1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
|
/* Subroutines for assembler code output on the TMS320C[34]x
Copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2003, 2004
Free Software Foundation, Inc.
Contributed by Michael Hayes (m.hayes@elec.canterbury.ac.nz)
and Herman Ten Brugge (Haj.Ten.Brugge@net.HCC.nl).
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
/* Some output-actions in c4x.md need these. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "rtl.h"
#include "tree.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "basic-block.h"
#include "real.h"
#include "insn-config.h"
#include "insn-attr.h"
#include "conditions.h"
#include "output.h"
#include "function.h"
#include "expr.h"
#include "optabs.h"
#include "libfuncs.h"
#include "flags.h"
#include "loop.h"
#include "recog.h"
#include "ggc.h"
#include "cpplib.h"
#include "toplev.h"
#include "tm_p.h"
#include "target.h"
#include "target-def.h"
rtx smulhi3_libfunc;
rtx umulhi3_libfunc;
rtx fix_truncqfhi2_libfunc;
rtx fixuns_truncqfhi2_libfunc;
rtx fix_trunchfhi2_libfunc;
rtx fixuns_trunchfhi2_libfunc;
rtx floathiqf2_libfunc;
rtx floatunshiqf2_libfunc;
rtx floathihf2_libfunc;
rtx floatunshihf2_libfunc;
static int c4x_leaf_function;
static const char *const float_reg_names[] = FLOAT_REGISTER_NAMES;
/* Array of the smallest class containing reg number REGNO, indexed by
REGNO. Used by REGNO_REG_CLASS in c4x.h. We assume that all these
registers are available and set the class to NO_REGS for registers
that the target switches say are unavailable. */
enum reg_class c4x_regclass_map[FIRST_PSEUDO_REGISTER] =
{
/* Reg Modes Saved. */
R0R1_REGS, /* R0 QI, QF, HF No. */
R0R1_REGS, /* R1 QI, QF, HF No. */
R2R3_REGS, /* R2 QI, QF, HF No. */
R2R3_REGS, /* R3 QI, QF, HF No. */
EXT_LOW_REGS, /* R4 QI, QF, HF QI. */
EXT_LOW_REGS, /* R5 QI, QF, HF QI. */
EXT_LOW_REGS, /* R6 QI, QF, HF QF. */
EXT_LOW_REGS, /* R7 QI, QF, HF QF. */
ADDR_REGS, /* AR0 QI No. */
ADDR_REGS, /* AR1 QI No. */
ADDR_REGS, /* AR2 QI No. */
ADDR_REGS, /* AR3 QI QI. */
ADDR_REGS, /* AR4 QI QI. */
ADDR_REGS, /* AR5 QI QI. */
ADDR_REGS, /* AR6 QI QI. */
ADDR_REGS, /* AR7 QI QI. */
DP_REG, /* DP QI No. */
INDEX_REGS, /* IR0 QI No. */
INDEX_REGS, /* IR1 QI No. */
BK_REG, /* BK QI QI. */
SP_REG, /* SP QI No. */
ST_REG, /* ST CC No. */
NO_REGS, /* DIE/IE No. */
NO_REGS, /* IIE/IF No. */
NO_REGS, /* IIF/IOF No. */
INT_REGS, /* RS QI No. */
INT_REGS, /* RE QI No. */
RC_REG, /* RC QI No. */
EXT_REGS, /* R8 QI, QF, HF QI. */
EXT_REGS, /* R9 QI, QF, HF No. */
EXT_REGS, /* R10 QI, QF, HF No. */
EXT_REGS, /* R11 QI, QF, HF No. */
};
enum machine_mode c4x_caller_save_map[FIRST_PSEUDO_REGISTER] =
{
/* Reg Modes Saved. */
HFmode, /* R0 QI, QF, HF No. */
HFmode, /* R1 QI, QF, HF No. */
HFmode, /* R2 QI, QF, HF No. */
HFmode, /* R3 QI, QF, HF No. */
QFmode, /* R4 QI, QF, HF QI. */
QFmode, /* R5 QI, QF, HF QI. */
QImode, /* R6 QI, QF, HF QF. */
QImode, /* R7 QI, QF, HF QF. */
QImode, /* AR0 QI No. */
QImode, /* AR1 QI No. */
QImode, /* AR2 QI No. */
QImode, /* AR3 QI QI. */
QImode, /* AR4 QI QI. */
QImode, /* AR5 QI QI. */
QImode, /* AR6 QI QI. */
QImode, /* AR7 QI QI. */
VOIDmode, /* DP QI No. */
QImode, /* IR0 QI No. */
QImode, /* IR1 QI No. */
QImode, /* BK QI QI. */
VOIDmode, /* SP QI No. */
VOIDmode, /* ST CC No. */
VOIDmode, /* DIE/IE No. */
VOIDmode, /* IIE/IF No. */
VOIDmode, /* IIF/IOF No. */
QImode, /* RS QI No. */
QImode, /* RE QI No. */
VOIDmode, /* RC QI No. */
QFmode, /* R8 QI, QF, HF QI. */
HFmode, /* R9 QI, QF, HF No. */
HFmode, /* R10 QI, QF, HF No. */
HFmode, /* R11 QI, QF, HF No. */
};
/* Test and compare insns in c4x.md store the information needed to
generate branch and scc insns here. */
rtx c4x_compare_op0;
rtx c4x_compare_op1;
const char *c4x_rpts_cycles_string;
int c4x_rpts_cycles = 0; /* Max. cycles for RPTS. */
const char *c4x_cpu_version_string;
int c4x_cpu_version = 40; /* CPU version C30/31/32/33/40/44. */
/* Pragma definitions. */
tree code_tree = NULL_TREE;
tree data_tree = NULL_TREE;
tree pure_tree = NULL_TREE;
tree noreturn_tree = NULL_TREE;
tree interrupt_tree = NULL_TREE;
tree naked_tree = NULL_TREE;
/* Forward declarations */
static int c4x_isr_reg_used_p (unsigned int);
static int c4x_leaf_function_p (void);
static int c4x_naked_function_p (void);
static int c4x_immed_float_p (rtx);
static int c4x_a_register (rtx);
static int c4x_x_register (rtx);
static int c4x_immed_int_constant (rtx);
static int c4x_immed_float_constant (rtx);
static int c4x_K_constant (rtx);
static int c4x_N_constant (rtx);
static int c4x_O_constant (rtx);
static int c4x_R_indirect (rtx);
static int c4x_S_indirect (rtx);
static void c4x_S_address_parse (rtx , int *, int *, int *, int *);
static int c4x_valid_operands (enum rtx_code, rtx *, enum machine_mode, int);
static int c4x_arn_reg_operand (rtx, enum machine_mode, unsigned int);
static int c4x_arn_mem_operand (rtx, enum machine_mode, unsigned int);
static void c4x_file_start (void);
static void c4x_file_end (void);
static void c4x_check_attribute (const char *, tree, tree, tree *);
static int c4x_r11_set_p (rtx);
static int c4x_rptb_valid_p (rtx, rtx);
static void c4x_reorg (void);
static int c4x_label_ref_used_p (rtx, rtx);
static tree c4x_handle_fntype_attribute (tree *, tree, tree, int, bool *);
const struct attribute_spec c4x_attribute_table[];
static void c4x_insert_attributes (tree, tree *);
static void c4x_asm_named_section (const char *, unsigned int);
static int c4x_adjust_cost (rtx, rtx, rtx, int);
static void c4x_globalize_label (FILE *, const char *);
static bool c4x_rtx_costs (rtx, int, int, int *);
static int c4x_address_cost (rtx);
static void c4x_init_libfuncs (void);
static void c4x_external_libcall (rtx);
static rtx c4x_struct_value_rtx (tree, int);
static tree c4x_gimplify_va_arg_expr (tree, tree, tree *, tree *);
/* Initialize the GCC target structure. */
#undef TARGET_ASM_BYTE_OP
#define TARGET_ASM_BYTE_OP "\t.word\t"
#undef TARGET_ASM_ALIGNED_HI_OP
#define TARGET_ASM_ALIGNED_HI_OP NULL
#undef TARGET_ASM_ALIGNED_SI_OP
#define TARGET_ASM_ALIGNED_SI_OP NULL
#undef TARGET_ASM_FILE_START
#define TARGET_ASM_FILE_START c4x_file_start
#undef TARGET_ASM_FILE_START_FILE_DIRECTIVE
#define TARGET_ASM_FILE_START_FILE_DIRECTIVE true
#undef TARGET_ASM_FILE_END
#define TARGET_ASM_FILE_END c4x_file_end
#undef TARGET_ASM_EXTERNAL_LIBCALL
#define TARGET_ASM_EXTERNAL_LIBCALL c4x_external_libcall
#undef TARGET_ATTRIBUTE_TABLE
#define TARGET_ATTRIBUTE_TABLE c4x_attribute_table
#undef TARGET_INSERT_ATTRIBUTES
#define TARGET_INSERT_ATTRIBUTES c4x_insert_attributes
#undef TARGET_INIT_BUILTINS
#define TARGET_INIT_BUILTINS c4x_init_builtins
#undef TARGET_EXPAND_BUILTIN
#define TARGET_EXPAND_BUILTIN c4x_expand_builtin
#undef TARGET_SCHED_ADJUST_COST
#define TARGET_SCHED_ADJUST_COST c4x_adjust_cost
#undef TARGET_SCHED_USE_DFA_PIPELINE_INTERFACE
#define TARGET_SCHED_USE_DFA_PIPELINE_INTERFACE hook_int_void_1
#undef TARGET_ASM_GLOBALIZE_LABEL
#define TARGET_ASM_GLOBALIZE_LABEL c4x_globalize_label
#undef TARGET_RTX_COSTS
#define TARGET_RTX_COSTS c4x_rtx_costs
#undef TARGET_ADDRESS_COST
#define TARGET_ADDRESS_COST c4x_address_cost
#undef TARGET_MACHINE_DEPENDENT_REORG
#define TARGET_MACHINE_DEPENDENT_REORG c4x_reorg
#undef TARGET_INIT_LIBFUNCS
#define TARGET_INIT_LIBFUNCS c4x_init_libfuncs
#undef TARGET_STRUCT_VALUE_RTX
#define TARGET_STRUCT_VALUE_RTX c4x_struct_value_rtx
#undef TARGET_GIMPLIFY_VA_ARG_EXPR
#define TARGET_GIMPLIFY_VA_ARG_EXPR c4x_gimplify_va_arg_expr
struct gcc_target targetm = TARGET_INITIALIZER;
/* Override command line options.
Called once after all options have been parsed.
Mostly we process the processor
type and sometimes adjust other TARGET_ options. */
void
c4x_override_options (void)
{
if (c4x_rpts_cycles_string)
c4x_rpts_cycles = atoi (c4x_rpts_cycles_string);
else
c4x_rpts_cycles = 0;
if (TARGET_C30)
c4x_cpu_version = 30;
else if (TARGET_C31)
c4x_cpu_version = 31;
else if (TARGET_C32)
c4x_cpu_version = 32;
else if (TARGET_C33)
c4x_cpu_version = 33;
else if (TARGET_C40)
c4x_cpu_version = 40;
else if (TARGET_C44)
c4x_cpu_version = 44;
else
c4x_cpu_version = 40;
/* -mcpu=xx overrides -m40 etc. */
if (c4x_cpu_version_string)
{
const char *p = c4x_cpu_version_string;
/* Also allow -mcpu=c30 etc. */
if (*p == 'c' || *p == 'C')
p++;
c4x_cpu_version = atoi (p);
}
target_flags &= ~(C30_FLAG | C31_FLAG | C32_FLAG | C33_FLAG |
C40_FLAG | C44_FLAG);
switch (c4x_cpu_version)
{
case 30: target_flags |= C30_FLAG; break;
case 31: target_flags |= C31_FLAG; break;
case 32: target_flags |= C32_FLAG; break;
case 33: target_flags |= C33_FLAG; break;
case 40: target_flags |= C40_FLAG; break;
case 44: target_flags |= C44_FLAG; break;
default:
warning ("unknown CPU version %d, using 40.\n", c4x_cpu_version);
c4x_cpu_version = 40;
target_flags |= C40_FLAG;
}
if (TARGET_C30 || TARGET_C31 || TARGET_C32 || TARGET_C33)
target_flags |= C3X_FLAG;
else
target_flags &= ~C3X_FLAG;
/* Convert foo / 8.0 into foo * 0.125, etc. */
set_fast_math_flags (1);
/* We should phase out the following at some stage.
This provides compatibility with the old -mno-aliases option. */
if (! TARGET_ALIASES && ! flag_argument_noalias)
flag_argument_noalias = 1;
}
/* This is called before c4x_override_options. */
void
c4x_optimization_options (int level ATTRIBUTE_UNUSED,
int size ATTRIBUTE_UNUSED)
{
/* Scheduling before register allocation can screw up global
register allocation, especially for functions that use MPY||ADD
instructions. The benefit we gain we get by scheduling before
register allocation is probably marginal anyhow. */
flag_schedule_insns = 0;
}
/* Write an ASCII string. */
#define C4X_ASCII_LIMIT 40
void
c4x_output_ascii (FILE *stream, const char *ptr, int len)
{
char sbuf[C4X_ASCII_LIMIT + 1];
int s, l, special, first = 1, onlys;
if (len)
fprintf (stream, "\t.byte\t");
for (s = l = 0; len > 0; --len, ++ptr)
{
onlys = 0;
/* Escape " and \ with a \". */
special = *ptr == '\"' || *ptr == '\\';
/* If printable - add to buff. */
if ((! TARGET_TI || ! special) && *ptr >= 0x20 && *ptr < 0x7f)
{
if (special)
sbuf[s++] = '\\';
sbuf[s++] = *ptr;
if (s < C4X_ASCII_LIMIT - 1)
continue;
onlys = 1;
}
if (s)
{
if (first)
first = 0;
else
{
fputc (',', stream);
l++;
}
sbuf[s] = 0;
fprintf (stream, "\"%s\"", sbuf);
l += s + 2;
if (TARGET_TI && l >= 80 && len > 1)
{
fprintf (stream, "\n\t.byte\t");
first = 1;
l = 0;
}
s = 0;
}
if (onlys)
continue;
if (first)
first = 0;
else
{
fputc (',', stream);
l++;
}
fprintf (stream, "%d", *ptr);
l += 3;
if (TARGET_TI && l >= 80 && len > 1)
{
fprintf (stream, "\n\t.byte\t");
first = 1;
l = 0;
}
}
if (s)
{
if (! first)
fputc (',', stream);
sbuf[s] = 0;
fprintf (stream, "\"%s\"", sbuf);
s = 0;
}
fputc ('\n', stream);
}
int
c4x_hard_regno_mode_ok (unsigned int regno, enum machine_mode mode)
{
switch (mode)
{
#if Pmode != QImode
case Pmode: /* Pointer (24/32 bits). */
#endif
case QImode: /* Integer (32 bits). */
return IS_INT_REGNO (regno);
case QFmode: /* Float, Double (32 bits). */
case HFmode: /* Long Double (40 bits). */
return IS_EXT_REGNO (regno);
case CCmode: /* Condition Codes. */
case CC_NOOVmode: /* Condition Codes. */
return IS_ST_REGNO (regno);
case HImode: /* Long Long (64 bits). */
/* We need two registers to store long longs. Note that
it is much easier to constrain the first register
to start on an even boundary. */
return IS_INT_REGNO (regno)
&& IS_INT_REGNO (regno + 1)
&& (regno & 1) == 0;
default:
return 0; /* We don't support these modes. */
}
return 0;
}
/* Return nonzero if REGNO1 can be renamed to REGNO2. */
int
c4x_hard_regno_rename_ok (unsigned int regno1, unsigned int regno2)
{
/* We can not copy call saved registers from mode QI into QF or from
mode QF into QI. */
if (IS_FLOAT_CALL_SAVED_REGNO (regno1) && IS_INT_CALL_SAVED_REGNO (regno2))
return 0;
if (IS_INT_CALL_SAVED_REGNO (regno1) && IS_FLOAT_CALL_SAVED_REGNO (regno2))
return 0;
/* We cannot copy from an extended (40 bit) register to a standard
(32 bit) register because we only set the condition codes for
extended registers. */
if (IS_EXT_REGNO (regno1) && ! IS_EXT_REGNO (regno2))
return 0;
if (IS_EXT_REGNO (regno2) && ! IS_EXT_REGNO (regno1))
return 0;
return 1;
}
/* The TI C3x C compiler register argument runtime model uses 6 registers,
AR2, R2, R3, RC, RS, RE.
The first two floating point arguments (float, double, long double)
that are found scanning from left to right are assigned to R2 and R3.
The remaining integer (char, short, int, long) or pointer arguments
are assigned to the remaining registers in the order AR2, R2, R3,
RC, RS, RE when scanning left to right, except for the last named
argument prior to an ellipsis denoting variable number of
arguments. We don't have to worry about the latter condition since
function.c treats the last named argument as anonymous (unnamed).
All arguments that cannot be passed in registers are pushed onto
the stack in reverse order (right to left). GCC handles that for us.
c4x_init_cumulative_args() is called at the start, so we can parse
the args to see how many floating point arguments and how many
integer (or pointer) arguments there are. c4x_function_arg() is
then called (sometimes repeatedly) for each argument (parsed left
to right) to obtain the register to pass the argument in, or zero
if the argument is to be passed on the stack. Once the compiler is
happy, c4x_function_arg_advance() is called.
Don't use R0 to pass arguments in, we use 0 to indicate a stack
argument. */
static const int c4x_int_reglist[3][6] =
{
{AR2_REGNO, R2_REGNO, R3_REGNO, RC_REGNO, RS_REGNO, RE_REGNO},
{AR2_REGNO, R3_REGNO, RC_REGNO, RS_REGNO, RE_REGNO, 0},
{AR2_REGNO, RC_REGNO, RS_REGNO, RE_REGNO, 0, 0}
};
static const int c4x_fp_reglist[2] = {R2_REGNO, R3_REGNO};
/* Initialize a variable CUM of type CUMULATIVE_ARGS for a call to a
function whose data type is FNTYPE.
