summaryrefslogtreecommitdiff
path: root/gcc/config/dsp16xx/dsp16xx.c
blob: 60b8deb46ce846eb8cc0f001422f92032bd7ead7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
/* Subroutines for assembler code output on the DSP1610.
   Copyright (C) 1994, 1995, 1997, 1998, 2001 Free Software Foundation, Inc.
   Contributed by Michael Collison (collison@isisinc.net).

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING.  If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.  */

/* Some output-actions in dsp1600.md need these.  */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "rtl.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "real.h"
#include "insn-config.h"
#include "conditions.h"
#include "output.h"
#include "insn-attr.h"
#include "tree.h"
#include "expr.h"
#include "function.h"
#include "flags.h"
#include "ggc.h"
#include "toplev.h"
#include "recog.h"
#include "tm_p.h"
#include "target.h"
#include "target-def.h"

const char *text_seg_name;
const char *rsect_text;
const char *data_seg_name;
const char *rsect_data;
const char *bss_seg_name;
const char *rsect_bss;
const char *const_seg_name;
const char *rsect_const;

const char *chip_name;
const char *save_chip_name;

/* Save the operands of a compare. The 16xx has not lt or gt, so
   in these cases we swap the operands and reverse the condition.  */

rtx dsp16xx_compare_op0;
rtx dsp16xx_compare_op1;
bool dsp16xx_compare_gen;

static const char *fp;
static const char *sp;
static const char *rr;
static const char *a1h;

struct dsp16xx_frame_info current_frame_info;
struct dsp16xx_frame_info zero_frame_info;

rtx dsp16xx_addhf3_libcall = (rtx) 0;
rtx dsp16xx_subhf3_libcall = (rtx) 0;
rtx dsp16xx_mulhf3_libcall = (rtx) 0;
rtx dsp16xx_divhf3_libcall = (rtx) 0;
rtx dsp16xx_cmphf3_libcall = (rtx) 0;
rtx dsp16xx_fixhfhi2_libcall = (rtx) 0;
rtx dsp16xx_floathihf2_libcall = (rtx) 0;
rtx dsp16xx_neghf2_libcall = (rtx) 0;

rtx dsp16xx_mulhi3_libcall = (rtx) 0;
rtx dsp16xx_udivqi3_libcall = (rtx) 0;
rtx dsp16xx_udivhi3_libcall = (rtx) 0;
rtx dsp16xx_divqi3_libcall = (rtx) 0;
rtx dsp16xx_divhi3_libcall = (rtx) 0;
rtx dsp16xx_modqi3_libcall = (rtx) 0;
rtx dsp16xx_modhi3_libcall = (rtx) 0;
rtx dsp16xx_umodqi3_libcall = (rtx) 0;
rtx dsp16xx_umodhi3_libcall = (rtx) 0;
rtx dsp16xx_ashrhi3_libcall = (rtx) 0;
rtx dsp16xx_ashlhi3_libcall = (rtx) 0;
rtx dsp16xx_ucmphi2_libcall = (rtx) 0;
rtx dsp16xx_lshrhi3_libcall = (rtx) 0;

static const char *const himode_reg_name[] = HIMODE_REGISTER_NAMES;

#define SHIFT_INDEX_1   0
#define SHIFT_INDEX_4   1
#define SHIFT_INDEX_8   2
#define SHIFT_INDEX_16  3

static const char *const ashift_right_asm[] = 
{
  "%0=%0>>1",
  "%0=%0>>4",
  "%0=%0>>8",
  "%0=%0>>16"
};

static const char *const ashift_right_asm_first[] = 
{
  "%0=%1>>1",
  "%0=%1>>4",
  "%0=%1>>8",
  "%0=%1>>16"
};

static const char *const ashift_left_asm[] = 
{
  "%0=%0<<1",
  "%0=%0<<4",
  "%0=%0<<8",
  "%0=%0<<16"
};

static const char *const ashift_left_asm_first[] = 
{
  "%0=%1<<1",
  "%0=%1<<4",
  "%0=%1<<8",
  "%0=%1<<16"
};

static const char *const lshift_right_asm[] = 
{
  "%0=%0>>1\n\t%0=%b0&0x7fff",
  "%0=%0>>4\n\t%0=%b0&0x0fff",
  "%0=%0>>8\n\t%0=%b0&0x00ff",
  "%0=%0>>16\n\t%0=%b0&0x0000"
};

static const char *const lshift_right_asm_first[] = 
{
  "%0=%1>>1\n\t%0=%b0&0x7fff",
  "%0=%1>>4\n\t%0=%b0&0x0fff",
  "%0=%1>>8\n\t%0=%b0&0x00ff",
  "%0=%1>>16\n\t%0=%b0&0x0000"
};

static int reg_save_size PARAMS ((void));
static void dsp16xx_output_function_prologue PARAMS ((FILE *, HOST_WIDE_INT));
static void dsp16xx_output_function_epilogue PARAMS ((FILE *, HOST_WIDE_INT));
static bool dsp16xx_rtx_costs PARAMS ((rtx, int, int, int *));
static int dsp16xx_address_cost PARAMS ((rtx));

/* Initialize the GCC target structure.  */

#undef TARGET_ASM_BYTE_OP
#define TARGET_ASM_BYTE_OP "\tint\t"
#undef TARGET_ASM_ALIGNED_HI_OP
#define TARGET_ASM_ALIGNED_HI_OP NULL
#undef TARGET_ASM_ALIGNED_SI_OP
#define TARGET_ASM_ALIGNED_SI_OP NULL

#undef TARGET_ASM_FUNCTION_PROLOGUE
#define TARGET_ASM_FUNCTION_PROLOGUE dsp16xx_output_function_prologue
#undef TARGET_ASM_FUNCTION_EPILOGUE
#define TARGET_ASM_FUNCTION_EPILOGUE dsp16xx_output_function_epilogue

#undef TARGET_RTX_COSTS
#define TARGET_RTX_COSTS dsp16xx_rtx_costs
#undef TARGET_ADDRESS_COST
#define TARGET_ADDRESS_COST dsp16xx_address_cost

struct gcc_target targetm = TARGET_INITIALIZER;

int 
hard_regno_mode_ok (regno, mode)
     int regno;
     enum machine_mode mode;
{
  switch ((int) mode)
    {
    case VOIDmode:
      return 1;
      
      /* We can't use the c0-c2 for QImode, since they are only
	 8 bits in length.  */

    case QImode:
      if (regno != REG_C0 && regno != REG_C1 && regno != REG_C2)
	return 1;
      else
	return 0;
      
      /* We only allow a0, a1, y, and p to be allocated for 32-bit modes.
         Additionally we allow the virtual ybase registers to be used for 32-bit
	 modes.  */
      
    case HFmode:
    case SFmode:
    case DFmode:
    case XFmode:
    case HImode:
    case SImode:
    case DImode:
      if (regno == REG_A0 || regno == REG_A1 || regno == REG_Y || regno == REG_PROD
	  || (IS_YBASE_REGISTER_WINDOW(regno) && ((regno & 1) == 0)))
	return 1;
      else
	return 0;
      
    default:
      return 0;
    }
}

enum reg_class
dsp16xx_reg_class_from_letter (c)
     int c;
{
  switch (c)
    {
    case 'A':
      return ACCUM_REGS;

    case 'l':
      return A0_REG;

    case 'C':
      return A1_REG;
      
    case 'h':
      return ACCUM_HIGH_REGS;
      
    case 'j':
      return A0H_REG;
      
    case 'k':
      return A0L_REG;
      
    case 'q':
      return A1H_REG;
      
    case 'u':
      return A1L_REG;
      
    case 'x':
      return X_REG;

    case 'y':
      return YH_REG;

    case 'z':
      return YL_REG;

    case 't':
      return P_REG;

    case 'Z':
      return Y_OR_P_REGS;

    case 'd':
      return ACCUM_Y_OR_P_REGS;

    case 'a':
      return Y_ADDR_REGS;

    case 'B':
      return (TARGET_BMU ? BMU_REGS : NO_REGS);

    case 'Y':
      return YBASE_VIRT_REGS;

    case 'v':
      return PH_REG;

    case 'w':
      return PL_REG;

    case 'W':
      return J_REG;

    case 'e':
      return YBASE_ELIGIBLE_REGS;

    case 'b':
      return ACCUM_LOW_REGS;

    case 'c':
      return NON_YBASE_REGS;

    case 'f':
      return Y_REG;

    case 'D':
      return SLOW_MEM_LOAD_REGS;

    default:
      return NO_REGS;
    }
}

/* Return the class number of the smallest class containing
   reg number REGNO.  */

int 
regno_reg_class(regno)
     int regno;
{
  switch (regno)
    {
    case REG_A0L:
      return (int) A0L_REG;
    case REG_A1L:
      return (int) A1L_REG;
      
    case REG_A0:
      return (int) A0H_REG;
    case REG_A1:
      return (int) A1H_REG;
      
    case REG_X:
      return (int) X_REG;
      
    case REG_Y:
      return (int) YH_REG;
    case REG_YL:
      return (int) YL_REG;
      
    case REG_PROD:
      return (int) PH_REG;
    case REG_PRODL:
      return (int) PL_REG;
      
    case REG_R0: case REG_R1: case REG_R2: case REG_R3:
      return (int) Y_ADDR_REGS;
      
    case REG_J:
      return (int) J_REG;
    case REG_K:
      return (int) GENERAL_REGS;
      
    case REG_YBASE:
      return (int) GENERAL_REGS;
      
    case REG_PT:
      return (int) GENERAL_REGS;
      
    case REG_AR0: case REG_AR1: case REG_AR2: case REG_AR3:
      return (int) BMU_REGS;
      
    case REG_C0: case REG_C1: case REG_C2:
      return (int) GENERAL_REGS;
      
    case REG_PR:
      return (int) GENERAL_REGS;
      
    case REG_RB:
      return (int) GENERAL_REGS;
      
    case REG_YBASE0: case REG_YBASE1: case REG_YBASE2: case REG_YBASE3:
    case REG_YBASE4: case REG_YBASE5: case REG_YBASE6: case REG_YBASE7:
    case REG_YBASE8: case REG_YBASE9: case REG_YBASE10: case REG_YBASE11:
    case REG_YBASE12: case REG_YBASE13: case REG_YBASE14: case REG_YBASE15:
    case REG_YBASE16: case REG_YBASE17: case REG_YBASE18: case REG_YBASE19:
    case REG_YBASE20: case REG_YBASE21: case REG_YBASE22: case REG_YBASE23:
    case REG_YBASE24: case REG_YBASE25: case REG_YBASE26: case REG_YBASE27:
    case REG_YBASE28: case REG_YBASE29: case REG_YBASE30: case REG_YBASE31:
      return (int) YBASE_VIRT_REGS;
      
