summaryrefslogtreecommitdiff
path: root/gcc/config/c6x/c6x.c
blob: 32807d8eacab883ab7139b9d20e96cd40e6dd0cd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
/* Target Code for TI C6X
   Copyright (C) 2010, 2011, 2012 Free Software Foundation, Inc.
   Contributed by Andrew Jenner <andrew@codesourcery.com>
   Contributed by Bernd Schmidt <bernds@codesourcery.com>

   This file is part of GCC.

   GCC is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published
   by the Free Software Foundation; either version 3, or (at your
   option) any later version.

   GCC is distributed in the hope that it will be useful, but WITHOUT
   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
   or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
   License for more details.

   You should have received a copy of the GNU General Public License
   along with GCC; see the file COPYING3.  If not see
   <http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "rtl.h"
#include "tree.h"
#include "insn-flags.h"
#include "output.h"
#include "insn-attr.h"
#include "insn-codes.h"
#include "expr.h"
#include "regs.h"
#include "optabs.h"
#include "recog.h"
#include "ggc.h"
#include "sched-int.h"
#include "timevar.h"
#include "tm_p.h"
#include "tm-preds.h"
#include "tm-constrs.h"
#include "df.h"
#include "function.h"
#include "diagnostic-core.h"
#include "cgraph.h"
#include "langhooks.h"
#include "target.h"
#include "target-def.h"
#include "sel-sched.h"
#include "debug.h"
#include "opts.h"
#include "hw-doloop.h"
#include "regrename.h"
#include "dumpfile.h"

/* Table of supported architecture variants.  */
typedef struct
{
  const char *arch;
  enum c6x_cpu_type type;
  unsigned short features;
} c6x_arch_table;

/* A list of all ISAs, mapping each one to a representative device.
   Used for -march selection.  */
static const c6x_arch_table all_isas[] =
{
#define C6X_ISA(NAME,DEVICE,FLAGS) \
  { NAME, DEVICE, FLAGS },
#include "c6x-isas.def"
#undef C6X_ISA
  { NULL, C6X_CPU_C62X, 0 }
};

/* This is the parsed result of the "-march=" option, if given.  */
enum c6x_cpu_type c6x_arch = C6X_DEFAULT_ARCH;

/* A mask of insn types that are allowed by the architecture selected by
   the -march option.  */
unsigned long c6x_insn_mask = C6X_DEFAULT_INSN_MASK;

/* The instruction that is being output (as obtained from FINAL_PRESCAN_INSN).
 */
static rtx c6x_current_insn = NULL_RTX;

/* A decl we build to access __c6xabi_DSBT_base.  */
static GTY(()) tree dsbt_decl;

/* Determines whether we run our final scheduling pass or not.  We always
   avoid the normal second scheduling pass.  */
static int c6x_flag_schedule_insns2;

/* Determines whether we run variable tracking in machine dependent
   reorganization.  */
static int c6x_flag_var_tracking;

/* Determines whether we use modulo scheduling.  */
static int c6x_flag_modulo_sched;

/* Record the state of flag_pic before we set it to 1 for DSBT.  */
int c6x_initial_flag_pic;

typedef struct
{
  /* We record the clock cycle for every insn during scheduling.  */
  int clock;
  /* After scheduling, we run assign_reservations to choose unit
     reservations for all insns.  These are recorded here.  */
  int reservation;
  /* Records the new condition for insns which must be made
     conditional after scheduling.  An entry of NULL_RTX means no such
     change is necessary.  */
  rtx new_cond;
  /* True for the first insn that was scheduled in an ebb.  */
  bool ebb_start;
  /* The scheduler state after the insn, transformed into a mask of UNIT_QID
     bits rather than storing the state.  Meaningful only for the last
     insn in a cycle.  */
  unsigned int unit_mask;
} c6x_sched_insn_info;

DEF_VEC_O(c6x_sched_insn_info);
DEF_VEC_ALLOC_O(c6x_sched_insn_info, heap);

/* Record a c6x_sched_insn_info structure for every insn in the function.  */
static VEC(c6x_sched_insn_info, heap) *insn_info;

#define INSN_INFO_LENGTH (VEC_length (c6x_sched_insn_info, insn_info))
#define INSN_INFO_ENTRY(N) (VEC_index (c6x_sched_insn_info, insn_info, (N)))

static bool done_cfi_sections;

#define RESERVATION_FLAG_D 1
#define RESERVATION_FLAG_L 2
#define RESERVATION_FLAG_S 4
#define RESERVATION_FLAG_M 8
#define RESERVATION_FLAG_DL (RESERVATION_FLAG_D | RESERVATION_FLAG_L)
#define RESERVATION_FLAG_DS (RESERVATION_FLAG_D | RESERVATION_FLAG_S)
#define RESERVATION_FLAG_LS (RESERVATION_FLAG_L | RESERVATION_FLAG_S)
#define RESERVATION_FLAG_DLS (RESERVATION_FLAG_D | RESERVATION_FLAG_LS)

/* The DFA names of the units.  */
static const char *const c6x_unit_names[] =
{
  "d1", "l1", "s1", "m1", "fps1", "fpl1", "adddps1", "adddpl1",
  "d2", "l2", "s2", "m2", "fps2", "fpl2", "adddps2", "adddpl2"
};

/* The DFA unit number for each unit in c6x_unit_names[].  */
static int c6x_unit_codes[ARRAY_SIZE (c6x_unit_names)];

/* Unit query IDs.  */
#define UNIT_QID_D1 0
#define UNIT_QID_L1 1
#define UNIT_QID_S1 2
#define UNIT_QID_M1 3
#define UNIT_QID_FPS1 4
#define UNIT_QID_FPL1 5
#define UNIT_QID_ADDDPS1 6
#define UNIT_QID_ADDDPL1 7
#define UNIT_QID_SIDE_OFFSET 8

#define RESERVATION_S1 2
#define RESERVATION_S2 10

/* An enum for the unit requirements we count in the UNIT_REQS table.  */
enum unitreqs
{
  UNIT_REQ_D,
  UNIT_REQ_L,
  UNIT_REQ_S,
  UNIT_REQ_M,
  UNIT_REQ_DL,
  UNIT_REQ_DS,
  UNIT_REQ_LS,
  UNIT_REQ_DLS,
  UNIT_REQ_T,
  UNIT_REQ_X,
  UNIT_REQ_MAX
};

/* A table used to count unit requirements.  Used when computing minimum
   iteration intervals.  */
typedef int unit_req_table[2][UNIT_REQ_MAX];
static unit_req_table unit_reqs;

/* Register map for debugging.  */
int const dbx_register_map[FIRST_PSEUDO_REGISTER] =
{
  0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,	/* A0 - A15.  */
  37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49,	/* A16 - A32.  */
  50, 51, 52,
  16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,	/* B0 - B15.  */
  29, 30, 31,
  53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65,	/* B16 - B32.  */
  66, 67, 68,
  -1, -1, -1						/* FP, ARGP, ILC.  */
};

/* Allocate a new, cleared machine_function structure.  */

static struct machine_function *
c6x_init_machine_status (void)
{
  return ggc_alloc_cleared_machine_function ();
}

/* Implement TARGET_OPTION_OVERRIDE.  */

static void
c6x_option_override (void)
{
  unsigned i;

  if (global_options_set.x_c6x_arch_option)
    {
      c6x_arch = all_isas[c6x_arch_option].type;
      c6x_insn_mask &= ~C6X_INSNS_ALL_CPU_BITS;
      c6x_insn_mask |= all_isas[c6x_arch_option].features;
    }

  c6x_flag_schedule_insns2 = flag_schedule_insns_after_reload;
  flag_schedule_insns_after_reload = 0;

  c6x_flag_modulo_sched = flag_modulo_sched;
  flag_modulo_sched = 0;

  init_machine_status = c6x_init_machine_status;

  for (i = 0; i < ARRAY_SIZE (c6x_unit_names); i++)
    c6x_unit_codes[i] = get_cpu_unit_code (c6x_unit_names[i]);

  if (flag_pic && !TARGET_DSBT)
    {
      error ("-fpic and -fPIC not supported without -mdsbt on this target");
      flag_pic = 0;
    }
  c6x_initial_flag_pic = flag_pic;
  if (TARGET_DSBT && !flag_pic)
    flag_pic = 1;
}


/* Implement the TARGET_CONDITIONAL_REGISTER_USAGE hook.  */

static void
c6x_conditional_register_usage (void)
{
  int i;
  if (c6x_arch == C6X_CPU_C62X || c6x_arch == C6X_CPU_C67X)
    for (i = 16; i < 32; i++)
      {
	fixed_regs[i] = 1;
	fixed_regs[32 + i] = 1;
      }
  if (TARGET_INSNS_64)
    {
      SET_HARD_REG_BIT (reg_class_contents[(int)PREDICATE_A_REGS],
			REG_A0);
      SET_HARD_REG_BIT (reg_class_contents[(int)PREDICATE_REGS],
			REG_A0);
      CLEAR_HARD_REG_BIT (reg_class_contents[(int)NONPREDICATE_A_REGS],
			  REG_A0);
      CLEAR_HARD_REG_BIT (reg_class_contents[(int)NONPREDICATE_REGS],
			  REG_A0);
    }
}

static GTY(()) rtx eqdf_libfunc;
static GTY(()) rtx nedf_libfunc;
static GTY(()) rtx ledf_libfunc;
static GTY(()) rtx ltdf_libfunc;
static GTY(()) rtx gedf_libfunc;
static GTY(()) rtx gtdf_libfunc;
static GTY(()) rtx eqsf_libfunc;
static GTY(()) rtx nesf_libfunc;
static GTY(()) rtx lesf_libfunc;
static GTY(()) rtx ltsf_libfunc;
static GTY(()) rtx gesf_libfunc;
static GTY(()) rtx gtsf_libfunc;
static GTY(()) rtx strasgi_libfunc;
static GTY(()) rtx strasgi64p_libfunc;

/* Implement the TARGET_INIT_LIBFUNCS macro.  We use this to rename library
   functions to match the C6x ABI.  */

static void
c6x_init_libfuncs (void)
{
  /* Double-precision floating-point arithmetic.  */
  set_optab_libfunc (add_optab, DFmode, "__c6xabi_addd");
  set_optab_libfunc (sdiv_optab, DFmode, "__c6xabi_divd");
  set_optab_libfunc (smul_optab, DFmode, "__c6xabi_mpyd");
  set_optab_libfunc (neg_optab, DFmode, "__c6xabi_negd");
  set_optab_libfunc (sub_optab, DFmode, "__c6xabi_subd");

  /* Single-precision floating-point arithmetic.  */
  set_optab_libfunc (add_optab, SFmode, "__c6xabi_addf");
  set_optab_libfunc (sdiv_optab, SFmode, "__c6xabi_divf");
  set_optab_libfunc (smul_optab, SFmode, "__c6xabi_mpyf");
  set_optab_libfunc (neg_optab, SFmode, "__c6xabi_negf");
  set_optab_libfunc (sub_optab, SFmode, "__c6xabi_subf");

  /* Floating-point comparisons.  */
  eqsf_libfunc = init_one_libfunc ("__c6xabi_eqf");
  nesf_libfunc = init_one_libfunc ("__c6xabi_neqf");
  lesf_libfunc = init_one_libfunc ("__c6xabi_lef");
  ltsf_libfunc = init_one_libfunc ("__c6xabi_ltf");
  gesf_libfunc = init_one_libfunc ("__c6xabi_gef");
  gtsf_libfunc = init_one_libfunc ("__c6xabi_gtf");
  eqdf_libfunc = init_one_libfunc ("__c6xabi_eqd");
  nedf_libfunc = init_one_libfunc ("__c6xabi_neqd");
  ledf_libfunc = init_one_libfunc ("__c6xabi_led");
  ltdf_libfunc = init_one_libfunc ("__c6xabi_ltd");
  gedf_libfunc = init_one_libfunc ("__c6xabi_ged");
  gtdf_libfunc = init_one_libfunc ("__c6xabi_gtd");

  set_optab_libfunc (eq_optab, SFmode, NULL);
  set_optab_libfunc (ne_optab, SFmode, "__c6xabi_neqf");
  set_optab_libfunc (gt_optab, SFmode, NULL);
  set_optab_libfunc (ge_optab, SFmode, NULL);
  set_optab_libfunc (lt_optab, SFmode, NULL);
  set_optab_libfunc (le_optab, SFmode, NULL);
  set_optab_libfunc (unord_optab, SFmode, "__c6xabi_unordf");
  set_optab_libfunc (eq_optab, DFmode, NULL);
  set_optab_libfunc (ne_optab, DFmode, "__c6xabi_neqd");
  set_optab_libfunc (gt_optab, DFmode, NULL);
  set_optab_libfunc (ge_optab, DFmode, NULL);
  set_optab_libfunc (lt_optab, DFmode, NULL);
  set_optab_libfunc (le_optab, DFmode, NULL);
  set_optab_libfunc (unord_optab, DFmode, "__c6xabi_unordd");

  /* Floating-point to integer conversions.  */
  set_conv_libfunc (sfix_optab, SImode, DFmode, "__c6xabi_fixdi");
  set_conv_libfunc (ufix_optab, SImode, DFmode, "__c6xabi_fixdu");
  set_conv_libfunc (sfix_optab, DImode, DFmode, "__c6xabi_fixdlli");
  set_conv_libfunc (ufix_optab, DImode, DFmode, "__c6xabi_fixdull");
  set_conv_libfunc (sfix_optab, SImode, SFmode, "__c6xabi_fixfi");
  set_conv_libfunc (ufix_optab, SImode, SFmode, "__c6xabi_fixfu");
  set_conv_libfunc (sfix_optab, DImode, SFmode, "__c6xabi_fixflli");
  set_conv_libfunc (ufix_optab, DImode, SFmode, "__c6xabi_fixfull");

  /* Conversions between floating types.  */
  set_conv_libfunc (trunc_optab, SFmode, DFmode, "__c6xabi_cvtdf");
  set_conv_libfunc (sext_optab, DFmode, SFmode, "__c6xabi_cvtfd");

  /* Integer to floating-point conversions.  */
  set_conv_libfunc (sfloat_optab, DFmode, SImode, "__c6xabi_fltid");
  set_conv_libfunc (ufloat_optab, DFmode, SImode, "__c6xabi_fltud");
  set_conv_libfunc (sfloat_optab, DFmode, DImode, "__c6xabi_fltllid");
  set_conv_libfunc (ufloat_optab, DFmode, DImode, "__c6xabi_fltulld");
  set_conv_libfunc (sfloat_optab, SFmode, SImode, "__c6xabi_fltif");
  set_conv_libfunc (ufloat_optab, SFmode, SImode, "__c6xabi_fltuf");
  set_conv_libfunc (sfloat_optab, SFmode, DImode, "__c6xabi_fltllif");
  set_conv_libfunc (ufloat_optab, SFmode, DImode, "__c6xabi_fltullf");

  /* Long long.  */
  set_optab_libfunc (smul_optab, DImode, "__c6xabi_mpyll");
  set_optab_libfunc (ashl_optab, DImode, "__c6xabi_llshl");
  set_optab_libfunc (lshr_optab, DImode, "__c6xabi_llshru");
  set_optab_libfunc (ashr_optab, DImode, "__c6xabi_llshr");

  set_optab_libfunc (sdiv_optab, SImode, "__c6xabi_divi");
  set_optab_libfunc (udiv_optab, SImode, "__c6xabi_divu");
  set_optab_libfunc (smod_optab, SImode, "__c6xabi_remi");
  set_optab_libfunc (umod_optab, SImode, "__c6xabi_remu");
  set_optab_libfunc (sdivmod_optab, SImode, "__c6xabi_divremi");
  set_optab_libfunc (udivmod_optab, SImode, "__c6xabi_divremu");
  set_optab_libfunc (sdiv_optab, DImode, "__c6xabi_divlli");
  set_optab_libfunc (udiv_optab, DImode, "__c6xabi_divull");
  set_optab_libfunc (smod_optab, DImode, "__c6xabi_remlli");
  set_optab_libfunc (umod_optab, DImode, "__c6xabi_remull");
  set_optab_libfunc (udivmod_optab, DImode, "__c6xabi_divremull");

  /* Block move.  */
  strasgi_libfunc = init_one_libfunc ("__c6xabi_strasgi");
  strasgi64p_libfunc = init_one_libfunc ("__c6xabi_strasgi_64plus");
}

/* Begin the assembly file.  */

static void
c6x_file_start (void)
{
  /* Variable tracking should be run after all optimizations which change order
     of insns.  It also needs a valid CFG.  This can't be done in
     c6x_override_options, because flag_var_tracking is finalized after
     that.  */
  c6x_flag_var_tracking = flag_var_tracking;
  flag_var_tracking = 0;

  done_cfi_sections = false;
  default_file_start ();

  /* Arrays are aligned to 8-byte boundaries.  */
  asm_fprintf (asm_out_file,
	       "\t.c6xabi_attribute Tag_ABI_array_object_alignment, 0\n");
  asm_fprintf (asm_out_file,
	       "\t.c6xabi_attribute Tag_ABI_array_object_align_expected, 0\n");

  /* Stack alignment is 8 bytes.  */
  asm_fprintf (asm_out_file,
	       "\t.c6xabi_attribute Tag_ABI_stack_align_needed, 0\n");
  asm_fprintf (asm_out_file,
	       "\t.c6xabi_attribute Tag_ABI_stack_align_preserved, 0\n");

#if 0 /* FIXME: Reenable when TI's tools are fixed.  */
  /* ??? Ideally we'd check flag_short_wchar somehow.  */
  asm_fprintf (asm_out_file, "\t.c6xabi_attribute Tag_ABI_wchar_t, %d\n", 2);
#endif

  /* We conform to version 1.0 of the ABI.  */
  asm_fprintf (asm_out_file,
	       "\t.c6xabi_attribute Tag_ABI_conformance, \"1.0\"\n");

}

/* The LTO frontend only enables exceptions when it sees a function that
   uses it.  This changes the return value of dwarf2out_do_frame, so we
   have to check before every function.  */

void
c6x_output_file_unwind (FILE * f)
{
  if (done_cfi_sections)
    return;

  /* Output a .cfi_sections directive.  */
  if (dwarf2out_do_frame ())
    {
      if (flag_unwind_tables || flag_exceptions)
	{
	  if (write_symbols == DWARF2_DEBUG
	      || write_symbols == VMS_AND_DWARF2_DEBUG)
	    asm_fprintf (f, "\t.cfi_sections .debug_frame, .c6xabi.exidx\n");
	  else
	    asm_fprintf (f, "\t.cfi_sections .c6xabi.exidx\n");
	}
      else
	asm_fprintf (f, "\t.cfi_sections .debug_frame\n");
      done_cfi_sections = true;
    }
}

/* Output unwind directives at the end of a function.  */

static void
c6x_output_fn_unwind (FILE * f)
{
  /* Return immediately if we are not generating unwinding tables.  */
  if (! (flag_unwind_tables || flag_exceptions))
    return;

  /* If this function will never be unwound, then mark it as such.  */
  if (!(flag_unwind_tables || crtl->uses_eh_lsda)
      && (TREE_NOTHROW (current_function_decl)
	  || crtl->all_throwers_are_sibcalls))
    fputs("\t.cantunwind\n", f);

  fputs ("\t.endp\n", f);
}


/* Stack and Calling.  */

int argument_registers[10] =
{
  REG_A4, REG_B4,
  REG_A6, REG_B6,
  REG_A8, REG_B8,
  REG_A10, REG_B10,
  REG_A12, REG_B12
};

/* Implements the macro INIT_CUMULATIVE_ARGS defined in c6x.h.  */

void
c6x_init_cumulative_args (CUMULATIVE_ARGS *cum, const_tree fntype, rtx libname,
			  int n_named_args ATTRIBUTE_UNUSED)
{
  cum->count = 0;
  cum->nregs = 10;
  if (!libname && fntype)
    {
      /* We need to find out the number of named arguments.  Unfortunately,
	 for incoming arguments, N_NAMED_ARGS is set to -1.  */
      if (stdarg_p (fntype))
	cum->nregs = type_num_arguments (fntype) - 1;
      if (cum->nregs > 10)
	cum->nregs = 10;
    }
}

/* Implements the macro FUNCTION_ARG defined in c6x.h.  */

static rtx
c6x_function_arg (cumulative_args_t cum_v, enum machine_mode mode,
		  const_tree type, bool named ATTRIBUTE_UNUSED)
{
  CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
  if (cum->count >= cum->nregs)
    return NULL_RTX;
  if (type)
    {
      HOST_WIDE_INT size = int_size_in_bytes (type);
      if (TARGET_BIG_ENDIAN && AGGREGATE_TYPE_P (type))
	{
	  if (size > 4)
	    {
	      rtx reg1 = gen_rtx_REG (SImode, argument_registers[cum->count] + 1);
	      rtx reg2 = gen_rtx_REG (SImode, argument_registers[cum->count]);
	      rtvec vec = gen_rtvec (2, gen_rtx_EXPR_LIST (VOIDmode, reg1, const0_rtx),
				     gen_rtx_EXPR_LIST (VOIDmode, reg2, GEN_INT (4)));
	      return gen_rtx_PARALLEL (mode, vec);
	    }
	}
    }
  return gen_rtx_REG (mode, argument_registers[cum->count]);
}

static void
c6x_function_arg_advance (cumulative_args_t cum_v,
			  enum machine_mode mode ATTRIBUTE_UNUSED,
			  const_tree type ATTRIBUTE_UNUSED,
			  bool named ATTRIBUTE_UNUSED)
{
  CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
  cum->count++;
}


/* Return true if BLOCK_REG_PADDING (MODE, TYPE, FIRST) should return
   upward rather than downward.  */

bool
c6x_block_reg_pad_upward (enum machine_mode mode ATTRIBUTE_UNUSED,
			  const_tree type, bool first)
{
  HOST_WIDE_INT size;

  if (!TARGET_BIG_ENDIAN)
    return true;
  if (!first)
    return true;
  if (!type)
    return true;
  size = int_size_in_bytes (type);
  return size == 3;
}

/* Implement TARGET_FUNCTION_ARG_BOUNDARY.  */

static unsigned int
c6x_function_arg_boundary (enum machine_mode mode, const_tree type)
{
  unsigned int boundary = type ? TYPE_ALIGN (type) : GET_MODE_BITSIZE (mode);

  if (boundary > BITS_PER_WORD)
    return 2 * BITS_PER_WORD;

  if (mode == BLKmode)
    {
      HOST_WIDE_INT size = int_size_in_bytes (type);
      if (size > 4)
	return 2 * BITS_PER_WORD;
      if (boundary < BITS_PER_WORD)
	{
	  if (size >= 3)
	    return BITS_PER_WORD;
	  if (size >= 2)
	    return 2 * BITS_PER_UNIT;
	}
    }
  return boundary;
}

/* Implement TARGET_FUNCTION_ARG_ROUND_BOUNDARY.  */
static unsigned int
c6x_function_arg_round_boundary (enum machine_mode mode, const_tree type)
{
  return c6x_function_arg_boundary (mode, type);
}

/* TARGET_FUNCTION_VALUE implementation.  Returns an RTX representing the place
   where function FUNC returns or receives a value of data type TYPE.  */

static rtx
c6x_function_value (const_tree type, const_tree func ATTRIBUTE_UNUSED,
		    bool outgoing ATTRIBUTE_UNUSED)
{
  /* Functions return values in register A4.  When returning aggregates, we may
     have to adjust for endianness.  */
  if (TARGET_BIG_ENDIAN && type && AGGREGATE_TYPE_P (type))
    {
      HOST_WIDE_INT size = int_size_in_bytes (type);
      if (size > 4)
	{

	  rtx reg1 = gen_rtx_REG (SImode, REG_A4 + 1);
	  rtx reg2 = gen_rtx_REG (SImode, REG_A4);
	  rtvec vec = gen_rtvec (2, gen_rtx_EXPR_LIST (VOIDmode, reg1, const0_rtx),
				 gen_rtx_EXPR_LIST (VOIDmode, reg2, GEN_INT (4)));
	  return gen_rtx_PARALLEL (TYPE_MODE (type), vec);
	}
    }
  return gen_rtx_REG (TYPE_MODE (type), REG_A4);
}

/* Implement TARGET_LIBCALL_VALUE.  */

static rtx
c6x_libcall_value (enum machine_mode mode, const_rtx fun ATTRIBUTE_UNUSED)
{
  return gen_rtx_REG (mode, REG_A4);
}

/* TARGET_STRUCT_VALUE_RTX implementation.  */

static rtx
c6x_struct_value_rtx (tree type ATTRIBUTE_UNUSED, int incoming ATTRIBUTE_UNUSED)
{
  return gen_rtx_REG (Pmode, REG_A3);
}

/* Implement TARGET_FUNCTION_VALUE_REGNO_P.  */

static bool
c6x_function_value_regno_p (const unsigned int regno)
{
  return regno == REG_A4;
}

/* Types larger than 64 bit, and variable sized types, are passed by
   reference.  The callee must copy them; see c6x_callee_copies.  */

static bool
c6x_pass_by_reference (cumulative_args_t cum_v ATTRIBUTE_UNUSED,
		       enum machine_mode mode, const_tree type,
		       bool named ATTRIBUTE_UNUSED)
{
  int size = -1;
  if (type)
    size = int_size_in_bytes (type);
  else if (mode != VOIDmode)
    size = GET_MODE_SIZE (mode);
  return size > 2 * UNITS_PER_WORD || size == -1;
}

/* Decide whether a type should be returned in memory (true)
   or in a register (false).  This is called by the macro
   TARGET_RETURN_IN_MEMORY.  */

static bool
c6x_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED)
{
  int size = int_size_in_bytes (type);
  return size > 2 * UNITS_PER_WORD || size == -1;
}

/* Values which must be returned in the most-significant end of the return
   register.  */

static bool
c6x_return_in_msb (const_tree valtype)
{
  HOST_WIDE_INT size = int_size_in_bytes (valtype);
  return TARGET_BIG_ENDIAN && AGGREGATE_TYPE_P (valtype) && size == 3;
}

/* Implement TARGET_CALLEE_COPIES.  */

static bool
c6x_callee_copies (cumulative_args_t cum_v ATTRIBUTE_UNUSED,
		   enum machine_mode mode ATTRIBUTE_UNUSED,
		   const_tree type ATTRIBUTE_UNUSED,
		   bool named ATTRIBUTE_UNUSED)
{
  return true;
}

/* Return the type to use as __builtin_va_list.  */
static tree
c6x_build_builtin_va_list (void)
{
  return build_pointer_type (char_type_node);
}

static void
c6x_asm_trampoline_template (FILE *f)
{
  fprintf (f, "\t.long\t0x0000002b\n"); /* mvkl .s2 fnlow,B0 */
  fprintf (f, "\t.long\t0x01000028\n"); /* || mvkl .s1 sclow,A2 */
  fprintf (f, "\t.long\t0x0000006b\n"); /* mvkh .s2 fnhigh,B0 */
  fprintf (f, "\t.long\t0x01000068\n"); /* || mvkh .s1 schigh,A2 */
  fprintf (f, "\t.long\t0x00000362\n"); /* b .s2 B0 */
  fprintf (f, "\t.long\t0x00008000\n"); /* nop 5 */
  fprintf (f, "\t.long\t0x00000000\n"); /* nop */
  fprintf (f, "\t.long\t0x00000000\n"); /* nop */
}

/* Emit RTL insns to initialize the variable parts of a trampoline at
   TRAMP. FNADDR is an RTX for the address of the function's pure
   code.  CXT is an RTX for the static chain value for the function.  */

static void
c6x_initialize_trampoline (rtx tramp, tree fndecl, rtx cxt)
{
  rtx fnaddr = XEXP (DECL_RTL (fndecl), 0);
  rtx t1 = copy_to_reg (fnaddr);
  rtx t2 = copy_to_reg (cxt);
  rtx mask = gen_reg_rtx (SImode);
  int i;

  emit_block_move (tramp, assemble_trampoline_template (),
		   GEN_INT (TRAMPOLINE_SIZE), BLOCK_OP_NORMAL);

  emit_move_insn (mask, GEN_INT (0xffff << 7));

  for (i = 0; i < 4; i++)
    {
      rtx mem = adjust_address (tramp, SImode, i * 4);
      rtx t = (i & 1) ? t2 : t1;
      rtx v1 = gen_reg_rtx (SImode);
      rtx v2 = gen_reg_rtx (SImode);
      emit_move_insn (v1, mem);
      if (i < 2)
	emit_insn (gen_ashlsi3 (v2, t, GEN_INT (7)));
      else
	emit_insn (gen_lshrsi3 (v2, t, GEN_INT (9)));
      emit_insn (gen_andsi3 (v2, v2, mask));
      emit_insn (gen_iorsi3 (v2, v2, v1));
      emit_move_insn (mem, v2);
    }
#ifdef CLEAR_INSN_CACHE
  tramp = XEXP (tramp, 0);
  emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "__gnu_clear_cache"),
		     LCT_NORMAL, VOIDmode, 2, tramp, Pmode,
		     plus_constant (Pmode, tramp, TRAMPOLINE_SIZE),
		     Pmode);
#endif
}

/* Determine whether c6x_output_mi_thunk can succeed.  */

static bool
c6x_can_output_mi_thunk (const_tree thunk ATTRIBUTE_UNUSED,
			 HOST_WIDE_INT delta ATTRIBUTE_UNUSED,
			 HOST_WIDE_INT vcall_offset ATTRIBUTE_UNUSED,
			 const_tree function ATTRIBUTE_UNUSED)
{
  return !TARGET_LONG_CALLS;
}