For a library call, FNTYPE is 0. */
void
c4x_init_cumulative_args (CUMULATIVE_ARGS *cum, tree fntype, rtx libname)
{
tree param, next_param;
cum->floats = cum->ints = 0;
cum->init = 0;
cum->var = 0;
cum->args = 0;
if (TARGET_DEBUG)
{
fprintf (stderr, "\nc4x_init_cumulative_args (");
if (fntype)
{
tree ret_type = TREE_TYPE (fntype);
fprintf (stderr, "fntype code = %s, ret code = %s",
tree_code_name[(int) TREE_CODE (fntype)],
tree_code_name[(int) TREE_CODE (ret_type)]);
}
else
fprintf (stderr, "no fntype");
if (libname)
fprintf (stderr, ", libname = %s", XSTR (libname, 0));
}
cum->prototype = (fntype && TYPE_ARG_TYPES (fntype));
for (param = fntype ? TYPE_ARG_TYPES (fntype) : 0;
param; param = next_param)
{
tree type;
next_param = TREE_CHAIN (param);
type = TREE_VALUE (param);
if (type && type != void_type_node)
{
enum machine_mode mode;
/* If the last arg doesn't have void type then we have
variable arguments. */
if (! next_param)
cum->var = 1;
if ((mode = TYPE_MODE (type)))
{
if (! targetm.calls.must_pass_in_stack (mode, type))
{
/* Look for float, double, or long double argument. */
if (mode == QFmode || mode == HFmode)
cum->floats++;
/* Look for integer, enumeral, boolean, char, or pointer
argument. */
else if (mode == QImode || mode == Pmode)
cum->ints++;
}
}
cum->args++;
}
}
if (TARGET_DEBUG)
fprintf (stderr, "%s%s, args = %d)\n",
cum->prototype ? ", prototype" : "",
cum->var ? ", variable args" : "",
cum->args);
}
/* Update the data in CUM to advance over an argument
of mode MODE and data type TYPE.
(TYPE is null for libcalls where that information may not be available.) */
void
c4x_function_arg_advance (CUMULATIVE_ARGS *cum, enum machine_mode mode,
tree type, int named)
{
if (TARGET_DEBUG)
fprintf (stderr, "c4x_function_adv(mode=%s, named=%d)\n\n",
GET_MODE_NAME (mode), named);
if (! TARGET_MEMPARM
&& named
&& type
&& ! targetm.calls.must_pass_in_stack (mode, type))
{
/* Look for float, double, or long double argument. */
if (mode == QFmode || mode == HFmode)
cum->floats++;
/* Look for integer, enumeral, boolean, char, or pointer argument. */
else if (mode == QImode || mode == Pmode)
cum->ints++;
}
else if (! TARGET_MEMPARM && ! type)
{
/* Handle libcall arguments. */
if (mode == QFmode || mode == HFmode)
cum->floats++;
else if (mode == QImode || mode == Pmode)
cum->ints++;
}
return;
}
/* Define where to put the arguments to a function. Value is zero to
push the argument on the stack, or a hard register in which to
store the argument.
MODE is the argument's machine mode.
TYPE is the data type of the argument (as a tree).
This is null for libcalls where that information may
not be available.
CUM is a variable of type CUMULATIVE_ARGS which gives info about
the preceding args and about the function being called.
NAMED is nonzero if this argument is a named parameter
(otherwise it is an extra parameter matching an ellipsis). */
struct rtx_def *
c4x_function_arg (CUMULATIVE_ARGS *cum, enum machine_mode mode,
tree type, int named)
{
int reg = 0; /* Default to passing argument on stack. */
if (! cum->init)
{
/* We can handle at most 2 floats in R2, R3. */
cum->maxfloats = (cum->floats > 2) ? 2 : cum->floats;
/* We can handle at most 6 integers minus number of floats passed
in registers. */
cum->maxints = (cum->ints > 6 - cum->maxfloats) ?
6 - cum->maxfloats : cum->ints;
/* If there is no prototype, assume all the arguments are integers. */
if (! cum->prototype)
cum->maxints = 6;
cum->ints = cum->floats = 0;
cum->init = 1;
}
/* This marks the last argument. We don't need to pass this through
to the call insn. */
if (type == void_type_node)
return 0;
if (! TARGET_MEMPARM
&& named
&& type
&& ! targetm.calls.must_pass_in_stack (mode, type))
{
/* Look for float, double, or long double argument. */
if (mode == QFmode || mode == HFmode)
{
if (cum->floats < cum->maxfloats)
reg = c4x_fp_reglist[cum->floats];
}
/* Look for integer, enumeral, boolean, char, or pointer argument. */
else if (mode == QImode || mode == Pmode)
{
if (cum->ints < cum->maxints)
reg = c4x_int_reglist[cum->maxfloats][cum->ints];
}
}
else if (! TARGET_MEMPARM && ! type)
{
/* We could use a different argument calling model for libcalls,
since we're only calling functions in libgcc. Thus we could
pass arguments for long longs in registers rather than on the
stack. In the meantime, use the odd TI format. We make the
assumption that we won't have more than two floating point
args, six integer args, and that all the arguments are of the
same mode. */
if (mode == QFmode || mode == HFmode)
reg = c4x_fp_reglist[cum->floats];
else if (mode == QImode || mode == Pmode)
reg = c4x_int_reglist[0][cum->ints];
}
if (TARGET_DEBUG)
{
fprintf (stderr, "c4x_function_arg(mode=%s, named=%d",
GET_MODE_NAME (mode), named);
if (reg)
fprintf (stderr, ", reg=%s", reg_names[reg]);
else
fprintf (stderr, ", stack");
fprintf (stderr, ")\n");
}
if (reg)
return gen_rtx_REG (mode, reg);
else
return NULL_RTX;
}
/* C[34]x arguments grow in weird ways (downwards) that the standard
varargs stuff can't handle.. */
static tree
c4x_gimplify_va_arg_expr (tree valist, tree type,
tree *pre_p ATTRIBUTE_UNUSED,
tree *post_p ATTRIBUTE_UNUSED)
{
tree t;
t = build (PREDECREMENT_EXPR, TREE_TYPE (valist), valist,
build_int_2 (int_size_in_bytes (type), 0));
t = fold_convert (build_pointer_type (type), t);
t = build_fold_indirect_ref (t);
return t;
}
static int
c4x_isr_reg_used_p (unsigned int regno)
{
/* Don't save/restore FP or ST, we handle them separately. */
if (regno == FRAME_POINTER_REGNUM
|| IS_ST_REGNO (regno))
return 0;
/* We could be a little smarter abut saving/restoring DP.
We'll only save if for the big memory model or if
we're paranoid. ;-) */
if (IS_DP_REGNO (regno))
return ! TARGET_SMALL || TARGET_PARANOID;
/* Only save/restore regs in leaf function that are used. */
if (c4x_leaf_function)
return regs_ever_live[regno] && fixed_regs[regno] == 0;
/* Only save/restore regs that are used by the ISR and regs
that are likely to be used by functions the ISR calls
if they are not fixed. */
return IS_EXT_REGNO (regno)
|| ((regs_ever_live[regno] || call_used_regs[regno])
&& fixed_regs[regno] == 0);
}
static int
c4x_leaf_function_p (void)
{
/* A leaf function makes no calls, so we only need
to save/restore the registers we actually use.
For the global variable leaf_function to be set, we need
to define LEAF_REGISTERS and all that it entails.
Let's check ourselves.... */
if (lookup_attribute ("leaf_pretend",
TYPE_ATTRIBUTES (TREE_TYPE (current_function_decl))))
return 1;
/* Use the leaf_pretend attribute at your own risk. This is a hack
to speed up ISRs that call a function infrequently where the
overhead of saving and restoring the additional registers is not
warranted. You must save and restore the additional registers
required by the called function. Caveat emptor. Here's enough
rope... */
if (leaf_function_p ())
return 1;
return 0;
}
static int
c4x_naked_function_p (void)
{
tree type;
type = TREE_TYPE (current_function_decl);
return lookup_attribute ("naked", TYPE_ATTRIBUTES (type)) != NULL;
}
int
c4x_interrupt_function_p (void)
{
const char *cfun_name;
if (lookup_attribute ("interrupt",
TYPE_ATTRIBUTES (TREE_TYPE (current_function_decl))))
return 1;
/* Look for TI style c_intnn. */
cfun_name = current_function_name ();
return cfun_name[0] == 'c'
&& cfun_name[1] == '_'
&& cfun_name[2] == 'i'
&& cfun_name[3] == 'n'
&& cfun_name[4] == 't'
&& ISDIGIT (cfun_name[5])
&& ISDIGIT (cfun_name[6]);
}
void
c4x_expand_prologue (void)
{
unsigned int regno;
int size = get_frame_size ();
rtx insn;
/* In functions where ar3 is not used but frame pointers are still
specified, frame pointers are not adjusted (if >= -O2) and this
is used so it won't needlessly push the frame pointer. */
int dont_push_ar3;
/* For __naked__ function don't build a prologue. */
if (c4x_naked_function_p ())
{
return;
}
/* For __interrupt__ function build specific prologue. */
if (c4x_interrupt_function_p ())
{
c4x_leaf_function = c4x_leaf_function_p ();
insn = emit_insn (gen_push_st ());
RTX_FRAME_RELATED_P (insn) = 1;
if (size)
{
insn = emit_insn (gen_pushqi ( gen_rtx_REG (QImode, AR3_REGNO)));
RTX_FRAME_RELATED_P (insn) = 1;
insn = emit_insn (gen_movqi (gen_rtx_REG (QImode, AR3_REGNO),
gen_rtx_REG (QImode, SP_REGNO)));
RTX_FRAME_RELATED_P (insn) = 1;
/* We require that an ISR uses fewer than 32768 words of
local variables, otherwise we have to go to lots of
effort to save a register, load it with the desired size,
adjust the stack pointer, and then restore the modified
register. Frankly, I think it is a poor ISR that
requires more than 32767 words of local temporary
storage! */
if (size > 32767)
error ("ISR %s requires %d words of local vars, max is 32767",
current_function_name (), size);
insn = emit_insn (gen_addqi3 (gen_rtx_REG (QImode, SP_REGNO),
gen_rtx_REG (QImode, SP_REGNO),
GEN_INT (size)));
RTX_FRAME_RELATED_P (insn) = 1;
}
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
{
if (c4x_isr_reg_used_p (regno))
{
if (regno == DP_REGNO)
{
insn = emit_insn (gen_push_dp ());
RTX_FRAME_RELATED_P (insn) = 1;
}
else
{
insn = emit_insn (gen_pushqi (gen_rtx_REG (QImode, regno)));
RTX_FRAME_RELATED_P (insn) = 1;
if (IS_EXT_REGNO (regno))
{
insn = emit_insn (gen_pushqf
(gen_rtx_REG (QFmode, regno)));
RTX_FRAME_RELATED_P (insn) = 1;
}
}
}
}
/* We need to clear the repeat mode flag if the ISR is
going to use a RPTB instruction or uses the RC, RS, or RE
registers. */
if (regs_ever_live[RC_REGNO]
|| regs_ever_live[RS_REGNO]
|| regs_ever_live[RE_REGNO])
{
insn = emit_insn (gen_andn_st (GEN_INT(~0x100)));
RTX_FRAME_RELATED_P (insn) = 1;
}
/* Reload DP reg if we are paranoid about some turkey
violating small memory model rules. */
if (TARGET_SMALL && TARGET_PARANOID)
{
insn = emit_insn (gen_set_ldp_prologue
(gen_rtx_REG (QImode, DP_REGNO),
gen_rtx_SYMBOL_REF (QImode, "data_sec")));
RTX_FRAME_RELATED_P (insn) = 1;
}
}
else
{
if (frame_pointer_needed)
{
if ((size != 0)
|| (current_function_args_size != 0)
|| (optimize < 2))
{
insn = emit_insn (gen_pushqi ( gen_rtx_REG (QImode, AR3_REGNO)));
RTX_FRAME_RELATED_P (insn) = 1;
insn = emit_insn (gen_movqi (gen_rtx_REG (QImode, AR3_REGNO),
gen_rtx_REG (QImode, SP_REGNO)));
RTX_FRAME_RELATED_P (insn) = 1;
dont_push_ar3 = 1;
}
else
{
/* Since ar3 is not used, we don't need to push it. */
dont_push_ar3 = 1;
}
}
else
{
/* If we use ar3, we need to push it. */
dont_push_ar3 = 0;
if ((size != 0) || (current_function_args_size != 0))
{
/* If we are omitting the frame pointer, we still have
to make space for it so the offsets are correct
unless we don't use anything on the stack at all. */
size += 1;
}
}
if (size > 32767)
{
/* Local vars are too big, it will take multiple operations
to increment SP. */
if (TARGET_C3X)
{
insn = emit_insn (gen_movqi (gen_rtx_REG (QImode, R1_REGNO),
GEN_INT(size >> 16)));
RTX_FRAME_RELATED_P (insn) = 1;
insn = emit_insn (gen_lshrqi3 (gen_rtx_REG (QImode, R1_REGNO),
gen_rtx_REG (QImode, R1_REGNO),
GEN_INT(-16)));
RTX_FRAME_RELATED_P (insn) = 1;
}
else
{
insn = emit_insn (gen_movqi (gen_rtx_REG (QImode, R1_REGNO),
GEN_INT(size & ~0xffff)));
RTX_FRAME_RELATED_P (insn) = 1;
}
insn = emit_insn (gen_iorqi3 (gen_rtx_REG (QImode, R1_REGNO),
gen_rtx_REG (QImode, R1_REGNO),
GEN_INT(size & 0xffff)));
RTX_FRAME_RELATED_P (insn) = 1;
insn = emit_insn (gen_addqi3 (gen_rtx_REG (QImode, SP_REGNO),
gen_rtx_REG (QImode, SP_REGNO),
gen_rtx_REG (QImode, R1_REGNO)));
RTX_FRAME_RELATED_P (insn) = 1;
}
else if (size != 0)
{
/* Local vars take up less than 32767 words, so we can directly
add the number. */
insn = emit_insn (gen_addqi3 (gen_rtx_REG (QImode, SP_REGNO),
gen_rtx_REG (QImode, SP_REGNO),
GEN_INT (size)));
RTX_FRAME_RELATED_P (insn) = 1;
}
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
{
if (regs_ever_live[regno] && ! call_used_regs[regno])
{
if (IS_FLOAT_CALL_SAVED_REGNO (regno))
{
if (TARGET_PRESERVE_FLOAT)
{
insn = emit_insn (gen_pushqi
(gen_rtx_REG (QImode, regno)));
RTX_FRAME_RELATED_P (insn) = 1;
}
insn = emit_insn (gen_pushqf (gen_rtx_REG (QFmode, regno)));
RTX_FRAME_RELATED_P (insn) = 1;
}
else if ((! dont_push_ar3) || (regno != AR3_REGNO))
{
insn = emit_insn (gen_pushqi ( gen_rtx_REG (QImode, regno)));
RTX_FRAME_RELATED_P (insn) = 1;
}
}
}
}
}
void
c4x_expand_epilogue(void)
{
int regno;
int jump = 0;
int dont_pop_ar3;
rtx insn;
int size = get_frame_size ();
/* For __naked__ function build no epilogue. */
if (c4x_naked_function_p ())
{
insn = emit_jump_insn (gen_return_from_epilogue ());
RTX_FRAME_RELATED_P (insn) = 1;
return;
}
/* For __interrupt__ function build specific epilogue. */
if (c4x_interrupt_function_p ())
{
for (regno = FIRST_PSEUDO_REGISTER - 1; regno >= 0; --regno)
{
if (! c4x_isr_reg_used_p (regno))
continue;
if (regno == DP_REGNO)
{
insn = emit_insn (gen_pop_dp ());
RTX_FRAME_RELATED_P (insn) = 1;
}
else
{
/* We have to use unspec because the compiler will delete insns
that are not call-saved. */
if (IS_EXT_REGNO (regno))
{
insn = emit_insn (gen_popqf_unspec
(gen_rtx_REG (QFmode, regno)));
RTX_FRAME_RELATED_P (insn) = 1;
}
insn = emit_insn (gen_popqi_unspec (gen_rtx_REG (QImode, regno)));
RTX_FRAME_RELATED_P (insn) = 1;
}
}
if (size)
{
insn = emit_insn (gen_subqi3 (gen_rtx_REG (QImode, SP_REGNO),