    default:
      return (int) NO_REGS;
    }
}

/* A C expression for the maximum number of consecutive registers of class CLASS
   needed to hold a value of mode MODE.  */

int
class_max_nregs(class, mode)
     enum reg_class class ATTRIBUTE_UNUSED;
     enum machine_mode mode;
{
    return (GET_MODE_SIZE(mode));
}

enum reg_class
limit_reload_class (mode, class)
     enum machine_mode mode ATTRIBUTE_UNUSED;
     enum reg_class class;
{
  return class;
}

int
dsp16xx_register_move_cost (from, to)
     enum reg_class from, to;
{
  if (from == A0H_REG || from == A0L_REG || from == A0_REG ||
      from == A1H_REG || from == ACCUM_HIGH_REGS || from == A1L_REG ||
      from == ACCUM_LOW_REGS || from == A1_REG || from == ACCUM_REGS)
    {
      if (to == Y_REG || to == P_REG)
	return 4;
      else
	return 2;
    }

  if (to == A0H_REG || to == A0L_REG || to == A0_REG ||
      to == A1H_REG || to == ACCUM_HIGH_REGS || to == A1L_REG ||
      to == ACCUM_LOW_REGS || to == A1_REG || to == ACCUM_REGS)
    {
      return 2;
    }

  if (from == YBASE_VIRT_REGS)
    {
      if (to == YBASE_VIRT_REGS)
	return 16;

      if (to == X_REG || to == YH_REG || to == YL_REG ||
	  to == Y_REG || to == PL_REG || to == PH_REG ||
	  to == P_REG || to == Y_ADDR_REGS || to == YBASE_ELIGIBLE_REGS ||
	  to == Y_OR_P_REGS)
	{
	  return 8;
	}
      else
	return 10;
    }

  if (to == YBASE_VIRT_REGS)
    {
      if (from == X_REG || from == YH_REG || from == YL_REG ||
	  from == Y_REG || from == PL_REG || from == PH_REG ||
	  from == P_REG || from == Y_ADDR_REGS || from == YBASE_ELIGIBLE_REGS ||
	  from == Y_OR_P_REGS)
	{
	  return 8;
	}
      else
	return 10;
    }

  return 8;
}

/* Given an rtx X being reloaded into a reg required to be
   in class CLASS, return the class of reg to actually use.
   In general this is just CLASS; but on some machines
   in some cases it is preferable to use a more restrictive class.
   Also, we must ensure that a PLUS is reloaded either
   into an accumulator or an address register.  */

enum reg_class
preferred_reload_class (x, class)
     rtx x;
     enum reg_class class;
{
  /* The ybase registers cannot have constants copied directly
     to them.  */

  if (CONSTANT_P (x))
    {
      switch ((int) class)
	{
	case YBASE_VIRT_REGS:
	  return (!reload_in_progress ? NO_REGS : class);

	case ACCUM_LOW_OR_YBASE_REGS:
	  return ACCUM_LOW_REGS;

	case ACCUM_OR_YBASE_REGS:
	  return ACCUM_REGS;

	case X_OR_YBASE_REGS:
	  return X_REG;

	case Y_OR_YBASE_REGS:
	  return Y_REG;

	case ACCUM_LOW_YL_PL_OR_YBASE_REGS:
	  return YL_OR_PL_OR_ACCUM_LOW_REGS;

	case P_OR_YBASE_REGS:
	  return P_REG;

	case ACCUM_Y_P_OR_YBASE_REGS:
	  return ACCUM_Y_OR_P_REGS;

	case Y_ADDR_OR_YBASE_REGS:
	  return Y_ADDR_REGS;

	case YBASE_OR_NOHIGH_YBASE_ELIGIBLE_REGS:
	  return NON_HIGH_YBASE_ELIGIBLE_REGS;;
	  
	case YBASE_OR_YBASE_ELIGIBLE_REGS:
	  return YBASE_ELIGIBLE_REGS;

	case NO_HIGH_ALL_REGS:
	  return NOHIGH_NON_YBASE_REGS;

	case ALL_REGS:
	  return NON_YBASE_REGS;

	default:
	  return class;
	}
    }

  /* If x is not an accumulator or a ybase register, restrict the class of registers
     we can copy the register into.  */

  if (REG_P (x) && !IS_ACCUM_REG (REGNO (x)) && !IS_YBASE_REGISTER_WINDOW (REGNO (x)))
    {
      switch ((int) class)
	{
	case NO_REGS:
	case A0H_REG: case A0L_REG: case A0_REG: case A1H_REG:
	case ACCUM_HIGH_REGS: case A1L_REG: case ACCUM_LOW_REGS: 
	case A1_REG: case ACCUM_REGS:
	  return class;

	case X_REG: 
	  return (!reload_in_progress ? NO_REGS : class);

	case X_OR_ACCUM_LOW_REGS: 
	  return ACCUM_LOW_REGS;

	case X_OR_ACCUM_REGS:
	  return ACCUM_REGS;

	case YH_REG:
	  return (!reload_in_progress ? NO_REGS : class);

	case YH_OR_ACCUM_HIGH_REGS:
	  return ACCUM_HIGH_REGS;

	case X_OR_YH_REGS: 
	case YL_REG:
	  return (!reload_in_progress ? NO_REGS : class);

	case YL_OR_ACCUM_LOW_REGS: 
	  return ACCUM_LOW_REGS;

	case X_OR_YL_REGS:
	case X_OR_Y_REGS: case Y_REG:
	  return (!reload_in_progress ? NO_REGS : class);

	case ACCUM_OR_Y_REGS: 
	  return ACCUM_REGS;

	case PH_REG:
	case X_OR_PH_REGS: case PL_REG: 
	  return (!reload_in_progress ? NO_REGS : class);

	case PL_OR_ACCUM_LOW_REGS:
 	  return ACCUM_LOW_REGS;

	case X_OR_PL_REGS:
	  return (!reload_in_progress ? NO_REGS : class);

	case YL_OR_PL_OR_ACCUM_LOW_REGS: 
 	  return ACCUM_LOW_REGS;

	case P_REG:
	  return (!reload_in_progress ? NO_REGS : class);

	case ACCUM_OR_P_REGS: 
	  return ACCUM_REGS;

	case YL_OR_P_REGS:
	  return (!reload_in_progress ? NO_REGS : class);

	case ACCUM_LOW_OR_YL_OR_P_REGS: 
 	  return ACCUM_LOW_REGS;

	case Y_OR_P_REGS:
	  return (!reload_in_progress ? NO_REGS : class);

	case ACCUM_Y_OR_P_REGS: 
	  return ACCUM_REGS;

	case NO_FRAME_Y_ADDR_REGS:
	case Y_ADDR_REGS:
	  return (!reload_in_progress ? NO_REGS : class);

	case ACCUM_LOW_OR_Y_ADDR_REGS:
 	  return ACCUM_LOW_REGS;

	case ACCUM_OR_Y_ADDR_REGS: 
	  return ACCUM_REGS;

	case X_OR_Y_ADDR_REGS:
	case Y_OR_Y_ADDR_REGS: 
	case P_OR_Y_ADDR_REGS:
	  return (!reload_in_progress ? NO_REGS : class);

	case NON_HIGH_YBASE_ELIGIBLE_REGS: 
 	  return ACCUM_LOW_REGS;

	case YBASE_ELIGIBLE_REGS:
	  return ACCUM_REGS;

	case J_REG:
	case J_OR_DAU_16_BIT_REGS:
	case BMU_REGS: 
	  return (!reload_in_progress ? NO_REGS : class);

	case YBASE_VIRT_REGS:
	  if (IS_YBASE_ELIGIBLE_REG (REGNO (x)))
	    return class;
	  else
	    return (!reload_in_progress ? NO_REGS : class);

	case ACCUM_LOW_OR_YBASE_REGS:
	  if (IS_YBASE_ELIGIBLE_REG (REGNO (x)))
	    return class;
	  else
	    return ACCUM_LOW_REGS;

	case ACCUM_OR_YBASE_REGS:
	  if (IS_YBASE_ELIGIBLE_REG (REGNO (x)))
	    return class;
	  else
	    return ACCUM_REGS;

	case X_OR_YBASE_REGS:
	case Y_OR_YBASE_REGS:
	  if (IS_YBASE_ELIGIBLE_REG (REGNO (x)))
	    return YBASE_VIRT_REGS;
	  else
	    return (!reload_in_progress ? NO_REGS : class);

	case ACCUM_LOW_YL_PL_OR_YBASE_REGS:
	  if (IS_YBASE_ELIGIBLE_REG (REGNO (x)))
	    return ACCUM_LOW_OR_YBASE_REGS;
	  else
	    return ACCUM_LOW_REGS;

	case P_OR_YBASE_REGS:
	  if (IS_YBASE_ELIGIBLE_REG (REGNO (x)))
	    return YBASE_VIRT_REGS;
	  else
	    return (!reload_in_progress ? NO_REGS : class);

	case ACCUM_Y_P_OR_YBASE_REGS:
	  if (IS_YBASE_ELIGIBLE_REG (REGNO (x)))
	    return ACCUM_OR_YBASE_REGS;
	  else
	    return ACCUM_REGS;

	case Y_ADDR_OR_YBASE_REGS:
	  if (IS_YBASE_ELIGIBLE_REG (REGNO (x)))
	    return YBASE_VIRT_REGS;
	  else
	    return (!reload_in_progress ? NO_REGS : class);

	case YBASE_OR_NOHIGH_YBASE_ELIGIBLE_REGS:
	  if (IS_YBASE_ELIGIBLE_REG (REGNO (x)))
	    return ACCUM_LOW_OR_YBASE_REGS;
	  else
	    return ACCUM_LOW_REGS;

	case YBASE_OR_YBASE_ELIGIBLE_REGS:
	  if (IS_YBASE_ELIGIBLE_REG (REGNO (x)))
	    return ACCUM_OR_YBASE_REGS;
	  else
	    return ACCUM_REGS;

	case NO_HIGH_ALL_REGS:
	  if (IS_YBASE_ELIGIBLE_REG (REGNO (x)))
	    return ACCUM_LOW_OR_YBASE_REGS;
	  else
	    return ACCUM_LOW_REGS;

