1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
|
;; ARM 1020E & ARM 1022E Pipeline Description
;; Copyright (C) 2005-2015 Free Software Foundation, Inc.
;; Contributed by Richard Earnshaw (richard.earnshaw@arm.com)
;;
;; This file is part of GCC.
;;
;; GCC is free software; you can redistribute it and/or modify it
;; under the terms of the GNU General Public License as published by
;; the Free Software Foundation; either version 3, or (at your option)
;; any later version.
;;
;; GCC is distributed in the hope that it will be useful, but
;; WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
;; General Public License for more details.
;;
;; You should have received a copy of the GNU General Public License
;; along with GCC; see the file COPYING3. If not see
;; <http://www.gnu.org/licenses/>. */
;; These descriptions are based on the information contained in the
;; ARM1020E Technical Reference Manual, Copyright (c) 2003 ARM
;; Limited.
;;
;; This automaton provides a pipeline description for the ARM
;; 1020E core.
;;
;; The model given here assumes that the condition for all conditional
;; instructions is "true", i.e., that all of the instructions are
;; actually executed.
(define_automaton "arm1020e")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Pipelines
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; There are two pipelines:
;;
;; - An Arithmetic Logic Unit (ALU) pipeline.
;;
;; The ALU pipeline has fetch, issue, decode, execute, memory, and
;; write stages. We only need to model the execute, memory and write
;; stages.
;;
;; - A Load-Store Unit (LSU) pipeline.
;;
;; The LSU pipeline has decode, execute, memory, and write stages.
;; We only model the execute, memory and write stages.
(define_cpu_unit "1020a_e,1020a_m,1020a_w" "arm1020e")
(define_cpu_unit "1020l_e,1020l_m,1020l_w" "arm1020e")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; ALU Instructions
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; ALU instructions require three cycles to execute, and use the ALU
;; pipeline in each of the three stages. The results are available
;; after the execute stage has finished.
;;
;; If the destination register is the PC, the pipelines are stalled
;; for several cycles. That case is not modeled here.
;; ALU operations with no shifted operand
(define_insn_reservation "1020alu_op" 1
(and (eq_attr "tune" "arm1020e,arm1022e")
(eq_attr "type" "alu_imm,alus_imm,logic_imm,logics_imm,\
alu_sreg,alus_sreg,logic_reg,logics_reg,\
adc_imm,adcs_imm,adc_reg,adcs_reg,\
adr,bfm,rev,\
shift_imm,shift_reg,\
mov_imm,mov_reg,mvn_imm,mvn_reg,\
multiple,no_insn"))
"1020a_e,1020a_m,1020a_w")
;; ALU operations with a shift-by-constant operand
(define_insn_reservation "1020alu_shift_op" 1
(and (eq_attr "tune" "arm1020e,arm1022e")
(eq_attr "type" "alu_shift_imm,alus_shift_imm,\
logic_shift_imm,logics_shift_imm,\
extend,mov_shift,mvn_shift"))
"1020a_e,1020a_m,1020a_w")
;; ALU operations with a shift-by-register operand
;; These really stall in the decoder, in order to read
;; the shift value in a second cycle. Pretend we take two cycles in
;; the execute stage.
(define_insn_reservation "1020alu_shift_reg_op" 2
(and (eq_attr "tune" "arm1020e,arm1022e")
(eq_attr "type" "alu_shift_reg,alus_shift_reg,\
logic_shift_reg,logics_shift_reg,\
mov_shift_reg,mvn_shift_reg"))
"1020a_e*2,1020a_m,1020a_w")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Multiplication Instructions
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Multiplication instructions loop in the execute stage until the
;; instruction has been passed through the multiplier array enough
;; times.
;; The result of the "smul" and "smulw" instructions is not available
;; until after the memory stage.
(define_insn_reservation "1020mult1" 2
(and (eq_attr "tune" "arm1020e,arm1022e")
(eq_attr "type" "smulxy,smulwy"))
"1020a_e,1020a_m,1020a_w")
;; The "smlaxy" and "smlawx" instructions require two iterations through
;; the execute stage; the result is available immediately following
;; the execute stage.
