional execution compare register that is paired with cr_reg, so that
nested compares can be done. The csubcc and caddcc instructions don't
have enough bits to specify both a CC register to be set and a CR register
to do the test on, so the same bit number is used for both. Needless to
say, this is rather inconvenient for GCC. */
rtx nested_cc_reg;
/* Extra CR registers used for &&, ||. */
rtx extra_int_cr;
rtx extra_fp_cr;
/* Previous CR used in nested if, to make sure we are dealing with the same
nested if as the previous statement. */
rtx last_nested_if_cr;
}
frv_ifcvt_t;
static /* GTY(()) */ frv_ifcvt_t frv_ifcvt;
/* Map register number to smallest register class. */
enum reg_class regno_reg_class[FIRST_PSEUDO_REGISTER];
/* Cached value of frv_stack_info. */
static frv_stack_t *frv_stack_cache = (frv_stack_t *)0;
/* Forward references */
static void frv_option_override (void);
static bool frv_legitimate_address_p (machine_mode, rtx, bool);
static int frv_default_flags_for_cpu (void);
static int frv_string_begins_with (const char *, const char *);
static FRV_INLINE bool frv_small_data_reloc_p (rtx, int);
static void frv_print_operand (FILE *, rtx, int);
static void frv_print_operand_address (FILE *, rtx);
static bool frv_print_operand_punct_valid_p (unsigned char code);
static void frv_print_operand_memory_reference_reg
(FILE *, rtx);
static void frv_print_operand_memory_reference (FILE *, rtx, int);
static int frv_print_operand_jump_hint (rtx_insn *);
static const char *comparison_string (enum rtx_code, rtx);
static rtx frv_function_value (const_tree, const_tree,
bool);
static rtx frv_libcall_value (machine_mode,
const_rtx);
static FRV_INLINE int frv_regno_ok_for_base_p (int, int);
static rtx single_set_pattern (rtx);
static int frv_function_contains_far_jump (void);
static rtx frv_alloc_temp_reg (frv_tmp_reg_t *,
enum reg_class,
machine_mode,
int, int);
static rtx frv_frame_offset_rtx (int);
static rtx frv_frame_mem (machine_mode, rtx, int);
static rtx frv_dwarf_store (rtx, int);
static void frv_frame_insn (rtx, rtx);
static void frv_frame_access (frv_frame_accessor_t*,
rtx, int);
static void frv_frame_access_multi (frv_frame_accessor_t*,
frv_stack_t *, int);
static void frv_frame_access_standard_regs (enum frv_stack_op,
frv_stack_t *);
static struct machine_function *frv_init_machine_status (void);
static rtx frv_int_to_acc (enum insn_code, int, rtx);
static machine_mode frv_matching_accg_mode (machine_mode);
static rtx frv_read_argument (tree, unsigned int);
static rtx frv_read_iacc_argument (machine_mode, tree, unsigned int);
static int frv_check_constant_argument (enum insn_code, int, rtx);
static rtx frv_legitimize_target (enum insn_code, rtx);
static rtx frv_legitimize_argument (enum insn_code, int, rtx);
static rtx frv_legitimize_tls_address (rtx, enum tls_model);
static rtx frv_legitimize_address (rtx, rtx, machine_mode);
static rtx frv_expand_set_builtin (enum insn_code, tree, rtx);
static rtx frv_expand_unop_builtin (enum insn_code, tree, rtx);
static rtx frv_expand_binop_builtin (enum insn_code, tree, rtx);
static rtx frv_expand_cut_builtin (enum insn_code, tree, rtx);
static rtx frv_expand_binopimm_builtin (enum insn_code, tree, rtx);
static rtx frv_expand_voidbinop_builtin (enum insn_code, tree);
static rtx frv_expand_int_void2arg (enum insn_code, tree);
static rtx frv_expand_prefetches (enum insn_code, tree);
static rtx frv_expand_voidtriop_builtin (enum insn_code, tree);
static rtx frv_expand_voidaccop_builtin (enum insn_code, tree);
static rtx frv_expand_mclracc_builtin (tree);
static rtx frv_expand_mrdacc_builtin (enum insn_code, tree);
static rtx frv_expand_mwtacc_builtin (enum insn_code, tree);
static rtx frv_expand_noargs_builtin (enum insn_code);
static void frv_split_iacc_move (rtx, rtx);
static rtx frv_emit_comparison (enum rtx_code, rtx, rtx);
static void frv_ifcvt_add_insn (rtx, rtx, int);
static rtx frv_ifcvt_rewrite_mem (rtx, machine_mode, rtx);
static rtx frv_ifcvt_load_value (rtx, rtx);
static int frv_acc_group_1 (rtx *, void *);
static unsigned int frv_insn_unit (rtx_insn *);
static bool frv_issues_to_branch_unit_p (rtx_insn *);
static int frv_cond_flags (rtx);
static bool frv_regstate_conflict_p (regstate_t, regstate_t);
static int frv_registers_conflict_p_1 (rtx *, void *);
static bool frv_registers_conflict_p (rtx);
static void frv_registers_update_1 (rtx, const_rtx, void *);
static void frv_registers_update (rtx);
static void frv_start_packet (void);
static void frv_start_packet_block (void);
static void frv_finish_packet (void (*) (void));
static bool frv_pack_insn_p (rtx_insn *);
static void frv_add_insn_to_packet (rtx_insn *);
static void frv_insert_nop_in_packet (rtx_insn *);
static bool frv_for_each_packet (void (*) (void));
static bool frv_sort_insn_group_1 (enum frv_insn_group,
unsigned int, unsigned int,
unsigned int, unsigned int,
state_t);
static int frv_compare_insns (const void *, const void *);
static void frv_sort_insn_group (enum frv_insn_group);
static void frv_reorder_packet (void);
static void frv_fill_unused_units (enum frv_insn_group);
static void frv_align_label (void);
static void frv_reorg_packet (void);
static void frv_register_nop (rtx);
static void frv_reorg (void);
static void frv_pack_insns (void);
static void frv_function_prologue (FILE *, HOST_WIDE_INT);
static void frv_function_epilogue (FILE *, HOST_WIDE_INT);
static bool frv_assemble_integer (rtx, unsigned, int);
static void frv_init_builtins (void);
static rtx frv_expand_builtin (tree, rtx, rtx, machine_mode, int);
static void frv_init_libfuncs (void);
static bool frv_in_small_data_p (const_tree);
static void frv_asm_output_mi_thunk
(FILE *, tree, HOST_WIDE_INT, HOST_WIDE_INT, tree);
static void frv_setup_incoming_varargs (cumulative_args_t,
machine_mode,
tree, int *, int);
static rtx frv_expand_builtin_saveregs (void);
static void frv_expand_builtin_va_start (tree, rtx);
static bool frv_rtx_costs (rtx, int, int, int, int*,
bool);
static int frv_register_move_cost (machine_mode,
reg_class_t, reg_class_t);
static int frv_memory_move_cost (machine_mode,
reg_class_t, bool);
static void frv_asm_out_constructor (rtx, int);
static void frv_asm_out_destructor (rtx, int);
static bool frv_function_symbol_referenced_p (rtx);
static bool frv_legitimate_constant_p (machine_mode, rtx);
static bool frv_cannot_force_const_mem (machine_mode, rtx);
static const char *unspec_got_name (int);
static void frv_output_const_unspec (FILE *,
const struct frv_unspec *);
static bool frv_function_ok_for_sibcall (tree, tree);
static rtx frv_struct_value_rtx (tree, int);
static bool frv_must_pass_in_stack (machine_mode mode, const_tree type);
static int frv_arg_partial_bytes (cumulative_args_t, machine_mode,
tree, bool);
static rtx frv_function_arg (cumulative_args_t, machine_mode,
const_tree, bool);
static rtx frv_function_incoming_arg (cumulative_args_t, machine_mode,
const_tree, bool);
static void frv_function_arg_advance (cumulative_args_t, machine_mode,
const_tree, bool);
static unsigned int frv_function_arg_boundary (machine_mode,
const_tree);
static void frv_output_dwarf_dtprel (FILE *, int, rtx)
ATTRIBUTE_UNUSED;
static reg_class_t frv_secondary_reload (bool, rtx, reg_class_t,
machine_mode,
secondary_reload_info *);
static bool frv_frame_pointer_required (void);
static bool frv_can_eliminate (const int, const int);
static void frv_conditional_register_usage (void);
static void frv_trampoline_init (rtx, tree, rtx);
static bool frv_class_likely_spilled_p (reg_class_t);
/* Initialize the GCC target structure. */
#undef TARGET_PRINT_OPERAND
#define TARGET_PRINT_OPERAND frv_print_operand
#undef TARGET_PRINT_OPERAND_ADDRESS
#define TARGET_PRINT_OPERAND_ADDRESS frv_print_operand_address
#undef TARGET_PRINT_OPERAND_PUNCT_VALID_P
#define TARGET_PRINT_OPERAND_PUNCT_VALID_P frv_print_operand_punct_valid_p
#undef TARGET_ASM_FUNCTION_PROLOGUE
#define TARGET_ASM_FUNCTION_PROLOGUE frv_function_prologue
#undef TARGET_ASM_FUNCTION_EPILOGUE
#define TARGET_ASM_FUNCTION_EPILOGUE frv_function_epilogue
#undef TARGET_ASM_INTEGER
#define TARGET_ASM_INTEGER frv_assemble_integer
#undef TARGET_OPTION_OVERRIDE
#define TARGET_OPTION_OVERRIDE frv_option_override
#undef TARGET_INIT_BUILTINS
#define TARGET_INIT_BUILTINS frv_init_builtins
#undef TARGET_EXPAND_BUILTIN
#define TARGET_EXPAND_BUILTIN frv_expand_builtin
#undef TARGET_INIT_LIBFUNCS
#define TARGET_INIT_LIBFUNCS frv_init_libfuncs
#undef TARGET_IN_SMALL_DATA_P
#define TARGET_IN_SMALL_DATA_P frv_in_small_data_p
#undef TARGET_REGISTER_MOVE_COST
#define TARGET_REGISTER_MOVE_COST frv_register_move_cost
#undef TARGET_MEMORY_MOVE_COST
#define TARGET_MEMORY_MOVE_COST frv_memory_move_cost
#undef TARGET_RTX_COSTS
#define TARGET_RTX_COSTS frv_rtx_costs
#undef TARGET_ASM_CONSTRUCTOR
#define TARGET_ASM_CONSTRUCTOR frv_asm_out_constructor
#undef TARGET_ASM_DESTRUCTOR
#define TARGET_ASM_DESTRUCTOR frv_asm_out_destructor
#undef TARGET_ASM_OUTPUT_MI_THUNK
#define TARGET_ASM_OUTPUT_MI_THUNK frv_asm_output_mi_thunk
#undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
#define TARGET_ASM_CAN_OUTPUT_MI_THUNK default_can_output_mi_thunk_no_vcall
#undef TARGET_SCHED_ISSUE_RATE
#define TARGET_SCHED_ISSUE_RATE frv_issue_rate
#undef TARGET_LEGITIMIZE_ADDRESS
#define TARGET_LEGITIMIZE_ADDRESS frv_legitimize_address
#undef TARGET_FUNCTION_OK_FOR_SIBCALL
#define TARGET_FUNCTION_OK_FOR_SIBCALL frv_function_ok_for_sibcall
#undef TARGET_LEGITIMATE_CONSTANT_P
#define TARGET_LEGITIMATE_CONSTANT_P frv_legitimate_constant_p
#undef TARGET_CANNOT_FORCE_CONST_MEM
#define TARGET_CANNOT_FORCE_CONST_MEM frv_cannot_force_const_mem
#undef TARGET_HAVE_TLS
#define TARGET_HAVE_TLS HAVE_AS_TLS
#undef TARGET_STRUCT_VALUE_RTX
#define TARGET_STRUCT_VALUE_RTX frv_struct_value_rtx
#undef TARGET_MUST_PASS_IN_STACK
#define TARGET_MUST_PASS_IN_STACK frv_must_pass_in_stack
#undef TARGET_PASS_BY_REFERENCE
#define TARGET_PASS_BY_REFERENCE hook_pass_by_reference_must_pass_in_stack
#undef TARGET_ARG_PARTIAL_BYTES
#define TARGET_ARG_PARTIAL_BYTES frv_arg_partial_bytes
#undef TARGET_FUNCTION_ARG
#define TARGET_FUNCTION_ARG frv_function_arg
#undef TARGET_FUNCTION_INCOMING_ARG
#define TARGET_FUNCTION_INCOMING_ARG frv_function_incoming_arg
#undef TARGET_FUNCTION_ARG_ADVANCE
#define TARGET_FUNCTION_ARG_ADVANCE frv_function_arg_advance
#undef TARGET_FUNCTION_ARG_BOUNDARY
#define TARGET_FUNCTION_ARG_BOUNDARY frv_function_arg_boundary
#undef TARGET_EXPAND_BUILTIN_SAVEREGS
#define TARGET_EXPAND_BUILTIN_SAVEREGS frv_expand_builtin_saveregs
#undef TARGET_SETUP_INCOMING_VARARGS
#define TARGET_SETUP_INCOMING_VARARGS frv_setup_incoming_varargs
#undef TARGET_MACHINE_DEPENDENT_REORG
#define TARGET_MACHINE_DEPENDENT_REORG frv_reorg
#undef TARGET_EXPAND_BUILTIN_VA_START
#define TARGET_EXPAND_BUILTIN_VA_START frv_expand_builtin_va_start
#if HAVE_AS_TLS
#undef TARGET_ASM_OUTPUT_DWARF_DTPREL
#define TARGET_ASM_OUTPUT_DWARF_DTPREL frv_output_dwarf_dtprel
#endif
#undef TARGET_CLASS_LIKELY_SPILLED_P
#define TARGET_CLASS_LIKELY_SPILLED_P frv_class_likely_spilled_p
#undef TARGET_SECONDARY_RELOAD
#define TARGET_SECONDARY_RELOAD frv_secondary_reload
#undef TARGET_LEGITIMATE_ADDRESS_P
#define TARGET_LEGITIMATE_ADDRESS_P frv_legitimate_address_p
#undef TARGET_FRAME_POINTER_REQUIRED
#define TARGET_FRAME_POINTER_REQUIRED frv_frame_pointer_required
#undef TARGET_CAN_ELIMINATE
#define TARGET_CAN_ELIMINATE frv_can_eliminate
#undef TARGET_CONDITIONAL_REGISTER_USAGE
#define TARGET_CONDITIONAL_REGISTER_USAGE frv_conditional_register_usage
#undef TARGET_TRAMPOLINE_INIT
#define TARGET_TRAMPOLINE_INIT frv_trampoline_init
#undef TARGET_FUNCTION_VALUE
#define TARGET_FUNCTION_VALUE frv_function_value
#undef TARGET_LIBCALL_VALUE
#define TARGET_LIBCALL_VALUE frv_libcall_value
struct gcc_target targetm = TARGET_INITIALIZER;
#define FRV_SYMBOL_REF_TLS_P(RTX) \
(GET_CODE (RTX) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (RTX) != 0)
/* Any function call that satisfies the machine-independent
requirements is eligible on FR-V. */
static bool
frv_function_ok_for_sibcall (tree decl ATTRIBUTE_UNUSED,
tree exp ATTRIBUTE_UNUSED)
{
return true;
}
/* Return true if SYMBOL is a small data symbol and relocation RELOC
can be used to access it directly in a load or store. */
static FRV_INLINE bool
frv_small_data_reloc_p (rtx symbol, int reloc)
{
return (GET_CODE (symbol) == SYMBOL_REF
&& SYMBOL_REF_SMALL_P (symbol)
&& (!TARGET_FDPIC || flag_pic == 1)
&& (reloc == R_FRV_GOTOFF12 || reloc == R_FRV_GPREL12));
}
/* Return true if X is a valid relocation unspec. If it is, fill in UNSPEC
appropriately. */
bool
frv_const_unspec_p (rtx x, struct frv_unspec *unspec)
{
if (GET_CODE (x) == CONST)
{
unspec->offset = 0;
x = XEXP (x, 0);
if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == CONST_INT)
{
unspec->offset += INTVAL (XEXP (x, 1));
x = XEXP (x, 0);
}
if (GET_CODE (x) == UNSPEC && XINT (x, 1) == UNSPEC_GOT)
{
unspec->symbol = XVECEXP (x, 0, 0);
unspec->reloc = INTVAL (XVECEXP (x, 0, 1));
if (unspec->offset == 0)
return true;
if (frv_small_data_reloc_p (unspec->symbol, unspec->reloc)
&& unspec->offset > 0
&& unspec->offset < g_switch_value)
return true;
}
}
return false;
}
/* Decide whether we can force certain constants to memory. If we
decide we can't, the caller should be able to cope with it in
another way.
We never allow constants to be forced into memory for TARGET_FDPIC.
This is necessary for several reasons:
1. Since frv_legitimate_constant_p rejects constant pool addresses, the
target-independent code will try to force them into the constant
pool, thus leading to infinite recursion.
2. We can never introduce new constant pool references during reload.
Any such reference would require use of the pseudo FDPIC register.
3. We can't represent a constant added to a function pointer (which is
not the same as a pointer to a function+constant).
4. In many cases, it's more efficient to calculate the constant in-line. */
static bool
frv_cannot_force_const_mem (machine_mode mode ATTRIBUTE_UNUSED,
rtx x ATTRIBUTE_UNUSED)
{
return TARGET_FDPIC;
}
static int
frv_default_flags_for_cpu (void)
{
switch (frv_cpu_type)
{
case FRV_CPU_GENERIC:
return MASK_DEFAULT_FRV;
case FRV_CPU_FR550:
return MASK_DEFAULT_FR550;
case FRV_CPU_FR500:
case FRV_CPU_TOMCAT:
return MASK_DEFAULT_FR500;
case FRV_CPU_FR450:
return MASK_DEFAULT_FR450;
case FRV_CPU_FR405:
case FRV_CPU_FR400:
return MASK_DEFAULT_FR400;
case FRV_CPU_FR300:
case FRV_CPU_SIMPLE:
return MASK_DEFAULT_SIMPLE;
default:
gcc_unreachable ();
}
}
/* Implement TARGET_OPTION_OVERRIDE. */
static void
frv_option_override (void)
{
int regno;
unsigned int i;
target_flags |= (frv_default_flags_for_cpu () & ~target_flags_explicit);
/* -mlibrary-pic sets -fPIC and -G0 and also suppresses warnings from the
linker about linking pic and non-pic code. */
if (TARGET_LIBPIC)
{
if (!flag_pic) /* -fPIC */
flag_pic = 2;
if (!global_options_set.x_g_switch_value) /* -G0 */
{
g_switch_value = 0;
}
}
/* A C expression whose value is a register class containing hard
register REGNO. In general there is more than one such class;
choose a class which is "minimal", meaning that no smaller class
also contains the register. */
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
{
enum reg_class rclass;
if (GPR_P (regno))
{
int gpr_reg = regno - GPR_FIRST;
if (gpr_reg == GR8_REG)
rclass = GR8_REGS;
else if (gpr_reg == GR9_REG)
rclass = GR9_REGS;
else if (gpr_reg == GR14_REG)
rclass = FDPIC_FPTR_REGS;
else if (gpr_reg == FDPIC_REGNO)
rclass = FDPIC_REGS;
else if ((gpr_reg & 3) == 0)
rclass = QUAD_REGS;
else if ((gpr_reg & 1) == 0)
rclass = EVEN_REGS;
else
rclass = GPR_REGS;
}
else if (FPR_P (regno))
{
int fpr_reg = regno - GPR_FIRST;
if ((fpr_reg & 3) == 0)
rclass = QUAD_FPR_REGS;
else if ((fpr_reg & 1) == 0)
rclass = FEVEN_REGS;
else
rclass = FPR_REGS;
}
else if (regno == LR_REGNO)
rclass = LR_REG;
else if (regno == LCR_REGNO)
rclass = LCR_REG;
else if (ICC_P (regno))
rclass = ICC_REGS;
else if (FCC_P (regno))
rclass = FCC_REGS;
else if (ICR_P (regno))
rclass = ICR_REGS;
else if (FCR_P (regno))
rclass = FCR_REGS;
else if (ACC_P (regno))
{
int r = regno - ACC_FIRST;
if ((r & 3) == 0)
rclass = QUAD_ACC_REGS;
else if ((r & 1) == 0)
rclass = EVEN_ACC_REGS;
else
rclass = ACC_REGS;
}
else if (ACCG_P (regno))
rclass = ACCG_REGS;
else
rclass = NO_REGS;
regno_reg_class[regno] = rclass;
}
/* Check for small data option */
if (!global_options_set.x_g_switch_value && !TARGET_LIBPIC)
g_switch_value = SDATA_DEFAULT_SIZE;
/* There is no single unaligned SI op for PIC code. Sometimes we
need to use ".4byte" and sometimes we need to use ".picptr".
See frv_assemble_integer for details. */
if (flag_pic || TARGET_FDPIC)
targetm.asm_out.unaligned_op.si = 0;
if ((target_flags_explicit & MASK_LINKED_FP) == 0)
target_flags |= MASK_LINKED_FP;
if ((target_flags_explicit & MASK_OPTIMIZE_MEMBAR) == 0)
target_flags |= MASK_OPTIMIZE_MEMBAR;
for (i = 0; i < ARRAY_SIZE (frv_unit_names); i++)
frv_unit_codes[i] = get_cpu_unit_code (frv_unit_names[i]);
for (i = 0; i < ARRAY_SIZE (frv_type_to_unit); i++)
frv_type_to_unit[i] = ARRAY_SIZE (frv_unit_codes);
init_machine_status = frv_init_machine_status;
}
/* Return true if NAME (a STRING_CST node) begins with PREFIX. */
static int
frv_string_begins_with (const char *name, const char *prefix)
{
const int prefix_len = strlen (prefix);
/* Remember: NAME's length includes the null terminator. */
return (strncmp (name, prefix, prefix_len) == 0);
}
/* Implement TARGET_CONDITIONAL_REGISTER_USAGE. */
static void
frv_conditional_register_usage (void)
{
int i;
for (i = GPR_FIRST + NUM_GPRS; i <= GPR_LAST; i++)
fixed_regs[i] = call_used_regs[i] = 1;
for (i = FPR_FIRST + NUM_FPRS; i <= FPR_LAST; i++)
fixed_regs[i] = call_used_regs[i] = 1;
/* Reserve the registers used for conditional execution. At present, we need
1 ICC and 1 ICR register. */
fixed_regs[ICC_TEMP] = call_used_regs[ICC_TEMP] = 1;
fixed_regs[ICR_TEMP] = call_used_regs[ICR_TEMP] = 1;
if (TARGET_FIXED_CC)
{
fixed_regs[ICC_FIRST] = call_used_regs[ICC_FIRST] = 1;
fixed_regs[FCC_FIRST] = call_used_regs[FCC_FIRST] = 1;
fixed_regs[ICR_FIRST] = call_used_regs[ICR_FIRST] = 1;
fixed_regs[FCR_FIRST] = call_used_regs[FCR_FIRST] = 1;
}
if (TARGET_FDPIC)
fixed_regs[GPR_FIRST + 16] = fixed_regs[GPR_FIRST + 17] =
call_used_regs[GPR_FIRST + 16] = call_used_regs[GPR_FIRST + 17] = 0;
#if 0
/* If -fpic, SDA_BASE_REG is the PIC register. */
if (g_switch_value == 0 && !flag_pic)
fixed_regs[SDA_BASE_REG] = call_used_regs[SDA_BASE_REG] = 0;
if (!flag_pic)
fixed_regs[PIC_REGNO] = call_used_regs[PIC_REGNO] = 0;
#endif
}
/*
* Compute the stack frame layout
*
* Register setup:
* +---------------+-----------------------+-----------------------+
* |Register |type |caller-save/callee-save|
* +---------------+-----------------------+-----------------------+
* |GR0 |Zero register | - |
* |GR1 |Stack pointer(SP) | - |
* |GR2 |Frame pointer(FP) | - |
* |GR3 |Hidden parameter | caller save |
* |GR4-GR7 | - | caller save |
* |GR8-GR13 |Argument register | caller save |
* |GR14-GR15 | - | caller save |
* |GR16-GR31 | - | callee save |
* |GR32-GR47 | - | caller save |
* |GR48-GR63 | - | callee save |
* |FR0-FR15 | - | caller save |
* |FR16-FR31 | - | callee save |
* |FR32-FR47 | - | caller save |
* |FR48-FR63 | - | callee save |
* +---------------+-----------------------+-----------------------+
*
* Stack frame setup:
* Low
* SP-> |-----------------------------------|
* | Argument area |
* |-----------------------------------|
* | Register save area |
* |-----------------------------------|
* | Local variable save area |
* FP-> |-----------------------------------|
* | Old FP |
* |-----------------------------------|
* | Hidden parameter save area |
* |-----------------------------------|
* | Return address(LR) storage area |
* |-----------------------------------|
* | Padding for alignment |
* |-----------------------------------|
* | Register argument area |
* OLD SP-> |-----------------------------------|
* | Parameter area |
* |-----------------------------------|
* High
*
* Argument area/Parameter area:
*
* When a function is called, this area is used for argument transfer. When
* the argument is set up by the caller function, this area is referred to as
* the argument area. When the argument is referenced by the callee function,
* this area is referred to as the parameter area. The area is allocated when
* all arguments cannot be placed on the argument register at the time of
* argument transfer.
*
* Register save area:
*
* This is a register save area that must be guaranteed for the caller
* function. This area is not secured when the register save operation is not
* needed.
*
* Local variable save area:
*
* This is the area for local variables and temporary variables.
*
* Old FP:
*
* This area stores the FP value of the caller function.
*
* Hidden parameter save area:
*
* This area stores the start address of the return value storage
* area for a struct/union return function.
* When a struct/union is used as the return value, the caller
* function stores the return value storage area start address in
* register GR3 and passes it to the caller function.
* The callee function interprets the address stored in the GR3
* as the return value storage area start address.
* When register GR3 needs to be saved into memory, the callee
* function saves it in the hidden parameter save area. This
* area is not secured when the save operation is not needed.
*
* Return address(LR) storage area:
*
* This area saves the LR. The LR stores the address of a return to the caller
* function for the purpose of function calling.
*
* Argument register area:
*
* This area saves the argument register. This area is not secured when the
* save operation is not needed.
*
* Argument:
*
* Arguments, the count of which equals the count of argument registers (6
* words), are positioned in registers GR8 to GR13 and delivered to the callee
* function. When a struct/union return function is called, the return value
* area address is stored in register GR3. Arguments not placed in the
* argument registers will be stored in the stack argument area for transfer
* purposes. When an 8-byte type argument is to be delivered using registers,
* it is divided into two and placed in two registers for transfer. When
* argument registers must be saved to memory, the callee function secures an
* argument register save area in the stack. In this case, a continuous
* argument register save area must be established in the parameter area. The
* argument register save area must be allocated as needed to cover the size of
* the argument register to be saved. If the function has a variable count of
* arguments, it saves all argument registers in the argument register save
* area.
*
* Argument Extension Format:
*
* When an argument is to be stored in the stack, its type is converted to an
* extended type in accordance with the individual argument type. The argument
* is freed by the caller function after the return from the callee function is
* made.
*
* +-----------------------+---------------+------------------------+
* | Argument Type |Extended Type |Stack Storage Size(byte)|
* +-----------------------+---------------+------------------------+
* |char |int | 4 |
* |signed char |int | 4 |
* |unsigned char |int | 4 |
* |[signed] short int |int | 4 |
* |unsigned short int |int | 4 |
* |[signed] int |No extension | 4 |
* |unsigned int |No extension | 4 |
* |[signed] long int |No extension | 4 |
* |unsigned long int |No extension | 4 |
* |[signed] long long int |No extension | 8 |
* |unsigned long long int |No extension | 8 |
* |float |double | 8 |
* |double |No extension | 8 |
* |long double |No extension | 8 |
* |pointer |No extension | 4 |
* |struct/union |- | 4 (*1) |
* +-----------------------+---------------+------------------------+
*
* When a struct/union is to be delivered as an argument, the caller copies it
* to the local variable area and delivers the address of that area.
*
* Return Value:
*
* +-------------------------------+----------------------+
* |Return Value Type |Return Value Interface|
* +-------------------------------+----------------------+
* |void |None |
* |[signed|unsigned] char |GR8 |
* |[signed|unsigned] short int |GR8 |
* |[signed|unsigned] int |GR8 |
* |[signed|unsigned] long int |GR8 |
* |pointer |GR8 |
* |[signed|unsigned] long long int|GR8 & GR9 |
* |float |GR8 |
* |double |GR8 & GR9 |
* |long double |GR8 & GR9 |
* |struct/union |(*1) |
* +-------------------------------+----------------------+
*
* When a struct/union is used as the return value, the caller function stores
* the start address of the return value storage area into GR3 and then passes
* it to the callee function. The callee function interprets GR3 as the start
* address of the return value storage area. When this address needs to be
* saved in memory, the callee function secures the hidden parameter save area
* and saves the address in that area.
*/
frv_stack_t *
frv_stack_info (void)
{
static frv_stack_t info, zero_info;
frv_stack_t *info_ptr = &info;
tree fndecl = current_function_decl;
int varargs_p = 0;
tree cur_arg;
tree next_arg;
int range;
int alignment;
int offset;
/* If we've already calculated the values and reload is complete,
just return now. */
if (frv_stack_cache)
return frv_stack_cache;
/* Zero all fields. */
info = zero_info;
/* Set up the register range information. */
info_ptr->regs[STACK_REGS_GPR].name = "gpr";
info_ptr->regs[STACK_REGS_GPR].first = LAST_ARG_REGNUM + 1;
info_ptr->regs[STACK_REGS_GPR].last = GPR_LAST;
info_ptr->regs[STACK_REGS_GPR].dword_p = TRUE;
info_ptr->regs[STACK_REGS_FPR].name = "fpr";
info_ptr->regs[STACK_REGS_FPR].first = FPR_FIRST;
info_ptr->regs[STACK_REGS_FPR].last = FPR_LAST;
info_ptr->regs[STACK_REGS_FPR].dword_p = TRUE;
info_ptr->regs[STACK_REGS_LR].name = "lr";
info_ptr->regs[STACK_REGS_LR].first = LR_REGNO;
info_ptr->regs[STACK_REGS_LR].last = LR_REGNO;
info_ptr->regs[STACK_REGS_LR].special_p = 1;
info_ptr->regs[STACK_REGS_CC].name = "cc";
info_ptr->regs[STACK_REGS_CC].first = CC_FIRST;
info_ptr->regs[STACK_REGS_CC].last = CC_LAST;
info_ptr->regs[STACK_REGS_CC].field_p = TRUE;
info_ptr->regs[STACK_REGS_LCR].name = "lcr";
info_ptr->regs[STACK_REGS_LCR].first = LCR_REGNO;
info_ptr->regs[STACK_REGS_LCR].last = LCR_REGNO;
info_ptr->regs[STACK_REGS_STDARG].name = "stdarg";
info_ptr->regs[STACK_REGS_STDARG].first = FIRST_ARG_REGNUM;
info_ptr->regs[STACK_REGS_STDARG].last = LAST_ARG_REGNUM;
info_ptr->regs[STACK_REGS_STDARG].dword_p = 1;
info_ptr->regs[STACK_REGS_STDARG].special_p = 1;
info_ptr->regs[STACK_REGS_STRUCT].name = "struct";
info_ptr->regs[STACK_REGS_STRUCT].first = FRV_STRUCT_VALUE_REGNUM;
info_ptr->regs[STACK_REGS_STRUCT].last = FRV_STRUCT_VALUE_REGNUM;
info_ptr->regs[STACK_REGS_STRUCT].special_p = 1;
info_ptr->regs[STACK_REGS_FP].name = "fp";
info_ptr->regs[STACK_REGS_FP].first = FRAME_POINTER_REGNUM;
info_ptr->regs[STACK_REGS_FP].last = FRAME_POINTER_REGNUM;
info_ptr->regs[STACK_REGS_FP].special_p = 1;
/* Determine if this is a stdarg function. If so, allocate space to store
the 6 arguments. */
if (cfun->stdarg)
varargs_p = 1;
else
{
/* Find the last argument, and see if it is __builtin_va_alist. */
for (cur_arg = DECL_ARGUMENTS (fndecl); cur_arg != (tree)0; cur_arg = next_arg)
{
next_arg = DECL_CHAIN (cur_arg);
if (next_arg == (tree)0)
{
if (DECL_NAME (cur_arg)
&& !strcmp (IDENTIFIER_POINTER (DECL_NAME (cur_arg)), "__builtin_va_alist"))
varargs_p = 1;
break;
}
}
}
/* Iterate over all of the register ranges. */
for (range = 0; range < STACK_REGS_MAX; range++)
{
frv_stack_regs_t *reg_ptr = &(info_ptr->regs[range]);
int first = reg_ptr->first;
int last = reg_ptr->last;
int size_1word = 0;
int size_2words = 0;
int regno;
/* Calculate which registers need to be saved & save area size. */
switch (range)
{
default:
for (regno = first; regno <= last; regno++)
{
if ((df_regs_ever_live_p (regno) && !call_used_regs[regno])
|| (crtl->calls_eh_return
&& (regno >= FIRST_EH_REGNUM && regno <= LAST_EH_REGNUM))
|| (!TARGET_FDPIC && flag_pic
&& crtl->uses_pic_offset_table && regno == PIC_REGNO))
{
info_ptr->save_p[regno] = REG_SAVE_1WORD;
size_1word += UNITS_PER_WORD;
}
}
break;
/* Calculate whether we need to create a frame after everything else
has been processed. */
case STACK_REGS_FP:
break;
case STACK_REGS_LR:
if (df_regs_ever_live_p (LR_REGNO)
|| profile_flag
/* This is set for __builtin_return_address, etc. */
|| cfun->machine->frame_needed
|| (TARGET_LINKED_FP && frame_pointer_needed)
|| (!TARGET_FDPIC && flag_pic
&& crtl->uses_pic_offset_table))
{
info_ptr->save_p[LR_REGNO] = REG_SAVE_1WORD;
size_1word += UNITS_PER_WORD;
}
break;
case STACK_REGS_STDARG:
if (varargs_p)
{
/* If this is a stdarg function with a non varardic
argument split between registers and the stack,
adjust the saved registers downward. */
last -= (ADDR_ALIGN (crtl->args.pretend_args_size, UNITS_PER_WORD)
/ UNITS_PER_WORD);
for (regno = first; regno <= last; regno++)
{
info_ptr->save_p[regno] = REG_SAVE_1WORD;
size_1word += UNITS_PER_WORD;
}
info_ptr->stdarg_size = size_1word;
}
break;
case STACK_REGS_STRUCT:
if (cfun->returns_struct)
{
info_ptr->save_p[FRV_STRUCT_VALUE_REGNUM] = REG_SAVE_1WORD;
size_1word += UNITS_PER_WORD;
}
break;
}
if (size_1word)
{
/* If this is a field, it only takes one word. */
if (reg_ptr->field_p)
size_1word = UNITS_PER_WORD;
/* Determine which register pairs can be saved together. */
else if (reg_ptr->dword_p && TARGET_DWORD)
{
for (regno = first; regno < last; regno += 2)
{
if (info_ptr->save_p[regno] && info_ptr->save_p[regno+1])
{
size_2words += 2 * UNITS_PER_WORD;
size_1word -= 2 * UNITS_PER_WORD;
info_ptr->save_p[regno] = REG_SAVE_2WORDS;
info_ptr->save_p[regno+1] = REG_SAVE_NO_SAVE;
}
}
}
reg_ptr->size_1word = size_1word;
reg_ptr->size_2words = size_2words;
if (! reg_ptr->special_p)
{
info_ptr->regs_size_1word += size_1word;
info_ptr->regs_size_2words += size_2words;
}
}
}
/* Set up the sizes of each each field in the frame body, making the sizes
of each be divisible by the size of a dword if dword operations might
be used, or the size of a word otherwise. */
alignment = (TARGET_DWORD? 2 * UNITS_PER_WORD : UNITS_PER_WORD);
info_ptr->parameter_size = ADDR_ALIGN (crtl->outgoing_args_size, alignment);
info_ptr->regs_size = ADDR_ALIGN (info_ptr->regs_size_2words
+ info_ptr->regs_size_1word,
alignment);
info_ptr->vars_size = ADDR_ALIGN (get_frame_size (), alignment);
info_ptr->pretend_size = crtl->args.pretend_args_size;
/* Work out the size of the frame, excluding the header. Both the frame
body and register parameter area will be dword-aligned. */
info_ptr->total_size
= (ADDR_ALIGN (info_ptr->parameter_size
+ info_ptr->regs_size
+ info_ptr->vars_size,
2 * UNITS_PER_WORD)
+ ADDR_ALIGN (info_ptr->pretend_size
+ info_ptr->stdarg_size,
2 * UNITS_PER_WORD));
/* See if we need to create a frame at all, if so add header area. */
if (info_ptr->total_size > 0
|| frame_pointer_needed
|| info_ptr->regs[STACK_REGS_LR].size_1word > 0
|| info_ptr->regs[STACK_REGS_STRUCT].size_1word > 0)
{
offset = info_ptr->parameter_size;
info_ptr->header_size = 4 * UNITS_PER_WORD;
info_ptr->total_size += 4 * UNITS_PER_WORD;
/* Calculate the offsets to save normal register pairs. */
for (range = 0; range < STACK_REGS_MAX; range++)
{
frv_stack_regs_t *reg_ptr = &(info_ptr->regs[range]);
if (! reg_ptr->special_p)
{
int first = reg_ptr->first;
int last = reg_ptr->last;
int regno;
for (regno = first; regno <= last; regno++)
if (info_ptr->save_p[regno] == REG_SAVE_2WORDS
&& regno != FRAME_POINTER_REGNUM
&& (regno < FIRST_ARG_REGNUM
|| regno > LAST_ARG_REGNUM))
{
info_ptr->reg_offset[regno] = offset;
offset += 2 * UNITS_PER_WORD;
}
}
}
/* Calculate the offsets to save normal single registers. */
for (range = 0; range < STACK_REGS_MAX; range++)
{
frv_stack_regs_t *reg_ptr = &(info_ptr->regs[range]);
if (! reg_ptr->special_p)
{
int first = reg_ptr->first;
int last = reg_ptr->last;
int regno;
for (regno = first; regno <= last; regno++)
if (info_ptr->save_p[regno] == REG_SAVE_1WORD
&& regno != FRAME_POINTER_REGNUM
&& (regno < FIRST_ARG_REGNUM
|| regno > LAST_ARG_REGNUM))
{
info_ptr->reg_offset[regno] = offset;
offset += UNITS_PER_WORD;
}
}
}
/* Calculate the offset to save the local variables at. */
offset = ADDR_ALIGN (offset, alignment);
if (info_ptr->vars_size)
{
info_ptr->vars_offset = offset;
offset += info_ptr->vars_size;
}
/* Align header to a dword-boundary. */
offset = ADDR_ALIGN (offset, 2 * UNITS_PER_WORD);
/* Calculate the offsets in the fixed frame. */
info_ptr->save_p[FRAME_POINTER_REGNUM] = REG_SAVE_1WORD;
info_ptr->reg_offset[FRAME_POINTER_REGNUM] = offset;
info_ptr->regs[STACK_REGS_FP].size_1word = UNITS_PER_WORD;
info_ptr->save_p[LR_REGNO] = REG_SAVE_1WORD;
info_ptr->reg_offset[LR_REGNO] = offset + 2*UNITS_PER_WORD;
info_ptr->regs[STACK_REGS_LR].size_1word = UNITS_PER_WORD;
if (cfun->returns_struct)
{
info_ptr->save_p[FRV_STRUCT_VALUE_REGNUM] = REG_SAVE_1WORD;
info_ptr->reg_offset[FRV_STRUCT_VALUE_REGNUM] = offset + UNITS_PER_WORD;
info_ptr->regs[STACK_REGS_STRUCT].size_1word = UNITS_PER_WORD;
}
/* Calculate the offsets to store the arguments passed in registers
for stdarg functions. The register pairs are first and the single
register if any is last. The register save area starts on a
dword-boundary. */
if (info_ptr->stdarg_size)
{
int first = info_ptr->regs[STACK_REGS_STDARG].first;
int last = info_ptr->regs[STACK_REGS_STDARG].last;
int regno;
/* Skip the header. */
offset += 4 * UNITS_PER_WORD;
for (regno = first; regno <= last; regno++)
{
if (info_ptr->save_p[regno] == REG_SAVE_2WORDS)
{
info_ptr->reg_offset[regno] = offset;
offset += 2 * UNITS_PER_WORD;
}
else if (info_ptr->save_p[regno] == REG_SAVE_1WORD)
{
info_ptr->reg_offset[regno] = offset;
offset += UNITS_PER_WORD;
}
}
}
}
if (reload_completed)
frv_stack_cache = info_ptr;
return info_ptr;
}
/* Print the information about the frv stack offsets, etc. when debugging. */
void
frv_debug_stack (frv_stack_t *info)
{
int range;
if (!info)
info = frv_stack_info ();
fprintf (stderr, "\nStack information for function %s:\n",
((current_function_decl && DECL_NAME (current_function_decl))
? IDENTIFIER_POINTER (DECL_NAME (current_function_decl))
: "<unknown>"));
fprintf (stderr, "\ttotal_size\t= %6d\n", info->total_size);
fprintf (stderr, "\tvars_size\t= %6d\n", info->vars_size);
fprintf (stderr, "\tparam_size\t= %6d\n", info->parameter_size);
fprintf (stderr, "\tregs_size\t= %6d, 1w = %3d, 2w = %3d\n",
info->regs_size, info->regs_size_1word, info->regs_size_2words);
fprintf (stderr, "\theader_size\t= %6d\n", info->header_size);
fprintf (stderr, "\tpretend_size\t= %6d\n", info->pretend_size);
fprintf (stderr, "\tvars_offset\t= %6d\n", info->vars_offset);
fprintf (stderr, "\tregs_offset\t= %6d\n", info->regs_offset);
for (range = 0; range < STACK_REGS_MAX; range++)
{
frv_stack_regs_t *regs = &(info->regs[range]);
if ((regs->size_1word + regs->size_2words) > 0)
{
int first = regs->first;
int last = regs->last;
int regno;
fprintf (stderr, "\t%s\tsize\t= %6d, 1w = %3d, 2w = %3d, save =",
regs->name, regs->size_1word + regs->size_2words,
regs->size_1word, regs->size_2words);
for (regno = first; regno <= last; regno++)
{
if (info->save_p[regno] == REG_SAVE_1WORD)
fprintf (stderr, " %s (%d)", reg_names[regno],
info->reg_offset[regno]);
else if (info->save_p[regno] == REG_SAVE_2WORDS)
fprintf (stderr, " %s-%s (%d)", reg_names[regno],
reg_names[regno+1], info->reg_offset[regno]);
}
fputc ('\n', stderr);
}
}
fflush (stderr);
}
/* Used during final to control the packing of insns. The value is
1 if the current instruction should be packed with the next one,
0 if it shouldn't or -1 if packing is disabled altogether. */
static int frv_insn_packing_flag;
/* True if the current function contains a far jump. */
static int
frv_function_contains_far_jump (void)
{
rtx_insn *insn = get_insns ();
while (insn != NULL
&& !(JUMP_P (insn)
&& get_attr_far_jump (insn) == FAR_JUMP_YES))
insn = NEXT_INSN (insn);
return (insn != NULL);
}
/* For the FRV, this function makes sure that a function with far jumps
will return correctly. It also does the VLIW packing. */
static void
frv_function_prologue (FILE *file, HOST_WIDE_INT size ATTRIBUTE_UNUSED)
{
rtx_insn *insn, *next, *last_call;
/* If no frame was created, check whether the function uses a call
instruction to implement a far jump. If so, save the link in gr3 and
replace all returns to LR with returns to GR3. GR3 is used because it
is call-clobbered, because is not available to the register allocator,
and because all functions that take a hidden argument pointer will have
a stack frame. */
if (frv_stack_info ()->total_size == 0 && frv_function_contains_far_jump ())
{
rtx_insn *insn;
/* Just to check that the above comment is true. */
gcc_assert (!df_regs_ever_live_p (GPR_FIRST + 3));
/* Generate the instruction that saves the link register. */
fprintf (file, "\tmovsg lr,gr3\n");
/* Replace the LR with GR3 in *return_internal patterns. The insn
will now return using jmpl @(gr3,0) rather than bralr. We cannot
simply emit a different assembly directive because bralr and jmpl
execute in different units. */
for (insn = get_insns(); insn != NULL; insn = NEXT_INSN (insn))
if (JUMP_P (insn))
{
rtx pattern = PATTERN (insn);
if (GET_CODE (pattern) == PARALLEL
&& XVECLEN (pattern, 0) >= 2
&& GET_CODE (XVECEXP (pattern, 0, 0)) == RETURN
&& GET_CODE (XVECEXP (pattern, 0, 1)) == USE)
{
rtx address = XEXP (XVECEXP (pattern, 0, 1), 0);
if (GET_CODE (address) == REG && REGNO (address) == LR_REGNO)
SET_REGNO (address, GPR_FIRST + 3);
}
}
}
frv_pack_insns ();
/* Allow the garbage collector to free the nops created by frv_reorg. */
memset (frv_nops, 0, sizeof (frv_nops));
/* Locate CALL_ARG_LOCATION notes that have been misplaced
and move them back to where they should be located. */
last_call = NULL;
for (insn = get_insns (); insn; insn = next)
{
next = NEXT_INSN (insn);
if (CALL_P (insn)
|| (INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE
&& CALL_P (XVECEXP (PATTERN (insn), 0, 0))))
last_call = insn;
if (!NOTE_P (insn) || NOTE_KIND (insn) != NOTE_INSN_CALL_ARG_LOCATION)
continue;
if (NEXT_INSN (last_call) == insn)
continue;
SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
SET_PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
SET_PREV_INSN (insn) = last_call;
SET_NEXT_INSN (insn) = NEXT_INSN (last_call);
SET_PREV_INSN (NEXT_INSN (insn)) = insn;
SET_NEXT_INSN (PREV_INSN (insn)) = insn;
last_call = insn;
}
}
/* Return the next available temporary register in a given class. */
static rtx
frv_alloc_temp_reg (
frv_tmp_reg_t *info, /* which registers are available */
enum reg_class rclass, /* register class desired */
machine_mode mode, /* mode to allocate register with */
int mark_as_used, /* register not available after allocation */
int no_abort) /* return NULL instead of aborting */
{
int regno = info->next_reg[ (int)rclass ];
int orig_regno = regno;
HARD_REG_SET *reg_in_class = ®_class_contents[ (int)rclass ];
int i, nr;
for (;;)
{
if (TEST_HARD_REG_BIT (*reg_in_class, regno)
&& TEST_HARD_REG_BIT (info->regs, regno))
break;
if (++regno >= FIRST_PSEUDO_REGISTER)
regno = 0;
if (regno == orig_regno)
{
gcc_assert (no_abort);
return NULL_RTX;
}
}
nr = HARD_REGNO_NREGS (regno, mode);
info->next_reg[ (int)rclass ] = regno + nr;
if (mark_as_used)
for (i = 0; i < nr; i++)
CLEAR_HARD_REG_BIT (info->regs, regno+i);
return gen_rtx_REG (mode, regno);
}
/* Return an rtx with the value OFFSET, which will either be a register or a
signed 12-bit integer. It can be used as the second operand in an "add"
instruction, or as the index in a load or store.