/* Output the assembler code for a thunk function.  THUNK is the
   declaration for the thunk function itself, FUNCTION is the decl for
   the target function.  DELTA is an immediate constant offset to be
   added to THIS.  If VCALL_OFFSET is nonzero, the word at
   *(*this + vcall_offset) should be added to THIS.  */

static void
c6x_output_mi_thunk (FILE *file ATTRIBUTE_UNUSED,
		     tree thunk ATTRIBUTE_UNUSED, HOST_WIDE_INT delta,
		     HOST_WIDE_INT vcall_offset, tree function)
{
  rtx xops[5];
  /* The this parameter is passed as the first argument.  */
  rtx this_rtx = gen_rtx_REG (Pmode, REG_A4);

  c6x_current_insn = NULL_RTX;

  xops[4] = XEXP (DECL_RTL (function), 0);
  if (!vcall_offset)
    {
      output_asm_insn ("b .s2 \t%4", xops);
      if (!delta)
	output_asm_insn ("nop 5", xops);
    }

  /* Adjust the this parameter by a fixed constant.  */
  if (delta)
    {
      xops[0] = GEN_INT (delta);
      xops[1] = this_rtx;
      if (delta >= -16 && delta <= 15)
	{
	  output_asm_insn ("add .s1 %0, %1, %1", xops);
	  if (!vcall_offset)
	    output_asm_insn ("nop 4", xops);
	}
      else if (delta >= 16 && delta < 32)
	{
	  output_asm_insn ("add .d1 %0, %1, %1", xops);
	  if (!vcall_offset)
	    output_asm_insn ("nop 4", xops);
	}
      else if (delta >= -32768 && delta < 32768)
	{
	  output_asm_insn ("mvk .s1 %0, A0", xops);
	  output_asm_insn ("add .d1 %1, A0, %1", xops);
	  if (!vcall_offset)
	    output_asm_insn ("nop 3", xops);
	}
      else
	{
	  output_asm_insn ("mvkl .s1 %0, A0", xops);
	  output_asm_insn ("mvkh .s1 %0, A0", xops);
	  output_asm_insn ("add .d1 %1, A0, %1", xops);
	  if (!vcall_offset)
	    output_asm_insn ("nop 3", xops);
	}
    }

  /* Adjust the this parameter by a value stored in the vtable.  */
  if (vcall_offset)
    {
      rtx a0tmp = gen_rtx_REG (Pmode, REG_A0);
      rtx a3tmp = gen_rtx_REG (Pmode, REG_A3);

      xops[1] = a3tmp;
      xops[2] = a0tmp;
      xops[3] = gen_rtx_MEM (Pmode, a0tmp);
      output_asm_insn ("mv .s1 a4, %2", xops);
      output_asm_insn ("ldw .d1t1 %3, %2", xops);

      /* Adjust the this parameter.  */
      xops[0] = gen_rtx_MEM (Pmode, plus_constant (Pmode, a0tmp,
						   vcall_offset));
      if (!memory_operand (xops[0], Pmode))
	{
	  rtx tmp2 = gen_rtx_REG (Pmode, REG_A1);
	  xops[0] = GEN_INT (vcall_offset);
	  xops[1] = tmp2;
	  output_asm_insn ("mvkl .s1 %0, %1", xops);
	  output_asm_insn ("mvkh .s1 %0, %1", xops);
	  output_asm_insn ("nop 2", xops);
	  output_asm_insn ("add .d1 %2, %1, %2", xops);
	  xops[0] = gen_rtx_MEM (Pmode, a0tmp);
	}
      else
	output_asm_insn ("nop 4", xops);
      xops[2] = this_rtx;
      output_asm_insn ("ldw .d1t1 %0, %1", xops);
      output_asm_insn ("|| b .s2 \t%4", xops);
      output_asm_insn ("nop 4", xops);
      output_asm_insn ("add .d1 %2, %1, %2", xops);
    }
}

/* Return true if EXP goes in small data/bss.  */

static bool
c6x_in_small_data_p (const_tree exp)
{
  /* We want to merge strings, so we never consider them small data.  */
  if (TREE_CODE (exp) == STRING_CST)
    return false;

  /* Functions are never small data.  */
  if (TREE_CODE (exp) == FUNCTION_DECL)
    return false;

  if (TREE_CODE (exp) == VAR_DECL && DECL_WEAK (exp))
    return false;

  if (TREE_CODE (exp) == VAR_DECL && DECL_SECTION_NAME (exp))
    {
      const char *section = TREE_STRING_POINTER (DECL_SECTION_NAME (exp));

      if (strcmp (section, ".neardata") == 0
	  || strncmp (section, ".neardata.", 10) == 0
	  || strncmp (section, ".gnu.linkonce.s.", 16) == 0
	  || strcmp (section, ".bss") == 0
	  || strncmp (section, ".bss.", 5) == 0
	  || strncmp (section, ".gnu.linkonce.sb.", 17) == 0
	  || strcmp (section, ".rodata") == 0
	  || strncmp (section, ".rodata.", 8) == 0
	  || strncmp (section, ".gnu.linkonce.s2.", 17) == 0)
	return true;
    }
  else
    return PLACE_IN_SDATA_P (exp);

  return false;
}

/* Return a section for X.  The only special thing we do here is to
   honor small data.  We don't have a tree type, so we can't use the
   PLACE_IN_SDATA_P macro we use everywhere else; we choose to place
   everything sized 8 bytes or smaller into small data.  */

static section *
c6x_select_rtx_section (enum machine_mode mode, rtx x,
			unsigned HOST_WIDE_INT align)
{
  if (c6x_sdata_mode == C6X_SDATA_ALL
      || (c6x_sdata_mode != C6X_SDATA_NONE && GET_MODE_SIZE (mode) <= 8))
    /* ??? Consider using mergeable sdata sections.  */
    return sdata_section;
  else
    return default_elf_select_rtx_section (mode, x, align);
}

static section *
c6x_elf_select_section (tree decl, int reloc,
			unsigned HOST_WIDE_INT align)
{
  const char *sname = NULL;
  unsigned int flags = SECTION_WRITE;
  if (c6x_in_small_data_p (decl))
    {
      switch (categorize_decl_for_section (decl, reloc))
	{
	case SECCAT_SRODATA:
	  sname = ".rodata";
	  flags = 0;
	  break;
	case SECCAT_SDATA:
	  sname = ".neardata";
	  break;
	case SECCAT_SBSS:
	  sname = ".bss";
	  flags |= SECTION_BSS;
	default:
	  break;
	}
    }
  else
    {
      switch (categorize_decl_for_section (decl, reloc))
	{
	case SECCAT_DATA:
	  sname = ".fardata";
	  break;
	case SECCAT_DATA_REL:
	  sname = ".fardata.rel";
	  break;
	case SECCAT_DATA_REL_LOCAL:
	  sname = ".fardata.rel.local";
	  break;
	case SECCAT_DATA_REL_RO:
	  sname = ".fardata.rel.ro";
	  break;
	case SECCAT_DATA_REL_RO_LOCAL:
	  sname = ".fardata.rel.ro.local";
	  break;
	case SECCAT_BSS:
	  sname = ".far";
	  flags |= SECTION_BSS;
	  break;
	case SECCAT_RODATA:
	  sname = ".const";
	  flags = 0;
	  break;
	case SECCAT_SRODATA:
	case SECCAT_SDATA:
	case SECCAT_SBSS:
	  gcc_unreachable ();
	default:
	  break;
	}
    }
  if (sname)
    {
      /* We might get called with string constants, but get_named_section
	 doesn't like them as they are not DECLs.  Also, we need to set
	 flags in that case.  */
      if (!DECL_P (decl))
	return get_section (sname, flags, NULL);
      return get_named_section (decl, sname, reloc);
    }

  return default_elf_select_section (decl, reloc, align);
}

/* Build up a unique section name, expressed as a
   STRING_CST node, and assign it to DECL_SECTION_NAME (decl).
   RELOC indicates whether the initial value of EXP requires
   link-time relocations.  */

static void ATTRIBUTE_UNUSED
c6x_elf_unique_section (tree decl, int reloc)
{
  const char *prefix = NULL;
  /* We only need to use .gnu.linkonce if we don't have COMDAT groups.  */
  bool one_only = DECL_ONE_ONLY (decl) && !HAVE_COMDAT_GROUP;

  if (c6x_in_small_data_p (decl))
    {
      switch (categorize_decl_for_section (decl, reloc))
	{
	case SECCAT_SDATA:
          prefix = one_only ? ".s" : ".neardata";
	  break;
	case SECCAT_SBSS:
          prefix = one_only ? ".sb" : ".bss";
	  break;
	case SECCAT_SRODATA:
          prefix = one_only ? ".s2" : ".rodata";
	  break;
	case SECCAT_RODATA_MERGE_STR:
	case SECCAT_RODATA_MERGE_STR_INIT:
	case SECCAT_RODATA_MERGE_CONST:
	case SECCAT_RODATA:
	case SECCAT_DATA:
	case SECCAT_DATA_REL:
	case SECCAT_DATA_REL_LOCAL:
	case SECCAT_DATA_REL_RO:
	case SECCAT_DATA_REL_RO_LOCAL:
	  gcc_unreachable ();
	default:
	  /* Everything else we place into default sections and hope for the
	     best.  */
	  break;
	}
    }
  else
    {
      switch (categorize_decl_for_section (decl, reloc))
	{
	case SECCAT_DATA:
	case SECCAT_DATA_REL:
	case SECCAT_DATA_REL_LOCAL:
	case SECCAT_DATA_REL_RO:
	case SECCAT_DATA_REL_RO_LOCAL:
          prefix = one_only ? ".fd" : ".fardata";
	  break;
	case SECCAT_BSS:
          prefix = one_only ? ".fb" : ".far";
	  break;
	case SECCAT_RODATA:
	case SECCAT_RODATA_MERGE_STR:
	case SECCAT_RODATA_MERGE_STR_INIT:
	case SECCAT_RODATA_MERGE_CONST:
          prefix = one_only ? ".fr" : ".const";
	  break;
	case SECCAT_SRODATA:
	case SECCAT_SDATA:
	case SECCAT_SBSS:
	  gcc_unreachable ();
	default:
	  break;
	}
    }

  if (prefix)
    {
      const char *name, *linkonce;
      char *string;

      name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
      name = targetm.strip_name_encoding (name);

      /* If we're using one_only, then there needs to be a .gnu.linkonce
	 prefix to the section name.  */
      linkonce = one_only ? ".gnu.linkonce" : "";

      string = ACONCAT ((linkonce, prefix, ".", name, NULL));

      DECL_SECTION_NAME (decl) = build_string (strlen (string), string);
      return;
    }
  default_unique_section (decl, reloc);
}

static unsigned int
c6x_section_type_flags (tree decl, const char *name, int reloc)
{
  unsigned int flags = 0;

  if (strcmp (name, ".far") == 0
      || strncmp (name, ".far.", 5) == 0)
    flags |= SECTION_BSS;

  flags |= default_section_type_flags (decl, name, reloc);

  return flags;
}

/* Checks whether the given CALL_EXPR would use a caller saved
   register.  This is used to decide whether sibling call optimization
   could be performed on the respective function call.  */

static bool
c6x_call_saved_register_used (tree call_expr)
{
  CUMULATIVE_ARGS cum_v;
  cumulative_args_t cum;
  HARD_REG_SET call_saved_regset;
  tree parameter;
  enum machine_mode mode;
  tree type;
  rtx parm_rtx;
  int i;

  INIT_CUMULATIVE_ARGS (cum_v, NULL, NULL, 0, 0);
  cum = pack_cumulative_args (&cum_v);

  COMPL_HARD_REG_SET (call_saved_regset, call_used_reg_set);
  for (i = 0; i < call_expr_nargs (call_expr); i++)
    {
      parameter = CALL_EXPR_ARG (call_expr, i);
      gcc_assert (parameter);

      /* For an undeclared variable passed as parameter we will get
	 an ERROR_MARK node here.  */
      if (TREE_CODE (parameter) == ERROR_MARK)
	return true;

      type = TREE_TYPE (parameter);
      gcc_assert (type);

      mode = TYPE_MODE (type);
      gcc_assert (mode);

      if (pass_by_reference (&cum_v, mode, type, true))
 	{
 	  mode = Pmode;
 	  type = build_pointer_type (type);
 	}

       parm_rtx = c6x_function_arg (cum, mode, type, 0);

       c6x_function_arg_advance (cum, mode, type, 0);

       if (!parm_rtx)
	 continue;

       if (REG_P (parm_rtx)
	   && overlaps_hard_reg_set_p (call_saved_regset, GET_MODE (parm_rtx),
				       REGNO (parm_rtx)))
	 return true;
       if (GET_CODE (parm_rtx) == PARALLEL)
	 {
	   int n = XVECLEN (parm_rtx, 0);
	   while (n-- > 0)
	     {
	       rtx x = XEXP (XVECEXP (parm_rtx, 0, n), 0);
	       if (REG_P (x)
		   && overlaps_hard_reg_set_p (call_saved_regset,
					       GET_MODE (x), REGNO (x)))
		 return true;
	     }
	 }
    }
  return false;
}

/* Decide whether we can make a sibling call to a function.  DECL is the
   declaration of the function being targeted by the call and EXP is the
   CALL_EXPR representing the call.  */

static bool
c6x_function_ok_for_sibcall (tree decl, tree exp)
{
  /* Registers A10, A12, B10 and B12 are available as arguments
     register but unfortunately caller saved. This makes functions
     needing these registers for arguments not suitable for
     sibcalls.  */
  if (c6x_call_saved_register_used (exp))
    return false;

  if (!flag_pic)
    return true;

  if (TARGET_DSBT)
    {
      /* When compiling for DSBT, the calling function must be local,
	 so that when we reload B14 in the sibcall epilogue, it will
	 not change its value.  */
      struct cgraph_local_info *this_func;

      if (!decl)
	/* Not enough information.  */
	return false;

      this_func = cgraph_local_info (current_function_decl);
      return this_func->local;
    }

  return true;
}

/* Return true if DECL is known to be linked into section SECTION.  */

static bool
c6x_function_in_section_p (tree decl, section *section)
{
  /* We can only be certain about functions defined in the same
     compilation unit.  */
  if (!TREE_STATIC (decl))
    return false;

  /* Make sure that SYMBOL always binds to the definition in this
     compilation unit.  */
  if (!targetm.binds_local_p (decl))
    return false;

  /* If DECL_SECTION_NAME is set, assume it is trustworthy.  */
  if (!DECL_SECTION_NAME (decl))
    {
      /* Make sure that we will not create a unique section for DECL.  */
      if (flag_function_sections || DECL_ONE_ONLY (decl))
	return false;
    }

  return function_section (decl) == section;
}

/* Return true if a call to OP, which is a SYMBOL_REF, must be expanded
   as a long call.  */
bool
c6x_long_call_p (rtx op)
{
  tree decl;

  if (!TARGET_LONG_CALLS)
    return false;

  decl = SYMBOL_REF_DECL (op);

  /* Try to determine whether the symbol is in the same section as the current
     function.  Be conservative, and only cater for cases in which the
     whole of the current function is placed in the same section.  */
  if (decl != NULL_TREE
      && !flag_reorder_blocks_and_partition
      && TREE_CODE (decl) == FUNCTION_DECL
      && c6x_function_in_section_p (decl, current_function_section ()))
    return false;

  return true;
}

/* Emit the sequence for a call.  */
void
c6x_expand_call (rtx retval, rtx address, bool sibcall)
{
  rtx callee = XEXP (address, 0);
  rtx call_insn;

  if (!c6x_call_operand (callee, Pmode))
    {
      callee = force_reg (Pmode, callee);
      address = change_address (address, Pmode, callee);
    }
  call_insn = gen_rtx_CALL (VOIDmode, address, const0_rtx);
  if (sibcall)
    {
      call_insn = emit_call_insn (call_insn);
      use_reg (&CALL_INSN_FUNCTION_USAGE (call_insn),
	       gen_rtx_REG (Pmode, REG_B3));
    }
  else
    {
      if (retval == NULL_RTX)
	call_insn = emit_call_insn (call_insn);
      else
	call_insn = emit_call_insn (gen_rtx_SET (GET_MODE (retval), retval,
						 call_insn));
    }
  if (flag_pic)
    use_reg (&CALL_INSN_FUNCTION_USAGE (call_insn), pic_offset_table_rtx);
}

/* Legitimize PIC addresses.  If the address is already position-independent,
   we return ORIG.  Newly generated position-independent addresses go into a
   reg.  This is REG if nonzero, otherwise we allocate register(s) as
   necessary.  PICREG is the register holding the pointer to the PIC offset
   table.  */

static rtx
legitimize_pic_address (rtx orig, rtx reg, rtx picreg)
{
  rtx addr = orig;
  rtx new_rtx = orig;

  if (GET_CODE (addr) == SYMBOL_REF || GET_CODE (addr) == LABEL_REF)
    {
      int unspec = UNSPEC_LOAD_GOT;
      rtx tmp;

      if (reg == 0)
	{
	  gcc_assert (can_create_pseudo_p ());
	  reg = gen_reg_rtx (Pmode);
	}
      if (flag_pic == 2)
	{
	  if (can_create_pseudo_p ())
	    tmp = gen_reg_rtx (Pmode);
	  else
	    tmp = reg;
	  emit_insn (gen_movsi_gotoff_high (tmp, addr));
	  emit_insn (gen_movsi_gotoff_lo_sum (tmp, tmp, addr));
	  emit_insn (gen_load_got_gotoff (reg, picreg, tmp));
	}
      else
	{
	  tmp = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), unspec);
	  new_rtx = gen_const_mem (Pmode, gen_rtx_PLUS (Pmode, picreg, tmp));

	  emit_move_insn (reg, new_rtx);
	}
      if (picreg == pic_offset_table_rtx)
	crtl->uses_pic_offset_table = 1;
      return reg;
    }

  else if (GET_CODE (addr) == CONST || GET_CODE (addr) == PLUS)
    {
      rtx base;

      if (GET_CODE (addr) == CONST)
	{
	  addr = XEXP (addr, 0);
	  gcc_assert (GET_CODE (addr) == PLUS);
	}

      if (XEXP (addr, 0) == picreg)
	return orig;

      if (reg == 0)
	{
	  gcc_assert (can_create_pseudo_p ());
	  reg = gen_reg_rtx (Pmode);
	}

      base = legitimize_pic_address (XEXP (addr, 0), reg, picreg);
      addr = legitimize_pic_address (XEXP (addr, 1),
				     base == reg ? NULL_RTX : reg,
				     picreg);

      if (GET_CODE (addr) == CONST_INT)
	{
	  gcc_assert (! reload_in_progress && ! reload_completed);
	  addr = force_reg (Pmode, addr);
	}

      if (GET_CODE (addr) == PLUS && CONSTANT_P (XEXP (addr, 1)))
	{
	  base = gen_rtx_PLUS (Pmode, base, XEXP (addr, 0));
	  addr = XEXP (addr, 1);
	}

      return gen_rtx_PLUS (Pmode, base, addr);
    }

  return new_rtx;
}

/* Expand a move operation in mode MODE.  The operands are in OPERANDS.
   Returns true if no further code must be generated, false if the caller
   should generate an insn to move OPERANDS[1] to OPERANDS[0].  */

bool
expand_move (rtx *operands, enum machine_mode mode)
{
  rtx dest = operands[0];
  rtx op = operands[1];

  if ((reload_in_progress | reload_completed) == 0
      && GET_CODE (dest) == MEM && GET_CODE (op) != REG)
    operands[1] = force_reg (mode, op);
  else if (mode == SImode && symbolic_operand (op, SImode))
    {
      if (flag_pic)
	{
	  if (sdata_symbolic_operand (op, SImode))
	    {
	      emit_insn (gen_load_sdata_pic (dest, pic_offset_table_rtx, op));
	      crtl->uses_pic_offset_table = 1;
	      return true;
	    }
	  else
	    {
	      rtx temp = (reload_completed || reload_in_progress
			  ? dest : gen_reg_rtx (Pmode));

	      operands[1] = legitimize_pic_address (op, temp,
						    pic_offset_table_rtx);
	    }
	}
      else if (reload_completed
	       && !sdata_symbolic_operand (op, SImode))
	{
	  emit_insn (gen_movsi_high (dest, op));
	  emit_insn (gen_movsi_lo_sum (dest, dest, op));
	  return true;
	}
    }
  return false;
}

/* This function is called when we're about to expand an integer compare
   operation which performs COMPARISON.  It examines the second operand,
   and if it is an integer constant that cannot be used directly on the
   current machine in a comparison insn, it returns true.  */
bool
c6x_force_op_for_comparison_p (enum rtx_code code, rtx op)
{
  if (!CONST_INT_P (op) || satisfies_constraint_Iu4 (op))
    return false;

  if ((code == EQ || code == LT || code == GT)
       && !satisfies_constraint_Is5 (op))
    return true;
  if ((code == GTU || code == LTU)
      && (!TARGET_INSNS_64 || !satisfies_constraint_Iu5 (op)))
    return true;

  return false;
}

/* Emit comparison instruction if necessary, returning the expression
   that holds the compare result in the proper mode.  Return the comparison
   that should be used in the jump insn.  */

rtx
c6x_expand_compare (rtx comparison, enum machine_mode mode)
{
  enum rtx_code code = GET_CODE (comparison);
  rtx op0 = XEXP (comparison, 0);
  rtx op1 = XEXP (comparison, 1);
  rtx cmp;
  enum rtx_code jump_code = code;
  enum machine_mode op_mode = GET_MODE (op0);

  if (op_mode == DImode && (code == NE || code == EQ) && op1 == const0_rtx)
    {
      rtx t = gen_reg_rtx (SImode);
      emit_insn (gen_iorsi3 (t, gen_lowpart (SImode, op0),
			     gen_highpart (SImode, op0)));
      op_mode = SImode;
      cmp = t;
    }
  else if (op_mode == DImode)
    {
      rtx lo[2], high[2];
      rtx cmp1, cmp2;

      if (code == NE || code == GEU || code == LEU || code == GE || code == LE)
	{
	  code = reverse_condition (code);
	  jump_code = EQ;
	}
      else
	jump_code = NE;

      split_di (&op0, 1, lo, high);
      split_di (&op1, 1, lo + 1, high + 1);

      if (c6x_force_op_for_comparison_p (code, high[1])
	  || c6x_force_op_for_comparison_p (EQ, high[1]))
	high[1] = force_reg (SImode, high[1]);

      cmp1 = gen_reg_rtx (SImode);
      cmp2 = gen_reg_rtx (SImode);
      emit_insn (gen_rtx_SET (VOIDmode, cmp1,
			      gen_rtx_fmt_ee (code, SImode, high[0], high[1])));
      if (code == EQ)
	{
	  if (c6x_force_op_for_comparison_p (code, lo[1]))
	    lo[1] = force_reg (SImode, lo[1]);
	  emit_insn (gen_rtx_SET (VOIDmode, cmp2,
				  gen_rtx_fmt_ee (code, SImode, lo[0], lo[1])));
	  emit_insn (gen_andsi3 (cmp1, cmp1, cmp2));
	}
      else
	{
	  emit_insn (gen_rtx_SET (VOIDmode, cmp2,
				  gen_rtx_EQ (SImode, high[0], high[1])));
	  if (code == GT)
	    code = GTU;
	  else if (code == LT)
	    code = LTU;
	  if (c6x_force_op_for_comparison_p (code, lo[1]))
	    lo[1] = force_reg (SImode, lo[1]);
	  emit_insn (gen_cmpsi_and (cmp2, gen_rtx_fmt_ee (code, SImode,
							  lo[0], lo[1]),
				    lo[0], lo[1], cmp2));
	  emit_insn (gen_iorsi3 (cmp1, cmp1, cmp2));
	}
      cmp = cmp1;
    }
  else if (TARGET_FP && !flag_finite_math_only
	   && (op_mode == DFmode || op_mode == SFmode)
	   && code != EQ && code != NE && code != LT && code != GT
	   && code != UNLE && code != UNGE)
    {
      enum rtx_code code1, code2, code3;
      rtx (*fn) (rtx, rtx, rtx, rtx, rtx);

      jump_code = NE;
      code3 = UNKNOWN;
      switch (code)
	{
	case UNLT:
	case UNGT:
	  jump_code = EQ;
	  /* fall through */
	case LE:
	case GE:
	  code1 = code == LE || code == UNGT ? LT : GT;
	  code2 = EQ;
	  break;

	case UNORDERED:
	  jump_code = EQ;
	  /* fall through */
	case ORDERED:
	  code3 = EQ;
	  /* fall through */
	case LTGT:
	  code1 = LT;
	  code2 = GT;
	  break;

	case UNEQ:
	  code1 = LT;
	  code2 = GT;
	  jump_code = EQ;
	  break;

	default:
	  gcc_unreachable ();
	}

      cmp = gen_reg_rtx (SImode);
      emit_insn (gen_rtx_SET (VOIDmode, cmp,
			      gen_rtx_fmt_ee (code1, SImode, op0, op1)));
      fn = op_mode == DFmode ? gen_cmpdf_ior : gen_cmpsf_ior;
      emit_insn (fn (cmp, gen_rtx_fmt_ee (code2, SImode, op0, op1),
		     op0, op1, cmp));
      if (code3 != UNKNOWN)
	emit_insn (fn (cmp, gen_rtx_fmt_ee (code3, SImode, op0, op1),
		       op0, op1, cmp));
    }
  else if (op_mode == SImode && (code == NE || code == EQ) && op1 == const0_rtx)
    cmp = op0;
  else
    {
      bool is_fp_libfunc;
      is_fp_libfunc = !TARGET_FP && (op_mode == DFmode || op_mode == SFmode);

      if ((code == NE || code == GEU || code == LEU || code == GE || code == LE)
	  && !is_fp_libfunc)
	{
	  code = reverse_condition (code);
	  jump_code = EQ;
	}
      else if (code == UNGE)
	{
	  code = LT;
	  jump_code = EQ;
	}
      else if (code == UNLE)
	{
	  code = GT;
	  jump_code = EQ;
	}
      else
	jump_code = NE;

      if (is_fp_libfunc)
	{
	  rtx insns;
	  rtx libfunc;
	  switch (code)
	    {
	    case EQ:
	      libfunc = op_mode == DFmode ? eqdf_libfunc : eqsf_libfunc;
	      break;
	    case NE:
	      libfunc = op_mode == DFmode ? nedf_libfunc : nesf_libfunc;
	      break;
	    case GT:
	      libfunc = op_mode == DFmode ? gtdf_libfunc : gtsf_libfunc;
	      break;
	    case GE:
	      libfunc = op_mode == DFmode ? gedf_libfunc : gesf_libfunc;
	      break;
	    case LT:
	      libfunc = op_mode == DFmode ? ltdf_libfunc : ltsf_libfunc;
	      break;
	    case LE:
	      libfunc = op_mode == DFmode ? ledf_libfunc : lesf_libfunc;
	      break;
	    default:
	      gcc_unreachable ();
	    }
	  start_sequence ();

	  cmp = emit_library_call_value (libfunc, 0, LCT_CONST, SImode, 2,
					 op0, op_mode, op1, op_mode);
	  insns = get_insns ();
	  end_sequence ();

	  emit_libcall_block (insns, cmp, cmp,
			      gen_rtx_fmt_ee (code, SImode, op0, op1));
	}
      else
	{
	  cmp = gen_reg_rtx (SImode);
	  if (c6x_force_op_for_comparison_p (code, op1))
	    op1 = force_reg (SImode, op1);
	  emit_insn (gen_rtx_SET (VOIDmode, cmp,
				  gen_rtx_fmt_ee (code, SImode, op0, op1)));
	}
    }

  return gen_rtx_fmt_ee (jump_code, mode, cmp, const0_rtx);
}

/* Return one word of double-word value OP.  HIGH_P is true to select the
   high part, false to select the low part.  When encountering auto-increment
   addressing, we make the assumption that the low part is going to be accessed
   first.  */

rtx
c6x_subword (rtx op, bool high_p)
{
  unsigned int byte;
  enum machine_mode mode;

  mode = GET_MODE (op);
  if (mode == VOIDmode)
    mode = DImode;

  if (TARGET_BIG_ENDIAN ? !high_p : high_p)
    byte = UNITS_PER_WORD;
  else
    byte = 0;

  if (MEM_P (op))
    {
      rtx addr = XEXP (op, 0);
      if (GET_CODE (addr) == PLUS || REG_P (addr))
	return adjust_address (op, word_mode, byte);
      /* FIXME: should really support autoincrement addressing for
	 multi-word modes.  */
      gcc_unreachable ();
    }

  return simplify_gen_subreg (word_mode, op, mode, byte);
}

/* Split one or more DImode RTL references into pairs of SImode
   references.  The RTL can be REG, offsettable MEM, integer constant, or
   CONST_DOUBLE.  "operands" is a pointer to an array of DImode RTL to
   split and "num" is its length.  lo_half and hi_half are output arrays
   that parallel "operands".  */

void
split_di (rtx operands[], int num, rtx lo_half[], rtx hi_half[])
{
  while (num--)
    {
      rtx op = operands[num];

      lo_half[num] = c6x_subword (op, false);
      hi_half[num] = c6x_subword (op, true);
    }
}

/* Return true if VAL is a mask valid for a clr instruction.  */
bool
c6x_valid_mask_p (HOST_WIDE_INT val)
{
  int i;
  for (i = 0; i < 32; i++)
    if (!(val & ((unsigned HOST_WIDE_INT)1 << i)))
      break;
  for (; i < 32; i++)
    if (val & ((unsigned HOST_WIDE_INT)1 << i))
      break;
  for (; i < 32; i++)
    if (!(val & ((unsigned HOST_WIDE_INT)1 << i)))
      return false;
  return true;
}