	case ALL_REGS: 
	  if (IS_YBASE_ELIGIBLE_REG (REGNO (x)))
	    return ACCUM_OR_YBASE_REGS;
	  else
	    return ACCUM_REGS;

	case NOHIGH_NON_ADDR_REGS:
	    return ACCUM_LOW_REGS;

	case NON_ADDR_REGS:
	case SLOW_MEM_LOAD_REGS:
	    return ACCUM_REGS;

	case NOHIGH_NON_YBASE_REGS:
	    return ACCUM_LOW_REGS;

	case NO_ACCUM_NON_YBASE_REGS:
	  return (!reload_in_progress ? NO_REGS : class);

	case NON_YBASE_REGS:
	    return ACCUM_REGS;

	default:
	  return class;
	}
    }

  /* If x (the input) is a ybase register, restrict the class of registers
     we can copy the register into.  */

  if (REG_P (x) && !TARGET_RESERVE_YBASE
      && IS_YBASE_REGISTER_WINDOW (REGNO(x)))
    {
      switch ((int) class)
	{
	case NO_REGS:
	case A0H_REG: case A0L_REG: case A0_REG: case A1H_REG:
	case ACCUM_HIGH_REGS: case A1L_REG: case ACCUM_LOW_REGS: 
	case A1_REG: case ACCUM_REGS: case X_REG: 
	case X_OR_ACCUM_LOW_REGS: case X_OR_ACCUM_REGS:
	case YH_REG: case YH_OR_ACCUM_HIGH_REGS:
	case X_OR_YH_REGS: case YL_REG:
	case YL_OR_ACCUM_LOW_REGS: case X_OR_YL_REGS:
	case X_OR_Y_REGS: case Y_REG:
	case ACCUM_OR_Y_REGS: case PH_REG:
	case X_OR_PH_REGS: case PL_REG: 
	case PL_OR_ACCUM_LOW_REGS: case X_OR_PL_REGS:
	case YL_OR_PL_OR_ACCUM_LOW_REGS: case P_REG:
	case ACCUM_OR_P_REGS: case YL_OR_P_REGS:
	case ACCUM_LOW_OR_YL_OR_P_REGS: case Y_OR_P_REGS:
	case ACCUM_Y_OR_P_REGS: case NO_FRAME_Y_ADDR_REGS:
	case Y_ADDR_REGS: case ACCUM_LOW_OR_Y_ADDR_REGS:
	case ACCUM_OR_Y_ADDR_REGS: case X_OR_Y_ADDR_REGS:
	case Y_OR_Y_ADDR_REGS: case P_OR_Y_ADDR_REGS:
	case NON_HIGH_YBASE_ELIGIBLE_REGS: case YBASE_ELIGIBLE_REGS:
	default:
	  return class;

	case J_REG:
	  return (!reload_in_progress ? NO_REGS : class);

	case J_OR_DAU_16_BIT_REGS:
	  return ACCUM_HIGH_REGS;

	case BMU_REGS: 
	case YBASE_VIRT_REGS:
	  return (!reload_in_progress ? NO_REGS : class);

	case ACCUM_LOW_OR_YBASE_REGS:
	  return ACCUM_LOW_REGS;

	case ACCUM_OR_YBASE_REGS:
	  return ACCUM_REGS;

	case X_OR_YBASE_REGS:
	  return X_REG;

	case Y_OR_YBASE_REGS:
	  return Y_REG;

	case ACCUM_LOW_YL_PL_OR_YBASE_REGS:
	  return YL_OR_PL_OR_ACCUM_LOW_REGS; 

	case P_OR_YBASE_REGS:
	  return P_REG;

	case ACCUM_Y_P_OR_YBASE_REGS:
	  return ACCUM_Y_OR_P_REGS;

	case Y_ADDR_OR_YBASE_REGS:
	  return Y_ADDR_REGS;

	case YBASE_OR_NOHIGH_YBASE_ELIGIBLE_REGS:
	  return NON_HIGH_YBASE_ELIGIBLE_REGS;

	case YBASE_OR_YBASE_ELIGIBLE_REGS:
	  return YBASE_ELIGIBLE_REGS;

	case NO_HIGH_ALL_REGS:
	  return NON_HIGH_YBASE_ELIGIBLE_REGS;

	case ALL_REGS: 
	  return YBASE_ELIGIBLE_REGS;

	case NOHIGH_NON_ADDR_REGS:
	  return ACCUM_LOW_OR_YL_OR_P_REGS;

	case NON_ADDR_REGS:
	  return ACCUM_Y_OR_P_REGS;

	case SLOW_MEM_LOAD_REGS:
	  return ACCUM_OR_Y_ADDR_REGS;

	case NOHIGH_NON_YBASE_REGS:
    	  return NON_HIGH_YBASE_ELIGIBLE_REGS;

    	case NO_ACCUM_NON_YBASE_REGS:
	  return Y_ADDR_REGS;

    	case NON_YBASE_REGS:
	  return YBASE_ELIGIBLE_REGS;
	}
    }

  if (GET_CODE (x) == PLUS)
    {
      if (GET_MODE (x) == QImode
	  && REG_P (XEXP (x,0))
	  && (XEXP (x,0) == frame_pointer_rtx
	      || XEXP (x,0) == stack_pointer_rtx)
	  && (GET_CODE (XEXP (x,1)) == CONST_INT))
	{
	  if (class == ACCUM_HIGH_REGS)
	    return class;

	  /* If the accumulators are not part of the class
	     being reloaded into, return NO_REGS.  */
#if 0
	  if (!reg_class_subset_p (ACCUM_REGS, class))
	    return (!reload_in_progress ? NO_REGS : class);
#endif
	  if (reg_class_subset_p (ACCUM_HIGH_REGS, class))
	    return ACCUM_HIGH_REGS;

	  /* We will use accumulator 'a1l' for reloading a
	     PLUS.  We can only use one accumulator because
	     'reload_inqi' only allows one alternative to be
	     used.  */

	  else if (class == ACCUM_LOW_REGS)
	    return A1L_REG;
	  else if (class == A0L_REG)
	    return NO_REGS;
	  else
	    return class;
	}

      if (class == NON_YBASE_REGS || class == YBASE_ELIGIBLE_REGS)
	return Y_ADDR_REGS;
      else
	return class;
    }
  else if (GET_CODE (x) == MEM)
    {
      /* We can't copy from a memory location into a
	 ybase register.  */
      if (reg_class_subset_p(YBASE_VIRT_REGS, class))
	{
	  switch ((int) class)
	    {
	    case YBASE_VIRT_REGS:
	      return (!reload_in_progress ? NO_REGS : class);

	    case ACCUM_LOW_OR_YBASE_REGS:
	      return ACCUM_LOW_REGS;

	    case ACCUM_OR_YBASE_REGS:
	      return ACCUM_REGS;

	    case X_OR_YBASE_REGS:
	      return X_REG;

	    case Y_OR_YBASE_REGS:
	      return Y_REG;

	    case ACCUM_LOW_YL_PL_OR_YBASE_REGS:
	      return YL_OR_PL_OR_ACCUM_LOW_REGS;

	    case P_OR_YBASE_REGS:
	      return P_REG;

	    case ACCUM_Y_P_OR_YBASE_REGS:
	      return ACCUM_Y_OR_P_REGS;

	    case Y_ADDR_OR_YBASE_REGS:
	      return Y_ADDR_REGS;

	    case YBASE_OR_NOHIGH_YBASE_ELIGIBLE_REGS:
	      return NON_HIGH_YBASE_ELIGIBLE_REGS;
	  
	    case YBASE_OR_YBASE_ELIGIBLE_REGS:
	      return YBASE_ELIGIBLE_REGS;

	    case NO_HIGH_ALL_REGS:
	      return NOHIGH_NON_YBASE_REGS;

	    case ALL_REGS:
	      return NON_YBASE_REGS;

	    default:
	      return class;
	    }
	}
      else
	return class;
    }
  else
    return class;
}
	
/* Return the register class of a scratch register needed to copy IN into
   or out of a register in CLASS in MODE.  If it can be done directly,
   NO_REGS is returned.  */

enum reg_class
secondary_reload_class (class, mode, in)
     enum reg_class class;
     enum machine_mode mode;
     rtx in;
{
  int regno = -1;

  if (GET_CODE (in) == REG || GET_CODE (in) == SUBREG)
    regno = true_regnum (in);

  /* If we are reloading a plus into a high accumulator register,
     we need a scratch low accumulator, because the low half gets
     clobbered.  */

  if (class == ACCUM_HIGH_REGS 
      || class == A1H_REG
      || class == A0H_REG)
    {
      if (GET_CODE (in) == PLUS && mode == QImode)
	return ACCUM_LOW_REGS;
    }

  if (class == ACCUM_HIGH_REGS 
      || class == ACCUM_LOW_REGS
      || class == A1L_REG
      || class == A0L_REG
      || class == A1H_REG
      || class == A0H_REG)
    {
      if (GET_CODE (in) == PLUS && mode == QImode)
	{
	  rtx addr0 = XEXP (in, 0);
	  rtx addr1 = XEXP (in, 1);
	  
	  /* If we are reloading a plus (reg:QI) (reg:QI)
	     we need an additional register.  */ 
	  if (REG_P (addr0) && REG_P (addr1))
	    return NO_REGS;
	}
    }

  /* We can place anything into ACCUM_REGS and can put ACCUM_REGS
     into anything.  */

  if ((class == ACCUM_REGS || class == ACCUM_HIGH_REGS ||
       class == ACCUM_LOW_REGS || class == A0H_REG || class == A0L_REG ||
       class == A1H_REG || class == A1_REG) || 
      (regno >= REG_A0 && regno < REG_A1L + 1))
    return NO_REGS;

  if (class == ACCUM_OR_YBASE_REGS && REG_P(in)
      && IS_YBASE_ELIGIBLE_REG(regno))
    {
      return NO_REGS;
    }