The function returns a constant rtx if OFFSET is small enough, otherwise
it loads the constant into register OFFSET_REGNO and returns that. */
static rtx
frv_frame_offset_rtx (int offset)
{
rtx offset_rtx = GEN_INT (offset);
if (IN_RANGE (offset, -2048, 2047))
return offset_rtx;
else
{
rtx reg_rtx = gen_rtx_REG (SImode, OFFSET_REGNO);
if (IN_RANGE (offset, -32768, 32767))
emit_insn (gen_movsi (reg_rtx, offset_rtx));
else
{
emit_insn (gen_movsi_high (reg_rtx, offset_rtx));
emit_insn (gen_movsi_lo_sum (reg_rtx, offset_rtx));
}
return reg_rtx;
}
}
/* Generate (mem:MODE (plus:Pmode BASE (frv_frame_offset OFFSET)))). The
prologue and epilogue uses such expressions to access the stack. */
static rtx
frv_frame_mem (machine_mode mode, rtx base, int offset)
{
return gen_rtx_MEM (mode, gen_rtx_PLUS (Pmode,
base,
frv_frame_offset_rtx (offset)));
}
/* Generate a frame-related expression:
(set REG (mem (plus (sp) (const_int OFFSET)))).
Such expressions are used in FRAME_RELATED_EXPR notes for more complex
instructions. Marking the expressions as frame-related is superfluous if
the note contains just a single set. But if the note contains a PARALLEL
or SEQUENCE that has several sets, each set must be individually marked
as frame-related. */
static rtx
frv_dwarf_store (rtx reg, int offset)
{
rtx set = gen_rtx_SET (VOIDmode,
gen_rtx_MEM (GET_MODE (reg),
plus_constant (Pmode, stack_pointer_rtx,
offset)),
reg);
RTX_FRAME_RELATED_P (set) = 1;
return set;
}
/* Emit a frame-related instruction whose pattern is PATTERN. The
instruction is the last in a sequence that cumulatively performs the
operation described by DWARF_PATTERN. The instruction is marked as
frame-related and has a REG_FRAME_RELATED_EXPR note containing
DWARF_PATTERN. */
static void
frv_frame_insn (rtx pattern, rtx dwarf_pattern)
{
rtx insn = emit_insn (pattern);
RTX_FRAME_RELATED_P (insn) = 1;
REG_NOTES (insn) = alloc_EXPR_LIST (REG_FRAME_RELATED_EXPR,
dwarf_pattern,
REG_NOTES (insn));
}
/* Emit instructions that transfer REG to or from the memory location (sp +
STACK_OFFSET). The register is stored in memory if ACCESSOR->OP is
FRV_STORE and loaded if it is FRV_LOAD. Only the prologue uses this
function to store registers and only the epilogue uses it to load them.
The caller sets up ACCESSOR so that BASE is equal to (sp + BASE_OFFSET).
The generated instruction will use BASE as its base register. BASE may
simply be the stack pointer, but if several accesses are being made to a
region far away from the stack pointer, it may be more efficient to set
up a temporary instead.
Store instructions will be frame-related and will be annotated with the
overall effect of the store. Load instructions will be followed by a
(use) to prevent later optimizations from zapping them.
The function takes care of the moves to and from SPRs, using TEMP_REGNO
as a temporary in such cases. */
static void
frv_frame_access (frv_frame_accessor_t *accessor, rtx reg, int stack_offset)
{
machine_mode mode = GET_MODE (reg);
rtx mem = frv_frame_mem (mode,
accessor->base,
stack_offset - accessor->base_offset);
if (accessor->op == FRV_LOAD)
{
if (SPR_P (REGNO (reg)))
{
rtx temp = gen_rtx_REG (mode, TEMP_REGNO);
emit_insn (gen_rtx_SET (VOIDmode, temp, mem));
emit_insn (gen_rtx_SET (VOIDmode, reg, temp));
}
else
{
/* We cannot use reg+reg addressing for DImode access. */
if (mode == DImode
&& GET_CODE (XEXP (mem, 0)) == PLUS
&& GET_CODE (XEXP (XEXP (mem, 0), 0)) == REG
&& GET_CODE (XEXP (XEXP (mem, 0), 1)) == REG)
{
rtx temp = gen_rtx_REG (SImode, TEMP_REGNO);
emit_move_insn (temp,
gen_rtx_PLUS (SImode, XEXP (XEXP (mem, 0), 0),
XEXP (XEXP (mem, 0), 1)));
mem = gen_rtx_MEM (DImode, temp);
}
emit_insn (gen_rtx_SET (VOIDmode, reg, mem));
}
emit_use (reg);
}
else
{
if (SPR_P (REGNO (reg)))
{
rtx temp = gen_rtx_REG (mode, TEMP_REGNO);
emit_insn (gen_rtx_SET (VOIDmode, temp, reg));
frv_frame_insn (gen_rtx_SET (Pmode, mem, temp),
frv_dwarf_store (reg, stack_offset));
}
else if (mode == DImode)
{
/* For DImode saves, the dwarf2 version needs to be a SEQUENCE
with a separate save for each register. */
rtx reg1 = gen_rtx_REG (SImode, REGNO (reg));
rtx reg2 = gen_rtx_REG (SImode, REGNO (reg) + 1);
rtx set1 = frv_dwarf_store (reg1, stack_offset);
rtx set2 = frv_dwarf_store (reg2, stack_offset + 4);
/* Also we cannot use reg+reg addressing. */
if (GET_CODE (XEXP (mem, 0)) == PLUS
&& GET_CODE (XEXP (XEXP (mem, 0), 0)) == REG
&& GET_CODE (XEXP (XEXP (mem, 0), 1)) == REG)
{
rtx temp = gen_rtx_REG (SImode, TEMP_REGNO);
emit_move_insn (temp,
gen_rtx_PLUS (SImode, XEXP (XEXP (mem, 0), 0),
XEXP (XEXP (mem, 0), 1)));
mem = gen_rtx_MEM (DImode, temp);
}
frv_frame_insn (gen_rtx_SET (Pmode, mem, reg),
gen_rtx_PARALLEL (VOIDmode,
gen_rtvec (2, set1, set2)));
}
else
frv_frame_insn (gen_rtx_SET (Pmode, mem, reg),
frv_dwarf_store (reg, stack_offset));
}
}
/* A function that uses frv_frame_access to transfer a group of registers to
or from the stack. ACCESSOR is passed directly to frv_frame_access, INFO
is the stack information generated by frv_stack_info, and REG_SET is the
number of the register set to transfer. */
static void
frv_frame_access_multi (frv_frame_accessor_t *accessor,
frv_stack_t *info,
int reg_set)
{
frv_stack_regs_t *regs_info;
int regno;
regs_info = &info->regs[reg_set];
for (regno = regs_info->first; regno <= regs_info->last; regno++)
if (info->save_p[regno])
frv_frame_access (accessor,
info->save_p[regno] == REG_SAVE_2WORDS
? gen_rtx_REG (DImode, regno)
: gen_rtx_REG (SImode, regno),
info->reg_offset[regno]);
}
/* Save or restore callee-saved registers that are kept outside the frame
header. The function saves the registers if OP is FRV_STORE and restores
them if OP is FRV_LOAD. INFO is the stack information generated by
frv_stack_info. */
static void
frv_frame_access_standard_regs (enum frv_stack_op op, frv_stack_t *info)
{
frv_frame_accessor_t accessor;
accessor.op = op;
accessor.base = stack_pointer_rtx;
accessor.base_offset = 0;
frv_frame_access_multi (&accessor, info, STACK_REGS_GPR);
frv_frame_access_multi (&accessor, info, STACK_REGS_FPR);
frv_frame_access_multi (&accessor, info, STACK_REGS_LCR);
}
/* Called after register allocation to add any instructions needed for the
prologue. Using a prologue insn is favored compared to putting all of the
instructions in the TARGET_ASM_FUNCTION_PROLOGUE target hook, since
it allows the scheduler to intermix instructions with the saves of
the caller saved registers. In some cases, it might be necessary
to emit a barrier instruction as the last insn to prevent such
scheduling.
Also any insns generated here should have RTX_FRAME_RELATED_P(insn) = 1
so that the debug info generation code can handle them properly. */
void
frv_expand_prologue (void)
{
frv_stack_t *info = frv_stack_info ();
rtx sp = stack_pointer_rtx;
rtx fp = frame_pointer_rtx;
frv_frame_accessor_t accessor;
if (TARGET_DEBUG_STACK)
frv_debug_stack (info);
if (flag_stack_usage_info)
current_function_static_stack_size = info->total_size;
if (info->total_size == 0)
return;
/* We're interested in three areas of the frame here:
A: the register save area
B: the old FP
C: the header after B
If the frame pointer isn't used, we'll have to set up A, B and C
using the stack pointer. If the frame pointer is used, we'll access
them as follows:
A: set up using sp
B: set up using sp or a temporary (see below)
C: set up using fp
We set up B using the stack pointer if the frame is small enough.
Otherwise, it's more efficient to copy the old stack pointer into a
temporary and use that.
Note that it's important to make sure the prologue and epilogue use the
same registers to access A and C, since doing otherwise will confuse
the aliasing code. */
/* Set up ACCESSOR for accessing region B above. If the frame pointer
isn't used, the same method will serve for C. */
accessor.op = FRV_STORE;
if (frame_pointer_needed && info->total_size > 2048)
{
accessor.base = gen_rtx_REG (Pmode, OLD_SP_REGNO);
accessor.base_offset = info->total_size;
emit_insn (gen_movsi (accessor.base, sp));
}
else
{
accessor.base = stack_pointer_rtx;
accessor.base_offset = 0;
}
/* Allocate the stack space. */
{
rtx asm_offset = frv_frame_offset_rtx (-info->total_size);
rtx dwarf_offset = GEN_INT (-info->total_size);
frv_frame_insn (gen_stack_adjust (sp, sp, asm_offset),
gen_rtx_SET (Pmode,
sp,
gen_rtx_PLUS (Pmode, sp, dwarf_offset)));
}
/* If the frame pointer is needed, store the old one at (sp + FP_OFFSET)
and point the new one to that location. */
if (frame_pointer_needed)
{
int fp_offset = info->reg_offset[FRAME_POINTER_REGNUM];
/* ASM_SRC and DWARF_SRC both point to the frame header. ASM_SRC is
based on ACCESSOR.BASE but DWARF_SRC is always based on the stack
pointer. */
rtx asm_src = plus_constant (Pmode, accessor.base,
fp_offset - accessor.base_offset);
rtx dwarf_src = plus_constant (Pmode, sp, fp_offset);
/* Store the old frame pointer at (sp + FP_OFFSET). */
frv_frame_access (&accessor, fp, fp_offset);
/* Set up the new frame pointer. */
frv_frame_insn (gen_rtx_SET (VOIDmode, fp, asm_src),
gen_rtx_SET (VOIDmode, fp, dwarf_src));
/* Access region C from the frame pointer. */
accessor.base = fp;
accessor.base_offset = fp_offset;
}
/* Set up region C. */
frv_frame_access_multi (&accessor, info, STACK_REGS_STRUCT);
frv_frame_access_multi (&accessor, info, STACK_REGS_LR);
frv_frame_access_multi (&accessor, info, STACK_REGS_STDARG);
/* Set up region A. */
frv_frame_access_standard_regs (FRV_STORE, info);
/* If this is a varargs/stdarg function, issue a blockage to prevent the
scheduler from moving loads before the stores saving the registers. */
if (info->stdarg_size > 0)
emit_insn (gen_blockage ());
/* Set up pic register/small data register for this function. */
if (!TARGET_FDPIC && flag_pic && crtl->uses_pic_offset_table)
emit_insn (gen_pic_prologue (gen_rtx_REG (Pmode, PIC_REGNO),
gen_rtx_REG (Pmode, LR_REGNO),
gen_rtx_REG (SImode, OFFSET_REGNO)));
}
/* Under frv, all of the work is done via frv_expand_epilogue, but
this function provides a convenient place to do cleanup. */
static void
frv_function_epilogue (FILE *file ATTRIBUTE_UNUSED,
HOST_WIDE_INT size ATTRIBUTE_UNUSED)
{
frv_stack_cache = (frv_stack_t *)0;
/* Zap last used registers for conditional execution. */
memset (&frv_ifcvt.tmp_reg, 0, sizeof (frv_ifcvt.tmp_reg));
/* Release the bitmap of created insns. */
BITMAP_FREE (frv_ifcvt.scratch_insns_bitmap);
}
/* Called after register allocation to add any instructions needed for the
epilogue. Using an epilogue insn is favored compared to putting all of the
instructions in the TARGET_ASM_FUNCTION_PROLOGUE target hook, since
it allows the scheduler to intermix instructions with the saves of
the caller saved registers. In some cases, it might be necessary
to emit a barrier instruction as the last insn to prevent such
scheduling. */
void
frv_expand_epilogue (bool emit_return)
{
frv_stack_t *info = frv_stack_info ();
rtx fp = frame_pointer_rtx;
rtx sp = stack_pointer_rtx;
rtx return_addr;
int fp_offset;
fp_offset = info->reg_offset[FRAME_POINTER_REGNUM];
/* Restore the stack pointer to its original value if alloca or the like
is used. */
if (! crtl->sp_is_unchanging)
emit_insn (gen_addsi3 (sp, fp, frv_frame_offset_rtx (-fp_offset)));
/* Restore the callee-saved registers that were used in this function. */
frv_frame_access_standard_regs (FRV_LOAD, info);
/* Set RETURN_ADDR to the address we should return to. Set it to NULL if
no return instruction should be emitted. */
if (info->save_p[LR_REGNO])
{
int lr_offset;
rtx mem;
/* Use the same method to access the link register's slot as we did in
the prologue. In other words, use the frame pointer if available,
otherwise use the stack pointer.
LR_OFFSET is the offset of the link register's slot from the start
of the frame and MEM is a memory rtx for it. */
lr_offset = info->reg_offset[LR_REGNO];
if (frame_pointer_needed)
mem = frv_frame_mem (Pmode, fp, lr_offset - fp_offset);
else
mem = frv_frame_mem (Pmode, sp, lr_offset);
/* Load the old link register into a GPR. */
return_addr = gen_rtx_REG (Pmode, TEMP_REGNO);
emit_insn (gen_rtx_SET (VOIDmode, return_addr, mem));
}
else
return_addr = gen_rtx_REG (Pmode, LR_REGNO);
/* Restore the old frame pointer. Emit a USE afterwards to make sure
the load is preserved. */
if (frame_pointer_needed)
{
emit_insn (gen_rtx_SET (VOIDmode, fp, gen_rtx_MEM (Pmode, fp)));
emit_use (fp);
}
/* Deallocate the stack frame. */
if (info->total_size != 0)
{
rtx offset = frv_frame_offset_rtx (info->total_size);
emit_insn (gen_stack_adjust (sp, sp, offset));
}
/* If this function uses eh_return, add the final stack adjustment now. */
if (crtl->calls_eh_return)
emit_insn (gen_stack_adjust (sp, sp, EH_RETURN_STACKADJ_RTX));
if (emit_return)
emit_jump_insn (gen_epilogue_return (return_addr));
else
{
rtx lr = return_addr;
if (REGNO (return_addr) != LR_REGNO)
{
lr = gen_rtx_REG (Pmode, LR_REGNO);
emit_move_insn (lr, return_addr);
}
emit_use (lr);
}
}
/* Worker function for TARGET_ASM_OUTPUT_MI_THUNK. */
static void
frv_asm_output_mi_thunk (FILE *file,
tree thunk_fndecl ATTRIBUTE_UNUSED,
HOST_WIDE_INT delta,
HOST_WIDE_INT vcall_offset ATTRIBUTE_UNUSED,
tree function)
{
const char *name_func = XSTR (XEXP (DECL_RTL (function), 0), 0);
const char *name_arg0 = reg_names[FIRST_ARG_REGNUM];
const char *name_jmp = reg_names[JUMP_REGNO];
const char *parallel = (frv_issue_rate () > 1 ? ".p" : "");
/* Do the add using an addi if possible. */
if (IN_RANGE (delta, -2048, 2047))
fprintf (file, "\taddi %s,#%d,%s\n", name_arg0, (int) delta, name_arg0);
else
{
const char *const name_add = reg_names[TEMP_REGNO];
fprintf (file, "\tsethi%s #hi(" HOST_WIDE_INT_PRINT_DEC "),%s\n",
parallel, delta, name_add);
fprintf (file, "\tsetlo #lo(" HOST_WIDE_INT_PRINT_DEC "),%s\n",
delta, name_add);
fprintf (file, "\tadd %s,%s,%s\n", name_add, name_arg0, name_arg0);
}
if (TARGET_FDPIC)
{
const char *name_pic = reg_names[FDPIC_REGNO];
name_jmp = reg_names[FDPIC_FPTR_REGNO];
if (flag_pic != 1)
{
fprintf (file, "\tsethi%s #gotofffuncdeschi(", parallel);
assemble_name (file, name_func);
fprintf (file, "),%s\n", name_jmp);
fprintf (file, "\tsetlo #gotofffuncdesclo(");
assemble_name (file, name_func);
fprintf (file, "),%s\n", name_jmp);
fprintf (file, "\tldd @(%s,%s), %s\n", name_jmp, name_pic, name_jmp);
}
else
{
fprintf (file, "\tlddo @(%s,#gotofffuncdesc12(", name_pic);
assemble_name (file, name_func);
fprintf (file, "\t)), %s\n", name_jmp);
}
}
else if (!flag_pic)
{
fprintf (file, "\tsethi%s #hi(", parallel);
assemble_name (file, name_func);
fprintf (file, "),%s\n", name_jmp);
fprintf (file, "\tsetlo #lo(");
assemble_name (file, name_func);
fprintf (file, "),%s\n", name_jmp);
}
else
{
/* Use JUMP_REGNO as a temporary PIC register. */
const char *name_lr = reg_names[LR_REGNO];
const char *name_gppic = name_jmp;
const char *name_tmp = reg_names[TEMP_REGNO];
fprintf (file, "\tmovsg %s,%s\n", name_lr, name_tmp);
fprintf (file, "\tcall 1f\n");
fprintf (file, "1:\tmovsg %s,%s\n", name_lr, name_gppic);
fprintf (file, "\tmovgs %s,%s\n", name_tmp, name_lr);
fprintf (file, "\tsethi%s #gprelhi(1b),%s\n", parallel, name_tmp);
fprintf (file, "\tsetlo #gprello(1b),%s\n", name_tmp);
fprintf (file, "\tsub %s,%s,%s\n", name_gppic, name_tmp, name_gppic);
fprintf (file, "\tsethi%s #gprelhi(", parallel);
assemble_name (file, name_func);
fprintf (file, "),%s\n", name_tmp);
fprintf (file, "\tsetlo #gprello(");
assemble_name (file, name_func);
fprintf (file, "),%s\n", name_tmp);
fprintf (file, "\tadd %s,%s,%s\n", name_gppic, name_tmp, name_jmp);
}
/* Jump to the function address. */
fprintf (file, "\tjmpl @(%s,%s)\n", name_jmp, reg_names[GPR_FIRST+0]);
}
/* On frv, create a frame whenever we need to create stack. */
static bool
frv_frame_pointer_required (void)
{
/* If we forgoing the usual linkage requirements, we only need
a frame pointer if the stack pointer might change. */
if (!TARGET_LINKED_FP)
return !crtl->sp_is_unchanging;
if (! crtl->is_leaf)
return true;
if (get_frame_size () != 0)
return true;
if (cfun->stdarg)
return true;
if (!crtl->sp_is_unchanging)
return true;
if (!TARGET_FDPIC && flag_pic && crtl->uses_pic_offset_table)
return true;
if (profile_flag)
return true;
if (cfun->machine->frame_needed)
return true;
return false;
}
/* Worker function for TARGET_CAN_ELIMINATE. */
bool
frv_can_eliminate (const int from, const int to)
{
return (from == ARG_POINTER_REGNUM && to == STACK_POINTER_REGNUM
? ! frame_pointer_needed
: true);
}
/* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'. It specifies the
initial difference between the specified pair of registers. This macro must
be defined if `ELIMINABLE_REGS' is defined. */
/* See frv_stack_info for more details on the frv stack frame. */
int
frv_initial_elimination_offset (int from, int to)
{
frv_stack_t *info = frv_stack_info ();
int ret = 0;
if (to == STACK_POINTER_REGNUM && from == ARG_POINTER_REGNUM)
ret = info->total_size - info->pretend_size;
else if (to == STACK_POINTER_REGNUM && from == FRAME_POINTER_REGNUM)
ret = info->reg_offset[FRAME_POINTER_REGNUM];
else if (to == FRAME_POINTER_REGNUM && from == ARG_POINTER_REGNUM)
ret = (info->total_size
- info->reg_offset[FRAME_POINTER_REGNUM]
- info->pretend_size);
else
gcc_unreachable ();
if (TARGET_DEBUG_STACK)
fprintf (stderr, "Eliminate %s to %s by adding %d\n",
reg_names [from], reg_names[to], ret);
return ret;
}
/* Worker function for TARGET_SETUP_INCOMING_VARARGS. */
static void
frv_setup_incoming_varargs (cumulative_args_t cum_v,
machine_mode mode,
tree type ATTRIBUTE_UNUSED,
int *pretend_size,
int second_time)
{
CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
if (TARGET_DEBUG_ARG)
fprintf (stderr,
"setup_vararg: words = %2d, mode = %4s, pretend_size = %d, second_time = %d\n",
*cum, GET_MODE_NAME (mode), *pretend_size, second_time);
}
/* Worker function for TARGET_EXPAND_BUILTIN_SAVEREGS. */
static rtx
frv_expand_builtin_saveregs (void)
{
int offset = UNITS_PER_WORD * FRV_NUM_ARG_REGS;
if (TARGET_DEBUG_ARG)
fprintf (stderr, "expand_builtin_saveregs: offset from ap = %d\n",
offset);
return gen_rtx_PLUS (Pmode, virtual_incoming_args_rtx, GEN_INT (- offset));
}
/* Expand __builtin_va_start to do the va_start macro. */
static void
frv_expand_builtin_va_start (tree valist, rtx nextarg)
{
tree t;
int num = crtl->args.info - FIRST_ARG_REGNUM - FRV_NUM_ARG_REGS;
nextarg = gen_rtx_PLUS (Pmode, virtual_incoming_args_rtx,
GEN_INT (UNITS_PER_WORD * num));
if (TARGET_DEBUG_ARG)
{
fprintf (stderr, "va_start: args_info = %d, num = %d\n",
crtl->args.info, num);
debug_rtx (nextarg);
}
t = build2 (MODIFY_EXPR, TREE_TYPE (valist), valist,
fold_convert (TREE_TYPE (valist),
make_tree (sizetype, nextarg)));
TREE_SIDE_EFFECTS (t) = 1;
expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
}
/* Expand a block move operation, and return 1 if successful. Return 0
if we should let the compiler generate normal code.
operands[0] is the destination
operands[1] is the source
operands[2] is the length
operands[3] is the alignment */
/* Maximum number of loads to do before doing the stores */
#ifndef MAX_MOVE_REG
#define MAX_MOVE_REG 4
#endif
/* Maximum number of total loads to do. */
#ifndef TOTAL_MOVE_REG
#define TOTAL_MOVE_REG 8
#endif
int
frv_expand_block_move (rtx operands[])
{
rtx orig_dest = operands[0];
rtx orig_src = operands[1];
rtx bytes_rtx = operands[2];
rtx align_rtx = operands[3];
int constp = (GET_CODE (bytes_rtx) == CONST_INT);
int align;
int bytes;
int offset;
int num_reg;
int i;
rtx src_reg;
rtx dest_reg;
rtx src_addr;
rtx dest_addr;
rtx src_mem;
rtx dest_mem;
rtx tmp_reg;
rtx stores[MAX_MOVE_REG];
int move_bytes;
machine_mode mode;
/* If this is not a fixed size move, just call memcpy. */
if (! constp)
return FALSE;
/* This should be a fixed size alignment. */
gcc_assert (GET_CODE (align_rtx) == CONST_INT);
align = INTVAL (align_rtx);
/* Anything to move? */
bytes = INTVAL (bytes_rtx);
if (bytes <= 0)
return TRUE;
/* Don't support real large moves. */
if (bytes > TOTAL_MOVE_REG*align)
return FALSE;
/* Move the address into scratch registers. */
dest_reg = copy_addr_to_reg (XEXP (orig_dest, 0));
src_reg = copy_addr_to_reg (XEXP (orig_src, 0));
num_reg = offset = 0;
for ( ; bytes > 0; (bytes -= move_bytes), (offset += move_bytes))
{
/* Calculate the correct offset for src/dest. */
if (offset == 0)
{
src_addr = src_reg;
dest_addr = dest_reg;
}
else
{
src_addr = plus_constant (Pmode, src_reg, offset);
dest_addr = plus_constant (Pmode, dest_reg, offset);
}
/* Generate the appropriate load and store, saving the stores
for later. */
if (bytes >= 4 && align >= 4)
mode = SImode;
else if (bytes >= 2 && align >= 2)
mode = HImode;
else
mode = QImode;
move_bytes = GET_MODE_SIZE (mode);
tmp_reg = gen_reg_rtx (mode);
src_mem = change_address (orig_src, mode, src_addr);
dest_mem = change_address (orig_dest, mode, dest_addr);
emit_insn (gen_rtx_SET (VOIDmode, tmp_reg, src_mem));
stores[num_reg++] = gen_rtx_SET (VOIDmode, dest_mem, tmp_reg);
if (num_reg >= MAX_MOVE_REG)
{
for (i = 0; i < num_reg; i++)
emit_insn (stores[i]);
num_reg = 0;
}
}
for (i = 0; i < num_reg; i++)
emit_insn (stores[i]);
return TRUE;
}
/* Expand a block clear operation, and return 1 if successful. Return 0
if we should let the compiler generate normal code.
operands[0] is the destination
operands[1] is the length
operands[3] is the alignment */
int
frv_expand_block_clear (rtx operands[])
{
rtx orig_dest = operands[0];
rtx bytes_rtx = operands[1];
rtx align_rtx = operands[3];
int constp = (GET_CODE (bytes_rtx) == CONST_INT);
int align;
int bytes;
int offset;
rtx dest_reg;
rtx dest_addr;
rtx dest_mem;
int clear_bytes;
machine_mode mode;
/* If this is not a fixed size move, just call memcpy. */
if (! constp)
return FALSE;
/* This should be a fixed size alignment. */
gcc_assert (GET_CODE (align_rtx) == CONST_INT);
align = INTVAL (align_rtx);
/* Anything to move? */
bytes = INTVAL (bytes_rtx);
if (bytes <= 0)
return TRUE;
/* Don't support real large clears. */
if (bytes > TOTAL_MOVE_REG*align)
return FALSE;
/* Move the address into a scratch register. */
dest_reg = copy_addr_to_reg (XEXP (orig_dest, 0));
offset = 0;
for ( ; bytes > 0; (bytes -= clear_bytes), (offset += clear_bytes))
{
/* Calculate the correct offset for src/dest. */
dest_addr = ((offset == 0)
? dest_reg
: plus_constant (Pmode, dest_reg, offset));
/* Generate the appropriate store of gr0. */
if (bytes >= 4 && align >= 4)
mode = SImode;
else if (bytes >= 2 && align >= 2)
mode = HImode;
else
mode = QImode;
clear_bytes = GET_MODE_SIZE (mode);
dest_mem = change_address (orig_dest, mode, dest_addr);
emit_insn (gen_rtx_SET (VOIDmode, dest_mem, const0_rtx));
}
return TRUE;
}
/* The following variable is used to output modifiers of assembler
code of the current output insn. */
static rtx *frv_insn_operands;
/* The following function is used to add assembler insn code suffix .p
if it is necessary. */
const char *
frv_asm_output_opcode (FILE *f, const char *ptr)
{
int c;
if (frv_insn_packing_flag <= 0)
return ptr;
for (; *ptr && *ptr != ' ' && *ptr != '\t';)
{
c = *ptr++;
if (c == '%' && ((*ptr >= 'a' && *ptr <= 'z')
|| (*ptr >= 'A' && *ptr <= 'Z')))
{
int letter = *ptr++;
c = atoi (ptr);
frv_print_operand (f, frv_insn_operands [c], letter);
while ((c = *ptr) >= '0' && c <= '9')
ptr++;
}
else
fputc (c, f);
}
fprintf (f, ".p");
return ptr;
}
/* Set up the packing bit for the current output insn. Note that this
function is not called for asm insns. */
void
frv_final_prescan_insn (rtx_insn *insn, rtx *opvec,
int noperands ATTRIBUTE_UNUSED)
{
if (INSN_P (insn))
{
if (frv_insn_packing_flag >= 0)
{
frv_insn_operands = opvec;
frv_insn_packing_flag = PACKING_FLAG_P (insn);
}
else if (recog_memoized (insn) >= 0
&& get_attr_acc_group (insn) == ACC_GROUP_ODD)
/* Packing optimizations have been disabled, but INSN can only
be issued in M1. Insert an mnop in M0. */
fprintf (asm_out_file, "\tmnop.p\n");
}
}
/* A C expression whose value is RTL representing the address in a stack frame
where the pointer to the caller's frame is stored. Assume that FRAMEADDR is
an RTL expression for the address of the stack frame itself.