/* Expand a block move for a movmemM pattern.  */

bool
c6x_expand_movmem (rtx dst, rtx src, rtx count_exp, rtx align_exp,
		   rtx expected_align_exp ATTRIBUTE_UNUSED,
		   rtx expected_size_exp ATTRIBUTE_UNUSED)
{
  unsigned HOST_WIDE_INT align = 1;
  unsigned HOST_WIDE_INT src_mem_align, dst_mem_align, min_mem_align;
  unsigned HOST_WIDE_INT count = 0, offset = 0;
  unsigned int biggest_move = TARGET_STDW ? 8 : 4;

  if (CONST_INT_P (align_exp))
    align = INTVAL (align_exp);

  src_mem_align = MEM_ALIGN (src) / BITS_PER_UNIT;
  dst_mem_align = MEM_ALIGN (dst) / BITS_PER_UNIT;
  min_mem_align = MIN (src_mem_align, dst_mem_align);

  if (min_mem_align > align)
    align = min_mem_align / BITS_PER_UNIT;
  if (src_mem_align < align)
    src_mem_align = align;
  if (dst_mem_align < align)
    dst_mem_align = align;

  if (CONST_INT_P (count_exp))
    count = INTVAL (count_exp);
  else
    return false;

  /* Make sure we don't need to care about overflow later on.  */
  if (count > ((unsigned HOST_WIDE_INT) 1 << 30))
    return false;

  if (count >= 28 && (count & 3) == 0 && align >= 4)
    {
      tree dst_expr = MEM_EXPR (dst);
      tree src_expr = MEM_EXPR (src);
      rtx fn = TARGET_INSNS_64PLUS ? strasgi64p_libfunc : strasgi_libfunc;
      rtx srcreg = force_reg (Pmode, XEXP (src, 0));
      rtx dstreg = force_reg (Pmode, XEXP (dst, 0));

      if (src_expr)
	mark_addressable (src_expr);
      if (dst_expr)
	mark_addressable (dst_expr);
      emit_library_call (fn, LCT_NORMAL, VOIDmode, 3,
			 dstreg, Pmode, srcreg, Pmode, count_exp, SImode);
      return true;
    }

  if (biggest_move > align && !TARGET_INSNS_64)
    biggest_move = align;

  if (count / biggest_move > 7)
    return false;

  while (count > 0)
    {
      rtx reg, reg_lowpart;
      enum machine_mode srcmode, dstmode;
      unsigned HOST_WIDE_INT src_size, dst_size, src_left;
      int shift;
      rtx srcmem, dstmem;

      while (biggest_move > count)
	biggest_move /= 2;

      src_size = dst_size = biggest_move;
      if (src_size > src_mem_align && src_size == 2)
	src_size = 1;
      if (dst_size > dst_mem_align && dst_size == 2)
	dst_size = 1;

      if (dst_size > src_size)
	dst_size = src_size;

      srcmode = mode_for_size (src_size * BITS_PER_UNIT, MODE_INT, 0);
      dstmode = mode_for_size (dst_size * BITS_PER_UNIT, MODE_INT, 0);
      if (src_size >= 4)
	reg_lowpart = reg = gen_reg_rtx (srcmode);
      else
	{
	  reg = gen_reg_rtx (SImode);
	  reg_lowpart = gen_lowpart (srcmode, reg);
	}

      srcmem = adjust_address (copy_rtx (src), srcmode, offset);

      if (src_size > src_mem_align)
	{
	  enum insn_code icode = (srcmode == SImode ? CODE_FOR_movmisalignsi
				  : CODE_FOR_movmisaligndi);
	  emit_insn (GEN_FCN (icode) (reg_lowpart, srcmem));
	}
      else
	emit_move_insn (reg_lowpart, srcmem);

      src_left = src_size;
      shift = TARGET_BIG_ENDIAN ? (src_size - dst_size) * BITS_PER_UNIT  : 0;
      while (src_left > 0)
	{
	  rtx dstreg = reg_lowpart;

	  if (src_size > dst_size)
	    {
	      rtx srcword = reg;
	      int shift_amount = shift & (BITS_PER_WORD - 1);
	      if (src_size > 4)
		srcword = operand_subword_force (srcword, src_left >= 4 ? 0 : 4,
						 SImode);
	      if (shift_amount > 0)
		{
		  dstreg = gen_reg_rtx (SImode);
		  emit_insn (gen_lshrsi3 (dstreg, srcword,
					  GEN_INT (shift_amount)));
		}
	      else
		dstreg = srcword;
	      dstreg = gen_lowpart (dstmode, dstreg);
	    }

	  dstmem = adjust_address (copy_rtx (dst), dstmode, offset);
	  if (dst_size > dst_mem_align)
	    {
	      enum insn_code icode = (dstmode == SImode ? CODE_FOR_movmisalignsi
				      : CODE_FOR_movmisaligndi);
	      emit_insn (GEN_FCN (icode) (dstmem, dstreg));
	    }
	  else
	    emit_move_insn (dstmem, dstreg);

	  if (TARGET_BIG_ENDIAN)
	    shift -= dst_size * BITS_PER_UNIT;
	  else
	    shift += dst_size * BITS_PER_UNIT;
	  offset += dst_size;
	  src_left -= dst_size;
	}
      count -= src_size;
    }
  return true;
}

/* Subroutine of print_address_operand, print a single address offset OFF for
   a memory access of mode MEM_MODE, choosing between normal form and scaled
   form depending on the type of the insn.  Misaligned memory references must
   use the scaled form.  */

static void
print_address_offset (FILE *file, rtx off, enum machine_mode mem_mode)
{
  rtx pat;

  if (c6x_current_insn != NULL_RTX)
    {
      pat = PATTERN (c6x_current_insn);
      if (GET_CODE (pat) == COND_EXEC)
	pat = COND_EXEC_CODE (pat);
      if (GET_CODE (pat) == PARALLEL)
	pat = XVECEXP (pat, 0, 0);

      if (GET_CODE (pat) == SET
	  && GET_CODE (SET_SRC (pat)) == UNSPEC
	  && XINT (SET_SRC (pat), 1) == UNSPEC_MISALIGNED_ACCESS)
	{
	  gcc_assert (CONST_INT_P (off)
		      && (INTVAL (off) & (GET_MODE_SIZE (mem_mode) - 1)) == 0);
	  fprintf (file, "[" HOST_WIDE_INT_PRINT_DEC "]",
		   INTVAL (off) / GET_MODE_SIZE (mem_mode));
	  return;
	}
    }
  fputs ("(", file);
  output_address (off);
  fputs (")", file);
}

static bool
c6x_print_operand_punct_valid_p (unsigned char c)
{
  return c == '$' || c == '.' || c == '|';
}

static void c6x_print_operand (FILE *, rtx, int);

/* Subroutine of c6x_print_operand; used to print a memory reference X to FILE.  */

static void
c6x_print_address_operand (FILE *file, rtx x, enum machine_mode mem_mode)
{
  rtx off;
  switch (GET_CODE (x))
    {
    case PRE_MODIFY:
    case POST_MODIFY:
      if (GET_CODE (x) == POST_MODIFY)
	output_address (XEXP (x, 0));
      off = XEXP (XEXP (x, 1), 1);
      if (XEXP (x, 0) == stack_pointer_rtx)
	{
	  if (GET_CODE (x) == PRE_MODIFY)
	    gcc_assert (INTVAL (off) > 0);
	  else
	    gcc_assert (INTVAL (off) < 0);
	}
      if (CONST_INT_P (off) && INTVAL (off) < 0)
	{
	  fprintf (file, "--");
	  off = GEN_INT (-INTVAL (off));
	}
      else
	fprintf (file, "++");
      if (GET_CODE (x) == PRE_MODIFY)
	output_address (XEXP (x, 0));
      print_address_offset (file, off, mem_mode);
      break;

    case PLUS:
      off = XEXP (x, 1);
      if (CONST_INT_P (off) && INTVAL (off) < 0)
	{
	  fprintf (file, "-");
	  off = GEN_INT (-INTVAL (off));
	}
      else
	fprintf (file, "+");
      output_address (XEXP (x, 0));
      print_address_offset (file, off, mem_mode);
      break;

    case PRE_DEC:
      gcc_assert (XEXP (x, 0) != stack_pointer_rtx);
      fprintf (file, "--");
      output_address (XEXP (x, 0));
      fprintf (file, "[1]");
      break;
    case PRE_INC:
      fprintf (file, "++");
      output_address (XEXP (x, 0));
      fprintf (file, "[1]");
      break;
    case POST_INC:
      gcc_assert (XEXP (x, 0) != stack_pointer_rtx);
      output_address (XEXP (x, 0));
      fprintf (file, "++[1]");
      break;
    case POST_DEC:
      output_address (XEXP (x, 0));
      fprintf (file, "--[1]");
      break;

    case SYMBOL_REF:
    case CONST:
    case LABEL_REF:
      gcc_assert (sdata_symbolic_operand (x, Pmode));
      fprintf (file, "+B14(");
      output_addr_const (file, x);
      fprintf (file, ")");
      break;

    case UNSPEC:
      switch (XINT (x, 1))
	{
	case UNSPEC_LOAD_GOT:
	  fputs ("$GOT(", file);
	  output_addr_const (file, XVECEXP (x, 0, 0));
	  fputs (")", file);
	  break;
	case UNSPEC_LOAD_SDATA:
	  output_addr_const (file, XVECEXP (x, 0, 0));
	  break;
	default:
	  gcc_unreachable ();
	}
      break;

    default:
      gcc_assert (GET_CODE (x) != MEM);
      c6x_print_operand (file, x, 0);
      break;
    }
}

/* Return a single character, which is either 'l', 's', 'd' or 'm', which
   specifies the functional unit used by INSN.  */

char
c6x_get_unit_specifier (rtx insn)
{
  enum attr_units units;

  if (insn_info)
    {
      int unit = INSN_INFO_ENTRY (INSN_UID (insn)).reservation;
      return c6x_unit_names[unit][0];
    }

  units = get_attr_units (insn);
  switch (units)
    {
    case UNITS_D:
    case UNITS_DL:
    case UNITS_DS:
    case UNITS_DLS:
    case UNITS_D_ADDR:
      return 'd';
      break;
    case UNITS_L:
    case UNITS_LS:
      return 'l';
      break;
    case UNITS_S:
      return 's';
      break;
    case UNITS_M:
      return 'm';
      break;
    default:
      gcc_unreachable ();
    }
}

/* Prints the unit specifier field.  */
static void
c6x_print_unit_specifier_field (FILE *file, rtx insn)
{
  enum attr_units units = get_attr_units (insn);
  enum attr_cross cross = get_attr_cross (insn);
  enum attr_dest_regfile rf = get_attr_dest_regfile (insn);
  int half;
  char unitspec;

  if (units == UNITS_D_ADDR)
    {
      enum attr_addr_regfile arf = get_attr_addr_regfile (insn);
      int t_half;
      gcc_assert (arf != ADDR_REGFILE_UNKNOWN);
      half = arf == ADDR_REGFILE_A ? 1 : 2;
      t_half = rf == DEST_REGFILE_A ? 1 : 2;
      fprintf (file, ".d%dt%d", half, t_half);
      return;
    }

  if (insn_info)
    {
      int unit = INSN_INFO_ENTRY (INSN_UID (insn)).reservation;
      fputs (".", file);
      fputs (c6x_unit_names[unit], file);
      if (cross == CROSS_Y)
	fputs ("x", file);
      return;
    }

  gcc_assert (rf != DEST_REGFILE_UNKNOWN);
  unitspec = c6x_get_unit_specifier (insn);
  half = rf == DEST_REGFILE_A ? 1 : 2;
  fprintf (file, ".%c%d%s", unitspec, half, cross == CROSS_Y ? "x" : "");
}

/* Output assembly language output for the address ADDR to FILE.  */
static void
c6x_print_operand_address (FILE *file, rtx addr)
{
  c6x_print_address_operand (file, addr, VOIDmode);
}

/* Print an operand, X, to FILE, with an optional modifier in CODE.

   Meaning of CODE:
   $ -- print the unit specifier field for the instruction.
   . -- print the predicate for the instruction or an emptry string for an
        unconditional one.
   | -- print "||" if the insn should be issued in parallel with the previous
        one.

   C -- print an opcode suffix for a reversed condition
   d -- H, W or D as a suffix for ADDA, based on the factor given by the
        operand
   D -- print either B, H, W or D as a suffix for ADDA, based on the size of
        the operand
   J -- print a predicate
   j -- like J, but use reverse predicate
   k -- treat a CONST_INT as a register number and print it as a register
   k -- like k, but print out a doubleword register
   n -- print an integer operand, negated
   p -- print the low part of a DImode register
   P -- print the high part of a DImode register
   r -- print the absolute value of an integer operand, shifted right by 1
   R -- print the absolute value of an integer operand, shifted right by 2
   f -- the first clear bit in an integer operand assumed to be a mask for
        a clr instruction
   F -- the last clear bit in such a mask
   s -- the first set bit in an integer operand assumed to be a mask for
        a set instruction
   S -- the last set bit in such a mask
   U -- print either 1 or 2, depending on the side of the machine used by
        the operand  */

static void
c6x_print_operand (FILE *file, rtx x, int code)
{
  int i;
  HOST_WIDE_INT v;
  tree t;
  enum machine_mode mode;

  if (code == '|')
    {
      if (GET_MODE (c6x_current_insn) != TImode)
	fputs ("||", file);
      return;
    }
  if (code == '$')
    {
      c6x_print_unit_specifier_field (file, c6x_current_insn);
      return;
    }

  if (code == '.')
    {
      x = current_insn_predicate;
      if (x)
	{
	  unsigned int regno = REGNO (XEXP (x, 0));
	  fputs ("[", file);
 	  if (GET_CODE (x) == EQ)
	    fputs ("!", file);
	  fputs (reg_names [regno], file);
	  fputs ("]", file);
	}
      return;
    }

  mode = GET_MODE (x);

  switch (code)
    {
    case 'C':
    case 'c':
      {
	enum rtx_code c = GET_CODE (x);
	if (code == 'C')
	  c = swap_condition (c);
	fputs (GET_RTX_NAME (c), file);
      }
      return;

    case 'J':
    case 'j':
      {
	unsigned int regno = REGNO (XEXP (x, 0));
	if ((GET_CODE (x) == EQ) == (code == 'J'))
	  fputs ("!", file);
        fputs (reg_names [regno], file);
      }
      return;

    case 'k':
      gcc_assert (GET_CODE (x) == CONST_INT);
      v = INTVAL (x);
      fprintf (file, "%s", reg_names[v]);
      return;
    case 'K':
      gcc_assert (GET_CODE (x) == CONST_INT);
      v = INTVAL (x);
      gcc_assert ((v & 1) == 0);
      fprintf (file, "%s:%s", reg_names[v + 1], reg_names[v]);
      return;

    case 's':
    case 'S':
    case 'f':
    case 'F':
      gcc_assert (GET_CODE (x) == CONST_INT);
      v = INTVAL (x);
      for (i = 0; i < 32; i++)
	{
	  HOST_WIDE_INT tst = v & 1;
	  if (((code == 'f' || code == 'F') && !tst)
	      || ((code == 's' || code == 'S') && tst))
	    break;
	  v >>= 1;
	}
      if (code == 'f' || code == 's')
	{
	  fprintf (file, "%d", i);
	  return;
	}
      for (;i < 32; i++)
	{
	  HOST_WIDE_INT tst = v & 1;
	  if ((code == 'F' && tst) || (code == 'S' && !tst))
	    break;
	  v >>= 1;
	}
      fprintf (file, "%d", i - 1);
      return;

    case 'n':
      gcc_assert (GET_CODE (x) == CONST_INT);
      output_addr_const (file, GEN_INT (-INTVAL (x)));
      return;

    case 'r':
      gcc_assert (GET_CODE (x) == CONST_INT);
      v = INTVAL (x);
      if (v < 0)
	v = -v;
      output_addr_const (file, GEN_INT (v >> 1));
      return;

    case 'R':
      gcc_assert (GET_CODE (x) == CONST_INT);
      v = INTVAL (x);
      if (v < 0)
	v = -v;
      output_addr_const (file, GEN_INT (v >> 2));
      return;

    case 'd':
      gcc_assert (GET_CODE (x) == CONST_INT);
      v = INTVAL (x);
      fputs (v == 2 ? "h" : v == 4 ? "w" : "d", file);
      return;

    case 'p':
    case 'P':
      gcc_assert (GET_CODE (x) == REG);
      v = REGNO (x);
      if (code == 'P')
	v++;
      fputs (reg_names[v], file);
      return;

    case 'D':
      v = 0;
      if (GET_CODE (x) == CONST)
	{
	  x = XEXP (x, 0);
	  gcc_assert (GET_CODE (x) == PLUS);
	  gcc_assert (GET_CODE (XEXP (x, 1)) == CONST_INT);
	  v = INTVAL (XEXP (x, 1));
	  x = XEXP (x, 0);

	}
      gcc_assert (GET_CODE (x) == SYMBOL_REF);

      t = SYMBOL_REF_DECL (x);
      if (DECL_P (t))
	v |= DECL_ALIGN_UNIT (t);
      else
	v |= TYPE_ALIGN_UNIT (TREE_TYPE (t));
      if (v & 1)
	fputs ("b", file);
      else if (v & 2)
	fputs ("h", file);
      else
	fputs ("w", file);
      return;

    case 'U':
      if (MEM_P (x))
	{
	  x = XEXP (x, 0);
	  if (GET_CODE (x) == PLUS
	      || GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
	    x = XEXP (x, 0);
	  if (GET_CODE (x) == CONST || GET_CODE (x) == SYMBOL_REF)
	    {
	      gcc_assert (sdata_symbolic_operand (x, Pmode));
	      fputs ("2", file);
	      return;
	    }
	}
      gcc_assert (REG_P (x));
      if (A_REGNO_P (REGNO (x)))
	fputs ("1", file);
      if (B_REGNO_P (REGNO (x)))
	fputs ("2", file);
      return;

    default:
      switch (GET_CODE (x))
	{
	case REG:
	  if (GET_MODE_SIZE (mode) == 8)
	    fprintf (file, "%s:%s", reg_names[REGNO (x) + 1],
		     reg_names[REGNO (x)]);
	  else
	    fprintf (file, "%s", reg_names[REGNO (x)]);
	  break;

	case MEM:
	  fputc ('*', file);
	  gcc_assert (XEXP (x, 0) != stack_pointer_rtx);
	  c6x_print_address_operand (file, XEXP (x, 0), GET_MODE (x));
	  break;

	case SYMBOL_REF:
	  fputc ('(', file);
	  output_addr_const (file, x);
	  fputc (')', file);
	  break;

	case CONST_INT:
	  output_addr_const (file, x);
	  break;

	case CONST_DOUBLE:
	  output_operand_lossage ("invalid const_double operand");
	  break;

	default:
	  output_addr_const (file, x);
	}
    }
}

/* Return TRUE if OP is a valid memory address with a base register of
   class C.  If SMALL_OFFSET is true, we disallow memory references which would
   require a long offset with B14/B15.  */

bool
c6x_mem_operand (rtx op, enum reg_class c, bool small_offset)
{
  enum machine_mode mode = GET_MODE (op);
  rtx base = XEXP (op, 0);
  switch (GET_CODE (base))
    {
    case REG:
      break;
    case PLUS:
      if (small_offset
	  && (XEXP (base, 0) == stack_pointer_rtx
	      || XEXP (base, 0) == pic_offset_table_rtx))
	{
	  if (!c6x_legitimate_address_p_1 (mode, base, true, true))
	    return false;
	}

      /* fall through */
    case PRE_INC:
    case PRE_DEC:
    case PRE_MODIFY:
    case POST_INC:
    case POST_DEC:
    case POST_MODIFY:
      base = XEXP (base, 0);
      break;

    case CONST:
    case LABEL_REF:
    case SYMBOL_REF:
      gcc_assert (sdata_symbolic_operand (base, Pmode));
      return !small_offset && c == B_REGS;

    default:
      return false;
    }
  return TEST_HARD_REG_BIT (reg_class_contents[ (int) (c)], REGNO (base));
}

/* Returns true if X is a valid address for use in a memory reference
   of mode MODE.  If STRICT is true, we do not allow pseudo registers
   in the address.  NO_LARGE_OFFSET is true if we are examining an
   address for use in a load or store misaligned instruction, or
   recursively examining an operand inside a PRE/POST_MODIFY.  */

bool
c6x_legitimate_address_p_1 (enum machine_mode mode, rtx x, bool strict,
			    bool no_large_offset)
{
  int size, size1;
  HOST_WIDE_INT off;
  enum rtx_code code = GET_CODE (x);

  switch (code)
    {
    case PRE_MODIFY:
    case POST_MODIFY:
      /* We can't split these into word-sized pieces yet.  */
      if (!TARGET_STDW && GET_MODE_SIZE (mode) > UNITS_PER_WORD)
	return false;
      if (GET_CODE (XEXP (x, 1)) != PLUS)
	return false;
      if (!c6x_legitimate_address_p_1 (mode, XEXP (x, 1), strict, true))
	return false;
      if (!rtx_equal_p (XEXP (x, 0), XEXP (XEXP (x, 1), 0)))
	return false;

      /* fall through */
    case PRE_INC:
    case PRE_DEC:
    case POST_INC:
    case POST_DEC:
      /* We can't split these into word-sized pieces yet.  */
      if (!TARGET_STDW && GET_MODE_SIZE (mode) > UNITS_PER_WORD)
	return false;
      x = XEXP (x, 0);
      if (!REG_P (x))
	return false;

      /* fall through */
    case REG:
      if (strict)
	return REGNO_OK_FOR_BASE_STRICT_P (REGNO (x));
      else
	return REGNO_OK_FOR_BASE_NONSTRICT_P (REGNO (x));

    case PLUS:
      if (!REG_P (XEXP (x, 0))
	  || !c6x_legitimate_address_p_1 (mode, XEXP (x, 0), strict, false))
	return false;
      /* We cannot ensure currently that both registers end up in the
	 same register file.  */
      if (REG_P (XEXP (x, 1)))
	return false;

      if (mode == BLKmode)
	size = 4;
      else if (mode == VOIDmode)
	/* ??? This can happen during ivopts.  */
	size = 1;
      else
	size = GET_MODE_SIZE (mode);

      if (flag_pic
	  && GET_CODE (XEXP (x, 1)) == UNSPEC
	  && XINT (XEXP (x, 1), 1) == UNSPEC_LOAD_SDATA
	  && XEXP (x, 0) == pic_offset_table_rtx
	  && sdata_symbolic_operand (XVECEXP (XEXP (x, 1), 0, 0), SImode))
	return !no_large_offset && size <= 4;
      if (flag_pic == 1
	  && mode == Pmode
	  && GET_CODE (XEXP (x, 1)) == UNSPEC
	  && XINT (XEXP (x, 1), 1) == UNSPEC_LOAD_GOT
	  && XEXP (x, 0) == pic_offset_table_rtx
	  && (GET_CODE (XVECEXP (XEXP (x, 1), 0, 0)) == SYMBOL_REF
	      || GET_CODE (XVECEXP (XEXP (x, 1), 0, 0)) == LABEL_REF))
	return !no_large_offset;
      if (GET_CODE (XEXP (x, 1)) != CONST_INT)
	return false;

      off = INTVAL (XEXP (x, 1));

      /* If the machine does not have doubleword load/stores, we'll use
	 word size accesses.  */
      size1 = size;
      if (size == 2 * UNITS_PER_WORD && !TARGET_STDW)
	size = UNITS_PER_WORD;

      if (((HOST_WIDE_INT)size1 - 1) & off)
	return false;
      off /= size;
      if (off > -32 && off < (size1 == size ? 32 : 28))
	return true;
      if (no_large_offset || code != PLUS || XEXP (x, 0) != stack_pointer_rtx
	  || size1 > UNITS_PER_WORD)
	return false;
      return off >= 0 && off < 32768;

    case CONST:
    case SYMBOL_REF:
    case LABEL_REF:
      return (!no_large_offset
	      /* With -fpic, we must wrap it in an unspec to show the B14
		 dependency.  */
	      && !flag_pic
	      && GET_MODE_SIZE (mode) <= UNITS_PER_WORD
	      && sdata_symbolic_operand (x, Pmode));

    default:
      return false;
    }
}

static bool
c6x_legitimate_address_p (enum machine_mode mode, rtx x, bool strict)
{
  return c6x_legitimate_address_p_1 (mode, x, strict, false);
}

static bool
c6x_legitimate_constant_p (enum machine_mode mode ATTRIBUTE_UNUSED,
			   rtx x ATTRIBUTE_UNUSED)
{
  return true;
}

/* Implements TARGET_PREFERRED_RENAME_CLASS.  */
static reg_class_t
c6x_preferred_rename_class (reg_class_t cl)
{
  if (cl == A_REGS)
    return NONPREDICATE_A_REGS;
  if (cl == B_REGS)
    return NONPREDICATE_B_REGS;
  if (cl == ALL_REGS || cl == GENERAL_REGS)
    return NONPREDICATE_REGS;
  return NO_REGS;
}

/* Implements FINAL_PRESCAN_INSN.  */
void
c6x_final_prescan_insn (rtx insn, rtx *opvec ATTRIBUTE_UNUSED,
			int noperands ATTRIBUTE_UNUSED)
{
  c6x_current_insn = insn;
}

/* A structure to describe the stack layout of a function.  The layout is
   as follows:

   [saved frame pointer (or possibly padding0)]
   --> incoming stack pointer, new hard frame pointer
   [saved call-used regs]
   [optional padding1]
   --> soft frame pointer
   [frame]
   [outgoing arguments]
   [optional padding2]

  The structure members are laid out in this order.  */

struct c6x_frame
{
  int padding0;
  /* Number of registers to save.  */
  int nregs;
  int padding1;
  HOST_WIDE_INT frame;
  int outgoing_arguments_size;
  int padding2;

  HOST_WIDE_INT to_allocate;
  /* The offsets relative to the incoming stack pointer (which
     becomes HARD_FRAME_POINTER).  */
  HOST_WIDE_INT frame_pointer_offset;
  HOST_WIDE_INT b3_offset;

  /* True if we should call push_rts/pop_rts to save and restore
     registers.  */
  bool push_rts;
};

/* Return true if we need to save and modify the PIC register in the
   prologue.  */

static bool
must_reload_pic_reg_p (void)
{
  struct cgraph_local_info *i = NULL;

  if (!TARGET_DSBT)
    return false;

  i = cgraph_local_info (current_function_decl);

  if ((crtl->uses_pic_offset_table || !crtl->is_leaf) && !i->local)
    return true;
  return false;
}

/* Return 1 if we need to save REGNO.  */
static int
c6x_save_reg (unsigned int regno)
{
  return ((df_regs_ever_live_p (regno)
	   && !call_used_regs[regno]
	   && !fixed_regs[regno])
	  || (regno == RETURN_ADDR_REGNO
	      && (df_regs_ever_live_p (regno)
		  || !crtl->is_leaf))
	  || (regno == PIC_OFFSET_TABLE_REGNUM && must_reload_pic_reg_p ()));
}

/* Examine the number of regs NREGS we've determined we must save.
   Return true if we should use __c6xabi_push_rts/__c6xabi_pop_rts for
   prologue and epilogue.  */

static bool
use_push_rts_p (int nregs)
{
  if (TARGET_INSNS_64PLUS && optimize_function_for_size_p (cfun)
      && !cfun->machine->contains_sibcall
      && !cfun->returns_struct
      && !TARGET_LONG_CALLS
      && nregs >= 6 && !frame_pointer_needed)
    return true;
  return false;
}

/* Return number of saved general prupose registers.  */

int
c6x_nsaved_regs (void)
{
  int nregs = 0;
  int regno;

  for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
    if (c6x_save_reg (regno))
      nregs++;
  return nregs;
}

/* The safe debug order mandated by the ABI.  */
static unsigned reg_save_order[] =
{
  REG_A10, REG_A11, REG_A12, REG_A13,
  REG_A14, REG_B3,
  REG_B10, REG_B11, REG_B12, REG_B13,
  REG_B14, REG_A15
};

#define N_SAVE_ORDER (sizeof reg_save_order / sizeof *reg_save_order)

/* Compute the layout of the stack frame and store it in FRAME.  */

static void
c6x_compute_frame_layout (struct c6x_frame *frame)
{
  HOST_WIDE_INT size = get_frame_size ();
  HOST_WIDE_INT offset;
  int nregs;

  /* We use the four bytes which are technically inside the caller's frame,
     usually to save the frame pointer.  */
  offset = -4;
  frame->padding0 = 0;
  nregs = c6x_nsaved_regs ();
  frame->push_rts = false;
  frame->b3_offset = 0;
  if (use_push_rts_p (nregs))
    {
      frame->push_rts = true;
      frame->b3_offset = (TARGET_BIG_ENDIAN ? -12 : -13) * 4;
      nregs = 14;
    }
  else if (c6x_save_reg (REG_B3))
    {
      int idx;
      for (idx = N_SAVE_ORDER - 1; reg_save_order[idx] != REG_B3; idx--)
	{
	  if (c6x_save_reg (reg_save_order[idx]))
	    frame->b3_offset -= 4;
	}
    }
  frame->nregs = nregs;

  if (size == 0 && nregs == 0)
    {
      frame->padding0 = 4;
      frame->padding1 = frame->padding2 = 0;
      frame->frame_pointer_offset = frame->to_allocate = 0;
      frame->outgoing_arguments_size = 0;
      return;
    }

  if (!frame->push_rts)
    offset += frame->nregs * 4;

  if (offset == 0 && size == 0 && crtl->outgoing_args_size == 0
      && !crtl->is_leaf)
    /* Don't use the bottom of the caller's frame if we have no
       allocation of our own and call other functions.  */
    frame->padding0 = frame->padding1 = 4;
  else if (offset & 4)
    frame->padding1 = 4;
  else
    frame->padding1 = 0;

  offset += frame->padding0 + frame->padding1;
  frame->frame_pointer_offset = offset;
  offset += size;

  frame->outgoing_arguments_size = crtl->outgoing_args_size;
  offset += frame->outgoing_arguments_size;

  if ((offset & 4) == 0)
    frame->padding2 = 8;
  else
    frame->padding2 = 4;
  frame->to_allocate = offset + frame->padding2;
}