  /* We can copy the ybase registers into:
     r0-r3, a0-a1, y, p, & x or the union of
     any of these.  */

  if (!TARGET_RESERVE_YBASE && IS_YBASE_REGISTER_WINDOW(regno))
    {
      switch ((int) class)
	{
	case (int) X_REG:
	case (int) X_OR_ACCUM_LOW_REGS:
	case (int) X_OR_ACCUM_REGS:
	case (int) YH_REG:
	case (int) YH_OR_ACCUM_HIGH_REGS:
	case (int) X_OR_YH_REGS:
	case (int) YL_REG:
	case (int) YL_OR_ACCUM_LOW_REGS:
	case (int) X_OR_Y_REGS:
	case (int) X_OR_YL_REGS:
	case (int) Y_REG:
	case (int) ACCUM_OR_Y_REGS:
	case (int) PH_REG:
	case (int) X_OR_PH_REGS:
	case (int) PL_REG:
	case (int) PL_OR_ACCUM_LOW_REGS:
	case (int) X_OR_PL_REGS:
	case (int) YL_OR_PL_OR_ACCUM_LOW_REGS:
	case (int) P_REG:
	case (int) ACCUM_OR_P_REGS:
	case (int) YL_OR_P_REGS:
	case (int) ACCUM_LOW_OR_YL_OR_P_REGS:
	case (int) Y_OR_P_REGS:
	case (int) ACCUM_Y_OR_P_REGS:
	case (int) Y_ADDR_REGS:
	case (int) ACCUM_LOW_OR_Y_ADDR_REGS:
	case (int) ACCUM_OR_Y_ADDR_REGS:
	case (int) X_OR_Y_ADDR_REGS:
	case (int) Y_OR_Y_ADDR_REGS:
	case (int) P_OR_Y_ADDR_REGS:
	case (int) YBASE_ELIGIBLE_REGS:
	  return NO_REGS;

	default:
	  return ACCUM_HIGH_REGS;
	}
    }

  /* We can copy r0-r3, a0-a1, y, & p
     directly to the ybase registers. In addition
     we can use any of the ybase virtual registers
     as the secondary reload registers when copying
     between any of these registers.  */

  if (!TARGET_RESERVE_YBASE && regno != -1)
    {
      switch (regno)
	{
	case REG_A0:
	case REG_A0L:
	case REG_A1:
	case REG_A1L:
	case REG_X:
	case REG_Y:
	case REG_YL:
	case REG_PROD:
	case REG_PRODL:
	case REG_R0:
	case REG_R1:
	case REG_R2:
	case REG_R3:
	  if (class == YBASE_VIRT_REGS)
	    return NO_REGS;
	  else
	    {
	      switch ((int) class)
		{
		case (int) X_REG:
		case (int) X_OR_ACCUM_LOW_REGS:
		case (int) X_OR_ACCUM_REGS:
		case (int) YH_REG:
		case (int) YH_OR_ACCUM_HIGH_REGS:
		case (int) X_OR_YH_REGS:
		case (int) YL_REG:
		case (int) YL_OR_ACCUM_LOW_REGS:
		case (int) X_OR_Y_REGS:
		case (int) X_OR_YL_REGS:
		case (int) Y_REG:
		case (int) ACCUM_OR_Y_REGS:
		case (int) PH_REG:
		case (int) X_OR_PH_REGS:
		case (int) PL_REG:
		case (int) PL_OR_ACCUM_LOW_REGS:
		case (int) X_OR_PL_REGS:
		case (int) YL_OR_PL_OR_ACCUM_LOW_REGS:
		case (int) P_REG:
		case (int) ACCUM_OR_P_REGS:
		case (int) YL_OR_P_REGS:
		case (int) ACCUM_LOW_OR_YL_OR_P_REGS:
		case (int) Y_OR_P_REGS:
		case (int) ACCUM_Y_OR_P_REGS:
		case (int) Y_ADDR_REGS:
		case (int) ACCUM_LOW_OR_Y_ADDR_REGS:
		case (int) ACCUM_OR_Y_ADDR_REGS:
		case (int) X_OR_Y_ADDR_REGS:
		case (int) Y_OR_Y_ADDR_REGS:
		case (int) P_OR_Y_ADDR_REGS:
		case (int) YBASE_ELIGIBLE_REGS:
		  return YBASE_VIRT_REGS;

		default:
		  break;
		}
	    }
	}
    }

  /* Memory or constants can be moved from or to any register
     except the ybase virtual registers.  */
  if (regno == -1 && GET_CODE(in) != PLUS)
    {
      if (class == YBASE_VIRT_REGS)
	return NON_YBASE_REGS;
      else
        return NO_REGS;
    }

  if (GET_CODE (in) == PLUS && mode == QImode)
    {
      rtx addr0 = XEXP (in, 0);
      rtx addr1 = XEXP (in, 1);

      /* If we are reloading a plus (reg:QI) (reg:QI)
	 we need a low accumulator, not a high one.  */
      if (REG_P (addr0) && REG_P (addr1))
	return ACCUM_LOW_REGS;
    }

#if 0
  if (REG_P(in))
    return ACCUM_REGS;
#endif

  /* Otherwise, we need a high accumulator(s).  */
  return ACCUM_HIGH_REGS;
}

int
symbolic_address_operand (op, mode)
     rtx op;
     enum machine_mode mode ATTRIBUTE_UNUSED;
{
  return (symbolic_address_p (op));
}

int
symbolic_address_p (op)
     rtx op;
{
  switch (GET_CODE (op))
    {
    case SYMBOL_REF:
    case LABEL_REF:
      return 1;

    case CONST:
      op = XEXP (op, 0);
      return ((GET_CODE (XEXP (op, 0)) == SYMBOL_REF
	       || GET_CODE (XEXP (op, 0)) == LABEL_REF)
	      && GET_CODE (XEXP (op, 1)) == CONST_INT
              && INTVAL (XEXP (op,1)) < 0x20);

    default:
      return 0;
    }
}

/* For a Y address space operand we allow only *rn, *rn++, *rn--.
   This routine only recognizes *rn, the '<>' constraints recognize
   (*rn++), and (*rn--).  */

int
Y_address_operand (op, mode)
     rtx op;
     enum machine_mode mode;
{
  return (memory_address_p (mode, op) && !symbolic_address_p (op));
}	     

int
sp_operand (op, mode)
     rtx op;
     enum machine_mode mode ATTRIBUTE_UNUSED;
{
    return (GET_CODE (op) == PLUS
	    && (XEXP (op, 0) == stack_pointer_rtx
		|| XEXP (op, 0) == frame_pointer_rtx)
	    && GET_CODE (XEXP (op,1)) == CONST_INT);
}

int
sp_operand2 (op, mode)
     rtx op;
     enum machine_mode mode ATTRIBUTE_UNUSED;
{
  if ((GET_CODE (op) == PLUS 
       && (XEXP (op, 0) == stack_pointer_rtx
	   || XEXP (op, 0) == frame_pointer_rtx)
       && (REG_P (XEXP (op,1))
	   && IS_ADDRESS_REGISTER (REGNO (XEXP(op, 1))))))
    return 1;
  else if ((GET_CODE (op) == PLUS
       && (XEXP (op, 1) == stack_pointer_rtx
	   || XEXP (op, 1) == frame_pointer_rtx)
       && (REG_P (XEXP (op,0))
	   && IS_ADDRESS_REGISTER (REGNO (XEXP(op, 1))))))
    return 1;
  else
    return 0;
}

int
nonmemory_arith_operand (op, mode)
     rtx op;
     enum machine_mode mode;
{
  return (immediate_operand (op, mode) || arith_reg_operand (op, mode));
}

int
arith_reg_operand (op, mode)
     rtx op;
     enum machine_mode mode;
{
  return (register_operand (op, mode)
	  && (GET_CODE (op) != REG
	      || REGNO (op) >= FIRST_PSEUDO_REGISTER
	      || (!(IS_YBASE_REGISTER_WINDOW (REGNO (op)))
		  && REGNO (op) != FRAME_POINTER_REGNUM)));
}

int
call_address_operand (op, mode)
     rtx op;
     enum machine_mode mode ATTRIBUTE_UNUSED;
{
    if (symbolic_address_p (op) || REG_P(op))
    {
	return 1;
    }

    return 0;
}

int
dsp16xx_comparison_operator (op, mode)
    register rtx op;
    enum machine_mode mode;
{
  return ((mode == VOIDmode || GET_MODE (op) == mode)
	  && GET_RTX_CLASS (GET_CODE (op)) == '<'
	  && (GET_CODE(op) != GE && GET_CODE (op) != LT &&
	      GET_CODE (op) != GEU && GET_CODE (op) != LTU));
}

void
notice_update_cc(exp)
     rtx exp;
{
    if (GET_CODE (exp) == SET)
    {
	/* Jumps do not alter the cc's.  */

	if (SET_DEST (exp) == pc_rtx)
	    return;

	/* Moving register or memory into a register:
	   it doesn't alter the cc's, but it might invalidate
	   the RTX's which we remember the cc's came from.
	   (Note that moving a constant 0 or 1 MAY set the cc's).  */
	if (REG_P (SET_DEST (exp))
	    && (REG_P (SET_SRC (exp)) || GET_CODE (SET_SRC (exp)) == MEM))
	{
	    if (cc_status.value1
		&& reg_overlap_mentioned_p (SET_DEST (exp), cc_status.value1))
		cc_status.value1 = 0;
	    if (cc_status.value2
		&& reg_overlap_mentioned_p (SET_DEST (exp), cc_status.value2))
		cc_status.value2 = 0;
	    return;
	}
	/* Moving register into memory doesn't alter the cc's.
	   It may invalidate the RTX's which we remember the cc's came from.  */
	if (GET_CODE (SET_DEST (exp)) == MEM && REG_P (SET_SRC (exp)))
	{
	    if (cc_status.value1 && GET_CODE (cc_status.value1) == MEM)
		cc_status.value1 = 0;
	    if (cc_status.value2 && GET_CODE (cc_status.value2) == MEM)
		cc_status.value2 = 0;
	    return;
	}
	/* Function calls clobber the cc's.  */
	else if (GET_CODE (SET_SRC (exp)) == CALL)
	{
	    CC_STATUS_INIT;
	    return;
	}
	/* Tests and compares set the cc's in predictable ways.  */
	else if (SET_DEST (exp) == cc0_rtx)
	{
	    CC_STATUS_INIT;
	    cc_status.value1 = SET_SRC (exp);
	    return;
	}
	/* Certain instructions effect the condition codes.  */
	else if (GET_MODE_CLASS (GET_MODE (SET_SRC (exp))) == MODE_INT)
	    switch (GET_CODE (SET_SRC (exp)))
	    {
	    case PLUS: 
	    case MINUS:
	      if (REG_P (SET_DEST (exp)))
		{
		  /* Address registers don't set the condition codes.  */
		  if (IS_ADDRESS_REGISTER (REGNO (SET_DEST (exp))))
		    {
		      CC_STATUS_INIT;
		      break;
		    }
		}
	    case ASHIFTRT: 
	    case LSHIFTRT:
	    case ASHIFT: 
	    case AND: 
	    case IOR: 
	    case XOR:
	    case MULT:
	    case NEG:
	    case NOT:
	      cc_status.value1 = SET_SRC (exp);
	      cc_status.value2 = SET_DEST (exp);
	      break;
	      
	    default:
	      CC_STATUS_INIT;
	    }
	else
	{
	    CC_STATUS_INIT;
	}
    }
    else if (GET_CODE (exp) == PARALLEL
	     && GET_CODE (XVECEXP (exp, 0, 0)) == SET)
    {
	if (SET_DEST (XVECEXP (exp, 0, 0)) == pc_rtx)
	    return;

	if (SET_DEST (XVECEXP (exp, 0, 0)) == cc0_rtx)
	{
	    CC_STATUS_INIT;
	    cc_status.value1 = SET_SRC (XVECEXP (exp, 0, 0));
	    return;
	}