If you don't define this macro, the default is to return the value of
FRAMEADDR--that is, the stack frame address is also the address of the stack
word that points to the previous frame. */
/* The default is correct, but we need to make sure the frame gets created. */
rtx
frv_dynamic_chain_address (rtx frame)
{
cfun->machine->frame_needed = 1;
return frame;
}
/* A C expression whose value is RTL representing the value of the return
address for the frame COUNT steps up from the current frame, after the
prologue. FRAMEADDR is the frame pointer of the COUNT frame, or the frame
pointer of the COUNT - 1 frame if `RETURN_ADDR_IN_PREVIOUS_FRAME' is
defined.
The value of the expression must always be the correct address when COUNT is
zero, but may be `NULL_RTX' if there is not way to determine the return
address of other frames. */
rtx
frv_return_addr_rtx (int count, rtx frame)
{
if (count != 0)
return const0_rtx;
cfun->machine->frame_needed = 1;
return gen_rtx_MEM (Pmode, plus_constant (Pmode, frame, 8));
}
/* Given a memory reference MEMREF, interpret the referenced memory as
an array of MODE values, and return a reference to the element
specified by INDEX. Assume that any pre-modification implicit in
MEMREF has already happened.
MEMREF must be a legitimate operand for modes larger than SImode.
frv_legitimate_address_p forbids register+register addresses, which
this function cannot handle. */
rtx
frv_index_memory (rtx memref, machine_mode mode, int index)
{
rtx base = XEXP (memref, 0);
if (GET_CODE (base) == PRE_MODIFY)
base = XEXP (base, 0);
return change_address (memref, mode,
plus_constant (Pmode, base,
index * GET_MODE_SIZE (mode)));
}
/* Print a memory address as an operand to reference that memory location. */
static void
frv_print_operand_address (FILE * stream, rtx x)
{
if (GET_CODE (x) == MEM)
x = XEXP (x, 0);
switch (GET_CODE (x))
{
case REG:
fputs (reg_names [ REGNO (x)], stream);
return;
case CONST_INT:
fprintf (stream, "%ld", (long) INTVAL (x));
return;
case SYMBOL_REF:
assemble_name (stream, XSTR (x, 0));
return;
case LABEL_REF:
case CONST:
output_addr_const (stream, x);
return;
case PLUS:
/* Poorly constructed asm statements can trigger this alternative.
See gcc/testsuite/gcc.dg/asm-4.c for an example. */
frv_print_operand_memory_reference (stream, x, 0);
return;
default:
break;
}
fatal_insn ("bad insn to frv_print_operand_address:", x);
}
static void
frv_print_operand_memory_reference_reg (FILE * stream, rtx x)
{
int regno = true_regnum (x);
if (GPR_P (regno))
fputs (reg_names[regno], stream);
else
fatal_insn ("bad register to frv_print_operand_memory_reference_reg:", x);
}
/* Print a memory reference suitable for the ld/st instructions. */
static void
frv_print_operand_memory_reference (FILE * stream, rtx x, int addr_offset)
{
struct frv_unspec unspec;
rtx x0 = NULL_RTX;
rtx x1 = NULL_RTX;
switch (GET_CODE (x))
{
case SUBREG:
case REG:
x0 = x;
break;
case PRE_MODIFY: /* (pre_modify (reg) (plus (reg) (reg))) */
x0 = XEXP (x, 0);
x1 = XEXP (XEXP (x, 1), 1);
break;
case CONST_INT:
x1 = x;
break;
case PLUS:
x0 = XEXP (x, 0);
x1 = XEXP (x, 1);
if (GET_CODE (x0) == CONST_INT)
{
x0 = XEXP (x, 1);
x1 = XEXP (x, 0);
}
break;
default:
fatal_insn ("bad insn to frv_print_operand_memory_reference:", x);
break;
}
if (addr_offset)
{
if (!x1)
x1 = const0_rtx;
else if (GET_CODE (x1) != CONST_INT)
fatal_insn ("bad insn to frv_print_operand_memory_reference:", x);
}
fputs ("@(", stream);
if (!x0)
fputs (reg_names[GPR_R0], stream);
else if (GET_CODE (x0) == REG || GET_CODE (x0) == SUBREG)
frv_print_operand_memory_reference_reg (stream, x0);
else
fatal_insn ("bad insn to frv_print_operand_memory_reference:", x);
fputs (",", stream);
if (!x1)
fputs (reg_names [GPR_R0], stream);
else
{
switch (GET_CODE (x1))
{
case SUBREG:
case REG:
frv_print_operand_memory_reference_reg (stream, x1);
break;
case CONST_INT:
fprintf (stream, "%ld", (long) (INTVAL (x1) + addr_offset));
break;
case CONST:
if (!frv_const_unspec_p (x1, &unspec))
fatal_insn ("bad insn to frv_print_operand_memory_reference:", x1);
frv_output_const_unspec (stream, &unspec);
break;
default:
fatal_insn ("bad insn to frv_print_operand_memory_reference:", x);
}
}
fputs (")", stream);
}
/* Return 2 for likely branches and 0 for non-likely branches */
#define FRV_JUMP_LIKELY 2
#define FRV_JUMP_NOT_LIKELY 0
static int
frv_print_operand_jump_hint (rtx_insn *insn)
{
rtx note;
rtx labelref;
int ret;
int prob = -1;
enum { UNKNOWN, BACKWARD, FORWARD } jump_type = UNKNOWN;
gcc_assert (JUMP_P (insn));
/* Assume any non-conditional jump is likely. */
if (! any_condjump_p (insn))
ret = FRV_JUMP_LIKELY;
else
{
labelref = condjump_label (insn);
if (labelref)
{
rtx label = XEXP (labelref, 0);
jump_type = (insn_current_address > INSN_ADDRESSES (INSN_UID (label))
? BACKWARD
: FORWARD);
}
note = find_reg_note (insn, REG_BR_PROB, 0);
if (!note)
ret = ((jump_type == BACKWARD) ? FRV_JUMP_LIKELY : FRV_JUMP_NOT_LIKELY);
else
{
prob = XINT (note, 0);
ret = ((prob >= (REG_BR_PROB_BASE / 2))
? FRV_JUMP_LIKELY
: FRV_JUMP_NOT_LIKELY);
}
}
#if 0
if (TARGET_DEBUG)
{
char *direction;
switch (jump_type)
{
default:
case UNKNOWN: direction = "unknown jump direction"; break;
case BACKWARD: direction = "jump backward"; break;
case FORWARD: direction = "jump forward"; break;
}
fprintf (stderr,
"%s: uid %ld, %s, probability = %d, max prob. = %d, hint = %d\n",
IDENTIFIER_POINTER (DECL_NAME (current_function_decl)),
(long)INSN_UID (insn), direction, prob,
REG_BR_PROB_BASE, ret);
}
#endif
return ret;
}
/* Return the comparison operator to use for CODE given that the ICC
register is OP0. */
static const char *
comparison_string (enum rtx_code code, rtx op0)
{
bool is_nz_p = GET_MODE (op0) == CC_NZmode;
switch (code)
{
default: output_operand_lossage ("bad condition code");
case EQ: return "eq";
case NE: return "ne";
case LT: return is_nz_p ? "n" : "lt";
case LE: return "le";
case GT: return "gt";
case GE: return is_nz_p ? "p" : "ge";
case LTU: return is_nz_p ? "no" : "c";
case LEU: return is_nz_p ? "eq" : "ls";
case GTU: return is_nz_p ? "ne" : "hi";
case GEU: return is_nz_p ? "ra" : "nc";
}
}
/* Print an operand to an assembler instruction.
`%' followed by a letter and a digit says to output an operand in an
alternate fashion. Four letters have standard, built-in meanings
described below. The hook `TARGET_PRINT_OPERAND' can define
additional letters with nonstandard meanings.
`%cDIGIT' can be used to substitute an operand that is a constant value
without the syntax that normally indicates an immediate operand.
`%nDIGIT' is like `%cDIGIT' except that the value of the constant is negated
before printing.
`%aDIGIT' can be used to substitute an operand as if it were a memory
reference, with the actual operand treated as the address. This may be
useful when outputting a "load address" instruction, because often the
assembler syntax for such an instruction requires you to write the operand
as if it were a memory reference.
`%lDIGIT' is used to substitute a `label_ref' into a jump instruction.
`%=' outputs a number which is unique to each instruction in the entire
compilation. This is useful for making local labels to be referred to more
than once in a single template that generates multiple assembler
instructions.
`%' followed by a punctuation character specifies a substitution that
does not use an operand. Only one case is standard: `%%' outputs a
`%' into the assembler code. Other nonstandard cases can be defined
in the `TARGET_PRINT_OPERAND' hook. You must also define which
punctuation characters are valid with the
`TARGET_PRINT_OPERAND_PUNCT_VALID_P' hook. */
static void
frv_print_operand (FILE * file, rtx x, int code)
{
struct frv_unspec unspec;
HOST_WIDE_INT value;
int offset;
if (code != 0 && !ISALPHA (code))
value = 0;
else if (GET_CODE (x) == CONST_INT)
value = INTVAL (x);
else if (GET_CODE (x) == CONST_DOUBLE)
{
if (GET_MODE (x) == SFmode)
{
REAL_VALUE_TYPE rv;
long l;
REAL_VALUE_FROM_CONST_DOUBLE (rv, x);
REAL_VALUE_TO_TARGET_SINGLE (rv, l);
value = l;
}
else if (GET_MODE (x) == VOIDmode)
value = CONST_DOUBLE_LOW (x);
else
fatal_insn ("bad insn in frv_print_operand, bad const_double", x);
}
else
value = 0;
switch (code)
{
case '.':
/* Output r0. */
fputs (reg_names[GPR_R0], file);
break;
case '#':
fprintf (file, "%d", frv_print_operand_jump_hint (current_output_insn));
break;
case '@':
/* Output small data area base register (gr16). */
fputs (reg_names[SDA_BASE_REG], file);
break;
case '~':
/* Output pic register (gr17). */
fputs (reg_names[PIC_REGNO], file);
break;
case '*':
/* Output the temporary integer CCR register. */
fputs (reg_names[ICR_TEMP], file);
break;
case '&':
/* Output the temporary integer CC register. */
fputs (reg_names[ICC_TEMP], file);
break;
/* case 'a': print an address. */
case 'C':
/* Print appropriate test for integer branch false operation. */
fputs (comparison_string (reverse_condition (GET_CODE (x)),
XEXP (x, 0)), file);
break;
case 'c':
/* Print appropriate test for integer branch true operation. */
fputs (comparison_string (GET_CODE (x), XEXP (x, 0)), file);
break;
case 'e':
/* Print 1 for a NE and 0 for an EQ to give the final argument
for a conditional instruction. */
if (GET_CODE (x) == NE)
fputs ("1", file);
else if (GET_CODE (x) == EQ)
fputs ("0", file);
else
fatal_insn ("bad insn to frv_print_operand, 'e' modifier:", x);
break;
case 'F':
/* Print appropriate test for floating point branch false operation. */
switch (GET_CODE (x))
{
default:
fatal_insn ("bad insn to frv_print_operand, 'F' modifier:", x);
case EQ: fputs ("ne", file); break;
case NE: fputs ("eq", file); break;
case LT: fputs ("uge", file); break;
case LE: fputs ("ug", file); break;
case GT: fputs ("ule", file); break;
case GE: fputs ("ul", file); break;
}
break;
case 'f':
/* Print appropriate test for floating point branch true operation. */
switch (GET_CODE (x))
{
default:
fatal_insn ("bad insn to frv_print_operand, 'f' modifier:", x);
case EQ: fputs ("eq", file); break;
case NE: fputs ("ne", file); break;
case LT: fputs ("lt", file); break;
case LE: fputs ("le", file); break;
case GT: fputs ("gt", file); break;
case GE: fputs ("ge", file); break;
}
break;
case 'g':
/* Print appropriate GOT function. */
if (GET_CODE (x) != CONST_INT)
fatal_insn ("bad insn to frv_print_operand, 'g' modifier:", x);
fputs (unspec_got_name (INTVAL (x)), file);
break;
case 'I':
/* Print 'i' if the operand is a constant, or is a memory reference that
adds a constant. */
if (GET_CODE (x) == MEM)
x = ((GET_CODE (XEXP (x, 0)) == PLUS)
? XEXP (XEXP (x, 0), 1)
: XEXP (x, 0));
else if (GET_CODE (x) == PLUS)
x = XEXP (x, 1);
switch (GET_CODE (x))
{
default:
break;
case CONST_INT:
case SYMBOL_REF:
case CONST:
fputs ("i", file);
break;
}
break;
case 'i':
/* For jump instructions, print 'i' if the operand is a constant or
is an expression that adds a constant. */
if (GET_CODE (x) == CONST_INT)
fputs ("i", file);
else
{
if (GET_CODE (x) == CONST_INT
|| (GET_CODE (x) == PLUS
&& (GET_CODE (XEXP (x, 1)) == CONST_INT
|| GET_CODE (XEXP (x, 0)) == CONST_INT)))
fputs ("i", file);
}
break;
case 'L':
/* Print the lower register of a double word register pair */
if (GET_CODE (x) == REG)
fputs (reg_names[ REGNO (x)+1 ], file);
else
fatal_insn ("bad insn to frv_print_operand, 'L' modifier:", x);
break;
/* case 'l': print a LABEL_REF. */
case 'M':
case 'N':
/* Print a memory reference for ld/st/jmp, %N prints a memory reference
for the second word of double memory operations. */
offset = (code == 'M') ? 0 : UNITS_PER_WORD;
switch (GET_CODE (x))
{
default:
fatal_insn ("bad insn to frv_print_operand, 'M/N' modifier:", x);
case MEM:
frv_print_operand_memory_reference (file, XEXP (x, 0), offset);
break;
case REG:
case SUBREG:
case CONST_INT:
case PLUS:
case SYMBOL_REF:
frv_print_operand_memory_reference (file, x, offset);
break;
}
break;
case 'O':
/* Print the opcode of a command. */
switch (GET_CODE (x))
{
default:
fatal_insn ("bad insn to frv_print_operand, 'O' modifier:", x);
case PLUS: fputs ("add", file); break;
case MINUS: fputs ("sub", file); break;
case AND: fputs ("and", file); break;
case IOR: fputs ("or", file); break;
case XOR: fputs ("xor", file); break;
case ASHIFT: fputs ("sll", file); break;
case ASHIFTRT: fputs ("sra", file); break;
case LSHIFTRT: fputs ("srl", file); break;
}
break;
/* case 'n': negate and print a constant int. */
case 'P':
/* Print PIC label using operand as the number. */
if (GET_CODE (x) != CONST_INT)
fatal_insn ("bad insn to frv_print_operand, P modifier:", x);
fprintf (file, ".LCF%ld", (long)INTVAL (x));
break;
case 'U':
/* Print 'u' if the operand is a update load/store. */
if (GET_CODE (x) == MEM && GET_CODE (XEXP (x, 0)) == PRE_MODIFY)
fputs ("u", file);
break;
case 'z':
/* If value is 0, print gr0, otherwise it must be a register. */
if (GET_CODE (x) == CONST_INT && INTVAL (x) == 0)
fputs (reg_names[GPR_R0], file);
else if (GET_CODE (x) == REG)
fputs (reg_names [REGNO (x)], file);
else
fatal_insn ("bad insn in frv_print_operand, z case", x);
break;
case 'x':
/* Print constant in hex. */
if (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE)
{
fprintf (file, "%s0x%.4lx", IMMEDIATE_PREFIX, (long) value);
break;
}
/* Fall through. */
case '\0':
if (GET_CODE (x) == REG)
fputs (reg_names [REGNO (x)], file);
else if (GET_CODE (x) == CONST_INT
|| GET_CODE (x) == CONST_DOUBLE)
fprintf (file, "%s%ld", IMMEDIATE_PREFIX, (long) value);
else if (frv_const_unspec_p (x, &unspec))
frv_output_const_unspec (file, &unspec);
else if (GET_CODE (x) == MEM)
frv_print_operand_address (file, XEXP (x, 0));
else if (CONSTANT_ADDRESS_P (x))
frv_print_operand_address (file, x);
else
fatal_insn ("bad insn in frv_print_operand, 0 case", x);
break;
default:
fatal_insn ("frv_print_operand: unknown code", x);
break;
}
return;
}
static bool
frv_print_operand_punct_valid_p (unsigned char code)
{
return (code == '.' || code == '#' || code == '@' || code == '~'
|| code == '*' || code == '&');
}
/* A C statement (sans semicolon) for initializing the variable CUM for the
state at the beginning of the argument list. The variable has type
`CUMULATIVE_ARGS'. The value of FNTYPE is the tree node for the data type
of the function which will receive the args, or 0 if the args are to a
compiler support library function. The value of INDIRECT is nonzero when
processing an indirect call, for example a call through a function pointer.
The value of INDIRECT is zero for a call to an explicitly named function, a
library function call, or when `INIT_CUMULATIVE_ARGS' is used to find
arguments for the function being compiled.
When processing a call to a compiler support library function, LIBNAME
identifies which one. It is a `symbol_ref' rtx which contains the name of
the function, as a string. LIBNAME is 0 when an ordinary C function call is
being processed. Thus, each time this macro is called, either LIBNAME or
FNTYPE is nonzero, but never both of them at once. */
void
frv_init_cumulative_args (CUMULATIVE_ARGS *cum,
tree fntype,
rtx libname,
tree fndecl,
int incoming)
{
*cum = FIRST_ARG_REGNUM;
if (TARGET_DEBUG_ARG)
{
fprintf (stderr, "\ninit_cumulative_args:");
if (!fndecl && fntype)
fputs (" indirect", stderr);
if (incoming)
fputs (" incoming", stderr);
if (fntype)
{
tree ret_type = TREE_TYPE (fntype);
fprintf (stderr, " return=%s,",
get_tree_code_name (TREE_CODE (ret_type)));
}
if (libname && GET_CODE (libname) == SYMBOL_REF)
fprintf (stderr, " libname=%s", XSTR (libname, 0));
if (cfun->returns_struct)
fprintf (stderr, " return-struct");
putc ('\n', stderr);
}
}
/* Return true if we should pass an argument on the stack rather than
in registers. */
static bool
frv_must_pass_in_stack (machine_mode mode, const_tree type)
{
if (mode == BLKmode)
return true;
if (type == NULL)
return false;
return AGGREGATE_TYPE_P (type);
}
/* If defined, a C expression that gives the alignment boundary, in bits, of an
argument with the specified mode and type. If it is not defined,
`PARM_BOUNDARY' is used for all arguments. */
static unsigned int
frv_function_arg_boundary (machine_mode mode ATTRIBUTE_UNUSED,
const_tree type ATTRIBUTE_UNUSED)
{
return BITS_PER_WORD;
}
static rtx
frv_function_arg_1 (cumulative_args_t cum_v, machine_mode mode,
const_tree type ATTRIBUTE_UNUSED, bool named,
bool incoming ATTRIBUTE_UNUSED)
{
const CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
machine_mode xmode = (mode == BLKmode) ? SImode : mode;
int arg_num = *cum;
rtx ret;
const char *debstr;
/* Return a marker for use in the call instruction. */
if (xmode == VOIDmode)
{
ret = const0_rtx;
debstr = "<0>";
}
else if (arg_num <= LAST_ARG_REGNUM)
{
ret = gen_rtx_REG (xmode, arg_num);
debstr = reg_names[arg_num];
}
else
{
ret = NULL_RTX;
debstr = "memory";
}
if (TARGET_DEBUG_ARG)
fprintf (stderr,
"function_arg: words = %2d, mode = %4s, named = %d, size = %3d, arg = %s\n",
arg_num, GET_MODE_NAME (mode), named, GET_MODE_SIZE (mode), debstr);
return ret;
}
static rtx
frv_function_arg (cumulative_args_t cum, machine_mode mode,
const_tree type, bool named)
{
return frv_function_arg_1 (cum, mode, type, named, false);
}
static rtx
frv_function_incoming_arg (cumulative_args_t cum, machine_mode mode,
const_tree type, bool named)
{
return frv_function_arg_1 (cum, mode, type, named, true);
}
/* A C statement (sans semicolon) to update the summarizer variable CUM to
advance past an argument in the argument list. The values MODE, TYPE and
NAMED describe that argument. Once this is done, the variable CUM is
suitable for analyzing the *following* argument with `FUNCTION_ARG', etc.
This macro need not do anything if the argument in question was passed on
the stack. The compiler knows how to track the amount of stack space used
for arguments without any special help. */
static void
frv_function_arg_advance (cumulative_args_t cum_v,
machine_mode mode,
const_tree type ATTRIBUTE_UNUSED,
bool named)
{
CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
machine_mode xmode = (mode == BLKmode) ? SImode : mode;
int bytes = GET_MODE_SIZE (xmode);
int words = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
int arg_num = *cum;
*cum = arg_num + words;
if (TARGET_DEBUG_ARG)
fprintf (stderr,
"function_adv: words = %2d, mode = %4s, named = %d, size = %3d\n",
arg_num, GET_MODE_NAME (mode), named, words * UNITS_PER_WORD);
}
/* A C expression for the number of words, at the beginning of an argument,
must be put in registers. The value must be zero for arguments that are
passed entirely in registers or that are entirely pushed on the stack.
On some machines, certain arguments must be passed partially in registers
and partially in memory. On these machines, typically the first N words of
arguments are passed in registers, and the rest on the stack. If a
multi-word argument (a `double' or a structure) crosses that boundary, its
first few words must be passed in registers and the rest must be pushed.
This macro tells the compiler when this occurs, and how many of the words
should go in registers.
`FUNCTION_ARG' for these arguments should return the first register to be
used by the caller for this argument; likewise `FUNCTION_INCOMING_ARG', for
the called function. */
static int
frv_arg_partial_bytes (cumulative_args_t cum, machine_mode mode,
tree type ATTRIBUTE_UNUSED, bool named ATTRIBUTE_UNUSED)
{
machine_mode xmode = (mode == BLKmode) ? SImode : mode;
int bytes = GET_MODE_SIZE (xmode);
int words = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
int arg_num = *get_cumulative_args (cum);
int ret;
ret = ((arg_num <= LAST_ARG_REGNUM && arg_num + words > LAST_ARG_REGNUM+1)
? LAST_ARG_REGNUM - arg_num + 1
: 0);
ret *= UNITS_PER_WORD;
if (TARGET_DEBUG_ARG && ret)
fprintf (stderr, "frv_arg_partial_bytes: %d\n", ret);
return ret;
}
/* Implements TARGET_FUNCTION_VALUE. */
static rtx
frv_function_value (const_tree valtype,
const_tree fn_decl_or_type ATTRIBUTE_UNUSED,
bool outgoing ATTRIBUTE_UNUSED)
{
return gen_rtx_REG (TYPE_MODE (valtype), RETURN_VALUE_REGNUM);
}
/* Implements TARGET_LIBCALL_VALUE. */
static rtx
frv_libcall_value (machine_mode mode,
const_rtx fun ATTRIBUTE_UNUSED)
{
return gen_rtx_REG (mode, RETURN_VALUE_REGNUM);
}
/* Implements FUNCTION_VALUE_REGNO_P. */
bool
frv_function_value_regno_p (const unsigned int regno)
{
return (regno == RETURN_VALUE_REGNUM);
}
/* Return true if a register is ok to use as a base or index register. */
static FRV_INLINE int
frv_regno_ok_for_base_p (int regno, int strict_p)
{
if (GPR_P (regno))
return TRUE;
if (strict_p)
return (reg_renumber[regno] >= 0 && GPR_P (reg_renumber[regno]));
if (regno == ARG_POINTER_REGNUM)
return TRUE;
return (regno >= FIRST_PSEUDO_REGISTER);
}
/* A C compound statement with a conditional `goto LABEL;' executed if X (an
RTX) is a legitimate memory address on the target machine for a memory
operand of mode MODE.
It usually pays to define several simpler macros to serve as subroutines for
this one. Otherwise it may be too complicated to understand.
This macro must exist in two variants: a strict variant and a non-strict
one. The strict variant is used in the reload pass. It must be defined so
that any pseudo-register that has not been allocated a hard register is
considered a memory reference. In contexts where some kind of register is
required, a pseudo-register with no hard register must be rejected.
The non-strict variant is used in other passes. It must be defined to
accept all pseudo-registers in every context where some kind of register is
required.
Compiler source files that want to use the strict variant of this macro
define the macro `REG_OK_STRICT'. You should use an `#ifdef REG_OK_STRICT'
conditional to define the strict variant in that case and the non-strict
variant otherwise.
Normally, constant addresses which are the sum of a `symbol_ref' and an
integer are stored inside a `const' RTX to mark them as constant.
Therefore, there is no need to recognize such sums specifically as
legitimate addresses. Normally you would simply recognize any `const' as
legitimate.
Usually `TARGET_PRINT_OPERAND_ADDRESS' is not prepared to handle
constant sums that are not marked with `const'. It assumes that a
naked `plus' indicates indexing. If so, then you *must* reject such
naked constant sums as illegitimate addresses, so that none of them
will be given to `TARGET_PRINT_OPERAND_ADDRESS'. */
int
frv_legitimate_address_p_1 (machine_mode mode,
rtx x,
int strict_p,
int condexec_p,
int allow_double_reg_p)
{
rtx x0, x1;
int ret = 0;
HOST_WIDE_INT value;
unsigned regno0;
if (FRV_SYMBOL_REF_TLS_P (x))
return 0;
switch (GET_CODE (x))
{
default:
break;
case SUBREG:
x = SUBREG_REG (x);
if (GET_CODE (x) != REG)
break;
/* Fall through. */
case REG:
ret = frv_regno_ok_for_base_p (REGNO (x), strict_p);
break;
case PRE_MODIFY:
x0 = XEXP (x, 0);
x1 = XEXP (x, 1);
if (GET_CODE (x0) != REG
|| ! frv_regno_ok_for_base_p (REGNO (x0), strict_p)
|| GET_CODE (x1) != PLUS
|| ! rtx_equal_p (x0, XEXP (x1, 0))
|| GET_CODE (XEXP (x1, 1)) != REG
|| ! frv_regno_ok_for_base_p (REGNO (XEXP (x1, 1)), strict_p))
break;
ret = 1;
break;
case CONST_INT:
/* 12-bit immediate */
if (condexec_p)
ret = FALSE;
else
{
ret = IN_RANGE (INTVAL (x), -2048, 2047);
/* If we can't use load/store double operations, make sure we can
address the second word. */
if (ret && GET_MODE_SIZE (mode) > UNITS_PER_WORD)
ret = IN_RANGE (INTVAL (x) + GET_MODE_SIZE (mode) - 1,
-2048, 2047);
}
break;
case PLUS:
x0 = XEXP (x, 0);
x1 = XEXP (x, 1);
if (GET_CODE (x0) == SUBREG)
x0 = SUBREG_REG (x0);
if (GET_CODE (x0) != REG)
break;
regno0 = REGNO (x0);
if (!frv_regno_ok_for_base_p (regno0, strict_p))
break;
switch (GET_CODE (x1))
{
default:
break;
case SUBREG:
x1 = SUBREG_REG (x1);
if (GET_CODE (x1) != REG)
break;
/* Fall through. */
case REG:
/* Do not allow reg+reg addressing for modes > 1 word if we
can't depend on having move double instructions. */
if (!allow_double_reg_p && GET_MODE_SIZE (mode) > UNITS_PER_WORD)
ret = FALSE;
else
ret = frv_regno_ok_for_base_p (REGNO (x1), strict_p);
break;
case CONST_INT:
/* 12-bit immediate */
if (condexec_p)
ret = FALSE;
else
{
value = INTVAL (x1);
ret = IN_RANGE (value, -2048, 2047);
/* If we can't use load/store double operations, make sure we can
address the second word. */
if (ret && GET_MODE_SIZE (mode) > UNITS_PER_WORD)
ret = IN_RANGE (value + GET_MODE_SIZE (mode) - 1, -2048, 2047);
}
break;
case CONST:
if (!condexec_p && got12_operand (x1, VOIDmode))
ret = TRUE;
break;
}
break;
}
if (TARGET_DEBUG_ADDR)
{
fprintf (stderr, "\n========== legitimate_address_p, mode = %s, result = %d, addresses are %sstrict%s\n",
GET_MODE_NAME (mode), ret, (strict_p) ? "" : "not ",
(condexec_p) ? ", inside conditional code" : "");
debug_rtx (x);
}
return ret;
}
bool
frv_legitimate_address_p (machine_mode mode, rtx x, bool strict_p)
{
return frv_legitimate_address_p_1 (mode, x, strict_p, FALSE, FALSE);
}
/* Given an ADDR, generate code to inline the PLT. */
static rtx
gen_inlined_tls_plt (rtx addr)
{
rtx retval, dest;
rtx picreg = get_hard_reg_initial_val (Pmode, FDPIC_REG);
dest = gen_reg_rtx (DImode);
if (flag_pic == 1)
{
/*
-fpic version:
lddi.p @(gr15, #gottlsdesc12(ADDR)), gr8
calll #gettlsoff(ADDR)@(gr8, gr0)
*/
emit_insn (gen_tls_lddi (dest, addr, picreg));
}
else
{
/*
-fPIC version:
sethi.p #gottlsdeschi(ADDR), gr8
setlo #gottlsdesclo(ADDR), gr8
ldd #tlsdesc(ADDR)@(gr15, gr8), gr8
calll #gettlsoff(ADDR)@(gr8, gr0)
*/
rtx reguse = gen_reg_rtx (Pmode);
emit_insn (gen_tlsoff_hilo (reguse, addr, GEN_INT (R_FRV_GOTTLSDESCHI)));
emit_insn (gen_tls_tlsdesc_ldd (dest, picreg, reguse, addr));
}
retval = gen_reg_rtx (Pmode);
emit_insn (gen_tls_indirect_call (retval, addr, dest, picreg));
return retval;
}
/* Emit a TLSMOFF or TLSMOFF12 offset, depending on -mTLS. Returns
the destination address. */
static rtx
gen_tlsmoff (rtx addr, rtx reg)
{
rtx dest = gen_reg_rtx (Pmode);
if (TARGET_BIG_TLS)
{
/* sethi.p #tlsmoffhi(x), grA
setlo #tlsmofflo(x), grA
*/
dest = gen_reg_rtx (Pmode);
emit_insn (gen_tlsoff_hilo (dest, addr,
GEN_INT (R_FRV_TLSMOFFHI)));
dest = gen_rtx_PLUS (Pmode, dest, reg);
}
else
{
/* addi grB, #tlsmoff12(x), grC
-or-
ld/st @(grB, #tlsmoff12(x)), grC
*/
dest = gen_reg_rtx (Pmode);
emit_insn (gen_symGOTOFF2reg_i (dest, addr, reg,
GEN_INT (R_FRV_TLSMOFF12)));
}
return dest;
}
/* Generate code for a TLS address. */
static rtx
frv_legitimize_tls_address (rtx addr, enum tls_model model)
{
rtx dest, tp = gen_rtx_REG (Pmode, 29);
rtx picreg = get_hard_reg_initial_val (Pmode, 15);
switch (model)
{
case TLS_MODEL_INITIAL_EXEC:
if (flag_pic == 1)
{
/* -fpic version.
ldi @(gr15, #gottlsoff12(x)), gr5
*/
dest = gen_reg_rtx (Pmode);
emit_insn (gen_tls_load_gottlsoff12 (dest, addr, picreg));
dest = gen_rtx_PLUS (Pmode, tp, dest);
}
else
{
/* -fPIC or anything else.
sethi.p #gottlsoffhi(x), gr14
setlo #gottlsofflo(x), gr14
ld #tlsoff(x)@(gr15, gr14), gr9
*/
rtx tmp = gen_reg_rtx (Pmode);
dest = gen_reg_rtx (Pmode);
emit_insn (gen_tlsoff_hilo (tmp, addr,
GEN_INT (R_FRV_GOTTLSOFF_HI)));
emit_insn (gen_tls_tlsoff_ld (dest, picreg, tmp, addr));
dest = gen_rtx_PLUS (Pmode, tp, dest);
}
break;
case TLS_MODEL_LOCAL_DYNAMIC:
{
rtx reg, retval;
if (TARGET_INLINE_PLT)
retval = gen_inlined_tls_plt (GEN_INT (0));
else
{
/* call #gettlsoff(0) */
retval = gen_reg_rtx (Pmode);
emit_insn (gen_call_gettlsoff (retval, GEN_INT (0), picreg));
}
reg = gen_reg_rtx (Pmode);
emit_insn (gen_rtx_SET (VOIDmode, reg,
gen_rtx_PLUS (Pmode,
retval, tp)));
dest = gen_tlsmoff (addr, reg);
/*
dest = gen_reg_rtx (Pmode);
emit_insn (gen_tlsoff_hilo (dest, addr,
GEN_INT (R_FRV_TLSMOFFHI)));
dest = gen_rtx_PLUS (Pmode, dest, reg);
*/
break;
}
case TLS_MODEL_LOCAL_EXEC:
dest = gen_tlsmoff (addr, gen_rtx_REG (Pmode, 29));
break;
case TLS_MODEL_GLOBAL_DYNAMIC:
{
rtx retval;
if (TARGET_INLINE_PLT)
retval = gen_inlined_tls_plt (addr);
else
{
/* call #gettlsoff(x) */
retval = gen_reg_rtx (Pmode);
emit_insn (gen_call_gettlsoff (retval, addr, picreg));
}
dest = gen_rtx_PLUS (Pmode, retval, tp);
break;
}
default:
gcc_unreachable ();
}
return dest;
}
rtx
frv_legitimize_address (rtx x,
rtx oldx ATTRIBUTE_UNUSED,
machine_mode mode ATTRIBUTE_UNUSED)
{
if (GET_CODE (x) == SYMBOL_REF)
{
enum tls_model model = SYMBOL_REF_TLS_MODEL (x);
if (model != 0)
return frv_legitimize_tls_address (x, model);
}
return x;
}
/* Test whether a local function descriptor is canonical, i.e.,
whether we can use FUNCDESC_GOTOFF to compute the address of the
function. */
static bool
frv_local_funcdesc_p (rtx fnx)
{
tree fn;
enum symbol_visibility vis;
bool ret;
if (! SYMBOL_REF_LOCAL_P (fnx))
return FALSE;
fn = SYMBOL_REF_DECL (fnx);
if (! fn)
return FALSE;
vis = DECL_VISIBILITY (fn);
if (vis == VISIBILITY_PROTECTED)
/* Private function descriptors for protected functions are not
canonical. Temporarily change the visibility to global. */
vis = VISIBILITY_DEFAULT;
else if (flag_shlib)
/* If we're already compiling for a shared library (that, unlike
executables, can't assume that the existence of a definition
implies local binding), we can skip the re-testing. */
return TRUE;
ret = default_binds_local_p_1 (fn, flag_pic);
DECL_VISIBILITY (fn) = vis;
return ret;
}
/* Load the _gp symbol into DEST. SRC is supposed to be the FDPIC
register. */
rtx
frv_gen_GPsym2reg (rtx dest, rtx src)
{
tree gp = get_identifier ("_gp");
rtx gp_sym = gen_rtx_SYMBOL_REF (Pmode, IDENTIFIER_POINTER (gp));
return gen_symGOT2reg (dest, gp_sym, src, GEN_INT (R_FRV_GOT12));
}
static const char *
unspec_got_name (int i)
{
switch (i)
{
case R_FRV_GOT12: return "got12";
case R_FRV_GOTHI: return "gothi";
case R_FRV_GOTLO: return "gotlo";
case R_FRV_FUNCDESC: return "funcdesc";
case R_FRV_FUNCDESC_GOT12: return "gotfuncdesc12";
case R_FRV_FUNCDESC_GOTHI: return "gotfuncdeschi";
case R_FRV_FUNCDESC_GOTLO: return "gotfuncdesclo";
case R_FRV_FUNCDESC_VALUE: return "funcdescvalue";
case R_FRV_FUNCDESC_GOTOFF12: return "gotofffuncdesc12";
case R_FRV_FUNCDESC_GOTOFFHI: return "gotofffuncdeschi";
case R_FRV_FUNCDESC_GOTOFFLO: return "gotofffuncdesclo";
case R_FRV_GOTOFF12: return "gotoff12";
case R_FRV_GOTOFFHI: return "gotoffhi";
case R_FRV_GOTOFFLO: return "gotofflo";
case R_FRV_GPREL12: return "gprel12";
case R_FRV_GPRELHI: return "gprelhi";
case R_FRV_GPRELLO: return "gprello";
case R_FRV_GOTTLSOFF_HI: return "gottlsoffhi";
case R_FRV_GOTTLSOFF_LO: return "gottlsofflo";
case R_FRV_TLSMOFFHI: return "tlsmoffhi";
case R_FRV_TLSMOFFLO: return "tlsmofflo";
case R_FRV_TLSMOFF12: return "tlsmoff12";
case R_FRV_TLSDESCHI: return "tlsdeschi";
case R_FRV_TLSDESCLO: return "tlsdesclo";
case R_FRV_GOTTLSDESCHI: return "gottlsdeschi";
case R_FRV_GOTTLSDESCLO: return "gottlsdesclo";
default: gcc_unreachable ();
}
}
/* Write the assembler syntax for UNSPEC to STREAM. Note that any offset
is added inside the relocation operator. */
static void
frv_output_const_unspec (FILE *stream, const struct frv_unspec *unspec)
{
fprintf (stream, "#%s(", unspec_got_name (unspec->reloc));
output_addr_const (stream, plus_constant (Pmode, unspec->symbol,
unspec->offset));
fputs (")", stream);
}
/* Implement FIND_BASE_TERM. See whether ORIG_X represents #gprel12(foo)
or #gotoff12(foo) for some small data symbol foo. If so, return foo,
otherwise return ORIG_X. */
rtx
frv_find_base_term (rtx x)
{
struct frv_unspec unspec;
if (frv_const_unspec_p (x, &unspec)
&& frv_small_data_reloc_p (unspec.symbol, unspec.reloc))
return plus_constant (Pmode, unspec.symbol, unspec.offset);
return x;
}
/* Return 1 if operand is a valid FRV address. CONDEXEC_P is true if
the operand is used by a predicated instruction. */
int
frv_legitimate_memory_operand (rtx op, machine_mode mode, int condexec_p)
{
return ((GET_MODE (op) == mode || mode == VOIDmode)
&& GET_CODE (op) == MEM
&& frv_legitimate_address_p_1 (mode, XEXP (op, 0),
reload_completed, condexec_p, FALSE));
}
void
frv_expand_fdpic_call (rtx *operands, bool ret_value, bool sibcall)
{
rtx lr = gen_rtx_REG (Pmode, LR_REGNO);
rtx picreg = get_hard_reg_initial_val (SImode, FDPIC_REG);
rtx c, rvrtx=0;
rtx addr;
if (ret_value)
{
rvrtx = operands[0];
operands ++;
}
addr = XEXP (operands[0], 0);
/* Inline PLTs if we're optimizing for speed. We'd like to inline
any calls that would involve a PLT, but can't tell, since we
don't know whether an extern function is going to be provided by
a separate translation unit or imported from a separate module.