gen_rtx_REG (QImode, SP_REGNO),
GEN_INT(size)));
RTX_FRAME_RELATED_P (insn) = 1;
insn = emit_insn (gen_popqi
(gen_rtx_REG (QImode, AR3_REGNO)));
RTX_FRAME_RELATED_P (insn) = 1;
}
insn = emit_insn (gen_pop_st ());
RTX_FRAME_RELATED_P (insn) = 1;
insn = emit_jump_insn (gen_return_from_interrupt_epilogue ());
RTX_FRAME_RELATED_P (insn) = 1;
}
else
{
if (frame_pointer_needed)
{
if ((size != 0)
|| (current_function_args_size != 0)
|| (optimize < 2))
{
insn = emit_insn
(gen_movqi (gen_rtx_REG (QImode, R2_REGNO),
gen_rtx_MEM (QImode,
gen_rtx_PLUS
(QImode, gen_rtx_REG (QImode,
AR3_REGNO),
constm1_rtx))));
RTX_FRAME_RELATED_P (insn) = 1;
/* We already have the return value and the fp,
so we need to add those to the stack. */
size += 2;
jump = 1;
dont_pop_ar3 = 1;
}
else
{
/* Since ar3 is not used for anything, we don't need to
pop it. */
dont_pop_ar3 = 1;
}
}
else
{
dont_pop_ar3 = 0; /* If we use ar3, we need to pop it. */
if (size || current_function_args_size)
{
/* If we are omitting the frame pointer, we still have
to make space for it so the offsets are correct
unless we don't use anything on the stack at all. */
size += 1;
}
}
/* Now restore the saved registers, putting in the delayed branch
where required. */
for (regno = FIRST_PSEUDO_REGISTER - 1; regno >= 0; regno--)
{
if (regs_ever_live[regno] && ! call_used_regs[regno])
{
if (regno == AR3_REGNO && dont_pop_ar3)
continue;
if (IS_FLOAT_CALL_SAVED_REGNO (regno))
{
insn = emit_insn (gen_popqf_unspec
(gen_rtx_REG (QFmode, regno)));
RTX_FRAME_RELATED_P (insn) = 1;
if (TARGET_PRESERVE_FLOAT)
{
insn = emit_insn (gen_popqi_unspec
(gen_rtx_REG (QImode, regno)));
RTX_FRAME_RELATED_P (insn) = 1;
}
}
else
{
insn = emit_insn (gen_popqi (gen_rtx_REG (QImode, regno)));
RTX_FRAME_RELATED_P (insn) = 1;
}
}
}
if (frame_pointer_needed)
{
if ((size != 0)
|| (current_function_args_size != 0)
|| (optimize < 2))
{
/* Restore the old FP. */
insn = emit_insn
(gen_movqi
(gen_rtx_REG (QImode, AR3_REGNO),
gen_rtx_MEM (QImode, gen_rtx_REG (QImode, AR3_REGNO))));
RTX_FRAME_RELATED_P (insn) = 1;
}
}
if (size > 32767)
{
/* Local vars are too big, it will take multiple operations
to decrement SP. */
if (TARGET_C3X)
{
insn = emit_insn (gen_movqi (gen_rtx_REG (QImode, R3_REGNO),
GEN_INT(size >> 16)));
RTX_FRAME_RELATED_P (insn) = 1;
insn = emit_insn (gen_lshrqi3 (gen_rtx_REG (QImode, R3_REGNO),
gen_rtx_REG (QImode, R3_REGNO),
GEN_INT(-16)));
RTX_FRAME_RELATED_P (insn) = 1;
}
else
{
insn = emit_insn (gen_movqi (gen_rtx_REG (QImode, R3_REGNO),
GEN_INT(size & ~0xffff)));
RTX_FRAME_RELATED_P (insn) = 1;
}
insn = emit_insn (gen_iorqi3 (gen_rtx_REG (QImode, R3_REGNO),
gen_rtx_REG (QImode, R3_REGNO),
GEN_INT(size & 0xffff)));
RTX_FRAME_RELATED_P (insn) = 1;
insn = emit_insn (gen_subqi3 (gen_rtx_REG (QImode, SP_REGNO),
gen_rtx_REG (QImode, SP_REGNO),
gen_rtx_REG (QImode, R3_REGNO)));
RTX_FRAME_RELATED_P (insn) = 1;
}
else if (size != 0)
{
/* Local vars take up less than 32768 words, so we can directly
subtract the number. */
insn = emit_insn (gen_subqi3 (gen_rtx_REG (QImode, SP_REGNO),
gen_rtx_REG (QImode, SP_REGNO),
GEN_INT(size)));
RTX_FRAME_RELATED_P (insn) = 1;
}
if (jump)
{
insn = emit_jump_insn (gen_return_indirect_internal
(gen_rtx_REG (QImode, R2_REGNO)));
RTX_FRAME_RELATED_P (insn) = 1;
}
else
{
insn = emit_jump_insn (gen_return_from_epilogue ());
RTX_FRAME_RELATED_P (insn) = 1;
}
}
}
int
c4x_null_epilogue_p (void)
{
int regno;
if (reload_completed
&& ! c4x_naked_function_p ()
&& ! c4x_interrupt_function_p ()
&& ! current_function_calls_alloca
&& ! current_function_args_size
&& ! (optimize < 2)
&& ! get_frame_size ())
{
for (regno = FIRST_PSEUDO_REGISTER - 1; regno >= 0; regno--)
if (regs_ever_live[regno] && ! call_used_regs[regno]
&& (regno != AR3_REGNO))
return 1;
return 0;
}
return 1;
}
int
c4x_emit_move_sequence (rtx *operands, enum machine_mode mode)
{
rtx op0 = operands[0];
rtx op1 = operands[1];
if (! reload_in_progress
&& ! REG_P (op0)
&& ! REG_P (op1)
&& ! (stik_const_operand (op1, mode) && ! push_operand (op0, mode)))
op1 = force_reg (mode, op1);
if (GET_CODE (op1) == LO_SUM
&& GET_MODE (op1) == Pmode
&& dp_reg_operand (XEXP (op1, 0), mode))
{
/* expand_increment will sometimes create a LO_SUM immediate
address. Undo this silliness. */
op1 = XEXP (op1, 1);
}
if (symbolic_address_operand (op1, mode))
{
if (TARGET_LOAD_ADDRESS)
{
/* Alias analysis seems to do a better job if we force
constant addresses to memory after reload. */
emit_insn (gen_load_immed_address (op0, op1));
return 1;
}
else
{
/* Stick symbol or label address into the constant pool. */
op1 = force_const_mem (Pmode, op1);
}
}
else if (mode == HFmode && CONSTANT_P (op1) && ! LEGITIMATE_CONSTANT_P (op1))
{
/* We could be a lot smarter about loading some of these
constants... */
op1 = force_const_mem (mode, op1);
}
/* Convert (MEM (SYMREF)) to a (MEM (LO_SUM (REG) (SYMREF)))
and emit associated (HIGH (SYMREF)) if large memory model.
c4x_legitimize_address could be used to do this,
perhaps by calling validize_address. */
if (TARGET_EXPOSE_LDP
&& ! (reload_in_progress || reload_completed)
&& GET_CODE (op1) == MEM
&& symbolic_address_operand (XEXP (op1, 0), Pmode))
{
rtx dp_reg = gen_rtx_REG (Pmode, DP_REGNO);
if (! TARGET_SMALL)
emit_insn (gen_set_ldp (dp_reg, XEXP (op1, 0)));
op1 = change_address (op1, mode,
gen_rtx_LO_SUM (Pmode, dp_reg, XEXP (op1, 0)));
}
if (TARGET_EXPOSE_LDP
&& ! (reload_in_progress || reload_completed)
&& GET_CODE (op0) == MEM
&& symbolic_address_operand (XEXP (op0, 0), Pmode))
{
rtx dp_reg = gen_rtx_REG (Pmode, DP_REGNO);
if (! TARGET_SMALL)
emit_insn (gen_set_ldp (dp_reg, XEXP (op0, 0)));
op0 = change_address (op0, mode,
gen_rtx_LO_SUM (Pmode, dp_reg, XEXP (op0, 0)));
}
if (GET_CODE (op0) == SUBREG
&& mixed_subreg_operand (op0, mode))
{
/* We should only generate these mixed mode patterns
during RTL generation. If we need do it later on
then we'll have to emit patterns that won't clobber CC. */
if (reload_in_progress || reload_completed)
abort ();
if (GET_MODE (SUBREG_REG (op0)) == QImode)
op0 = SUBREG_REG (op0);
else if (GET_MODE (SUBREG_REG (op0)) == HImode)
{
op0 = copy_rtx (op0);
PUT_MODE (op0, QImode);
}
else
abort ();
if (mode == QFmode)
emit_insn (gen_storeqf_int_clobber (op0, op1));
else
abort ();
return 1;
}
if (GET_CODE (op1) == SUBREG
&& mixed_subreg_operand (op1, mode))
{
/* We should only generate these mixed mode patterns
during RTL generation. If we need do it later on
then we'll have to emit patterns that won't clobber CC. */
if (reload_in_progress || reload_completed)
abort ();
if (GET_MODE (SUBREG_REG (op1)) == QImode)
op1 = SUBREG_REG (op1);
else if (GET_MODE (SUBREG_REG (op1)) == HImode)
{
op1 = copy_rtx (op1);
PUT_MODE (op1, QImode);
}
else
abort ();
if (mode == QFmode)
emit_insn (gen_loadqf_int_clobber (op0, op1));
else
abort ();
return 1;
}
if (mode == QImode
&& reg_operand (op0, mode)
&& const_int_operand (op1, mode)
&& ! IS_INT16_CONST (INTVAL (op1))
&& ! IS_HIGH_CONST (INTVAL (op1)))
{
emit_insn (gen_loadqi_big_constant (op0, op1));
return 1;
}
if (mode == HImode
&& reg_operand (op0, mode)
&& const_int_operand (op1, mode))
{
emit_insn (gen_loadhi_big_constant (op0, op1));
return 1;
}
/* Adjust operands in case we have modified them. */
operands[0] = op0;
operands[1] = op1;
/* Emit normal pattern. */
return 0;
}
void
c4x_emit_libcall (rtx libcall, enum rtx_code code,
enum machine_mode dmode, enum machine_mode smode,
int noperands, rtx *operands)
{
rtx ret;
rtx insns;
rtx equiv;
start_sequence ();
switch (noperands)
{
case 2:
ret = emit_library_call_value (libcall, NULL_RTX, 1, dmode, 1,
operands[1], smode);
equiv = gen_rtx_fmt_e (code, dmode, operands[1]);
break;
case 3:
ret = emit_library_call_value (libcall, NULL_RTX, 1, dmode, 2,
operands[1], smode, operands[2], smode);
equiv = gen_rtx_fmt_ee (code, dmode, operands[1], operands[2]);
break;
default:
abort ();
}
insns = get_insns ();
end_sequence ();
emit_libcall_block (insns, operands[0], ret, equiv);
}
void
c4x_emit_libcall3 (rtx libcall, enum rtx_code code,
enum machine_mode mode, rtx *operands)
{
c4x_emit_libcall (libcall, code, mode, mode, 3, operands);
}
void
c4x_emit_libcall_mulhi (rtx libcall, enum rtx_code code,
enum machine_mode mode, rtx *operands)
{
rtx ret;
rtx insns;
rtx equiv;
start_sequence ();
ret = emit_library_call_value (libcall, NULL_RTX, 1, mode, 2,
operands[1], mode, operands[2], mode);
equiv = gen_rtx_TRUNCATE (mode,
gen_rtx_LSHIFTRT (HImode,
gen_rtx_MULT (HImode,
gen_rtx_fmt_e (code, HImode, operands[1]),
gen_rtx_fmt_e (code, HImode, operands[2])),
GEN_INT (32)));
insns = get_insns ();
end_sequence ();
emit_libcall_block (insns, operands[0], ret, equiv);
}
int
c4x_legitimate_address_p (enum machine_mode mode, rtx addr, int strict)
{
rtx base = NULL_RTX; /* Base register (AR0-AR7). */
rtx indx = NULL_RTX; /* Index register (IR0,IR1). */
rtx disp = NULL_RTX; /* Displacement. */
enum rtx_code code;
code = GET_CODE (addr);
switch (code)
{
/* Register indirect with auto increment/decrement. We don't
allow SP here---push_operand should recognize an operand
being pushed on the stack. */
case PRE_DEC:
case PRE_INC:
case POST_DEC:
if (mode != QImode && mode != QFmode)
return 0;
case POST_INC:
base = XEXP (addr, 0);
if (! REG_P (base))
return 0;
break;
case PRE_MODIFY:
case POST_MODIFY:
{
rtx op0 = XEXP (addr, 0);
rtx op1 = XEXP (addr, 1);
if (mode != QImode && mode != QFmode)
return 0;
if (! REG_P (op0)
|| (GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS))
return 0;
base = XEXP (op1, 0);
if (! REG_P (base))
return 0;
if (REGNO (base) != REGNO (op0))
return 0;
if (REG_P (XEXP (op1, 1)))
indx = XEXP (op1, 1);
else
disp = XEXP (op1, 1);
}
break;
/* Register indirect. */
case REG:
base = addr;
break;
/* Register indirect with displacement or index. */
case PLUS:
{
rtx op0 = XEXP (addr, 0);
rtx op1 = XEXP (addr, 1);
enum rtx_code code0 = GET_CODE (op0);
switch (code0)
{
case REG:
if (REG_P (op1))
{
base = op0; /* Base + index. */
indx = op1;
if (IS_INDEX_REG (base) || IS_ADDR_REG (indx))
{
base = op1;
indx = op0;
}
}
else
{
base = op0; /* Base + displacement. */
disp = op1;
}
break;
default:
return 0;
}
}
break;
/* Direct addressing with DP register. */
case LO_SUM:
{
rtx op0 = XEXP (addr, 0);
rtx op1 = XEXP (addr, 1);
/* HImode and HFmode direct memory references aren't truly
offsettable (consider case at end of data page). We
probably get better code by loading a pointer and using an
indirect memory reference. */
if (mode == HImode || mode == HFmode)
return 0;
if (!REG_P (op0) || REGNO (op0) != DP_REGNO)
return 0;
if ((GET_CODE (op1) == SYMBOL_REF || GET_CODE (op1) == LABEL_REF))
return 1;
if (GET_CODE (op1) == CONST)
return 1;
return 0;
}
break;
/* Direct addressing with some work for the assembler... */
case CONST:
/* Direct addressing. */
case LABEL_REF:
case SYMBOL_REF:
if (! TARGET_EXPOSE_LDP && ! strict && mode != HFmode && mode != HImode)
return 1;
/* These need to be converted to a LO_SUM (...).
LEGITIMIZE_RELOAD_ADDRESS will do this during reload. */
return 0;
/* Do not allow direct memory access to absolute addresses.
This is more pain than it's worth, especially for the
small memory model where we can't guarantee that
this address is within the data page---we don't want
to modify the DP register in the small memory model,
even temporarily, since an interrupt can sneak in.... */
case CONST_INT:
return 0;
/* Indirect indirect addressing. */
case MEM:
return 0;
case CONST_DOUBLE:
fatal_insn ("using CONST_DOUBLE for address", addr);
default:
return 0;
}
/* Validate the base register. */
if (base)
{
/* Check that the address is offsettable for HImode and HFmode. */
if (indx && (mode == HImode || mode == HFmode))
return 0;
/* Handle DP based stuff. */
if (REGNO (base) == DP_REGNO)
return 1;
if (strict && ! REGNO_OK_FOR_BASE_P (REGNO (base)))
return 0;
else if (! strict && ! IS_ADDR_OR_PSEUDO_REG (base))
return 0;
}
/* Now validate the index register. */
if (indx)
{
if (GET_CODE (indx) != REG)
return 0;
if (strict && ! REGNO_OK_FOR_INDEX_P (REGNO (indx)))
return 0;
else if (! strict && ! IS_INDEX_OR_PSEUDO_REG (indx))
return 0;
}
/* Validate displacement. */
if (disp)
{
if (GET_CODE (disp) != CONST_INT)
return 0;
if (mode == HImode || mode == HFmode)
{
/* The offset displacement must be legitimate. */
if (! IS_DISP8_OFF_CONST (INTVAL (disp)))
return 0;
}
else
{
if (! IS_DISP8_CONST (INTVAL (disp)))
return 0;
}
/* Can't add an index with a disp. */
if (indx)
return 0;
}
return 1;
}
rtx
c4x_legitimize_address (rtx orig ATTRIBUTE_UNUSED,
enum machine_mode mode ATTRIBUTE_UNUSED)
{
if (GET_CODE (orig) == SYMBOL_REF
|| GET_CODE (orig) == LABEL_REF)
{
if (mode == HImode || mode == HFmode)
{
/* We need to force the address into
a register so that it is offsettable. */
rtx addr_reg = gen_reg_rtx (Pmode);
emit_move_insn (addr_reg, orig);
return addr_reg;
}
else
{
rtx dp_reg = gen_rtx_REG (Pmode, DP_REGNO);
if (! TARGET_SMALL)
emit_insn (gen_set_ldp (dp_reg, orig));
return gen_rtx_LO_SUM (Pmode, dp_reg, orig);
}
}
return NULL_RTX;
}
/* Provide the costs of an addressing mode that contains ADDR.
If ADDR is not a valid address, its cost is irrelevant.
This is used in cse and loop optimization to determine
if it is worthwhile storing a common address into a register.