	CC_STATUS_INIT;
    }
    else
    {
	CC_STATUS_INIT;
    }
}

int
dsp16xx_makes_calls ()
{
  rtx insn;

  for (insn = get_insns (); insn; insn = next_insn (insn))
    if (GET_CODE (insn) == CALL_INSN)
      return (1);

  return 0;
}

long
compute_frame_size (size)
     int size;
{
  long total_size;
  long var_size;
  long args_size;
  long extra_size;
  long reg_size;

  /* This value is needed to compute reg_size.  */
  current_frame_info.function_makes_calls = !leaf_function_p ();

  reg_size = 0;
  extra_size = 0;
  var_size = size;
  args_size = current_function_outgoing_args_size;
  reg_size = reg_save_size ();  

  total_size = var_size + args_size + extra_size + reg_size;


  /* Save other computed information.  */
  current_frame_info.total_size  = total_size;
  current_frame_info.var_size    = var_size;
  current_frame_info.args_size   = args_size;
  current_frame_info.extra_size  = extra_size;
  current_frame_info.reg_size    = reg_size;
  current_frame_info.initialized = reload_completed;
  current_frame_info.reg_size	 = reg_size / UNITS_PER_WORD;

  if (reg_size)
    {
      unsigned long offset = args_size + var_size + reg_size;
      current_frame_info.sp_save_offset = offset;
      current_frame_info.fp_save_offset = offset - total_size;
    }

  return total_size;
}

int
dsp16xx_call_saved_register (regno)
     int regno;
{
#if 0
  if (regno == REG_PR && current_frame_info.function_makes_calls)
    return 1;
#endif
  return (regs_ever_live[regno] && !call_used_regs[regno] &&
	  !IS_YBASE_REGISTER_WINDOW(regno));
}

int
ybase_regs_ever_used ()
{
  int regno;
  int live = 0;

  for (regno = REG_YBASE0; regno <= REG_YBASE31; regno++)
    if (regs_ever_live[regno])
      {
	live = 1;
	break;
      }

  return live;
}

static void 
dsp16xx_output_function_prologue (file, size)
     FILE *file;
     HOST_WIDE_INT size;
{
  int regno;
  long total_size;
  fp = reg_names[FRAME_POINTER_REGNUM];
  sp = reg_names[STACK_POINTER_REGNUM];
  rr = reg_names[RETURN_ADDRESS_REGNUM];   /* return address register */
  a1h = reg_names[REG_A1];
  
  total_size = compute_frame_size (size);
  
  fprintf (file, "\t/* FUNCTION PROLOGUE: */\n");
  fprintf (file, "\t/* total=%ld, vars= %ld, regs= %d, args=%d, extra= %ld */\n",
	   current_frame_info.total_size,
	   current_frame_info.var_size,
	   current_frame_info.reg_size,
	   current_function_outgoing_args_size,
	   current_frame_info.extra_size);
  
  fprintf (file, "\t/* fp save offset= %ld, sp save_offset= %ld */\n\n",
	   current_frame_info.fp_save_offset,
	   current_frame_info.sp_save_offset);
  /* Set up the 'ybase' register window.  */
  
  if (ybase_regs_ever_used())
    {
      fprintf (file, "\t%s=%s\n", a1h, reg_names[REG_YBASE]);
      if (TARGET_YBASE_HIGH)
	fprintf (file, "\t%s=%sh-32\n", reg_names[REG_A1], a1h);
      else
	fprintf (file, "\t%s=%sh+32\n", reg_names[REG_A1], a1h);
      fprintf (file, "\t%s=%s\n", reg_names[REG_YBASE], a1h);
    }
  
  if (current_frame_info.var_size)
    {
      if (current_frame_info.var_size == 1)
	fprintf (file, "\t*%s++\n", sp);
      else
        {
	  if (SMALL_INTVAL(current_frame_info.var_size) && ((current_frame_info.var_size & 0x8000) == 0))
	    fprintf (file, "\t%s=%ld\n\t*%s++%s\n", reg_names[REG_J], current_frame_info.var_size, sp, reg_names[REG_J]);
	  else
	    fatal_error ("stack size > 32k");
	}
    }
  
  /* Save any registers this function uses, unless they are
     used in a call, in which case we don't need to.  */
  
  for(regno = 0; regno < FIRST_PSEUDO_REGISTER; ++ regno)
    if (dsp16xx_call_saved_register (regno)) 
      {
	fprintf (file, "\tpush(*%s)=%s\n", sp, reg_names[regno]);
      }

  /* For debugging purposes, we want the return address to be at a predictable
     location.  */
  if (current_frame_info.function_makes_calls)
    fprintf (file, "\tpush(*%s)=%s\n", sp, reg_names[RETURN_ADDRESS_REGNUM]);

  if (current_frame_info.args_size)
    {
      if (current_frame_info.args_size == 1)
	fprintf (file, "\t*%s++\n", sp);
      else
	error ("stack size > 32k");
    }
   
  if (frame_pointer_needed)
    {
      fprintf (file, "\t%s=%s\n", a1h, sp);
      fprintf (file, "\t%s=%s\n", fp, a1h);  /* Establish new base frame */
      fprintf (file, "\t%s=%ld\n", reg_names[REG_J], -total_size);
      fprintf (file, "\t*%s++%s\n", fp, reg_names[REG_J]);
    }
  
  fprintf (file, "\t/* END FUNCTION PROLOGUE: */\n\n");
}

void
init_emulation_routines ()
{
 dsp16xx_addhf3_libcall = (rtx) 0;
 dsp16xx_subhf3_libcall = (rtx) 0;
 dsp16xx_mulhf3_libcall = (rtx) 0;
 dsp16xx_divhf3_libcall = (rtx) 0;
 dsp16xx_cmphf3_libcall = (rtx) 0;
 dsp16xx_fixhfhi2_libcall = (rtx) 0;
 dsp16xx_floathihf2_libcall = (rtx) 0;
 dsp16xx_neghf2_libcall = (rtx) 0;

 dsp16xx_mulhi3_libcall = (rtx) 0;
 dsp16xx_udivqi3_libcall = (rtx) 0;
 dsp16xx_udivhi3_libcall = (rtx) 0;
 dsp16xx_divqi3_libcall = (rtx) 0;
 dsp16xx_divhi3_libcall = (rtx) 0;
 dsp16xx_modqi3_libcall = (rtx) 0;
 dsp16xx_modhi3_libcall = (rtx) 0;
 dsp16xx_umodqi3_libcall = (rtx) 0;
 dsp16xx_umodhi3_libcall = (rtx) 0;
 dsp16xx_ashrhi3_libcall = (rtx) 0;
 dsp16xx_ashlhi3_libcall = (rtx) 0;
 dsp16xx_ucmphi2_libcall = (rtx) 0;
 dsp16xx_lshrhi3_libcall = (rtx) 0;

}
static void
dsp16xx_output_function_epilogue (file, size)
     FILE *file;
     HOST_WIDE_INT size ATTRIBUTE_UNUSED;
{
  int regno;
  
  fp = reg_names[FRAME_POINTER_REGNUM];
  sp = reg_names[STACK_POINTER_REGNUM];
  rr = reg_names[RETURN_ADDRESS_REGNUM];   /* return address register */
  a1h = reg_names[REG_A1];
  
  fprintf (file, "\n\t/* FUNCTION EPILOGUE: */\n");
  
  if (current_frame_info.args_size)
    {
      if (current_frame_info.args_size == 1)
	fprintf (file, "\t*%s--\n", sp);
      else
	{
	  fprintf (file, "\t%s=%ld\n\t*%s++%s\n", 
		   reg_names[REG_J], -current_frame_info.args_size, sp, reg_names[REG_J]);
	}
    }
  
  if (ybase_regs_ever_used())
    {
      fprintf (file, "\t%s=%s\n", a1h, reg_names[REG_YBASE]);
      if (TARGET_YBASE_HIGH)
	fprintf (file, "\t%s=%sh+32\n", reg_names[REG_A1], a1h);
      else
	fprintf (file, "\t%s=%sh-32\n", reg_names[REG_A1], a1h);
      fprintf (file, "\t%s=%s\n", reg_names[REG_YBASE], a1h);
    }

  if (current_frame_info.function_makes_calls)
    fprintf (file, "\t%s=pop(*%s)\n", reg_names[RETURN_ADDRESS_REGNUM], sp);
  
  for (regno = FIRST_PSEUDO_REGISTER - 1; regno >= 0; --regno)
    if (dsp16xx_call_saved_register(regno))
      {
	fprintf (file, "\t%s=pop(*%s)\n", reg_names[regno], sp);
      }
  
  if (current_frame_info.var_size)
    {
      if (current_frame_info.var_size == 1)
	fprintf (file, "\t*%s--\n", sp);
      else
	{
	  fprintf (file, "\t%s=%ld\n\t*%s++%s\n", 
		   reg_names[REG_J], -current_frame_info.var_size, sp, reg_names[REG_J]);
	}
    }
  
  fprintf (file, "\treturn\n");
  /* Reset the frame info for the next function.  */
  current_frame_info = zero_frame_info;
  init_emulation_routines ();
}

/* Emit insns to move operands[1] into operands[0].