When compiling for shared libraries, if the function has default
visibility, we assume it's overridable, so we inline the PLT, but
for executables, we don't really have a way to make a good
decision: a function is as likely to be imported from a shared
library as it is to be defined in the executable itself. We
assume executables will get global functions defined locally,
whereas shared libraries will have them potentially overridden,
so we only inline PLTs when compiling for shared libraries.
In order to mark a function as local to a shared library, any
non-default visibility attribute suffices. Unfortunately,
there's no simple way to tag a function declaration as ``in a
different module'', which we could then use to trigger PLT
inlining on executables. There's -minline-plt, but it affects
all external functions, so one would have to also mark function
declarations available in the same module with non-default
visibility, which is advantageous in itself. */
if (GET_CODE (addr) == SYMBOL_REF
&& ((!SYMBOL_REF_LOCAL_P (addr) && TARGET_INLINE_PLT)
|| sibcall))
{
rtx x, dest;
dest = gen_reg_rtx (SImode);
if (flag_pic != 1)
x = gen_symGOTOFF2reg_hilo (dest, addr, OUR_FDPIC_REG,
GEN_INT (R_FRV_FUNCDESC_GOTOFF12));
else
x = gen_symGOTOFF2reg (dest, addr, OUR_FDPIC_REG,
GEN_INT (R_FRV_FUNCDESC_GOTOFF12));
emit_insn (x);
crtl->uses_pic_offset_table = TRUE;
addr = dest;
}
else if (GET_CODE (addr) == SYMBOL_REF)
{
/* These are always either local, or handled through a local
PLT. */
if (ret_value)
c = gen_call_value_fdpicsi (rvrtx, addr, operands[1],
operands[2], picreg, lr);
else
c = gen_call_fdpicsi (addr, operands[1], operands[2], picreg, lr);
emit_call_insn (c);
return;
}
else if (! ldd_address_operand (addr, Pmode))
addr = force_reg (Pmode, addr);
picreg = gen_reg_rtx (DImode);
emit_insn (gen_movdi_ldd (picreg, addr));
if (sibcall && ret_value)
c = gen_sibcall_value_fdpicdi (rvrtx, picreg, const0_rtx);
else if (sibcall)
c = gen_sibcall_fdpicdi (picreg, const0_rtx);
else if (ret_value)
c = gen_call_value_fdpicdi (rvrtx, picreg, const0_rtx, lr);
else
c = gen_call_fdpicdi (picreg, const0_rtx, lr);
emit_call_insn (c);
}
/* Look for a SYMBOL_REF of a function in an rtx. We always want to
process these separately from any offsets, such that we add any
offsets to the function descriptor (the actual pointer), not to the
function address. */
static bool
frv_function_symbol_referenced_p (rtx x)
{
const char *format;
int length;
int j;
if (GET_CODE (x) == SYMBOL_REF)
return SYMBOL_REF_FUNCTION_P (x);
length = GET_RTX_LENGTH (GET_CODE (x));
format = GET_RTX_FORMAT (GET_CODE (x));
for (j = 0; j < length; ++j)
{
switch (format[j])
{
case 'e':
if (frv_function_symbol_referenced_p (XEXP (x, j)))
return TRUE;
break;
case 'V':
case 'E':
if (XVEC (x, j) != 0)
{
int k;
for (k = 0; k < XVECLEN (x, j); ++k)
if (frv_function_symbol_referenced_p (XVECEXP (x, j, k)))
return TRUE;
}
break;
default:
/* Nothing to do. */
break;
}
}
return FALSE;
}
/* Return true if the memory operand is one that can be conditionally
executed. */
int
condexec_memory_operand (rtx op, machine_mode mode)
{
machine_mode op_mode = GET_MODE (op);
rtx addr;
if (mode != VOIDmode && op_mode != mode)
return FALSE;
switch (op_mode)
{
default:
return FALSE;
case QImode:
case HImode:
case SImode:
case SFmode:
break;
}
if (GET_CODE (op) != MEM)
return FALSE;
addr = XEXP (op, 0);
return frv_legitimate_address_p_1 (mode, addr, reload_completed, TRUE, FALSE);
}
/* Return true if the bare return instruction can be used outside of the
epilog code. For frv, we only do it if there was no stack allocation. */
int
direct_return_p (void)
{
frv_stack_t *info;
if (!reload_completed)
return FALSE;
info = frv_stack_info ();
return (info->total_size == 0);
}
void
frv_emit_move (machine_mode mode, rtx dest, rtx src)
{
if (GET_CODE (src) == SYMBOL_REF)
{
enum tls_model model = SYMBOL_REF_TLS_MODEL (src);
if (model != 0)
src = frv_legitimize_tls_address (src, model);
}
switch (mode)
{
case SImode:
if (frv_emit_movsi (dest, src))
return;
break;
case QImode:
case HImode:
case DImode:
case SFmode:
case DFmode:
if (!reload_in_progress
&& !reload_completed
&& !register_operand (dest, mode)
&& !reg_or_0_operand (src, mode))
src = copy_to_mode_reg (mode, src);
break;
default:
gcc_unreachable ();
}
emit_insn (gen_rtx_SET (VOIDmode, dest, src));
}
/* Emit code to handle a MOVSI, adding in the small data register or pic
register if needed to load up addresses. Return TRUE if the appropriate
instructions are emitted. */
int
frv_emit_movsi (rtx dest, rtx src)
{
int base_regno = -1;
int unspec = 0;
rtx sym = src;
struct frv_unspec old_unspec;
if (!reload_in_progress
&& !reload_completed
&& !register_operand (dest, SImode)
&& (!reg_or_0_operand (src, SImode)
/* Virtual registers will almost always be replaced by an
add instruction, so expose this to CSE by copying to
an intermediate register. */
|| (GET_CODE (src) == REG
&& IN_RANGE (REGNO (src),
FIRST_VIRTUAL_REGISTER,
LAST_VIRTUAL_POINTER_REGISTER))))
{
emit_insn (gen_rtx_SET (VOIDmode, dest, copy_to_mode_reg (SImode, src)));
return TRUE;
}
/* Explicitly add in the PIC or small data register if needed. */
switch (GET_CODE (src))
{
default:
break;
case LABEL_REF:
handle_label:
if (TARGET_FDPIC)
{
/* Using GPREL12, we use a single GOT entry for all symbols
in read-only sections, but trade sequences such as:
sethi #gothi(label), gr#
setlo #gotlo(label), gr#
ld @(gr15,gr#), gr#
for
ld @(gr15,#got12(_gp)), gr#
sethi #gprelhi(label), gr##
setlo #gprello(label), gr##
add gr#, gr##, gr##
We may often be able to share gr# for multiple
computations of GPREL addresses, and we may often fold
the final add into the pair of registers of a load or
store instruction, so it's often profitable. Even when
optimizing for size, we're trading a GOT entry for an
additional instruction, which trades GOT space
(read-write) for code size (read-only, shareable), as
long as the symbol is not used in more than two different
locations.
With -fpie/-fpic, we'd be trading a single load for a
sequence of 4 instructions, because the offset of the
label can't be assumed to be addressable with 12 bits, so
we don't do this. */
if (TARGET_GPREL_RO)
unspec = R_FRV_GPREL12;
else
unspec = R_FRV_GOT12;
}
else if (flag_pic)
base_regno = PIC_REGNO;
break;
case CONST:
if (frv_const_unspec_p (src, &old_unspec))
break;
if (TARGET_FDPIC && frv_function_symbol_referenced_p (XEXP (src, 0)))
{
handle_whatever:
src = force_reg (GET_MODE (XEXP (src, 0)), XEXP (src, 0));
emit_move_insn (dest, src);
return TRUE;
}
else
{
sym = XEXP (sym, 0);
if (GET_CODE (sym) == PLUS
&& GET_CODE (XEXP (sym, 0)) == SYMBOL_REF
&& GET_CODE (XEXP (sym, 1)) == CONST_INT)
sym = XEXP (sym, 0);
if (GET_CODE (sym) == SYMBOL_REF)
goto handle_sym;
else if (GET_CODE (sym) == LABEL_REF)
goto handle_label;
else
goto handle_whatever;
}
break;
case SYMBOL_REF:
handle_sym:
if (TARGET_FDPIC)
{
enum tls_model model = SYMBOL_REF_TLS_MODEL (sym);
if (model != 0)
{
src = frv_legitimize_tls_address (src, model);
emit_move_insn (dest, src);
return TRUE;
}
if (SYMBOL_REF_FUNCTION_P (sym))
{
if (frv_local_funcdesc_p (sym))
unspec = R_FRV_FUNCDESC_GOTOFF12;
else
unspec = R_FRV_FUNCDESC_GOT12;
}
else
{
if (CONSTANT_POOL_ADDRESS_P (sym))
switch (GET_CODE (get_pool_constant (sym)))
{
case CONST:
case SYMBOL_REF:
case LABEL_REF:
if (flag_pic)
{
unspec = R_FRV_GOTOFF12;
break;
}
/* Fall through. */
default:
if (TARGET_GPREL_RO)
unspec = R_FRV_GPREL12;
else
unspec = R_FRV_GOT12;
break;
}
else if (SYMBOL_REF_LOCAL_P (sym)
&& !SYMBOL_REF_EXTERNAL_P (sym)
&& SYMBOL_REF_DECL (sym)
&& (!DECL_P (SYMBOL_REF_DECL (sym))
|| !DECL_COMMON (SYMBOL_REF_DECL (sym))))
{
tree decl = SYMBOL_REF_DECL (sym);
tree init = TREE_CODE (decl) == VAR_DECL
? DECL_INITIAL (decl)
: TREE_CODE (decl) == CONSTRUCTOR
? decl : 0;
int reloc = 0;
bool named_section, readonly;
if (init && init != error_mark_node)
reloc = compute_reloc_for_constant (init);
named_section = TREE_CODE (decl) == VAR_DECL
&& lookup_attribute ("section", DECL_ATTRIBUTES (decl));
readonly = decl_readonly_section (decl, reloc);
if (named_section)
unspec = R_FRV_GOT12;
else if (!readonly)
unspec = R_FRV_GOTOFF12;
else if (readonly && TARGET_GPREL_RO)
unspec = R_FRV_GPREL12;
else
unspec = R_FRV_GOT12;
}
else
unspec = R_FRV_GOT12;
}
}
else if (SYMBOL_REF_SMALL_P (sym))
base_regno = SDA_BASE_REG;
else if (flag_pic)
base_regno = PIC_REGNO;
break;
}
if (base_regno >= 0)
{
if (GET_CODE (sym) == SYMBOL_REF && SYMBOL_REF_SMALL_P (sym))
emit_insn (gen_symGOTOFF2reg (dest, src,
gen_rtx_REG (Pmode, base_regno),
GEN_INT (R_FRV_GPREL12)));
else
emit_insn (gen_symGOTOFF2reg_hilo (dest, src,
gen_rtx_REG (Pmode, base_regno),
GEN_INT (R_FRV_GPREL12)));
if (base_regno == PIC_REGNO)
crtl->uses_pic_offset_table = TRUE;
return TRUE;
}
if (unspec)
{
rtx x;
/* Since OUR_FDPIC_REG is a pseudo register, we can't safely introduce
new uses of it once reload has begun. */
gcc_assert (!reload_in_progress && !reload_completed);
switch (unspec)
{
case R_FRV_GOTOFF12:
if (!frv_small_data_reloc_p (sym, unspec))
x = gen_symGOTOFF2reg_hilo (dest, src, OUR_FDPIC_REG,
GEN_INT (unspec));
else
x = gen_symGOTOFF2reg (dest, src, OUR_FDPIC_REG, GEN_INT (unspec));
break;
case R_FRV_GPREL12:
if (!frv_small_data_reloc_p (sym, unspec))
x = gen_symGPREL2reg_hilo (dest, src, OUR_FDPIC_REG,
GEN_INT (unspec));
else
x = gen_symGPREL2reg (dest, src, OUR_FDPIC_REG, GEN_INT (unspec));
break;
case R_FRV_FUNCDESC_GOTOFF12:
if (flag_pic != 1)
x = gen_symGOTOFF2reg_hilo (dest, src, OUR_FDPIC_REG,
GEN_INT (unspec));
else
x = gen_symGOTOFF2reg (dest, src, OUR_FDPIC_REG, GEN_INT (unspec));
break;
default:
if (flag_pic != 1)
x = gen_symGOT2reg_hilo (dest, src, OUR_FDPIC_REG,
GEN_INT (unspec));
else
x = gen_symGOT2reg (dest, src, OUR_FDPIC_REG, GEN_INT (unspec));
break;
}
emit_insn (x);
crtl->uses_pic_offset_table = TRUE;
return TRUE;
}
return FALSE;
}
/* Return a string to output a single word move. */
const char *
output_move_single (rtx operands[], rtx insn)
{
rtx dest = operands[0];
rtx src = operands[1];
if (GET_CODE (dest) == REG)
{
int dest_regno = REGNO (dest);
machine_mode mode = GET_MODE (dest);
if (GPR_P (dest_regno))
{
if (GET_CODE (src) == REG)
{
/* gpr <- some sort of register */
int src_regno = REGNO (src);
if (GPR_P (src_regno))
return "mov %1, %0";
else if (FPR_P (src_regno))
return "movfg %1, %0";
else if (SPR_P (src_regno))
return "movsg %1, %0";
}
else if (GET_CODE (src) == MEM)
{
/* gpr <- memory */
switch (mode)
{
default:
break;
case QImode:
return "ldsb%I1%U1 %M1,%0";
case HImode:
return "ldsh%I1%U1 %M1,%0";
case SImode:
case SFmode:
return "ld%I1%U1 %M1, %0";
}
}
else if (GET_CODE (src) == CONST_INT
|| GET_CODE (src) == CONST_DOUBLE)
{
/* gpr <- integer/floating constant */
HOST_WIDE_INT value;
if (GET_CODE (src) == CONST_INT)
value = INTVAL (src);
else if (mode == SFmode)
{
REAL_VALUE_TYPE rv;
long l;
REAL_VALUE_FROM_CONST_DOUBLE (rv, src);
REAL_VALUE_TO_TARGET_SINGLE (rv, l);
value = l;
}
else
value = CONST_DOUBLE_LOW (src);
if (IN_RANGE (value, -32768, 32767))
return "setlos %1, %0";
return "#";
}
else if (GET_CODE (src) == SYMBOL_REF
|| GET_CODE (src) == LABEL_REF
|| GET_CODE (src) == CONST)
{
return "#";
}
}
else if (FPR_P (dest_regno))
{
if (GET_CODE (src) == REG)
{
/* fpr <- some sort of register */
int src_regno = REGNO (src);
if (GPR_P (src_regno))
return "movgf %1, %0";
else if (FPR_P (src_regno))
{
if (TARGET_HARD_FLOAT)
return "fmovs %1, %0";
else
return "mor %1, %1, %0";
}
}
else if (GET_CODE (src) == MEM)
{
/* fpr <- memory */
switch (mode)
{
default:
break;
case QImode:
return "ldbf%I1%U1 %M1,%0";
case HImode:
return "ldhf%I1%U1 %M1,%0";
case SImode:
case SFmode:
return "ldf%I1%U1 %M1, %0";
}
}
else if (ZERO_P (src))
return "movgf %., %0";
}
else if (SPR_P (dest_regno))
{
if (GET_CODE (src) == REG)
{
/* spr <- some sort of register */
int src_regno = REGNO (src);
if (GPR_P (src_regno))
return "movgs %1, %0";
}
else if (ZERO_P (src))
return "movgs %., %0";
}
}
else if (GET_CODE (dest) == MEM)
{
if (GET_CODE (src) == REG)
{
int src_regno = REGNO (src);
machine_mode mode = GET_MODE (dest);
if (GPR_P (src_regno))
{
switch (mode)
{
default:
break;
case QImode:
return "stb%I0%U0 %1, %M0";
case HImode:
return "sth%I0%U0 %1, %M0";
case SImode:
case SFmode:
return "st%I0%U0 %1, %M0";
}
}
else if (FPR_P (src_regno))
{
switch (mode)
{
default:
break;
case QImode:
return "stbf%I0%U0 %1, %M0";
case HImode:
return "sthf%I0%U0 %1, %M0";
case SImode:
case SFmode:
return "stf%I0%U0 %1, %M0";
}
}
}
else if (ZERO_P (src))
{
switch (GET_MODE (dest))
{
default:
break;
case QImode:
return "stb%I0%U0 %., %M0";
case HImode:
return "sth%I0%U0 %., %M0";
case SImode:
case SFmode:
return "st%I0%U0 %., %M0";
}
}
}
fatal_insn ("bad output_move_single operand", insn);
return "";
}
/* Return a string to output a double word move. */
const char *
output_move_double (rtx operands[], rtx insn)
{
rtx dest = operands[0];
rtx src = operands[1];
machine_mode mode = GET_MODE (dest);
if (GET_CODE (dest) == REG)
{
int dest_regno = REGNO (dest);
if (GPR_P (dest_regno))
{
if (GET_CODE (src) == REG)
{
/* gpr <- some sort of register */
int src_regno = REGNO (src);
if (GPR_P (src_regno))
return "#";
else if (FPR_P (src_regno))
{
if (((dest_regno - GPR_FIRST) & 1) == 0
&& ((src_regno - FPR_FIRST) & 1) == 0)
return "movfgd %1, %0";
return "#";
}
}
else if (GET_CODE (src) == MEM)
{
/* gpr <- memory */
if (dbl_memory_one_insn_operand (src, mode))
return "ldd%I1%U1 %M1, %0";
return "#";
}
else if (GET_CODE (src) == CONST_INT
|| GET_CODE (src) == CONST_DOUBLE)
return "#";
}
else if (FPR_P (dest_regno))
{
if (GET_CODE (src) == REG)
{
/* fpr <- some sort of register */
int src_regno = REGNO (src);
if (GPR_P (src_regno))
{
if (((dest_regno - FPR_FIRST) & 1) == 0
&& ((src_regno - GPR_FIRST) & 1) == 0)
return "movgfd %1, %0";
return "#";
}
else if (FPR_P (src_regno))
{
if (TARGET_DOUBLE
&& ((dest_regno - FPR_FIRST) & 1) == 0
&& ((src_regno - FPR_FIRST) & 1) == 0)
return "fmovd %1, %0";
return "#";
}
}
else if (GET_CODE (src) == MEM)
{
/* fpr <- memory */
if (dbl_memory_one_insn_operand (src, mode))
return "lddf%I1%U1 %M1, %0";
return "#";
}
else if (ZERO_P (src))
return "#";
}
}
else if (GET_CODE (dest) == MEM)
{
if (GET_CODE (src) == REG)
{
int src_regno = REGNO (src);
if (GPR_P (src_regno))
{
if (((src_regno - GPR_FIRST) & 1) == 0
&& dbl_memory_one_insn_operand (dest, mode))
return "std%I0%U0 %1, %M0";
return "#";
}
if (FPR_P (src_regno))
{
if (((src_regno - FPR_FIRST) & 1) == 0
&& dbl_memory_one_insn_operand (dest, mode))
return "stdf%I0%U0 %1, %M0";
return "#";
}
}
else if (ZERO_P (src))
{
if (dbl_memory_one_insn_operand (dest, mode))
return "std%I0%U0 %., %M0";
return "#";
}
}
fatal_insn ("bad output_move_double operand", insn);
return "";
}
/* Return a string to output a single word conditional move.
Operand0 -- EQ/NE of ccr register and 0
Operand1 -- CCR register
Operand2 -- destination
Operand3 -- source */
const char *
output_condmove_single (rtx operands[], rtx insn)
{
rtx dest = operands[2];
rtx src = operands[3];
if (GET_CODE (dest) == REG)
{
int dest_regno = REGNO (dest);
machine_mode mode = GET_MODE (dest);
if (GPR_P (dest_regno))
{
if (GET_CODE (src) == REG)
{
/* gpr <- some sort of register */
int src_regno = REGNO (src);
if (GPR_P (src_regno))
return "cmov %z3, %2, %1, %e0";
else if (FPR_P (src_regno))
return "cmovfg %3, %2, %1, %e0";
}
else if (GET_CODE (src) == MEM)
{
/* gpr <- memory */
switch (mode)
{
default:
break;
case QImode:
return "cldsb%I3%U3 %M3, %2, %1, %e0";
case HImode:
return "cldsh%I3%U3 %M3, %2, %1, %e0";
case SImode:
case SFmode:
return "cld%I3%U3 %M3, %2, %1, %e0";
}
}
else if (ZERO_P (src))
return "cmov %., %2, %1, %e0";
}
else if (FPR_P (dest_regno))
{
if (GET_CODE (src) == REG)
{
/* fpr <- some sort of register */
int src_regno = REGNO (src);
if (GPR_P (src_regno))
return "cmovgf %3, %2, %1, %e0";
else if (FPR_P (src_regno))
{
if (TARGET_HARD_FLOAT)
return "cfmovs %3,%2,%1,%e0";
else
return "cmor %3, %3, %2, %1, %e0";
}
}
else if (GET_CODE (src) == MEM)
{
/* fpr <- memory */
if (mode == SImode || mode == SFmode)
return "cldf%I3%U3 %M3, %2, %1, %e0";
}
else if (ZERO_P (src))
return "cmovgf %., %2, %1, %e0";
}
}
else if (GET_CODE (dest) == MEM)
{
if (GET_CODE (src) == REG)
{
int src_regno = REGNO (src);
machine_mode mode = GET_MODE (dest);
if (GPR_P (src_regno))
{
switch (mode)
{
default:
break;
case QImode:
return "cstb%I2%U2 %3, %M2, %1, %e0";
case HImode:
return "csth%I2%U2 %3, %M2, %1, %e0";
case SImode:
case SFmode:
return "cst%I2%U2 %3, %M2, %1, %e0";
}
}
else if (FPR_P (src_regno) && (mode == SImode || mode == SFmode))
return "cstf%I2%U2 %3, %M2, %1, %e0";
}
else if (ZERO_P (src))
{
machine_mode mode = GET_MODE (dest);
switch (mode)
{
default:
break;
case QImode:
return "cstb%I2%U2 %., %M2, %1, %e0";
case HImode:
return "csth%I2%U2 %., %M2, %1, %e0";
case SImode:
case SFmode:
return "cst%I2%U2 %., %M2, %1, %e0";
}
}
}
fatal_insn ("bad output_condmove_single operand", insn);
return "";
}
/* Emit the appropriate code to do a comparison, returning the register the
comparison was done it. */
static rtx
frv_emit_comparison (enum rtx_code test, rtx op0, rtx op1)
{
machine_mode cc_mode;
rtx cc_reg;
/* Floating point doesn't have comparison against a constant. */
if (GET_MODE (op0) == CC_FPmode && GET_CODE (op1) != REG)
op1 = force_reg (GET_MODE (op0), op1);
/* Possibly disable using anything but a fixed register in order to work
around cse moving comparisons past function calls. */
cc_mode = SELECT_CC_MODE (test, op0, op1);
cc_reg = ((TARGET_ALLOC_CC)
? gen_reg_rtx (cc_mode)
: gen_rtx_REG (cc_mode,
(cc_mode == CC_FPmode) ? FCC_FIRST : ICC_FIRST));
emit_insn (gen_rtx_SET (VOIDmode, cc_reg,
gen_rtx_COMPARE (cc_mode, op0, op1)));
return cc_reg;
}
/* Emit code for a conditional branch.
XXX: I originally wanted to add a clobber of a CCR register to use in
conditional execution, but that confuses the rest of the compiler. */
int
frv_emit_cond_branch (rtx operands[])
{
rtx test_rtx;
rtx label_ref;
rtx if_else;
enum rtx_code test = GET_CODE (operands[0]);
rtx cc_reg = frv_emit_comparison (test, operands[1], operands[2]);
machine_mode cc_mode = GET_MODE (cc_reg);
/* Branches generate:
(set (pc)
(if_then_else (<test>, <cc_reg>, (const_int 0))
(label_ref <branch_label>)
(pc))) */
label_ref = gen_rtx_LABEL_REF (VOIDmode, operands[3]);
test_rtx = gen_rtx_fmt_ee (test, cc_mode, cc_reg, const0_rtx);
if_else = gen_rtx_IF_THEN_ELSE (cc_mode, test_rtx, label_ref, pc_rtx);
emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx, if_else));
return TRUE;
}
/* Emit code to set a gpr to 1/0 based on a comparison. */
int
frv_emit_scc (rtx operands[])
{
rtx set;
rtx test_rtx;
rtx clobber;
rtx cr_reg;
enum rtx_code test = GET_CODE (operands[1]);
rtx cc_reg = frv_emit_comparison (test, operands[2], operands[3]);
/* SCC instructions generate:
(parallel [(set <target> (<test>, <cc_reg>, (const_int 0))
(clobber (<ccr_reg>))]) */
test_rtx = gen_rtx_fmt_ee (test, SImode, cc_reg, const0_rtx);
set = gen_rtx_SET (VOIDmode, operands[0], test_rtx);
cr_reg = ((TARGET_ALLOC_CC)
? gen_reg_rtx (CC_CCRmode)
: gen_rtx_REG (CC_CCRmode,
((GET_MODE (cc_reg) == CC_FPmode)
? FCR_FIRST
: ICR_FIRST)));
clobber = gen_rtx_CLOBBER (VOIDmode, cr_reg);
emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, set, clobber)));
return TRUE;
}
/* Split a SCC instruction into component parts, returning a SEQUENCE to hold
the separate insns. */
rtx
frv_split_scc (rtx dest, rtx test, rtx cc_reg, rtx cr_reg, HOST_WIDE_INT value)
{
rtx ret;
start_sequence ();
/* Set the appropriate CCR bit. */
emit_insn (gen_rtx_SET (VOIDmode,
cr_reg,
gen_rtx_fmt_ee (GET_CODE (test),
GET_MODE (cr_reg),
cc_reg,
const0_rtx)));
/* Move the value into the destination. */
emit_move_insn (dest, GEN_INT (value));
/* Move 0 into the destination if the test failed */
emit_insn (gen_rtx_COND_EXEC (VOIDmode,
gen_rtx_EQ (GET_MODE (cr_reg),
cr_reg,
const0_rtx),
gen_rtx_SET (VOIDmode, dest, const0_rtx)));
/* Finish up, return sequence. */
ret = get_insns ();
end_sequence ();
return ret;
}
/* Emit the code for a conditional move, return TRUE if we could do the
move. */
int
frv_emit_cond_move (rtx dest, rtx test_rtx, rtx src1, rtx src2)
{
rtx set;
rtx clobber_cc;
rtx test2;
rtx cr_reg;
rtx if_rtx;
enum rtx_code test = GET_CODE (test_rtx);
rtx cc_reg = frv_emit_comparison (test,
XEXP (test_rtx, 0), XEXP (test_rtx, 1));
machine_mode cc_mode = GET_MODE (cc_reg);
/* Conditional move instructions generate:
(parallel [(set <target>
(if_then_else (<test> <cc_reg> (const_int 0))
<src1>
<src2>))
(clobber (<ccr_reg>))]) */
/* Handle various cases of conditional move involving two constants. */
if (GET_CODE (src1) == CONST_INT && GET_CODE (src2) == CONST_INT)
{
HOST_WIDE_INT value1 = INTVAL (src1);
HOST_WIDE_INT value2 = INTVAL (src2);
/* Having 0 as one of the constants can be done by loading the other
constant, and optionally moving in gr0. */
if (value1 == 0 || value2 == 0)
;
/* If the first value is within an addi range and also the difference
between the two fits in an addi's range, load up the difference, then
conditionally move in 0, and then unconditionally add the first
value. */
else if (IN_RANGE (value1, -2048, 2047)
&& IN_RANGE (value2 - value1, -2048, 2047))
;
/* If neither condition holds, just force the constant into a
register. */
else
{
src1 = force_reg (GET_MODE (dest), src1);
src2 = force_reg (GET_MODE (dest), src2);
}
}
/* If one value is a register, insure the other value is either 0 or a
register. */
else
{
if (GET_CODE (src1) == CONST_INT && INTVAL (src1) != 0)
src1 = force_reg (GET_MODE (dest), src1);
if (GET_CODE (src2) == CONST_INT && INTVAL (src2) != 0)
src2 = force_reg (GET_MODE (dest), src2);
}
test2 = gen_rtx_fmt_ee (test, cc_mode, cc_reg, const0_rtx);
if_rtx = gen_rtx_IF_THEN_ELSE (GET_MODE (dest), test2, src1, src2);
set = gen_rtx_SET (VOIDmode, dest, if_rtx);
cr_reg = ((TARGET_ALLOC_CC)
? gen_reg_rtx (CC_CCRmode)
: gen_rtx_REG (CC_CCRmode,
(cc_mode == CC_FPmode) ? FCR_FIRST : ICR_FIRST));
clobber_cc = gen_rtx_CLOBBER (VOIDmode, cr_reg);
emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, set, clobber_cc)));
return TRUE;
}
/* Split a conditional move into constituent parts, returning a SEQUENCE
containing all of the insns. */
rtx
frv_split_cond_move (rtx operands[])
{
rtx dest = operands[0];
rtx test = operands[1];
rtx cc_reg = operands[2];
rtx src1 = operands[3];
rtx src2 = operands[4];
rtx cr_reg = operands[5];
rtx ret;
machine_mode cr_mode = GET_MODE (cr_reg);
start_sequence ();
/* Set the appropriate CCR bit. */
emit_insn (gen_rtx_SET (VOIDmode,
cr_reg,
gen_rtx_fmt_ee (GET_CODE (test),
GET_MODE (cr_reg),
cc_reg,
const0_rtx)));
/* Handle various cases of conditional move involving two constants. */
if (GET_CODE (src1) == CONST_INT && GET_CODE (src2) == CONST_INT)
{
HOST_WIDE_INT value1 = INTVAL (src1);
HOST_WIDE_INT value2 = INTVAL (src2);
/* Having 0 as one of the constants can be done by loading the other
constant, and optionally moving in gr0. */
if (value1 == 0)
{
emit_move_insn (dest, src2);
emit_insn (gen_rtx_COND_EXEC (VOIDmode,
gen_rtx_NE (cr_mode, cr_reg,
const0_rtx),
gen_rtx_SET (VOIDmode, dest, src1)));
}
else if (value2 == 0)
{
emit_move_insn (dest, src1);
emit_insn (gen_rtx_COND_EXEC (VOIDmode,
gen_rtx_EQ (cr_mode, cr_reg,
const0_rtx),
gen_rtx_SET (VOIDmode, dest, src2)));
}
/* If the first value is within an addi range and also the difference
between the two fits in an addi's range, load up the difference, then
conditionally move in 0, and then unconditionally add the first
value. */
else if (IN_RANGE (value1, -2048, 2047)
&& IN_RANGE (value2 - value1, -2048, 2047))
{
rtx dest_si = ((GET_MODE (dest) == SImode)
? dest
: gen_rtx_SUBREG (SImode, dest, 0));
emit_move_insn (dest_si, GEN_INT (value2 - value1));
emit_insn (gen_rtx_COND_EXEC (VOIDmode,
gen_rtx_NE (cr_mode, cr_reg,
const0_rtx),
gen_rtx_SET (VOIDmode, dest_si,
const0_rtx)));
emit_insn (gen_addsi3 (dest_si, dest_si, src1));
}
else
gcc_unreachable ();
}
else
{
/* Emit the conditional move for the test being true if needed. */
if (! rtx_equal_p (dest, src1))
emit_insn (gen_rtx_COND_EXEC (VOIDmode,
gen_rtx_NE (cr_mode, cr_reg, const0_rtx),
gen_rtx_SET (VOIDmode, dest, src1)));
/* Emit the conditional move for the test being false if needed. */
if (! rtx_equal_p (dest, src2))
emit_insn (gen_rtx_COND_EXEC (VOIDmode,
gen_rtx_EQ (cr_mode, cr_reg, const0_rtx),
gen_rtx_SET (VOIDmode, dest, src2)));
}
/* Finish up, return sequence. */
ret = get_insns ();
end_sequence ();
return ret;
}
/* Split (set DEST SOURCE), where DEST is a double register and SOURCE is a
memory location that is not known to be dword-aligned. */
void
frv_split_double_load (rtx dest, rtx source)
{
int regno = REGNO (dest);
rtx dest1 = gen_highpart (SImode, dest);
rtx dest2 = gen_lowpart (SImode, dest);
rtx address = XEXP (source, 0);
/* If the address is pre-modified, load the lower-numbered register
first, then load the other register using an integer offset from
the modified base register. This order should always be safe,
since the pre-modification cannot affect the same registers as the
load does.
The situation for other loads is more complicated. Loading one
of the registers could affect the value of ADDRESS, so we must
be careful which order we do them in. */
if (GET_CODE (address) == PRE_MODIFY
|| ! refers_to_regno_p (regno, regno + 1, address, NULL))
{
/* It is safe to load the lower-numbered register first. */
emit_move_insn (dest1, change_address (source, SImode, NULL));
emit_move_insn (dest2, frv_index_memory (source, SImode, 1));
}
else
{
/* ADDRESS is not pre-modified and the address depends on the
lower-numbered register. Load the higher-numbered register
first. */
emit_move_insn (dest2, frv_index_memory (source, SImode, 1));
emit_move_insn (dest1, change_address (source, SImode, NULL));
}
}
/* Split (set DEST SOURCE), where DEST refers to a dword memory location
and SOURCE is either a double register or the constant zero. */
void
frv_split_double_store (rtx dest, rtx source)
{
rtx dest1 = change_address (dest, SImode, NULL);
rtx dest2 = frv_index_memory (dest, SImode, 1);
if (ZERO_P (source))
{
emit_move_insn (dest1, CONST0_RTX (SImode));
emit_move_insn (dest2, CONST0_RTX (SImode));
}
else
{
emit_move_insn (dest1, gen_highpart (SImode, source));
emit_move_insn (dest2, gen_lowpart (SImode, source));
}
}
/* Split a min/max operation returning a SEQUENCE containing all of the
insns. */
rtx
frv_split_minmax (rtx operands[])
{
rtx dest = operands[0];
rtx minmax = operands[1];
rtx src1 = operands[2];
rtx src2 = operands[3];
rtx cc_reg = operands[4];
rtx cr_reg = operands[5];
rtx ret;
enum rtx_code test_code;
machine_mode cr_mode = GET_MODE (cr_reg);
start_sequence ();
/* Figure out which test to use. */
switch (GET_CODE (minmax))
{
default:
gcc_unreachable ();
case SMIN: test_code = LT; break;
case SMAX: test_code = GT; break;
case UMIN: test_code = LTU; break;
case UMAX: test_code = GTU; break;
}
/* Issue the compare instruction. */
emit_insn (gen_rtx_SET (VOIDmode,
cc_reg,
gen_rtx_COMPARE (GET_MODE (cc_reg),
src1, src2)));
/* Set the appropriate CCR bit. */
emit_insn (gen_rtx_SET (VOIDmode,
cr_reg,
gen_rtx_fmt_ee (test_code,
GET_MODE (cr_reg),
cc_reg,
const0_rtx)));
/* If are taking the min/max of a nonzero constant, load that first, and
then do a conditional move of the other value. */
if (GET_CODE (src2) == CONST_INT && INTVAL (src2) != 0)
{
gcc_assert (!rtx_equal_p (dest, src1));
emit_move_insn (dest, src2);
emit_insn (gen_rtx_COND_EXEC (VOIDmode,
gen_rtx_NE (cr_mode, cr_reg, const0_rtx),
gen_rtx_SET (VOIDmode, dest, src1)));
}
/* Otherwise, do each half of the move. */
else
{
/* Emit the conditional move for the test being true if needed. */
if (! rtx_equal_p (dest, src1))
emit_insn (gen_rtx_COND_EXEC (VOIDmode,
gen_rtx_NE (cr_mode, cr_reg, const0_rtx),
gen_rtx_SET (VOIDmode, dest, src1)));
/* Emit the conditional move for the test being false if needed. */
if (! rtx_equal_p (dest, src2))
emit_insn (gen_rtx_COND_EXEC (VOIDmode,
gen_rtx_EQ (cr_mode, cr_reg, const0_rtx),
gen_rtx_SET (VOIDmode, dest, src2)));
}
/* Finish up, return sequence. */
ret = get_insns ();
end_sequence ();
return ret;
}
/* Split an integer abs operation returning a SEQUENCE containing all of the
insns. */
rtx
frv_split_abs (rtx operands[])
{
rtx dest = operands[0];
rtx src = operands[1];
rtx cc_reg = operands[2];
rtx cr_reg = operands[3];
rtx ret;
start_sequence ();
/* Issue the compare < 0 instruction. */
emit_insn (gen_rtx_SET (VOIDmode,
cc_reg,
gen_rtx_COMPARE (CCmode, src, const0_rtx)));
/* Set the appropriate CCR bit. */
emit_insn (gen_rtx_SET (VOIDmode,
cr_reg,
gen_rtx_fmt_ee (LT, CC_CCRmode, cc_reg, const0_rtx)));
/* Emit the conditional negate if the value is negative. */
emit_insn (gen_rtx_COND_EXEC (VOIDmode,
gen_rtx_NE (CC_CCRmode, cr_reg, const0_rtx),
gen_negsi2 (dest, src)));
/* Emit the conditional move for the test being false if needed. */
if (! rtx_equal_p (dest, src))
emit_insn (gen_rtx_COND_EXEC (VOIDmode,
gen_rtx_EQ (CC_CCRmode, cr_reg, const0_rtx),
gen_rtx_SET (VOIDmode, dest, src)));
/* Finish up, return sequence. */
ret = get_insns ();
end_sequence ();
return ret;
}
/* Initialize machine-specific if-conversion data.