Unfortunately, the C4x address cost depends on other operands. */
static int
c4x_address_cost (rtx addr)
{
switch (GET_CODE (addr))
{
case REG:
return 1;
case POST_INC:
case POST_DEC:
case PRE_INC:
case PRE_DEC:
return 1;
/* These shouldn't be directly generated. */
case SYMBOL_REF:
case LABEL_REF:
case CONST:
return 10;
case LO_SUM:
{
rtx op1 = XEXP (addr, 1);
if (GET_CODE (op1) == LABEL_REF || GET_CODE (op1) == SYMBOL_REF)
return TARGET_SMALL ? 3 : 4;
if (GET_CODE (op1) == CONST)
{
rtx offset = const0_rtx;
op1 = eliminate_constant_term (op1, &offset);
/* ??? These costs need rethinking... */
if (GET_CODE (op1) == LABEL_REF)
return 3;
if (GET_CODE (op1) != SYMBOL_REF)
return 4;
if (INTVAL (offset) == 0)
return 3;
return 4;
}
fatal_insn ("c4x_address_cost: Invalid addressing mode", addr);
}
break;
case PLUS:
{
register rtx op0 = XEXP (addr, 0);
register rtx op1 = XEXP (addr, 1);
if (GET_CODE (op0) != REG)
break;
switch (GET_CODE (op1))
{
default:
break;
case REG:
/* This cost for REG+REG must be greater than the cost
for REG if we want autoincrement addressing modes. */
return 2;
case CONST_INT:
/* The following tries to improve GIV combination
in strength reduce but appears not to help. */
if (TARGET_DEVEL && IS_UINT5_CONST (INTVAL (op1)))
return 1;
if (IS_DISP1_CONST (INTVAL (op1)))
return 1;
if (! TARGET_C3X && IS_UINT5_CONST (INTVAL (op1)))
return 2;
return 3;
}
}
default:
break;
}
return 4;
}
rtx
c4x_gen_compare_reg (enum rtx_code code, rtx x, rtx y)
{
enum machine_mode mode = SELECT_CC_MODE (code, x, y);
rtx cc_reg;
if (mode == CC_NOOVmode
&& (code == LE || code == GE || code == LT || code == GT))
return NULL_RTX;
cc_reg = gen_rtx_REG (mode, ST_REGNO);
emit_insn (gen_rtx_SET (VOIDmode, cc_reg,
gen_rtx_COMPARE (mode, x, y)));
return cc_reg;
}
char *
c4x_output_cbranch (const char *form, rtx seq)
{
int delayed = 0;
int annultrue = 0;
int annulfalse = 0;
rtx delay;
char *cp;
static char str[100];
if (final_sequence)
{
delay = XVECEXP (final_sequence, 0, 1);
delayed = ! INSN_ANNULLED_BRANCH_P (seq);
annultrue = INSN_ANNULLED_BRANCH_P (seq) && ! INSN_FROM_TARGET_P (delay);
annulfalse = INSN_ANNULLED_BRANCH_P (seq) && INSN_FROM_TARGET_P (delay);
}
strcpy (str, form);
cp = &str [strlen (str)];
if (delayed)
{
*cp++ = '%';
*cp++ = '#';
}
if (annultrue)
{
*cp++ = 'a';
*cp++ = 't';
}
if (annulfalse)
{
*cp++ = 'a';
*cp++ = 'f';
}
*cp++ = '\t';
*cp++ = '%';
*cp++ = 'l';
*cp++ = '1';
*cp = 0;
return str;
}
void
c4x_print_operand (FILE *file, rtx op, int letter)
{
rtx op1;
enum rtx_code code;
switch (letter)
{
case '#': /* Delayed. */
if (final_sequence)
fprintf (file, "d");
return;
}
code = GET_CODE (op);
switch (letter)
{
case 'A': /* Direct address. */
if (code == CONST_INT || code == SYMBOL_REF || code == CONST)
fprintf (file, "@");
break;
case 'H': /* Sethi. */
output_addr_const (file, op);
return;
case 'I': /* Reversed condition. */
code = reverse_condition (code);
break;
case 'L': /* Log 2 of constant. */
if (code != CONST_INT)
fatal_insn ("c4x_print_operand: %%L inconsistency", op);
fprintf (file, "%d", exact_log2 (INTVAL (op)));
return;
case 'N': /* Ones complement of small constant. */
if (code != CONST_INT)
fatal_insn ("c4x_print_operand: %%N inconsistency", op);
fprintf (file, HOST_WIDE_INT_PRINT_DEC, ~INTVAL (op));
return;
case 'K': /* Generate ldp(k) if direct address. */
if (! TARGET_SMALL
&& code == MEM
&& GET_CODE (XEXP (op, 0)) == LO_SUM
&& GET_CODE (XEXP (XEXP (op, 0), 0)) == REG
&& REGNO (XEXP (XEXP (op, 0), 0)) == DP_REGNO)
{
op1 = XEXP (XEXP (op, 0), 1);
if (GET_CODE(op1) == CONST_INT || GET_CODE(op1) == SYMBOL_REF)
{
fprintf (file, "\t%s\t@", TARGET_C3X ? "ldp" : "ldpk");
output_address (XEXP (adjust_address (op, VOIDmode, 1), 0));
fprintf (file, "\n");
}
}
return;
case 'M': /* Generate ldp(k) if direct address. */
if (! TARGET_SMALL /* Only used in asm statements. */
&& code == MEM
&& (GET_CODE (XEXP (op, 0)) == CONST
|| GET_CODE (XEXP (op, 0)) == SYMBOL_REF))
{
fprintf (file, "%s\t@", TARGET_C3X ? "ldp" : "ldpk");
output_address (XEXP (op, 0));
fprintf (file, "\n\t");
}
return;
case 'O': /* Offset address. */
if (code == MEM && c4x_autoinc_operand (op, Pmode))
break;
else if (code == MEM)
output_address (XEXP (adjust_address (op, VOIDmode, 1), 0));
else if (code == REG)
fprintf (file, "%s", reg_names[REGNO (op) + 1]);
else
fatal_insn ("c4x_print_operand: %%O inconsistency", op);
return;
case 'C': /* Call. */
break;
case 'U': /* Call/callu. */
if (code != SYMBOL_REF)
fprintf (file, "u");
return;
default:
break;
}
switch (code)
{
case REG:
if (GET_MODE_CLASS (GET_MODE (op)) == MODE_FLOAT
&& ! TARGET_TI)
fprintf (file, "%s", float_reg_names[REGNO (op)]);
else
fprintf (file, "%s", reg_names[REGNO (op)]);
break;
case MEM:
output_address (XEXP (op, 0));
break;
case CONST_DOUBLE:
{
char str[64];
real_to_decimal (str, CONST_DOUBLE_REAL_VALUE (op),
sizeof (str), 0, 1);
fprintf (file, "%s", str);
}
break;
case CONST_INT:
fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (op));
break;
case NE:
fprintf (file, "ne");
break;
case EQ:
fprintf (file, "eq");
break;
case GE:
fprintf (file, "ge");
break;
case GT:
fprintf (file, "gt");
break;
case LE:
fprintf (file, "le");
break;
case LT:
fprintf (file, "lt");
break;
case GEU:
fprintf (file, "hs");
break;
case GTU:
fprintf (file, "hi");
break;
case LEU:
fprintf (file, "ls");
break;
case LTU:
fprintf (file, "lo");
break;
case SYMBOL_REF:
output_addr_const (file, op);
break;
case CONST:
output_addr_const (file, XEXP (op, 0));
break;
case CODE_LABEL:
break;
default:
fatal_insn ("c4x_print_operand: Bad operand case", op);
break;
}
}
void
c4x_print_operand_address (FILE *file, rtx addr)
{
switch (GET_CODE (addr))
{
case REG:
fprintf (file, "*%s", reg_names[REGNO (addr)]);
break;
case PRE_DEC:
fprintf (file, "*--%s", reg_names[REGNO (XEXP (addr, 0))]);
break;
case POST_INC:
fprintf (file, "*%s++", reg_names[REGNO (XEXP (addr, 0))]);
break;
case POST_MODIFY:
{
rtx op0 = XEXP (XEXP (addr, 1), 0);
rtx op1 = XEXP (XEXP (addr, 1), 1);
if (GET_CODE (XEXP (addr, 1)) == PLUS && REG_P (op1))
fprintf (file, "*%s++(%s)", reg_names[REGNO (op0)],
reg_names[REGNO (op1)]);
else if (GET_CODE (XEXP (addr, 1)) == PLUS && INTVAL (op1) > 0)
fprintf (file, "*%s++(" HOST_WIDE_INT_PRINT_DEC ")",
reg_names[REGNO (op0)], INTVAL (op1));
else if (GET_CODE (XEXP (addr, 1)) == PLUS && INTVAL (op1) < 0)
fprintf (file, "*%s--(" HOST_WIDE_INT_PRINT_DEC ")",
reg_names[REGNO (op0)], -INTVAL (op1));
else if (GET_CODE (XEXP (addr, 1)) == MINUS && REG_P (op1))
fprintf (file, "*%s--(%s)", reg_names[REGNO (op0)],
reg_names[REGNO (op1)]);
else
fatal_insn ("c4x_print_operand_address: Bad post_modify", addr);
}
break;
case PRE_MODIFY:
{
rtx op0 = XEXP (XEXP (addr, 1), 0);
rtx op1 = XEXP (XEXP (addr, 1), 1);
if (GET_CODE (XEXP (addr, 1)) == PLUS && REG_P (op1))
fprintf (file, "*++%s(%s)", reg_names[REGNO (op0)],
reg_names[REGNO (op1)]);
else if (GET_CODE (XEXP (addr, 1)) == PLUS && INTVAL (op1) > 0)
fprintf (file, "*++%s(" HOST_WIDE_INT_PRINT_DEC ")",
reg_names[REGNO (op0)], INTVAL (op1));
else if (GET_CODE (XEXP (addr, 1)) == PLUS && INTVAL (op1) < 0)
fprintf (file, "*--%s(" HOST_WIDE_INT_PRINT_DEC ")",
reg_names[REGNO (op0)], -INTVAL (op1));
else if (GET_CODE (XEXP (addr, 1)) == MINUS && REG_P (op1))
fprintf (file, "*--%s(%s)", reg_names[REGNO (op0)],
reg_names[REGNO (op1)]);
else
fatal_insn ("c4x_print_operand_address: Bad pre_modify", addr);
}
break;
case PRE_INC:
fprintf (file, "*++%s", reg_names[REGNO (XEXP (addr, 0))]);
break;
case POST_DEC:
fprintf (file, "*%s--", reg_names[REGNO (XEXP (addr, 0))]);
break;
case PLUS: /* Indirect with displacement. */
{
rtx op0 = XEXP (addr, 0);
rtx op1 = XEXP (addr, 1);
if (REG_P (op0))
{
if (REG_P (op1))
{
if (IS_INDEX_REG (op0))
{
fprintf (file, "*+%s(%s)",
reg_names[REGNO (op1)],
reg_names[REGNO (op0)]); /* Index + base. */
}
else
{
fprintf (file, "*+%s(%s)",
reg_names[REGNO (op0)],
reg_names[REGNO (op1)]); /* Base + index. */
}
}
else if (INTVAL (op1) < 0)
{
fprintf (file, "*-%s(" HOST_WIDE_INT_PRINT_DEC ")",
reg_names[REGNO (op0)],
-INTVAL (op1)); /* Base - displacement. */
}
else
{
fprintf (file, "*+%s(" HOST_WIDE_INT_PRINT_DEC ")",
reg_names[REGNO (op0)],
INTVAL (op1)); /* Base + displacement. */
}
}
else
fatal_insn ("c4x_print_operand_address: Bad operand case", addr);
}
break;
case LO_SUM:
{
rtx op0 = XEXP (addr, 0);
rtx op1 = XEXP (addr, 1);
if (REG_P (op0) && REGNO (op0) == DP_REGNO)
c4x_print_operand_address (file, op1);
else
fatal_insn ("c4x_print_operand_address: Bad operand case", addr);
}
break;
case CONST:
case SYMBOL_REF:
case LABEL_REF:
fprintf (file, "@");
output_addr_const (file, addr);
break;
/* We shouldn't access CONST_INT addresses. */
case CONST_INT:
default:
fatal_insn ("c4x_print_operand_address: Bad operand case", addr);
break;
}
}
/* Return nonzero if the floating point operand will fit
in the immediate field. */
static int
c4x_immed_float_p (rtx op)
{
long convval[2];
int exponent;
REAL_VALUE_TYPE r;
REAL_VALUE_FROM_CONST_DOUBLE (r, op);
if (GET_MODE (op) == HFmode)
REAL_VALUE_TO_TARGET_DOUBLE (r, convval);
else
{
REAL_VALUE_TO_TARGET_SINGLE (r, convval[0]);
convval[1] = 0;
}
/* Sign extend exponent. */
exponent = (((convval[0] >> 24) & 0xff) ^ 0x80) - 0x80;
if (exponent == -128)
return 1; /* 0.0 */
if ((convval[0] & 0x00000fff) != 0 || convval[1] != 0)
return 0; /* Precision doesn't fit. */
return (exponent <= 7) /* Positive exp. */
&& (exponent >= -7); /* Negative exp. */
}
/* The last instruction in a repeat block cannot be a Bcond, DBcound,
CALL, CALLCond, TRAPcond, RETIcond, RETScond, IDLE, RPTB or RPTS.
None of the last four instructions from the bottom of the block can
be a BcondD, BRD, DBcondD, RPTBD, LAJ, LAJcond, LATcond, BcondAF,
BcondAT or RETIcondD.
This routine scans the four previous insns for a jump insn, and if
one is found, returns 1 so that we bung in a nop instruction.
This simple minded strategy will add a nop, when it may not
be required. Say when there is a JUMP_INSN near the end of the
block that doesn't get converted into a delayed branch.
Note that we cannot have a call insn, since we don't generate
repeat loops with calls in them (although I suppose we could, but
there's no benefit.)
!!! FIXME. The rptb_top insn may be sucked into a SEQUENCE. */
int
c4x_rptb_nop_p (rtx insn)
{
rtx start_label;
int i;
/* Extract the start label from the jump pattern (rptb_end). */
start_label = XEXP (XEXP (SET_SRC (XVECEXP (PATTERN (insn), 0, 0)), 1), 0);
/* If there is a label at the end of the loop we must insert
a NOP. */
do {
insn = previous_insn (insn);
} while (GET_CODE (insn) == NOTE
|| GET_CODE (insn) == USE
|| GET_CODE (insn) == CLOBBER);
if (GET_CODE (insn) == CODE_LABEL)
return 1;
for (i = 0; i < 4; i++)
{
/* Search back for prev non-note and non-label insn. */
while (GET_CODE (insn) == NOTE || GET_CODE (insn) == CODE_LABEL
|| GET_CODE (insn) == USE || GET_CODE (insn) == CLOBBER)
{
if (insn == start_label)
return i == 0;
insn = previous_insn (insn);
};
/* If we have a jump instruction we should insert a NOP. If we
hit repeat block top we should only insert a NOP if the loop
is empty. */
if (GET_CODE (insn) == JUMP_INSN)
return 1;
insn = previous_insn (insn);
}
return 0;
}
/* The C4x looping instruction needs to be emitted at the top of the
loop. Emitting the true RTL for a looping instruction at the top of
the loop can cause problems with flow analysis. So instead, a dummy
doloop insn is emitted at the end of the loop. This routine checks
for the presence of this doloop insn and then searches back to the
top of the loop, where it inserts the true looping insn (provided
there are no instructions in the loop which would cause problems).
Any additional labels can be emitted at this point. In addition, if
the desired loop count register was not allocated, this routine does
nothing.
Before we can create a repeat block looping instruction we have to
verify that there are no jumps outside the loop and no jumps outside
the loop go into this loop. This can happen in the basic blocks reorder
pass. The C4x cpu can not handle this. */
static int
c4x_label_ref_used_p (rtx x, rtx code_label)
{
enum rtx_code code;
int i, j;
const char *fmt;
if (x == 0)
return 0;
code = GET_CODE (x);
if (code == LABEL_REF)
return INSN_UID (XEXP (x,0)) == INSN_UID (code_label);
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
{
if (c4x_label_ref_used_p (XEXP (x, i), code_label))
return 1;
}
else if (fmt[i] == 'E')
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
if (c4x_label_ref_used_p (XVECEXP (x, i, j), code_label))
return 1;
}
return 0;
}
static int
c4x_rptb_valid_p (rtx insn, rtx start_label)
{
rtx end = insn;
rtx start;
rtx tmp;
/* Find the start label. */
for (; insn; insn = PREV_INSN (insn))
if (insn == start_label)
break;
/* Note found then we can not use a rptb or rpts. The label was
probably moved by the basic block reorder pass. */
if (! insn)
return 0;
start = insn;
/* If any jump jumps inside this block then we must fail. */
for (insn = PREV_INSN (start); insn; insn = PREV_INSN (insn))
{
if (GET_CODE (insn) == CODE_LABEL)
{
for (tmp = NEXT_INSN (start); tmp != end; tmp = NEXT_INSN(tmp))
if (GET_CODE (tmp) == JUMP_INSN
&& c4x_label_ref_used_p (tmp, insn))
return 0;
}
}
for (insn = NEXT_INSN (end); insn; insn = NEXT_INSN (insn))
{
if (GET_CODE (insn) == CODE_LABEL)
{
for (tmp = NEXT_INSN (start); tmp != end; tmp = NEXT_INSN(tmp))
if (GET_CODE (tmp) == JUMP_INSN
&& c4x_label_ref_used_p (tmp, insn))
return 0;
}
}
/* If any jump jumps outside this block then we must fail. */
for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
{
if (GET_CODE (insn) == CODE_LABEL)
{
for (tmp = NEXT_INSN (end); tmp; tmp = NEXT_INSN(tmp))
if (GET_CODE (tmp) == JUMP_INSN
&& c4x_label_ref_used_p (tmp, insn))
return 0;
for (tmp = PREV_INSN (start); tmp; tmp = PREV_INSN(tmp))
if (GET_CODE (tmp) == JUMP_INSN
&& c4x_label_ref_used_p (tmp, insn))
return 0;
}
}
/* All checks OK. */
return 1;
}
void
c4x_rptb_insert (rtx insn)
{
rtx end_label;
rtx start_label;
rtx new_start_label;
rtx count_reg;
/* If the count register has not been allocated to RC, say if
there is a movmem pattern in the loop, then do not insert a
RPTB instruction. Instead we emit a decrement and branch
at the end of the loop. */
count_reg = XEXP (XEXP (SET_SRC (XVECEXP (PATTERN (insn), 0, 0)), 0), 0);
if (REGNO (count_reg) != RC_REGNO)
return;
/* Extract the start label from the jump pattern (rptb_end). */
start_label = XEXP (XEXP (SET_SRC (XVECEXP (PATTERN (insn), 0, 0)), 1), 0);
if (! c4x_rptb_valid_p (insn, start_label))
{
/* We can not use the rptb insn. Replace it so reorg can use
the delay slots of the jump insn. */
emit_insn_before (gen_addqi3 (count_reg, count_reg, constm1_rtx), insn);
emit_insn_before (gen_cmpqi (count_reg, const0_rtx), insn);
emit_insn_before (gen_bge (start_label), insn);
LABEL_NUSES (start_label)++;
delete_insn (insn);
return;
}
end_label = gen_label_rtx ();
LABEL_NUSES (end_label)++;
emit_label_after (end_label, insn);
new_start_label = gen_label_rtx ();
LABEL_NUSES (new_start_label)++;
for (; insn; insn = PREV_INSN (insn))
{
if (insn == start_label)
break;
if (GET_CODE (insn) == JUMP_INSN &&
JUMP_LABEL (insn) == start_label)
redirect_jump (insn, new_start_label, 0);
}
if (! insn)
fatal_insn ("c4x_rptb_insert: Cannot find start label", start_label);
emit_label_after (new_start_label, insn);
if (TARGET_RPTS && c4x_rptb_rpts_p (PREV_INSN (insn), 0))
emit_insn_after (gen_rpts_top (new_start_label, end_label), insn);
else
emit_insn_after (gen_rptb_top (new_start_label, end_label), insn);
if (LABEL_NUSES (start_label) == 0)
delete_insn (start_label);
}
/* We need to use direct addressing for large constants and addresses
that cannot fit within an instruction. We must check for these
after after the final jump optimization pass, since this may
introduce a local_move insn for a SYMBOL_REF. This pass
must come before delayed branch slot filling since it can generate
additional instructions.