   Return 1 if we have written out everything that needs to be done to
   do the move.  Otherwise, return 0 and the caller will emit the move
   normally.  */

int
emit_move_sequence (operands, mode)
     rtx *operands;
     enum machine_mode mode;
{
  register rtx operand0 = operands[0];
  register rtx operand1 = operands[1];

  /* We can only store registers to memory.  */

  if (GET_CODE (operand0) == MEM && GET_CODE (operand1) != REG)
    operands[1] = force_reg (mode, operand1);

  return 0;
}

void
double_reg_from_memory (operands)
     rtx operands[];
{
    rtx xoperands[4];

    if (GET_CODE(XEXP(operands[1],0)) == POST_INC)
    {
	output_asm_insn ("%u0=%1", operands);
	output_asm_insn ("%w0=%1", operands);
    }
    else if (GET_CODE(XEXP(operands[1],0)) == POST_DEC)
    {
	xoperands[1] = XEXP (XEXP (operands[1], 0), 0);
	xoperands[0] = operands[0];
	
	/* We can't use j anymore since the compiler can allocate it.  */
/*	output_asm_insn ("j=-3\n\t%u0=*%1++\n\t%w0=*%1++j", xoperands); */
	output_asm_insn ("%u0=*%1++\n\t%w0=*%1--\n\t*%1--\n\t*%1--", xoperands);
    }
    else if (GET_CODE(XEXP(operands[1],0)) == PLUS)
    {
      rtx addr;
      int offset = 0;

      output_asm_insn ("%u0=%1", operands);


      /* In order to print out the least significant word we must
	 use 'offset + 1'.  */
      addr = XEXP (operands[1], 0);
      if (GET_CODE (XEXP(addr,0)) == CONST_INT)
	offset = INTVAL(XEXP(addr,0)) + 1;
      else if (GET_CODE (XEXP(addr,1)) == CONST_INT)
	offset = INTVAL(XEXP(addr,1)) + 1;

      fprintf (asm_out_file, "\t%s=*(%d)\n", reg_names[REGNO(operands[0]) + 1], offset + 31);
    }
    else
    {
	xoperands[1] = XEXP(operands[1],0);
	xoperands[0] = operands[0];

	output_asm_insn ("%u0=*%1++\n\t%w0=*%1--", xoperands);
    }
}


void
double_reg_to_memory (operands)
     rtx operands[];
{
    rtx xoperands[4];

    if (GET_CODE(XEXP(operands[0],0)) == POST_INC)
    {
	output_asm_insn ("%0=%u1", operands);
	output_asm_insn ("%0=%w1", operands);
    }
    else if (GET_CODE(XEXP(operands[0],0)) == POST_DEC)
    {
	xoperands[0] = XEXP (XEXP (operands[0], 0), 0);
	xoperands[1] = operands[1];
	
	/* We can't use j anymore since the compiler can allocate it.  */

/*	output_asm_insn ("j=-3\n\t*%0++=%u1\n\t*%0++j=%w1", xoperands); */
	output_asm_insn ("*%0++=%u1\n\t*%0--=%w1\n\t*%0--\n\t*%0--", xoperands);

    }
    else if (GET_CODE(XEXP(operands[0],0)) == PLUS)
    {
      rtx addr;
      int offset = 0;

      output_asm_insn ("%0=%u1", operands);

      /* In order to print out the least significant word we must
	 use 'offset + 1'.  */
      addr = XEXP (operands[0], 0);
      if (GET_CODE (XEXP(addr,0)) == CONST_INT)
	offset = INTVAL(XEXP(addr,0)) + 1;
      else if (GET_CODE (XEXP(addr,1)) == CONST_INT)
	offset = INTVAL(XEXP(addr,1)) + 1;
      else
	fatal_error ("invalid addressing mode");

      fprintf (asm_out_file, "\t*(%d)=%s\n", offset + 31, reg_names[REGNO(operands[1]) + 1]);
    }
    else
    {
	xoperands[0] = XEXP(operands[0],0);
	xoperands[1] = operands[1];

	output_asm_insn ("*%0++=%u1\n\t*%0--=%w1", xoperands);
    }
}

void
override_options ()
{
  if (chip_name == (char *) 0)
    chip_name = DEFAULT_CHIP_NAME;

  if (text_seg_name == (char *) 0)
    text_seg_name = DEFAULT_TEXT_SEG_NAME;
  
  if (data_seg_name == (char *) 0)
    data_seg_name = DEFAULT_DATA_SEG_NAME;
  
  if (bss_seg_name == (char *) 0)
    bss_seg_name = DEFAULT_BSS_SEG_NAME;
  
  if (const_seg_name == (char *) 0)
    const_seg_name = DEFAULT_CONST_SEG_NAME;
  
  save_chip_name = xstrdup (chip_name);

  rsect_text = concat (".rsect \"", text_seg_name, "\"", NULL);
  rsect_data = concat (".rsect \"", data_seg_name, "\"", NULL);
  rsect_bss = concat (".rsect \"", bss_seg_name, "\"", NULL);
  rsect_const = concat (".rsect \"", const_seg_name, "\"", NULL);
}

int
next_cc_user_unsigned (insn)
     rtx insn;
{
  switch (next_cc_user_code (insn))
    {
    case GTU:
    case GEU:
    case LTU:
    case LEU:
      return 1;
    default:
      return 0;
    }
}

enum rtx_code
next_cc_user_code (insn)
     rtx insn;
{
  /* If no insn could be found we assume that the jump has been
     deleted and the compare will be deleted later.  */

  if (!(insn = next_cc0_user (insn)))
    return (enum rtx_code) 0;
  else if (GET_CODE (insn) == JUMP_INSN
	   && GET_CODE (PATTERN (insn)) == SET
	   && GET_CODE (SET_SRC (PATTERN (insn))) == IF_THEN_ELSE)
    return GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 0));
  else if (GET_CODE (insn) == INSN
	   && GET_CODE (PATTERN (insn)) == SET
	   && comparison_operator (SET_SRC (PATTERN (insn)), VOIDmode))
    return GET_CODE (SET_SRC (PATTERN (insn)));
  else
    abort ();
}

void
print_operand(file, op, letter)
     FILE *file;
     rtx op;
     int letter;
{
    enum rtx_code code;

    code = GET_CODE(op);

    switch (letter)
    {
       case 'I':
	  code = reverse_condition (code);
	  /* Fallthrough */

       case 'C':
          if (code == EQ) 
          { 
	      fputs ("eq", file); 
	      return; 
	  }
          else if (code == NE)  
	  { 
	      fputs ("ne", file); 
	      return; 
	  }
          else if (code == GT || code == GTU)  
	  { 
	      fputs ("gt", file); 
	      return; 
	  }
          else if (code == LT || code == LTU)  
	  { 
	      fputs ("mi", file); 
	      return; 
	  }
          else if (code == GE || code == GEU)  
	  {
	      fputs ("pl", file); 
	      return; 
	  }
          else if (code == LE || code == LEU)  
	  { 
	      fputs ("le", file); 
	      return; 
	  }
          else 
	      abort ();
	  break;

       default:
          break;  
    }

    if (code == REG)
    {
	/* Print the low half of a 32-bit register pair.  */
        if (letter == 'w')
           fprintf (file, "%s", reg_names[REGNO (op) + 1]);
        else if (letter == 'u' || !letter)
           fprintf (file, "%s", reg_names[REGNO (op)]);
	else if (letter == 'b')
	    fprintf (file, "%sh", reg_names[REGNO (op)]);
	else if (letter == 'm')
	  fprintf (file, "%s", himode_reg_name[REGNO (op)]);
        else
	  output_operand_lossage ("bad register extension code");
    }
    else if (code == MEM)
      output_address (XEXP(op,0));
    else if (code == CONST_INT)
      { 
	HOST_WIDE_INT val = INTVAL (op);

        if (letter == 'H')
	  fprintf (file, HOST_WIDE_INT_PRINT_HEX, val & 0xffff);
	else if (letter == 'h')
	  fprintf (file, HOST_WIDE_INT_PRINT_DEC, val);
        else if (letter == 'U')
	  fprintf (file, HOST_WIDE_INT_PRINT_HEX, (val >> 16) & 0xffff);
        else
           output_addr_const(file, op);
      }
    else if (code == CONST_DOUBLE && GET_MODE(op) != DImode)
      {
	long l;
	REAL_VALUE_TYPE r;
	REAL_VALUE_FROM_CONST_DOUBLE (r, op);
	REAL_VALUE_TO_TARGET_SINGLE (r, l);
	fprintf (file, "0x%lx", l);
      }
    else if (code == CONST)
      {
	rtx addr = XEXP (op, 0);
	
	if (GET_CODE (addr) != PLUS)
	  {
	    output_addr_const(file, op);
	    return;
	  }
	
	if ((GET_CODE (XEXP (addr, 0)) == SYMBOL_REF
	     || GET_CODE (XEXP (addr, 0)) == LABEL_REF)
	    && (GET_CODE (XEXP (addr, 1)) == CONST_INT))
	  {
	    int n = INTVAL (XEXP(addr, 1));
	    output_addr_const (file, XEXP (addr, 0));
	    
	    if (n >= 0)
	      fprintf (file, "+");
	    
	    n = (int) (short) n;
	    fprintf (file, "%d", n);
	  }
	else if ((GET_CODE (XEXP (addr, 1)) == SYMBOL_REF
		  || GET_CODE (XEXP (addr, 1)) == LABEL_REF)
		 && (GET_CODE (XEXP (addr, 0)) == CONST_INT))
	  {
	    int n = INTVAL (XEXP(addr, 0));
	    output_addr_const (file, XEXP (addr, 1));
	    
	    if (n >= 0)
	      fprintf (file, "+");
	    
	    n = (int) (short) n;
	    fprintf (file, "%d", n);
	  }
	else
	  output_addr_const(file, op);
      }
    else
      output_addr_const (file, op);
}


void
print_operand_address(file, addr)
     FILE *file;
     rtx addr;
{
  rtx base;
  int offset = 0;;
  
  switch (GET_CODE (addr))
    {
    case REG:
      fprintf (file, "*%s", reg_names[REGNO (addr)]);
      break;
    case POST_DEC:
      fprintf (file, "*%s--", reg_names[REGNO (XEXP (addr, 0))]);
      break;
    case POST_INC:
      fprintf (file, "*%s++", reg_names[REGNO (XEXP (addr, 0))]);
      break;
    case PLUS:
      if (GET_CODE (XEXP(addr,0)) == CONST_INT)
	offset = INTVAL(XEXP(addr,0)), base = XEXP(addr,1);
      else if (GET_CODE (XEXP(addr,1)) == CONST_INT)
	offset = INTVAL(XEXP(addr,1)), base = XEXP(addr,0);
      else
	abort();
      if (GET_CODE (base) == REG && REGNO(base) == STACK_POINTER_REGNUM)
	{
	  if (offset >= -31 && offset <= 0)
	    offset = 31 + offset;
	  else
	    fatal_error ("invalid offset in ybase addressing");
	}
      else
	fatal_error ("invalid register in ybase addressing");
      
      fprintf (file, "*(%d)", offset);
      break;
      
    default:
      if (FITS_5_BITS (addr))
	fprintf (file, "*(0x%x)", (int)(INTVAL (addr) & 0x20));
      else
	output_addr_const (file, addr);
    }
}

void
output_dsp16xx_float_const (operands)
     rtx *operands;
{
  rtx src = operands[1];
  