/* Return the offset between two registers, one to be eliminated, and the other
   its replacement, at the start of a routine.  */

HOST_WIDE_INT
c6x_initial_elimination_offset (int from, int to)
{
  struct c6x_frame frame;
  c6x_compute_frame_layout (&frame);

  if (from == ARG_POINTER_REGNUM && to == HARD_FRAME_POINTER_REGNUM)
    return 0;
  else if (from == FRAME_POINTER_REGNUM
	   && to == HARD_FRAME_POINTER_REGNUM)
    return -frame.frame_pointer_offset;
  else
    {
      gcc_assert (to == STACK_POINTER_REGNUM);

      if (from == ARG_POINTER_REGNUM)
	return frame.to_allocate + (frame.push_rts ? 56 : 0);

      gcc_assert (from == FRAME_POINTER_REGNUM);
      return frame.to_allocate - frame.frame_pointer_offset;
    }
}

/* Given FROM and TO register numbers, say whether this elimination is
   allowed.  Frame pointer elimination is automatically handled.  */

static bool
c6x_can_eliminate (const int from ATTRIBUTE_UNUSED, const int to)
{
  if (to == STACK_POINTER_REGNUM)
    return !frame_pointer_needed;
  return true;
}

/* Emit insns to increment the stack pointer by OFFSET.  If
   FRAME_RELATED_P, set the RTX_FRAME_RELATED_P flag on the insns.
   Does nothing if the offset is zero.  */

static void
emit_add_sp_const (HOST_WIDE_INT offset, bool frame_related_p)
{
  rtx to_add = GEN_INT (offset);
  rtx orig_to_add = to_add;
  rtx insn;

  if (offset == 0)
    return;

  if (offset < -32768 || offset > 32767)
    {
      rtx reg = gen_rtx_REG (SImode, REG_A0);
      rtx low = GEN_INT (trunc_int_for_mode (offset, HImode));

      insn = emit_insn (gen_movsi_high (reg, low));
      if (frame_related_p)
	RTX_FRAME_RELATED_P (insn) = 1;
      insn = emit_insn (gen_movsi_lo_sum (reg, reg, to_add));
      if (frame_related_p)
	RTX_FRAME_RELATED_P (insn) = 1;
      to_add = reg;
    }
  insn = emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
				to_add));
  if (frame_related_p)
    {
      if (REG_P (to_add))
	add_reg_note (insn, REG_FRAME_RELATED_EXPR,
		      gen_rtx_SET (VOIDmode, stack_pointer_rtx,
				   gen_rtx_PLUS (Pmode, stack_pointer_rtx,
						 orig_to_add)));

      RTX_FRAME_RELATED_P (insn) = 1;
    }
}

/* Prologue and epilogue.  */
void
c6x_expand_prologue (void)
{
  struct c6x_frame frame;
  rtx insn, mem;
  int nsaved = 0;
  HOST_WIDE_INT initial_offset, off, added_already;

  c6x_compute_frame_layout (&frame);

  if (flag_stack_usage_info)
    current_function_static_stack_size = frame.to_allocate;

  initial_offset = -frame.to_allocate;
  if (frame.push_rts)
    {
      emit_insn (gen_push_rts ());
      nsaved = frame.nregs;
    }

  /* If the offsets would be too large for the memory references we will
     create to save registers, do the stack allocation in two parts.
     Ensure by subtracting 8 that we don't store to the word pointed to
     by the stack pointer.  */
  if (initial_offset < -32768)
    initial_offset = -frame.frame_pointer_offset - 8;

  if (frame.to_allocate > 0)
    gcc_assert (initial_offset != 0);

  off = -initial_offset + 4 - frame.padding0;

  mem = gen_frame_mem (Pmode, stack_pointer_rtx);

  added_already = 0;
  if (frame_pointer_needed)
    {
      rtx fp_reg = gen_rtx_REG (SImode, REG_A15);
      /* We go through some contortions here to both follow the ABI's
	 recommendation that FP == incoming SP, and to avoid writing or
	 reading the word pointed to by the stack pointer.  */
      rtx addr = gen_rtx_POST_MODIFY (Pmode, stack_pointer_rtx,
				      gen_rtx_PLUS (Pmode, stack_pointer_rtx,
						    GEN_INT (-8)));
      insn = emit_move_insn (gen_frame_mem (Pmode, addr), fp_reg);
      RTX_FRAME_RELATED_P (insn) = 1;
      nsaved++;
      insn = emit_insn (gen_addsi3 (hard_frame_pointer_rtx, stack_pointer_rtx,
				    GEN_INT (8)));
      RTX_FRAME_RELATED_P (insn) = 1;
      off -= 4;
      added_already = -8;
    }

  emit_add_sp_const (initial_offset - added_already, true);

  if (nsaved < frame.nregs)
    {
      unsigned i;

      for (i = 0; i < N_SAVE_ORDER; i++)
	{
	  int idx = N_SAVE_ORDER - i - 1;
	  unsigned regno = reg_save_order[idx];
	  rtx reg;
	  enum machine_mode save_mode = SImode;

	  if (regno == REG_A15 && frame_pointer_needed)
	    /* Already saved.  */
	    continue;
	  if (!c6x_save_reg (regno))
	    continue;

	  if (TARGET_STDW && (off & 4) == 0 && off <= 256
	      && (regno & 1) == 1
	      && i + 1 < N_SAVE_ORDER
	      && reg_save_order[idx - 1] == regno - 1
	      && c6x_save_reg (regno - 1))
	    {
	      save_mode = DImode;
	      regno--;
	      i++;
	    }
	  reg = gen_rtx_REG (save_mode, regno);
	  off -= GET_MODE_SIZE (save_mode);

	  insn = emit_move_insn (adjust_address (mem, save_mode, off),
				 reg);
	  RTX_FRAME_RELATED_P (insn) = 1;

	  nsaved += HARD_REGNO_NREGS (regno, save_mode);
	}
    }
  gcc_assert (nsaved == frame.nregs);
  emit_add_sp_const (-frame.to_allocate - initial_offset, true);
  if (must_reload_pic_reg_p ())
    {
      if (dsbt_decl == NULL)
	{
	  tree t;

	  t = build_index_type (integer_one_node);
	  t = build_array_type (integer_type_node, t);
	  t = build_decl (BUILTINS_LOCATION, VAR_DECL,
			  get_identifier ("__c6xabi_DSBT_BASE"), t);
	  DECL_ARTIFICIAL (t) = 1;
	  DECL_IGNORED_P (t) = 1;
	  DECL_EXTERNAL (t) = 1;
	  TREE_STATIC (t) = 1;
	  TREE_PUBLIC (t) = 1;
	  TREE_USED (t) = 1;

	  dsbt_decl = t;
	}
      emit_insn (gen_setup_dsbt (pic_offset_table_rtx,
				 XEXP (DECL_RTL (dsbt_decl), 0)));
    }
}

void
c6x_expand_epilogue (bool sibcall)
{
  unsigned i;
  struct c6x_frame frame;
  rtx mem;
  HOST_WIDE_INT off;
  int nsaved = 0;

  c6x_compute_frame_layout (&frame);

  mem = gen_frame_mem (Pmode, stack_pointer_rtx);

  /* Insert a dummy set/use of the stack pointer.  This creates a
     scheduler barrier between the prologue saves and epilogue restores. */
  emit_insn (gen_epilogue_barrier (stack_pointer_rtx, stack_pointer_rtx));

  /* If the offsets would be too large for the memory references we will
     create to restore registers, do a preliminary stack adjustment here.  */
  off = frame.to_allocate - frame.frame_pointer_offset + frame.padding1;
  if (frame.push_rts)
    {
      nsaved = frame.nregs;
    }
  else
    {
      if (frame.to_allocate > 32768)
	{
	  /* Don't add the entire offset so that we leave an unused word
	     above the stack pointer.  */
	  emit_add_sp_const ((off - 16) & ~7, false);
	  off &= 7;
	  off += 16;
	}
      for (i = 0; i < N_SAVE_ORDER; i++)
	{
	  unsigned regno = reg_save_order[i];
	  rtx reg;
	  enum machine_mode save_mode = SImode;

	  if (!c6x_save_reg (regno))
	    continue;
	  if (regno == REG_A15 && frame_pointer_needed)
	    continue;

	  if (TARGET_STDW && (off & 4) == 0 && off < 256
	      && (regno & 1) == 0
	      && i + 1 < N_SAVE_ORDER
	      && reg_save_order[i + 1] == regno + 1
	      && c6x_save_reg (regno + 1))
	    {
	      save_mode = DImode;
	      i++;
	    }
	  reg = gen_rtx_REG (save_mode, regno);

	  emit_move_insn (reg, adjust_address (mem, save_mode, off));

	  off += GET_MODE_SIZE (save_mode);
	  nsaved += HARD_REGNO_NREGS (regno, save_mode);
	}
    }
  if (!frame_pointer_needed)
    emit_add_sp_const (off + frame.padding0 - 4, false);
  else
    {
      rtx fp_reg = gen_rtx_REG (SImode, REG_A15);
      rtx addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx,
				      gen_rtx_PLUS (Pmode, stack_pointer_rtx,
						    GEN_INT (8)));
      emit_insn (gen_addsi3 (stack_pointer_rtx, hard_frame_pointer_rtx,
			     GEN_INT (-8)));
      emit_move_insn (fp_reg, gen_frame_mem (Pmode, addr));
      nsaved++;
    }
  gcc_assert (nsaved == frame.nregs);
  if (!sibcall)
    {
      if (frame.push_rts)
	emit_jump_insn (gen_pop_rts ());
      else
	emit_jump_insn (gen_return_internal (gen_rtx_REG (SImode,
							  RETURN_ADDR_REGNO)));
    }
}

/* Return the value of the return address for the frame COUNT steps up
   from the current frame, after the prologue.
   We punt for everything but the current frame by returning const0_rtx.  */

rtx
c6x_return_addr_rtx (int count)
{
  if (count != 0)
    return const0_rtx;

  return get_hard_reg_initial_val (Pmode, RETURN_ADDR_REGNO);
}

/* Return true iff TYPE is one of the shadow types.  */
static bool
shadow_type_p (enum attr_type type)
{
  return (type == TYPE_SHADOW || type == TYPE_LOAD_SHADOW
	  || type == TYPE_MULT_SHADOW);
}

/* Return true iff INSN is a shadow pattern.  */
static bool
shadow_p (rtx insn)
{
  if (!NONDEBUG_INSN_P (insn) || recog_memoized (insn) < 0)
    return false;
  return shadow_type_p (get_attr_type (insn));
}

/* Return true iff INSN is a shadow or blockage pattern.  */
static bool
shadow_or_blockage_p (rtx insn)
{
  enum attr_type type;
  if (!NONDEBUG_INSN_P (insn) || recog_memoized (insn) < 0)
    return false;
  type = get_attr_type (insn);
  return shadow_type_p (type) || type == TYPE_BLOCKAGE;
}

/* Translate UNITS into a bitmask of units we can reserve for this
   insn.  */
static int
get_reservation_flags (enum attr_units units)
{
  switch (units)
    {
    case UNITS_D:
    case UNITS_D_ADDR:
      return RESERVATION_FLAG_D;
    case UNITS_L:
      return RESERVATION_FLAG_L;
    case UNITS_S:
      return RESERVATION_FLAG_S;
    case UNITS_M:
      return RESERVATION_FLAG_M;
    case UNITS_LS:
      return RESERVATION_FLAG_LS;
    case UNITS_DL:
      return RESERVATION_FLAG_DL;
    case UNITS_DS:
      return RESERVATION_FLAG_DS;
    case UNITS_DLS:
      return RESERVATION_FLAG_DLS;
    default:
      return 0;
    }
}

/* Compute the side of the machine used by INSN, which reserves UNITS.
   This must match the reservations in the scheduling description.  */
static int
get_insn_side (rtx insn, enum attr_units units)
{
  if (units == UNITS_D_ADDR)
    return (get_attr_addr_regfile (insn) == ADDR_REGFILE_A ? 0 : 1);
  else
    {
      enum attr_dest_regfile rf = get_attr_dest_regfile (insn);
      if (rf == DEST_REGFILE_ANY)
	return get_attr_type (insn) == TYPE_BRANCH ? 0 : 1;
      else
	return rf == DEST_REGFILE_A ? 0 : 1;
    }
}

/* After scheduling, walk the insns between HEAD and END and assign unit
   reservations.  */
static void
assign_reservations (rtx head, rtx end)
{
  rtx insn;
  for (insn = head; insn != NEXT_INSN (end); insn = NEXT_INSN (insn))
    {
      unsigned int sched_mask, reserved;
      rtx within, last;
      int pass;
      int rsrv[2];
      int rsrv_count[2][4];
      int i;

      if (GET_MODE (insn) != TImode)
	continue;

      reserved = 0;
      last = NULL_RTX;
      /* Find the last insn in the packet.  It has a state recorded for it,
	 which we can use to determine the units we should be using.  */
      for (within = insn;
	   (within != NEXT_INSN (end)
	    && (within == insn || GET_MODE (within) != TImode));
	   within = NEXT_INSN (within))
	{
	  int icode;
	  if (!NONDEBUG_INSN_P (within))
	    continue;
	  icode = recog_memoized (within);
	  if (icode < 0)
	    continue;
	  if (shadow_p (within))
	    continue;
	  if (INSN_INFO_ENTRY (INSN_UID (within)).reservation != 0)
	    reserved |= 1 << INSN_INFO_ENTRY (INSN_UID (within)).reservation;
	  last = within;
	}
      if (last == NULL_RTX)
	continue;

      sched_mask = INSN_INFO_ENTRY (INSN_UID (last)).unit_mask;
      sched_mask &= ~reserved;

      memset (rsrv_count, 0, sizeof rsrv_count);
      rsrv[0] = rsrv[1] = ~0;
      for (i = 0; i < 8; i++)
	{
	  int side = i / 4;
	  int unit = i & 3;
	  unsigned unit_bit = 1 << (unit + side * UNIT_QID_SIDE_OFFSET);
	  /* Clear the bits which we expect to reserve in the following loop,
	     leaving the ones set which aren't present in the scheduler's
	     state and shouldn't be reserved.  */
	  if (sched_mask & unit_bit)
	    rsrv[i / 4] &= ~(1 << unit);
	}

      /* Walk through the insns that occur in the same cycle.  We use multiple
	 passes to assign units, assigning for insns with the most specific
	 requirements first.  */
      for (pass = 0; pass < 4; pass++)
	for (within = insn;
	     (within != NEXT_INSN (end)
	      && (within == insn || GET_MODE (within) != TImode));
	     within = NEXT_INSN (within))
	  {
	    int uid = INSN_UID (within);
	    int this_rsrv, side;
	    int icode;
	    enum attr_units units;
	    enum attr_type type;
	    int j;

	    if (!NONDEBUG_INSN_P (within))
	      continue;
	    icode = recog_memoized (within);
	    if (icode < 0)
	      continue;
	    if (INSN_INFO_ENTRY (uid).reservation != 0)
	      continue;
	    units = get_attr_units (within);
	    type = get_attr_type (within);
	    this_rsrv = get_reservation_flags (units);
	    if (this_rsrv == 0)
	      continue;
	    side = get_insn_side (within, units);

	    /* Certain floating point instructions are treated specially.  If
	       an insn can choose between units it can reserve, and its
	       reservation spans more than one cycle, the reservation contains
	       special markers in the first cycle to help us reconstruct what
	       the automaton chose.  */
	    if ((type == TYPE_ADDDP || type == TYPE_FP4)
		&& units == UNITS_LS)
	      {
		int test1_code = ((type == TYPE_FP4 ? UNIT_QID_FPL1 : UNIT_QID_ADDDPL1)
				  + side * UNIT_QID_SIDE_OFFSET);
		int test2_code = ((type == TYPE_FP4 ? UNIT_QID_FPS1 : UNIT_QID_ADDDPS1)
				  + side * UNIT_QID_SIDE_OFFSET);
		if ((sched_mask & (1 << test1_code)) != 0)
		  {
		    this_rsrv = RESERVATION_FLAG_L;
		    sched_mask &= ~(1 << test1_code);
		  }
		else if ((sched_mask & (1 << test2_code)) != 0)
		  {
		    this_rsrv = RESERVATION_FLAG_S;
		    sched_mask &= ~(1 << test2_code);
		  }
	      }

	    if ((this_rsrv & (this_rsrv - 1)) == 0)
	      {
		int t = exact_log2 (this_rsrv) + side * UNIT_QID_SIDE_OFFSET;
		rsrv[side] |= this_rsrv;
		INSN_INFO_ENTRY (uid).reservation = t;
		continue;
	      }

	    if (pass == 1)
	      {
		for (j = 0; j < 4; j++)
		  if (this_rsrv & (1 << j))
		    rsrv_count[side][j]++;
		continue;
	      }
	    if ((pass == 2 && this_rsrv != RESERVATION_FLAG_DLS)
		|| (pass == 3 && this_rsrv == RESERVATION_FLAG_DLS))
	      {
		int best = -1, best_cost = INT_MAX;
		for (j = 0; j < 4; j++)
		  if ((this_rsrv & (1 << j))
		      && !(rsrv[side] & (1 << j))
		      && rsrv_count[side][j] < best_cost)
		    {
		      best_cost = rsrv_count[side][j];
		      best = j;
		    }
		gcc_assert (best != -1);
		rsrv[side] |= 1 << best;
		for (j = 0; j < 4; j++)
		  if ((this_rsrv & (1 << j)) && j != best)
		    rsrv_count[side][j]--;

		INSN_INFO_ENTRY (uid).reservation
		  = best + side * UNIT_QID_SIDE_OFFSET;
	      }
	  }
    }
}

/* Return a factor by which to weight unit imbalances for a reservation
   R.  */
static int
unit_req_factor (enum unitreqs r)
{
  switch (r)
    {
    case UNIT_REQ_D:
    case UNIT_REQ_L:
    case UNIT_REQ_S:
    case UNIT_REQ_M:
    case UNIT_REQ_X:
    case UNIT_REQ_T:
      return 1;
    case UNIT_REQ_DL:
    case UNIT_REQ_LS:
    case UNIT_REQ_DS:
      return 2;
    case UNIT_REQ_DLS:
      return 3;
    default:
      gcc_unreachable ();
    }
}

/* Examine INSN, and store in REQ1/SIDE1 and REQ2/SIDE2 the unit
   requirements.  Returns zero if INSN can't be handled, otherwise
   either one or two to show how many of the two pairs are in use.
   REQ1 is always used, it holds what is normally thought of as the
   instructions reservation, e.g. UNIT_REQ_DL.  REQ2 is used to either
   describe a cross path, or for loads/stores, the T unit.  */
static int
get_unit_reqs (rtx insn, int *req1, int *side1, int *req2, int *side2)
{
  enum attr_units units;
  enum attr_cross cross;
  int side, req;

  if (!NONDEBUG_INSN_P (insn) || recog_memoized (insn) < 0)
    return 0;
  units = get_attr_units (insn);
  if (units == UNITS_UNKNOWN)
    return 0;
  side = get_insn_side (insn, units);
  cross = get_attr_cross (insn);

  req = (units == UNITS_D ? UNIT_REQ_D
	 : units == UNITS_D_ADDR ? UNIT_REQ_D
	 : units == UNITS_DL ? UNIT_REQ_DL
	 : units == UNITS_DS ? UNIT_REQ_DS
	 : units == UNITS_L ? UNIT_REQ_L
	 : units == UNITS_LS ? UNIT_REQ_LS
	 : units == UNITS_S ? UNIT_REQ_S
	 : units == UNITS_M ? UNIT_REQ_M
	 : units == UNITS_DLS ? UNIT_REQ_DLS
	 : -1);
  gcc_assert (req != -1);
  *req1 = req;
  *side1 = side;
  if (units == UNITS_D_ADDR)
    {
      *req2 = UNIT_REQ_T;
      *side2 = side ^ (cross == CROSS_Y ? 1 : 0);
      return 2;
    }
  else if (cross == CROSS_Y)
    {
      *req2 = UNIT_REQ_X;
      *side2 = side;
      return 2;
    }
  return 1;
}

/* Walk the insns between and including HEAD and TAIL, and mark the
   resource requirements in the unit_reqs table.  */
static void
count_unit_reqs (unit_req_table reqs, rtx head, rtx tail)
{
  rtx insn;

  memset (reqs, 0, sizeof (unit_req_table));

  for (insn = head; insn != NEXT_INSN (tail); insn = NEXT_INSN (insn))
    {
      int side1, side2, req1, req2;

      switch (get_unit_reqs (insn, &req1, &side1, &req2, &side2))
	{
	case 2:
	  reqs[side2][req2]++;
	  /* fall through */
	case 1:
	  reqs[side1][req1]++;
	  break;
	}
    }
}

/* Update the table REQS by merging more specific unit reservations into
   more general ones, i.e. counting (for example) UNIT_REQ_D also in
   UNIT_REQ_DL, DS, and DLS.  */
static void
merge_unit_reqs (unit_req_table reqs)
{
  int side;
  for (side = 0; side < 2; side++)
    {
      int d = reqs[side][UNIT_REQ_D];
      int l = reqs[side][UNIT_REQ_L];
      int s = reqs[side][UNIT_REQ_S];
      int dl = reqs[side][UNIT_REQ_DL];
      int ls = reqs[side][UNIT_REQ_LS];
      int ds = reqs[side][UNIT_REQ_DS];

      reqs[side][UNIT_REQ_DL] += d;
      reqs[side][UNIT_REQ_DL] += l;
      reqs[side][UNIT_REQ_DS] += d;
      reqs[side][UNIT_REQ_DS] += s;
      reqs[side][UNIT_REQ_LS] += l;
      reqs[side][UNIT_REQ_LS] += s;
      reqs[side][UNIT_REQ_DLS] += ds + dl + ls + d + l + s;
    }
}

/* Examine the table REQS and return a measure of unit imbalance by comparing
   the two sides of the machine.  If, for example, D1 is used twice and D2
   used not at all, the return value should be 1 in the absence of other
   imbalances.  */
static int
unit_req_imbalance (unit_req_table reqs)
{
  int val = 0;
  int i;

  for (i = 0; i < UNIT_REQ_MAX; i++)
    {
      int factor = unit_req_factor ((enum unitreqs) i);
      int diff = abs (reqs[0][i] - reqs[1][i]);
      val += (diff + factor - 1) / factor / 2;
    }
  return val;
}

/* Return the resource-constrained minimum iteration interval given the
   data in the REQS table.  This must have been processed with
   merge_unit_reqs already.  */
static int
res_mii (unit_req_table reqs)
{
  int side, req;
  int worst = 1;
  for (side = 0; side < 2; side++)
    for (req = 0; req < UNIT_REQ_MAX; req++)
      {
	int factor = unit_req_factor ((enum unitreqs) req);
	worst = MAX ((reqs[side][UNIT_REQ_D] + factor - 1) / factor, worst);
      }

  return worst;
}

/* Examine INSN, and store in PMASK1 and PMASK2 bitmasks that represent
   the operands that are involved in the (up to) two reservations, as
   found by get_unit_reqs.  Return true if we did this successfully, false
   if we couldn't identify what to do with INSN.  */
static bool
get_unit_operand_masks (rtx insn, unsigned int *pmask1, unsigned int *pmask2)
{
  enum attr_op_pattern op_pat;

  if (recog_memoized (insn) < 0)
    return 0;
  if (GET_CODE (PATTERN (insn)) == COND_EXEC)
    return false;
  extract_insn (insn);
  op_pat = get_attr_op_pattern (insn);
  if (op_pat == OP_PATTERN_DT)
    {
      gcc_assert (recog_data.n_operands == 2);
      *pmask1 = 1 << 0;
      *pmask2 = 1 << 1;
      return true;
    }
  else if (op_pat == OP_PATTERN_TD)
    {
      gcc_assert (recog_data.n_operands == 2);
      *pmask1 = 1 << 1;
      *pmask2 = 1 << 0;
      return true;
    }
  else if (op_pat == OP_PATTERN_SXS)
    {
      gcc_assert (recog_data.n_operands == 3);
      *pmask1 = (1 << 0) | (1 << 2);
      *pmask2 = 1 << 1;
      return true;
    }
  else if (op_pat == OP_PATTERN_SX)
    {
      gcc_assert (recog_data.n_operands == 2);
      *pmask1 = 1 << 0;
      *pmask2 = 1 << 1;
      return true;
    }
  else if (op_pat == OP_PATTERN_SSX)
    {
      gcc_assert (recog_data.n_operands == 3);
      *pmask1 = (1 << 0) | (1 << 1);
      *pmask2 = 1 << 2;
      return true;
    }
  return false;
}

/* Try to replace a register in INSN, which has corresponding rename info
   from regrename_analyze in INFO.  OP_MASK and ORIG_SIDE provide information
   about the operands that must be renamed and the side they are on.
   REQS is the table of unit reservations in the loop between HEAD and TAIL.
   We recompute this information locally after our transformation, and keep
   it only if we managed to improve the balance.  */
static void
try_rename_operands (rtx head, rtx tail, unit_req_table reqs, rtx insn,
		     insn_rr_info *info, unsigned int op_mask, int orig_side)
{
  enum reg_class super_class = orig_side == 0 ? B_REGS : A_REGS;
  HARD_REG_SET unavailable;
  du_head_p this_head;
  struct du_chain *chain;
  int i;
  unsigned tmp_mask;
  int best_reg, old_reg;
  VEC (du_head_p, heap) *involved_chains = NULL;
  unit_req_table new_reqs;

  for (i = 0, tmp_mask = op_mask; tmp_mask; i++)
    {
      du_head_p op_chain;
      if ((tmp_mask & (1 << i)) == 0)
	continue;
      if (info->op_info[i].n_chains != 1)
	goto out_fail;
      op_chain = regrename_chain_from_id (info->op_info[i].heads[0]->id);
      VEC_safe_push (du_head_p, heap, involved_chains, op_chain);
      tmp_mask &= ~(1 << i);
    }

  if (VEC_length (du_head_p, involved_chains) > 1)
    goto out_fail;

  this_head = VEC_index (du_head_p, involved_chains, 0);
  if (this_head->cannot_rename)
    goto out_fail;

  for (chain = this_head->first; chain; chain = chain->next_use)
    {
      unsigned int mask1, mask2, mask_changed;
      int count, side1, side2, req1, req2;
      insn_rr_info *this_rr = &VEC_index (insn_rr_info, insn_rr,
					  INSN_UID (chain->insn));

      count = get_unit_reqs (chain->insn, &req1, &side1, &req2, &side2);

      if (count == 0)
	goto out_fail;

      if (!get_unit_operand_masks (chain->insn, &mask1, &mask2))
	goto out_fail;

      extract_insn (chain->insn);

      mask_changed = 0;
      for (i = 0; i < recog_data.n_operands; i++)
	{
	  int j;
	  int n_this_op = this_rr->op_info[i].n_chains;
	  for (j = 0; j < n_this_op; j++)
	    {
	      du_head_p other = this_rr->op_info[i].heads[j];
	      if (regrename_chain_from_id (other->id) == this_head)
		break;
	    }
	  if (j == n_this_op)
	    continue;

	  if (n_this_op != 1)
	    goto out_fail;
	  mask_changed |= 1 << i;
	}
      gcc_assert (mask_changed != 0);
      if (mask_changed != mask1 && mask_changed != mask2)
	goto out_fail;
    }

  /* If we get here, we can do the renaming.  */
  COMPL_HARD_REG_SET (unavailable, reg_class_contents[(int) super_class]);

  old_reg = this_head->regno;
  best_reg = find_best_rename_reg (this_head, super_class, &unavailable, old_reg);

  regrename_do_replace (this_head, best_reg);

  count_unit_reqs (new_reqs, head, PREV_INSN (tail));
  merge_unit_reqs (new_reqs);
  if (dump_file)
    {
      fprintf (dump_file, "reshuffle for insn %d, op_mask %x, "
	       "original side %d, new reg %d\n",
	       INSN_UID (insn), op_mask, orig_side, best_reg);
      fprintf (dump_file, "  imbalance %d -> %d\n",
	       unit_req_imbalance (reqs), unit_req_imbalance (new_reqs));
    }
  if (unit_req_imbalance (new_reqs) > unit_req_imbalance (reqs))
    regrename_do_replace (this_head, old_reg);
  else
    memcpy (reqs, new_reqs, sizeof (unit_req_table));

 out_fail:
  VEC_free (du_head_p, heap, involved_chains);
}

/* Find insns in LOOP which would, if shifted to the other side
   of the machine, reduce an imbalance in the unit reservations.  */
static void
reshuffle_units (basic_block loop)
{
  rtx head = BB_HEAD (loop);
  rtx tail = BB_END (loop);
  rtx insn;
  unit_req_table reqs;
  edge e;
  edge_iterator ei;
  bitmap_head bbs;

  count_unit_reqs (reqs, head, PREV_INSN (tail));
  merge_unit_reqs (reqs);

  regrename_init (true);

  bitmap_initialize (&bbs, &bitmap_default_obstack);

  FOR_EACH_EDGE (e, ei, loop->preds)
    bitmap_set_bit (&bbs, e->src->index);

  bitmap_set_bit (&bbs, loop->index);
  regrename_analyze (&bbs);

  for (insn = head; insn != NEXT_INSN (tail); insn = NEXT_INSN (insn))
    {
      enum attr_units units;
      int count, side1, side2, req1, req2;
      unsigned int mask1, mask2;
      insn_rr_info *info;

      if (!NONDEBUG_INSN_P (insn))
	continue;

      count = get_unit_reqs (insn, &req1, &side1, &req2, &side2);

      if (count == 0)
	continue;

      if (!get_unit_operand_masks (insn, &mask1, &mask2))
	continue;

      info = &VEC_index (insn_rr_info, insn_rr, INSN_UID (insn));
      if (info->op_info == NULL)
	continue;

      if (reqs[side1][req1] > 1
	  && reqs[side1][req1] > 2 * reqs[side1 ^ 1][req1])
	{
	  try_rename_operands (head, tail, reqs, insn, info, mask1, side1);
	}

      units = get_attr_units (insn);
      if (units == UNITS_D_ADDR)
	{
	  gcc_assert (count == 2);
	  if (reqs[side2][req2] > 1
	      && reqs[side2][req2] > 2 * reqs[side2 ^ 1][req2])
	    {
	      try_rename_operands (head, tail, reqs, insn, info, mask2, side2);
	    }
	}
    }
  regrename_finish ();
}