This function also fixes up RTPB style loops that didn't get RC
allocated as the loop counter. */
static void
c4x_reorg (void)
{
rtx insn;
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
{
/* Look for insn. */
if (INSN_P (insn))
{
int insn_code_number;
rtx old;
insn_code_number = recog_memoized (insn);
if (insn_code_number < 0)
continue;
/* Insert the RTX for RPTB at the top of the loop
and a label at the end of the loop. */
if (insn_code_number == CODE_FOR_rptb_end)
c4x_rptb_insert(insn);
/* We need to split the insn here. Otherwise the calls to
force_const_mem will not work for load_immed_address. */
old = insn;
/* Don't split the insn if it has been deleted. */
if (! INSN_DELETED_P (old))
insn = try_split (PATTERN(old), old, 1);
/* When not optimizing, the old insn will be still left around
with only the 'deleted' bit set. Transform it into a note
to avoid confusion of subsequent processing. */
if (INSN_DELETED_P (old))
{
PUT_CODE (old, NOTE);
NOTE_LINE_NUMBER (old) = NOTE_INSN_DELETED;
NOTE_SOURCE_FILE (old) = 0;
}
}
}
}
static int
c4x_a_register (rtx op)
{
return REG_P (op) && IS_ADDR_OR_PSEUDO_REG (op);
}
static int
c4x_x_register (rtx op)
{
return REG_P (op) && IS_INDEX_OR_PSEUDO_REG (op);
}
static int
c4x_immed_int_constant (rtx op)
{
if (GET_CODE (op) != CONST_INT)
return 0;
return GET_MODE (op) == VOIDmode
|| GET_MODE_CLASS (GET_MODE (op)) == MODE_INT
|| GET_MODE_CLASS (GET_MODE (op)) == MODE_PARTIAL_INT;
}
static int
c4x_immed_float_constant (rtx op)
{
if (GET_CODE (op) != CONST_DOUBLE)
return 0;
/* Do not check if the CONST_DOUBLE is in memory. If there is a MEM
present this only means that a MEM rtx has been generated. It does
not mean the rtx is really in memory. */
return GET_MODE (op) == QFmode || GET_MODE (op) == HFmode;
}
int
c4x_shiftable_constant (rtx op)
{
int i;
int mask;
int val = INTVAL (op);
for (i = 0; i < 16; i++)
{
if (val & (1 << i))
break;
}
mask = ((0xffff >> i) << 16) | 0xffff;
if (IS_INT16_CONST (val & (1 << 31) ? (val >> i) | ~mask
: (val >> i) & mask))
return i;
return -1;
}
int
c4x_H_constant (rtx op)
{
return c4x_immed_float_constant (op) && c4x_immed_float_p (op);
}
int
c4x_I_constant (rtx op)
{
return c4x_immed_int_constant (op) && IS_INT16_CONST (INTVAL (op));
}
int
c4x_J_constant (rtx op)
{
if (TARGET_C3X)
return 0;
return c4x_immed_int_constant (op) && IS_INT8_CONST (INTVAL (op));
}
static int
c4x_K_constant (rtx op)
{
if (TARGET_C3X || ! c4x_immed_int_constant (op))
return 0;
return IS_INT5_CONST (INTVAL (op));
}
int
c4x_L_constant (rtx op)
{
return c4x_immed_int_constant (op) && IS_UINT16_CONST (INTVAL (op));
}
static int
c4x_N_constant (rtx op)
{
return c4x_immed_int_constant (op) && IS_NOT_UINT16_CONST (INTVAL (op));
}
static int
c4x_O_constant (rtx op)
{
return c4x_immed_int_constant (op) && IS_HIGH_CONST (INTVAL (op));
}
/* The constraints do not have to check the register class,
except when needed to discriminate between the constraints.
The operand has been checked by the predicates to be valid. */
/* ARx + 9-bit signed const or IRn
*ARx, *+ARx(n), *-ARx(n), *+ARx(IRn), *-Arx(IRn) for -256 < n < 256
We don't include the pre/post inc/dec forms here since
they are handled by the <> constraints. */
int
c4x_Q_constraint (rtx op)
{
enum machine_mode mode = GET_MODE (op);
if (GET_CODE (op) != MEM)
return 0;
op = XEXP (op, 0);
switch (GET_CODE (op))
{
case REG:
return 1;
case PLUS:
{
rtx op0 = XEXP (op, 0);
rtx op1 = XEXP (op, 1);
if (! REG_P (op0))
return 0;
if (REG_P (op1))
return 1;
if (GET_CODE (op1) != CONST_INT)
return 0;
/* HImode and HFmode must be offsettable. */
if (mode == HImode || mode == HFmode)
return IS_DISP8_OFF_CONST (INTVAL (op1));
return IS_DISP8_CONST (INTVAL (op1));
}
break;
default:
break;
}
return 0;
}
/* ARx + 5-bit unsigned const
*ARx, *+ARx(n) for n < 32. */
int
c4x_R_constraint (rtx op)
{
enum machine_mode mode = GET_MODE (op);
if (TARGET_C3X)
return 0;
if (GET_CODE (op) != MEM)
return 0;
op = XEXP (op, 0);
switch (GET_CODE (op))
{
case REG:
return 1;
case PLUS:
{
rtx op0 = XEXP (op, 0);
rtx op1 = XEXP (op, 1);
if (! REG_P (op0))
return 0;
if (GET_CODE (op1) != CONST_INT)
return 0;
/* HImode and HFmode must be offsettable. */
if (mode == HImode || mode == HFmode)
return IS_UINT5_CONST (INTVAL (op1) + 1);
return IS_UINT5_CONST (INTVAL (op1));
}
break;
default:
break;
}
return 0;
}
static int
c4x_R_indirect (rtx op)
{
enum machine_mode mode = GET_MODE (op);
if (TARGET_C3X || GET_CODE (op) != MEM)
return 0;
op = XEXP (op, 0);
switch (GET_CODE (op))
{
case REG:
return IS_ADDR_OR_PSEUDO_REG (op);
case PLUS:
{
rtx op0 = XEXP (op, 0);
rtx op1 = XEXP (op, 1);
/* HImode and HFmode must be offsettable. */
if (mode == HImode || mode == HFmode)
return IS_ADDR_OR_PSEUDO_REG (op0)
&& GET_CODE (op1) == CONST_INT
&& IS_UINT5_CONST (INTVAL (op1) + 1);
return REG_P (op0)
&& IS_ADDR_OR_PSEUDO_REG (op0)
&& GET_CODE (op1) == CONST_INT
&& IS_UINT5_CONST (INTVAL (op1));
}
break;
default:
break;
}
return 0;
}
/* ARx + 1-bit unsigned const or IRn
*ARx, *+ARx(1), *-ARx(1), *+ARx(IRn), *-Arx(IRn)
We don't include the pre/post inc/dec forms here since
they are handled by the <> constraints. */
int
c4x_S_constraint (rtx op)
{
enum machine_mode mode = GET_MODE (op);
if (GET_CODE (op) != MEM)
return 0;
op = XEXP (op, 0);
switch (GET_CODE (op))
{
case REG:
return 1;
case PRE_MODIFY:
case POST_MODIFY:
{
rtx op0 = XEXP (op, 0);
rtx op1 = XEXP (op, 1);
if ((GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS)
|| (op0 != XEXP (op1, 0)))
return 0;
op0 = XEXP (op1, 0);
op1 = XEXP (op1, 1);
return REG_P (op0) && REG_P (op1);
/* Pre or post_modify with a displacement of 0 or 1
should not be generated. */
}
break;
case PLUS:
{
rtx op0 = XEXP (op, 0);
rtx op1 = XEXP (op, 1);
if (!REG_P (op0))
return 0;
if (REG_P (op1))
return 1;
if (GET_CODE (op1) != CONST_INT)
return 0;
/* HImode and HFmode must be offsettable. */
if (mode == HImode || mode == HFmode)
return IS_DISP1_OFF_CONST (INTVAL (op1));
return IS_DISP1_CONST (INTVAL (op1));
}
break;
default:
break;
}
return 0;
}
static int
c4x_S_indirect (rtx op)
{
enum machine_mode mode = GET_MODE (op);
if (GET_CODE (op) != MEM)
return 0;
op = XEXP (op, 0);
switch (GET_CODE (op))
{
case PRE_DEC:
case POST_DEC:
if (mode != QImode && mode != QFmode)
return 0;
case PRE_INC:
case POST_INC:
op = XEXP (op, 0);
case REG:
return IS_ADDR_OR_PSEUDO_REG (op);
case PRE_MODIFY:
case POST_MODIFY:
{
rtx op0 = XEXP (op, 0);
rtx op1 = XEXP (op, 1);
if (mode != QImode && mode != QFmode)
return 0;
if ((GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS)
|| (op0 != XEXP (op1, 0)))
return 0;
op0 = XEXP (op1, 0);
op1 = XEXP (op1, 1);
return REG_P (op0) && IS_ADDR_OR_PSEUDO_REG (op0)
&& REG_P (op1) && IS_INDEX_OR_PSEUDO_REG (op1);
/* Pre or post_modify with a displacement of 0 or 1
should not be generated. */
}
case PLUS:
{
rtx op0 = XEXP (op, 0);
rtx op1 = XEXP (op, 1);
if (REG_P (op0))
{
/* HImode and HFmode must be offsettable. */
if (mode == HImode || mode == HFmode)
return IS_ADDR_OR_PSEUDO_REG (op0)
&& GET_CODE (op1) == CONST_INT
&& IS_DISP1_OFF_CONST (INTVAL (op1));
if (REG_P (op1))
return (IS_INDEX_OR_PSEUDO_REG (op1)
&& IS_ADDR_OR_PSEUDO_REG (op0))
|| (IS_ADDR_OR_PSEUDO_REG (op1)
&& IS_INDEX_OR_PSEUDO_REG (op0));
return IS_ADDR_OR_PSEUDO_REG (op0)
&& GET_CODE (op1) == CONST_INT
&& IS_DISP1_CONST (INTVAL (op1));
}
}
break;
default:
break;
}
return 0;
}
/* Direct memory operand. */
int
c4x_T_constraint (rtx op)
{
if (GET_CODE (op) != MEM)
return 0;
op = XEXP (op, 0);
if (GET_CODE (op) != LO_SUM)
{
/* Allow call operands. */
return GET_CODE (op) == SYMBOL_REF
&& GET_MODE (op) == Pmode
&& SYMBOL_REF_FUNCTION_P (op);
}
/* HImode and HFmode are not offsettable. */
if (GET_MODE (op) == HImode || GET_CODE (op) == HFmode)
return 0;
if ((GET_CODE (XEXP (op, 0)) == REG)
&& (REGNO (XEXP (op, 0)) == DP_REGNO))
return c4x_U_constraint (XEXP (op, 1));
return 0;
}
/* Symbolic operand. */
int
c4x_U_constraint (rtx op)
{
/* Don't allow direct addressing to an arbitrary constant. */
return GET_CODE (op) == CONST
|| GET_CODE (op) == SYMBOL_REF
|| GET_CODE (op) == LABEL_REF;
}
int
c4x_autoinc_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
if (GET_CODE (op) == MEM)
{
enum rtx_code code = GET_CODE (XEXP (op, 0));
if (code == PRE_INC
|| code == PRE_DEC
|| code == POST_INC
|| code == POST_DEC
|| code == PRE_MODIFY
|| code == POST_MODIFY
)
return 1;
}
return 0;
}
/* Match any operand. */
int
any_operand (register rtx op ATTRIBUTE_UNUSED,
enum machine_mode mode ATTRIBUTE_UNUSED)
{
return 1;
}
/* Nonzero if OP is a floating point value with value 0.0. */
int
fp_zero_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
REAL_VALUE_TYPE r;
if (GET_CODE (op) != CONST_DOUBLE)
return 0;
REAL_VALUE_FROM_CONST_DOUBLE (r, op);
return REAL_VALUES_EQUAL (r, dconst0);
}
int
const_operand (register rtx op, register enum machine_mode mode)
{
switch (mode)
{
case QFmode:
case HFmode:
if (GET_CODE (op) != CONST_DOUBLE
|| GET_MODE (op) != mode
|| GET_MODE_CLASS (mode) != MODE_FLOAT)
return 0;
return c4x_immed_float_p (op);
#if Pmode != QImode
case Pmode:
#endif
case QImode:
if (GET_CODE (op) != CONST_INT
|| (GET_MODE (op) != VOIDmode && GET_MODE (op) != mode)
|| GET_MODE_CLASS (mode) != MODE_INT)
return 0;
return IS_HIGH_CONST (INTVAL (op)) || IS_INT16_CONST (INTVAL (op));
case HImode:
return 0;
default:
return 0;
}
}
int
stik_const_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
return c4x_K_constant (op);
}
int
not_const_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
return c4x_N_constant (op);
}
int
reg_operand (rtx op, enum machine_mode mode)
{
if (GET_CODE (op) == SUBREG
&& GET_MODE (op) == QFmode)
return 0;
return register_operand (op, mode);
}
int
mixed_subreg_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
/* Allow (subreg:HF (reg:HI)) that be generated for a union of an
int and a long double. */
if (GET_CODE (op) == SUBREG
&& (GET_MODE (op) == QFmode)
&& (GET_MODE (SUBREG_REG (op)) == QImode
|| GET_MODE (SUBREG_REG (op)) == HImode))
return 1;
return 0;
}
int
reg_imm_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
if (REG_P (op) || CONSTANT_P (op))
return 1;
return 0;
}
int
not_modify_reg (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
if (REG_P (op) || CONSTANT_P (op))
return 1;
if (GET_CODE (op) != MEM)
return 0;
op = XEXP (op, 0);
switch (GET_CODE (op))
{
case REG:
return 1;
case PLUS:
{
rtx op0 = XEXP (op, 0);
rtx op1 = XEXP (op, 1);
if (! REG_P (op0))
return 0;
if (REG_P (op1) || GET_CODE (op1) == CONST_INT)
return 1;
}
case LO_SUM:
{
rtx op0 = XEXP (op, 0);
if (REG_P (op0) && REGNO (op0) == DP_REGNO)
return 1;
}
break;
case CONST:
case SYMBOL_REF:
case LABEL_REF:
return 1;
default:
break;
}
return 0;
}
int
not_rc_reg (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
if (REG_P (op) && REGNO (op) == RC_REGNO)
return 0;
return 1;
}
/* Extended precision register R0-R1. */
int
r0r1_reg_operand (rtx op, enum machine_mode mode)
{
if (! reg_operand (op, mode))
return 0;
if (GET_CODE (op) == SUBREG)
op = SUBREG_REG (op);
return REG_P (op) && IS_R0R1_OR_PSEUDO_REG (op);
}
/* Extended precision register R2-R3. */
int
r2r3_reg_operand (rtx op, enum machine_mode mode)
{
if (! reg_operand (op, mode))
return 0;
if (GET_CODE (op) == SUBREG)
op = SUBREG_REG (op);
return REG_P (op) && IS_R2R3_OR_PSEUDO_REG (op);
}
/* Low extended precision register R0-R7. */
int
ext_low_reg_operand (rtx op, enum machine_mode mode)
{
if (! reg_operand (op, mode))
return 0;
if (GET_CODE (op) == SUBREG)
op = SUBREG_REG (op);
return REG_P (op) && IS_EXT_LOW_OR_PSEUDO_REG (op);
}
/* Extended precision register. */
int
ext_reg_operand (rtx op, enum machine_mode mode)
{
if (! reg_operand (op, mode))
return 0;
if (GET_CODE (op) == SUBREG)
op = SUBREG_REG (op);
if (! REG_P (op))
return 0;
return IS_EXT_OR_PSEUDO_REG (op);
}
/* Standard precision register. */
int
std_reg_operand (rtx op, enum machine_mode mode)
{
if (! reg_operand (op, mode))
return 0;
if (GET_CODE (op) == SUBREG)
op = SUBREG_REG (op);
return REG_P (op) && IS_STD_OR_PSEUDO_REG (op);
}
/* Standard precision or normal register. */
int
std_or_reg_operand (rtx op, enum machine_mode mode)
{
if (reload_in_progress)
return std_reg_operand (op, mode);
return reg_operand (op, mode);
}
/* Address register. */
int
addr_reg_operand (rtx op, enum machine_mode mode)
{
if (! reg_operand (op, mode))
return 0;
return c4x_a_register (op);
}
/* Index register. */
int
index_reg_operand (rtx op, enum machine_mode mode)
{
if (! reg_operand (op, mode))
return 0;
if (GET_CODE (op) == SUBREG)
op = SUBREG_REG (op);
return c4x_x_register (op);
}
/* DP register. */
int
dp_reg_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
return REG_P (op) && IS_DP_OR_PSEUDO_REG (op);
}
/* SP register. */
int
sp_reg_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
return REG_P (op) && IS_SP_OR_PSEUDO_REG (op);
}
/* ST register. */
int
st_reg_operand (register rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
return REG_P (op) && IS_ST_OR_PSEUDO_REG (op);
}
/* RC register. */
int
rc_reg_operand (register rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
return REG_P (op) && IS_RC_OR_PSEUDO_REG (op);
}
int
call_address_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
return (REG_P (op) || symbolic_address_operand (op, mode));
}
/* Symbolic address operand. */
int
symbolic_address_operand (register rtx op,
enum machine_mode mode ATTRIBUTE_UNUSED)
{
switch (GET_CODE (op))
{
case CONST:
case SYMBOL_REF:
case LABEL_REF:
return 1;
default:
return 0;
}
}
/* Check dst operand of a move instruction. */
int
dst_operand (rtx op, enum machine_mode mode)
{
if (GET_CODE (op) == SUBREG
&& mixed_subreg_operand (op, mode))
return 0;
if (REG_P (op))
return reg_operand (op, mode);
return nonimmediate_operand (op, mode);
}
/* Check src operand of two operand arithmetic instructions. */
int
src_operand (rtx op, enum machine_mode mode)
{
if (GET_CODE (op) == SUBREG
&& mixed_subreg_operand (op, mode))
return 0;
if (REG_P (op))
return reg_operand (op, mode);
if (mode == VOIDmode)
mode = GET_MODE (op);
if (GET_CODE (op) == CONST_INT)
return (mode == QImode || mode == Pmode || mode == HImode)
&& c4x_I_constant (op);
/* We don't like CONST_DOUBLE integers. */
if (GET_CODE (op) == CONST_DOUBLE)
return c4x_H_constant (op);
/* Disallow symbolic addresses. Only the predicate