On the FR-V, we don't have any extra fields per se, but it is useful hook to
initialize the static storage. */
void
frv_ifcvt_machdep_init (void *ce_info ATTRIBUTE_UNUSED)
{
frv_ifcvt.added_insns_list = NULL_RTX;
frv_ifcvt.cur_scratch_regs = 0;
frv_ifcvt.num_nested_cond_exec = 0;
frv_ifcvt.cr_reg = NULL_RTX;
frv_ifcvt.nested_cc_reg = NULL_RTX;
frv_ifcvt.extra_int_cr = NULL_RTX;
frv_ifcvt.extra_fp_cr = NULL_RTX;
frv_ifcvt.last_nested_if_cr = NULL_RTX;
}
/* Internal function to add a potential insn to the list of insns to be inserted
if the conditional execution conversion is successful. */
static void
frv_ifcvt_add_insn (rtx pattern, rtx insn, int before_p)
{
rtx link = alloc_EXPR_LIST (VOIDmode, pattern, insn);
link->jump = before_p; /* Mark to add this before or after insn. */
frv_ifcvt.added_insns_list = alloc_EXPR_LIST (VOIDmode, link,
frv_ifcvt.added_insns_list);
if (TARGET_DEBUG_COND_EXEC)
{
fprintf (stderr,
"\n:::::::::: frv_ifcvt_add_insn: add the following %s insn %d:\n",
(before_p) ? "before" : "after",
(int)INSN_UID (insn));
debug_rtx (pattern);
}
}
/* A C expression to modify the code described by the conditional if
information CE_INFO, possibly updating the tests in TRUE_EXPR, and
FALSE_EXPR for converting if-then and if-then-else code to conditional
instructions. Set either TRUE_EXPR or FALSE_EXPR to a null pointer if the
tests cannot be converted. */
void
frv_ifcvt_modify_tests (ce_if_block *ce_info, rtx *p_true, rtx *p_false)
{
basic_block test_bb = ce_info->test_bb; /* test basic block */
basic_block then_bb = ce_info->then_bb; /* THEN */
basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
basic_block join_bb = ce_info->join_bb; /* join block or NULL */
rtx true_expr = *p_true;
rtx cr;
rtx cc;
rtx nested_cc;
machine_mode mode = GET_MODE (true_expr);
int j;
basic_block *bb;
int num_bb;
frv_tmp_reg_t *tmp_reg = &frv_ifcvt.tmp_reg;
rtx check_insn;
rtx sub_cond_exec_reg;
enum rtx_code code;
enum rtx_code code_true;
enum rtx_code code_false;
enum reg_class cc_class;
enum reg_class cr_class;
int cc_first;
int cc_last;
reg_set_iterator rsi;
/* Make sure we are only dealing with hard registers. Also honor the
-mno-cond-exec switch, and -mno-nested-cond-exec switches if
applicable. */
if (!reload_completed || !TARGET_COND_EXEC
|| (!TARGET_NESTED_CE && ce_info->pass > 1))
goto fail;
/* Figure out which registers we can allocate for our own purposes. Only
consider registers that are not preserved across function calls and are
not fixed. However, allow the ICC/ICR temporary registers to be allocated
if we did not need to use them in reloading other registers. */
memset (&tmp_reg->regs, 0, sizeof (tmp_reg->regs));
COPY_HARD_REG_SET (tmp_reg->regs, call_used_reg_set);
AND_COMPL_HARD_REG_SET (tmp_reg->regs, fixed_reg_set);
SET_HARD_REG_BIT (tmp_reg->regs, ICC_TEMP);
SET_HARD_REG_BIT (tmp_reg->regs, ICR_TEMP);
/* If this is a nested IF, we need to discover whether the CC registers that
are set/used inside of the block are used anywhere else. If not, we can
change them to be the CC register that is paired with the CR register that
controls the outermost IF block. */
if (ce_info->pass > 1)
{
CLEAR_HARD_REG_SET (frv_ifcvt.nested_cc_ok_rewrite);
for (j = CC_FIRST; j <= CC_LAST; j++)
if (TEST_HARD_REG_BIT (tmp_reg->regs, j))
{
if (REGNO_REG_SET_P (df_get_live_in (then_bb), j))
continue;
if (else_bb
&& REGNO_REG_SET_P (df_get_live_in (else_bb), j))
continue;
if (join_bb
&& REGNO_REG_SET_P (df_get_live_in (join_bb), j))
continue;
SET_HARD_REG_BIT (frv_ifcvt.nested_cc_ok_rewrite, j);
}
}
for (j = 0; j < frv_ifcvt.cur_scratch_regs; j++)
frv_ifcvt.scratch_regs[j] = NULL_RTX;
frv_ifcvt.added_insns_list = NULL_RTX;
frv_ifcvt.cur_scratch_regs = 0;
bb = (basic_block *) alloca ((2 + ce_info->num_multiple_test_blocks)
* sizeof (basic_block));
if (join_bb)
{
unsigned int regno;
/* Remove anything live at the beginning of the join block from being
available for allocation. */
EXECUTE_IF_SET_IN_REG_SET (df_get_live_in (join_bb), 0, regno, rsi)
{
if (regno < FIRST_PSEUDO_REGISTER)
CLEAR_HARD_REG_BIT (tmp_reg->regs, regno);
}
}
/* Add in all of the blocks in multiple &&/|| blocks to be scanned. */
num_bb = 0;
if (ce_info->num_multiple_test_blocks)
{
basic_block multiple_test_bb = ce_info->last_test_bb;
while (multiple_test_bb != test_bb)
{
bb[num_bb++] = multiple_test_bb;
multiple_test_bb = EDGE_PRED (multiple_test_bb, 0)->src;
}
}
/* Add in the THEN and ELSE blocks to be scanned. */
bb[num_bb++] = then_bb;
if (else_bb)
bb[num_bb++] = else_bb;
sub_cond_exec_reg = NULL_RTX;
frv_ifcvt.num_nested_cond_exec = 0;
/* Scan all of the blocks for registers that must not be allocated. */
for (j = 0; j < num_bb; j++)
{
rtx_insn *last_insn = BB_END (bb[j]);
rtx_insn *insn = BB_HEAD (bb[j]);
unsigned int regno;
if (dump_file)
fprintf (dump_file, "Scanning %s block %d, start %d, end %d\n",
(bb[j] == else_bb) ? "else" : ((bb[j] == then_bb) ? "then" : "test"),
(int) bb[j]->index,
(int) INSN_UID (BB_HEAD (bb[j])),
(int) INSN_UID (BB_END (bb[j])));
/* Anything live at the beginning of the block is obviously unavailable
for allocation. */
EXECUTE_IF_SET_IN_REG_SET (df_get_live_in (bb[j]), 0, regno, rsi)
{
if (regno < FIRST_PSEUDO_REGISTER)
CLEAR_HARD_REG_BIT (tmp_reg->regs, regno);
}
/* Loop through the insns in the block. */
for (;;)
{
/* Mark any new registers that are created as being unavailable for
allocation. Also see if the CC register used in nested IFs can be
reallocated. */
if (INSN_P (insn))
{
rtx pattern;
rtx set;
int skip_nested_if = FALSE;
HARD_REG_SET mentioned_regs;
CLEAR_HARD_REG_SET (mentioned_regs);
find_all_hard_regs (PATTERN (insn), &mentioned_regs);
AND_COMPL_HARD_REG_SET (tmp_reg->regs, mentioned_regs);
pattern = PATTERN (insn);
if (GET_CODE (pattern) == COND_EXEC)
{
rtx reg = XEXP (COND_EXEC_TEST (pattern), 0);
if (reg != sub_cond_exec_reg)
{
sub_cond_exec_reg = reg;
frv_ifcvt.num_nested_cond_exec++;
}
}
set = single_set_pattern (pattern);
if (set)
{
rtx dest = SET_DEST (set);
rtx src = SET_SRC (set);
if (GET_CODE (dest) == REG)
{
int regno = REGNO (dest);
enum rtx_code src_code = GET_CODE (src);
if (CC_P (regno) && src_code == COMPARE)
skip_nested_if = TRUE;
else if (CR_P (regno)
&& (src_code == IF_THEN_ELSE
|| COMPARISON_P (src)))
skip_nested_if = TRUE;
}
}
if (! skip_nested_if)
AND_COMPL_HARD_REG_SET (frv_ifcvt.nested_cc_ok_rewrite,
mentioned_regs);
}
if (insn == last_insn)
break;
insn = NEXT_INSN (insn);
}
}
/* If this is a nested if, rewrite the CC registers that are available to
include the ones that can be rewritten, to increase the chance of being
able to allocate a paired CC/CR register combination. */
if (ce_info->pass > 1)
{
for (j = CC_FIRST; j <= CC_LAST; j++)
if (TEST_HARD_REG_BIT (frv_ifcvt.nested_cc_ok_rewrite, j))
SET_HARD_REG_BIT (tmp_reg->regs, j);
else
CLEAR_HARD_REG_BIT (tmp_reg->regs, j);
}
if (dump_file)
{
int num_gprs = 0;
fprintf (dump_file, "Available GPRs: ");
for (j = GPR_FIRST; j <= GPR_LAST; j++)
if (TEST_HARD_REG_BIT (tmp_reg->regs, j))
{
fprintf (dump_file, " %d [%s]", j, reg_names[j]);
if (++num_gprs > GPR_TEMP_NUM+2)
break;
}
fprintf (dump_file, "%s\nAvailable CRs: ",
(num_gprs > GPR_TEMP_NUM+2) ? " ..." : "");
for (j = CR_FIRST; j <= CR_LAST; j++)
if (TEST_HARD_REG_BIT (tmp_reg->regs, j))
fprintf (dump_file, " %d [%s]", j, reg_names[j]);
fputs ("\n", dump_file);
if (ce_info->pass > 1)
{
fprintf (dump_file, "Modifiable CCs: ");
for (j = CC_FIRST; j <= CC_LAST; j++)
if (TEST_HARD_REG_BIT (tmp_reg->regs, j))
fprintf (dump_file, " %d [%s]", j, reg_names[j]);
fprintf (dump_file, "\n%d nested COND_EXEC statements\n",
frv_ifcvt.num_nested_cond_exec);
}
}
/* Allocate the appropriate temporary condition code register. Try to
allocate the ICR/FCR register that corresponds to the ICC/FCC register so
that conditional cmp's can be done. */
if (mode == CCmode || mode == CC_UNSmode || mode == CC_NZmode)
{
cr_class = ICR_REGS;
cc_class = ICC_REGS;
cc_first = ICC_FIRST;
cc_last = ICC_LAST;
}
else if (mode == CC_FPmode)
{
cr_class = FCR_REGS;
cc_class = FCC_REGS;
cc_first = FCC_FIRST;
cc_last = FCC_LAST;
}
else
{
cc_first = cc_last = 0;
cr_class = cc_class = NO_REGS;
}
cc = XEXP (true_expr, 0);
nested_cc = cr = NULL_RTX;
if (cc_class != NO_REGS)
{
/* For nested IFs and &&/||, see if we can find a CC and CR register pair
so we can execute a csubcc/caddcc/cfcmps instruction. */
int cc_regno;
for (cc_regno = cc_first; cc_regno <= cc_last; cc_regno++)
{
int cr_regno = cc_regno - CC_FIRST + CR_FIRST;
if (TEST_HARD_REG_BIT (frv_ifcvt.tmp_reg.regs, cc_regno)
&& TEST_HARD_REG_BIT (frv_ifcvt.tmp_reg.regs, cr_regno))
{
frv_ifcvt.tmp_reg.next_reg[ (int)cr_class ] = cr_regno;
cr = frv_alloc_temp_reg (tmp_reg, cr_class, CC_CCRmode, TRUE,
TRUE);
frv_ifcvt.tmp_reg.next_reg[ (int)cc_class ] = cc_regno;
nested_cc = frv_alloc_temp_reg (tmp_reg, cc_class, CCmode,
TRUE, TRUE);
break;
}
}
}
if (! cr)
{
if (dump_file)
fprintf (dump_file, "Could not allocate a CR temporary register\n");
goto fail;
}
if (dump_file)
fprintf (dump_file,
"Will use %s for conditional execution, %s for nested comparisons\n",
reg_names[ REGNO (cr)],
(nested_cc) ? reg_names[ REGNO (nested_cc) ] : "<none>");
/* Set the CCR bit. Note for integer tests, we reverse the condition so that
in an IF-THEN-ELSE sequence, we are testing the TRUE case against the CCR
bit being true. We don't do this for floating point, because of NaNs. */
code = GET_CODE (true_expr);
if (GET_MODE (cc) != CC_FPmode)
{
code = reverse_condition (code);
code_true = EQ;
code_false = NE;
}
else
{
code_true = NE;
code_false = EQ;
}
check_insn = gen_rtx_SET (VOIDmode, cr,
gen_rtx_fmt_ee (code, CC_CCRmode, cc, const0_rtx));
/* Record the check insn to be inserted later. */
frv_ifcvt_add_insn (check_insn, BB_END (test_bb), TRUE);
/* Update the tests. */
frv_ifcvt.cr_reg = cr;
frv_ifcvt.nested_cc_reg = nested_cc;
*p_true = gen_rtx_fmt_ee (code_true, CC_CCRmode, cr, const0_rtx);
*p_false = gen_rtx_fmt_ee (code_false, CC_CCRmode, cr, const0_rtx);
return;
/* Fail, don't do this conditional execution. */
fail:
*p_true = NULL_RTX;
*p_false = NULL_RTX;
if (dump_file)
fprintf (dump_file, "Disabling this conditional execution.\n");
return;
}
/* A C expression to modify the code described by the conditional if
information CE_INFO, for the basic block BB, possibly updating the tests in
TRUE_EXPR, and FALSE_EXPR for converting the && and || parts of if-then or
if-then-else code to conditional instructions. Set either TRUE_EXPR or
FALSE_EXPR to a null pointer if the tests cannot be converted. */
/* p_true and p_false are given expressions of the form:
(and (eq:CC_CCR (reg:CC_CCR)
(const_int 0))
(eq:CC (reg:CC)
(const_int 0))) */
void
frv_ifcvt_modify_multiple_tests (ce_if_block *ce_info,
basic_block bb,
rtx *p_true,
rtx *p_false)
{
rtx old_true = XEXP (*p_true, 0);
rtx old_false = XEXP (*p_false, 0);
rtx true_expr = XEXP (*p_true, 1);
rtx false_expr = XEXP (*p_false, 1);
rtx test_expr;
rtx old_test;
rtx cr = XEXP (old_true, 0);
rtx check_insn;
rtx new_cr = NULL_RTX;
rtx *p_new_cr = (rtx *)0;
rtx if_else;
rtx compare;
rtx cc;
enum reg_class cr_class;
machine_mode mode = GET_MODE (true_expr);
rtx (*logical_func)(rtx, rtx, rtx);
if (TARGET_DEBUG_COND_EXEC)
{
fprintf (stderr,
"\n:::::::::: frv_ifcvt_modify_multiple_tests, before modification for %s\ntrue insn:\n",
ce_info->and_and_p ? "&&" : "||");
debug_rtx (*p_true);
fputs ("\nfalse insn:\n", stderr);
debug_rtx (*p_false);
}
if (!TARGET_MULTI_CE)
goto fail;
if (GET_CODE (cr) != REG)
goto fail;
if (mode == CCmode || mode == CC_UNSmode || mode == CC_NZmode)
{
cr_class = ICR_REGS;
p_new_cr = &frv_ifcvt.extra_int_cr;
}
else if (mode == CC_FPmode)
{
cr_class = FCR_REGS;
p_new_cr = &frv_ifcvt.extra_fp_cr;
}
else
goto fail;
/* Allocate a temp CR, reusing a previously allocated temp CR if we have 3 or
more &&/|| tests. */
new_cr = *p_new_cr;
if (! new_cr)
{
new_cr = *p_new_cr = frv_alloc_temp_reg (&frv_ifcvt.tmp_reg, cr_class,
CC_CCRmode, TRUE, TRUE);
if (! new_cr)
goto fail;
}
if (ce_info->and_and_p)
{
old_test = old_false;
test_expr = true_expr;
logical_func = (GET_CODE (old_true) == EQ) ? gen_andcr : gen_andncr;
*p_true = gen_rtx_NE (CC_CCRmode, cr, const0_rtx);
*p_false = gen_rtx_EQ (CC_CCRmode, cr, const0_rtx);
}
else
{
old_test = old_false;
test_expr = false_expr;
logical_func = (GET_CODE (old_false) == EQ) ? gen_orcr : gen_orncr;
*p_true = gen_rtx_EQ (CC_CCRmode, cr, const0_rtx);
*p_false = gen_rtx_NE (CC_CCRmode, cr, const0_rtx);
}
/* First add the andcr/andncr/orcr/orncr, which will be added after the
conditional check instruction, due to frv_ifcvt_add_insn being a LIFO
stack. */
frv_ifcvt_add_insn ((*logical_func) (cr, cr, new_cr), BB_END (bb), TRUE);
/* Now add the conditional check insn. */
cc = XEXP (test_expr, 0);
compare = gen_rtx_fmt_ee (GET_CODE (test_expr), CC_CCRmode, cc, const0_rtx);
if_else = gen_rtx_IF_THEN_ELSE (CC_CCRmode, old_test, compare, const0_rtx);
check_insn = gen_rtx_SET (VOIDmode, new_cr, if_else);
/* Add the new check insn to the list of check insns that need to be
inserted. */
frv_ifcvt_add_insn (check_insn, BB_END (bb), TRUE);
if (TARGET_DEBUG_COND_EXEC)
{
fputs ("\n:::::::::: frv_ifcvt_modify_multiple_tests, after modification\ntrue insn:\n",
stderr);
debug_rtx (*p_true);
fputs ("\nfalse insn:\n", stderr);
debug_rtx (*p_false);
}
return;
fail:
*p_true = *p_false = NULL_RTX;
/* If we allocated a CR register, release it. */
if (new_cr)
{
CLEAR_HARD_REG_BIT (frv_ifcvt.tmp_reg.regs, REGNO (new_cr));
*p_new_cr = NULL_RTX;
}
if (TARGET_DEBUG_COND_EXEC)
fputs ("\n:::::::::: frv_ifcvt_modify_multiple_tests, failed.\n", stderr);
return;
}
/* Return a register which will be loaded with a value if an IF block is
converted to conditional execution. This is used to rewrite instructions
that use constants to ones that just use registers. */
static rtx
frv_ifcvt_load_value (rtx value, rtx insn ATTRIBUTE_UNUSED)
{
int num_alloc = frv_ifcvt.cur_scratch_regs;
int i;
rtx reg;
/* We know gr0 == 0, so replace any errant uses. */
if (value == const0_rtx)
return gen_rtx_REG (SImode, GPR_FIRST);
/* First search all registers currently loaded to see if we have an
applicable constant. */
if (CONSTANT_P (value)
|| (GET_CODE (value) == REG && REGNO (value) == LR_REGNO))
{
for (i = 0; i < num_alloc; i++)
{
if (rtx_equal_p (SET_SRC (frv_ifcvt.scratch_regs[i]), value))
return SET_DEST (frv_ifcvt.scratch_regs[i]);
}
}
/* Have we exhausted the number of registers available? */
if (num_alloc >= GPR_TEMP_NUM)
{
if (dump_file)
fprintf (dump_file, "Too many temporary registers allocated\n");
return NULL_RTX;
}
/* Allocate the new register. */
reg = frv_alloc_temp_reg (&frv_ifcvt.tmp_reg, GPR_REGS, SImode, TRUE, TRUE);
if (! reg)
{
if (dump_file)
fputs ("Could not find a scratch register\n", dump_file);
return NULL_RTX;
}
frv_ifcvt.cur_scratch_regs++;
frv_ifcvt.scratch_regs[num_alloc] = gen_rtx_SET (VOIDmode, reg, value);
if (dump_file)
{
if (GET_CODE (value) == CONST_INT)
fprintf (dump_file, "Register %s will hold %ld\n",
reg_names[ REGNO (reg)], (long)INTVAL (value));
else if (GET_CODE (value) == REG && REGNO (value) == LR_REGNO)
fprintf (dump_file, "Register %s will hold LR\n",
reg_names[ REGNO (reg)]);
else
fprintf (dump_file, "Register %s will hold a saved value\n",
reg_names[ REGNO (reg)]);
}
return reg;
}
/* Update a MEM used in conditional code that might contain an offset to put
the offset into a scratch register, so that the conditional load/store
operations can be used. This function returns the original pointer if the
MEM is valid to use in conditional code, NULL if we can't load up the offset
into a temporary register, or the new MEM if we were successful. */
static rtx
frv_ifcvt_rewrite_mem (rtx mem, machine_mode mode, rtx insn)
{
rtx addr = XEXP (mem, 0);
if (!frv_legitimate_address_p_1 (mode, addr, reload_completed, TRUE, FALSE))
{
if (GET_CODE (addr) == PLUS)
{
rtx addr_op0 = XEXP (addr, 0);
rtx addr_op1 = XEXP (addr, 1);
if (GET_CODE (addr_op0) == REG && CONSTANT_P (addr_op1))
{
rtx reg = frv_ifcvt_load_value (addr_op1, insn);
if (!reg)
return NULL_RTX;
addr = gen_rtx_PLUS (Pmode, addr_op0, reg);
}
else
return NULL_RTX;
}
else if (CONSTANT_P (addr))
addr = frv_ifcvt_load_value (addr, insn);
else
return NULL_RTX;
if (addr == NULL_RTX)
return NULL_RTX;
else if (XEXP (mem, 0) != addr)
return change_address (mem, mode, addr);
}
return mem;
}
/* Given a PATTERN, return a SET expression if this PATTERN has only a single
SET, possibly conditionally executed. It may also have CLOBBERs, USEs. */
static rtx
single_set_pattern (rtx pattern)
{
rtx set;
int i;
if (GET_CODE (pattern) == COND_EXEC)
pattern = COND_EXEC_CODE (pattern);
if (GET_CODE (pattern) == SET)
return pattern;
else if (GET_CODE (pattern) == PARALLEL)
{
for (i = 0, set = 0; i < XVECLEN (pattern, 0); i++)
{
rtx sub = XVECEXP (pattern, 0, i);
switch (GET_CODE (sub))
{
case USE:
case CLOBBER:
break;
case SET:
if (set)
return 0;
else
set = sub;
break;
default:
return 0;
}
}
return set;
}
return 0;
}
/* A C expression to modify the code described by the conditional if
information CE_INFO with the new PATTERN in INSN. If PATTERN is a null
pointer after the IFCVT_MODIFY_INSN macro executes, it is assumed that that
insn cannot be converted to be executed conditionally. */
rtx
frv_ifcvt_modify_insn (ce_if_block *ce_info,
rtx pattern,
rtx insn)
{
rtx orig_ce_pattern = pattern;
rtx set;
rtx op0;
rtx op1;
rtx test;
gcc_assert (GET_CODE (pattern) == COND_EXEC);
test = COND_EXEC_TEST (pattern);
if (GET_CODE (test) == AND)
{
rtx cr = frv_ifcvt.cr_reg;
rtx test_reg;
op0 = XEXP (test, 0);
if (! rtx_equal_p (cr, XEXP (op0, 0)))
goto fail;
op1 = XEXP (test, 1);
test_reg = XEXP (op1, 0);
if (GET_CODE (test_reg) != REG)
goto fail;
/* Is this the first nested if block in this sequence? If so, generate
an andcr or andncr. */
if (! frv_ifcvt.last_nested_if_cr)
{
rtx and_op;
frv_ifcvt.last_nested_if_cr = test_reg;
if (GET_CODE (op0) == NE)
and_op = gen_andcr (test_reg, cr, test_reg);
else
and_op = gen_andncr (test_reg, cr, test_reg);
frv_ifcvt_add_insn (and_op, insn, TRUE);
}
/* If this isn't the first statement in the nested if sequence, see if we
are dealing with the same register. */
else if (! rtx_equal_p (test_reg, frv_ifcvt.last_nested_if_cr))
goto fail;
COND_EXEC_TEST (pattern) = test = op1;
}
/* If this isn't a nested if, reset state variables. */
else
{
frv_ifcvt.last_nested_if_cr = NULL_RTX;
}
set = single_set_pattern (pattern);
if (set)
{
rtx dest = SET_DEST (set);
rtx src = SET_SRC (set);
machine_mode mode = GET_MODE (dest);
/* Check for normal binary operators. */
if (mode == SImode && ARITHMETIC_P (src))
{
op0 = XEXP (src, 0);
op1 = XEXP (src, 1);
if (integer_register_operand (op0, SImode) && CONSTANT_P (op1))
{
op1 = frv_ifcvt_load_value (op1, insn);
if (op1)
COND_EXEC_CODE (pattern)
= gen_rtx_SET (VOIDmode, dest, gen_rtx_fmt_ee (GET_CODE (src),
GET_MODE (src),
op0, op1));
else
goto fail;
}
}
/* For multiply by a constant, we need to handle the sign extending
correctly. Add a USE of the value after the multiply to prevent flow
from cratering because only one register out of the two were used. */
else if (mode == DImode && GET_CODE (src) == MULT)
{
op0 = XEXP (src, 0);
op1 = XEXP (src, 1);
if (GET_CODE (op0) == SIGN_EXTEND && GET_CODE (op1) == CONST_INT)
{
op1 = frv_ifcvt_load_value (op1, insn);
if (op1)
{
op1 = gen_rtx_SIGN_EXTEND (DImode, op1);
COND_EXEC_CODE (pattern)
= gen_rtx_SET (VOIDmode, dest,
gen_rtx_MULT (DImode, op0, op1));
}
else
goto fail;
}
frv_ifcvt_add_insn (gen_use (dest), insn, FALSE);
}
/* If we are just loading a constant created for a nested conditional
execution statement, just load the constant without any conditional
execution, since we know that the constant will not interfere with any
other registers. */
else if (frv_ifcvt.scratch_insns_bitmap
&& bitmap_bit_p (frv_ifcvt.scratch_insns_bitmap,
INSN_UID (insn))
&& REG_P (SET_DEST (set))
/* We must not unconditionally set a scratch reg chosen
for a nested if-converted block if its incoming
value from the TEST block (or the result of the THEN
branch) could/should propagate to the JOIN block.
It suffices to test whether the register is live at
the JOIN point: if it's live there, we can infer
that we set it in the former JOIN block of the
nested if-converted block (otherwise it wouldn't
have been available as a scratch register), and it
is either propagated through or set in the other
conditional block. It's probably not worth trying
to catch the latter case, and it could actually
limit scheduling of the combined block quite
severely. */
&& ce_info->join_bb
&& ! (REGNO_REG_SET_P (df_get_live_in (ce_info->join_bb),
REGNO (SET_DEST (set))))
/* Similarly, we must not unconditionally set a reg
used as scratch in the THEN branch if the same reg
is live in the ELSE branch. */
&& (! ce_info->else_bb
|| BLOCK_FOR_INSN (insn) == ce_info->else_bb
|| ! (REGNO_REG_SET_P (df_get_live_in (ce_info->else_bb),
REGNO (SET_DEST (set))))))
pattern = set;
else if (mode == QImode || mode == HImode || mode == SImode
|| mode == SFmode)
{
int changed_p = FALSE;
/* Check for just loading up a constant */
if (CONSTANT_P (src) && integer_register_operand (dest, mode))
{
src = frv_ifcvt_load_value (src, insn);
if (!src)
goto fail;
changed_p = TRUE;
}
/* See if we need to fix up stores */
if (GET_CODE (dest) == MEM)
{
rtx new_mem = frv_ifcvt_rewrite_mem (dest, mode, insn);
if (!new_mem)
goto fail;
else if (new_mem != dest)
{
changed_p = TRUE;
dest = new_mem;
}
}
/* See if we need to fix up loads */
if (GET_CODE (src) == MEM)
{
rtx new_mem = frv_ifcvt_rewrite_mem (src, mode, insn);
if (!new_mem)
goto fail;
else if (new_mem != src)
{
changed_p = TRUE;
src = new_mem;
}
}
/* If either src or destination changed, redo SET. */
if (changed_p)
COND_EXEC_CODE (pattern) = gen_rtx_SET (VOIDmode, dest, src);
}
/* Rewrite a nested set cccr in terms of IF_THEN_ELSE. Also deal with
rewriting the CC register to be the same as the paired CC/CR register
for nested ifs. */
else if (mode == CC_CCRmode && COMPARISON_P (src))
{
int regno = REGNO (XEXP (src, 0));
rtx if_else;
if (ce_info->pass > 1
&& regno != (int)REGNO (frv_ifcvt.nested_cc_reg)
&& TEST_HARD_REG_BIT (frv_ifcvt.nested_cc_ok_rewrite, regno))
{
src = gen_rtx_fmt_ee (GET_CODE (src),
CC_CCRmode,
frv_ifcvt.nested_cc_reg,
XEXP (src, 1));
}
if_else = gen_rtx_IF_THEN_ELSE (CC_CCRmode, test, src, const0_rtx);
pattern = gen_rtx_SET (VOIDmode, dest, if_else);
}
/* Remap a nested compare instruction to use the paired CC/CR reg. */
else if (ce_info->pass > 1
&& GET_CODE (dest) == REG
&& CC_P (REGNO (dest))
&& REGNO (dest) != REGNO (frv_ifcvt.nested_cc_reg)
&& TEST_HARD_REG_BIT (frv_ifcvt.nested_cc_ok_rewrite,
REGNO (dest))
&& GET_CODE (src) == COMPARE)
{
PUT_MODE (frv_ifcvt.nested_cc_reg, GET_MODE (dest));
COND_EXEC_CODE (pattern)
= gen_rtx_SET (VOIDmode, frv_ifcvt.nested_cc_reg, copy_rtx (src));
}
}
if (TARGET_DEBUG_COND_EXEC)
{
rtx orig_pattern = PATTERN (insn);
PATTERN (insn) = pattern;
fprintf (stderr,
"\n:::::::::: frv_ifcvt_modify_insn: pass = %d, insn after modification:\n",
ce_info->pass);
debug_rtx (insn);
PATTERN (insn) = orig_pattern;
}
return pattern;
fail:
if (TARGET_DEBUG_COND_EXEC)
{
rtx orig_pattern = PATTERN (insn);
PATTERN (insn) = orig_ce_pattern;
fprintf (stderr,
"\n:::::::::: frv_ifcvt_modify_insn: pass = %d, insn could not be modified:\n",
ce_info->pass);
debug_rtx (insn);
PATTERN (insn) = orig_pattern;
}
return NULL_RTX;
}
/* A C expression to perform any final machine dependent modifications in
converting code to conditional execution in the code described by the
conditional if information CE_INFO. */
void
frv_ifcvt_modify_final (ce_if_block *ce_info ATTRIBUTE_UNUSED)
{
rtx existing_insn;
rtx check_insn;
rtx p = frv_ifcvt.added_insns_list;
int i;
/* Loop inserting the check insns. The last check insn is the first test,
and is the appropriate place to insert constants. */
gcc_assert (p);
do
{
rtx check_and_insert_insns = XEXP (p, 0);
rtx old_p = p;
check_insn = XEXP (check_and_insert_insns, 0);
existing_insn = XEXP (check_and_insert_insns, 1);
p = XEXP (p, 1);
/* The jump bit is used to say that the new insn is to be inserted BEFORE
the existing insn, otherwise it is to be inserted AFTER. */
if (check_and_insert_insns->jump)
{
emit_insn_before (check_insn, existing_insn);
check_and_insert_insns->jump = 0;
}
else
emit_insn_after (check_insn, existing_insn);
free_EXPR_LIST_node (check_and_insert_insns);
free_EXPR_LIST_node (old_p);
}
while (p != NULL_RTX);
/* Load up any constants needed into temp gprs */
for (i = 0; i < frv_ifcvt.cur_scratch_regs; i++)
{
rtx insn = emit_insn_before (frv_ifcvt.scratch_regs[i], existing_insn);
if (! frv_ifcvt.scratch_insns_bitmap)
frv_ifcvt.scratch_insns_bitmap = BITMAP_ALLOC (NULL);
bitmap_set_bit (frv_ifcvt.scratch_insns_bitmap, INSN_UID (insn));
frv_ifcvt.scratch_regs[i] = NULL_RTX;
}
frv_ifcvt.added_insns_list = NULL_RTX;
frv_ifcvt.cur_scratch_regs = 0;
}
/* A C expression to cancel any machine dependent modifications in converting
code to conditional execution in the code described by the conditional if
information CE_INFO. */
void
frv_ifcvt_modify_cancel (ce_if_block *ce_info ATTRIBUTE_UNUSED)
{
int i;
rtx p = frv_ifcvt.added_insns_list;
/* Loop freeing up the EXPR_LIST's allocated. */
while (p != NULL_RTX)
{
rtx check_and_jump = XEXP (p, 0);
rtx old_p = p;
p = XEXP (p, 1);
free_EXPR_LIST_node (check_and_jump);
free_EXPR_LIST_node (old_p);
}
/* Release any temporary gprs allocated. */
for (i = 0; i < frv_ifcvt.cur_scratch_regs; i++)
frv_ifcvt.scratch_regs[i] = NULL_RTX;
frv_ifcvt.added_insns_list = NULL_RTX;
frv_ifcvt.cur_scratch_regs = 0;
return;
}
/* A C expression for the size in bytes of the trampoline, as an integer.
The template is:
setlo #0, <jmp_reg>
setlo #0, <static_chain>
sethi #0, <jmp_reg>
sethi #0, <static_chain>
jmpl @(gr0,<jmp_reg>) */
int
frv_trampoline_size (void)
{
if (TARGET_FDPIC)
/* Allocate room for the function descriptor and the lddi
instruction. */
return 8 + 6 * 4;
return 5 /* instructions */ * 4 /* instruction size. */;
}
/* A C statement to initialize the variable parts of a trampoline. ADDR is an
RTX for the address of the trampoline; FNADDR is an RTX for the address of
the nested function; STATIC_CHAIN is an RTX for the static chain value that
should be passed to the function when it is called.
The template is:
setlo #0, <jmp_reg>
setlo #0, <static_chain>
sethi #0, <jmp_reg>
sethi #0, <static_chain>
jmpl @(gr0,<jmp_reg>) */
static void
frv_trampoline_init (rtx m_tramp, tree fndecl, rtx static_chain)
{
rtx addr = XEXP (m_tramp, 0);
rtx fnaddr = XEXP (DECL_RTL (fndecl), 0);
rtx sc_reg = force_reg (Pmode, static_chain);
emit_library_call (gen_rtx_SYMBOL_REF (SImode, "__trampoline_setup"),
LCT_NORMAL, VOIDmode, 4,
addr, Pmode,
GEN_INT (frv_trampoline_size ()), SImode,
fnaddr, Pmode,
sc_reg, Pmode);
}
/* Many machines have some registers that cannot be copied directly to or from
memory or even from other types of registers. An example is the `MQ'
register, which on most machines, can only be copied to or from general
registers, but not memory. Some machines allow copying all registers to and
from memory, but require a scratch register for stores to some memory
locations (e.g., those with symbolic address on the RT, and those with
certain symbolic address on the SPARC when compiling PIC). In some cases,
both an intermediate and a scratch register are required.
You should define these macros to indicate to the reload phase that it may
need to allocate at least one register for a reload in addition to the
register to contain the data. Specifically, if copying X to a register
RCLASS in MODE requires an intermediate register, you should define
`SECONDARY_INPUT_RELOAD_CLASS' to return the largest register class all of
whose registers can be used as intermediate registers or scratch registers.
If copying a register RCLASS in MODE to X requires an intermediate or scratch
register, `SECONDARY_OUTPUT_RELOAD_CLASS' should be defined to return the
largest register class required. If the requirements for input and output
reloads are the same, the macro `SECONDARY_RELOAD_CLASS' should be used
instead of defining both macros identically.
The values returned by these macros are often `GENERAL_REGS'. Return
`NO_REGS' if no spare register is needed; i.e., if X can be directly copied
to or from a register of RCLASS in MODE without requiring a scratch register.
Do not define this macro if it would always return `NO_REGS'.
If a scratch register is required (either with or without an intermediate
register), you should define patterns for `reload_inM' or `reload_outM', as
required.. These patterns, which will normally be implemented with a
`define_expand', should be similar to the `movM' patterns, except that
operand 2 is the scratch register.
Define constraints for the reload register and scratch register that contain
a single register class. If the original reload register (whose class is
RCLASS) can meet the constraint given in the pattern, the value returned by
these macros is used for the class of the scratch register. Otherwise, two
additional reload registers are required. Their classes are obtained from
the constraints in the insn pattern.
X might be a pseudo-register or a `subreg' of a pseudo-register, which could
either be in a hard register or in memory. Use `true_regnum' to find out;
it will return -1 if the pseudo is in memory and the hard register number if
it is in a register.
These macros should not be used in the case where a particular class of
registers can only be copied to memory and not to another class of
registers. In that case, secondary reload registers are not needed and
would not be helpful. Instead, a stack location must be used to perform the
copy and the `movM' pattern should use memory as an intermediate storage.
This case often occurs between floating-point and general registers. */
enum reg_class
frv_secondary_reload_class (enum reg_class rclass,
machine_mode mode ATTRIBUTE_UNUSED,
rtx x)
{
enum reg_class ret;
switch (rclass)
{
default:
ret = NO_REGS;
break;
/* Accumulators/Accumulator guard registers need to go through floating
point registers. */
case QUAD_REGS:
case GPR_REGS:
ret = NO_REGS;
if (x && GET_CODE (x) == REG)
{
int regno = REGNO (x);
if (ACC_P (regno) || ACCG_P (regno))
ret = FPR_REGS;
}
break;
/* Nonzero constants should be loaded into an FPR through a GPR. */
case QUAD_FPR_REGS:
if (x && CONSTANT_P (x) && !ZERO_P (x))
ret = GPR_REGS;
else
ret = NO_REGS;
break;
/* All of these types need gpr registers. */
case ICC_REGS:
case FCC_REGS:
case CC_REGS:
case ICR_REGS:
case FCR_REGS:
case CR_REGS:
case LCR_REG:
case LR_REG:
ret = GPR_REGS;
break;
/* The accumulators need fpr registers. */
case QUAD_ACC_REGS:
case ACCG_REGS:
ret = FPR_REGS;
break;
}
return ret;
}
/* This hook exists to catch the case where secondary_reload_class() is
called from init_reg_autoinc() in regclass.c - before the reload optabs
have been initialised. */
static reg_class_t
frv_secondary_reload (bool in_p, rtx x, reg_class_t reload_class_i,
machine_mode reload_mode,
secondary_reload_info * sri)
{
enum reg_class rclass = NO_REGS;
enum reg_class reload_class = (enum reg_class) reload_class_i;
if (sri->prev_sri && sri->prev_sri->t_icode != CODE_FOR_nothing)
{
sri->icode = sri->prev_sri->t_icode;
return NO_REGS;
}
rclass = frv_secondary_reload_class (reload_class, reload_mode, x);
if (rclass != NO_REGS)
{
enum insn_code icode
= direct_optab_handler (in_p ? reload_in_optab : reload_out_optab,
reload_mode);
if (icode == 0)
{
/* This happens when then the reload_[in|out]_optabs have
not been initialised. */
sri->t_icode = CODE_FOR_nothing;
return rclass;
}
}
/* Fall back to the default secondary reload handler. */
return default_secondary_reload (in_p, x, reload_class, reload_mode, sri);
}
/* Worker function for TARGET_CLASS_LIKELY_SPILLED_P. */
static bool
frv_class_likely_spilled_p (reg_class_t rclass)
{
switch (rclass)
{
default:
break;
case GR8_REGS:
case GR9_REGS:
case GR89_REGS:
case FDPIC_FPTR_REGS:
case FDPIC_REGS:
case ICC_REGS:
case FCC_REGS:
case CC_REGS:
case ICR_REGS:
case FCR_REGS:
case CR_REGS:
case LCR_REG:
case LR_REG:
case SPR_REGS:
case QUAD_ACC_REGS:
case ACCG_REGS:
return true;
}
return false;
}
/* An expression for the alignment of a structure field FIELD if the
alignment computed in the usual way is COMPUTED. GCC uses this
value instead of the value in `BIGGEST_ALIGNMENT' or
`BIGGEST_FIELD_ALIGNMENT', if defined, for structure fields only. */
/* The definition type of the bit field data is either char, short, long or
long long. The maximum bit size is the number of bits of its own type.