(define_insn_reservation "1020mult2" 2
(and (eq_attr "tune" "arm1020e,arm1022e")
(eq_attr "type" "smlaxy,smlalxy,smlawx"))
"1020a_e*2,1020a_m,1020a_w")
;; The "smlalxy", "mul", and "mla" instructions require two iterations
;; through the execute stage; the result is not available until after
;; the memory stage.
(define_insn_reservation "1020mult3" 3
(and (eq_attr "tune" "arm1020e,arm1022e")
(eq_attr "type" "smlalxy,mul,mla"))
"1020a_e*2,1020a_m,1020a_w")
;; The "muls" and "mlas" instructions loop in the execute stage for
;; four iterations in order to set the flags. The value result is
;; available after three iterations.
(define_insn_reservation "1020mult4" 3
(and (eq_attr "tune" "arm1020e,arm1022e")
(eq_attr "type" "muls,mlas"))
"1020a_e*4,1020a_m,1020a_w")
;; Long multiply instructions that produce two registers of
;; output (such as umull) make their results available in two cycles;
;; the least significant word is available before the most significant
;; word. That fact is not modeled; instead, the instructions are
;; described.as if the entire result was available at the end of the
;; cycle in which both words are available.
;; The "umull", "umlal", "smull", and "smlal" instructions all take
;; three iterations through the execute cycle, and make their results
;; available after the memory cycle.
(define_insn_reservation "1020mult5" 4
(and (eq_attr "tune" "arm1020e,arm1022e")
(eq_attr "type" "umull,umlal,smull,smlal"))
"1020a_e*3,1020a_m,1020a_w")
;; The "umulls", "umlals", "smulls", and "smlals" instructions loop in
;; the execute stage for five iterations in order to set the flags.
;; The value result is available after four iterations.
(define_insn_reservation "1020mult6" 4
(and (eq_attr "tune" "arm1020e,arm1022e")
(eq_attr "type" "umulls,umlals,smulls,smlals"))
"1020a_e*5,1020a_m,1020a_w")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Load/Store Instructions
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; The models for load/store instructions do not accurately describe
;; the difference between operations with a base register writeback
;; (such as "ldm!"). These models assume that all memory references
;; hit in dcache.
;; LSU instructions require six cycles to execute. They use the ALU
;; pipeline in all but the 5th cycle, and the LSU pipeline in cycles
;; three through six.
;; Loads and stores which use a scaled register offset or scaled
;; register pre-indexed addressing mode take three cycles EXCEPT for
;; those that are base + offset with LSL of 0 or 2, or base - offset
;; with LSL of zero. The remainder take 1 cycle to execute.
;; For 4byte loads there is a bypass from the load stage
(define_insn_reservation "1020load1_op" 2
(and (eq_attr "tune" "arm1020e,arm1022e")
(eq_attr "type" "load_byte,load1"))
"1020a_e+1020l_e,1020l_m,1020l_w")
(define_insn_reservation "1020store1_op" 0
(and (eq_attr "tune" "arm1020e,arm1022e")
(eq_attr "type" "store1"))
"1020a_e+1020l_e,1020l_m,1020l_w")
;; A load's result can be stored by an immediately following store
(define_bypass 1 "1020load1_op" "1020store1_op" "arm_no_early_store_addr_dep")
;; On a LDM/STM operation, the LSU pipeline iterates until all of the
;; registers have been processed.
;;
;; The time it takes to load the data depends on whether or not the
;; base address is 64-bit aligned; if it is not, an additional cycle
;; is required. This model assumes that the address is always 64-bit
;; aligned. Because the processor can load two registers per cycle,
;; that assumption means that we use the same instruction reservations
;; for loading 2k and 2k - 1 registers.
;;
;; The ALU pipeline is decoupled after the first cycle unless there is
;; a register dependency; the dependency is cleared as soon as the LDM/STM
;; has dealt with the corresponding register. So for example,
;; stmia sp, {r0-r3}
;; add r0, r0, #4
;; will have one fewer stalls than
;; stmia sp, {r0-r3}
;; add r3, r3, #4
;;
;; As with ALU operations, if one of the destination registers is the
;; PC, there are additional stalls; that is not modeled.