symbolic_address_operand will match these. */
if (GET_CODE (op) == SYMBOL_REF
|| GET_CODE (op) == LABEL_REF
|| GET_CODE (op) == CONST)
return 0;
/* If TARGET_LOAD_DIRECT_MEMS is nonzero, disallow direct memory
access to symbolic addresses. These operands will get forced
into a register and the movqi expander will generate a
HIGH/LO_SUM pair if TARGET_EXPOSE_LDP is nonzero. */
if (GET_CODE (op) == MEM
&& ((GET_CODE (XEXP (op, 0)) == SYMBOL_REF
|| GET_CODE (XEXP (op, 0)) == LABEL_REF
|| GET_CODE (XEXP (op, 0)) == CONST)))
return !TARGET_EXPOSE_LDP &&
! TARGET_LOAD_DIRECT_MEMS && GET_MODE (op) == mode;
return general_operand (op, mode);
}
int
src_hi_operand (rtx op, enum machine_mode mode)
{
if (c4x_O_constant (op))
return 1;
return src_operand (op, mode);
}
/* Check src operand of two operand logical instructions. */
int
lsrc_operand (rtx op, enum machine_mode mode)
{
if (mode == VOIDmode)
mode = GET_MODE (op);
if (mode != QImode && mode != Pmode)
fatal_insn ("mode not QImode", op);
if (GET_CODE (op) == CONST_INT)
return c4x_L_constant (op) || c4x_J_constant (op);
return src_operand (op, mode);
}
/* Check src operand of two operand tricky instructions. */
int
tsrc_operand (rtx op, enum machine_mode mode)
{
if (mode == VOIDmode)
mode = GET_MODE (op);
if (mode != QImode && mode != Pmode)
fatal_insn ("mode not QImode", op);
if (GET_CODE (op) == CONST_INT)
return c4x_L_constant (op) || c4x_N_constant (op) || c4x_J_constant (op);
return src_operand (op, mode);
}
/* Check src operand of two operand non immedidate instructions. */
int
nonimmediate_src_operand (rtx op, enum machine_mode mode)
{
if (GET_CODE (op) == CONST_INT || GET_CODE (op) == CONST_DOUBLE)
return 0;
return src_operand (op, mode);
}
/* Check logical src operand of two operand non immedidate instructions. */
int
nonimmediate_lsrc_operand (rtx op, enum machine_mode mode)
{
if (GET_CODE (op) == CONST_INT || GET_CODE (op) == CONST_DOUBLE)
return 0;
return lsrc_operand (op, mode);
}
int
reg_or_const_operand (rtx op, enum machine_mode mode)
{
return reg_operand (op, mode) || const_operand (op, mode);
}
/* Check for indirect operands allowable in parallel instruction. */
int
par_ind_operand (rtx op, enum machine_mode mode)
{
if (mode != VOIDmode && mode != GET_MODE (op))
return 0;
return c4x_S_indirect (op);
}
/* Check for operands allowable in parallel instruction. */
int
parallel_operand (rtx op, enum machine_mode mode)
{
return ext_low_reg_operand (op, mode) || par_ind_operand (op, mode);
}
static void
c4x_S_address_parse (rtx op, int *base, int *incdec, int *index, int *disp)
{
*base = 0;
*incdec = 0;
*index = 0;
*disp = 0;
if (GET_CODE (op) != MEM)
fatal_insn ("invalid indirect memory address", op);
op = XEXP (op, 0);
switch (GET_CODE (op))
{
case PRE_DEC:
*base = REGNO (XEXP (op, 0));
*incdec = 1;
*disp = -1;
return;
case POST_DEC:
*base = REGNO (XEXP (op, 0));
*incdec = 1;
*disp = 0;
return;
case PRE_INC:
*base = REGNO (XEXP (op, 0));
*incdec = 1;
*disp = 1;
return;
case POST_INC:
*base = REGNO (XEXP (op, 0));
*incdec = 1;
*disp = 0;
return;
case POST_MODIFY:
*base = REGNO (XEXP (op, 0));
if (REG_P (XEXP (XEXP (op, 1), 1)))
{
*index = REGNO (XEXP (XEXP (op, 1), 1));
*disp = 0; /* ??? */
}
else
*disp = INTVAL (XEXP (XEXP (op, 1), 1));
*incdec = 1;
return;
case PRE_MODIFY:
*base = REGNO (XEXP (op, 0));
if (REG_P (XEXP (XEXP (op, 1), 1)))
{
*index = REGNO (XEXP (XEXP (op, 1), 1));
*disp = 1; /* ??? */
}
else
*disp = INTVAL (XEXP (XEXP (op, 1), 1));
*incdec = 1;
return;
case REG:
*base = REGNO (op);
return;
case PLUS:
{
rtx op0 = XEXP (op, 0);
rtx op1 = XEXP (op, 1);
if (c4x_a_register (op0))
{
if (c4x_x_register (op1))
{
*base = REGNO (op0);
*index = REGNO (op1);
return;
}
else if ((GET_CODE (op1) == CONST_INT
&& IS_DISP1_CONST (INTVAL (op1))))
{
*base = REGNO (op0);
*disp = INTVAL (op1);
return;
}
}
else if (c4x_x_register (op0) && c4x_a_register (op1))
{
*base = REGNO (op1);
*index = REGNO (op0);
return;
}
}
/* Fall through. */
default:
fatal_insn ("invalid indirect (S) memory address", op);
}
}
int
c4x_address_conflict (rtx op0, rtx op1, int store0, int store1)
{
int base0;
int base1;
int incdec0;
int incdec1;
int index0;
int index1;
int disp0;
int disp1;
if (MEM_VOLATILE_P (op0) && MEM_VOLATILE_P (op1))
return 1;
c4x_S_address_parse (op0, &base0, &incdec0, &index0, &disp0);
c4x_S_address_parse (op1, &base1, &incdec1, &index1, &disp1);
if (store0 && store1)
{
/* If we have two stores in parallel to the same address, then
the C4x only executes one of the stores. This is unlikely to
cause problems except when writing to a hardware device such
as a FIFO since the second write will be lost. The user
should flag the hardware location as being volatile so that
we don't do this optimization. While it is unlikely that we
have an aliased address if both locations are not marked
volatile, it is probably safer to flag a potential conflict
if either location is volatile. */
if (! flag_argument_noalias)
{
if (MEM_VOLATILE_P (op0) || MEM_VOLATILE_P (op1))
return 1;
}
}
/* If have a parallel load and a store to the same address, the load
is performed first, so there is no conflict. Similarly, there is
no conflict if have parallel loads from the same address. */
/* Cannot use auto increment or auto decrement twice for same
base register. */
if (base0 == base1 && incdec0 && incdec0)
return 1;
/* It might be too confusing for GCC if we have use a base register
with a side effect and a memory reference using the same register
in parallel. */
if (! TARGET_DEVEL && base0 == base1 && (incdec0 || incdec1))
return 1;
/* We can not optimize the case where op1 and op2 refer to the same
address. */
if (base0 == base1 && disp0 == disp1 && index0 == index1)
return 1;
/* No conflict. */
return 0;
}
/* Check for while loop inside a decrement and branch loop. */
int
c4x_label_conflict (rtx insn, rtx jump, rtx db)
{
while (insn)
{
if (GET_CODE (insn) == CODE_LABEL)
{
if (CODE_LABEL_NUMBER (jump) == CODE_LABEL_NUMBER (insn))
return 1;
if (CODE_LABEL_NUMBER (db) == CODE_LABEL_NUMBER (insn))
return 0;
}
insn = PREV_INSN (insn);
}
return 1;
}
/* Validate combination of operands for parallel load/store instructions. */
int
valid_parallel_load_store (rtx *operands,
enum machine_mode mode ATTRIBUTE_UNUSED)
{
rtx op0 = operands[0];
rtx op1 = operands[1];
rtx op2 = operands[2];
rtx op3 = operands[3];
if (GET_CODE (op0) == SUBREG)
op0 = SUBREG_REG (op0);
if (GET_CODE (op1) == SUBREG)
op1 = SUBREG_REG (op1);
if (GET_CODE (op2) == SUBREG)
op2 = SUBREG_REG (op2);
if (GET_CODE (op3) == SUBREG)
op3 = SUBREG_REG (op3);
/* The patterns should only allow ext_low_reg_operand() or
par_ind_operand() operands. Thus of the 4 operands, only 2
should be REGs and the other 2 should be MEMs. */
/* This test prevents the multipack pass from using this pattern if
op0 is used as an index or base register in op2 or op3, since
this combination will require reloading. */
if (GET_CODE (op0) == REG
&& ((GET_CODE (op2) == MEM && reg_mentioned_p (op0, XEXP (op2, 0)))
|| (GET_CODE (op3) == MEM && reg_mentioned_p (op0, XEXP (op3, 0)))))
return 0;
/* LDI||LDI. */
if (GET_CODE (op0) == REG && GET_CODE (op2) == REG)
return (REGNO (op0) != REGNO (op2))
&& GET_CODE (op1) == MEM && GET_CODE (op3) == MEM
&& ! c4x_address_conflict (op1, op3, 0, 0);
/* STI||STI. */
if (GET_CODE (op1) == REG && GET_CODE (op3) == REG)
return GET_CODE (op0) == MEM && GET_CODE (op2) == MEM
&& ! c4x_address_conflict (op0, op2, 1, 1);
/* LDI||STI. */
if (GET_CODE (op0) == REG && GET_CODE (op3) == REG)
return GET_CODE (op1) == MEM && GET_CODE (op2) == MEM
&& ! c4x_address_conflict (op1, op2, 0, 1);
/* STI||LDI. */
if (GET_CODE (op1) == REG && GET_CODE (op2) == REG)
return GET_CODE (op0) == MEM && GET_CODE (op3) == MEM
&& ! c4x_address_conflict (op0, op3, 1, 0);
return 0;
}
int
valid_parallel_operands_4 (rtx *operands,
enum machine_mode mode ATTRIBUTE_UNUSED)
{
rtx op0 = operands[0];
rtx op2 = operands[2];
if (GET_CODE (op0) == SUBREG)
op0 = SUBREG_REG (op0);
if (GET_CODE (op2) == SUBREG)
op2 = SUBREG_REG (op2);
/* This test prevents the multipack pass from using this pattern if
op0 is used as an index or base register in op2, since this combination
will require reloading. */
if (GET_CODE (op0) == REG
&& GET_CODE (op2) == MEM
&& reg_mentioned_p (op0, XEXP (op2, 0)))
return 0;
return 1;
}
int
valid_parallel_operands_5 (rtx *operands,
enum machine_mode mode ATTRIBUTE_UNUSED)
{
int regs = 0;
rtx op0 = operands[0];
rtx op1 = operands[1];
rtx op2 = operands[2];
rtx op3 = operands[3];
if (GET_CODE (op0) == SUBREG)
op0 = SUBREG_REG (op0);
if (GET_CODE (op1) == SUBREG)
op1 = SUBREG_REG (op1);
if (GET_CODE (op2) == SUBREG)
op2 = SUBREG_REG (op2);
/* The patterns should only allow ext_low_reg_operand() or
par_ind_operand() operands. Operands 1 and 2 may be commutative
but only one of them can be a register. */
if (GET_CODE (op1) == REG)
regs++;
if (GET_CODE (op2) == REG)
regs++;
if (regs != 1)
return 0;
/* This test prevents the multipack pass from using this pattern if
op0 is used as an index or base register in op3, since this combination
will require reloading. */
if (GET_CODE (op0) == REG
&& GET_CODE (op3) == MEM
&& reg_mentioned_p (op0, XEXP (op3, 0)))
return 0;
return 1;
}
int
valid_parallel_operands_6 (rtx *operands,
enum machine_mode mode ATTRIBUTE_UNUSED)
{
int regs = 0;
rtx op0 = operands[0];
rtx op1 = operands[1];
rtx op2 = operands[2];
rtx op4 = operands[4];
rtx op5 = operands[5];
if (GET_CODE (op1) == SUBREG)
op1 = SUBREG_REG (op1);
if (GET_CODE (op2) == SUBREG)
op2 = SUBREG_REG (op2);
if (GET_CODE (op4) == SUBREG)
op4 = SUBREG_REG (op4);
if (GET_CODE (op5) == SUBREG)
op5 = SUBREG_REG (op5);
/* The patterns should only allow ext_low_reg_operand() or
par_ind_operand() operands. Thus of the 4 input operands, only 2
should be REGs and the other 2 should be MEMs. */
if (GET_CODE (op1) == REG)
regs++;
if (GET_CODE (op2) == REG)
regs++;
if (GET_CODE (op4) == REG)
regs++;
if (GET_CODE (op5) == REG)
regs++;
/* The new C30/C40 silicon dies allow 3 regs of the 4 input operands.
Perhaps we should count the MEMs as well? */
if (regs != 2)
return 0;
/* This test prevents the multipack pass from using this pattern if
op0 is used as an index or base register in op4 or op5, since
this combination will require reloading. */
if (GET_CODE (op0) == REG
&& ((GET_CODE (op4) == MEM && reg_mentioned_p (op0, XEXP (op4, 0)))
|| (GET_CODE (op5) == MEM && reg_mentioned_p (op0, XEXP (op5, 0)))))
return 0;
return 1;
}
/* Validate combination of src operands. Note that the operands have
been screened by the src_operand predicate. We just have to check
that the combination of operands is valid. If FORCE is set, ensure
that the destination regno is valid if we have a 2 operand insn. */
static int
c4x_valid_operands (enum rtx_code code, rtx *operands,
enum machine_mode mode ATTRIBUTE_UNUSED,
int force)
{
rtx op0;
rtx op1;
rtx op2;
enum rtx_code code1;
enum rtx_code code2;
/* FIXME, why can't we tighten the operands for IF_THEN_ELSE? */
if (code == IF_THEN_ELSE)
return 1 || (operands[0] == operands[2] || operands[0] == operands[3]);
if (code == COMPARE)
{
op1 = operands[0];
op2 = operands[1];
}
else
{
op1 = operands[1];
op2 = operands[2];
}
op0 = operands[0];
if (GET_CODE (op0) == SUBREG)
op0 = SUBREG_REG (op0);
if (GET_CODE (op1) == SUBREG)
op1 = SUBREG_REG (op1);
if (GET_CODE (op2) == SUBREG)
op2 = SUBREG_REG (op2);
code1 = GET_CODE (op1);
code2 = GET_CODE (op2);
if (code1 == REG && code2 == REG)
return 1;
if (code1 == MEM && code2 == MEM)
{
if (c4x_S_indirect (op1) && c4x_S_indirect (op2))
return 1;
return c4x_R_indirect (op1) && c4x_R_indirect (op2);
}
/* We cannot handle two MEMs or two CONSTS, etc. */
if (code1 == code2)
return 0;
if (code1 == REG)
{
switch (code2)
{
case CONST_INT:
if (c4x_J_constant (op2) && c4x_R_indirect (op1))
return 1;
break;
case CONST_DOUBLE:
if (! c4x_H_constant (op2))
return 0;
break;
/* Any valid memory operand screened by src_operand is OK. */
case MEM:
break;
default:
fatal_insn ("c4x_valid_operands: Internal error", op2);
break;
}
if (GET_CODE (op0) == SCRATCH)
return 1;
if (!REG_P (op0))
return 0;
/* Check that we have a valid destination register for a two operand
instruction. */
return ! force || code == COMPARE || REGNO (op1) == REGNO (op0);
}
/* Check non-commutative operators. */
if (code == ASHIFTRT || code == LSHIFTRT
|| code == ASHIFT || code == COMPARE)
return code2 == REG
&& (c4x_S_indirect (op1) || c4x_R_indirect (op1));
/* Assume MINUS is commutative since the subtract patterns
also support the reverse subtract instructions. Since op1
is not a register, and op2 is a register, op1 can only
be a restricted memory operand for a shift instruction. */
if (code2 == REG)
{
switch (code1)
{
case CONST_INT:
break;
case CONST_DOUBLE:
if (! c4x_H_constant (op1))
return 0;
break;
/* Any valid memory operand screened by src_operand is OK. */
case MEM:
break;
default:
abort ();
break;
}
if (GET_CODE (op0) == SCRATCH)
return 1;
if (!REG_P (op0))
return 0;
/* Check that we have a valid destination register for a two operand
instruction. */
return ! force || REGNO (op1) == REGNO (op0);
}
if (c4x_J_constant (op1) && c4x_R_indirect (op2))
return 1;
return 0;
}
int valid_operands (enum rtx_code code, rtx *operands, enum machine_mode mode)
{
/* If we are not optimizing then we have to let anything go and let
reload fix things up. instantiate_decl in function.c can produce
invalid insns by changing the offset of a memory operand from a
valid one into an invalid one, when the second operand is also a
memory operand. The alternative is not to allow two memory
operands for an insn when not optimizing. The problem only rarely
occurs, for example with the C-torture program DFcmp.c. */
return ! optimize || c4x_valid_operands (code, operands, mode, 0);
}
int
legitimize_operands (enum rtx_code code, rtx *operands, enum machine_mode mode)
{
/* Compare only has 2 operands. */
if (code == COMPARE)
{
/* During RTL generation, force constants into pseudos so that
they can get hoisted out of loops. This will tie up an extra
register but can save an extra cycle. Only do this if loop
optimization enabled. (We cannot pull this trick for add and
sub instructions since the flow pass won't find
autoincrements etc.) This allows us to generate compare
instructions like CMPI R0, *AR0++ where R0 = 42, say, instead
of LDI *AR0++, R0; CMPI 42, R0.