  REAL_VALUE_TYPE d;
  long value;
  
  REAL_VALUE_FROM_CONST_DOUBLE (d, src);
  REAL_VALUE_TO_TARGET_SINGLE (d, value);
  
  operands[1] = GEN_INT (value);
  output_asm_insn ("%u0=%U1\n\t%w0=%H1", operands);
}

static int
reg_save_size ()
{
  int reg_save_size = 0;
  int regno;

  for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
    if (dsp16xx_call_saved_register (regno))
      {
	reg_save_size += UNITS_PER_WORD;
      }

  /* If the function makes calls we will save need to save the 'pr' register.  */
  if (current_frame_info.function_makes_calls)
    reg_save_size += 1;

  return (reg_save_size);
}

#if 0
int
dsp16xx_starting_frame_offset()
{
  int reg_save_size = 0;
 int regno;
 
  for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
    if (dsp16xx_call_saved_register (regno))
      {
	reg_save_size += UNITS_PER_WORD;
      }

  return (reg_save_size);
}
#endif

int
initial_frame_pointer_offset()
{
  int offset = 0;
  
  offset = compute_frame_size (get_frame_size());

#ifdef STACK_GROWS_DOWNWARD
  return (offset);
#else
  return (-offset);
#endif
}

/* Generate the minimum number of 1600 core shift instructions
   to shift by 'shift_amount'.  */

#if 0
void
emit_1600_core_shift (shift_op, operands, shift_amount, mode)
     enum rtx_code shift_op;
     rtx *operands;
     int shift_amount;
     enum machine_mode mode;
{
  int quotient;
  int i;
  int first_shift_emitted = 0;
  
  while (shift_amount != 0)
    {
      if (shift_amount/16)
	{
	  quotient = shift_amount/16;
	  shift_amount = shift_amount - (quotient * 16);
	  for (i = 0; i < quotient; i++)
	    emit_insn (gen_rtx_SET (VOIDmode, operands[0],
				    gen_rtx (shift_op, mode, 
					     first_shift_emitted
					     ? operands[0] : operands[1],
					     GEN_INT (16))));
	  first_shift_emitted = 1;
	}
      else if (shift_amount/8)
	{
	  quotient = shift_amount/8;
	  shift_amount = shift_amount - (quotient * 8);
	  for (i = 0; i < quotient; i++)
	    emit_insn (gen_rtx_SET (VOIDmode, operands[0],
				    gen_rtx (shift_op, mode, 
					     first_shift_emitted
					     ? operands[0] : operands[1],
					     GEN_INT (8))));
	  first_shift_emitted = 1;
	}
      else if (shift_amount/4)
	{
	  quotient = shift_amount/4;
	  shift_amount = shift_amount - (quotient * 4);
	  for (i = 0; i < quotient; i++)
	    emit_insn (gen_rtx_SET (VOIDmode, operands[0],
				    gen_rtx (shift_op, mode, 
					     first_shift_emitted
					     ? operands[0] : operands[1],
					     GEN_INT (4))));
	  first_shift_emitted = 1;
	}
      else if (shift_amount/1)
	{
	  quotient = shift_amount/1;
	  shift_amount = shift_amount - (quotient * 1);
	  for (i = 0; i < quotient; i++)
	    emit_insn (gen_rtx_SET (VOIDmode, operands[0],
				    gen_rtx (shift_op, mode, 
					     first_shift_emitted
					     ? operands[0] : operands[1],
					     GEN_INT (1))));
	  first_shift_emitted = 1;
	}
    }
}
#else
void
emit_1600_core_shift (shift_op, operands, shift_amount)
     enum rtx_code shift_op;
     rtx *operands;
     int shift_amount;
{
  int quotient;
  int i;
  int first_shift_emitted = 0;
  const char * const *shift_asm_ptr;
  const char * const *shift_asm_ptr_first;

  if (shift_op == ASHIFT)
    {
      shift_asm_ptr = ashift_left_asm;
      shift_asm_ptr_first = ashift_left_asm_first;
    }
  else if (shift_op == ASHIFTRT)
    {
      shift_asm_ptr = ashift_right_asm;
      shift_asm_ptr_first = ashift_right_asm_first;
    }
  else if (shift_op == LSHIFTRT)
    {
      shift_asm_ptr = lshift_right_asm;
      shift_asm_ptr_first = lshift_right_asm_first;
    }
  else
    fatal_error ("invalid shift operator in emit_1600_core_shift");

  while (shift_amount != 0)
    {
      if (shift_amount/16)
	{
	  quotient = shift_amount/16;
	  shift_amount = shift_amount - (quotient * 16);
	  for (i = 0; i < quotient; i++)
	    output_asm_insn ((first_shift_emitted ? shift_asm_ptr[SHIFT_INDEX_16]
			      : shift_asm_ptr_first[SHIFT_INDEX_16]), operands);
	  first_shift_emitted = 1;
	}
      else if (shift_amount/8)
	{
	  quotient = shift_amount/8;
	  shift_amount = shift_amount - (quotient * 8);
	  for (i = 0; i < quotient; i++)
	    output_asm_insn ((first_shift_emitted ? shift_asm_ptr[SHIFT_INDEX_8]
			      : shift_asm_ptr_first[SHIFT_INDEX_8]), operands);
	  first_shift_emitted = 1;
	}
      else if (shift_amount/4)
	{
	  quotient = shift_amount/4;
	  shift_amount = shift_amount - (quotient * 4);
	  for (i = 0; i < quotient; i++)
	    output_asm_insn ((first_shift_emitted ? shift_asm_ptr[SHIFT_INDEX_4]
			      : shift_asm_ptr_first[SHIFT_INDEX_4]), operands);
	  first_shift_emitted = 1;
	}
      else if (shift_amount/1)
	{
	  quotient = shift_amount/1;
	  shift_amount = shift_amount - (quotient * 1);
	  for (i = 0; i < quotient; i++)
	    output_asm_insn ((first_shift_emitted ? shift_asm_ptr[SHIFT_INDEX_1]
			      : shift_asm_ptr_first[SHIFT_INDEX_1]), operands);
	  first_shift_emitted = 1;
	}
    }
}
#endif

int
num_1600_core_shifts (shift_amount)
int shift_amount;
{
  int quotient;
  int i;
  int first_shift_emitted = 0;
  int num_shifts = 0;

  while (shift_amount != 0)
    {
      if (shift_amount/16)
	{
	  quotient = shift_amount/16;
	  shift_amount = shift_amount - (quotient * 16);
	  for (i = 0; i < quotient; i++)
	    num_shifts++;
	  first_shift_emitted = 1;
	}
      else if (shift_amount/8)
	{
	  quotient = shift_amount/8;
	  shift_amount = shift_amount - (quotient * 8);
	  for (i = 0; i < quotient; i++)
	    num_shifts++;

	  first_shift_emitted = 1;
	}
      else if (shift_amount/4)
	{
	  quotient = shift_amount/4;
	  shift_amount = shift_amount - (quotient * 4);
	  for (i = 0; i < quotient; i++)
	    num_shifts++;

	  first_shift_emitted = 1;
	}
      else if (shift_amount/1)
	{
	  quotient = shift_amount/1;
	  shift_amount = shift_amount - (quotient * 1);
	  for (i = 0; i < quotient; i++)
	    num_shifts++;

	  first_shift_emitted = 1;
	}
    }
  return num_shifts;
}

void
asm_output_common(file, name, size, rounded)
     FILE *file;
     const char *name;
     int size ATTRIBUTE_UNUSED;
     int rounded;
{
    bss_section ();
    (*targetm.asm_out.globalize_label) (file, name);
    assemble_name (file, name);
    fputs (":", file);
    if (rounded > 1)
	fprintf (file, "%d * int\n", rounded);
    else
	fprintf (file, "int\n");
}

void
asm_output_local(file, name, size, rounded)
     FILE *file;
     const char *name;
     int size ATTRIBUTE_UNUSED;
     int rounded;
{
    bss_section ();
    assemble_name (file, name);
    fputs (":", file);
    if (rounded > 1)
	fprintf (file, "%d * int\n", rounded);
    else
	fprintf (file, "int\n");
}

static int
dsp16xx_address_cost (addr)
     rtx addr;
{
    switch (GET_CODE (addr))
    {
	  default:
	     break;

	  case REG:
	     return 1;

	  case CONST:
	     {
	        rtx offset = const0_rtx;
	        addr = eliminate_constant_term (addr, &offset);

	        if (GET_CODE (addr) == LABEL_REF)
	            return 2;

	        if (GET_CODE (addr) != SYMBOL_REF)
	            return 4;

	        if (INTVAL (offset) == 0)
	            return 2;
             }
	     /* fall through */

	  case POST_INC: case POST_DEC:
	     return (GET_MODE (addr) == QImode ? 1 : 2);

	  case SYMBOL_REF: case LABEL_REF:
	     return 2;

	  case PLUS:
	  {
	     register rtx plus0 = XEXP (addr, 0);
	     register rtx plus1 = XEXP (addr, 1);
	     
	     if (GET_CODE (plus0) != REG && GET_CODE (plus1) == REG)
	     {
		 plus0 = XEXP (addr, 1);
		 plus1 = XEXP (addr, 0);
	     }
	     
	     if (GET_CODE (plus0) != REG)
		 break;
	     
	     switch (GET_CODE (plus1))
	     {
		   default:
		      break;
		 
		   case CONST_INT:
		      return 4;

		   case CONST:
		   case SYMBOL_REF:
		   case LABEL_REF:
		      return dsp16xx_address_cost (plus1) + 1;
	     }
	  }
     }
	     
     return 4;
}


/* Determine whether a function argument is passed in a register, and
   which register.