/* Backend scheduling state.  */
typedef struct c6x_sched_context
{
  /* The current scheduler clock, saved in the sched_reorder hook.  */
  int curr_sched_clock;

  /* Number of insns issued so far in this cycle.  */
  int issued_this_cycle;

  /* We record the time at which each jump occurs in JUMP_CYCLES.  The
     theoretical maximum for number of jumps in flight is 12: 2 every
     cycle, with a latency of 6 cycles each.  This is a circular
     buffer; JUMP_CYCLE_INDEX is the pointer to the start.  Earlier
     jumps have a higher index.  This array should be accessed through
     the jump_cycle function.  */
  int jump_cycles[12];
  int jump_cycle_index;

  /* In parallel with jump_cycles, this array records the opposite of
     the condition used in each pending jump.  This is used to
     predicate insns that are scheduled in the jump's delay slots.  If
     this is NULL_RTX no such predication happens.  */
  rtx jump_cond[12];

  /* Similar to the jump_cycles mechanism, but here we take into
     account all insns with delay slots, to avoid scheduling asms into
     the delay slots.  */
  int delays_finished_at;

  /* The following variable value is the last issued insn.  */
  rtx last_scheduled_insn;
  /* The last issued insn that isn't a shadow of another.  */
  rtx last_scheduled_iter0;

  /* The following variable value is DFA state before issuing the
     first insn in the current clock cycle.  We do not use this member
     of the structure directly; we copy the data in and out of
     prev_cycle_state.  */
  state_t prev_cycle_state_ctx;

  int reg_n_accesses[FIRST_PSEUDO_REGISTER];
  int reg_n_xaccesses[FIRST_PSEUDO_REGISTER];
  int reg_set_in_cycle[FIRST_PSEUDO_REGISTER];

  int tmp_reg_n_accesses[FIRST_PSEUDO_REGISTER];
  int tmp_reg_n_xaccesses[FIRST_PSEUDO_REGISTER];
} *c6x_sched_context_t;

/* The current scheduling state.  */
static struct c6x_sched_context ss;

/* The following variable value is DFA state before issuing the first insn
   in the current clock cycle.  This is used in c6x_variable_issue for
   comparison with the state after issuing the last insn in a cycle.  */
static state_t prev_cycle_state;

/* Set when we discover while processing an insn that it would lead to too
   many accesses of the same register.  */
static bool reg_access_stall;

/* The highest insn uid after delayed insns were split, but before loop bodies
   were copied by the modulo scheduling code.  */
static int sploop_max_uid_iter0;

/* Look up the jump cycle with index N.  For an out-of-bounds N, we return 0,
   so the caller does not specifically have to test for it.  */
static int
get_jump_cycle (int n)
{
  if (n >= 12)
    return 0;
  n += ss.jump_cycle_index;
  if (n >= 12)
    n -= 12;
  return ss.jump_cycles[n];
}

/* Look up the jump condition with index N.  */
static rtx
get_jump_cond (int n)
{
  if (n >= 12)
    return NULL_RTX;
  n += ss.jump_cycle_index;
  if (n >= 12)
    n -= 12;
  return ss.jump_cond[n];
}

/* Return the index of the first jump that occurs after CLOCK_VAR.  If no jump
   has delay slots beyond CLOCK_VAR, return -1.  */
static int
first_jump_index (int clock_var)
{
  int retval = -1;
  int n = 0;
  for (;;)
    {
      int t = get_jump_cycle (n);
      if (t <= clock_var)
	break;
      retval = n;
      n++;
    }
  return retval;
}

/* Add a new entry in our scheduling state for a jump that occurs in CYCLE
   and has the opposite condition of COND.  */
static void
record_jump (int cycle, rtx cond)
{
  if (ss.jump_cycle_index == 0)
    ss.jump_cycle_index = 11;
  else
    ss.jump_cycle_index--;
  ss.jump_cycles[ss.jump_cycle_index] = cycle;
  ss.jump_cond[ss.jump_cycle_index] = cond;
}

/* Set the clock cycle of INSN to CYCLE.  Also clears the insn's entry in
   new_conditions.  */
static void
insn_set_clock (rtx insn, int cycle)
{
  unsigned uid = INSN_UID (insn);

  if (uid >= INSN_INFO_LENGTH)
    VEC_safe_grow (c6x_sched_insn_info, heap, insn_info, uid * 5 / 4 + 10);

  INSN_INFO_ENTRY (uid).clock = cycle;
  INSN_INFO_ENTRY (uid).new_cond = NULL;
  INSN_INFO_ENTRY (uid).reservation = 0;
  INSN_INFO_ENTRY (uid).ebb_start = false;
}

/* Return the clock cycle we set for the insn with uid UID.  */
static int
insn_uid_get_clock (int uid)
{
  return INSN_INFO_ENTRY (uid).clock;
}

/* Return the clock cycle we set for INSN.  */
static int
insn_get_clock (rtx insn)
{
  return insn_uid_get_clock (INSN_UID (insn));
}

/* Examine INSN, and if it is a conditional jump of any kind, return
   the opposite of the condition in which it branches.  Otherwise,
   return NULL_RTX.  */
static rtx
condjump_opposite_condition (rtx insn)
{
  rtx pat = PATTERN (insn);
  int icode = INSN_CODE (insn);
  rtx x = NULL;

  if (icode == CODE_FOR_br_true || icode == CODE_FOR_br_false)
    {
      x = XEXP (SET_SRC (pat), 0);
      if (icode == CODE_FOR_br_false)
	return x;
    }
  if (GET_CODE (pat) == COND_EXEC)
    {
      rtx t = COND_EXEC_CODE (pat);
      if ((GET_CODE (t) == PARALLEL
	   && GET_CODE (XVECEXP (t, 0, 0)) == RETURN)
	  || (GET_CODE (t) == UNSPEC && XINT (t, 1) == UNSPEC_REAL_JUMP)
	  || (GET_CODE (t) == SET && SET_DEST (t) == pc_rtx))
	x = COND_EXEC_TEST (pat);
    }

  if (x != NULL_RTX)
    {
      enum rtx_code code = GET_CODE (x);
      x = gen_rtx_fmt_ee (code == EQ ? NE : EQ,
			  GET_MODE (x), XEXP (x, 0),
			  XEXP (x, 1));
    }
  return x;
}

/* Return true iff COND1 and COND2 are exactly opposite conditions
   one of them NE and the other EQ.  */
static bool
conditions_opposite_p (rtx cond1, rtx cond2)
{
  return (rtx_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
	  && rtx_equal_p (XEXP (cond1, 1), XEXP (cond2, 1))
	  && GET_CODE (cond1) == reverse_condition (GET_CODE (cond2)));
}

/* Return true if we can add a predicate COND to INSN, or if INSN
   already has that predicate.  If DOIT is true, also perform the
   modification.  */
static bool
predicate_insn (rtx insn, rtx cond, bool doit)
{
  int icode;
  if (cond == NULL_RTX)
    {
      gcc_assert (!doit);
      return false;
    }

  if (get_attr_predicable (insn) == PREDICABLE_YES
      && GET_CODE (PATTERN (insn)) != COND_EXEC)
    {
      if (doit)
	{
	  rtx newpat = gen_rtx_COND_EXEC (VOIDmode, cond, PATTERN (insn));
	  PATTERN (insn) = newpat;
	  INSN_CODE (insn) = -1;
	}
      return true;
    }
  if (GET_CODE (PATTERN (insn)) == COND_EXEC
      && rtx_equal_p (COND_EXEC_TEST (PATTERN (insn)), cond))
    return true;
  icode = INSN_CODE (insn);
  if (icode == CODE_FOR_real_jump
      || icode == CODE_FOR_jump
      || icode == CODE_FOR_indirect_jump)
    {
      rtx pat = PATTERN (insn);
      rtx dest = (icode == CODE_FOR_real_jump ? XVECEXP (pat, 0, 0)
		  : icode == CODE_FOR_jump ? XEXP (SET_SRC (pat), 0)
		  : SET_SRC (pat));
      if (doit)
	{
	  rtx newpat;
	  if (REG_P (dest))
	    newpat = gen_rtx_COND_EXEC (VOIDmode, cond, PATTERN (insn));
	  else
	    newpat = gen_br_true (cond, XEXP (cond, 0), dest);
	  PATTERN (insn) = newpat;
	  INSN_CODE (insn) = -1;
	}
      return true;
    }
  if (INSN_CODE (insn) == CODE_FOR_br_true)
    {
      rtx br_cond = XEXP (SET_SRC (PATTERN (insn)), 0);
      return rtx_equal_p (br_cond, cond);
    }
  if (INSN_CODE (insn) == CODE_FOR_br_false)
    {
      rtx br_cond = XEXP (SET_SRC (PATTERN (insn)), 0);
      return conditions_opposite_p (br_cond, cond);
    }
  return false;
}

/* Initialize SC.  Used by c6x_init_sched_context and c6x_sched_init.  */
static void
init_sched_state (c6x_sched_context_t sc)
{
  sc->last_scheduled_insn = NULL_RTX;
  sc->last_scheduled_iter0 = NULL_RTX;
  sc->issued_this_cycle = 0;
  memset (sc->jump_cycles, 0, sizeof sc->jump_cycles);
  memset (sc->jump_cond, 0, sizeof sc->jump_cond);
  sc->jump_cycle_index = 0;
  sc->delays_finished_at = 0;
  sc->curr_sched_clock = 0;

  sc->prev_cycle_state_ctx = xmalloc (dfa_state_size);

  memset (sc->reg_n_accesses, 0, sizeof sc->reg_n_accesses);
  memset (sc->reg_n_xaccesses, 0, sizeof sc->reg_n_xaccesses);
  memset (sc->reg_set_in_cycle, 0, sizeof sc->reg_set_in_cycle);

  state_reset (sc->prev_cycle_state_ctx);
}

/* Allocate store for new scheduling context.  */
static void *
c6x_alloc_sched_context (void)
{
  return xmalloc (sizeof (struct c6x_sched_context));
}

/* If CLEAN_P is true then initializes _SC with clean data,
   and from the global context otherwise.  */
static void
c6x_init_sched_context (void *_sc, bool clean_p)
{
  c6x_sched_context_t sc = (c6x_sched_context_t) _sc;

  if (clean_p)
    {
      init_sched_state (sc);
    }
  else
    {
      *sc = ss;
      sc->prev_cycle_state_ctx = xmalloc (dfa_state_size);
      memcpy (sc->prev_cycle_state_ctx, prev_cycle_state, dfa_state_size);
    }
}

/* Sets the global scheduling context to the one pointed to by _SC.  */
static void
c6x_set_sched_context (void *_sc)
{
  c6x_sched_context_t sc = (c6x_sched_context_t) _sc;

  gcc_assert (sc != NULL);
  ss = *sc;
  memcpy (prev_cycle_state, sc->prev_cycle_state_ctx, dfa_state_size);
}

/* Clear data in _SC.  */
static void
c6x_clear_sched_context (void *_sc)
{
  c6x_sched_context_t sc = (c6x_sched_context_t) _sc;
  gcc_assert (_sc != NULL);

  free (sc->prev_cycle_state_ctx);
}

/* Free _SC.  */
static void
c6x_free_sched_context (void *_sc)
{
  free (_sc);
}

/* True if we are currently performing a preliminary scheduling
   pass before modulo scheduling; we can't allow the scheduler to
   modify instruction patterns using packetization assumptions,
   since there will be another scheduling pass later if modulo
   scheduling fails.  */
static bool in_hwloop;

/* Provide information about speculation capabilities, and set the
   DO_BACKTRACKING flag.  */
static void
c6x_set_sched_flags (spec_info_t spec_info)
{
  unsigned int *flags = &(current_sched_info->flags);

  if (*flags & SCHED_EBB)
    {
      *flags |= DO_BACKTRACKING | DO_PREDICATION;
    }
  if (in_hwloop)
    *flags |= DONT_BREAK_DEPENDENCIES;

  spec_info->mask = 0;
}

/* Implement the TARGET_SCHED_ISSUE_RATE hook.  */

static int
c6x_issue_rate (void)
{
  return 8;
}

/* Used together with the collapse_ndfa option, this ensures that we reach a
   deterministic automaton state before trying to advance a cycle.
   With collapse_ndfa, genautomata creates advance cycle arcs only for
   such deterministic states.  */

static rtx
c6x_sched_dfa_pre_cycle_insn (void)
{
  return const0_rtx;
}

/* We're beginning a new block.  Initialize data structures as necessary.  */

static void
c6x_sched_init (FILE *dump ATTRIBUTE_UNUSED,
		int sched_verbose ATTRIBUTE_UNUSED,
		int max_ready ATTRIBUTE_UNUSED)
{
  if (prev_cycle_state == NULL)
    {
      prev_cycle_state = xmalloc (dfa_state_size);
    }
  init_sched_state (&ss);
  state_reset (prev_cycle_state);
}

/* We are about to being issuing INSN.  Return nonzero if we cannot
   issue it on given cycle CLOCK and return zero if we should not sort
   the ready queue on the next clock start.
   For C6X, we use this function just to copy the previous DFA state
   for comparison purposes.  */

static int
c6x_dfa_new_cycle (FILE *dump ATTRIBUTE_UNUSED, int verbose ATTRIBUTE_UNUSED,
		   rtx insn ATTRIBUTE_UNUSED, int last_clock ATTRIBUTE_UNUSED,
		   int clock ATTRIBUTE_UNUSED, int *sort_p ATTRIBUTE_UNUSED)
{
  if (clock != last_clock)
    memcpy (prev_cycle_state, curr_state, dfa_state_size);
  return 0;
}

static void
c6x_mark_regno_read (int regno, bool cross)
{
  int t = ++ss.tmp_reg_n_accesses[regno];

  if (t > 4)
    reg_access_stall = true;

  if (cross)
    {
      int set_cycle = ss.reg_set_in_cycle[regno];
      /* This must be done in this way rather than by tweaking things in
	 adjust_cost, since the stall occurs even for insns with opposite
	 predicates, and the scheduler may not even see a dependency.  */
      if (set_cycle > 0 && set_cycle == ss.curr_sched_clock)
	reg_access_stall = true;
      /* This doesn't quite do anything yet as we're only modeling one
	 x unit.  */
      ++ss.tmp_reg_n_xaccesses[regno];
    }
}

/* Note that REG is read in the insn being examined.  If CROSS, it
   means the access is through a cross path.  Update the temporary reg
   access arrays, and set REG_ACCESS_STALL if the insn can't be issued
   in the current cycle.  */

static void
c6x_mark_reg_read (rtx reg, bool cross)
{
  unsigned regno = REGNO (reg);
  unsigned nregs = hard_regno_nregs[regno][GET_MODE (reg)];

  while (nregs-- > 0)
    c6x_mark_regno_read (regno + nregs, cross);
}

/* Note that register REG is written in cycle CYCLES.  */

static void
c6x_mark_reg_written (rtx reg, int cycles)
{
  unsigned regno = REGNO (reg);
  unsigned nregs = hard_regno_nregs[regno][GET_MODE (reg)];

  while (nregs-- > 0)
    ss.reg_set_in_cycle[regno + nregs] = cycles;
}

/* Update the register state information for an instruction whose
   body is X.  Return true if the instruction has to be delayed until the
   next cycle.  */

static bool
c6x_registers_update (rtx insn)
{
  enum attr_cross cross;
  enum attr_dest_regfile destrf;
  int i, nops;
  rtx x;

  if (!reload_completed || recog_memoized (insn) < 0)
    return false;

  reg_access_stall = false;
  memcpy (ss.tmp_reg_n_accesses, ss.reg_n_accesses,
	  sizeof ss.tmp_reg_n_accesses);
  memcpy (ss.tmp_reg_n_xaccesses, ss.reg_n_xaccesses,
	  sizeof ss.tmp_reg_n_xaccesses);

  extract_insn (insn);

  cross = get_attr_cross (insn);
  destrf = get_attr_dest_regfile (insn);

  nops = recog_data.n_operands;
  x = PATTERN (insn);
  if (GET_CODE (x) == COND_EXEC)
    {
      c6x_mark_reg_read (XEXP (XEXP (x, 0), 0), false);
      nops -= 2;
    }

  for (i = 0; i < nops; i++)
    {
      rtx op = recog_data.operand[i];
      if (recog_data.operand_type[i] == OP_OUT)
	continue;
      if (REG_P (op))
	{
	  bool this_cross = cross;
	  if (destrf == DEST_REGFILE_A && A_REGNO_P (REGNO (op)))
	    this_cross = false;
	  if (destrf == DEST_REGFILE_B && B_REGNO_P (REGNO (op)))
	    this_cross = false;
	  c6x_mark_reg_read (op, this_cross);
	}
      else if (MEM_P (op))
	{
	  op = XEXP (op, 0);
	  switch (GET_CODE (op))
	    {
	    case POST_INC:
	    case PRE_INC:
	    case POST_DEC:
	    case PRE_DEC:
	      op = XEXP (op, 0);
	      /* fall through */
	    case REG:
	      c6x_mark_reg_read (op, false);
	      break;
	    case POST_MODIFY:
	    case PRE_MODIFY:
	      op = XEXP (op, 1);
	      gcc_assert (GET_CODE (op) == PLUS);
	      /* fall through */
	    case PLUS:
	      c6x_mark_reg_read (XEXP (op, 0), false);
	      if (REG_P (XEXP (op, 1)))
		c6x_mark_reg_read (XEXP (op, 1), false);
	      break;
	    case SYMBOL_REF:
	    case LABEL_REF:
	    case CONST:
	      c6x_mark_regno_read (REG_B14, false);
	      break;
	    default:
	      gcc_unreachable ();
	    }
	}
      else if (!CONSTANT_P (op) && strlen (recog_data.constraints[i]) > 0)
	gcc_unreachable ();
    }
  return reg_access_stall;
}

/* Helper function for the TARGET_SCHED_REORDER and
   TARGET_SCHED_REORDER2 hooks.  If scheduling an insn would be unsafe
   in the current cycle, move it down in the ready list and return the
   number of non-unsafe insns.  */

static int
c6x_sched_reorder_1 (rtx *ready, int *pn_ready, int clock_var)
{
  int n_ready = *pn_ready;
  rtx *e_ready = ready + n_ready;
  rtx *insnp;
  int first_jump;

  /* Keep track of conflicts due to a limit number of register accesses,
     and due to stalls incurred by too early accesses of registers using
     cross paths.  */

  for (insnp = ready; insnp < e_ready; insnp++)
    {
      rtx insn = *insnp;
      int icode = recog_memoized (insn);
      bool is_asm = (icode < 0
		     && (GET_CODE (PATTERN (insn)) == ASM_INPUT
			 || asm_noperands (PATTERN (insn)) >= 0));
      bool no_parallel = (is_asm || icode == CODE_FOR_sploop
			  || (icode >= 0
			      && get_attr_type (insn) == TYPE_ATOMIC));

      /* We delay asm insns until all delay slots are exhausted.  We can't
	 accurately tell how many cycles an asm takes, and the main scheduling
	 code always assumes at least 1 cycle, which may be wrong.  */
      if ((no_parallel
	   && (ss.issued_this_cycle > 0 || clock_var < ss.delays_finished_at))
	  || c6x_registers_update (insn)
	  || (ss.issued_this_cycle > 0 && icode == CODE_FOR_sploop))
	{
	  memmove (ready + 1, ready, (insnp - ready) * sizeof (rtx));
	  *ready = insn;
	  n_ready--;
	  ready++;
	}
      else if (shadow_p (insn))
	{
	  memmove (ready + 1, ready, (insnp - ready) * sizeof (rtx));
	  *ready = insn;
	}
    }

  /* Ensure that no other jump is scheduled in jump delay slots, since
     it would put the machine into the wrong state.  Also, we must
     avoid scheduling insns that have a latency longer than the
     remaining jump delay slots, as the code at the jump destination
     won't be prepared for it.

     However, we can relax this condition somewhat.  The rest of the
     scheduler will automatically avoid scheduling an insn on which
     the jump shadow depends so late that its side effect happens
     after the jump.  This means that if we see an insn with a longer
     latency here, it can safely be scheduled if we can ensure that it
     has a predicate opposite of the previous jump: the side effect
     will happen in what we think of as the same basic block.  In
     c6x_variable_issue, we will record the necessary predicate in
     new_conditions, and after scheduling is finished, we will modify
     the insn.

     Special care must be taken whenever there is more than one jump
     in flight.  */

  first_jump = first_jump_index (clock_var);
  if (first_jump != -1)
    {
      int first_cycle = get_jump_cycle (first_jump);
      rtx first_cond = get_jump_cond (first_jump);
      int second_cycle = 0;

      if (first_jump > 0)
	second_cycle = get_jump_cycle (first_jump - 1);

      for (insnp = ready; insnp < e_ready; insnp++)
	{
	  rtx insn = *insnp;
	  int icode = recog_memoized (insn);
	  bool is_asm = (icode < 0
			 && (GET_CODE (PATTERN (insn)) == ASM_INPUT
			     || asm_noperands (PATTERN (insn)) >= 0));
	  int this_cycles, rsrv_cycles;
	  enum attr_type type;

	  gcc_assert (!is_asm);
	  if (icode < 0)
	    continue;
	  this_cycles = get_attr_cycles (insn);
	  rsrv_cycles = get_attr_reserve_cycles (insn);
	  type = get_attr_type (insn);
	  /* Treat branches specially; there is also a hazard if two jumps
	     end at the same cycle.  */
	  if (type == TYPE_BRANCH || type == TYPE_CALL)
	    this_cycles++;
	  if (clock_var + this_cycles <= first_cycle)
	    continue;
	  if ((first_jump > 0 && clock_var + this_cycles > second_cycle)
	      || clock_var + rsrv_cycles > first_cycle
	      || !predicate_insn (insn, first_cond, false))
	    {
	      memmove (ready + 1, ready, (insnp - ready) * sizeof (rtx));
	      *ready = insn;
	      n_ready--;
	      ready++;
	    }
	}
    }

  return n_ready;
}

/* Implement the TARGET_SCHED_REORDER hook.  We save the current clock
   for later and clear the register access information for the new
   cycle.  We also move asm statements out of the way if they would be
   scheduled in a delay slot.  */

static int
c6x_sched_reorder (FILE *dump ATTRIBUTE_UNUSED,
		   int sched_verbose ATTRIBUTE_UNUSED,
		   rtx *ready ATTRIBUTE_UNUSED,
		   int *pn_ready ATTRIBUTE_UNUSED, int clock_var)
{
  ss.curr_sched_clock = clock_var;
  ss.issued_this_cycle = 0;
  memset (ss.reg_n_accesses, 0, sizeof ss.reg_n_accesses);
  memset (ss.reg_n_xaccesses, 0, sizeof ss.reg_n_xaccesses);

  if (ready == NULL)
    return 0;

  return c6x_sched_reorder_1 (ready, pn_ready, clock_var);
}

/* Implement the TARGET_SCHED_REORDER2 hook.  We use this to record the clock
   cycle for every insn.  */

static int
c6x_sched_reorder2 (FILE *dump ATTRIBUTE_UNUSED,
		    int sched_verbose ATTRIBUTE_UNUSED,
		    rtx *ready ATTRIBUTE_UNUSED,
		    int *pn_ready ATTRIBUTE_UNUSED, int clock_var)
{
  /* FIXME: the assembler rejects labels inside an execute packet.
     This can occur if prologue insns are scheduled in parallel with
     others, so we avoid this here.  Also make sure that nothing is
     scheduled in parallel with a TYPE_ATOMIC insn or after a jump.  */
  if (RTX_FRAME_RELATED_P (ss.last_scheduled_insn)
      || JUMP_P (ss.last_scheduled_insn)
      || (recog_memoized (ss.last_scheduled_insn) >= 0
	  && get_attr_type (ss.last_scheduled_insn) == TYPE_ATOMIC))
    {
      int n_ready = *pn_ready;
      rtx *e_ready = ready + n_ready;
      rtx *insnp;

      for (insnp = ready; insnp < e_ready; insnp++)
	{
	  rtx insn = *insnp;
	  if (!shadow_p (insn))
	    {
	      memmove (ready + 1, ready, (insnp - ready) * sizeof (rtx));
	      *ready = insn;
	      n_ready--;
	      ready++;
	    }
	}
      return n_ready;
    }

  return c6x_sched_reorder_1 (ready, pn_ready, clock_var);
}

/* Subroutine of maybe_clobber_cond, called through note_stores.  */

static void
clobber_cond_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data1)
{
  rtx *cond = (rtx *)data1;
  if (*cond != NULL_RTX && reg_overlap_mentioned_p (x, *cond))
    *cond = NULL_RTX;
}

/* Examine INSN, and if it destroys the conditions have recorded for
   any of the jumps in flight, clear that condition so that we don't
   predicate any more insns.  CLOCK_VAR helps us limit the search to
   only those jumps which are still in flight.  */

static void
maybe_clobber_cond (rtx insn, int clock_var)
{
  int n, idx;
  idx = ss.jump_cycle_index;
  for (n = 0; n < 12; n++, idx++)
    {
      rtx cond, link;
      int cycle;

      if (idx >= 12)
	idx -= 12;
      cycle = ss.jump_cycles[idx];
      if (cycle <= clock_var)
	return;

      cond = ss.jump_cond[idx];
      if (cond == NULL_RTX)
	continue;

      if (CALL_P (insn))
	{
	  ss.jump_cond[idx] = NULL_RTX;
	  continue;
	}

      note_stores (PATTERN (insn), clobber_cond_1, ss.jump_cond + idx);
      for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
	if (REG_NOTE_KIND (link) == REG_INC)
	  clobber_cond_1 (XEXP (link, 0), NULL_RTX, ss.jump_cond + idx);
    }
}

/* Implement the TARGET_SCHED_VARIABLE_ISSUE hook.  We are about to
   issue INSN.  Return the number of insns left on the ready queue
   that can be issued this cycle.
   We use this hook to record clock cycles and reservations for every insn.  */

static int
c6x_variable_issue (FILE *dump ATTRIBUTE_UNUSED,
		    int sched_verbose ATTRIBUTE_UNUSED,
		    rtx insn, int can_issue_more ATTRIBUTE_UNUSED)
{
  ss.last_scheduled_insn = insn;
  if (INSN_UID (insn) < sploop_max_uid_iter0 && !JUMP_P (insn))
    ss.last_scheduled_iter0 = insn;
  if (GET_CODE (PATTERN (insn)) != USE && GET_CODE (PATTERN (insn)) != CLOBBER)
    ss.issued_this_cycle++;
  if (insn_info)
    {
      state_t st_after = alloca (dfa_state_size);
      int curr_clock = ss.curr_sched_clock;
      int uid = INSN_UID (insn);
      int icode = recog_memoized (insn);
      rtx first_cond;
      int first, first_cycle;
      unsigned int mask;
      int i;

      insn_set_clock (insn, curr_clock);
      INSN_INFO_ENTRY (uid).ebb_start
	= curr_clock == 0 && ss.issued_this_cycle == 1;

      first = first_jump_index (ss.curr_sched_clock);
      if (first == -1)
	{
	  first_cycle = 0;
	  first_cond = NULL_RTX;
	}
      else
	{
	  first_cycle = get_jump_cycle (first);
	  first_cond = get_jump_cond (first);
	}
      if (icode >= 0
	  && first_cycle > curr_clock
	  && first_cond != NULL_RTX
	  && (curr_clock + get_attr_cycles (insn) > first_cycle
	      || get_attr_type (insn) == TYPE_BRANCH
	      || get_attr_type (insn) == TYPE_CALL))
	INSN_INFO_ENTRY (uid).new_cond = first_cond;

      memcpy (st_after, curr_state, dfa_state_size);
      state_transition (st_after, const0_rtx);

      mask = 0;
      for (i = 0; i < 2 * UNIT_QID_SIDE_OFFSET; i++)
	if (cpu_unit_reservation_p (st_after, c6x_unit_codes[i])
	    && !cpu_unit_reservation_p (prev_cycle_state, c6x_unit_codes[i]))
	  mask |= 1 << i;
      INSN_INFO_ENTRY (uid).unit_mask = mask;

      maybe_clobber_cond (insn, curr_clock);

      if (icode >= 0)
	{
	  int i, cycles;

	  c6x_registers_update (insn);
	  memcpy (ss.reg_n_accesses, ss.tmp_reg_n_accesses,
		  sizeof ss.reg_n_accesses);
	  memcpy (ss.reg_n_xaccesses, ss.tmp_reg_n_accesses,
		  sizeof ss.reg_n_xaccesses);

	  cycles = get_attr_cycles (insn);
	  if (ss.delays_finished_at < ss.curr_sched_clock + cycles)
	    ss.delays_finished_at = ss.curr_sched_clock + cycles;
	  if (get_attr_type (insn) == TYPE_BRANCH
	      || get_attr_type (insn) == TYPE_CALL)
	    {
	      rtx opposite = condjump_opposite_condition (insn);
	      record_jump (ss.curr_sched_clock + cycles, opposite);
	    }