The bit field data is assigned to a storage unit that has an adequate size
for bit field data retention and is located at the smallest address.
Consecutive bit field data are packed at consecutive bits having the same
storage unit, with regard to the type, beginning with the MSB and continuing
toward the LSB.
If a field to be assigned lies over a bit field type boundary, its
assignment is completed by aligning it with a boundary suitable for the
type.
When a bit field having a bit length of 0 is declared, it is forcibly
assigned to the next storage unit.
e.g)
struct {
int a:2;
int b:6;
char c:4;
int d:10;
int :0;
int f:2;
} x;
+0 +1 +2 +3
&x 00000000 00000000 00000000 00000000
MLM----L
a b
&x+4 00000000 00000000 00000000 00000000
M--L
c
&x+8 00000000 00000000 00000000 00000000
M----------L
d
&x+12 00000000 00000000 00000000 00000000
ML
f
*/
int
frv_adjust_field_align (tree field, int computed)
{
/* Make sure that the bitfield is not wider than the type. */
if (DECL_BIT_FIELD (field)
&& !DECL_ARTIFICIAL (field))
{
tree parent = DECL_CONTEXT (field);
tree prev = NULL_TREE;
tree cur;
for (cur = TYPE_FIELDS (parent); cur && cur != field; cur = DECL_CHAIN (cur))
{
if (TREE_CODE (cur) != FIELD_DECL)
continue;
prev = cur;
}
gcc_assert (cur);
/* If this isn't a :0 field and if the previous element is a bitfield
also, see if the type is different, if so, we will need to align the
bit-field to the next boundary. */
if (prev
&& ! DECL_PACKED (field)
&& ! integer_zerop (DECL_SIZE (field))
&& DECL_BIT_FIELD_TYPE (field) != DECL_BIT_FIELD_TYPE (prev))
{
int prev_align = TYPE_ALIGN (TREE_TYPE (prev));
int cur_align = TYPE_ALIGN (TREE_TYPE (field));
computed = (prev_align > cur_align) ? prev_align : cur_align;
}
}
return computed;
}
/* A C expression that is nonzero if it is permissible to store a value of mode
MODE in hard register number REGNO (or in several registers starting with
that one). For a machine where all registers are equivalent, a suitable
definition is
#define HARD_REGNO_MODE_OK(REGNO, MODE) 1
It is not necessary for this macro to check for the numbers of fixed
registers, because the allocation mechanism considers them to be always
occupied.
On some machines, double-precision values must be kept in even/odd register
pairs. The way to implement that is to define this macro to reject odd
register numbers for such modes.
The minimum requirement for a mode to be OK in a register is that the
`movMODE' instruction pattern support moves between the register and any
other hard register for which the mode is OK; and that moving a value into
the register and back out not alter it.
Since the same instruction used to move `SImode' will work for all narrower
integer modes, it is not necessary on any machine for `HARD_REGNO_MODE_OK'
to distinguish between these modes, provided you define patterns `movhi',
etc., to take advantage of this. This is useful because of the interaction
between `HARD_REGNO_MODE_OK' and `MODES_TIEABLE_P'; it is very desirable for
all integer modes to be tieable.
Many machines have special registers for floating point arithmetic. Often
people assume that floating point machine modes are allowed only in floating
point registers. This is not true. Any registers that can hold integers
can safely *hold* a floating point machine mode, whether or not floating
arithmetic can be done on it in those registers. Integer move instructions
can be used to move the values.
On some machines, though, the converse is true: fixed-point machine modes
may not go in floating registers. This is true if the floating registers
normalize any value stored in them, because storing a non-floating value
there would garble it. In this case, `HARD_REGNO_MODE_OK' should reject
fixed-point machine modes in floating registers. But if the floating
registers do not automatically normalize, if you can store any bit pattern
in one and retrieve it unchanged without a trap, then any machine mode may
go in a floating register, so you can define this macro to say so.
The primary significance of special floating registers is rather that they
are the registers acceptable in floating point arithmetic instructions.
However, this is of no concern to `HARD_REGNO_MODE_OK'. You handle it by
writing the proper constraints for those instructions.
On some machines, the floating registers are especially slow to access, so
that it is better to store a value in a stack frame than in such a register
if floating point arithmetic is not being done. As long as the floating
registers are not in class `GENERAL_REGS', they will not be used unless some
pattern's constraint asks for one. */
int
frv_hard_regno_mode_ok (int regno, machine_mode mode)
{
int base;
int mask;
switch (mode)
{
case CCmode:
case CC_UNSmode:
case CC_NZmode:
return ICC_P (regno) || GPR_P (regno);
case CC_CCRmode:
return CR_P (regno) || GPR_P (regno);
case CC_FPmode:
return FCC_P (regno) || GPR_P (regno);
default:
break;
}
/* Set BASE to the first register in REGNO's class. Set MASK to the
bits that must be clear in (REGNO - BASE) for the register to be
well-aligned. */
if (INTEGRAL_MODE_P (mode) || FLOAT_MODE_P (mode) || VECTOR_MODE_P (mode))
{
if (ACCG_P (regno))
{
/* ACCGs store one byte. Two-byte quantities must start in
even-numbered registers, four-byte ones in registers whose
numbers are divisible by four, and so on. */
base = ACCG_FIRST;
mask = GET_MODE_SIZE (mode) - 1;
}
else
{
/* The other registers store one word. */
if (GPR_P (regno) || regno == AP_FIRST)
base = GPR_FIRST;
else if (FPR_P (regno))
base = FPR_FIRST;
else if (ACC_P (regno))
base = ACC_FIRST;
else if (SPR_P (regno))
return mode == SImode;
/* Fill in the table. */
else
return 0;
/* Anything smaller than an SI is OK in any word-sized register. */
if (GET_MODE_SIZE (mode) < 4)
return 1;
mask = (GET_MODE_SIZE (mode) / 4) - 1;
}
return (((regno - base) & mask) == 0);
}
return 0;
}
/* A C expression for the number of consecutive hard registers, starting at
register number REGNO, required to hold a value of mode MODE.
On a machine where all registers are exactly one word, a suitable definition
of this macro is
#define HARD_REGNO_NREGS(REGNO, MODE) \
((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) \
/ UNITS_PER_WORD)) */
/* On the FRV, make the CC_FP mode take 3 words in the integer registers, so
that we can build the appropriate instructions to properly reload the
values. Also, make the byte-sized accumulator guards use one guard
for each byte. */
int
frv_hard_regno_nregs (int regno, machine_mode mode)
{
if (ACCG_P (regno))
return GET_MODE_SIZE (mode);
else
return (GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
}
/* A C expression for the maximum number of consecutive registers of
class RCLASS needed to hold a value of mode MODE.
This is closely related to the macro `HARD_REGNO_NREGS'. In fact, the value
of the macro `CLASS_MAX_NREGS (RCLASS, MODE)' should be the maximum value of
`HARD_REGNO_NREGS (REGNO, MODE)' for all REGNO values in the class RCLASS.
This macro helps control the handling of multiple-word values in
the reload pass.
This declaration is required. */
int
frv_class_max_nregs (enum reg_class rclass, machine_mode mode)
{
if (rclass == ACCG_REGS)
/* An N-byte value requires N accumulator guards. */
return GET_MODE_SIZE (mode);
else
return (GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
}
/* A C expression that is nonzero if X is a legitimate constant for an
immediate operand on the target machine. You can assume that X satisfies
`CONSTANT_P', so you need not check this. In fact, `1' is a suitable
definition for this macro on machines where anything `CONSTANT_P' is valid. */
static bool
frv_legitimate_constant_p (machine_mode mode, rtx x)
{
/* frv_cannot_force_const_mem always returns true for FDPIC. This
means that the move expanders will be expected to deal with most
kinds of constant, regardless of what we return here.
However, among its other duties, frv_legitimate_constant_p decides whether
a constant can be entered into reg_equiv_constant[]. If we return true,
reload can create new instances of the constant whenever it likes.
The idea is therefore to accept as many constants as possible (to give
reload more freedom) while rejecting constants that can only be created
at certain times. In particular, anything with a symbolic component will
require use of the pseudo FDPIC register, which is only available before
reload. */
if (TARGET_FDPIC)
return LEGITIMATE_PIC_OPERAND_P (x);
/* All of the integer constants are ok. */
if (GET_CODE (x) != CONST_DOUBLE)
return TRUE;
/* double integer constants are ok. */
if (GET_MODE (x) == VOIDmode || mode == DImode)
return TRUE;
/* 0 is always ok. */
if (x == CONST0_RTX (mode))
return TRUE;
/* If floating point is just emulated, allow any constant, since it will be
constructed in the GPRs. */
if (!TARGET_HAS_FPRS)
return TRUE;
if (mode == DFmode && !TARGET_DOUBLE)
return TRUE;
/* Otherwise store the constant away and do a load. */
return FALSE;
}
/* Implement SELECT_CC_MODE. Choose CC_FP for floating-point comparisons,
CC_NZ for comparisons against zero in which a single Z or N flag test
is enough, CC_UNS for other unsigned comparisons, and CC for other
signed comparisons. */
machine_mode
frv_select_cc_mode (enum rtx_code code, rtx x, rtx y)
{
if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
return CC_FPmode;
switch (code)
{
case EQ:
case NE:
case LT:
case GE:
return y == const0_rtx ? CC_NZmode : CCmode;
case GTU:
case GEU:
case LTU:
case LEU:
return y == const0_rtx ? CC_NZmode : CC_UNSmode;
default:
return CCmode;
}
}
/* Worker function for TARGET_REGISTER_MOVE_COST. */
#define HIGH_COST 40
#define MEDIUM_COST 3
#define LOW_COST 1
static int
frv_register_move_cost (machine_mode mode ATTRIBUTE_UNUSED,
reg_class_t from, reg_class_t to)
{
switch (from)
{
default:
break;
case QUAD_REGS:
case GPR_REGS:
case GR8_REGS:
case GR9_REGS:
case GR89_REGS:
case FDPIC_REGS:
case FDPIC_FPTR_REGS:
case FDPIC_CALL_REGS:
switch (to)
{
default:
break;
case QUAD_REGS:
case GPR_REGS:
case GR8_REGS:
case GR9_REGS:
case GR89_REGS:
case FDPIC_REGS:
case FDPIC_FPTR_REGS:
case FDPIC_CALL_REGS:
return LOW_COST;
case FPR_REGS:
return LOW_COST;
case LCR_REG:
case LR_REG:
case SPR_REGS:
return LOW_COST;
}
case QUAD_FPR_REGS:
switch (to)
{
default:
break;
case QUAD_REGS:
case GPR_REGS:
case GR8_REGS:
case GR9_REGS:
case GR89_REGS:
case FDPIC_REGS:
case FDPIC_FPTR_REGS:
case FDPIC_CALL_REGS:
case QUAD_ACC_REGS:
case ACCG_REGS:
return MEDIUM_COST;
case QUAD_FPR_REGS:
return LOW_COST;
}
case LCR_REG:
case LR_REG:
case SPR_REGS:
switch (to)
{
default:
break;
case QUAD_REGS:
case GPR_REGS:
case GR8_REGS:
case GR9_REGS:
case GR89_REGS:
case FDPIC_REGS:
case FDPIC_FPTR_REGS:
case FDPIC_CALL_REGS:
return MEDIUM_COST;
}
case QUAD_ACC_REGS:
case ACCG_REGS:
switch (to)
{
default:
break;
case QUAD_FPR_REGS:
return MEDIUM_COST;
}
}
return HIGH_COST;
}
/* Worker function for TARGET_MEMORY_MOVE_COST. */
static int
frv_memory_move_cost (machine_mode mode ATTRIBUTE_UNUSED,
reg_class_t rclass ATTRIBUTE_UNUSED,
bool in ATTRIBUTE_UNUSED)
{
return 4;
}
/* Implementation of TARGET_ASM_INTEGER. In the FRV case we need to
use ".picptr" to generate safe relocations for PIC code. We also
need a fixup entry for aligned (non-debugging) code. */
static bool
frv_assemble_integer (rtx value, unsigned int size, int aligned_p)
{
if ((flag_pic || TARGET_FDPIC) && size == UNITS_PER_WORD)
{
if (GET_CODE (value) == CONST
|| GET_CODE (value) == SYMBOL_REF
|| GET_CODE (value) == LABEL_REF)
{
if (TARGET_FDPIC && GET_CODE (value) == SYMBOL_REF
&& SYMBOL_REF_FUNCTION_P (value))
{
fputs ("\t.picptr\tfuncdesc(", asm_out_file);
output_addr_const (asm_out_file, value);
fputs (")\n", asm_out_file);
return true;
}
else if (TARGET_FDPIC && GET_CODE (value) == CONST
&& frv_function_symbol_referenced_p (value))
return false;
if (aligned_p && !TARGET_FDPIC)
{
static int label_num = 0;
char buf[256];
const char *p;
ASM_GENERATE_INTERNAL_LABEL (buf, "LCP", label_num++);
p = (* targetm.strip_name_encoding) (buf);
fprintf (asm_out_file, "%s:\n", p);
fprintf (asm_out_file, "%s\n", FIXUP_SECTION_ASM_OP);
fprintf (asm_out_file, "\t.picptr\t%s\n", p);
fprintf (asm_out_file, "\t.previous\n");
}
assemble_integer_with_op ("\t.picptr\t", value);
return true;
}
if (!aligned_p)
{
/* We've set the unaligned SI op to NULL, so we always have to
handle the unaligned case here. */
assemble_integer_with_op ("\t.4byte\t", value);
return true;
}
}
return default_assemble_integer (value, size, aligned_p);
}
/* Function to set up the backend function structure. */
static struct machine_function *
frv_init_machine_status (void)
{
return ggc_cleared_alloc<machine_function> ();
}
/* Implement TARGET_SCHED_ISSUE_RATE. */
int
frv_issue_rate (void)
{
if (!TARGET_PACK)
return 1;
switch (frv_cpu_type)
{
default:
case FRV_CPU_FR300:
case FRV_CPU_SIMPLE:
return 1;
case FRV_CPU_FR400:
case FRV_CPU_FR405:
case FRV_CPU_FR450:
return 2;
case FRV_CPU_GENERIC:
case FRV_CPU_FR500:
case FRV_CPU_TOMCAT:
return 4;
case FRV_CPU_FR550:
return 8;
}
}
/* A for_each_rtx callback. If X refers to an accumulator, return
ACC_GROUP_ODD if the bit 2 of the register number is set and
ACC_GROUP_EVEN if it is clear. Return 0 (ACC_GROUP_NONE)
otherwise. */
static int
frv_acc_group_1 (rtx *x, void *data ATTRIBUTE_UNUSED)
{
if (REG_P (*x))
{
if (ACC_P (REGNO (*x)))
return (REGNO (*x) - ACC_FIRST) & 4 ? ACC_GROUP_ODD : ACC_GROUP_EVEN;
if (ACCG_P (REGNO (*x)))
return (REGNO (*x) - ACCG_FIRST) & 4 ? ACC_GROUP_ODD : ACC_GROUP_EVEN;
}
return 0;
}
/* Return the value of INSN's acc_group attribute. */
int
frv_acc_group (rtx insn)
{
/* This distinction only applies to the FR550 packing constraints. */
if (frv_cpu_type != FRV_CPU_FR550)
return ACC_GROUP_NONE;
return for_each_rtx (&PATTERN (insn), frv_acc_group_1, 0);
}
/* Return the index of the DFA unit in FRV_UNIT_NAMES[] that instruction
INSN will try to claim first. Since this value depends only on the
type attribute, we can cache the results in FRV_TYPE_TO_UNIT[]. */
static unsigned int
frv_insn_unit (rtx_insn *insn)
{
enum attr_type type;
type = get_attr_type (insn);
if (frv_type_to_unit[type] == ARRAY_SIZE (frv_unit_codes))
{
/* We haven't seen this type of instruction before. */
state_t state;
unsigned int unit;
/* Issue the instruction on its own to see which unit it prefers. */
state = alloca (state_size ());
state_reset (state);
state_transition (state, insn);
/* Find out which unit was taken. */
for (unit = 0; unit < ARRAY_SIZE (frv_unit_codes); unit++)
if (cpu_unit_reservation_p (state, frv_unit_codes[unit]))
break;
gcc_assert (unit != ARRAY_SIZE (frv_unit_codes));
frv_type_to_unit[type] = unit;
}
return frv_type_to_unit[type];
}
/* Return true if INSN issues to a branch unit. */
static bool
frv_issues_to_branch_unit_p (rtx_insn *insn)
{
return frv_unit_groups[frv_insn_unit (insn)] == GROUP_B;
}
/* The instructions in the packet, partitioned into groups. */
struct frv_packet_group {
/* How many instructions in the packet belong to this group. */
unsigned int num_insns;
/* A list of the instructions that belong to this group, in the order
they appear in the rtl stream. */
rtx_insn *insns[ARRAY_SIZE (frv_unit_codes)];
/* The contents of INSNS after they have been sorted into the correct
assembly-language order. Element X issues to unit X. The list may
contain extra nops. */
rtx_insn *sorted[ARRAY_SIZE (frv_unit_codes)];
/* The member of frv_nops[] to use in sorted[]. */
rtx_insn *nop;
};
/* The current state of the packing pass, implemented by frv_pack_insns. */
static struct {
/* The state of the pipeline DFA. */
state_t dfa_state;
/* Which hardware registers are set within the current packet,
and the conditions under which they are set. */
regstate_t regstate[FIRST_PSEUDO_REGISTER];
/* The memory locations that have been modified so far in this
packet. MEM is the memref and COND is the regstate_t condition
under which it is set. */
struct {
rtx mem;
regstate_t cond;
} mems[2];
/* The number of valid entries in MEMS. The value is larger than
ARRAY_SIZE (mems) if there were too many mems to record. */
unsigned int num_mems;
/* The maximum number of instructions that can be packed together. */
unsigned int issue_rate;
/* The instructions in the packet, partitioned into groups. */
struct frv_packet_group groups[NUM_GROUPS];
/* The instructions that make up the current packet. */
rtx_insn *insns[ARRAY_SIZE (frv_unit_codes)];
unsigned int num_insns;
} frv_packet;
/* Return the regstate_t flags for the given COND_EXEC condition.
Abort if the condition isn't in the right form. */
static int
frv_cond_flags (rtx cond)
{
gcc_assert ((GET_CODE (cond) == EQ || GET_CODE (cond) == NE)
&& GET_CODE (XEXP (cond, 0)) == REG
&& CR_P (REGNO (XEXP (cond, 0)))
&& XEXP (cond, 1) == const0_rtx);
return ((REGNO (XEXP (cond, 0)) - CR_FIRST)
| (GET_CODE (cond) == NE
? REGSTATE_IF_TRUE
: REGSTATE_IF_FALSE));
}
/* Return true if something accessed under condition COND2 can
conflict with something written under condition COND1. */
static bool
frv_regstate_conflict_p (regstate_t cond1, regstate_t cond2)
{
/* If either reference was unconditional, we have a conflict. */
if ((cond1 & REGSTATE_IF_EITHER) == 0
|| (cond2 & REGSTATE_IF_EITHER) == 0)
return true;
/* The references might conflict if they were controlled by
different CRs. */
if ((cond1 & REGSTATE_CC_MASK) != (cond2 & REGSTATE_CC_MASK))
return true;
/* They definitely conflict if they are controlled by the
same condition. */
if ((cond1 & cond2 & REGSTATE_IF_EITHER) != 0)
return true;
return false;
}
/* A for_each_rtx callback. Return 1 if *X depends on an instruction in
the current packet. DATA points to a regstate_t that describes the
condition under which *X might be set or used. */
static int
frv_registers_conflict_p_1 (rtx *x, void *data)
{
unsigned int regno, i;
regstate_t cond;
cond = *(regstate_t *) data;
if (GET_CODE (*x) == REG)
FOR_EACH_REGNO (regno, *x)
if ((frv_packet.regstate[regno] & REGSTATE_MODIFIED) != 0)
if (frv_regstate_conflict_p (frv_packet.regstate[regno], cond))
return 1;
if (GET_CODE (*x) == MEM)
{
/* If we ran out of memory slots, assume a conflict. */
if (frv_packet.num_mems > ARRAY_SIZE (frv_packet.mems))
return 1;
/* Check for output or true dependencies with earlier MEMs. */
for (i = 0; i < frv_packet.num_mems; i++)
if (frv_regstate_conflict_p (frv_packet.mems[i].cond, cond))
{
if (true_dependence (frv_packet.mems[i].mem, VOIDmode, *x))
return 1;
if (output_dependence (frv_packet.mems[i].mem, *x))
return 1;
}
}
/* The return values of calls aren't significant: they describe
the effect of the call as a whole, not of the insn itself. */
if (GET_CODE (*x) == SET && GET_CODE (SET_SRC (*x)) == CALL)
{
if (for_each_rtx (&SET_SRC (*x), frv_registers_conflict_p_1, data))
return 1;
return -1;
}
/* Check subexpressions. */
return 0;
}
/* Return true if something in X might depend on an instruction
in the current packet. */
static bool
frv_registers_conflict_p (rtx x)
{
regstate_t flags;
flags = 0;
if (GET_CODE (x) == COND_EXEC)
{
if (for_each_rtx (&XEXP (x, 0), frv_registers_conflict_p_1, &flags))
return true;
flags |= frv_cond_flags (XEXP (x, 0));
x = XEXP (x, 1);
}
return for_each_rtx (&x, frv_registers_conflict_p_1, &flags);
}
/* A note_stores callback. DATA points to the regstate_t condition
under which X is modified. Update FRV_PACKET accordingly. */
static void
frv_registers_update_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
{
unsigned int regno;
if (GET_CODE (x) == REG)
FOR_EACH_REGNO (regno, x)
frv_packet.regstate[regno] |= *(regstate_t *) data;
if (GET_CODE (x) == MEM)
{
if (frv_packet.num_mems < ARRAY_SIZE (frv_packet.mems))
{
frv_packet.mems[frv_packet.num_mems].mem = x;
frv_packet.mems[frv_packet.num_mems].cond = *(regstate_t *) data;
}
frv_packet.num_mems++;
}
}
/* Update the register state information for an instruction whose
body is X. */
static void
frv_registers_update (rtx x)
{
regstate_t flags;
flags = REGSTATE_MODIFIED;
if (GET_CODE (x) == COND_EXEC)
{
flags |= frv_cond_flags (XEXP (x, 0));
x = XEXP (x, 1);
}
note_stores (x, frv_registers_update_1, &flags);
}
/* Initialize frv_packet for the start of a new packet. */
static void
frv_start_packet (void)
{
enum frv_insn_group group;
memset (frv_packet.regstate, 0, sizeof (frv_packet.regstate));
frv_packet.num_mems = 0;
frv_packet.num_insns = 0;
for (group = GROUP_I; group < NUM_GROUPS;
group = (enum frv_insn_group) (group + 1))
frv_packet.groups[group].num_insns = 0;
}
/* Likewise for the start of a new basic block. */
static void
frv_start_packet_block (void)
{
state_reset (frv_packet.dfa_state);
frv_start_packet ();
}
/* Finish the current packet, if any, and start a new one. Call
HANDLE_PACKET with FRV_PACKET describing the completed packet. */
static void
frv_finish_packet (void (*handle_packet) (void))
{
if (frv_packet.num_insns > 0)
{
handle_packet ();
state_transition (frv_packet.dfa_state, 0);
frv_start_packet ();
}
}
/* Return true if INSN can be added to the current packet. Update
the DFA state on success. */
static bool
frv_pack_insn_p (rtx_insn *insn)
{
/* See if the packet is already as long as it can be. */
if (frv_packet.num_insns == frv_packet.issue_rate)
return false;
/* If the scheduler thought that an instruction should start a packet,
it's usually a good idea to believe it. It knows much more about
the latencies than we do.
There are some exceptions though:
- Conditional instructions are scheduled on the assumption that
they will be executed. This is usually a good thing, since it
tends to avoid unnecessary stalls in the conditional code.
But we want to pack conditional instructions as tightly as
possible, in order to optimize the case where they aren't
executed.
- The scheduler will always put branches on their own, even
if there's no real dependency.
- There's no point putting a call in its own packet unless
we have to. */
if (frv_packet.num_insns > 0
&& NONJUMP_INSN_P (insn)
&& GET_MODE (insn) == TImode
&& GET_CODE (PATTERN (insn)) != COND_EXEC)
return false;
/* Check for register conflicts. Don't do this for setlo since any
conflict will be with the partnering sethi, with which it can
be packed. */
if (get_attr_type (insn) != TYPE_SETLO)
if (frv_registers_conflict_p (PATTERN (insn)))
return false;
return state_transition (frv_packet.dfa_state, insn) < 0;
}
/* Add instruction INSN to the current packet. */
static void
frv_add_insn_to_packet (rtx_insn *insn)
{
struct frv_packet_group *packet_group;
packet_group = &frv_packet.groups[frv_unit_groups[frv_insn_unit (insn)]];
packet_group->insns[packet_group->num_insns++] = insn;
frv_packet.insns[frv_packet.num_insns++] = insn;
frv_registers_update (PATTERN (insn));
}
/* Insert INSN (a member of frv_nops[]) into the current packet. If the
packet ends in a branch or call, insert the nop before it, otherwise
add to the end. */
static void
frv_insert_nop_in_packet (rtx_insn *insn)
{
struct frv_packet_group *packet_group;
rtx_insn *last;
packet_group = &frv_packet.groups[frv_unit_groups[frv_insn_unit (insn)]];
last = frv_packet.insns[frv_packet.num_insns - 1];
if (! NONJUMP_INSN_P (last))
{
insn = emit_insn_before (PATTERN (insn), last);
frv_packet.insns[frv_packet.num_insns - 1] = insn;
frv_packet.insns[frv_packet.num_insns++] = last;
}
else
{
insn = emit_insn_after (PATTERN (insn), last);
frv_packet.insns[frv_packet.num_insns++] = insn;
}
packet_group->insns[packet_group->num_insns++] = insn;
}
/* If packing is enabled, divide the instructions into packets and
return true. Call HANDLE_PACKET for each complete packet. */
static bool
frv_for_each_packet (void (*handle_packet) (void))
{
rtx_insn *insn, *next_insn;
frv_packet.issue_rate = frv_issue_rate ();
/* Early exit if we don't want to pack insns. */
if (!optimize
|| !flag_schedule_insns_after_reload
|| !TARGET_VLIW_BRANCH
|| frv_packet.issue_rate == 1)
return false;
/* Set up the initial packing state. */
dfa_start ();
frv_packet.dfa_state = alloca (state_size ());
frv_start_packet_block ();
for (insn = get_insns (); insn != 0; insn = next_insn)
{
enum rtx_code code;
bool eh_insn_p;
code = GET_CODE (insn);
next_insn = NEXT_INSN (insn);
if (code == CODE_LABEL)
{
frv_finish_packet (handle_packet);
frv_start_packet_block ();
}
if (INSN_P (insn))
switch (GET_CODE (PATTERN (insn)))
{
case USE:
case CLOBBER:
break;
default:
/* Calls mustn't be packed on a TOMCAT. */
if (CALL_P (insn) && frv_cpu_type == FRV_CPU_TOMCAT)
frv_finish_packet (handle_packet);
/* Since the last instruction in a packet determines the EH
region, any exception-throwing instruction must come at
the end of reordered packet. Insns that issue to a
branch unit are bound to come last; for others it's
too hard to predict. */
eh_insn_p = (find_reg_note (insn, REG_EH_REGION, NULL) != NULL);
if (eh_insn_p && !frv_issues_to_branch_unit_p (insn))
frv_finish_packet (handle_packet);
/* Finish the current packet if we can't add INSN to it.
Simulate cycles until INSN is ready to issue. */
if (!frv_pack_insn_p (insn))
{
frv_finish_packet (handle_packet);
while (!frv_pack_insn_p (insn))
state_transition (frv_packet.dfa_state, 0);
}
/* Add the instruction to the packet. */
frv_add_insn_to_packet (insn);
/* Calls and jumps end a packet, as do insns that throw
an exception. */
if (code == CALL_INSN || code == JUMP_INSN || eh_insn_p)
frv_finish_packet (handle_packet);
break;
}
}
frv_finish_packet (handle_packet);
dfa_finish ();
return true;
}
/* Subroutine of frv_sort_insn_group. We are trying to sort
frv_packet.groups[GROUP].sorted[0...NUM_INSNS-1] into assembly
language order. We have already picked a new position for
frv_packet.groups[GROUP].sorted[X] if bit X of ISSUED is set.
These instructions will occupy elements [0, LOWER_SLOT) and
[UPPER_SLOT, NUM_INSNS) of the final (sorted) array. STATE is
the DFA state after issuing these instructions.
Try filling elements [LOWER_SLOT, UPPER_SLOT) with every permutation
of the unused instructions. Return true if one such permutation gives
a valid ordering, leaving the successful permutation in sorted[].
Do not modify sorted[] until a valid permutation is found. */
static bool
frv_sort_insn_group_1 (enum frv_insn_group group,
unsigned int lower_slot, unsigned int upper_slot,
unsigned int issued, unsigned int num_insns,
state_t state)
{
struct frv_packet_group *packet_group;
unsigned int i;
state_t test_state;
size_t dfa_size;
rtx_insn *insn;
/* Early success if we've filled all the slots. */
if (lower_slot == upper_slot)
return true;
packet_group = &frv_packet.groups[group];
dfa_size = state_size ();
test_state = alloca (dfa_size);
/* Try issuing each unused instruction. */
for (i = num_insns - 1; i + 1 != 0; i--)
if (~issued & (1 << i))
{
insn = packet_group->sorted[i];
memcpy (test_state, state, dfa_size);
if (state_transition (test_state, insn) < 0
&& cpu_unit_reservation_p (test_state,
NTH_UNIT (group, upper_slot - 1))
&& frv_sort_insn_group_1 (group, lower_slot, upper_slot - 1,
issued | (1 << i), num_insns,
test_state))
{
packet_group->sorted[upper_slot - 1] = insn;
return true;
}
}
return false;
}
/* Compare two instructions by their frv_insn_unit. */
static int
frv_compare_insns (const void *first, const void *second)
{
rtx_insn * const *insn1 = (rtx_insn * const *) first;
rtx_insn * const *insn2 = (rtx_insn * const *) second;
return frv_insn_unit (*insn1) - frv_insn_unit (*insn2);
}
/* Copy frv_packet.groups[GROUP].insns[] to frv_packet.groups[GROUP].sorted[]
and sort it into assembly language order. See frv.md for a description of
the algorithm. */
static void
frv_sort_insn_group (enum frv_insn_group group)
{
struct frv_packet_group *packet_group;
unsigned int first, i, nop, max_unit, num_slots;
state_t state, test_state;
size_t dfa_size;
packet_group = &frv_packet.groups[group];
/* Assume no nop is needed. */
packet_group->nop = 0;
if (packet_group->num_insns == 0)
return;
/* Copy insns[] to sorted[]. */
memcpy (packet_group->sorted, packet_group->insns,
sizeof (rtx) * packet_group->num_insns);
/* Sort sorted[] by the unit that each insn tries to take first. */
if (packet_group->num_insns > 1)
qsort (packet_group->sorted, packet_group->num_insns,
sizeof (rtx), frv_compare_insns);
/* That's always enough for branch and control insns. */
if (group == GROUP_B || group == GROUP_C)
return;
dfa_size = state_size ();
state = alloca (dfa_size);
test_state = alloca (dfa_size);
/* Find the highest FIRST such that sorted[0...FIRST-1] can issue
consecutively and such that the DFA takes unit X when sorted[X]
is added. Set STATE to the new DFA state. */
state_reset (test_state);
for (first = 0; first < packet_group->num_insns; first++)
{
memcpy (state, test_state, dfa_size);
if (state_transition (test_state, packet_group->sorted[first]) >= 0
|| !cpu_unit_reservation_p (test_state, NTH_UNIT (group, first)))
break;
}
/* If all the instructions issued in ascending order, we're done. */
if (first == packet_group->num_insns)
return;
/* Add nops to the end of sorted[] and try each permutation until
we find one that works. */
for (nop = 0; nop < frv_num_nops; nop++)
{
max_unit = frv_insn_unit (frv_nops[nop]);
if (frv_unit_groups[max_unit] == group)
{
packet_group->nop = frv_nops[nop];
num_slots = UNIT_NUMBER (max_unit) + 1;
for (i = packet_group->num_insns; i < num_slots; i++)
packet_group->sorted[i] = frv_nops[nop];
if (frv_sort_insn_group_1 (group, first, num_slots,
(1 << first) - 1, num_slots, state))
return;
}
}
gcc_unreachable ();
}
/* Sort the current packet into assembly-language order. Set packing
flags as appropriate. */
static void
frv_reorder_packet (void)
{
unsigned int cursor[NUM_GROUPS];
rtx insns[ARRAY_SIZE (frv_unit_groups)];
unsigned int unit, to, from;
enum frv_insn_group group;
struct frv_packet_group *packet_group;
/* First sort each group individually. */
for (group = GROUP_I; group < NUM_GROUPS;
group = (enum frv_insn_group) (group + 1))
{
cursor[group] = 0;
frv_sort_insn_group (group);
}
/* Go through the unit template and try add an instruction from
that unit's group. */
to = 0;
for (unit = 0; unit < ARRAY_SIZE (frv_unit_groups); unit++)
{
group = frv_unit_groups[unit];
packet_group = &frv_packet.groups[group];
if (cursor[group] < packet_group->num_insns)
{
/* frv_reorg should have added nops for us. */
gcc_assert (packet_group->sorted[cursor[group]]
!= packet_group->nop);
insns[to++] = packet_group->sorted[cursor[group]++];
}
}
gcc_assert (to == frv_packet.num_insns);
/* Clear the last instruction's packing flag, thus marking the end of
a packet. Reorder the other instructions relative to it. */
CLEAR_PACKING_FLAG (insns[to - 1]);
for (from = 0; from < to - 1; from++)
{
remove_insn (insns[from]);
add_insn_before (insns[from], insns[to - 1], NULL);
SET_PACKING_FLAG (insns[from]);
}
}
/* Divide instructions into packets. Reorder the contents of each
packet so that they are in the correct assembly-language order.
Since this pass can change the raw meaning of the rtl stream, it must
only be called at the last minute, just before the instructions are
written out. */
static void
frv_pack_insns (void)
{
if (frv_for_each_packet (frv_reorder_packet))
frv_insn_packing_flag = 0;
else
frv_insn_packing_flag = -1;
}
/* See whether we need to add nops to group GROUP in order to
make a valid packet. */
static void
frv_fill_unused_units (enum frv_insn_group group)
{
unsigned int non_nops, nops, i;
struct frv_packet_group *packet_group;
packet_group = &frv_packet.groups[group];
/* Sort the instructions into assembly-language order.
Use nops to fill slots that are otherwise unused. */
frv_sort_insn_group (group);
/* See how many nops are needed before the final useful instruction. */
i = nops = 0;
for (non_nops = 0; non_nops < packet_group->num_insns; non_nops++)
while (packet_group->sorted[i++] == packet_group->nop)
nops++;
/* Insert that many nops into the instruction stream. */
while (nops-- > 0)
frv_insert_nop_in_packet (packet_group->nop);
}
/* Return true if accesses IO1 and IO2 refer to the same doubleword. */
static bool
frv_same_doubleword_p (const struct frv_io *io1, const struct frv_io *io2)
{
if (io1->const_address != 0 && io2->const_address != 0)
return io1->const_address == io2->const_address;
if (io1->var_address != 0 && io2->var_address != 0)
return rtx_equal_p (io1->var_address, io2->var_address);
return false;
}
/* Return true if operations IO1 and IO2 are guaranteed to complete
in order. */
static bool
frv_io_fixed_order_p (const struct frv_io *io1, const struct frv_io *io2)
{
/* The order of writes is always preserved. */
if (io1->type == FRV_IO_WRITE && io2->type == FRV_IO_WRITE)
return true;
/* The order of reads isn't preserved. */
if (io1->type != FRV_IO_WRITE && io2->type != FRV_IO_WRITE)
return false;
/* One operation is a write and the other is (or could be) a read.
The order is only guaranteed if the accesses are to the same
doubleword. */
return frv_same_doubleword_p (io1, io2);
}
/* Generalize I/O operation X so that it covers both X and Y. */
static void
frv_io_union (struct frv_io *x, const struct frv_io *y)
{
if (x->type != y->type)
x->type = FRV_IO_UNKNOWN;
if (!frv_same_doubleword_p (x, y))
{
x->const_address = 0;
x->var_address = 0;
}
}
/* Fill IO with information about the load or store associated with
membar instruction INSN. */
static void
frv_extract_membar (struct frv_io *io, rtx_insn *insn)
{
extract_insn (insn);
io->type = (enum frv_io_type) INTVAL (recog_data.operand[2]);
io->const_address = INTVAL (recog_data.operand[1]);
io->var_address = XEXP (recog_data.operand[0], 0);
}
/* A note_stores callback for which DATA points to an rtx. Nullify *DATA
if X is a register and *DATA depends on X. */
static void
frv_io_check_address (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
{
rtx *other = (rtx *) data;
if (REG_P (x) && *other != 0 && reg_overlap_mentioned_p (x, *other))
*other = 0;
}
/* A note_stores callback for which DATA points to a HARD_REG_SET.