Note that expand_binops will try to load an expensive constant
into a register if it is used within a loop. Unfortunately,
the cost mechanism doesn't allow us to look at the other
operand to decide whether the constant is expensive. */
if (! reload_in_progress
&& TARGET_HOIST
&& optimize > 0
&& GET_CODE (operands[1]) == CONST_INT
&& preserve_subexpressions_p ()
&& rtx_cost (operands[1], code) > 1)
operands[1] = force_reg (mode, operands[1]);
if (! reload_in_progress
&& ! c4x_valid_operands (code, operands, mode, 0))
operands[0] = force_reg (mode, operands[0]);
return 1;
}
/* We cannot do this for ADDI/SUBI insns since we will
defeat the flow pass from finding autoincrement addressing
opportunities. */
if (! reload_in_progress
&& ! ((code == PLUS || code == MINUS) && mode == Pmode)
&& TARGET_HOIST
&& optimize > 1
&& GET_CODE (operands[2]) == CONST_INT
&& preserve_subexpressions_p ()
&& rtx_cost (operands[2], code) > 1)
operands[2] = force_reg (mode, operands[2]);
/* We can get better code on a C30 if we force constant shift counts
into a register. This way they can get hoisted out of loops,
tying up a register but saving an instruction. The downside is
that they may get allocated to an address or index register, and
thus we will get a pipeline conflict if there is a nearby
indirect address using an address register.
Note that expand_binops will not try to load an expensive constant
into a register if it is used within a loop for a shift insn. */
if (! reload_in_progress
&& ! c4x_valid_operands (code, operands, mode, TARGET_FORCE))
{
/* If the operand combination is invalid, we force operand1 into a
register, preventing reload from having doing to do this at a
later stage. */
operands[1] = force_reg (mode, operands[1]);
if (TARGET_FORCE)
{
emit_move_insn (operands[0], operands[1]);
operands[1] = copy_rtx (operands[0]);
}
else
{
/* Just in case... */
if (! c4x_valid_operands (code, operands, mode, 0))
operands[2] = force_reg (mode, operands[2]);
}
}
/* Right shifts require a negative shift count, but GCC expects
a positive count, so we emit a NEG. */
if ((code == ASHIFTRT || code == LSHIFTRT)
&& (GET_CODE (operands[2]) != CONST_INT))
operands[2] = gen_rtx_NEG (mode, negate_rtx (mode, operands[2]));
/* When the shift count is greater than 32 then the result
can be implementation dependent. We truncate the result to
fit in 5 bits so that we do not emit invalid code when
optimizing---such as trying to generate lhu2 with 20021124-1.c. */
if (((code == ASHIFTRT || code == LSHIFTRT || code == ASHIFT)
&& (GET_CODE (operands[2]) == CONST_INT))
&& INTVAL (operands[2]) > (GET_MODE_BITSIZE (mode) - 1))
operands[2]
= GEN_INT (INTVAL (operands[2]) & (GET_MODE_BITSIZE (mode) - 1));
return 1;
}
/* The following predicates are used for instruction scheduling. */
int
group1_reg_operand (rtx op, enum machine_mode mode)
{
if (mode != VOIDmode && mode != GET_MODE (op))
return 0;
if (GET_CODE (op) == SUBREG)
op = SUBREG_REG (op);
return REG_P (op) && (! reload_completed || IS_GROUP1_REG (op));
}
int
group1_mem_operand (rtx op, enum machine_mode mode)
{
if (mode != VOIDmode && mode != GET_MODE (op))
return 0;
if (GET_CODE (op) == MEM)
{
op = XEXP (op, 0);
if (GET_CODE (op) == PLUS)
{
rtx op0 = XEXP (op, 0);
rtx op1 = XEXP (op, 1);
if ((REG_P (op0) && (! reload_completed || IS_GROUP1_REG (op0)))
|| (REG_P (op1) && (! reload_completed || IS_GROUP1_REG (op1))))
return 1;
}
else if ((REG_P (op)) && (! reload_completed || IS_GROUP1_REG (op)))
return 1;
}
return 0;
}
/* Return true if any one of the address registers. */
int
arx_reg_operand (rtx op, enum machine_mode mode)
{
if (mode != VOIDmode && mode != GET_MODE (op))
return 0;
if (GET_CODE (op) == SUBREG)
op = SUBREG_REG (op);
return REG_P (op) && (! reload_completed || IS_ADDR_REG (op));
}
static int
c4x_arn_reg_operand (rtx op, enum machine_mode mode, unsigned int regno)
{
if (mode != VOIDmode && mode != GET_MODE (op))
return 0;
if (GET_CODE (op) == SUBREG)
op = SUBREG_REG (op);
return REG_P (op) && (! reload_completed || (REGNO (op) == regno));
}
static int
c4x_arn_mem_operand (rtx op, enum machine_mode mode, unsigned int regno)
{
if (mode != VOIDmode && mode != GET_MODE (op))
return 0;
if (GET_CODE (op) == MEM)
{
op = XEXP (op, 0);
switch (GET_CODE (op))
{
case PRE_DEC:
case POST_DEC:
case PRE_INC:
case POST_INC:
op = XEXP (op, 0);
case REG:
return REG_P (op) && (! reload_completed || (REGNO (op) == regno));
case PRE_MODIFY:
case POST_MODIFY:
if (REG_P (XEXP (op, 0)) && (! reload_completed
|| (REGNO (XEXP (op, 0)) == regno)))
return 1;
if (REG_P (XEXP (XEXP (op, 1), 1))
&& (! reload_completed
|| (REGNO (XEXP (XEXP (op, 1), 1)) == regno)))
return 1;
break;
case PLUS:
{
rtx op0 = XEXP (op, 0);
rtx op1 = XEXP (op, 1);
if ((REG_P (op0) && (! reload_completed
|| (REGNO (op0) == regno)))
|| (REG_P (op1) && (! reload_completed
|| (REGNO (op1) == regno))))
return 1;
}
break;
default:
break;
}
}
return 0;
}
int
ar0_reg_operand (rtx op, enum machine_mode mode)
{
return c4x_arn_reg_operand (op, mode, AR0_REGNO);
}
int
ar0_mem_operand (rtx op, enum machine_mode mode)
{
return c4x_arn_mem_operand (op, mode, AR0_REGNO);
}
int
ar1_reg_operand (rtx op, enum machine_mode mode)
{
return c4x_arn_reg_operand (op, mode, AR1_REGNO);
}
int
ar1_mem_operand (rtx op, enum machine_mode mode)
{
return c4x_arn_mem_operand (op, mode, AR1_REGNO);
}
int
ar2_reg_operand (rtx op, enum machine_mode mode)
{
return c4x_arn_reg_operand (op, mode, AR2_REGNO);
}
int
ar2_mem_operand (rtx op, enum machine_mode mode)
{
return c4x_arn_mem_operand (op, mode, AR2_REGNO);
}
int
ar3_reg_operand (rtx op, enum machine_mode mode)
{
return c4x_arn_reg_operand (op, mode, AR3_REGNO);
}
int
ar3_mem_operand (rtx op, enum machine_mode mode)
{
return c4x_arn_mem_operand (op, mode, AR3_REGNO);
}
int
ar4_reg_operand (rtx op, enum machine_mode mode)
{
return c4x_arn_reg_operand (op, mode, AR4_REGNO);
}
int
ar4_mem_operand (rtx op, enum machine_mode mode)
{
return c4x_arn_mem_operand (op, mode, AR4_REGNO);
}
int
ar5_reg_operand (rtx op, enum machine_mode mode)
{
return c4x_arn_reg_operand (op, mode, AR5_REGNO);
}
int
ar5_mem_operand (rtx op, enum machine_mode mode)
{
return c4x_arn_mem_operand (op, mode, AR5_REGNO);
}
int
ar6_reg_operand (rtx op, enum machine_mode mode)
{
return c4x_arn_reg_operand (op, mode, AR6_REGNO);
}
int
ar6_mem_operand (rtx op, enum machine_mode mode)
{
return c4x_arn_mem_operand (op, mode, AR6_REGNO);
}
int
ar7_reg_operand (rtx op, enum machine_mode mode)
{
return c4x_arn_reg_operand (op, mode, AR7_REGNO);
}
int
ar7_mem_operand (rtx op, enum machine_mode mode)
{
return c4x_arn_mem_operand (op, mode, AR7_REGNO);
}
int
ir0_reg_operand (rtx op, enum machine_mode mode)
{
return c4x_arn_reg_operand (op, mode, IR0_REGNO);
}
int
ir0_mem_operand (rtx op, enum machine_mode mode)
{
return c4x_arn_mem_operand (op, mode, IR0_REGNO);
}
int
ir1_reg_operand (rtx op, enum machine_mode mode)
{
return c4x_arn_reg_operand (op, mode, IR1_REGNO);
}
int
ir1_mem_operand (rtx op, enum machine_mode mode)
{
return c4x_arn_mem_operand (op, mode, IR1_REGNO);
}
/* This is similar to operand_subword but allows autoincrement
addressing. */
rtx
c4x_operand_subword (rtx op, int i, int validate_address,
enum machine_mode mode)
{
if (mode != HImode && mode != HFmode)
fatal_insn ("c4x_operand_subword: invalid mode", op);
if (mode == HFmode && REG_P (op))
fatal_insn ("c4x_operand_subword: invalid operand", op);
if (GET_CODE (op) == MEM)
{
enum rtx_code code = GET_CODE (XEXP (op, 0));
enum machine_mode mode = GET_MODE (XEXP (op, 0));
enum machine_mode submode;
submode = mode;
if (mode == HImode)
submode = QImode;
else if (mode == HFmode)
submode = QFmode;
switch (code)
{
case POST_INC:
case PRE_INC:
return gen_rtx_MEM (submode, XEXP (op, 0));
case POST_DEC:
case PRE_DEC:
case PRE_MODIFY:
case POST_MODIFY:
/* We could handle these with some difficulty.
e.g., *p-- => *(p-=2); *(p+1). */
fatal_insn ("c4x_operand_subword: invalid autoincrement", op);
case SYMBOL_REF:
case LABEL_REF:
case CONST:
case CONST_INT:
fatal_insn ("c4x_operand_subword: invalid address", op);
/* Even though offsettable_address_p considers (MEM
(LO_SUM)) to be offsettable, it is not safe if the
address is at the end of the data page since we also have
to fix up the associated high PART. In this case where
we are trying to split a HImode or HFmode memory
reference, we would have to emit another insn to reload a
new HIGH value. It's easier to disable LO_SUM memory references
in HImode or HFmode and we probably get better code. */
case LO_SUM:
fatal_insn ("c4x_operand_subword: address not offsettable", op);
default:
break;
}
}
return operand_subword (op, i, validate_address, mode);
}
struct name_list
{
struct name_list *next;
const char *name;
};
static struct name_list *global_head;
static struct name_list *extern_head;
/* Add NAME to list of global symbols and remove from external list if
present on external list. */
void
c4x_global_label (const char *name)
{
struct name_list *p, *last;
/* Do not insert duplicate names, so linearly search through list of
existing names. */
p = global_head;
while (p)
{
if (strcmp (p->name, name) == 0)
return;
p = p->next;
}
p = (struct name_list *) xmalloc (sizeof *p);
p->next = global_head;
p->name = name;
global_head = p;
/* Remove this name from ref list if present. */
last = NULL;
p = extern_head;
while (p)
{
if (strcmp (p->name, name) == 0)
{
if (last)
last->next = p->next;
else
extern_head = p->next;
break;
}
last = p;
p = p->next;
}
}
/* Add NAME to list of external symbols. */
void
c4x_external_ref (const char *name)
{
struct name_list *p;
/* Do not insert duplicate names. */
p = extern_head;
while (p)
{
if (strcmp (p->name, name) == 0)
return;
p = p->next;
}
/* Do not insert ref if global found. */
p = global_head;
while (p)
{
if (strcmp (p->name, name) == 0)
return;
p = p->next;
}
p = (struct name_list *) xmalloc (sizeof *p);
p->next = extern_head;
p->name = name;
extern_head = p;
}
/* We need to have a data section we can identify so that we can set
the DP register back to a data pointer in the small memory model.
This is only required for ISRs if we are paranoid that someone
may have quietly changed this register on the sly. */
static void
c4x_file_start (void)
{
int dspversion = 0;
if (TARGET_C30) dspversion = 30;
if (TARGET_C31) dspversion = 31;
if (TARGET_C32) dspversion = 32;
if (TARGET_C33) dspversion = 33;
if (TARGET_C40) dspversion = 40;
if (TARGET_C44) dspversion = 44;
default_file_start ();
fprintf (asm_out_file, "\t.version\t%d\n", dspversion);
fputs ("\n\t.data\ndata_sec:\n", asm_out_file);
}
static void
c4x_file_end (void)
{
struct name_list *p;
/* Output all external names that are not global. */
p = extern_head;
while (p)
{
fprintf (asm_out_file, "\t.ref\t");
assemble_name (asm_out_file, p->name);
fprintf (asm_out_file, "\n");
p = p->next;
}
fprintf (asm_out_file, "\t.end\n");
}
static void
c4x_check_attribute (const char *attrib, tree list, tree decl, tree *attributes)
{
while (list != NULL_TREE
&& IDENTIFIER_POINTER (TREE_PURPOSE (list))
!= IDENTIFIER_POINTER (DECL_NAME (decl)))
list = TREE_CHAIN (list);
if (list)
*attributes = tree_cons (get_identifier (attrib), TREE_VALUE (list),
*attributes);
}
static void
c4x_insert_attributes (tree decl, tree *attributes)
{
switch (TREE_CODE (decl))
{
case FUNCTION_DECL:
c4x_check_attribute ("section", code_tree, decl, attributes);
c4x_check_attribute ("const", pure_tree, decl, attributes);
c4x_check_attribute ("noreturn", noreturn_tree, decl, attributes);
c4x_check_attribute ("interrupt", interrupt_tree, decl, attributes);
c4x_check_attribute ("naked", naked_tree, decl, attributes);
break;
case VAR_DECL:
c4x_check_attribute ("section", data_tree, decl, attributes);
break;
default:
break;
}
}
/* Table of valid machine attributes. */
const struct attribute_spec c4x_attribute_table[] =
{
/* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */
{ "interrupt", 0, 0, false, true, true, c4x_handle_fntype_attribute },
{ "naked", 0, 0, false, true, true, c4x_handle_fntype_attribute },
{ "leaf_pretend", 0, 0, false, true, true, c4x_handle_fntype_attribute },
{ NULL, 0, 0, false, false, false, NULL }
};
/* Handle an attribute requiring a FUNCTION_TYPE;
arguments as in struct attribute_spec.handler. */
static tree
c4x_handle_fntype_attribute (tree *node, tree name,
tree args ATTRIBUTE_UNUSED,
int flags ATTRIBUTE_UNUSED,
bool *no_add_attrs)
{
if (TREE_CODE (*node) != FUNCTION_TYPE)
{
warning ("`%s' attribute only applies to functions",
IDENTIFIER_POINTER (name));
*no_add_attrs = true;
}
return NULL_TREE;
}
/* !!! FIXME to emit RPTS correctly. */
int
c4x_rptb_rpts_p (rtx insn, rtx op)
{
/* The next insn should be our label marking where the
repeat block starts. */
insn = NEXT_INSN (insn);
if (GET_CODE (insn) != CODE_LABEL)
{
/* Some insns may have been shifted between the RPTB insn
and the top label... They were probably destined to
be moved out of the loop. For now, let's leave them
where they are and print a warning. We should
probably move these insns before the repeat block insn. */
if (TARGET_DEBUG)
fatal_insn("c4x_rptb_rpts_p: Repeat block top label moved\n",
insn);
return 0;
}
/* Skip any notes. */
insn = next_nonnote_insn (insn);
/* This should be our first insn in the loop. */
if (! INSN_P (insn))
return 0;
/* Skip any notes. */
insn = next_nonnote_insn (insn);
if (! INSN_P (insn))
return 0;
if (recog_memoized (insn) != CODE_FOR_rptb_end)
return 0;
if (TARGET_RPTS)
return 1;
return (GET_CODE (op) == CONST_INT) && TARGET_RPTS_CYCLES (INTVAL (op));
}
/* Check if register r11 is used as the destination of an insn. */
static int
c4x_r11_set_p(rtx x)
{
rtx set;
int i, j;
const char *fmt;
if (x == 0)
return 0;
if (INSN_P (x) && GET_CODE (PATTERN (x)) == SEQUENCE)
x = XVECEXP (PATTERN (x), 0, XVECLEN (PATTERN (x), 0) - 1);
if (INSN_P (x) && (set = single_set (x)))
x = SET_DEST (set);
if (GET_CODE (x) == REG && REGNO (x) == R11_REGNO)
return 1;
fmt = GET_RTX_FORMAT (GET_CODE (x));
for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
{
if (c4x_r11_set_p (XEXP (x, i)))
return 1;
}
else if (fmt[i] == 'E')
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
if (c4x_r11_set_p (XVECEXP (x, i, j)))
return 1;
}
return 0;
}
/* The c4x sometimes has a problem when the insn before the laj insn
sets the r11 register. Check for this situation. */
int
c4x_check_laj_p (rtx insn)
{
insn = prev_nonnote_insn (insn);
/* If this is the start of the function no nop is needed. */
if (insn == 0)
return 0;
/* If the previous insn is a code label we have to insert a nop. This
could be a jump or table jump. We can find the normal jumps by
scanning the function but this will not find table jumps. */
if (GET_CODE (insn) == CODE_LABEL)
return 1;
/* If the previous insn sets register r11 we have to insert a nop. */
if (c4x_r11_set_p (insn))
return 1;
/* No nop needed. */
return 0;
}
/* Adjust the cost of a scheduling dependency. Return the new cost of
a dependency LINK or INSN on DEP_INSN. COST is the current cost.