	  /* Mark the cycles in which the destination registers are written.
	     This is used for calculating stalls when using cross units.  */
	  extract_insn (insn);
	  /* Cross-path stalls don't apply to results of load insns.  */
	  if (get_attr_type (insn) == TYPE_LOAD
	      || get_attr_type (insn) == TYPE_LOADN
	      || get_attr_type (insn) == TYPE_LOAD_SHADOW)
	    cycles--;
	  for (i = 0; i < recog_data.n_operands; i++)
	    {
	      rtx op = recog_data.operand[i];
	      if (MEM_P (op))
		{
		  rtx addr = XEXP (op, 0);
		  if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC)
		    c6x_mark_reg_written (XEXP (addr, 0),
					  insn_uid_get_clock (uid) + 1);
		}
	      if (recog_data.operand_type[i] != OP_IN
		  && REG_P (op))
		{
		  c6x_mark_reg_written (op,
					insn_uid_get_clock (uid) + cycles);
		}
	    }
	}
    }
  return can_issue_more;
}

/* Implement the TARGET_SCHED_ADJUST_COST hook.  We need special handling for
   anti- and output dependencies.  */

static int
c6x_adjust_cost (rtx insn, rtx link, rtx dep_insn, int cost)
{
  enum attr_type insn_type = TYPE_UNKNOWN, dep_insn_type = TYPE_UNKNOWN;
  int dep_insn_code_number, insn_code_number;
  int shadow_bonus = 0;
  enum reg_note kind;
  dep_insn_code_number = recog_memoized (dep_insn);
  insn_code_number = recog_memoized (insn);

  if (dep_insn_code_number >= 0)
    dep_insn_type = get_attr_type (dep_insn);

  if (insn_code_number >= 0)
    insn_type = get_attr_type (insn);

  kind = REG_NOTE_KIND (link);
  if (kind == 0)
    {
      /* If we have a dependency on a load, and it's not for the result of
	 the load, it must be for an autoincrement.  Reduce the cost in that
	 case.  */
      if (dep_insn_type == TYPE_LOAD)
	{
	  rtx set = PATTERN (dep_insn);
	  if (GET_CODE (set) == COND_EXEC)
	    set = COND_EXEC_CODE (set);
	  if (GET_CODE (set) == UNSPEC)
	    cost = 1;
	  else
	    {
	      gcc_assert (GET_CODE (set) == SET);
	      if (!reg_overlap_mentioned_p (SET_DEST (set), PATTERN (insn)))
		cost = 1;
	    }
	}
    }

  /* A jump shadow needs to have its latency decreased by one.  Conceptually,
     it occurs in between two cycles, but we schedule it at the end of the
     first cycle.  */
  if (shadow_type_p (insn_type))
    shadow_bonus = 1;

  /* Anti and output dependencies usually have zero cost, but we want
     to insert a stall after a jump, and after certain floating point
     insns that take more than one cycle to read their inputs.  In the
     future, we should try to find a better algorithm for scheduling
     jumps.  */
  if (kind != 0)
    {
      /* We can get anti-dependencies against shadow insns.  Treat these
	 like output dependencies, so that the insn is entirely finished
	 before the branch takes place.  */
      if (kind == REG_DEP_ANTI && insn_type == TYPE_SHADOW)
	kind = REG_DEP_OUTPUT;
      switch (dep_insn_type)
	{
	case TYPE_CALLP:
	  return 1;
	case TYPE_BRANCH:
	case TYPE_CALL:
	  if (get_attr_has_shadow (dep_insn) == HAS_SHADOW_Y)
	    /* This is a real_jump/real_call insn.  These don't have
	       outputs, and ensuring the validity of scheduling things
	       in the delay slot is the job of
	       c6x_sched_reorder_1.  */
	    return 0;
	  /* Unsplit calls can happen - e.g. for divide insns.  */
	  return 6;
	case TYPE_LOAD:
	case TYPE_LOADN:
	case TYPE_INTDP:
	  if (kind == REG_DEP_OUTPUT)
	    return 5 - shadow_bonus;
	  return 0;
	case TYPE_MPY4:
	case TYPE_FP4:
	  if (kind == REG_DEP_OUTPUT)
	    return 4 - shadow_bonus;
	  return 0;
	case TYPE_MPY2:
	  if (kind == REG_DEP_OUTPUT)
	    return 2 - shadow_bonus;
	  return 0;
	case TYPE_CMPDP:
	  if (kind == REG_DEP_OUTPUT)
	    return 2 - shadow_bonus;
	  return 2;
	case TYPE_ADDDP:
	case TYPE_MPYSPDP:
	  if (kind == REG_DEP_OUTPUT)
	    return 7 - shadow_bonus;
	  return 2;
	case TYPE_MPYSP2DP:
	  if (kind == REG_DEP_OUTPUT)
	    return 5 - shadow_bonus;
	  return 2;
	case TYPE_MPYI:
	  if (kind == REG_DEP_OUTPUT)
	    return 9 - shadow_bonus;
	  return 4;
	case TYPE_MPYID:
	case TYPE_MPYDP:
	  if (kind == REG_DEP_OUTPUT)
	    return 10 - shadow_bonus;
	  return 4;

	default:
	  if (insn_type == TYPE_SPKERNEL)
	    return 0;
	  if (kind == REG_DEP_OUTPUT)
	    return 1 - shadow_bonus;

	  return 0;
	}
    }

  return cost - shadow_bonus;
}

/* Create a SEQUENCE rtx to replace the instructions in SLOT, of which there
   are N_FILLED.  REAL_FIRST identifies the slot if the insn that appears
   first in the original stream.  */

static void
gen_one_bundle (rtx *slot, int n_filled, int real_first)
{
  rtx bundle;
  rtx t;
  int i;

  bundle = gen_rtx_SEQUENCE (VOIDmode, gen_rtvec_v (n_filled, slot));
  bundle = make_insn_raw (bundle);
  BLOCK_FOR_INSN (bundle) = BLOCK_FOR_INSN (slot[0]);
  INSN_LOCATION (bundle) = INSN_LOCATION (slot[0]);
  PREV_INSN (bundle) = PREV_INSN (slot[real_first]);

  t = NULL_RTX;

  for (i = 0; i < n_filled; i++)
    {
      rtx insn = slot[i];
      remove_insn (insn);
      PREV_INSN (insn) = t ? t : PREV_INSN (bundle);
      if (t != NULL_RTX)
	NEXT_INSN (t) = insn;
      t = insn;
      if (i > 0)
	INSN_LOCATION (slot[i]) = INSN_LOCATION (bundle);
    }

  NEXT_INSN (bundle) = NEXT_INSN (PREV_INSN (bundle));
  NEXT_INSN (t) = NEXT_INSN (bundle);
  NEXT_INSN (PREV_INSN (bundle)) = bundle;
  PREV_INSN (NEXT_INSN (bundle)) = bundle;
}

/* Move all parallel instructions into SEQUENCEs, so that no subsequent passes
   try to insert labels in the middle.  */

static void
c6x_gen_bundles (void)
{
  basic_block bb;
  rtx insn, next, last_call;

  FOR_EACH_BB (bb)
    {
      rtx insn, next;
      /* The machine is eight insns wide.  We can have up to six shadow
	 insns, plus an extra slot for merging the jump shadow.  */
      rtx slot[15];
      int n_filled = 0;
      int first_slot = 0;

      for (insn = BB_HEAD (bb);; insn = next)
	{
	  int at_end;
	  rtx delete_this = NULL_RTX;

	  if (NONDEBUG_INSN_P (insn))
	    {
	      /* Put calls at the start of the sequence.  */
	      if (CALL_P (insn))
		{
		  first_slot++;
		  if (n_filled)
		    {
		      memmove (&slot[1], &slot[0],
			       n_filled * sizeof (slot[0]));
		    }
		  if (!shadow_p (insn))
		    {
		      PUT_MODE (insn, TImode);
		      if (n_filled)
			PUT_MODE (slot[1], VOIDmode);
		    }
		  n_filled++;
		  slot[0] = insn;
		}
	      else
		{
		  slot[n_filled++] = insn;
		}
	    }

	  next = NEXT_INSN (insn);
	  while (next && insn != BB_END (bb)
		 && !(NONDEBUG_INSN_P (next)
		      && GET_CODE (PATTERN (next)) != USE
		      && GET_CODE (PATTERN (next)) != CLOBBER))
	    {
	      insn = next;
	      next = NEXT_INSN (insn);
	    }

	  at_end = insn == BB_END (bb);
	  if (delete_this == NULL_RTX
	      && (at_end || (GET_MODE (next) == TImode
			     && !(shadow_p (next) && CALL_P (next)))))
	    {
	      if (n_filled >= 2)
		gen_one_bundle (slot, n_filled, first_slot);

	      n_filled = 0;
	      first_slot = 0;
	    }
	  if (at_end)
	    break;
	}
    }
  /* Bundling, and emitting nops, can separate
     NOTE_INSN_CALL_ARG_LOCATION from the corresponding calls.  Fix
     that up here.  */
  last_call = NULL_RTX;
  for (insn = get_insns (); insn; insn = next)
    {
      next = NEXT_INSN (insn);
      if (CALL_P (insn)
	  || (INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE
	      && CALL_P (XVECEXP (PATTERN (insn), 0, 0))))
	last_call = insn;
      if (!NOTE_P (insn) || NOTE_KIND (insn) != NOTE_INSN_CALL_ARG_LOCATION)
	continue;
      if (NEXT_INSN (last_call) == insn)
	continue;
      NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
      PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
      PREV_INSN (insn) = last_call;
      NEXT_INSN (insn) = NEXT_INSN (last_call);
      PREV_INSN (NEXT_INSN (insn)) = insn;
      NEXT_INSN (PREV_INSN (insn)) = insn;
      last_call = insn;
    }
}

/* Emit a NOP instruction for CYCLES cycles after insn AFTER.  Return it.  */

static rtx
emit_nop_after (int cycles, rtx after)
{
  rtx insn;

  /* mpydp has 9 delay slots, and we may schedule a stall for a cross-path
     operation.  We don't need the extra NOP since in this case, the hardware
     will automatically insert the required stall.  */
  if (cycles == 10)
    cycles--;

  gcc_assert (cycles < 10);

  insn = emit_insn_after (gen_nop_count (GEN_INT (cycles)), after);
  PUT_MODE (insn, TImode);

  return insn;
}

/* Determine whether INSN is a call that needs to have a return label
   placed.  */

static bool
returning_call_p (rtx insn)
{
  if (CALL_P (insn))
    return (!SIBLING_CALL_P (insn)
	    && get_attr_type (insn) != TYPE_CALLP
	    && get_attr_type (insn) != TYPE_SHADOW);
  if (recog_memoized (insn) < 0)
    return false;
  if (get_attr_type (insn) == TYPE_CALL)
    return true;
  return false;
}

/* Determine whether INSN's pattern can be converted to use callp.  */
static bool
can_use_callp (rtx insn)
{
  int icode = recog_memoized (insn);
  if (!TARGET_INSNS_64PLUS
      || icode < 0
      || GET_CODE (PATTERN (insn)) == COND_EXEC)
    return false;

  return ((icode == CODE_FOR_real_call
	   || icode == CODE_FOR_call_internal
	   || icode == CODE_FOR_call_value_internal)
	  && get_attr_dest_regfile (insn) == DEST_REGFILE_ANY);
}

/* Convert the pattern of INSN, which must be a CALL_INSN, into a callp.  */
static void
convert_to_callp (rtx insn)
{
  rtx lab;
  extract_insn (insn);
  if (GET_CODE (PATTERN (insn)) == SET)
    {
      rtx dest = recog_data.operand[0];
      lab = recog_data.operand[1];
      PATTERN (insn) = gen_callp_value (dest, lab);
      INSN_CODE (insn) = CODE_FOR_callp_value;
    }
  else
    {
      lab = recog_data.operand[0];
      PATTERN (insn) = gen_callp (lab);
      INSN_CODE (insn) = CODE_FOR_callp;
    }
}

/* Scan forwards from INSN until we find the next insn that has mode TImode
   (indicating it starts a new cycle), and occurs in cycle CLOCK.
   Return it if we find such an insn, NULL_RTX otherwise.  */
static rtx
find_next_cycle_insn (rtx insn, int clock)
{
  rtx t = insn;
  if (GET_MODE (t) == TImode)
    t = next_real_insn (t);
  while (t && GET_MODE (t) != TImode)
    t = next_real_insn (t);

  if (t && insn_get_clock (t) == clock)
    return t;
  return NULL_RTX;
}

/* If COND_INSN has a COND_EXEC condition, wrap the same condition
   around PAT.  Return PAT either unchanged or modified in this
   way.  */
static rtx
duplicate_cond (rtx pat, rtx cond_insn)
{
  rtx cond_pat = PATTERN (cond_insn);
  if (GET_CODE (cond_pat) == COND_EXEC)
    pat = gen_rtx_COND_EXEC (VOIDmode, copy_rtx (COND_EXEC_TEST (cond_pat)),
			     pat);
  return pat;
}

/* Walk forward from INSN to find the last insn that issues in the same clock
   cycle.  */
static rtx
find_last_same_clock (rtx insn)
{
  rtx retval = insn;
  rtx t = next_real_insn (insn);

  while (t && GET_MODE (t) != TImode)
    {
      if (!DEBUG_INSN_P (t) && recog_memoized (t) >= 0)
	retval = t;
      t = next_real_insn (t);
    }
  return retval;
}

/* For every call insn in the function, emit code to load the return
   address.  For each call we create a return label and store it in
   CALL_LABELS.  If are not scheduling, we emit the labels here,
   otherwise the caller will do it later.
   This function is called after final insn scheduling, but before creating
   the SEQUENCEs that represent execute packets.  */

static void
reorg_split_calls (rtx *call_labels)
{
  unsigned int reservation_mask = 0;
  rtx insn = get_insns ();
  gcc_assert (GET_CODE (insn) == NOTE);
  insn = next_real_insn (insn);
  while (insn)
    {
      int uid;
      rtx next = next_real_insn (insn);

      if (DEBUG_INSN_P (insn))
	goto done;

      if (GET_MODE (insn) == TImode)
	reservation_mask = 0;
      uid = INSN_UID (insn);
      if (c6x_flag_schedule_insns2 && recog_memoized (insn) >= 0)
	reservation_mask |= 1 << INSN_INFO_ENTRY (uid).reservation;

      if (returning_call_p (insn))
	{
	  rtx label = gen_label_rtx ();
	  rtx labelref = gen_rtx_LABEL_REF (Pmode, label);
	  rtx reg = gen_rtx_REG (SImode, RETURN_ADDR_REGNO);

	  LABEL_NUSES (label) = 2;
	  if (!c6x_flag_schedule_insns2)
	    {
	      if (can_use_callp (insn))
		convert_to_callp (insn);
	      else
		{
		  rtx t;
		  rtx slot[4];
		  emit_label_after (label, insn);

		  /* Bundle the call and its delay slots into a single
		     SEQUENCE.  While these do not issue in parallel
		     we need to group them into a single EH region.  */
		  slot[0] = insn;
		  PUT_MODE (insn, TImode);
		  if (TARGET_INSNS_64)
		    {
		      t = gen_addkpc (reg, labelref, GEN_INT (4));
		      slot[1] = emit_insn_after (duplicate_cond (t, insn),
						 insn);
		      PUT_MODE (slot[1], TImode);
		      gen_one_bundle (slot, 2, 0);
		    }
		  else
		    {
		      slot[3] = emit_insn_after (gen_nop_count (GEN_INT (3)),
						 insn);
		      PUT_MODE (slot[3], TImode);
		      t = gen_movsi_lo_sum (reg, reg, labelref);
		      slot[2] = emit_insn_after (duplicate_cond (t, insn),
						  insn);
		      PUT_MODE (slot[2], TImode);
		      t = gen_movsi_high (reg, labelref);
		      slot[1] = emit_insn_after (duplicate_cond (t, insn),
						 insn);
		      PUT_MODE (slot[1], TImode);
		      gen_one_bundle (slot, 4, 0);
		    }
		}
	    }
	  else
	    {
	      /* If we scheduled, we reserved the .S2 unit for one or two
		 cycles after the call.  Emit the insns in these slots,
		 unless it's possible to create a CALLP insn.
		 Note that this works because the dependencies ensure that
		 no insn setting/using B3 is scheduled in the delay slots of
		 a call.  */
	      int this_clock = insn_get_clock (insn);
	      rtx last_same_clock;
	      rtx after1;

	      call_labels[INSN_UID (insn)] = label;

	      last_same_clock = find_last_same_clock (insn);

	      if (can_use_callp (insn))
		{
		  /* Find the first insn of the next execute packet.  If it
		     is the shadow insn corresponding to this call, we may
		     use a CALLP insn.  */
		  rtx shadow = next_nonnote_nondebug_insn (last_same_clock);

		  if (CALL_P (shadow)
		      && insn_get_clock (shadow) == this_clock + 5)
		    {
		      convert_to_callp (shadow);
		      insn_set_clock (shadow, this_clock);
		      INSN_INFO_ENTRY (INSN_UID (shadow)).reservation
			= RESERVATION_S2;
		      INSN_INFO_ENTRY (INSN_UID (shadow)).unit_mask
			= INSN_INFO_ENTRY (INSN_UID (last_same_clock)).unit_mask;
		      if (GET_MODE (insn) == TImode)
			{
			  rtx new_cycle_first = NEXT_INSN (insn);
			  while (!NONDEBUG_INSN_P (new_cycle_first)
				 || GET_CODE (PATTERN (new_cycle_first)) == USE
				 || GET_CODE (PATTERN (new_cycle_first)) == CLOBBER)
			    new_cycle_first = NEXT_INSN (new_cycle_first);
			  PUT_MODE (new_cycle_first, TImode);
			  if (new_cycle_first != shadow)
			    PUT_MODE (shadow, VOIDmode);
			  INSN_INFO_ENTRY (INSN_UID (new_cycle_first)).ebb_start
			    = INSN_INFO_ENTRY (INSN_UID (insn)).ebb_start;
			}
		      else
			PUT_MODE (shadow, VOIDmode);
		      delete_insn (insn);
		      goto done;
		    }
		}
	      after1 = find_next_cycle_insn (last_same_clock, this_clock + 1);
	      if (after1 == NULL_RTX)
		after1 = last_same_clock;
	      else
		after1 = find_last_same_clock (after1);
	      if (TARGET_INSNS_64)
		{
		  rtx x1 = gen_addkpc (reg, labelref, const0_rtx);
		  x1 = emit_insn_after (duplicate_cond (x1, insn), after1);
		  insn_set_clock (x1, this_clock + 1);
		  INSN_INFO_ENTRY (INSN_UID (x1)).reservation = RESERVATION_S2;
		  if (after1 == last_same_clock)
		    PUT_MODE (x1, TImode);
		  else
		    INSN_INFO_ENTRY (INSN_UID (x1)).unit_mask
		      = INSN_INFO_ENTRY (INSN_UID (after1)).unit_mask;
		}
	      else
		{
		  rtx x1, x2;
		  rtx after2 = find_next_cycle_insn (after1, this_clock + 2);
		  if (after2 == NULL_RTX)
		    after2 = after1;
		  x2 = gen_movsi_lo_sum (reg, reg, labelref);
		  x2 = emit_insn_after (duplicate_cond (x2, insn), after2);
		  x1 = gen_movsi_high (reg, labelref);
		  x1 = emit_insn_after (duplicate_cond (x1, insn), after1);
		  insn_set_clock (x1, this_clock + 1);
		  insn_set_clock (x2, this_clock + 2);
		  INSN_INFO_ENTRY (INSN_UID (x1)).reservation = RESERVATION_S2;
		  INSN_INFO_ENTRY (INSN_UID (x2)).reservation = RESERVATION_S2;
		  if (after1 == last_same_clock)
		    PUT_MODE (x1, TImode);
		  else
		    INSN_INFO_ENTRY (INSN_UID (x1)).unit_mask
		      = INSN_INFO_ENTRY (INSN_UID (after1)).unit_mask;
		  if (after1 == after2)
		    PUT_MODE (x2, TImode);
		  else
		    INSN_INFO_ENTRY (INSN_UID (x2)).unit_mask
		      = INSN_INFO_ENTRY (INSN_UID (after2)).unit_mask;
		}
	    }
	}
    done:
      insn = next;
    }
}

/* Called as part of c6x_reorg.  This function emits multi-cycle NOP
   insns as required for correctness.  CALL_LABELS is the array that
   holds the return labels for call insns; we emit these here if
   scheduling was run earlier.  */

static void
reorg_emit_nops (rtx *call_labels)
{
  bool first;
  rtx prev, last_call;
  int prev_clock, earliest_bb_end;
  int prev_implicit_nops;
  rtx insn = get_insns ();

  /* We look at one insn (or bundle inside a sequence) in each iteration, storing
     its issue time in PREV_CLOCK for the next iteration.  If there is a gap in
     clocks, we must insert a NOP.
     EARLIEST_BB_END tracks in which cycle all insns that have been issued in the
     current basic block will finish.  We must not allow the next basic block to
     begin before this cycle.
     PREV_IMPLICIT_NOPS tells us whether we've seen an insn that implicitly contains
     a multi-cycle nop.  The code is scheduled such that subsequent insns will
     show the cycle gap, but we needn't insert a real NOP instruction.  */
  insn = next_real_insn (insn);
  last_call = prev = NULL_RTX;
  prev_clock = -1;
  earliest_bb_end = 0;
  prev_implicit_nops = 0;
  first = true;
  while (insn)
    {
      int this_clock = -1;
      rtx next;
      int max_cycles = 0;

      next = next_real_insn (insn);

      if (DEBUG_INSN_P (insn)
	  || GET_CODE (PATTERN (insn)) == USE
	  || GET_CODE (PATTERN (insn)) == CLOBBER
	  || shadow_or_blockage_p (insn)
	  || (JUMP_P (insn)
	      && (GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
		  || GET_CODE (PATTERN (insn)) == ADDR_VEC)))
	goto next_insn;

      if (!c6x_flag_schedule_insns2)
	/* No scheduling; ensure that no parallel issue happens.  */
	PUT_MODE (insn, TImode);
      else
	{
	  int cycles;

	  this_clock = insn_get_clock (insn);
	  if (this_clock != prev_clock)
	    {
	      PUT_MODE (insn, TImode);

	      if (!first)
		{
		  cycles = this_clock - prev_clock;

		  cycles -= prev_implicit_nops;
		  if (cycles > 1)
		    {
		      rtx nop = emit_nop_after (cycles - 1, prev);
		      insn_set_clock (nop, prev_clock + prev_implicit_nops + 1);
		    }
		}
	      prev_clock = this_clock;

	      if (last_call
		  && insn_get_clock (last_call) + 6 <= this_clock)
		{
		  emit_label_before (call_labels[INSN_UID (last_call)], insn);
		  last_call = NULL_RTX;
		}
	      prev_implicit_nops = 0;
	    }
	}

      /* Examine how many cycles the current insn takes, and adjust
	 LAST_CALL, EARLIEST_BB_END and PREV_IMPLICIT_NOPS.  */
      if (recog_memoized (insn) >= 0
	  /* If not scheduling, we've emitted NOPs after calls already.  */
	  && (c6x_flag_schedule_insns2 || !returning_call_p (insn)))
	{
	  max_cycles = get_attr_cycles (insn);
	  if (get_attr_type (insn) == TYPE_CALLP)
	    prev_implicit_nops = 5;
	}
      else
	max_cycles = 1;
      if (returning_call_p (insn))
	last_call = insn;

      if (c6x_flag_schedule_insns2)
	{
	  gcc_assert (this_clock >= 0);
	  if (earliest_bb_end < this_clock + max_cycles)
	    earliest_bb_end = this_clock + max_cycles;
	}
      else if (max_cycles > 1)
	emit_nop_after (max_cycles - 1, insn);

      prev = insn;
      first = false;

    next_insn:
      if (c6x_flag_schedule_insns2
	  && (next == NULL_RTX
	      || (GET_MODE (next) == TImode
		  && INSN_INFO_ENTRY (INSN_UID (next)).ebb_start))
	  && earliest_bb_end > 0)
	{
	  int cycles = earliest_bb_end - prev_clock;
	  if (cycles > 1)
	    {
	      prev = emit_nop_after (cycles - 1, prev);
	      insn_set_clock (prev, prev_clock + prev_implicit_nops + 1);
	    }
	  earliest_bb_end = 0;
	  prev_clock = -1;
	  first = true;

	  if (last_call)
	    emit_label_after (call_labels[INSN_UID (last_call)], prev);
	  last_call = NULL_RTX;
	}
      insn = next;
    }
}

/* If possible, split INSN, which we know is either a jump or a call, into a real
   insn and its shadow.  */
static void
split_delayed_branch (rtx insn)
{
  int code = recog_memoized (insn);
  rtx i1, newpat;
  rtx pat = PATTERN (insn);

  if (GET_CODE (pat) == COND_EXEC)
    pat = COND_EXEC_CODE (pat);

  if (CALL_P (insn))
    {
      rtx src = pat, dest = NULL_RTX;
      rtx callee;
      if (GET_CODE (pat) == SET)
	{
	  dest = SET_DEST (pat);
	  src = SET_SRC (pat);
	}
      callee = XEXP (XEXP (src, 0), 0);
      if (SIBLING_CALL_P (insn))
	{
	  if (REG_P (callee))
	    newpat = gen_indirect_sibcall_shadow ();
	  else
	    newpat = gen_sibcall_shadow (callee);
	  pat = gen_real_jump (callee);
	}
      else if (dest != NULL_RTX)
	{
	  if (REG_P (callee))
	    newpat = gen_indirect_call_value_shadow (dest);
	  else
	    newpat = gen_call_value_shadow (dest, callee);
	  pat = gen_real_call (callee);
	}
      else
	{
	  if (REG_P (callee))
	    newpat = gen_indirect_call_shadow ();
	  else
	    newpat = gen_call_shadow (callee);
	  pat = gen_real_call (callee);
	}
      pat = duplicate_cond (pat, insn);
      newpat = duplicate_cond (newpat, insn);
    }
  else
    {
      rtx src, op;
      if (GET_CODE (pat) == PARALLEL
	  && GET_CODE (XVECEXP (pat, 0, 0)) == RETURN)
	{
	  newpat = gen_return_shadow ();
	  pat = gen_real_ret (XEXP (XVECEXP (pat, 0, 1), 0));
	  newpat = duplicate_cond (newpat, insn);
	}
      else
	switch (code)
	  {
	  case CODE_FOR_br_true:
	  case CODE_FOR_br_false:
	    src = SET_SRC (pat);
	    op = XEXP (src, code == CODE_FOR_br_true ? 1 : 2);
	    newpat = gen_condjump_shadow (op);
	    pat = gen_real_jump (op);
	    if (code == CODE_FOR_br_true)
	      pat = gen_rtx_COND_EXEC (VOIDmode, XEXP (src, 0), pat);
	    else
	      pat = gen_rtx_COND_EXEC (VOIDmode,
				       reversed_comparison (XEXP (src, 0),
							    VOIDmode),
				       pat);
	    break;

	  case CODE_FOR_jump:
	    op = SET_SRC (pat);
	    newpat = gen_jump_shadow (op);
	    break;

	  case CODE_FOR_indirect_jump:
	    newpat = gen_indirect_jump_shadow ();
	    break;

	  case CODE_FOR_return_internal:
	    newpat = gen_return_shadow ();
	    pat = gen_real_ret (XEXP (XVECEXP (pat, 0, 1), 0));
	    break;

	  default:
	    return;
	  }
    }
  i1 = emit_insn_before (pat, insn);
  PATTERN (insn) = newpat;
  INSN_CODE (insn) = -1;
  record_delay_slot_pair (i1, insn, 5, 0);
}

/* If INSN is a multi-cycle insn that should be handled properly in
   modulo-scheduling, split it into a real insn and a shadow.
   Return true if we made a change.