Remove every modified register from the set. */
static void
frv_io_handle_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
{
HARD_REG_SET *set = (HARD_REG_SET *) data;
unsigned int regno;
if (REG_P (x))
FOR_EACH_REGNO (regno, x)
CLEAR_HARD_REG_BIT (*set, regno);
}
/* A for_each_rtx callback for which DATA points to a HARD_REG_SET.
Add every register in *X to the set. */
static int
frv_io_handle_use_1 (rtx *x, void *data)
{
HARD_REG_SET *set = (HARD_REG_SET *) data;
unsigned int regno;
if (REG_P (*x))
FOR_EACH_REGNO (regno, *x)
SET_HARD_REG_BIT (*set, regno);
return 0;
}
/* A note_stores callback that applies frv_io_handle_use_1 to an
entire rhs value. */
static void
frv_io_handle_use (rtx *x, void *data)
{
for_each_rtx (x, frv_io_handle_use_1, data);
}
/* Go through block BB looking for membars to remove. There are two
cases where intra-block analysis is enough:
- a membar is redundant if it occurs between two consecutive I/O
operations and if those operations are guaranteed to complete
in order.
- a membar for a __builtin_read is redundant if the result is
used before the next I/O operation is issued.
If the last membar in the block could not be removed, and there
are guaranteed to be no I/O operations between that membar and
the end of the block, store the membar in *LAST_MEMBAR, otherwise
store null.
Describe the block's first I/O operation in *NEXT_IO. Describe
an unknown operation if the block doesn't do any I/O. */
static void
frv_optimize_membar_local (basic_block bb, struct frv_io *next_io,
rtx_insn **last_membar)
{
HARD_REG_SET used_regs;
rtx next_membar, set;
rtx_insn *insn;
bool next_is_end_p;
/* NEXT_IO is the next I/O operation to be performed after the current
instruction. It starts off as being an unknown operation. */
memset (next_io, 0, sizeof (*next_io));
/* NEXT_IS_END_P is true if NEXT_IO describes the end of the block. */
next_is_end_p = true;
/* If the current instruction is a __builtin_read or __builtin_write,
NEXT_MEMBAR is the membar instruction associated with it. NEXT_MEMBAR
is null if the membar has already been deleted.
Note that the initialization here should only be needed to
suppress warnings. */
next_membar = 0;
/* USED_REGS is the set of registers that are used before the
next I/O instruction. */
CLEAR_HARD_REG_SET (used_regs);
for (insn = BB_END (bb); insn != BB_HEAD (bb); insn = PREV_INSN (insn))
if (CALL_P (insn))
{
/* We can't predict what a call will do to volatile memory. */
memset (next_io, 0, sizeof (struct frv_io));
next_is_end_p = false;
CLEAR_HARD_REG_SET (used_regs);
}
else if (INSN_P (insn))
switch (recog_memoized (insn))
{
case CODE_FOR_optional_membar_qi:
case CODE_FOR_optional_membar_hi:
case CODE_FOR_optional_membar_si:
case CODE_FOR_optional_membar_di:
next_membar = insn;
if (next_is_end_p)
{
/* Local information isn't enough to decide whether this
membar is needed. Stash it away for later. */
*last_membar = insn;
frv_extract_membar (next_io, insn);
next_is_end_p = false;
}
else
{
/* Check whether the I/O operation before INSN could be
reordered with one described by NEXT_IO. If it can't,
INSN will not be needed. */
struct frv_io prev_io;
frv_extract_membar (&prev_io, insn);
if (frv_io_fixed_order_p (&prev_io, next_io))
{
if (dump_file)
fprintf (dump_file,
";; [Local] Removing membar %d since order"
" of accesses is guaranteed\n",
INSN_UID (next_membar));
insn = NEXT_INSN (insn);
delete_insn (next_membar);
next_membar = 0;
}
*next_io = prev_io;
}
break;
default:
/* Invalidate NEXT_IO's address if it depends on something that
is clobbered by INSN. */
if (next_io->var_address)
note_stores (PATTERN (insn), frv_io_check_address,
&next_io->var_address);
/* If the next membar is associated with a __builtin_read,
see if INSN reads from that address. If it does, and if
the destination register is used before the next I/O access,
there is no need for the membar. */
set = PATTERN (insn);
if (next_io->type == FRV_IO_READ
&& next_io->var_address != 0
&& next_membar != 0
&& GET_CODE (set) == SET
&& GET_CODE (SET_DEST (set)) == REG
&& TEST_HARD_REG_BIT (used_regs, REGNO (SET_DEST (set))))
{
rtx src;
src = SET_SRC (set);
if (GET_CODE (src) == ZERO_EXTEND)
src = XEXP (src, 0);
if (GET_CODE (src) == MEM
&& rtx_equal_p (XEXP (src, 0), next_io->var_address))
{
if (dump_file)
fprintf (dump_file,
";; [Local] Removing membar %d since the target"
" of %d is used before the I/O operation\n",
INSN_UID (next_membar), INSN_UID (insn));
if (next_membar == *last_membar)
*last_membar = 0;
delete_insn (next_membar);
next_membar = 0;
}
}
/* If INSN has volatile references, forget about any registers
that are used after it. Otherwise forget about uses that
are (or might be) defined by INSN. */
if (volatile_refs_p (PATTERN (insn)))
CLEAR_HARD_REG_SET (used_regs);
else
note_stores (PATTERN (insn), frv_io_handle_set, &used_regs);
note_uses (&PATTERN (insn), frv_io_handle_use, &used_regs);
break;
}
}
/* See if MEMBAR, the last membar instruction in BB, can be removed.
FIRST_IO[X] describes the first operation performed by basic block X. */
static void
frv_optimize_membar_global (basic_block bb, struct frv_io *first_io,
rtx_insn *membar)
{
struct frv_io this_io, next_io;
edge succ;
edge_iterator ei;
/* We need to keep the membar if there is an edge to the exit block. */
FOR_EACH_EDGE (succ, ei, bb->succs)
/* for (succ = bb->succ; succ != 0; succ = succ->succ_next) */
if (succ->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
return;
/* Work out the union of all successor blocks. */
ei = ei_start (bb->succs);
ei_cond (ei, &succ);
/* next_io = first_io[bb->succ->dest->index]; */
next_io = first_io[succ->dest->index];
ei = ei_start (bb->succs);
if (ei_cond (ei, &succ))
{
for (ei_next (&ei); ei_cond (ei, &succ); ei_next (&ei))
/*for (succ = bb->succ->succ_next; succ != 0; succ = succ->succ_next)*/
frv_io_union (&next_io, &first_io[succ->dest->index]);
}
else
gcc_unreachable ();
frv_extract_membar (&this_io, membar);
if (frv_io_fixed_order_p (&this_io, &next_io))
{
if (dump_file)
fprintf (dump_file,
";; [Global] Removing membar %d since order of accesses"
" is guaranteed\n", INSN_UID (membar));
delete_insn (membar);
}
}
/* Remove redundant membars from the current function. */
static void
frv_optimize_membar (void)
{
basic_block bb;
struct frv_io *first_io;
rtx_insn **last_membar;
compute_bb_for_insn ();
first_io = XCNEWVEC (struct frv_io, last_basic_block_for_fn (cfun));
last_membar = XCNEWVEC (rtx_insn *, last_basic_block_for_fn (cfun));
FOR_EACH_BB_FN (bb, cfun)
frv_optimize_membar_local (bb, &first_io[bb->index],
&last_membar[bb->index]);
FOR_EACH_BB_FN (bb, cfun)
if (last_membar[bb->index] != 0)
frv_optimize_membar_global (bb, first_io, last_membar[bb->index]);
free (first_io);
free (last_membar);
}
/* Used by frv_reorg to keep track of the current packet's address. */
static unsigned int frv_packet_address;
/* If the current packet falls through to a label, try to pad the packet
with nops in order to fit the label's alignment requirements. */
static void
frv_align_label (void)
{
unsigned int alignment, target, nop;
rtx_insn *x, *last, *barrier, *label;
/* Walk forward to the start of the next packet. Set ALIGNMENT to the
maximum alignment of that packet, LABEL to the last label between
the packets, and BARRIER to the last barrier. */
last = frv_packet.insns[frv_packet.num_insns - 1];
label = barrier = 0;
alignment = 4;
for (x = NEXT_INSN (last); x != 0 && !INSN_P (x); x = NEXT_INSN (x))
{
if (LABEL_P (x))
{
unsigned int subalign = 1 << label_to_alignment (x);
alignment = MAX (alignment, subalign);
label = x;
}
if (BARRIER_P (x))
barrier = x;
}
/* If -malign-labels, and the packet falls through to an unaligned
label, try introducing a nop to align that label to 8 bytes. */
if (TARGET_ALIGN_LABELS
&& label != 0
&& barrier == 0
&& frv_packet.num_insns < frv_packet.issue_rate)
alignment = MAX (alignment, 8);
/* Advance the address to the end of the current packet. */
frv_packet_address += frv_packet.num_insns * 4;
/* Work out the target address, after alignment. */
target = (frv_packet_address + alignment - 1) & -alignment;
/* If the packet falls through to the label, try to find an efficient
padding sequence. */
if (barrier == 0)
{
/* First try adding nops to the current packet. */
for (nop = 0; nop < frv_num_nops; nop++)
while (frv_packet_address < target && frv_pack_insn_p (frv_nops[nop]))
{
frv_insert_nop_in_packet (frv_nops[nop]);
frv_packet_address += 4;
}
/* If we still haven't reached the target, add some new packets that
contain only nops. If there are two types of nop, insert an
alternating sequence of frv_nops[0] and frv_nops[1], which will
lead to packets like:
nop.p
mnop.p/fnop.p
nop.p
mnop/fnop
etc. Just emit frv_nops[0] if that's the only nop we have. */
last = frv_packet.insns[frv_packet.num_insns - 1];
nop = 0;
while (frv_packet_address < target)
{
last = emit_insn_after (PATTERN (frv_nops[nop]), last);
frv_packet_address += 4;
if (frv_num_nops > 1)
nop ^= 1;
}
}
frv_packet_address = target;
}
/* Subroutine of frv_reorg, called after each packet has been constructed
in frv_packet. */
static void
frv_reorg_packet (void)
{
frv_fill_unused_units (GROUP_I);
frv_fill_unused_units (GROUP_FM);
frv_align_label ();
}
/* Add an instruction with pattern NOP to frv_nops[]. */
static void
frv_register_nop (rtx nop)
{
rtx_insn *nop_insn = make_insn_raw (nop);
SET_NEXT_INSN (nop_insn) = 0;
SET_PREV_INSN (nop_insn) = 0;
frv_nops[frv_num_nops++] = nop_insn;
}
/* Implement TARGET_MACHINE_DEPENDENT_REORG. Divide the instructions
into packets and check whether we need to insert nops in order to
fulfill the processor's issue requirements. Also, if the user has
requested a certain alignment for a label, try to meet that alignment
by inserting nops in the previous packet. */
static void
frv_reorg (void)
{
if (optimize > 0 && TARGET_OPTIMIZE_MEMBAR && cfun->machine->has_membar_p)
frv_optimize_membar ();
frv_num_nops = 0;
frv_register_nop (gen_nop ());
if (TARGET_MEDIA)
frv_register_nop (gen_mnop ());
if (TARGET_HARD_FLOAT)
frv_register_nop (gen_fnop ());
/* Estimate the length of each branch. Although this may change after
we've inserted nops, it will only do so in big functions. */
shorten_branches (get_insns ());
frv_packet_address = 0;
frv_for_each_packet (frv_reorg_packet);
}
#define def_builtin(name, type, code) \
add_builtin_function ((name), (type), (code), BUILT_IN_MD, NULL, NULL)
struct builtin_description
{
enum insn_code icode;
const char *name;
enum frv_builtins code;
enum rtx_code comparison;
unsigned int flag;
};
/* Media intrinsics that take a single, constant argument. */
static struct builtin_description bdesc_set[] =
{
{ CODE_FOR_mhdsets, "__MHDSETS", FRV_BUILTIN_MHDSETS, UNKNOWN, 0 }
};
/* Media intrinsics that take just one argument. */
static struct builtin_description bdesc_1arg[] =
{
{ CODE_FOR_mnot, "__MNOT", FRV_BUILTIN_MNOT, UNKNOWN, 0 },
{ CODE_FOR_munpackh, "__MUNPACKH", FRV_BUILTIN_MUNPACKH, UNKNOWN, 0 },
{ CODE_FOR_mbtoh, "__MBTOH", FRV_BUILTIN_MBTOH, UNKNOWN, 0 },
{ CODE_FOR_mhtob, "__MHTOB", FRV_BUILTIN_MHTOB, UNKNOWN, 0},
{ CODE_FOR_mabshs, "__MABSHS", FRV_BUILTIN_MABSHS, UNKNOWN, 0 },
{ CODE_FOR_scutss, "__SCUTSS", FRV_BUILTIN_SCUTSS, UNKNOWN, 0 }
};
/* Media intrinsics that take two arguments. */
static struct builtin_description bdesc_2arg[] =
{
{ CODE_FOR_mand, "__MAND", FRV_BUILTIN_MAND, UNKNOWN, 0},
{ CODE_FOR_mor, "__MOR", FRV_BUILTIN_MOR, UNKNOWN, 0},
{ CODE_FOR_mxor, "__MXOR", FRV_BUILTIN_MXOR, UNKNOWN, 0},
{ CODE_FOR_maveh, "__MAVEH", FRV_BUILTIN_MAVEH, UNKNOWN, 0},
{ CODE_FOR_msaths, "__MSATHS", FRV_BUILTIN_MSATHS, UNKNOWN, 0},
{ CODE_FOR_msathu, "__MSATHU", FRV_BUILTIN_MSATHU, UNKNOWN, 0},
{ CODE_FOR_maddhss, "__MADDHSS", FRV_BUILTIN_MADDHSS, UNKNOWN, 0},
{ CODE_FOR_maddhus, "__MADDHUS", FRV_BUILTIN_MADDHUS, UNKNOWN, 0},
{ CODE_FOR_msubhss, "__MSUBHSS", FRV_BUILTIN_MSUBHSS, UNKNOWN, 0},
{ CODE_FOR_msubhus, "__MSUBHUS", FRV_BUILTIN_MSUBHUS, UNKNOWN, 0},
{ CODE_FOR_mqaddhss, "__MQADDHSS", FRV_BUILTIN_MQADDHSS, UNKNOWN, 0},
{ CODE_FOR_mqaddhus, "__MQADDHUS", FRV_BUILTIN_MQADDHUS, UNKNOWN, 0},
{ CODE_FOR_mqsubhss, "__MQSUBHSS", FRV_BUILTIN_MQSUBHSS, UNKNOWN, 0},
{ CODE_FOR_mqsubhus, "__MQSUBHUS", FRV_BUILTIN_MQSUBHUS, UNKNOWN, 0},
{ CODE_FOR_mpackh, "__MPACKH", FRV_BUILTIN_MPACKH, UNKNOWN, 0},
{ CODE_FOR_mcop1, "__Mcop1", FRV_BUILTIN_MCOP1, UNKNOWN, 0},
{ CODE_FOR_mcop2, "__Mcop2", FRV_BUILTIN_MCOP2, UNKNOWN, 0},
{ CODE_FOR_mwcut, "__MWCUT", FRV_BUILTIN_MWCUT, UNKNOWN, 0},
{ CODE_FOR_mqsaths, "__MQSATHS", FRV_BUILTIN_MQSATHS, UNKNOWN, 0},
{ CODE_FOR_mqlclrhs, "__MQLCLRHS", FRV_BUILTIN_MQLCLRHS, UNKNOWN, 0},
{ CODE_FOR_mqlmths, "__MQLMTHS", FRV_BUILTIN_MQLMTHS, UNKNOWN, 0},
{ CODE_FOR_smul, "__SMUL", FRV_BUILTIN_SMUL, UNKNOWN, 0},
{ CODE_FOR_umul, "__UMUL", FRV_BUILTIN_UMUL, UNKNOWN, 0},
{ CODE_FOR_addss, "__ADDSS", FRV_BUILTIN_ADDSS, UNKNOWN, 0},
{ CODE_FOR_subss, "__SUBSS", FRV_BUILTIN_SUBSS, UNKNOWN, 0},
{ CODE_FOR_slass, "__SLASS", FRV_BUILTIN_SLASS, UNKNOWN, 0},
{ CODE_FOR_scan, "__SCAN", FRV_BUILTIN_SCAN, UNKNOWN, 0}
};
/* Integer intrinsics that take two arguments and have no return value. */
static struct builtin_description bdesc_int_void2arg[] =
{
{ CODE_FOR_smass, "__SMASS", FRV_BUILTIN_SMASS, UNKNOWN, 0},
{ CODE_FOR_smsss, "__SMSSS", FRV_BUILTIN_SMSSS, UNKNOWN, 0},
{ CODE_FOR_smu, "__SMU", FRV_BUILTIN_SMU, UNKNOWN, 0}
};
static struct builtin_description bdesc_prefetches[] =
{
{ CODE_FOR_frv_prefetch0, "__data_prefetch0", FRV_BUILTIN_PREFETCH0, UNKNOWN,
0},
{ CODE_FOR_frv_prefetch, "__data_prefetch", FRV_BUILTIN_PREFETCH, UNKNOWN, 0}
};
/* Media intrinsics that take two arguments, the first being an ACC number. */
static struct builtin_description bdesc_cut[] =
{
{ CODE_FOR_mcut, "__MCUT", FRV_BUILTIN_MCUT, UNKNOWN, 0},
{ CODE_FOR_mcutss, "__MCUTSS", FRV_BUILTIN_MCUTSS, UNKNOWN, 0},
{ CODE_FOR_mdcutssi, "__MDCUTSSI", FRV_BUILTIN_MDCUTSSI, UNKNOWN, 0}
};
/* Two-argument media intrinsics with an immediate second argument. */
static struct builtin_description bdesc_2argimm[] =
{
{ CODE_FOR_mrotli, "__MROTLI", FRV_BUILTIN_MROTLI, UNKNOWN, 0},
{ CODE_FOR_mrotri, "__MROTRI", FRV_BUILTIN_MROTRI, UNKNOWN, 0},
{ CODE_FOR_msllhi, "__MSLLHI", FRV_BUILTIN_MSLLHI, UNKNOWN, 0},
{ CODE_FOR_msrlhi, "__MSRLHI", FRV_BUILTIN_MSRLHI, UNKNOWN, 0},
{ CODE_FOR_msrahi, "__MSRAHI", FRV_BUILTIN_MSRAHI, UNKNOWN, 0},
{ CODE_FOR_mexpdhw, "__MEXPDHW", FRV_BUILTIN_MEXPDHW, UNKNOWN, 0},
{ CODE_FOR_mexpdhd, "__MEXPDHD", FRV_BUILTIN_MEXPDHD, UNKNOWN, 0},
{ CODE_FOR_mdrotli, "__MDROTLI", FRV_BUILTIN_MDROTLI, UNKNOWN, 0},
{ CODE_FOR_mcplhi, "__MCPLHI", FRV_BUILTIN_MCPLHI, UNKNOWN, 0},
{ CODE_FOR_mcpli, "__MCPLI", FRV_BUILTIN_MCPLI, UNKNOWN, 0},
{ CODE_FOR_mhsetlos, "__MHSETLOS", FRV_BUILTIN_MHSETLOS, UNKNOWN, 0},
{ CODE_FOR_mhsetloh, "__MHSETLOH", FRV_BUILTIN_MHSETLOH, UNKNOWN, 0},
{ CODE_FOR_mhsethis, "__MHSETHIS", FRV_BUILTIN_MHSETHIS, UNKNOWN, 0},
{ CODE_FOR_mhsethih, "__MHSETHIH", FRV_BUILTIN_MHSETHIH, UNKNOWN, 0},
{ CODE_FOR_mhdseth, "__MHDSETH", FRV_BUILTIN_MHDSETH, UNKNOWN, 0},
{ CODE_FOR_mqsllhi, "__MQSLLHI", FRV_BUILTIN_MQSLLHI, UNKNOWN, 0},
{ CODE_FOR_mqsrahi, "__MQSRAHI", FRV_BUILTIN_MQSRAHI, UNKNOWN, 0}
};
/* Media intrinsics that take two arguments and return void, the first argument
being a pointer to 4 words in memory. */
static struct builtin_description bdesc_void2arg[] =
{
{ CODE_FOR_mdunpackh, "__MDUNPACKH", FRV_BUILTIN_MDUNPACKH, UNKNOWN, 0},
{ CODE_FOR_mbtohe, "__MBTOHE", FRV_BUILTIN_MBTOHE, UNKNOWN, 0},
};
/* Media intrinsics that take three arguments, the first being a const_int that
denotes an accumulator, and that return void. */
static struct builtin_description bdesc_void3arg[] =
{
{ CODE_FOR_mcpxrs, "__MCPXRS", FRV_BUILTIN_MCPXRS, UNKNOWN, 0},
{ CODE_FOR_mcpxru, "__MCPXRU", FRV_BUILTIN_MCPXRU, UNKNOWN, 0},
{ CODE_FOR_mcpxis, "__MCPXIS", FRV_BUILTIN_MCPXIS, UNKNOWN, 0},
{ CODE_FOR_mcpxiu, "__MCPXIU", FRV_BUILTIN_MCPXIU, UNKNOWN, 0},
{ CODE_FOR_mmulhs, "__MMULHS", FRV_BUILTIN_MMULHS, UNKNOWN, 0},
{ CODE_FOR_mmulhu, "__MMULHU", FRV_BUILTIN_MMULHU, UNKNOWN, 0},
{ CODE_FOR_mmulxhs, "__MMULXHS", FRV_BUILTIN_MMULXHS, UNKNOWN, 0},
{ CODE_FOR_mmulxhu, "__MMULXHU", FRV_BUILTIN_MMULXHU, UNKNOWN, 0},
{ CODE_FOR_mmachs, "__MMACHS", FRV_BUILTIN_MMACHS, UNKNOWN, 0},
{ CODE_FOR_mmachu, "__MMACHU", FRV_BUILTIN_MMACHU, UNKNOWN, 0},
{ CODE_FOR_mmrdhs, "__MMRDHS", FRV_BUILTIN_MMRDHS, UNKNOWN, 0},
{ CODE_FOR_mmrdhu, "__MMRDHU", FRV_BUILTIN_MMRDHU, UNKNOWN, 0},
{ CODE_FOR_mqcpxrs, "__MQCPXRS", FRV_BUILTIN_MQCPXRS, UNKNOWN, 0},
{ CODE_FOR_mqcpxru, "__MQCPXRU", FRV_BUILTIN_MQCPXRU, UNKNOWN, 0},
{ CODE_FOR_mqcpxis, "__MQCPXIS", FRV_BUILTIN_MQCPXIS, UNKNOWN, 0},
{ CODE_FOR_mqcpxiu, "__MQCPXIU", FRV_BUILTIN_MQCPXIU, UNKNOWN, 0},
{ CODE_FOR_mqmulhs, "__MQMULHS", FRV_BUILTIN_MQMULHS, UNKNOWN, 0},
{ CODE_FOR_mqmulhu, "__MQMULHU", FRV_BUILTIN_MQMULHU, UNKNOWN, 0},
{ CODE_FOR_mqmulxhs, "__MQMULXHS", FRV_BUILTIN_MQMULXHS, UNKNOWN, 0},
{ CODE_FOR_mqmulxhu, "__MQMULXHU", FRV_BUILTIN_MQMULXHU, UNKNOWN, 0},
{ CODE_FOR_mqmachs, "__MQMACHS", FRV_BUILTIN_MQMACHS, UNKNOWN, 0},
{ CODE_FOR_mqmachu, "__MQMACHU", FRV_BUILTIN_MQMACHU, UNKNOWN, 0},
{ CODE_FOR_mqxmachs, "__MQXMACHS", FRV_BUILTIN_MQXMACHS, UNKNOWN, 0},
{ CODE_FOR_mqxmacxhs, "__MQXMACXHS", FRV_BUILTIN_MQXMACXHS, UNKNOWN, 0},
{ CODE_FOR_mqmacxhs, "__MQMACXHS", FRV_BUILTIN_MQMACXHS, UNKNOWN, 0}
};
/* Media intrinsics that take two accumulator numbers as argument and
return void. */
static struct builtin_description bdesc_voidacc[] =
{
{ CODE_FOR_maddaccs, "__MADDACCS", FRV_BUILTIN_MADDACCS, UNKNOWN, 0},
{ CODE_FOR_msubaccs, "__MSUBACCS", FRV_BUILTIN_MSUBACCS, UNKNOWN, 0},
{ CODE_FOR_masaccs, "__MASACCS", FRV_BUILTIN_MASACCS, UNKNOWN, 0},
{ CODE_FOR_mdaddaccs, "__MDADDACCS", FRV_BUILTIN_MDADDACCS, UNKNOWN, 0},
{ CODE_FOR_mdsubaccs, "__MDSUBACCS", FRV_BUILTIN_MDSUBACCS, UNKNOWN, 0},
{ CODE_FOR_mdasaccs, "__MDASACCS", FRV_BUILTIN_MDASACCS, UNKNOWN, 0}
};
/* Intrinsics that load a value and then issue a MEMBAR. The load is
a normal move and the ICODE is for the membar. */
static struct builtin_description bdesc_loads[] =
{
{ CODE_FOR_optional_membar_qi, "__builtin_read8",
FRV_BUILTIN_READ8, UNKNOWN, 0},
{ CODE_FOR_optional_membar_hi, "__builtin_read16",
FRV_BUILTIN_READ16, UNKNOWN, 0},
{ CODE_FOR_optional_membar_si, "__builtin_read32",
FRV_BUILTIN_READ32, UNKNOWN, 0},
{ CODE_FOR_optional_membar_di, "__builtin_read64",
FRV_BUILTIN_READ64, UNKNOWN, 0}
};
/* Likewise stores. */
static struct builtin_description bdesc_stores[] =
{
{ CODE_FOR_optional_membar_qi, "__builtin_write8",
FRV_BUILTIN_WRITE8, UNKNOWN, 0},
{ CODE_FOR_optional_membar_hi, "__builtin_write16",
FRV_BUILTIN_WRITE16, UNKNOWN, 0},
{ CODE_FOR_optional_membar_si, "__builtin_write32",
FRV_BUILTIN_WRITE32, UNKNOWN, 0},
{ CODE_FOR_optional_membar_di, "__builtin_write64",
FRV_BUILTIN_WRITE64, UNKNOWN, 0},
};
/* Initialize media builtins. */
static void
frv_init_builtins (void)
{
tree accumulator = integer_type_node;
tree integer = integer_type_node;
tree voidt = void_type_node;
tree uhalf = short_unsigned_type_node;
tree sword1 = long_integer_type_node;
tree uword1 = long_unsigned_type_node;
tree sword2 = long_long_integer_type_node;
tree uword2 = long_long_unsigned_type_node;
tree uword4 = build_pointer_type (uword1);
tree vptr = build_pointer_type (build_type_variant (void_type_node, 0, 1));
tree ubyte = unsigned_char_type_node;
tree iacc = integer_type_node;
#define UNARY(RET, T1) \
build_function_type_list (RET, T1, NULL_TREE)
#define BINARY(RET, T1, T2) \
build_function_type_list (RET, T1, T2, NULL_TREE)
#define TRINARY(RET, T1, T2, T3) \
build_function_type_list (RET, T1, T2, T3, NULL_TREE)
#define QUAD(RET, T1, T2, T3, T4) \
build_function_type_list (RET, T1, T2, T3, T4, NULL_TREE)
tree void_ftype_void = build_function_type_list (voidt, NULL_TREE);
tree void_ftype_acc = UNARY (voidt, accumulator);
tree void_ftype_uw4_uw1 = BINARY (voidt, uword4, uword1);
tree void_ftype_uw4_uw2 = BINARY (voidt, uword4, uword2);
tree void_ftype_acc_uw1 = BINARY (voidt, accumulator, uword1);
tree void_ftype_acc_acc = BINARY (voidt, accumulator, accumulator);
tree void_ftype_acc_uw1_uw1 = TRINARY (voidt, accumulator, uword1, uword1);
tree void_ftype_acc_sw1_sw1 = TRINARY (voidt, accumulator, sword1, sword1);
tree void_ftype_acc_uw2_uw2 = TRINARY (voidt, accumulator, uword2, uword2);
tree void_ftype_acc_sw2_sw2 = TRINARY (voidt, accumulator, sword2, sword2);
tree uw1_ftype_uw1 = UNARY (uword1, uword1);
tree uw1_ftype_sw1 = UNARY (uword1, sword1);
tree uw1_ftype_uw2 = UNARY (uword1, uword2);
tree uw1_ftype_acc = UNARY (uword1, accumulator);
tree uw1_ftype_uh_uh = BINARY (uword1, uhalf, uhalf);
tree uw1_ftype_uw1_uw1 = BINARY (uword1, uword1, uword1);
tree uw1_ftype_uw1_int = BINARY (uword1, uword1, integer);
tree uw1_ftype_acc_uw1 = BINARY (uword1, accumulator, uword1);
tree uw1_ftype_acc_sw1 = BINARY (uword1, accumulator, sword1);
tree uw1_ftype_uw2_uw1 = BINARY (uword1, uword2, uword1);
tree uw1_ftype_uw2_int = BINARY (uword1, uword2, integer);
tree sw1_ftype_int = UNARY (sword1, integer);
tree sw1_ftype_sw1_sw1 = BINARY (sword1, sword1, sword1);
tree sw1_ftype_sw1_int = BINARY (sword1, sword1, integer);
tree uw2_ftype_uw1 = UNARY (uword2, uword1);
tree uw2_ftype_uw1_int = BINARY (uword2, uword1, integer);
tree uw2_ftype_uw2_uw2 = BINARY (uword2, uword2, uword2);
tree uw2_ftype_uw2_int = BINARY (uword2, uword2, integer);
tree uw2_ftype_acc_int = BINARY (uword2, accumulator, integer);
tree uw2_ftype_uh_uh_uh_uh = QUAD (uword2, uhalf, uhalf, uhalf, uhalf);
tree sw2_ftype_sw2_sw2 = BINARY (sword2, sword2, sword2);
tree sw2_ftype_sw2_int = BINARY (sword2, sword2, integer);
tree uw2_ftype_uw1_uw1 = BINARY (uword2, uword1, uword1);
tree sw2_ftype_sw1_sw1 = BINARY (sword2, sword1, sword1);
tree void_ftype_sw1_sw1 = BINARY (voidt, sword1, sword1);
tree void_ftype_iacc_sw2 = BINARY (voidt, iacc, sword2);
tree void_ftype_iacc_sw1 = BINARY (voidt, iacc, sword1);
tree sw1_ftype_sw1 = UNARY (sword1, sword1);
tree sw2_ftype_iacc = UNARY (sword2, iacc);
tree sw1_ftype_iacc = UNARY (sword1, iacc);
tree void_ftype_ptr = UNARY (voidt, const_ptr_type_node);
tree uw1_ftype_vptr = UNARY (uword1, vptr);
tree uw2_ftype_vptr = UNARY (uword2, vptr);
tree void_ftype_vptr_ub = BINARY (voidt, vptr, ubyte);
tree void_ftype_vptr_uh = BINARY (voidt, vptr, uhalf);
tree void_ftype_vptr_uw1 = BINARY (voidt, vptr, uword1);
tree void_ftype_vptr_uw2 = BINARY (voidt, vptr, uword2);
def_builtin ("__MAND", uw1_ftype_uw1_uw1, FRV_BUILTIN_MAND);
def_builtin ("__MOR", uw1_ftype_uw1_uw1, FRV_BUILTIN_MOR);
def_builtin ("__MXOR", uw1_ftype_uw1_uw1, FRV_BUILTIN_MXOR);
def_builtin ("__MNOT", uw1_ftype_uw1, FRV_BUILTIN_MNOT);
def_builtin ("__MROTLI", uw1_ftype_uw1_int, FRV_BUILTIN_MROTLI);
def_builtin ("__MROTRI", uw1_ftype_uw1_int, FRV_BUILTIN_MROTRI);
def_builtin ("__MWCUT", uw1_ftype_uw2_uw1, FRV_BUILTIN_MWCUT);
def_builtin ("__MAVEH", uw1_ftype_uw1_uw1, FRV_BUILTIN_MAVEH);
def_builtin ("__MSLLHI", uw1_ftype_uw1_int, FRV_BUILTIN_MSLLHI);
def_builtin ("__MSRLHI", uw1_ftype_uw1_int, FRV_BUILTIN_MSRLHI);
def_builtin ("__MSRAHI", sw1_ftype_sw1_int, FRV_BUILTIN_MSRAHI);
def_builtin ("__MSATHS", sw1_ftype_sw1_sw1, FRV_BUILTIN_MSATHS);
def_builtin ("__MSATHU", uw1_ftype_uw1_uw1, FRV_BUILTIN_MSATHU);
def_builtin ("__MADDHSS", sw1_ftype_sw1_sw1, FRV_BUILTIN_MADDHSS);
def_builtin ("__MADDHUS", uw1_ftype_uw1_uw1, FRV_BUILTIN_MADDHUS);
def_builtin ("__MSUBHSS", sw1_ftype_sw1_sw1, FRV_BUILTIN_MSUBHSS);
def_builtin ("__MSUBHUS", uw1_ftype_uw1_uw1, FRV_BUILTIN_MSUBHUS);
def_builtin ("__MMULHS", void_ftype_acc_sw1_sw1, FRV_BUILTIN_MMULHS);
def_builtin ("__MMULHU", void_ftype_acc_uw1_uw1, FRV_BUILTIN_MMULHU);
def_builtin ("__MMULXHS", void_ftype_acc_sw1_sw1, FRV_BUILTIN_MMULXHS);
def_builtin ("__MMULXHU", void_ftype_acc_uw1_uw1, FRV_BUILTIN_MMULXHU);
def_builtin ("__MMACHS", void_ftype_acc_sw1_sw1, FRV_BUILTIN_MMACHS);
def_builtin ("__MMACHU", void_ftype_acc_uw1_uw1, FRV_BUILTIN_MMACHU);
def_builtin ("__MMRDHS", void_ftype_acc_sw1_sw1, FRV_BUILTIN_MMRDHS);
def_builtin ("__MMRDHU", void_ftype_acc_uw1_uw1, FRV_BUILTIN_MMRDHU);
def_builtin ("__MQADDHSS", sw2_ftype_sw2_sw2, FRV_BUILTIN_MQADDHSS);
def_builtin ("__MQADDHUS", uw2_ftype_uw2_uw2, FRV_BUILTIN_MQADDHUS);
def_builtin ("__MQSUBHSS", sw2_ftype_sw2_sw2, FRV_BUILTIN_MQSUBHSS);
def_builtin ("__MQSUBHUS", uw2_ftype_uw2_uw2, FRV_BUILTIN_MQSUBHUS);
def_builtin ("__MQMULHS", void_ftype_acc_sw2_sw2, FRV_BUILTIN_MQMULHS);
def_builtin ("__MQMULHU", void_ftype_acc_uw2_uw2, FRV_BUILTIN_MQMULHU);
def_builtin ("__MQMULXHS", void_ftype_acc_sw2_sw2, FRV_BUILTIN_MQMULXHS);
def_builtin ("__MQMULXHU", void_ftype_acc_uw2_uw2, FRV_BUILTIN_MQMULXHU);
def_builtin ("__MQMACHS", void_ftype_acc_sw2_sw2, FRV_BUILTIN_MQMACHS);
def_builtin ("__MQMACHU", void_ftype_acc_uw2_uw2, FRV_BUILTIN_MQMACHU);
def_builtin ("__MCPXRS", void_ftype_acc_sw1_sw1, FRV_BUILTIN_MCPXRS);
def_builtin ("__MCPXRU", void_ftype_acc_uw1_uw1, FRV_BUILTIN_MCPXRU);
def_builtin ("__MCPXIS", void_ftype_acc_sw1_sw1, FRV_BUILTIN_MCPXIS);
def_builtin ("__MCPXIU", void_ftype_acc_uw1_uw1, FRV_BUILTIN_MCPXIU);
def_builtin ("__MQCPXRS", void_ftype_acc_sw2_sw2, FRV_BUILTIN_MQCPXRS);
def_builtin ("__MQCPXRU", void_ftype_acc_uw2_uw2, FRV_BUILTIN_MQCPXRU);
def_builtin ("__MQCPXIS", void_ftype_acc_sw2_sw2, FRV_BUILTIN_MQCPXIS);
def_builtin ("__MQCPXIU", void_ftype_acc_uw2_uw2, FRV_BUILTIN_MQCPXIU);
def_builtin ("__MCUT", uw1_ftype_acc_uw1, FRV_BUILTIN_MCUT);
def_builtin ("__MCUTSS", uw1_ftype_acc_sw1, FRV_BUILTIN_MCUTSS);
def_builtin ("__MEXPDHW", uw1_ftype_uw1_int, FRV_BUILTIN_MEXPDHW);
def_builtin ("__MEXPDHD", uw2_ftype_uw1_int, FRV_BUILTIN_MEXPDHD);
def_builtin ("__MPACKH", uw1_ftype_uh_uh, FRV_BUILTIN_MPACKH);
def_builtin ("__MUNPACKH", uw2_ftype_uw1, FRV_BUILTIN_MUNPACKH);
def_builtin ("__MDPACKH", uw2_ftype_uh_uh_uh_uh, FRV_BUILTIN_MDPACKH);
def_builtin ("__MDUNPACKH", void_ftype_uw4_uw2, FRV_BUILTIN_MDUNPACKH);
def_builtin ("__MBTOH", uw2_ftype_uw1, FRV_BUILTIN_MBTOH);
def_builtin ("__MHTOB", uw1_ftype_uw2, FRV_BUILTIN_MHTOB);
def_builtin ("__MBTOHE", void_ftype_uw4_uw1, FRV_BUILTIN_MBTOHE);
def_builtin ("__MCLRACC", void_ftype_acc, FRV_BUILTIN_MCLRACC);
def_builtin ("__MCLRACCA", void_ftype_void, FRV_BUILTIN_MCLRACCA);
def_builtin ("__MRDACC", uw1_ftype_acc, FRV_BUILTIN_MRDACC);
def_builtin ("__MRDACCG", uw1_ftype_acc, FRV_BUILTIN_MRDACCG);
def_builtin ("__MWTACC", void_ftype_acc_uw1, FRV_BUILTIN_MWTACC);
def_builtin ("__MWTACCG", void_ftype_acc_uw1, FRV_BUILTIN_MWTACCG);
def_builtin ("__Mcop1", uw1_ftype_uw1_uw1, FRV_BUILTIN_MCOP1);
def_builtin ("__Mcop2", uw1_ftype_uw1_uw1, FRV_BUILTIN_MCOP2);
def_builtin ("__MTRAP", void_ftype_void, FRV_BUILTIN_MTRAP);
def_builtin ("__MQXMACHS", void_ftype_acc_sw2_sw2, FRV_BUILTIN_MQXMACHS);
def_builtin ("__MQXMACXHS", void_ftype_acc_sw2_sw2, FRV_BUILTIN_MQXMACXHS);
def_builtin ("__MQMACXHS", void_ftype_acc_sw2_sw2, FRV_BUILTIN_MQMACXHS);
def_builtin ("__MADDACCS", void_ftype_acc_acc, FRV_BUILTIN_MADDACCS);
def_builtin ("__MSUBACCS", void_ftype_acc_acc, FRV_BUILTIN_MSUBACCS);
def_builtin ("__MASACCS", void_ftype_acc_acc, FRV_BUILTIN_MASACCS);
def_builtin ("__MDADDACCS", void_ftype_acc_acc, FRV_BUILTIN_MDADDACCS);
def_builtin ("__MDSUBACCS", void_ftype_acc_acc, FRV_BUILTIN_MDSUBACCS);
def_builtin ("__MDASACCS", void_ftype_acc_acc, FRV_BUILTIN_MDASACCS);
def_builtin ("__MABSHS", uw1_ftype_sw1, FRV_BUILTIN_MABSHS);
def_builtin ("__MDROTLI", uw2_ftype_uw2_int, FRV_BUILTIN_MDROTLI);
def_builtin ("__MCPLHI", uw1_ftype_uw2_int, FRV_BUILTIN_MCPLHI);
def_builtin ("__MCPLI", uw1_ftype_uw2_int, FRV_BUILTIN_MCPLI);
def_builtin ("__MDCUTSSI", uw2_ftype_acc_int, FRV_BUILTIN_MDCUTSSI);
def_builtin ("__MQSATHS", sw2_ftype_sw2_sw2, FRV_BUILTIN_MQSATHS);
def_builtin ("__MHSETLOS", sw1_ftype_sw1_int, FRV_BUILTIN_MHSETLOS);
def_builtin ("__MHSETHIS", sw1_ftype_sw1_int, FRV_BUILTIN_MHSETHIS);
def_builtin ("__MHDSETS", sw1_ftype_int, FRV_BUILTIN_MHDSETS);
def_builtin ("__MHSETLOH", uw1_ftype_uw1_int, FRV_BUILTIN_MHSETLOH);
def_builtin ("__MHSETHIH", uw1_ftype_uw1_int, FRV_BUILTIN_MHSETHIH);
def_builtin ("__MHDSETH", uw1_ftype_uw1_int, FRV_BUILTIN_MHDSETH);
def_builtin ("__MQLCLRHS", sw2_ftype_sw2_sw2, FRV_BUILTIN_MQLCLRHS);
def_builtin ("__MQLMTHS", sw2_ftype_sw2_sw2, FRV_BUILTIN_MQLMTHS);
def_builtin ("__MQSLLHI", uw2_ftype_uw2_int, FRV_BUILTIN_MQSLLHI);
def_builtin ("__MQSRAHI", sw2_ftype_sw2_int, FRV_BUILTIN_MQSRAHI);
def_builtin ("__SMUL", sw2_ftype_sw1_sw1, FRV_BUILTIN_SMUL);
def_builtin ("__UMUL", uw2_ftype_uw1_uw1, FRV_BUILTIN_UMUL);
def_builtin ("__SMASS", void_ftype_sw1_sw1, FRV_BUILTIN_SMASS);
def_builtin ("__SMSSS", void_ftype_sw1_sw1, FRV_BUILTIN_SMSSS);
def_builtin ("__SMU", void_ftype_sw1_sw1, FRV_BUILTIN_SMU);
def_builtin ("__ADDSS", sw1_ftype_sw1_sw1, FRV_BUILTIN_ADDSS);
def_builtin ("__SUBSS", sw1_ftype_sw1_sw1, FRV_BUILTIN_SUBSS);
def_builtin ("__SLASS", sw1_ftype_sw1_sw1, FRV_BUILTIN_SLASS);
def_builtin ("__SCAN", sw1_ftype_sw1_sw1, FRV_BUILTIN_SCAN);
def_builtin ("__SCUTSS", sw1_ftype_sw1, FRV_BUILTIN_SCUTSS);
def_builtin ("__IACCreadll", sw2_ftype_iacc, FRV_BUILTIN_IACCreadll);
def_builtin ("__IACCreadl", sw1_ftype_iacc, FRV_BUILTIN_IACCreadl);
def_builtin ("__IACCsetll", void_ftype_iacc_sw2, FRV_BUILTIN_IACCsetll);
def_builtin ("__IACCsetl", void_ftype_iacc_sw1, FRV_BUILTIN_IACCsetl);
def_builtin ("__data_prefetch0", void_ftype_ptr, FRV_BUILTIN_PREFETCH0);
def_builtin ("__data_prefetch", void_ftype_ptr, FRV_BUILTIN_PREFETCH);
def_builtin ("__builtin_read8", uw1_ftype_vptr, FRV_BUILTIN_READ8);
def_builtin ("__builtin_read16", uw1_ftype_vptr, FRV_BUILTIN_READ16);
def_builtin ("__builtin_read32", uw1_ftype_vptr, FRV_BUILTIN_READ32);
def_builtin ("__builtin_read64", uw2_ftype_vptr, FRV_BUILTIN_READ64);
def_builtin ("__builtin_write8", void_ftype_vptr_ub, FRV_BUILTIN_WRITE8);
def_builtin ("__builtin_write16", void_ftype_vptr_uh, FRV_BUILTIN_WRITE16);
def_builtin ("__builtin_write32", void_ftype_vptr_uw1, FRV_BUILTIN_WRITE32);
def_builtin ("__builtin_write64", void_ftype_vptr_uw2, FRV_BUILTIN_WRITE64);
#undef UNARY
#undef BINARY
#undef TRINARY
#undef QUAD
}
/* Set the names for various arithmetic operations according to the
FRV ABI. */
static void
frv_init_libfuncs (void)
{
set_optab_libfunc (smod_optab, SImode, "__modi");
set_optab_libfunc (umod_optab, SImode, "__umodi");
set_optab_libfunc (add_optab, DImode, "__addll");
set_optab_libfunc (sub_optab, DImode, "__subll");
set_optab_libfunc (smul_optab, DImode, "__mulll");
set_optab_libfunc (sdiv_optab, DImode, "__divll");
set_optab_libfunc (smod_optab, DImode, "__modll");
set_optab_libfunc (umod_optab, DImode, "__umodll");
set_optab_libfunc (and_optab, DImode, "__andll");
set_optab_libfunc (ior_optab, DImode, "__orll");
set_optab_libfunc (xor_optab, DImode, "__xorll");
set_optab_libfunc (one_cmpl_optab, DImode, "__notll");
set_optab_libfunc (add_optab, SFmode, "__addf");
set_optab_libfunc (sub_optab, SFmode, "__subf");
set_optab_libfunc (smul_optab, SFmode, "__mulf");
set_optab_libfunc (sdiv_optab, SFmode, "__divf");
set_optab_libfunc (add_optab, DFmode, "__addd");
set_optab_libfunc (sub_optab, DFmode, "__subd");
set_optab_libfunc (smul_optab, DFmode, "__muld");
set_optab_libfunc (sdiv_optab, DFmode, "__divd");
set_conv_libfunc (sext_optab, DFmode, SFmode, "__ftod");
set_conv_libfunc (trunc_optab, SFmode, DFmode, "__dtof");
set_conv_libfunc (sfix_optab, SImode, SFmode, "__ftoi");
set_conv_libfunc (sfix_optab, DImode, SFmode, "__ftoll");
set_conv_libfunc (sfix_optab, SImode, DFmode, "__dtoi");
set_conv_libfunc (sfix_optab, DImode, DFmode, "__dtoll");
set_conv_libfunc (ufix_optab, SImode, SFmode, "__ftoui");
set_conv_libfunc (ufix_optab, DImode, SFmode, "__ftoull");
set_conv_libfunc (ufix_optab, SImode, DFmode, "__dtoui");
set_conv_libfunc (ufix_optab, DImode, DFmode, "__dtoull");
set_conv_libfunc (sfloat_optab, SFmode, SImode, "__itof");
set_conv_libfunc (sfloat_optab, SFmode, DImode, "__lltof");
set_conv_libfunc (sfloat_optab, DFmode, SImode, "__itod");
set_conv_libfunc (sfloat_optab, DFmode, DImode, "__lltod");
}
/* Convert an integer constant to an accumulator register. ICODE is the
code of the target instruction, OPNUM is the number of the
accumulator operand and OPVAL is the constant integer. Try both
ACC and ACCG registers; only report an error if neither fit the
instruction. */
static rtx
frv_int_to_acc (enum insn_code icode, int opnum, rtx opval)
{
rtx reg;
int i;
/* ACCs and ACCGs are implicit global registers if media intrinsics
are being used. We set up this lazily to avoid creating lots of
unnecessary call_insn rtl in non-media code. */
for (i = 0; i <= ACC_MASK; i++)
if ((i & ACC_MASK) == i)
global_regs[i + ACC_FIRST] = global_regs[i + ACCG_FIRST] = 1;
if (GET_CODE (opval) != CONST_INT)
{
error ("accumulator is not a constant integer");
return NULL_RTX;
}
if ((INTVAL (opval) & ~ACC_MASK) != 0)
{
error ("accumulator number is out of bounds");
return NULL_RTX;
}
reg = gen_rtx_REG (insn_data[icode].operand[opnum].mode,
ACC_FIRST + INTVAL (opval));
if (! (*insn_data[icode].operand[opnum].predicate) (reg, VOIDmode))
SET_REGNO (reg, ACCG_FIRST + INTVAL (opval));
if (! (*insn_data[icode].operand[opnum].predicate) (reg, VOIDmode))
{
error ("inappropriate accumulator for %qs", insn_data[icode].name);
return NULL_RTX;
}
return reg;
}
/* If an ACC rtx has mode MODE, return the mode that the matching ACCG
should have. */
static machine_mode
frv_matching_accg_mode (machine_mode mode)
{
switch (mode)
{
case V4SImode:
return V4QImode;
case DImode:
return HImode;
case SImode:
return QImode;
default:
gcc_unreachable ();
}
}
/* Given that a __builtin_read or __builtin_write function is accessing
address ADDRESS, return the value that should be used as operand 1
of the membar. */
static rtx
frv_io_address_cookie (rtx address)
{
return (GET_CODE (address) == CONST_INT
? GEN_INT (INTVAL (address) / 8 * 8)
: const0_rtx);
}
/* Return the accumulator guard that should be paired with accumulator
register ACC. The mode of the returned register is in the same
class as ACC, but is four times smaller. */
rtx
frv_matching_accg_for_acc (rtx acc)
{
return gen_rtx_REG (frv_matching_accg_mode (GET_MODE (acc)),
REGNO (acc) - ACC_FIRST + ACCG_FIRST);
}
/* Read the requested argument from the call EXP given by INDEX.