   The arguments are CUM, which summarizes all the previous
   arguments; MODE, the machine mode of the argument; TYPE,
   the data type of the argument as a tree node or 0 if that is not known
   (which happens for C support library functions); and NAMED,
   which is 1 for an ordinary argument and 0 for nameless arguments that
   correspond to `...' in the called function's prototype.

   The value of the expression should either be a `reg' RTX for the
   hard register in which to pass the argument, or zero to pass the
   argument on the stack.

   On the dsp1610 the first four words of args are normally in registers
   and the rest are pushed. If we a long or on float mode, the argument
   must begin on an even register boundary

   Note that FUNCTION_ARG and FUNCTION_INCOMING_ARG were different.
   For structures that are passed in memory, but could have been
   passed in registers, we first load the structure into the
   register, and then when the last argument is passed, we store
   the registers into the stack locations.  This fixes some bugs
   where GCC did not expect to have register arguments, followed.  */

struct rtx_def *
dsp16xx_function_arg (args_so_far, mode, type, named)
     CUMULATIVE_ARGS args_so_far;
     enum machine_mode mode;
     tree type;
     int named;
{
  if (TARGET_REGPARM)
    {
      if ((args_so_far & 1) != 0
	  && (mode == HImode || GET_MODE_CLASS(mode) == MODE_FLOAT))
	args_so_far++;

      if (type == void_type_node)
	return (struct rtx_def *) 0;

      if (named && args_so_far < 4 && !MUST_PASS_IN_STACK (mode,type))
	return gen_rtx_REG (mode, args_so_far + FIRST_REG_FOR_FUNCTION_ARG);
      else
	return (struct rtx_def *) 0;
    }
  else
    return (struct rtx_def *) 0;
}

/* Advance the argument to the next argument position.  */

void
dsp16xx_function_arg_advance (cum, mode, type, named)
     CUMULATIVE_ARGS *cum;	/* current arg information */
     enum machine_mode mode;	/* current arg mode */
     tree type;			/* type of the argument or 0 if lib support */
     int named ATTRIBUTE_UNUSED;/* whether or not the argument was named */
{
  if (TARGET_REGPARM)
    {
      if ((*cum & 1) != 0
	  && (mode == HImode || GET_MODE_CLASS(mode) == MODE_FLOAT))
	*cum += 1;

      if (mode != BLKmode)
	*cum += GET_MODE_SIZE (mode);
      else
	*cum += int_size_in_bytes (type);
    }
}

void
coff_dsp16xx_file_start (file)
     FILE *file;
{
  fprintf (file, "#include <%s.h>\n", save_chip_name);
}

void
luxworks_dsp16xx_file_start (file)
     FILE *file;
{
  char *temp_filename;
  int len, err_code;


  fprintf (file, "\t.debug ");
  err_code = (TARGET_DEBUG) ? fprintf (file, "yes, ") : fprintf (file, "no, ");
  err_code = (TARGET_SAVE_TEMPS) ? fprintf (file, "asm, ") : fprintf (file, "temp, ");
  len = strlen (main_input_filename);
  temp_filename = (char *) xmalloc (len + 2);
  strcpy (temp_filename, main_input_filename);
#ifdef __CYGWIN32__
    p = temp_filename;
    while (*p != '\0') {
    if (*p == '\\')
        *p = '/';
         p++;
         }
#endif
    fprintf (file, "\"%s\"\n", temp_filename);

  fprintf (file, "#include <%s.h>\n", save_chip_name);

   /*
    * Add dummy sections, so that they always exist in the 
    * object code. These have been created so that the number and
    * type of sections remain consistent with and without -g option. Note
    * that the .data, .text, .const and .bss are always created when -g
    * is provided as an option.  */
   fprintf (file, "\t.rsect \".text\" , nodelete\n");
   fprintf (file, "\t.rsect \".data\" , nodelete\n");
   fprintf (file, "\t.rsect \".const\" , nodelete\n");
   fprintf (file, "\t.rsect \".bss\" , nodelete\n");
}

rtx
gen_tst_reg (x)
     rtx x;
{
  enum machine_mode mode;

  mode = GET_MODE (x);

  if (mode == QImode)
    emit_insn (gen_rtx_PARALLEL
	       (VOIDmode,
		gen_rtvec (2, gen_rtx_SET (VOIDmode, cc0_rtx, x),
			   gen_rtx_CLOBBER (VOIDmode,
					    gen_rtx_SCRATCH (QImode)))));
  else if (mode == HImode)
    emit_insn (gen_rtx_SET (VOIDmode, cc0_rtx, x));
  else
    fatal_error ("invalid mode for gen_tst_reg");

  return cc0_rtx;
}

rtx
gen_compare_reg (code, x, y)
     enum rtx_code code;
     rtx x, y;
{
  enum machine_mode mode;

  mode = GET_MODE (x);
  /* For floating point compare insns, a call is generated so don't
     do anything here.  */

  if (GET_MODE_CLASS (mode) == MODE_FLOAT)
    return cc0_rtx;

  if (mode == QImode)
    {
      if (code == GTU || code == GEU
	  || code == LTU || code == LEU)
	{
	  emit_insn (gen_rtx_PARALLEL
		     (VOIDmode,
		      gen_rtvec (3,
				 gen_rtx_SET (VOIDmode, cc0_rtx,
					      gen_rtx_COMPARE (mode, x, y)),
				 gen_rtx_CLOBBER (VOIDmode,
						  gen_rtx_SCRATCH (QImode)),
				 gen_rtx_CLOBBER (VOIDmode,
						  gen_rtx_SCRATCH (QImode)))));
	}
      else
	{
	  emit_insn (gen_rtx_PARALLEL
		     (VOIDmode,
		      gen_rtvec (3, gen_rtx_SET (VOIDmode, cc0_rtx,
						 gen_rtx_COMPARE (mode, x, y)),
				 gen_rtx_CLOBBER (VOIDmode,
						  gen_rtx_SCRATCH (QImode)),
				 gen_rtx_CLOBBER (VOIDmode,
						  gen_rtx_SCRATCH (QImode)))));
	}
    }
  else if (mode == HImode)
    {
      if (code == GTU || code == GEU
	  || code == LTU || code == LEU)
	{
	  emit_insn (gen_rtx_PARALLEL 
		     (VOIDmode, 
		      gen_rtvec (5,
				 gen_rtx_SET (VOIDmode, cc0_rtx, 
					      gen_rtx_COMPARE (VOIDmode, x, y)),
				 gen_rtx_CLOBBER (VOIDmode, 
						  gen_rtx_SCRATCH (QImode)),
				 gen_rtx_CLOBBER (VOIDmode, 
						  gen_rtx_SCRATCH (QImode)),
				 gen_rtx_CLOBBER (VOIDmode, 
						  gen_rtx_SCRATCH (QImode)),
				 gen_rtx_CLOBBER (VOIDmode, 
						  gen_rtx_SCRATCH (QImode)))));
	}
      else
	emit_insn (gen_rtx_SET (VOIDmode, cc0_rtx,
				gen_rtx_COMPARE (VOIDmode,
						 force_reg (HImode, x), 
						 force_reg (HImode,y))));
    }
  else
    fatal_error ("invalid mode for integer comparison in gen_compare_reg");

  return cc0_rtx;
}

const char *
output_block_move (operands)
     rtx operands[];
{
  int loop_count = INTVAL(operands[2]);
  rtx xoperands[4];

  fprintf (asm_out_file, "\tdo %d {\n", loop_count);
  xoperands[0] = operands[4];
  xoperands[1] = operands[1];
  output_asm_insn ("%0=*%1++", xoperands);

  xoperands[0] = operands[0];
  xoperands[1] = operands[4];
  output_asm_insn ("*%0++=%1", xoperands);

  fprintf (asm_out_file, "\t}\n");
  return "";
}

int
uns_comparison_operator (op, mode)
     rtx op;
     enum machine_mode mode;
{
  if (mode == VOIDmode || GET_MODE (op) == mode)
    {
      enum rtx_code code;
      
      code = GET_CODE(op);

      if (code == LEU || code == LTU || code == GEU
	  || code == GTU)
	{
	  return 1;
	}
      else
	return 0;
    }

  return 0;
}

int
signed_comparison_operator (op, mode)
     rtx op;
     enum machine_mode mode;
{
  if (mode == VOIDmode || GET_MODE (op) == mode)
    {
      enum rtx_code code;
      
      code = GET_CODE(op);

      if (!(code == LEU || code == LTU || code == GEU
	  || code == GTU))
	{
	  return 1;
	}
      else
	return 0;
    }

  return 0;
}

static bool
dsp16xx_rtx_costs (x, code, outer_code, total)
     rtx x;
     int code;
     int outer_code ATTRIBUTE_UNUSED;
     int *total;
{
  switch (code)
    {
    case CONST_INT:
      *total = (unsigned HOST_WIDE_INT) INTVAL (x) < 65536 ? 0 : 2;
      return true;

    case LABEL_REF:
    case SYMBOL_REF:
    case CONST:
      *total = COSTS_N_INSNS (1);
      return true;

    case CONST_DOUBLE:
      *total = COSTS_N_INSNS (2);
      return true;

    case MEM:
      *total = COSTS_N_INSNS (GET_MODE (x) == QImode ? 2 : 4);
      return true;

    case DIV:
    case MOD:
      *total = COSTS_N_INSNS (38);
      return true;

    case MULT:
      if (GET_MODE (x) == QImode)
        *total = COSTS_N_INSNS (2);
      else
	*total = COSTS_N_INSNS (38);
      return true;

    case PLUS:
    case MINUS:
    case AND:
    case IOR:
    case XOR:
      if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT)
	{
	  *total = 1;
	  return false;
	}
      else
	{
          *total = COSTS_N_INSNS (38);
	  return true;
	}

    case NEG:
    case NOT:
      *total = COSTS_N_INSNS (1);
      return true;

    case ASHIFT:
    case ASHIFTRT:
    case LSHIFTRT:
      if (GET_CODE (XEXP (x, 1)) == CONST_INT)
	{
	  HOST_WIDE_INT number = INTVAL (XEXP (x, 1));
	  if (number == 1 || number == 4 || number == 8
	      || number == 16)
	    *total = COSTS_N_INSNS (1);
	  else if (TARGET_BMU)
            *total = COSTS_N_INSNS (2);
          else
            *total = COSTS_N_INSNS (num_1600_core_shifts (number));
	  return true;
	}
      break;
    }

  if (TARGET_BMU)
    *total = COSTS_N_INSNS (1);
  else
    *total = COSTS_N_INSNS (15);
  return true;
}