   It is valid for us to fail to split an insn; the caller has to deal
   with the possibility.  Currently we handle loads and most mpy2 and
   mpy4 insns.  */
static bool
split_delayed_nonbranch (rtx insn)
{
  int code = recog_memoized (insn);
  enum attr_type type;
  rtx i1, newpat, src, dest;
  rtx pat = PATTERN (insn);
  rtvec rtv;
  int delay;

  if (GET_CODE (pat) == COND_EXEC)
    pat = COND_EXEC_CODE (pat);

  if (code < 0 || GET_CODE (pat) != SET)
    return false;
  src = SET_SRC (pat);
  dest = SET_DEST (pat);
  if (!REG_P (dest))
    return false;

  type = get_attr_type (insn);
  if (code >= 0
      && (type == TYPE_LOAD
	  || type == TYPE_LOADN))
    {
      if (!MEM_P (src)
	  && (GET_CODE (src) != ZERO_EXTEND
	      || !MEM_P (XEXP (src, 0))))
	return false;

      if (GET_MODE_SIZE (GET_MODE (dest)) > 4
	  && (GET_MODE_SIZE (GET_MODE (dest)) != 8 || !TARGET_LDDW))
	return false;

      rtv = gen_rtvec (2, GEN_INT (REGNO (SET_DEST (pat))),
		       SET_SRC (pat));
      newpat = gen_load_shadow (SET_DEST (pat));
      pat = gen_rtx_UNSPEC (VOIDmode, rtv, UNSPEC_REAL_LOAD);
      delay = 4;
    }
  else if (code >= 0
	   && (type == TYPE_MPY2
	       || type == TYPE_MPY4))
    {
      /* We don't handle floating point multiplies yet.  */
      if (GET_MODE (dest) == SFmode)
	return false;

      rtv = gen_rtvec (2, GEN_INT (REGNO (SET_DEST (pat))),
		       SET_SRC (pat));
      newpat = gen_mult_shadow (SET_DEST (pat));
      pat = gen_rtx_UNSPEC (VOIDmode, rtv, UNSPEC_REAL_MULT);
      delay = type == TYPE_MPY2 ? 1 : 3;
    }
  else
    return false;

  pat = duplicate_cond (pat, insn);
  newpat = duplicate_cond (newpat, insn);
  i1 = emit_insn_before (pat, insn);
  PATTERN (insn) = newpat;
  INSN_CODE (insn) = -1;
  recog_memoized (insn);
  recog_memoized (i1);
  record_delay_slot_pair (i1, insn, delay, 0);
  return true;
}

/* Examine if INSN is the result of splitting a load into a real load and a
   shadow, and if so, undo the transformation.  */
static void
undo_split_delayed_nonbranch (rtx insn)
{
  int icode = recog_memoized (insn);
  enum attr_type type;
  rtx prev_pat, insn_pat, prev;

  if (icode < 0)
    return;
  type = get_attr_type (insn);
  if (type != TYPE_LOAD_SHADOW && type != TYPE_MULT_SHADOW)
    return;
  prev = PREV_INSN (insn);
  prev_pat = PATTERN (prev);
  insn_pat = PATTERN (insn);
  if (GET_CODE (prev_pat) == COND_EXEC)
    {
      prev_pat = COND_EXEC_CODE (prev_pat);
      insn_pat = COND_EXEC_CODE (insn_pat);
    }

  gcc_assert (GET_CODE (prev_pat) == UNSPEC
	      && ((XINT (prev_pat, 1) == UNSPEC_REAL_LOAD
		   && type == TYPE_LOAD_SHADOW)
		  || (XINT (prev_pat, 1) == UNSPEC_REAL_MULT
		      && type == TYPE_MULT_SHADOW)));
  insn_pat = gen_rtx_SET (VOIDmode, SET_DEST (insn_pat),
			  XVECEXP (prev_pat, 0, 1));
  insn_pat = duplicate_cond (insn_pat, prev);
  PATTERN (insn) = insn_pat;
  INSN_CODE (insn) = -1;
  delete_insn (prev);
}

/* Split every insn (i.e. jumps and calls) which can have delay slots into
   two parts: the first one is scheduled normally and emits the instruction,
   while the second one is a shadow insn which shows the side effect taking
   place. The second one is placed in the right cycle by the scheduler, but
   not emitted as an assembly instruction.  */

static void
split_delayed_insns (void)
{
  rtx insn;
  for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
    {
      if (JUMP_P (insn) || CALL_P (insn))
	split_delayed_branch (insn);
    }
}

/* For every insn that has an entry in the new_conditions vector, give it
   the appropriate predicate.  */
static void
conditionalize_after_sched (void)
{
  basic_block bb;
  rtx insn;
  FOR_EACH_BB (bb)
    FOR_BB_INSNS (bb, insn)
      {
	unsigned uid = INSN_UID (insn);
	rtx cond;
	if (!NONDEBUG_INSN_P (insn) || uid >= INSN_INFO_LENGTH)
	  continue;
	cond = INSN_INFO_ENTRY (uid).new_cond;
	if (cond == NULL_RTX)
	  continue;
	if (dump_file)
	  fprintf (dump_file, "Conditionalizing insn %d\n", uid);
	predicate_insn (insn, cond, true);
      }
}

/* A callback for the hw-doloop pass.  This function examines INSN; if
   it is a loop_end pattern we recognize, return the reg rtx for the
   loop counter.  Otherwise, return NULL_RTX.  */

static rtx
hwloop_pattern_reg (rtx insn)
{
  rtx pat, reg;

  if (!JUMP_P (insn) || recog_memoized (insn) != CODE_FOR_loop_end)
    return NULL_RTX;

  pat = PATTERN (insn);
  reg = SET_DEST (XVECEXP (pat, 0, 1));
  if (!REG_P (reg))
    return NULL_RTX;
  return reg;
}

/* Return the number of cycles taken by BB, as computed by scheduling,
   including the latencies of all insns with delay slots.  IGNORE is
   an insn we should ignore in the calculation, usually the final
   branch.  */
static int
bb_earliest_end_cycle (basic_block bb, rtx ignore)
{
  int earliest = 0;
  rtx insn;

  FOR_BB_INSNS (bb, insn)
    {
      int cycles, this_clock;

      if (LABEL_P (insn) || NOTE_P (insn) || DEBUG_INSN_P (insn)
	  || GET_CODE (PATTERN (insn)) == USE
	  || GET_CODE (PATTERN (insn)) == CLOBBER
	  || insn == ignore)
	continue;

      this_clock = insn_get_clock (insn);
      cycles = get_attr_cycles (insn);

      if (earliest < this_clock + cycles)
	earliest = this_clock + cycles;
    }
  return earliest;
}

/* Examine the insns in BB and remove all which have a uid greater or
   equal to MAX_UID.  */
static void
filter_insns_above (basic_block bb, int max_uid)
{
  rtx insn, next;
  bool prev_ti = false;
  int prev_cycle = -1;

  FOR_BB_INSNS_SAFE (bb, insn, next)
    {
      int this_cycle;
      if (!NONDEBUG_INSN_P (insn))
	continue;
      if (insn == BB_END (bb))
	return;
      this_cycle = insn_get_clock (insn);
      if (prev_ti && this_cycle == prev_cycle)
	{
	  gcc_assert (GET_MODE (insn) != TImode);
	  PUT_MODE (insn, TImode);
	}
      prev_ti = false;
      if (INSN_UID (insn) >= max_uid)
	{
	  if (GET_MODE (insn) == TImode)
	    {
	      prev_ti = true;
	      prev_cycle = this_cycle;
	    }
	  delete_insn (insn);
	}
    }
}

/* Implement TARGET_ASM_EMIT_EXCEPT_PERSONALITY.  */

static void
c6x_asm_emit_except_personality (rtx personality)
{
  fputs ("\t.personality\t", asm_out_file);
  output_addr_const (asm_out_file, personality);
  fputc ('\n', asm_out_file);
}

/* Use a special assembly directive rather than a regular setion for
   unwind table data.  */

static void
c6x_asm_init_sections (void)
{
  exception_section = get_unnamed_section (0, output_section_asm_op,
					   "\t.handlerdata");
}

/* A callback for the hw-doloop pass.  Called to optimize LOOP in a
   machine-specific fashion; returns true if successful and false if
   the hwloop_fail function should be called.  */

static bool
hwloop_optimize (hwloop_info loop)
{
  basic_block entry_bb, bb;
  rtx seq, insn, prev, entry_after, end_packet;
  rtx head_insn, tail_insn, new_insns, last_insn;
  int loop_earliest;
  int n_execute_packets;
  edge entry_edge;
  unsigned ix;
  int max_uid_before, delayed_splits;
  int i, sp_ii, min_ii, max_ii, max_parallel, n_insns, n_real_insns, stages;
  rtx *orig_vec;
  rtx *copies;
  rtx **insn_copies;

  if (!c6x_flag_modulo_sched || !c6x_flag_schedule_insns2
      || !TARGET_INSNS_64PLUS)
    return false;

  if (loop->iter_reg_used || loop->depth > 1)
    return false;
  if (loop->has_call || loop->has_asm)
    return false;

  if (loop->head != loop->tail)
    return false;

  gcc_assert (loop->incoming_dest == loop->head);

  entry_edge = NULL;
  FOR_EACH_VEC_ELT (edge, loop->incoming, i, entry_edge)
    if (entry_edge->flags & EDGE_FALLTHRU)
      break;
  if (entry_edge == NULL)
    return false;

  reshuffle_units (loop->head);

  in_hwloop = true;
  schedule_ebbs_init ();
  schedule_ebb (BB_HEAD (loop->tail), loop->loop_end, true);
  schedule_ebbs_finish ();
  in_hwloop = false;

  bb = loop->head;
  loop_earliest = bb_earliest_end_cycle (bb, loop->loop_end) + 1;

  max_uid_before = get_max_uid ();

  /* Split all multi-cycle operations, such as loads.  For normal
     scheduling, we only do this for branches, as the generated code
     would otherwise not be interrupt-safe.  When using sploop, it is
     safe and beneficial to split them.  If any multi-cycle operations
     remain after splitting (because we don't handle them yet), we
     cannot pipeline the loop.  */
  delayed_splits = 0;
  FOR_BB_INSNS (bb, insn)
    {
      if (NONDEBUG_INSN_P (insn))
	{
	  recog_memoized (insn);
	  if (split_delayed_nonbranch (insn))
	    delayed_splits++;
	  else if (INSN_CODE (insn) >= 0
		   && get_attr_cycles (insn) > 1)
	    goto undo_splits;
	}
    }

  /* Count the number of insns as well as the number real insns, and save
     the original sequence of insns in case we must restore it later.  */
  n_insns = n_real_insns = 0;
  FOR_BB_INSNS (bb, insn)
    {
      n_insns++;
      if (NONDEBUG_INSN_P (insn) && insn != loop->loop_end)
	n_real_insns++;
    }
  orig_vec = XNEWVEC (rtx, n_insns);
  n_insns = 0;
  FOR_BB_INSNS (bb, insn)
    orig_vec[n_insns++] = insn;

  /* Count the unit reservations, and compute a minimum II from that
     table.  */
  count_unit_reqs (unit_reqs, loop->start_label,
		   PREV_INSN (loop->loop_end));
  merge_unit_reqs (unit_reqs);

  min_ii = res_mii (unit_reqs);
  max_ii = loop_earliest < 15 ? loop_earliest : 14;

  /* Make copies of the loop body, up to a maximum number of stages we want
     to handle.  */
  max_parallel = loop_earliest / min_ii + 1;

  copies = XCNEWVEC (rtx, (max_parallel + 1) * n_real_insns);
  insn_copies = XNEWVEC (rtx *, max_parallel + 1);
  for (i = 0; i < max_parallel + 1; i++)
    insn_copies[i] = copies + i * n_real_insns;

  head_insn = next_nonnote_nondebug_insn (loop->start_label);
  tail_insn = prev_real_insn (BB_END (bb));

  i = 0;
  FOR_BB_INSNS (bb, insn)
    if (NONDEBUG_INSN_P (insn) && insn != loop->loop_end)
      insn_copies[0][i++] = insn;

  sploop_max_uid_iter0 = get_max_uid ();

  /* Generate the copies of the loop body, and save them in the
     INSN_COPIES array.  */
  start_sequence ();
  for (i = 0; i < max_parallel; i++)
    {
      int j;
      rtx this_iter;

      this_iter = duplicate_insn_chain (head_insn, tail_insn);
      j = 0;
      while (this_iter)
	{
	  rtx prev_stage_insn = insn_copies[i][j];
	  gcc_assert (INSN_CODE (this_iter) == INSN_CODE (prev_stage_insn));

	  if (INSN_CODE (this_iter) >= 0
	      && (get_attr_type (this_iter) == TYPE_LOAD_SHADOW
		  || get_attr_type (this_iter) == TYPE_MULT_SHADOW))
	    {
	      rtx prev = PREV_INSN (this_iter);
	      record_delay_slot_pair (prev, this_iter,
				      get_attr_cycles (prev) - 1, 0);
	    }
	  else
	    record_delay_slot_pair (prev_stage_insn, this_iter, i, 1);

	  insn_copies[i + 1][j] = this_iter;
	  j++;
	  this_iter = next_nonnote_nondebug_insn (this_iter);
	}
    }
  new_insns = get_insns ();
  last_insn = insn_copies[max_parallel][n_real_insns - 1];
  end_sequence ();
  emit_insn_before (new_insns, BB_END (bb));

  /* Try to schedule the loop using varying initiation intervals,
     starting with the smallest possible and incrementing it
     on failure.  */
  for (sp_ii = min_ii; sp_ii <= max_ii; sp_ii++)
    {
      basic_block tmp_bb;
      if (dump_file)
	fprintf (dump_file, "Trying to schedule for II %d\n", sp_ii);

      df_clear_flags (DF_LR_RUN_DCE);

      schedule_ebbs_init ();
      set_modulo_params (sp_ii, max_parallel, n_real_insns,
			 sploop_max_uid_iter0);
      tmp_bb = schedule_ebb (BB_HEAD (bb), last_insn, true);
      schedule_ebbs_finish ();

      if (tmp_bb)
	{
	  if (dump_file)
	    fprintf (dump_file, "Found schedule with II %d\n", sp_ii);
	  break;
	}
    }

  discard_delay_pairs_above (max_uid_before);

  if (sp_ii > max_ii)
    goto restore_loop;

  stages = insn_get_clock (ss.last_scheduled_iter0) / sp_ii + 1;

  if (stages == 1 && sp_ii > 5)
    goto restore_loop;

  /* At this point, we know we've been successful, unless we find later that
     there are too many execute packets for the loop buffer to hold.  */

  /* Assign reservations to the instructions in the loop.  We must find
     the stage that contains the full loop kernel, and transfer the
     reservations of the instructions contained in it to the corresponding
     instructions from iteration 0, which are the only ones we'll keep.  */
  assign_reservations (BB_HEAD (bb), ss.last_scheduled_insn);
  PREV_INSN (BB_END (bb)) = ss.last_scheduled_iter0;
  NEXT_INSN (ss.last_scheduled_iter0) = BB_END (bb);
  filter_insns_above (bb, sploop_max_uid_iter0);

  for (i = 0; i < n_real_insns; i++)
    {
      rtx insn = insn_copies[0][i];
      int uid = INSN_UID (insn);
      int stage = insn_uid_get_clock (uid) / sp_ii;

      if (stage + 1 < stages)
	{
	  int copy_uid;
	  stage = stages - stage - 1;
	  copy_uid = INSN_UID (insn_copies[stage][i]);
	  INSN_INFO_ENTRY (uid).reservation
	    = INSN_INFO_ENTRY (copy_uid).reservation;
	}
    }
  if (stages == 1)
    stages++;

  /* Compute the number of execute packets the pipelined form of the loop will
     require.  */
  prev = NULL_RTX;
  n_execute_packets = 0;
  for (insn = loop->start_label; insn != loop->loop_end; insn = NEXT_INSN (insn))
    {
      if (NONDEBUG_INSN_P (insn) && GET_MODE (insn) == TImode
	  && !shadow_p (insn))
	{
	  n_execute_packets++;
	  if (prev && insn_get_clock (prev) + 1 != insn_get_clock (insn))
	    /* We need an extra NOP instruction.  */
	    n_execute_packets++;

	  prev = insn;
	}
    }

  end_packet = ss.last_scheduled_iter0;
  while (!NONDEBUG_INSN_P (end_packet) || GET_MODE (end_packet) != TImode)
    end_packet = PREV_INSN (end_packet);

  /* The earliest cycle in which we can emit the SPKERNEL instruction.  */
  loop_earliest = (stages - 1) * sp_ii;
  if (loop_earliest > insn_get_clock (end_packet))
    {
      n_execute_packets++;
      end_packet = loop->loop_end;
    }
  else
    loop_earliest = insn_get_clock (end_packet);

  if (n_execute_packets > 14)
    goto restore_loop;

  /* Generate the spkernel instruction, and place it at the appropriate
     spot.  */
  PUT_MODE (end_packet, VOIDmode);

  insn = gen_spkernel (GEN_INT (stages - 1),
		       const0_rtx, JUMP_LABEL (loop->loop_end));
  insn = emit_jump_insn_before (insn, end_packet);
  JUMP_LABEL (insn) = JUMP_LABEL (loop->loop_end);
  insn_set_clock (insn, loop_earliest);
  PUT_MODE (insn, TImode);
  INSN_INFO_ENTRY (INSN_UID (insn)).ebb_start = false;
  delete_insn (loop->loop_end);

  /* Place the mvc and sploop instructions before the loop.  */
  entry_bb = entry_edge->src;

  start_sequence ();

  insn = emit_insn (gen_mvilc (loop->iter_reg));
  insn = emit_insn (gen_sploop (GEN_INT (sp_ii)));

  seq = get_insns ();

  if (!single_succ_p (entry_bb) || VEC_length (edge, loop->incoming) > 1)
    {
      basic_block new_bb;
      edge e;
      edge_iterator ei;

      emit_insn_before (seq, BB_HEAD (loop->head));
      seq = emit_label_before (gen_label_rtx (), seq);

      new_bb = create_basic_block (seq, insn, entry_bb);
      FOR_EACH_EDGE (e, ei, loop->incoming)
	{
	  if (!(e->flags & EDGE_FALLTHRU))
	    redirect_edge_and_branch_force (e, new_bb);
	  else
	    redirect_edge_succ (e, new_bb);
	}
      make_edge (new_bb, loop->head, 0);
    }
  else
    {
      entry_after = BB_END (entry_bb);
      while (DEBUG_INSN_P (entry_after)
	     || (NOTE_P (entry_after)
		 && NOTE_KIND (entry_after) != NOTE_INSN_BASIC_BLOCK))
	entry_after = PREV_INSN (entry_after);
      emit_insn_after (seq, entry_after);
    }

  end_sequence ();

  /* Make sure we don't try to schedule this loop again.  */
  for (ix = 0; VEC_iterate (basic_block, loop->blocks, ix, bb); ix++)
    bb->flags |= BB_DISABLE_SCHEDULE;

  return true;

 restore_loop:
  if (dump_file)
    fprintf (dump_file, "Unable to pipeline loop.\n");

  for (i = 1; i < n_insns; i++)
    {
      NEXT_INSN (orig_vec[i - 1]) = orig_vec[i];
      PREV_INSN (orig_vec[i]) = orig_vec[i - 1];
    }
  PREV_INSN (orig_vec[0]) = PREV_INSN (BB_HEAD (bb));
  NEXT_INSN (PREV_INSN (BB_HEAD (bb))) = orig_vec[0];
  NEXT_INSN (orig_vec[n_insns - 1]) = NEXT_INSN (BB_END (bb));
  PREV_INSN (NEXT_INSN (BB_END (bb))) = orig_vec[n_insns - 1];
  BB_HEAD (bb) = orig_vec[0];
  BB_END (bb) = orig_vec[n_insns - 1];
 undo_splits:
  free_delay_pairs ();
  FOR_BB_INSNS (bb, insn)
    if (NONDEBUG_INSN_P (insn))
      undo_split_delayed_nonbranch (insn);
  return false;
}

/* A callback for the hw-doloop pass.  Called when a loop we have discovered
   turns out not to be optimizable; we have to split the doloop_end pattern
   into a subtract and a test.  */
static void
hwloop_fail (hwloop_info loop)
{
  rtx insn, test, testreg;

  if (dump_file)
    fprintf (dump_file, "splitting doloop insn %d\n",
	     INSN_UID (loop->loop_end));
  insn = gen_addsi3 (loop->iter_reg, loop->iter_reg, constm1_rtx);
  /* See if we can emit the add at the head of the loop rather than at the
     end.  */
  if (loop->head == NULL
      || loop->iter_reg_used_outside
      || loop->iter_reg_used
      || TEST_HARD_REG_BIT (loop->regs_set_in_loop, REGNO (loop->iter_reg))
      || loop->incoming_dest != loop->head
      || EDGE_COUNT (loop->head->preds) != 2)
    emit_insn_before (insn, loop->loop_end);
  else
    {
      rtx t = loop->start_label;
      while (!NOTE_P (t) || NOTE_KIND (t) != NOTE_INSN_BASIC_BLOCK)
	t = NEXT_INSN (t);
      emit_insn_after (insn, t);
    }

  testreg = SET_DEST (XVECEXP (PATTERN (loop->loop_end), 0, 2));
  if (GET_CODE (testreg) == SCRATCH)
    testreg = loop->iter_reg;
  else
    emit_insn_before (gen_movsi (testreg, loop->iter_reg), loop->loop_end);

  test = gen_rtx_NE (VOIDmode, testreg, const0_rtx);
  insn = emit_jump_insn_before (gen_cbranchsi4 (test, testreg, const0_rtx,
						loop->start_label),
				loop->loop_end);

  JUMP_LABEL (insn) = loop->start_label;
  LABEL_NUSES (loop->start_label)++;
  delete_insn (loop->loop_end);
}

static struct hw_doloop_hooks c6x_doloop_hooks =
{
  hwloop_pattern_reg,
  hwloop_optimize,
  hwloop_fail
};

/* Run the hw-doloop pass to modulo-schedule hardware loops, or split the
   doloop_end patterns where such optimizations are impossible.  */
static void
c6x_hwloops (void)
{
  if (optimize)
    reorg_loops (true, &c6x_doloop_hooks);
}

/* Implement the TARGET_MACHINE_DEPENDENT_REORG pass.  We split call insns here
   into a sequence that loads the return register and performs the call,
   and emit the return label.
   If scheduling after reload is requested, it happens here.  */

static void
c6x_reorg (void)
{
  basic_block bb;
  rtx *call_labels;
  bool do_selsched = (c6x_flag_schedule_insns2 && flag_selective_scheduling2
		      && !maybe_skip_selective_scheduling ());

  /* We are freeing block_for_insn in the toplev to keep compatibility
     with old MDEP_REORGS that are not CFG based.  Recompute it now.  */
  compute_bb_for_insn ();

  df_clear_flags (DF_LR_RUN_DCE);
  df_note_add_problem ();

  /* If optimizing, we'll have split before scheduling.  */
  if (optimize == 0)
    split_all_insns ();

  df_analyze ();

  if (c6x_flag_schedule_insns2)
    {
      int sz = get_max_uid () * 3 / 2 + 1;

      insn_info = VEC_alloc (c6x_sched_insn_info, heap, sz);
    }

  /* Make sure the real-jump insns we create are not deleted.  When modulo-
     scheduling, situations where a reg is only stored in a loop can also
     cause dead code when doing the initial unrolling.  */
  sched_no_dce = true;

  c6x_hwloops ();

  if (c6x_flag_schedule_insns2)
    {
      split_delayed_insns ();
      timevar_push (TV_SCHED2);
      if (do_selsched)
	run_selective_scheduling ();
      else
	schedule_ebbs ();
      conditionalize_after_sched ();
      timevar_pop (TV_SCHED2);

      free_delay_pairs ();
    }
  sched_no_dce = false;

  call_labels = XCNEWVEC (rtx, get_max_uid () + 1);

  reorg_split_calls (call_labels);

  if (c6x_flag_schedule_insns2)
    {
      FOR_EACH_BB (bb)
	if ((bb->flags & BB_DISABLE_SCHEDULE) == 0)
	  assign_reservations (BB_HEAD (bb), BB_END (bb));
    }

  if (c6x_flag_var_tracking)
    {
      timevar_push (TV_VAR_TRACKING);
      variable_tracking_main ();
      timevar_pop (TV_VAR_TRACKING);
    }

  reorg_emit_nops (call_labels);

  /* Post-process the schedule to move parallel insns into SEQUENCEs.  */
  if (c6x_flag_schedule_insns2)
    {
      free_delay_pairs ();
      c6x_gen_bundles ();
    }

  df_finish_pass (false);
}

/* Called when a function has been assembled.  It should perform all the
   tasks of ASM_DECLARE_FUNCTION_SIZE in elfos.h, plus target-specific
   tasks.
   We free the reservation (and other scheduling) information here now that
   all insns have been output.  */
void
c6x_function_end (FILE *file, const char *fname)
{
  c6x_output_fn_unwind (file);

  if (insn_info)
    VEC_free (c6x_sched_insn_info, heap, insn_info);
  insn_info = NULL;

  if (!flag_inhibit_size_directive)
    ASM_OUTPUT_MEASURED_SIZE (file, fname);
}

/* Determine whether X is a shift with code CODE and an integer amount
   AMOUNT.  */
static bool
shift_p (rtx x, enum rtx_code code, int amount)
{
  return (GET_CODE (x) == code && GET_CODE (XEXP (x, 1)) == CONST_INT
	  && INTVAL (XEXP (x, 1)) == amount);
}

/* Compute a (partial) cost for rtx X.  Return true if the complete
   cost has been computed, and false if subexpressions should be
   scanned.  In either case, *TOTAL contains the cost result.  */

static bool
c6x_rtx_costs (rtx x, int code, int outer_code, int opno, int *total,
	       bool speed)
{
  int cost2 = COSTS_N_INSNS (1);
  rtx op0, op1;

  switch (code)
    {
    case CONST_INT:
      if (outer_code == SET || outer_code == PLUS)
        *total = satisfies_constraint_IsB (x) ? 0 : cost2;
      else if (outer_code == AND || outer_code == IOR || outer_code == XOR
	       || outer_code == MINUS)
	*total = satisfies_constraint_Is5 (x) ? 0 : cost2;
      else if (GET_RTX_CLASS (outer_code) == RTX_COMPARE
	       || GET_RTX_CLASS (outer_code) == RTX_COMM_COMPARE)
	*total = satisfies_constraint_Iu4 (x) ? 0 : cost2;
      else if (outer_code == ASHIFT || outer_code == ASHIFTRT
	       || outer_code == LSHIFTRT)
	*total = satisfies_constraint_Iu5 (x) ? 0 : cost2;
      else
	*total = cost2;
      return true;

    case CONST:
    case LABEL_REF:
    case SYMBOL_REF:
    case CONST_DOUBLE:
      *total = COSTS_N_INSNS (2);
      return true;

    case TRUNCATE:
      /* Recognize a mult_highpart operation.  */
      if ((GET_MODE (x) == HImode || GET_MODE (x) == SImode)
	  && GET_CODE (XEXP (x, 0)) == LSHIFTRT
	  && GET_MODE (XEXP (x, 0)) == GET_MODE_2XWIDER_MODE (GET_MODE (x))
	  && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT
	  && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
	  && INTVAL (XEXP (XEXP (x, 0), 1)) == GET_MODE_BITSIZE (GET_MODE (x)))
	{
	  rtx mul = XEXP (XEXP (x, 0), 0);
	  rtx op0 = XEXP (mul, 0);
	  rtx op1 = XEXP (mul, 1);
	  enum rtx_code code0 = GET_CODE (op0);
	  enum rtx_code code1 = GET_CODE (op1);

	  if ((code0 == code1
	       && (code0 == SIGN_EXTEND || code0 == ZERO_EXTEND))
	      || (GET_MODE (x) == HImode
		  && code0 == ZERO_EXTEND && code1 == SIGN_EXTEND))
	    {
	      if (GET_MODE (x) == HImode)
		*total = COSTS_N_INSNS (2);
	      else
		*total = COSTS_N_INSNS (12);
	      *total += rtx_cost (XEXP (op0, 0), code0, 0, speed);
	      *total += rtx_cost (XEXP (op1, 0), code1, 0, speed);
	      return true;
	    }
	}
      return false;

    case ASHIFT:
    case ASHIFTRT:
    case LSHIFTRT:
      if (GET_MODE (x) == DImode)
	*total = COSTS_N_INSNS (CONSTANT_P (XEXP (x, 1)) ? 4 : 15);
      else
	*total = COSTS_N_INSNS (1);
      return false;

    case PLUS:
    case MINUS:
      *total = COSTS_N_INSNS (1);
      op0 = code == PLUS ? XEXP (x, 0) : XEXP (x, 1);
      op1 = code == PLUS ? XEXP (x, 1) : XEXP (x, 0);
      if (GET_MODE_SIZE (GET_MODE (x)) <= UNITS_PER_WORD
	  && INTEGRAL_MODE_P (GET_MODE (x))
	  && GET_CODE (op0) == MULT
	  && GET_CODE (XEXP (op0, 1)) == CONST_INT
	  && (INTVAL (XEXP (op0, 1)) == 2
	      || INTVAL (XEXP (op0, 1)) == 4
	      || (code == PLUS && INTVAL (XEXP (op0, 1)) == 8)))
	{
	  *total += rtx_cost (XEXP (op0, 0), ASHIFT, 0, speed);
	  *total += rtx_cost (op1, (enum rtx_code) code, 1, speed);
	  return true;
	}
      return false;

    case MULT:
      op0 = XEXP (x, 0);
      op1 = XEXP (x, 1);
      if (GET_MODE (x) == DFmode)
	{
	  if (TARGET_FP)
	    *total = COSTS_N_INSNS (speed ? 10 : 1);
	  else
	    *total = COSTS_N_INSNS (speed ? 200 : 4);
	}
      else if (GET_MODE (x) == SFmode)
	{
	  if (TARGET_FP)
	    *total = COSTS_N_INSNS (speed ? 4 : 1);
	  else
	    *total = COSTS_N_INSNS (speed ? 100 : 4);
	}
      else if (GET_MODE (x) == DImode)
	{
	  if (TARGET_MPY32
	      && GET_CODE (op0) == GET_CODE (op1)
	      && (GET_CODE (op0) == ZERO_EXTEND
		  || GET_CODE (op0) == SIGN_EXTEND))
	    {
	      *total = COSTS_N_INSNS (speed ? 2 : 1);
	      op0 = XEXP (op0, 0);
	      op1 = XEXP (op1, 0);
	    }
	  else
	    /* Maybe improve this laster.  */
	    *total = COSTS_N_INSNS (20);
	}
      else if (GET_MODE (x) == SImode)
	{
	  if (((GET_CODE (op0) == ZERO_EXTEND
		|| GET_CODE (op0) == SIGN_EXTEND
		|| shift_p (op0, LSHIFTRT, 16))
	       && (GET_CODE (op1) == SIGN_EXTEND
		   || GET_CODE (op1) == ZERO_EXTEND
		   || scst5_operand (op1, SImode)
		   || shift_p (op1, ASHIFTRT, 16)
		   || shift_p (op1, LSHIFTRT, 16)))
	      || (shift_p (op0, ASHIFTRT, 16)
		  && (GET_CODE (op1) == SIGN_EXTEND
		      || shift_p (op1, ASHIFTRT, 16))))
	    {
	      *total = COSTS_N_INSNS (speed ? 2 : 1);
	      op0 = XEXP (op0, 0);
	      if (scst5_operand (op1, SImode))
		op1 = NULL_RTX;
	      else
		op1 = XEXP (op1, 0);
	    }
	  else if (!speed)
	    *total = COSTS_N_INSNS (1);
	  else if (TARGET_MPY32)
	    *total = COSTS_N_INSNS (4);
	  else
	    *total = COSTS_N_INSNS (6);
	}
      else if (GET_MODE (x) == HImode)
	*total = COSTS_N_INSNS (speed ? 2 : 1);

      if (GET_CODE (op0) != REG
	  && (GET_CODE (op0) != SUBREG || GET_CODE (SUBREG_REG (op0)) != REG))
	*total += rtx_cost (op0, MULT, 0, speed);
      if (op1 && GET_CODE (op1) != REG
	  && (GET_CODE (op1) != SUBREG || GET_CODE (SUBREG_REG (op1)) != REG))
	*total += rtx_cost (op1, MULT, 1, speed);
      return true;

    case UDIV:
    case DIV:
      /* This is a bit random; assuming on average there'll be 16 leading
	 zeros.  FIXME: estimate better for constant dividends.  */
      *total = COSTS_N_INSNS (6 + 3 * 16);
      return false;

    case IF_THEN_ELSE:
      /* Recognize the cmp_and/ior patterns.  */
      op0 = XEXP (x, 0);
      if ((GET_CODE (op0) == EQ || GET_CODE (op0) == NE)
	  && REG_P (XEXP (op0, 0))
	  && XEXP (op0, 1) == const0_rtx
	  && rtx_equal_p (XEXP (x, 1), XEXP (op0, 0)))
	{
	  *total = rtx_cost (XEXP (x, 1), (enum rtx_code) outer_code,
			     opno, speed);
	  return false;
	}
      return false;

    default:
      return false;
    }
}

/* Implements target hook vector_mode_supported_p.  */

static bool
c6x_vector_mode_supported_p (enum machine_mode mode)
{
  switch (mode)
    {
    case V2HImode:
    case V4QImode:
    case V2SImode:
    case V4HImode:
    case V8QImode:
      return true;
    default:
      return false;
    }
}