Return the value as an rtx. */
static rtx
frv_read_argument (tree exp, unsigned int index)
{
return expand_normal (CALL_EXPR_ARG (exp, index));
}
/* Like frv_read_argument, but interpret the argument as the number
of an IACC register and return a (reg:MODE ...) rtx for it. */
static rtx
frv_read_iacc_argument (machine_mode mode, tree call,
unsigned int index)
{
int i, regno;
rtx op;
op = frv_read_argument (call, index);
if (GET_CODE (op) != CONST_INT
|| INTVAL (op) < 0
|| INTVAL (op) > IACC_LAST - IACC_FIRST
|| ((INTVAL (op) * 4) & (GET_MODE_SIZE (mode) - 1)) != 0)
{
error ("invalid IACC argument");
op = const0_rtx;
}
/* IACCs are implicit global registers. We set up this lazily to
avoid creating lots of unnecessary call_insn rtl when IACCs aren't
being used. */
regno = INTVAL (op) + IACC_FIRST;
for (i = 0; i < HARD_REGNO_NREGS (regno, mode); i++)
global_regs[regno + i] = 1;
return gen_rtx_REG (mode, regno);
}
/* Return true if OPVAL can be used for operand OPNUM of instruction ICODE.
The instruction should require a constant operand of some sort. The
function prints an error if OPVAL is not valid. */
static int
frv_check_constant_argument (enum insn_code icode, int opnum, rtx opval)
{
if (GET_CODE (opval) != CONST_INT)
{
error ("%qs expects a constant argument", insn_data[icode].name);
return FALSE;
}
if (! (*insn_data[icode].operand[opnum].predicate) (opval, VOIDmode))
{
error ("constant argument out of range for %qs", insn_data[icode].name);
return FALSE;
}
return TRUE;
}
/* Return a legitimate rtx for instruction ICODE's return value. Use TARGET
if it's not null, has the right mode, and satisfies operand 0's
predicate. */
static rtx
frv_legitimize_target (enum insn_code icode, rtx target)
{
machine_mode mode = insn_data[icode].operand[0].mode;
if (! target
|| GET_MODE (target) != mode
|| ! (*insn_data[icode].operand[0].predicate) (target, mode))
return gen_reg_rtx (mode);
else
return target;
}
/* Given that ARG is being passed as operand OPNUM to instruction ICODE,
check whether ARG satisfies the operand's constraints. If it doesn't,
copy ARG to a temporary register and return that. Otherwise return ARG
itself. */
static rtx
frv_legitimize_argument (enum insn_code icode, int opnum, rtx arg)
{
machine_mode mode = insn_data[icode].operand[opnum].mode;
if ((*insn_data[icode].operand[opnum].predicate) (arg, mode))
return arg;
else
return copy_to_mode_reg (mode, arg);
}
/* Return a volatile memory reference of mode MODE whose address is ARG. */
static rtx
frv_volatile_memref (machine_mode mode, rtx arg)
{
rtx mem;
mem = gen_rtx_MEM (mode, memory_address (mode, arg));
MEM_VOLATILE_P (mem) = 1;
return mem;
}
/* Expand builtins that take a single, constant argument. At the moment,
only MHDSETS falls into this category. */
static rtx
frv_expand_set_builtin (enum insn_code icode, tree call, rtx target)
{
rtx pat;
rtx op0 = frv_read_argument (call, 0);
if (! frv_check_constant_argument (icode, 1, op0))
return NULL_RTX;
target = frv_legitimize_target (icode, target);
pat = GEN_FCN (icode) (target, op0);
if (! pat)
return NULL_RTX;
emit_insn (pat);
return target;
}
/* Expand builtins that take one operand. */
static rtx
frv_expand_unop_builtin (enum insn_code icode, tree call, rtx target)
{
rtx pat;
rtx op0 = frv_read_argument (call, 0);
target = frv_legitimize_target (icode, target);
op0 = frv_legitimize_argument (icode, 1, op0);
pat = GEN_FCN (icode) (target, op0);
if (! pat)
return NULL_RTX;
emit_insn (pat);
return target;
}
/* Expand builtins that take two operands. */
static rtx
frv_expand_binop_builtin (enum insn_code icode, tree call, rtx target)
{
rtx pat;
rtx op0 = frv_read_argument (call, 0);
rtx op1 = frv_read_argument (call, 1);
target = frv_legitimize_target (icode, target);
op0 = frv_legitimize_argument (icode, 1, op0);
op1 = frv_legitimize_argument (icode, 2, op1);
pat = GEN_FCN (icode) (target, op0, op1);
if (! pat)
return NULL_RTX;
emit_insn (pat);
return target;
}
/* Expand cut-style builtins, which take two operands and an implicit ACCG
one. */
static rtx
frv_expand_cut_builtin (enum insn_code icode, tree call, rtx target)
{
rtx pat;
rtx op0 = frv_read_argument (call, 0);
rtx op1 = frv_read_argument (call, 1);
rtx op2;
target = frv_legitimize_target (icode, target);
op0 = frv_int_to_acc (icode, 1, op0);
if (! op0)
return NULL_RTX;
if (icode == CODE_FOR_mdcutssi || GET_CODE (op1) == CONST_INT)
{
if (! frv_check_constant_argument (icode, 2, op1))
return NULL_RTX;
}
else
op1 = frv_legitimize_argument (icode, 2, op1);
op2 = frv_matching_accg_for_acc (op0);
pat = GEN_FCN (icode) (target, op0, op1, op2);
if (! pat)
return NULL_RTX;
emit_insn (pat);
return target;
}
/* Expand builtins that take two operands and the second is immediate. */
static rtx
frv_expand_binopimm_builtin (enum insn_code icode, tree call, rtx target)
{
rtx pat;
rtx op0 = frv_read_argument (call, 0);
rtx op1 = frv_read_argument (call, 1);
if (! frv_check_constant_argument (icode, 2, op1))
return NULL_RTX;
target = frv_legitimize_target (icode, target);
op0 = frv_legitimize_argument (icode, 1, op0);
pat = GEN_FCN (icode) (target, op0, op1);
if (! pat)
return NULL_RTX;
emit_insn (pat);
return target;
}
/* Expand builtins that take two operands, the first operand being a pointer to
ints and return void. */
static rtx
frv_expand_voidbinop_builtin (enum insn_code icode, tree call)
{
rtx pat;
rtx op0 = frv_read_argument (call, 0);
rtx op1 = frv_read_argument (call, 1);
machine_mode mode0 = insn_data[icode].operand[0].mode;
rtx addr;
if (GET_CODE (op0) != MEM)
{
rtx reg = op0;
if (! offsettable_address_p (0, mode0, op0))
{
reg = gen_reg_rtx (Pmode);
emit_insn (gen_rtx_SET (VOIDmode, reg, op0));
}
op0 = gen_rtx_MEM (SImode, reg);
}
addr = XEXP (op0, 0);
if (! offsettable_address_p (0, mode0, addr))
addr = copy_to_mode_reg (Pmode, op0);
op0 = change_address (op0, V4SImode, addr);
op1 = frv_legitimize_argument (icode, 1, op1);
pat = GEN_FCN (icode) (op0, op1);
if (! pat)
return 0;
emit_insn (pat);
return 0;
}
/* Expand builtins that take two long operands and return void. */
static rtx
frv_expand_int_void2arg (enum insn_code icode, tree call)
{
rtx pat;
rtx op0 = frv_read_argument (call, 0);
rtx op1 = frv_read_argument (call, 1);
op0 = frv_legitimize_argument (icode, 1, op0);
op1 = frv_legitimize_argument (icode, 1, op1);
pat = GEN_FCN (icode) (op0, op1);
if (! pat)
return NULL_RTX;
emit_insn (pat);
return NULL_RTX;
}
/* Expand prefetch builtins. These take a single address as argument. */
static rtx
frv_expand_prefetches (enum insn_code icode, tree call)
{
rtx pat;
rtx op0 = frv_read_argument (call, 0);
pat = GEN_FCN (icode) (force_reg (Pmode, op0));
if (! pat)
return 0;
emit_insn (pat);
return 0;
}
/* Expand builtins that take three operands and return void. The first
argument must be a constant that describes a pair or quad accumulators. A
fourth argument is created that is the accumulator guard register that
corresponds to the accumulator. */
static rtx
frv_expand_voidtriop_builtin (enum insn_code icode, tree call)
{
rtx pat;
rtx op0 = frv_read_argument (call, 0);
rtx op1 = frv_read_argument (call, 1);
rtx op2 = frv_read_argument (call, 2);
rtx op3;
op0 = frv_int_to_acc (icode, 0, op0);
if (! op0)
return NULL_RTX;
op1 = frv_legitimize_argument (icode, 1, op1);
op2 = frv_legitimize_argument (icode, 2, op2);
op3 = frv_matching_accg_for_acc (op0);
pat = GEN_FCN (icode) (op0, op1, op2, op3);
if (! pat)
return NULL_RTX;
emit_insn (pat);
return NULL_RTX;
}
/* Expand builtins that perform accumulator-to-accumulator operations.
These builtins take two accumulator numbers as argument and return
void. */
static rtx
frv_expand_voidaccop_builtin (enum insn_code icode, tree call)
{
rtx pat;
rtx op0 = frv_read_argument (call, 0);
rtx op1 = frv_read_argument (call, 1);
rtx op2;
rtx op3;
op0 = frv_int_to_acc (icode, 0, op0);
if (! op0)
return NULL_RTX;
op1 = frv_int_to_acc (icode, 1, op1);
if (! op1)
return NULL_RTX;
op2 = frv_matching_accg_for_acc (op0);
op3 = frv_matching_accg_for_acc (op1);
pat = GEN_FCN (icode) (op0, op1, op2, op3);
if (! pat)
return NULL_RTX;
emit_insn (pat);
return NULL_RTX;
}
/* Expand a __builtin_read* function. ICODE is the instruction code for the
membar and TARGET_MODE is the mode that the loaded value should have. */
static rtx
frv_expand_load_builtin (enum insn_code icode, machine_mode target_mode,
tree call, rtx target)
{
rtx op0 = frv_read_argument (call, 0);
rtx cookie = frv_io_address_cookie (op0);
if (target == 0 || !REG_P (target))
target = gen_reg_rtx (target_mode);
op0 = frv_volatile_memref (insn_data[icode].operand[0].mode, op0);
convert_move (target, op0, 1);
emit_insn (GEN_FCN (icode) (copy_rtx (op0), cookie, GEN_INT (FRV_IO_READ)));
cfun->machine->has_membar_p = 1;
return target;
}
/* Likewise __builtin_write* functions. */
static rtx
frv_expand_store_builtin (enum insn_code icode, tree call)
{
rtx op0 = frv_read_argument (call, 0);
rtx op1 = frv_read_argument (call, 1);
rtx cookie = frv_io_address_cookie (op0);
op0 = frv_volatile_memref (insn_data[icode].operand[0].mode, op0);
convert_move (op0, force_reg (insn_data[icode].operand[0].mode, op1), 1);
emit_insn (GEN_FCN (icode) (copy_rtx (op0), cookie, GEN_INT (FRV_IO_WRITE)));
cfun->machine->has_membar_p = 1;
return NULL_RTX;
}
/* Expand the MDPACKH builtin. It takes four unsigned short arguments and
each argument forms one word of the two double-word input registers.
CALL is the tree for the call and TARGET, if nonnull, suggests a good place
to put the return value. */
static rtx
frv_expand_mdpackh_builtin (tree call, rtx target)
{
enum insn_code icode = CODE_FOR_mdpackh;
rtx pat, op0, op1;
rtx arg1 = frv_read_argument (call, 0);
rtx arg2 = frv_read_argument (call, 1);
rtx arg3 = frv_read_argument (call, 2);
rtx arg4 = frv_read_argument (call, 3);
target = frv_legitimize_target (icode, target);
op0 = gen_reg_rtx (DImode);
op1 = gen_reg_rtx (DImode);
/* The high half of each word is not explicitly initialized, so indicate
that the input operands are not live before this point. */
emit_clobber (op0);
emit_clobber (op1);
/* Move each argument into the low half of its associated input word. */
emit_move_insn (simplify_gen_subreg (HImode, op0, DImode, 2), arg1);
emit_move_insn (simplify_gen_subreg (HImode, op0, DImode, 6), arg2);
emit_move_insn (simplify_gen_subreg (HImode, op1, DImode, 2), arg3);
emit_move_insn (simplify_gen_subreg (HImode, op1, DImode, 6), arg4);
pat = GEN_FCN (icode) (target, op0, op1);
if (! pat)
return NULL_RTX;
emit_insn (pat);
return target;
}
/* Expand the MCLRACC builtin. This builtin takes a single accumulator
number as argument. */
static rtx
frv_expand_mclracc_builtin (tree call)
{
enum insn_code icode = CODE_FOR_mclracc;
rtx pat;
rtx op0 = frv_read_argument (call, 0);
op0 = frv_int_to_acc (icode, 0, op0);
if (! op0)
return NULL_RTX;
pat = GEN_FCN (icode) (op0);
if (pat)
emit_insn (pat);
return NULL_RTX;
}
/* Expand builtins that take no arguments. */
static rtx
frv_expand_noargs_builtin (enum insn_code icode)
{
rtx pat = GEN_FCN (icode) (const0_rtx);
if (pat)
emit_insn (pat);
return NULL_RTX;
}
/* Expand MRDACC and MRDACCG. These builtins take a single accumulator
number or accumulator guard number as argument and return an SI integer. */
static rtx
frv_expand_mrdacc_builtin (enum insn_code icode, tree call)
{
rtx pat;
rtx target = gen_reg_rtx (SImode);
rtx op0 = frv_read_argument (call, 0);
op0 = frv_int_to_acc (icode, 1, op0);
if (! op0)
return NULL_RTX;
pat = GEN_FCN (icode) (target, op0);
if (! pat)
return NULL_RTX;
emit_insn (pat);
return target;
}
/* Expand MWTACC and MWTACCG. These builtins take an accumulator or
accumulator guard as their first argument and an SImode value as their
second. */
static rtx
frv_expand_mwtacc_builtin (enum insn_code icode, tree call)
{
rtx pat;
rtx op0 = frv_read_argument (call, 0);
rtx op1 = frv_read_argument (call, 1);
op0 = frv_int_to_acc (icode, 0, op0);
if (! op0)
return NULL_RTX;
op1 = frv_legitimize_argument (icode, 1, op1);
pat = GEN_FCN (icode) (op0, op1);
if (pat)
emit_insn (pat);
return NULL_RTX;
}
/* Emit a move from SRC to DEST in SImode chunks. This can be used
to move DImode values into and out of IACC0. */
static void
frv_split_iacc_move (rtx dest, rtx src)
{
machine_mode inner;
int i;
inner = GET_MODE (dest);
for (i = 0; i < GET_MODE_SIZE (inner); i += GET_MODE_SIZE (SImode))
emit_move_insn (simplify_gen_subreg (SImode, dest, inner, i),
simplify_gen_subreg (SImode, src, inner, i));
}
/* Expand builtins. */
static rtx
frv_expand_builtin (tree exp,
rtx target,
rtx subtarget ATTRIBUTE_UNUSED,
machine_mode mode ATTRIBUTE_UNUSED,
int ignore ATTRIBUTE_UNUSED)
{
tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
unsigned fcode = (unsigned)DECL_FUNCTION_CODE (fndecl);
unsigned i;
struct builtin_description *d;
if (fcode < FRV_BUILTIN_FIRST_NONMEDIA && !TARGET_MEDIA)
{
error ("media functions are not available unless -mmedia is used");
return NULL_RTX;
}
switch (fcode)
{
case FRV_BUILTIN_MCOP1:
case FRV_BUILTIN_MCOP2:
case FRV_BUILTIN_MDUNPACKH:
case FRV_BUILTIN_MBTOHE:
if (! TARGET_MEDIA_REV1)
{
error ("this media function is only available on the fr500");
return NULL_RTX;
}
break;
case FRV_BUILTIN_MQXMACHS:
case FRV_BUILTIN_MQXMACXHS:
case FRV_BUILTIN_MQMACXHS:
case FRV_BUILTIN_MADDACCS:
case FRV_BUILTIN_MSUBACCS:
case FRV_BUILTIN_MASACCS:
case FRV_BUILTIN_MDADDACCS:
case FRV_BUILTIN_MDSUBACCS:
case FRV_BUILTIN_MDASACCS:
case FRV_BUILTIN_MABSHS:
case FRV_BUILTIN_MDROTLI:
case FRV_BUILTIN_MCPLHI:
case FRV_BUILTIN_MCPLI:
case FRV_BUILTIN_MDCUTSSI:
case FRV_BUILTIN_MQSATHS:
case FRV_BUILTIN_MHSETLOS:
case FRV_BUILTIN_MHSETLOH:
case FRV_BUILTIN_MHSETHIS:
case FRV_BUILTIN_MHSETHIH:
case FRV_BUILTIN_MHDSETS:
case FRV_BUILTIN_MHDSETH:
if (! TARGET_MEDIA_REV2)
{
error ("this media function is only available on the fr400"
" and fr550");
return NULL_RTX;
}
break;
case FRV_BUILTIN_SMASS:
case FRV_BUILTIN_SMSSS:
case FRV_BUILTIN_SMU:
case FRV_BUILTIN_ADDSS:
case FRV_BUILTIN_SUBSS:
case FRV_BUILTIN_SLASS:
case FRV_BUILTIN_SCUTSS:
case FRV_BUILTIN_IACCreadll:
case FRV_BUILTIN_IACCreadl:
case FRV_BUILTIN_IACCsetll:
case FRV_BUILTIN_IACCsetl:
if (!TARGET_FR405_BUILTINS)
{
error ("this builtin function is only available"
" on the fr405 and fr450");
return NULL_RTX;
}
break;
case FRV_BUILTIN_PREFETCH:
if (!TARGET_FR500_FR550_BUILTINS)
{
error ("this builtin function is only available on the fr500"
" and fr550");
return NULL_RTX;
}
break;
case FRV_BUILTIN_MQLCLRHS:
case FRV_BUILTIN_MQLMTHS:
case FRV_BUILTIN_MQSLLHI:
case FRV_BUILTIN_MQSRAHI:
if (!TARGET_MEDIA_FR450)
{
error ("this builtin function is only available on the fr450");
return NULL_RTX;
}
break;
default:
break;
}
/* Expand unique builtins. */
switch (fcode)
{
case FRV_BUILTIN_MTRAP:
return frv_expand_noargs_builtin (CODE_FOR_mtrap);
case FRV_BUILTIN_MCLRACC:
return frv_expand_mclracc_builtin (exp);
case FRV_BUILTIN_MCLRACCA:
if (TARGET_ACC_8)
return frv_expand_noargs_builtin (CODE_FOR_mclracca8);
else
return frv_expand_noargs_builtin (CODE_FOR_mclracca4);
case FRV_BUILTIN_MRDACC:
return frv_expand_mrdacc_builtin (CODE_FOR_mrdacc, exp);
case FRV_BUILTIN_MRDACCG:
return frv_expand_mrdacc_builtin (CODE_FOR_mrdaccg, exp);
case FRV_BUILTIN_MWTACC:
return frv_expand_mwtacc_builtin (CODE_FOR_mwtacc, exp);
case FRV_BUILTIN_MWTACCG:
return frv_expand_mwtacc_builtin (CODE_FOR_mwtaccg, exp);
case FRV_BUILTIN_MDPACKH:
return frv_expand_mdpackh_builtin (exp, target);
case FRV_BUILTIN_IACCreadll:
{
rtx src = frv_read_iacc_argument (DImode, exp, 0);
if (target == 0 || !REG_P (target))
target = gen_reg_rtx (DImode);
frv_split_iacc_move (target, src);
return target;
}
case FRV_BUILTIN_IACCreadl:
return frv_read_iacc_argument (SImode, exp, 0);
case FRV_BUILTIN_IACCsetll:
{
rtx dest = frv_read_iacc_argument (DImode, exp, 0);
rtx src = frv_read_argument (exp, 1);
frv_split_iacc_move (dest, force_reg (DImode, src));
return 0;
}
case FRV_BUILTIN_IACCsetl:
{
rtx dest = frv_read_iacc_argument (SImode, exp, 0);
rtx src = frv_read_argument (exp, 1);
emit_move_insn (dest, force_reg (SImode, src));
return 0;
}
default:
break;
}
/* Expand groups of builtins. */
for (i = 0, d = bdesc_set; i < ARRAY_SIZE (bdesc_set); i++, d++)
if (d->code == fcode)
return frv_expand_set_builtin (d->icode, exp, target);
for (i = 0, d = bdesc_1arg; i < ARRAY_SIZE (bdesc_1arg); i++, d++)
if (d->code == fcode)
return frv_expand_unop_builtin (d->icode, exp, target);
for (i = 0, d = bdesc_2arg; i < ARRAY_SIZE (bdesc_2arg); i++, d++)
if (d->code == fcode)
return frv_expand_binop_builtin (d->icode, exp, target);
for (i = 0, d = bdesc_cut; i < ARRAY_SIZE (bdesc_cut); i++, d++)
if (d->code == fcode)
return frv_expand_cut_builtin (d->icode, exp, target);
for (i = 0, d = bdesc_2argimm; i < ARRAY_SIZE (bdesc_2argimm); i++, d++)
if (d->code == fcode)
return frv_expand_binopimm_builtin (d->icode, exp, target);
for (i = 0, d = bdesc_void2arg; i < ARRAY_SIZE (bdesc_void2arg); i++, d++)
if (d->code == fcode)
return frv_expand_voidbinop_builtin (d->icode, exp);
for (i = 0, d = bdesc_void3arg; i < ARRAY_SIZE (bdesc_void3arg); i++, d++)
if (d->code == fcode)
return frv_expand_voidtriop_builtin (d->icode, exp);
for (i = 0, d = bdesc_voidacc; i < ARRAY_SIZE (bdesc_voidacc); i++, d++)
if (d->code == fcode)
return frv_expand_voidaccop_builtin (d->icode, exp);
for (i = 0, d = bdesc_int_void2arg;
i < ARRAY_SIZE (bdesc_int_void2arg); i++, d++)
if (d->code == fcode)
return frv_expand_int_void2arg (d->icode, exp);
for (i = 0, d = bdesc_prefetches;
i < ARRAY_SIZE (bdesc_prefetches); i++, d++)
if (d->code == fcode)
return frv_expand_prefetches (d->icode, exp);
for (i = 0, d = bdesc_loads; i < ARRAY_SIZE (bdesc_loads); i++, d++)
if (d->code == fcode)
return frv_expand_load_builtin (d->icode, TYPE_MODE (TREE_TYPE (exp)),
exp, target);
for (i = 0, d = bdesc_stores; i < ARRAY_SIZE (bdesc_stores); i++, d++)
if (d->code == fcode)
return frv_expand_store_builtin (d->icode, exp);
return 0;
}
static bool
frv_in_small_data_p (const_tree decl)
{
HOST_WIDE_INT size;
const char *section_name;
/* Don't apply the -G flag to internal compiler structures. We
should leave such structures in the main data section, partly
for efficiency and partly because the size of some of them
(such as C++ typeinfos) is not known until later. */
if (TREE_CODE (decl) != VAR_DECL || DECL_ARTIFICIAL (decl))
return false;
/* If we already know which section the decl should be in, see if
it's a small data section. */
section_name = DECL_SECTION_NAME (decl);
if (section_name)
{
if (frv_string_begins_with (section_name, ".sdata"))
return true;
if (frv_string_begins_with (section_name, ".sbss"))
return true;
return false;
}
size = int_size_in_bytes (TREE_TYPE (decl));
if (size > 0 && size <= g_switch_value)
return true;
return false;
}
static bool
frv_rtx_costs (rtx x,
int code ATTRIBUTE_UNUSED,
int outer_code ATTRIBUTE_UNUSED,
int opno ATTRIBUTE_UNUSED,
int *total,
bool speed ATTRIBUTE_UNUSED)
{
if (outer_code == MEM)
{
/* Don't differentiate between memory addresses. All the ones
we accept have equal cost. */
*total = COSTS_N_INSNS (0);
return true;
}
switch (code)
{
case CONST_INT:
/* Make 12-bit integers really cheap. */
if (IN_RANGE (INTVAL (x), -2048, 2047))
{
*total = 0;
return true;
}
/* Fall through. */
case CONST:
case LABEL_REF:
case SYMBOL_REF:
case CONST_DOUBLE:
*total = COSTS_N_INSNS (2);
return true;
case PLUS:
case MINUS:
case AND:
case IOR:
case XOR:
case ASHIFT:
case ASHIFTRT:
case LSHIFTRT:
case NOT:
case NEG:
case COMPARE:
if (GET_MODE (x) == SImode)
*total = COSTS_N_INSNS (1);
else if (GET_MODE (x) == DImode)
*total = COSTS_N_INSNS (2);
else
*total = COSTS_N_INSNS (3);
return true;
case MULT:
if (GET_MODE (x) == SImode)
*total = COSTS_N_INSNS (2);
else
*total = COSTS_N_INSNS (6); /* guess */
return true;
case DIV:
case UDIV:
case MOD:
case UMOD:
*total = COSTS_N_INSNS (18);
return true;
case MEM:
*total = COSTS_N_INSNS (3);
return true;
default:
return false;
}
}
static void
frv_asm_out_constructor (rtx symbol, int priority ATTRIBUTE_UNUSED)
{
switch_to_section (ctors_section);
assemble_align (POINTER_SIZE);
if (TARGET_FDPIC)
{
int ok = frv_assemble_integer (symbol, POINTER_SIZE / BITS_PER_UNIT, 1);
gcc_assert (ok);
return;
}
assemble_integer_with_op ("\t.picptr\t", symbol);
}
static void
frv_asm_out_destructor (rtx symbol, int priority ATTRIBUTE_UNUSED)
{
switch_to_section (dtors_section);
assemble_align (POINTER_SIZE);
if (TARGET_FDPIC)
{
int ok = frv_assemble_integer (symbol, POINTER_SIZE / BITS_PER_UNIT, 1);
gcc_assert (ok);
return;
}
assemble_integer_with_op ("\t.picptr\t", symbol);
}
/* Worker function for TARGET_STRUCT_VALUE_RTX. */
static rtx
frv_struct_value_rtx (tree fntype ATTRIBUTE_UNUSED,
int incoming ATTRIBUTE_UNUSED)
{
return gen_rtx_REG (Pmode, FRV_STRUCT_VALUE_REGNUM);
}
#define TLS_BIAS (2048 - 16)
/* This is called from dwarf2out.c via TARGET_ASM_OUTPUT_DWARF_DTPREL.
We need to emit DTP-relative relocations. */
static void
frv_output_dwarf_dtprel (FILE *file, int size, rtx x)
{
gcc_assert (size == 4);
fputs ("\t.picptr\ttlsmoff(", file);
/* We want the unbiased TLS offset, so add the bias to the
expression, such that the implicit biasing cancels out. */
output_addr_const (file, plus_constant (Pmode, x, TLS_BIAS));
fputs (")", file);
}
#include "gt-frv.h"
|