A set of an address register followed by a use occurs a 2 cycle
stall (reduced to a single cycle on the c40 using LDA), while
a read of an address register followed by a use occurs a single cycle. */
#define SET_USE_COST 3
#define SETLDA_USE_COST 2
#define READ_USE_COST 2
static int
c4x_adjust_cost (rtx insn, rtx link, rtx dep_insn, int cost)
{
/* Don't worry about this until we know what registers have been
assigned. */
if (flag_schedule_insns == 0 && ! reload_completed)
return 0;
/* How do we handle dependencies where a read followed by another
read causes a pipeline stall? For example, a read of ar0 followed
by the use of ar0 for a memory reference. It looks like we
need to extend the scheduler to handle this case. */
/* Reload sometimes generates a CLOBBER of a stack slot, e.g.,
(clobber (mem:QI (plus:QI (reg:QI 11 ar3) (const_int 261)))),
so only deal with insns we know about. */
if (recog_memoized (dep_insn) < 0)
return 0;
if (REG_NOTE_KIND (link) == 0)
{
int max = 0;
/* Data dependency; DEP_INSN writes a register that INSN reads some
cycles later. */
if (TARGET_C3X)
{
if (get_attr_setgroup1 (dep_insn) && get_attr_usegroup1 (insn))
max = SET_USE_COST > max ? SET_USE_COST : max;
if (get_attr_readarx (dep_insn) && get_attr_usegroup1 (insn))
max = READ_USE_COST > max ? READ_USE_COST : max;
}
else
{
/* This could be significantly optimized. We should look
to see if dep_insn sets ar0-ar7 or ir0-ir1 and if
insn uses ar0-ar7. We then test if the same register
is used. The tricky bit is that some operands will
use several registers... */
if (get_attr_setar0 (dep_insn) && get_attr_usear0 (insn))
max = SET_USE_COST > max ? SET_USE_COST : max;
if (get_attr_setlda_ar0 (dep_insn) && get_attr_usear0 (insn))
max = SETLDA_USE_COST > max ? SETLDA_USE_COST : max;
if (get_attr_readar0 (dep_insn) && get_attr_usear0 (insn))
max = READ_USE_COST > max ? READ_USE_COST : max;
if (get_attr_setar1 (dep_insn) && get_attr_usear1 (insn))
max = SET_USE_COST > max ? SET_USE_COST : max;
if (get_attr_setlda_ar1 (dep_insn) && get_attr_usear1 (insn))
max = SETLDA_USE_COST > max ? SETLDA_USE_COST : max;
if (get_attr_readar1 (dep_insn) && get_attr_usear1 (insn))
max = READ_USE_COST > max ? READ_USE_COST : max;
if (get_attr_setar2 (dep_insn) && get_attr_usear2 (insn))
max = SET_USE_COST > max ? SET_USE_COST : max;
if (get_attr_setlda_ar2 (dep_insn) && get_attr_usear2 (insn))
max = SETLDA_USE_COST > max ? SETLDA_USE_COST : max;
if (get_attr_readar2 (dep_insn) && get_attr_usear2 (insn))
max = READ_USE_COST > max ? READ_USE_COST : max;
if (get_attr_setar3 (dep_insn) && get_attr_usear3 (insn))
max = SET_USE_COST > max ? SET_USE_COST : max;
if (get_attr_setlda_ar3 (dep_insn) && get_attr_usear3 (insn))
max = SETLDA_USE_COST > max ? SETLDA_USE_COST : max;
if (get_attr_readar3 (dep_insn) && get_attr_usear3 (insn))
max = READ_USE_COST > max ? READ_USE_COST : max;
if (get_attr_setar4 (dep_insn) && get_attr_usear4 (insn))
max = SET_USE_COST > max ? SET_USE_COST : max;
if (get_attr_setlda_ar4 (dep_insn) && get_attr_usear4 (insn))
max = SETLDA_USE_COST > max ? SETLDA_USE_COST : max;
if (get_attr_readar4 (dep_insn) && get_attr_usear4 (insn))
max = READ_USE_COST > max ? READ_USE_COST : max;
if (get_attr_setar5 (dep_insn) && get_attr_usear5 (insn))
max = SET_USE_COST > max ? SET_USE_COST : max;
if (get_attr_setlda_ar5 (dep_insn) && get_attr_usear5 (insn))
max = SETLDA_USE_COST > max ? SETLDA_USE_COST : max;
if (get_attr_readar5 (dep_insn) && get_attr_usear5 (insn))
max = READ_USE_COST > max ? READ_USE_COST : max;
if (get_attr_setar6 (dep_insn) && get_attr_usear6 (insn))
max = SET_USE_COST > max ? SET_USE_COST : max;
if (get_attr_setlda_ar6 (dep_insn) && get_attr_usear6 (insn))
max = SETLDA_USE_COST > max ? SETLDA_USE_COST : max;
if (get_attr_readar6 (dep_insn) && get_attr_usear6 (insn))
max = READ_USE_COST > max ? READ_USE_COST : max;
if (get_attr_setar7 (dep_insn) && get_attr_usear7 (insn))
max = SET_USE_COST > max ? SET_USE_COST : max;
if (get_attr_setlda_ar7 (dep_insn) && get_attr_usear7 (insn))
max = SETLDA_USE_COST > max ? SETLDA_USE_COST : max;
if (get_attr_readar7 (dep_insn) && get_attr_usear7 (insn))
max = READ_USE_COST > max ? READ_USE_COST : max;
if (get_attr_setir0 (dep_insn) && get_attr_useir0 (insn))
max = SET_USE_COST > max ? SET_USE_COST : max;
if (get_attr_setlda_ir0 (dep_insn) && get_attr_useir0 (insn))
max = SETLDA_USE_COST > max ? SETLDA_USE_COST : max;
if (get_attr_setir1 (dep_insn) && get_attr_useir1 (insn))
max = SET_USE_COST > max ? SET_USE_COST : max;
if (get_attr_setlda_ir1 (dep_insn) && get_attr_useir1 (insn))
max = SETLDA_USE_COST > max ? SETLDA_USE_COST : max;
}
if (max)
cost = max;
/* For other data dependencies, the default cost specified in the
md is correct. */
return cost;
}
else if (REG_NOTE_KIND (link) == REG_DEP_ANTI)
{
/* Anti dependency; DEP_INSN reads a register that INSN writes some
cycles later. */
/* For c4x anti dependencies, the cost is 0. */
return 0;
}
else if (REG_NOTE_KIND (link) == REG_DEP_OUTPUT)
{
/* Output dependency; DEP_INSN writes a register that INSN writes some
cycles later. */
/* For c4x output dependencies, the cost is 0. */
return 0;
}
else
abort ();
}
void
c4x_init_builtins (void)
{
tree endlink = void_list_node;
builtin_function ("fast_ftoi",
build_function_type
(integer_type_node,
tree_cons (NULL_TREE, double_type_node, endlink)),
C4X_BUILTIN_FIX, BUILT_IN_MD, NULL, NULL_TREE);
builtin_function ("ansi_ftoi",
build_function_type
(integer_type_node,
tree_cons (NULL_TREE, double_type_node, endlink)),
C4X_BUILTIN_FIX_ANSI, BUILT_IN_MD, NULL, NULL_TREE);
if (TARGET_C3X)
builtin_function ("fast_imult",
build_function_type
(integer_type_node,
tree_cons (NULL_TREE, integer_type_node,
tree_cons (NULL_TREE,
integer_type_node, endlink))),
C4X_BUILTIN_MPYI, BUILT_IN_MD, NULL, NULL_TREE);
else
{
builtin_function ("toieee",
build_function_type
(double_type_node,
tree_cons (NULL_TREE, double_type_node, endlink)),
C4X_BUILTIN_TOIEEE, BUILT_IN_MD, NULL, NULL_TREE);
builtin_function ("frieee",
build_function_type
(double_type_node,
tree_cons (NULL_TREE, double_type_node, endlink)),
C4X_BUILTIN_FRIEEE, BUILT_IN_MD, NULL, NULL_TREE);
builtin_function ("fast_invf",
build_function_type
(double_type_node,
tree_cons (NULL_TREE, double_type_node, endlink)),
C4X_BUILTIN_RCPF, BUILT_IN_MD, NULL, NULL_TREE);
}
}
rtx
c4x_expand_builtin (tree exp, rtx target,
rtx subtarget ATTRIBUTE_UNUSED,
enum machine_mode mode ATTRIBUTE_UNUSED,
int ignore ATTRIBUTE_UNUSED)
{
tree fndecl = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
unsigned int fcode = DECL_FUNCTION_CODE (fndecl);
tree arglist = TREE_OPERAND (exp, 1);
tree arg0, arg1;
rtx r0, r1;
switch (fcode)
{
case C4X_BUILTIN_FIX:
arg0 = TREE_VALUE (arglist);
r0 = expand_expr (arg0, NULL_RTX, QFmode, 0);
r0 = protect_from_queue (r0, 0);
if (! target || ! register_operand (target, QImode))
target = gen_reg_rtx (QImode);
emit_insn (gen_fixqfqi_clobber (target, r0));
return target;
case C4X_BUILTIN_FIX_ANSI:
arg0 = TREE_VALUE (arglist);
r0 = expand_expr (arg0, NULL_RTX, QFmode, 0);
r0 = protect_from_queue (r0, 0);
if (! target || ! register_operand (target, QImode))
target = gen_reg_rtx (QImode);
emit_insn (gen_fix_truncqfqi2 (target, r0));
return target;
case C4X_BUILTIN_MPYI:
if (! TARGET_C3X)
break;
arg0 = TREE_VALUE (arglist);
arg1 = TREE_VALUE (TREE_CHAIN (arglist));
r0 = expand_expr (arg0, NULL_RTX, QImode, 0);
r1 = expand_expr (arg1, NULL_RTX, QImode, 0);
r0 = protect_from_queue (r0, 0);
r1 = protect_from_queue (r1, 0);
if (! target || ! register_operand (target, QImode))
target = gen_reg_rtx (QImode);
emit_insn (gen_mulqi3_24_clobber (target, r0, r1));
return target;
case C4X_BUILTIN_TOIEEE:
if (TARGET_C3X)
break;
arg0 = TREE_VALUE (arglist);
r0 = expand_expr (arg0, NULL_RTX, QFmode, 0);
r0 = protect_from_queue (r0, 0);
if (! target || ! register_operand (target, QFmode))
target = gen_reg_rtx (QFmode);
emit_insn (gen_toieee (target, r0));
return target;
case C4X_BUILTIN_FRIEEE:
if (TARGET_C3X)
break;
arg0 = TREE_VALUE (arglist);
r0 = expand_expr (arg0, NULL_RTX, QFmode, 0);
r0 = protect_from_queue (r0, 0);
if (register_operand (r0, QFmode))
{
r1 = assign_stack_local (QFmode, GET_MODE_SIZE (QFmode), 0);
emit_move_insn (r1, r0);
r0 = r1;
}
if (! target || ! register_operand (target, QFmode))
target = gen_reg_rtx (QFmode);
emit_insn (gen_frieee (target, r0));
return target;
case C4X_BUILTIN_RCPF:
if (TARGET_C3X)
break;
arg0 = TREE_VALUE (arglist);
r0 = expand_expr (arg0, NULL_RTX, QFmode, 0);
r0 = protect_from_queue (r0, 0);
if (! target || ! register_operand (target, QFmode))
target = gen_reg_rtx (QFmode);
emit_insn (gen_rcpfqf_clobber (target, r0));
return target;
}
return NULL_RTX;
}
static void
c4x_init_libfuncs (void)
{
set_optab_libfunc (smul_optab, QImode, "__mulqi3");
set_optab_libfunc (sdiv_optab, QImode, "__divqi3");
set_optab_libfunc (udiv_optab, QImode, "__udivqi3");
set_optab_libfunc (smod_optab, QImode, "__modqi3");
set_optab_libfunc (umod_optab, QImode, "__umodqi3");
set_optab_libfunc (sdiv_optab, QFmode, "__divqf3");
set_optab_libfunc (smul_optab, HFmode, "__mulhf3");
set_optab_libfunc (sdiv_optab, HFmode, "__divhf3");
set_optab_libfunc (smul_optab, HImode, "__mulhi3");
set_optab_libfunc (sdiv_optab, HImode, "__divhi3");
set_optab_libfunc (udiv_optab, HImode, "__udivhi3");
set_optab_libfunc (smod_optab, HImode, "__modhi3");
set_optab_libfunc (umod_optab, HImode, "__umodhi3");
set_optab_libfunc (ffs_optab, QImode, "__ffs");
smulhi3_libfunc = init_one_libfunc ("__smulhi3_high");
umulhi3_libfunc = init_one_libfunc ("__umulhi3_high");
fix_truncqfhi2_libfunc = init_one_libfunc ("__fix_truncqfhi2");
fixuns_truncqfhi2_libfunc = init_one_libfunc ("__ufix_truncqfhi2");
fix_trunchfhi2_libfunc = init_one_libfunc ("__fix_trunchfhi2");
fixuns_trunchfhi2_libfunc = init_one_libfunc ("__ufix_trunchfhi2");
floathiqf2_libfunc = init_one_libfunc ("__floathiqf2");
floatunshiqf2_libfunc = init_one_libfunc ("__ufloathiqf2");
floathihf2_libfunc = init_one_libfunc ("__floathihf2");
floatunshihf2_libfunc = init_one_libfunc ("__ufloathihf2");
}
static void
c4x_asm_named_section (const char *name, unsigned int flags ATTRIBUTE_UNUSED)
{
fprintf (asm_out_file, "\t.sect\t\"%s\"\n", name);
}
static void
c4x_globalize_label (FILE *stream, const char *name)
{
default_globalize_label (stream, name);
c4x_global_label (name);
}
#define SHIFT_CODE_P(C) \
((C) == ASHIFT || (C) == ASHIFTRT || (C) == LSHIFTRT)
#define LOGICAL_CODE_P(C) \
((C) == NOT || (C) == AND || (C) == IOR || (C) == XOR)
/* Compute a (partial) cost for rtx X. Return true if the complete
cost has been computed, and false if subexpressions should be
scanned. In either case, *TOTAL contains the cost result. */
static bool
c4x_rtx_costs (rtx x, int code, int outer_code, int *total)
{
HOST_WIDE_INT val;
switch (code)
{
/* Some small integers are effectively free for the C40. We should
also consider if we are using the small memory model. With
the big memory model we require an extra insn for a constant
loaded from memory. */
case CONST_INT:
val = INTVAL (x);
if (c4x_J_constant (x))
*total = 0;
else if (! TARGET_C3X
&& outer_code == AND
&& (val == 255 || val == 65535))
*total = 0;
else if (! TARGET_C3X
&& (outer_code == ASHIFTRT || outer_code == LSHIFTRT)
&& (val == 16 || val == 24))
*total = 0;
else if (TARGET_C3X && SHIFT_CODE_P (outer_code))
*total = 3;
else if (LOGICAL_CODE_P (outer_code)
? c4x_L_constant (x) : c4x_I_constant (x))
*total = 2;
else
*total = 4;
return true;
case CONST:
case LABEL_REF:
case SYMBOL_REF:
*total = 4;
return true;
case CONST_DOUBLE:
if (c4x_H_constant (x))
*total = 2;
else if (GET_MODE (x) == QFmode)
*total = 4;
else
*total = 8;
return true;
/* ??? Note that we return true, rather than false so that rtx_cost
doesn't include the constant costs. Otherwise expand_mult will
think that it is cheaper to synthesize a multiply rather than to
use a multiply instruction. I think this is because the algorithm
synth_mult doesn't take into account the loading of the operands,
whereas the calculation of mult_cost does. */
case PLUS:
case MINUS:
case AND:
case IOR:
case XOR:
case ASHIFT:
case ASHIFTRT:
case LSHIFTRT:
*total = COSTS_N_INSNS (1);
return true;
case MULT:
*total = COSTS_N_INSNS (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT
|| TARGET_MPYI ? 1 : 14);
return true;
case DIV:
case UDIV:
case MOD:
case UMOD:
*total = COSTS_N_INSNS (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT
? 15 : 50);
return true;
default:
return false;
}
}
/* Worker function for TARGET_ASM_EXTERNAL_LIBCALL. */
static void
c4x_external_libcall (rtx fun)
{
/* This is only needed to keep asm30 happy for ___divqf3 etc. */
c4x_external_ref (XSTR (fun, 0));
}
/* Worker function for TARGET_STRUCT_VALUE_RTX. */
static rtx
c4x_struct_value_rtx (tree fntype ATTRIBUTE_UNUSED,
int incoming ATTRIBUTE_UNUSED)
{
return gen_rtx_REG (Pmode, AR0_REGNO);
}
|