/* Implements TARGET_VECTORIZE_PREFERRED_SIMD_MODE.  */
static enum machine_mode
c6x_preferred_simd_mode (enum machine_mode mode)
{
  switch (mode)
    {
    case HImode:
      return V2HImode;
    case QImode:
      return V4QImode;

    default:
      return word_mode;
    }
}

/* Implement TARGET_SCALAR_MODE_SUPPORTED_P.  */

static bool
c6x_scalar_mode_supported_p (enum machine_mode mode)
{
  if (ALL_FIXED_POINT_MODE_P (mode)
      && GET_MODE_PRECISION (mode) <= 2 * BITS_PER_WORD)
    return true;

  return default_scalar_mode_supported_p (mode);
}

/* Output a reference from a function exception table to the type_info
   object X.  Output these via a special assembly directive.  */

static bool
c6x_output_ttype (rtx x)
{
  /* Use special relocations for symbol references.  */
  if (GET_CODE (x) != CONST_INT)
    fputs ("\t.ehtype\t", asm_out_file);
  else
    fputs ("\t.word\t", asm_out_file);
  output_addr_const (asm_out_file, x);
  fputc ('\n', asm_out_file);

  return TRUE;
}

/* Modify the return address of the current function.  */

void
c6x_set_return_address (rtx source, rtx scratch)
{
  struct c6x_frame frame;
  rtx addr;
  HOST_WIDE_INT offset;

  c6x_compute_frame_layout (&frame);
  if (! c6x_save_reg (RETURN_ADDR_REGNO))
    emit_move_insn (gen_rtx_REG (Pmode, RETURN_ADDR_REGNO), source);
  else
    {

      if (frame_pointer_needed)
	{
	  addr = hard_frame_pointer_rtx;
	  offset = frame.b3_offset;
	}
      else
	{
	  addr = stack_pointer_rtx;
	  offset = frame.to_allocate - frame.b3_offset;
	}

      /* TODO: Use base+offset loads where possible.  */
      if (offset)
	{
	  HOST_WIDE_INT low = trunc_int_for_mode (offset, HImode);

	  emit_insn (gen_movsi_high (scratch, GEN_INT (low)));
	  if (low != offset)
	    emit_insn (gen_movsi_lo_sum (scratch, scratch, GEN_INT(offset)));
	  emit_insn (gen_addsi3 (scratch, addr, scratch));
	  addr = scratch;
	}

      emit_move_insn (gen_frame_mem (Pmode, addr), source);
    }
}

/* We save pairs of registers using a DImode store.  Describe the component
   registers for DWARF generation code.  */

static rtx
c6x_dwarf_register_span (rtx rtl)
{
    unsigned regno;
    unsigned real_regno;
    int nregs;
    int i;
    rtx p;

    regno = REGNO (rtl);
    nregs = HARD_REGNO_NREGS (regno, GET_MODE (rtl));
    if (nregs == 1)
      return  NULL_RTX;

    p = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc(nregs));
    for (i = 0; i < nregs; i++)
      {
	if (TARGET_BIG_ENDIAN)
	  real_regno = regno + nregs - (i + 1);
	else
	  real_regno = regno + i;

	XVECEXP (p, 0, i) = gen_rtx_REG (SImode, real_regno);
      }

    return p;
}

/* Codes for all the C6X builtins.  */
enum c6x_builtins
{
  C6X_BUILTIN_SADD,
  C6X_BUILTIN_SSUB,
  C6X_BUILTIN_ADD2,
  C6X_BUILTIN_SUB2,
  C6X_BUILTIN_ADD4,
  C6X_BUILTIN_SUB4,
  C6X_BUILTIN_SADD2,
  C6X_BUILTIN_SSUB2,
  C6X_BUILTIN_SADDU4,

  C6X_BUILTIN_SMPY,
  C6X_BUILTIN_SMPYH,
  C6X_BUILTIN_SMPYHL,
  C6X_BUILTIN_SMPYLH,
  C6X_BUILTIN_MPY2,
  C6X_BUILTIN_SMPY2,

  C6X_BUILTIN_CLRR,
  C6X_BUILTIN_EXTR,
  C6X_BUILTIN_EXTRU,

  C6X_BUILTIN_SSHL,
  C6X_BUILTIN_SUBC,
  C6X_BUILTIN_ABS,
  C6X_BUILTIN_ABS2,
  C6X_BUILTIN_AVG2,
  C6X_BUILTIN_AVGU4,

  C6X_BUILTIN_MAX
};


static GTY(()) tree c6x_builtin_decls[C6X_BUILTIN_MAX];

/* Return the C6X builtin for CODE.  */
static tree
c6x_builtin_decl (unsigned code, bool initialize_p ATTRIBUTE_UNUSED)
{
  if (code >= C6X_BUILTIN_MAX)
    return error_mark_node;

  return c6x_builtin_decls[code];
}

#define def_builtin(NAME, TYPE, CODE)					\
do {									\
  tree bdecl;								\
  bdecl = add_builtin_function ((NAME), (TYPE), (CODE), BUILT_IN_MD,	\
				NULL, NULL_TREE);			\
  c6x_builtin_decls[CODE] = bdecl;					\
} while (0)

/* Set up all builtin functions for this target.  */
static void
c6x_init_builtins (void)
{
  tree V4QI_type_node = build_vector_type (unsigned_intQI_type_node, 4);
  tree V2HI_type_node = build_vector_type (intHI_type_node, 2);
  tree V2SI_type_node = build_vector_type (intSI_type_node, 2);
  tree int_ftype_int
    = build_function_type_list (integer_type_node, integer_type_node,
				NULL_TREE);
  tree int_ftype_int_int
    = build_function_type_list (integer_type_node, integer_type_node,
				integer_type_node, NULL_TREE);
  tree v2hi_ftype_v2hi
    = build_function_type_list (V2HI_type_node, V2HI_type_node, NULL_TREE);
  tree v4qi_ftype_v4qi_v4qi
    = build_function_type_list (V4QI_type_node, V4QI_type_node,
				V4QI_type_node, NULL_TREE);
  tree v2hi_ftype_v2hi_v2hi
    = build_function_type_list (V2HI_type_node, V2HI_type_node,
				V2HI_type_node, NULL_TREE);
  tree v2si_ftype_v2hi_v2hi
    = build_function_type_list (V2SI_type_node, V2HI_type_node,
				V2HI_type_node, NULL_TREE);
  
  def_builtin ("__builtin_c6x_sadd", int_ftype_int_int,
	       C6X_BUILTIN_SADD);
  def_builtin ("__builtin_c6x_ssub", int_ftype_int_int,
	       C6X_BUILTIN_SSUB);
  def_builtin ("__builtin_c6x_add2", v2hi_ftype_v2hi_v2hi,
	       C6X_BUILTIN_ADD2);
  def_builtin ("__builtin_c6x_sub2", v2hi_ftype_v2hi_v2hi,
	       C6X_BUILTIN_SUB2);
  def_builtin ("__builtin_c6x_add4", v4qi_ftype_v4qi_v4qi,
	       C6X_BUILTIN_ADD4);
  def_builtin ("__builtin_c6x_sub4", v4qi_ftype_v4qi_v4qi,
	       C6X_BUILTIN_SUB4);
  def_builtin ("__builtin_c6x_mpy2", v2si_ftype_v2hi_v2hi,
	       C6X_BUILTIN_MPY2);
  def_builtin ("__builtin_c6x_sadd2", v2hi_ftype_v2hi_v2hi,
	       C6X_BUILTIN_SADD2);
  def_builtin ("__builtin_c6x_ssub2", v2hi_ftype_v2hi_v2hi,
	       C6X_BUILTIN_SSUB2);
  def_builtin ("__builtin_c6x_saddu4", v4qi_ftype_v4qi_v4qi,
	       C6X_BUILTIN_SADDU4);
  def_builtin ("__builtin_c6x_smpy2", v2si_ftype_v2hi_v2hi,
	       C6X_BUILTIN_SMPY2);

  def_builtin ("__builtin_c6x_smpy", int_ftype_int_int,
	       C6X_BUILTIN_SMPY);
  def_builtin ("__builtin_c6x_smpyh", int_ftype_int_int,
	       C6X_BUILTIN_SMPYH);
  def_builtin ("__builtin_c6x_smpyhl", int_ftype_int_int,
	       C6X_BUILTIN_SMPYHL);
  def_builtin ("__builtin_c6x_smpylh", int_ftype_int_int,
	       C6X_BUILTIN_SMPYLH);

  def_builtin ("__builtin_c6x_sshl", int_ftype_int_int,
	       C6X_BUILTIN_SSHL);
  def_builtin ("__builtin_c6x_subc", int_ftype_int_int,
	       C6X_BUILTIN_SUBC);

  def_builtin ("__builtin_c6x_avg2", v2hi_ftype_v2hi_v2hi,
	       C6X_BUILTIN_AVG2);
  def_builtin ("__builtin_c6x_avgu4", v4qi_ftype_v4qi_v4qi,
	       C6X_BUILTIN_AVGU4);

  def_builtin ("__builtin_c6x_clrr", int_ftype_int_int,
	       C6X_BUILTIN_CLRR);
  def_builtin ("__builtin_c6x_extr", int_ftype_int_int,
	       C6X_BUILTIN_EXTR);
  def_builtin ("__builtin_c6x_extru", int_ftype_int_int,
	       C6X_BUILTIN_EXTRU);

  def_builtin ("__builtin_c6x_abs", int_ftype_int, C6X_BUILTIN_ABS);
  def_builtin ("__builtin_c6x_abs2", v2hi_ftype_v2hi, C6X_BUILTIN_ABS2);
}


struct builtin_description
{
  const enum insn_code icode;
  const char *const name;
  const enum c6x_builtins code;
};

static const struct builtin_description bdesc_2arg[] =
{
  { CODE_FOR_saddsi3, "__builtin_c6x_sadd", C6X_BUILTIN_SADD },
  { CODE_FOR_ssubsi3, "__builtin_c6x_ssub", C6X_BUILTIN_SSUB },
  { CODE_FOR_addv2hi3, "__builtin_c6x_add2", C6X_BUILTIN_ADD2 },
  { CODE_FOR_subv2hi3, "__builtin_c6x_sub2", C6X_BUILTIN_SUB2 },
  { CODE_FOR_addv4qi3, "__builtin_c6x_add4", C6X_BUILTIN_ADD4 },
  { CODE_FOR_subv4qi3, "__builtin_c6x_sub4", C6X_BUILTIN_SUB4 },
  { CODE_FOR_ss_addv2hi3, "__builtin_c6x_sadd2", C6X_BUILTIN_SADD2 },
  { CODE_FOR_ss_subv2hi3, "__builtin_c6x_ssub2", C6X_BUILTIN_SSUB2 },
  { CODE_FOR_us_addv4qi3, "__builtin_c6x_saddu4", C6X_BUILTIN_SADDU4 },

  { CODE_FOR_subcsi3, "__builtin_c6x_subc", C6X_BUILTIN_SUBC },
  { CODE_FOR_ss_ashlsi3, "__builtin_c6x_sshl", C6X_BUILTIN_SSHL },

  { CODE_FOR_avgv2hi3, "__builtin_c6x_avg2", C6X_BUILTIN_AVG2 },
  { CODE_FOR_uavgv4qi3, "__builtin_c6x_avgu4", C6X_BUILTIN_AVGU4 },

  { CODE_FOR_mulhqsq3, "__builtin_c6x_smpy", C6X_BUILTIN_SMPY },
  { CODE_FOR_mulhqsq3_hh, "__builtin_c6x_smpyh", C6X_BUILTIN_SMPYH },
  { CODE_FOR_mulhqsq3_lh, "__builtin_c6x_smpylh", C6X_BUILTIN_SMPYLH },
  { CODE_FOR_mulhqsq3_hl, "__builtin_c6x_smpyhl", C6X_BUILTIN_SMPYHL },

  { CODE_FOR_mulv2hqv2sq3, "__builtin_c6x_smpy2", C6X_BUILTIN_SMPY2 },

  { CODE_FOR_clrr, "__builtin_c6x_clrr", C6X_BUILTIN_CLRR },
  { CODE_FOR_extr, "__builtin_c6x_extr", C6X_BUILTIN_EXTR },
  { CODE_FOR_extru, "__builtin_c6x_extru", C6X_BUILTIN_EXTRU }
};

static const struct builtin_description bdesc_1arg[] =
{
  { CODE_FOR_ssabssi2, "__builtin_c6x_abs", C6X_BUILTIN_ABS },
  { CODE_FOR_ssabsv2hi2, "__builtin_c6x_abs2", C6X_BUILTIN_ABS2 }
};

/* Errors in the source file can cause expand_expr to return const0_rtx
   where we expect a vector.  To avoid crashing, use one of the vector
   clear instructions.  */
static rtx
safe_vector_operand (rtx x, enum machine_mode mode)
{
  if (x != const0_rtx)
    return x;
  x = gen_reg_rtx (SImode);

  emit_insn (gen_movsi (x, CONST0_RTX (SImode)));
  return gen_lowpart (mode, x);
}

/* Subroutine of c6x_expand_builtin to take care of binop insns.  MACFLAG is -1
   if this is a normal binary op, or one of the MACFLAG_xxx constants.  */

static rtx
c6x_expand_binop_builtin (enum insn_code icode, tree exp, rtx target,
			  bool match_op)
{
  int offs = match_op ? 1 : 0;
  rtx pat;
  tree arg0 = CALL_EXPR_ARG (exp, 0);
  tree arg1 = CALL_EXPR_ARG (exp, 1);
  rtx op0 = expand_expr (arg0, NULL_RTX, VOIDmode, EXPAND_NORMAL);
  rtx op1 = expand_expr (arg1, NULL_RTX, VOIDmode, EXPAND_NORMAL);
  enum machine_mode op0mode = GET_MODE (op0);
  enum machine_mode op1mode = GET_MODE (op1);
  enum machine_mode tmode = insn_data[icode].operand[0].mode;
  enum machine_mode mode0 = insn_data[icode].operand[1 + offs].mode;
  enum machine_mode mode1 = insn_data[icode].operand[2 + offs].mode;
  rtx ret = target;

  if (VECTOR_MODE_P (mode0))
    op0 = safe_vector_operand (op0, mode0);
  if (VECTOR_MODE_P (mode1))
    op1 = safe_vector_operand (op1, mode1);

  if (! target
      || GET_MODE (target) != tmode
      || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
    {
      if (tmode == SQmode || tmode == V2SQmode)
	{
	  ret = gen_reg_rtx (tmode == SQmode ? SImode : V2SImode);
	  target = gen_lowpart (tmode, ret);
	}
      else
	target = gen_reg_rtx (tmode);
    }

  if ((op0mode == V2HImode || op0mode == SImode || op0mode == VOIDmode)
      && (mode0 == V2HQmode || mode0 == HQmode || mode0 == SQmode))
    {
      op0mode = mode0;
      op0 = gen_lowpart (mode0, op0);
    }
  if ((op1mode == V2HImode || op1mode == SImode || op1mode == VOIDmode)
      && (mode1 == V2HQmode || mode1 == HQmode || mode1 == SQmode))
    {
      op1mode = mode1;
      op1 = gen_lowpart (mode1, op1);
    }
  /* In case the insn wants input operands in modes different from
     the result, abort.  */
  gcc_assert ((op0mode == mode0 || op0mode == VOIDmode)
	      && (op1mode == mode1 || op1mode == VOIDmode));

  if (! (*insn_data[icode].operand[1 + offs].predicate) (op0, mode0))
    op0 = copy_to_mode_reg (mode0, op0);
  if (! (*insn_data[icode].operand[2 + offs].predicate) (op1, mode1))
    op1 = copy_to_mode_reg (mode1, op1);

  if (match_op)
    pat = GEN_FCN (icode) (target, target, op0, op1);
  else
    pat = GEN_FCN (icode) (target, op0, op1);

  if (! pat)
    return 0;

  emit_insn (pat);

  return ret;
}

/* Subroutine of c6x_expand_builtin to take care of unop insns.  */

static rtx
c6x_expand_unop_builtin (enum insn_code icode, tree exp,
			  rtx target)
{
  rtx pat;
  tree arg0 = CALL_EXPR_ARG (exp, 0);
  rtx op0 = expand_expr (arg0, NULL_RTX, VOIDmode, EXPAND_NORMAL);
  enum machine_mode op0mode = GET_MODE (op0);
  enum machine_mode tmode = insn_data[icode].operand[0].mode;
  enum machine_mode mode0 = insn_data[icode].operand[1].mode;

  if (! target
      || GET_MODE (target) != tmode
      || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
    target = gen_reg_rtx (tmode);

  if (VECTOR_MODE_P (mode0))
    op0 = safe_vector_operand (op0, mode0);

  if (op0mode == SImode && mode0 == HImode)
    {
      op0mode = HImode;
      op0 = gen_lowpart (HImode, op0);
    }
  gcc_assert (op0mode == mode0 || op0mode == VOIDmode);

  if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
    op0 = copy_to_mode_reg (mode0, op0);

  pat = GEN_FCN (icode) (target, op0);
  if (! pat)
    return 0;
  emit_insn (pat);
  return target;
}

/* Expand an expression EXP that calls a built-in function,
   with result going to TARGET if that's convenient
   (and in mode MODE if that's convenient).
   SUBTARGET may be used as the target for computing one of EXP's operands.
   IGNORE is nonzero if the value is to be ignored.  */

static rtx
c6x_expand_builtin (tree exp, rtx target ATTRIBUTE_UNUSED,
		     rtx subtarget ATTRIBUTE_UNUSED,
		     enum machine_mode mode ATTRIBUTE_UNUSED,
		     int ignore ATTRIBUTE_UNUSED)
{
  size_t i;
  const struct builtin_description *d;
  tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
  unsigned int fcode = DECL_FUNCTION_CODE (fndecl);

  for (i = 0, d = bdesc_2arg; i < ARRAY_SIZE (bdesc_2arg); i++, d++)
    if (d->code == fcode)
      return c6x_expand_binop_builtin (d->icode, exp, target,
				       fcode == C6X_BUILTIN_CLRR);

  for (i = 0, d = bdesc_1arg; i < ARRAY_SIZE (bdesc_1arg); i++, d++)
    if (d->code == fcode)
      return c6x_expand_unop_builtin (d->icode, exp, target);

  gcc_unreachable ();
}

/* Target unwind frame info is generated from dwarf CFI directives, so
   always output dwarf2 unwind info.  */

static enum unwind_info_type
c6x_debug_unwind_info (void)
{
  if (flag_unwind_tables || flag_exceptions)
    return UI_DWARF2;

  return default_debug_unwind_info ();
}

/* Target Structure.  */

/* Initialize the GCC target structure.  */
#undef TARGET_FUNCTION_ARG
#define TARGET_FUNCTION_ARG c6x_function_arg
#undef TARGET_FUNCTION_ARG_ADVANCE
#define TARGET_FUNCTION_ARG_ADVANCE c6x_function_arg_advance
#undef TARGET_FUNCTION_ARG_BOUNDARY
#define TARGET_FUNCTION_ARG_BOUNDARY c6x_function_arg_boundary
#undef TARGET_FUNCTION_ARG_ROUND_BOUNDARY
#define TARGET_FUNCTION_ARG_ROUND_BOUNDARY \
  c6x_function_arg_round_boundary
#undef TARGET_FUNCTION_VALUE_REGNO_P
#define TARGET_FUNCTION_VALUE_REGNO_P c6x_function_value_regno_p
#undef TARGET_FUNCTION_VALUE
#define TARGET_FUNCTION_VALUE c6x_function_value
#undef TARGET_LIBCALL_VALUE
#define TARGET_LIBCALL_VALUE c6x_libcall_value
#undef TARGET_RETURN_IN_MEMORY
#define TARGET_RETURN_IN_MEMORY c6x_return_in_memory
#undef TARGET_RETURN_IN_MSB
#define TARGET_RETURN_IN_MSB c6x_return_in_msb
#undef TARGET_PASS_BY_REFERENCE
#define TARGET_PASS_BY_REFERENCE c6x_pass_by_reference
#undef TARGET_CALLEE_COPIES
#define TARGET_CALLEE_COPIES c6x_callee_copies
#undef TARGET_STRUCT_VALUE_RTX
#define TARGET_STRUCT_VALUE_RTX c6x_struct_value_rtx
#undef TARGET_FUNCTION_OK_FOR_SIBCALL
#define TARGET_FUNCTION_OK_FOR_SIBCALL c6x_function_ok_for_sibcall

#undef TARGET_ASM_OUTPUT_MI_THUNK
#define TARGET_ASM_OUTPUT_MI_THUNK c6x_output_mi_thunk
#undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
#define TARGET_ASM_CAN_OUTPUT_MI_THUNK c6x_can_output_mi_thunk

#undef TARGET_BUILD_BUILTIN_VA_LIST
#define TARGET_BUILD_BUILTIN_VA_LIST c6x_build_builtin_va_list

#undef TARGET_ASM_TRAMPOLINE_TEMPLATE
#define TARGET_ASM_TRAMPOLINE_TEMPLATE c6x_asm_trampoline_template
#undef TARGET_TRAMPOLINE_INIT
#define TARGET_TRAMPOLINE_INIT c6x_initialize_trampoline

#undef TARGET_LEGITIMATE_CONSTANT_P
#define TARGET_LEGITIMATE_CONSTANT_P c6x_legitimate_constant_p
#undef TARGET_LEGITIMATE_ADDRESS_P
#define TARGET_LEGITIMATE_ADDRESS_P c6x_legitimate_address_p

#undef TARGET_IN_SMALL_DATA_P
#define TARGET_IN_SMALL_DATA_P c6x_in_small_data_p
#undef	TARGET_ASM_SELECT_RTX_SECTION
#define TARGET_ASM_SELECT_RTX_SECTION  c6x_select_rtx_section
#undef TARGET_ASM_SELECT_SECTION
#define TARGET_ASM_SELECT_SECTION  c6x_elf_select_section
#undef TARGET_ASM_UNIQUE_SECTION
#define TARGET_ASM_UNIQUE_SECTION  c6x_elf_unique_section
#undef TARGET_SECTION_TYPE_FLAGS
#define TARGET_SECTION_TYPE_FLAGS  c6x_section_type_flags
#undef TARGET_HAVE_SRODATA_SECTION
#define TARGET_HAVE_SRODATA_SECTION true
#undef TARGET_ASM_MERGEABLE_RODATA_PREFIX
#define TARGET_ASM_MERGEABLE_RODATA_PREFIX ".const"

#undef TARGET_OPTION_OVERRIDE
#define TARGET_OPTION_OVERRIDE c6x_option_override
#undef TARGET_CONDITIONAL_REGISTER_USAGE
#define TARGET_CONDITIONAL_REGISTER_USAGE c6x_conditional_register_usage

#undef TARGET_INIT_LIBFUNCS
#define TARGET_INIT_LIBFUNCS c6x_init_libfuncs
#undef TARGET_LIBFUNC_GNU_PREFIX
#define TARGET_LIBFUNC_GNU_PREFIX true

#undef TARGET_SCALAR_MODE_SUPPORTED_P
#define TARGET_SCALAR_MODE_SUPPORTED_P c6x_scalar_mode_supported_p
#undef TARGET_VECTOR_MODE_SUPPORTED_P
#define TARGET_VECTOR_MODE_SUPPORTED_P c6x_vector_mode_supported_p
#undef TARGET_VECTORIZE_PREFERRED_SIMD_MODE
#define TARGET_VECTORIZE_PREFERRED_SIMD_MODE c6x_preferred_simd_mode

#undef TARGET_RTX_COSTS
#define TARGET_RTX_COSTS c6x_rtx_costs

#undef TARGET_SCHED_INIT
#define TARGET_SCHED_INIT c6x_sched_init
#undef TARGET_SCHED_SET_SCHED_FLAGS
#define TARGET_SCHED_SET_SCHED_FLAGS c6x_set_sched_flags
#undef TARGET_SCHED_ADJUST_COST
#define TARGET_SCHED_ADJUST_COST c6x_adjust_cost
#undef TARGET_SCHED_ISSUE_RATE
#define TARGET_SCHED_ISSUE_RATE c6x_issue_rate
#undef TARGET_SCHED_VARIABLE_ISSUE
#define TARGET_SCHED_VARIABLE_ISSUE c6x_variable_issue
#undef TARGET_SCHED_REORDER
#define TARGET_SCHED_REORDER c6x_sched_reorder
#undef TARGET_SCHED_REORDER2
#define TARGET_SCHED_REORDER2 c6x_sched_reorder2
#undef TARGET_SCHED_DFA_NEW_CYCLE
#define TARGET_SCHED_DFA_NEW_CYCLE c6x_dfa_new_cycle
#undef TARGET_SCHED_DFA_PRE_CYCLE_INSN
#define TARGET_SCHED_DFA_PRE_CYCLE_INSN c6x_sched_dfa_pre_cycle_insn
#undef TARGET_SCHED_EXPOSED_PIPELINE
#define TARGET_SCHED_EXPOSED_PIPELINE true

#undef TARGET_SCHED_ALLOC_SCHED_CONTEXT
#define TARGET_SCHED_ALLOC_SCHED_CONTEXT c6x_alloc_sched_context
#undef TARGET_SCHED_INIT_SCHED_CONTEXT
#define TARGET_SCHED_INIT_SCHED_CONTEXT c6x_init_sched_context
#undef TARGET_SCHED_SET_SCHED_CONTEXT
#define TARGET_SCHED_SET_SCHED_CONTEXT c6x_set_sched_context
#undef TARGET_SCHED_CLEAR_SCHED_CONTEXT
#define TARGET_SCHED_CLEAR_SCHED_CONTEXT c6x_clear_sched_context
#undef TARGET_SCHED_FREE_SCHED_CONTEXT
#define TARGET_SCHED_FREE_SCHED_CONTEXT c6x_free_sched_context

#undef TARGET_CAN_ELIMINATE
#define TARGET_CAN_ELIMINATE c6x_can_eliminate

#undef TARGET_PREFERRED_RENAME_CLASS
#define TARGET_PREFERRED_RENAME_CLASS c6x_preferred_rename_class

#undef TARGET_MACHINE_DEPENDENT_REORG
#define TARGET_MACHINE_DEPENDENT_REORG c6x_reorg

#undef TARGET_ASM_FILE_START
#define TARGET_ASM_FILE_START c6x_file_start

#undef  TARGET_PRINT_OPERAND
#define TARGET_PRINT_OPERAND c6x_print_operand
#undef  TARGET_PRINT_OPERAND_ADDRESS
#define TARGET_PRINT_OPERAND_ADDRESS c6x_print_operand_address
#undef  TARGET_PRINT_OPERAND_PUNCT_VALID_P
#define TARGET_PRINT_OPERAND_PUNCT_VALID_P c6x_print_operand_punct_valid_p

/* C6x unwinding tables use a different format for the typeinfo tables.  */
#undef TARGET_ASM_TTYPE
#define TARGET_ASM_TTYPE c6x_output_ttype

/* The C6x ABI follows the ARM EABI exception handling rules.  */
#undef TARGET_ARM_EABI_UNWINDER
#define TARGET_ARM_EABI_UNWINDER true

#undef TARGET_ASM_EMIT_EXCEPT_PERSONALITY
#define TARGET_ASM_EMIT_EXCEPT_PERSONALITY c6x_asm_emit_except_personality

#undef TARGET_ASM_INIT_SECTIONS
#define TARGET_ASM_INIT_SECTIONS c6x_asm_init_sections

#undef TARGET_DEBUG_UNWIND_INFO
#define TARGET_DEBUG_UNWIND_INFO  c6x_debug_unwind_info

#undef TARGET_DWARF_REGISTER_SPAN
#define TARGET_DWARF_REGISTER_SPAN c6x_dwarf_register_span

#undef TARGET_INIT_BUILTINS
#define TARGET_INIT_BUILTINS c6x_init_builtins
#undef TARGET_EXPAND_BUILTIN
#define TARGET_EXPAND_BUILTIN c6x_expand_builtin
#undef  TARGET_BUILTIN_DECL
#define TARGET_BUILTIN_DECL c6x_builtin_decl

struct gcc_target targetm = TARGET_INITIALIZER;

#include "gt-c6x.h"