(define_insn_reservation "1020load2_op" 2
(and (eq_attr "tune" "arm1020e,arm1022e")
(eq_attr "type" "load2"))
"1020a_e+1020l_e,1020l_m,1020l_w")
(define_insn_reservation "1020store2_op" 0
(and (eq_attr "tune" "arm1020e,arm1022e")
(eq_attr "type" "store2"))
"1020a_e+1020l_e,1020l_m,1020l_w")
(define_insn_reservation "1020load34_op" 3
(and (eq_attr "tune" "arm1020e,arm1022e")
(eq_attr "type" "load3,load4"))
"1020a_e+1020l_e,1020l_e+1020l_m,1020l_m,1020l_w")
(define_insn_reservation "1020store34_op" 0
(and (eq_attr "tune" "arm1020e,arm1022e")
(eq_attr "type" "store3,store4"))
"1020a_e+1020l_e,1020l_e+1020l_m,1020l_m,1020l_w")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Branch and Call Instructions
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Branch instructions are difficult to model accurately. The ARM
;; core can predict most branches. If the branch is predicted
;; correctly, and predicted early enough, the branch can be completely
;; eliminated from the instruction stream. Some branches can
;; therefore appear to require zero cycles to execute. We assume that
;; all branches are predicted correctly, and that the latency is
;; therefore the minimum value.
(define_insn_reservation "1020branch_op" 0
(and (eq_attr "tune" "arm1020e,arm1022e")
(eq_attr "type" "branch"))
"1020a_e")
;; The latency for a call is not predictable. Therefore, we use 32 as
;; roughly equivalent to positive infinity.
(define_insn_reservation "1020call_op" 32
(and (eq_attr "tune" "arm1020e,arm1022e")
(eq_attr "type" "call"))
"1020a_e*32")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; VFP
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(define_cpu_unit "v10_fmac" "arm1020e")
(define_cpu_unit "v10_ds" "arm1020e")
(define_cpu_unit "v10_fmstat" "arm1020e")
(define_cpu_unit "v10_ls1,v10_ls2,v10_ls3" "arm1020e")
;; fmstat is a serializing instruction. It will stall the core until
;; the mac and ds units have completed.
(exclusion_set "v10_fmac,v10_ds" "v10_fmstat")
(define_attr "vfp10" "yes,no"
(const (if_then_else (and (eq_attr "tune" "arm1020e,arm1022e")
(eq_attr "fpu" "vfp"))
(const_string "yes") (const_string "no"))))
;; Note, no instruction can issue to the VFP if the core is stalled in the
;; first execute state. We model this by using 1020a_e in the first cycle.
(define_insn_reservation "v10_ffarith" 5
(and (eq_attr "vfp10" "yes")
(eq_attr "type" "fmov,ffariths,ffarithd,fcmps,fcmpd"))
"1020a_e+v10_fmac")
(define_insn_reservation "v10_farith" 5
(and (eq_attr "vfp10" "yes")
(eq_attr "type" "faddd,fadds"))
"1020a_e+v10_fmac")
(define_insn_reservation "v10_cvt" 5
(and (eq_attr "vfp10" "yes")
(eq_attr "type" "f_cvt,f_cvti2f,f_cvtf2i"))
"1020a_e+v10_fmac")
(define_insn_reservation "v10_fmul" 6
(and (eq_attr "vfp10" "yes")
(eq_attr "type" "fmuls,fmacs,ffmas,fmuld,fmacd,ffmad"))
"1020a_e+v10_fmac*2")
(define_insn_reservation "v10_fdivs" 18
(and (eq_attr "vfp10" "yes")
(eq_attr "type" "fdivs, fsqrts"))
"1020a_e+v10_ds*14")
(define_insn_reservation "v10_fdivd" 32
(and (eq_attr "vfp10" "yes")
(eq_attr "type" "fdivd, fsqrtd"))
"1020a_e+v10_fmac+v10_ds*28")
(define_insn_reservation "v10_floads" 4
(and (eq_attr "vfp10" "yes")
(eq_attr "type" "f_loads"))
"1020a_e+1020l_e+v10_ls1,v10_ls2")
;; We model a load of a double as needing all the vfp ls* stage in cycle 1.
;; This gives the correct mix between single-and double loads where a flds
;; followed by and fldd will stall for one cycle, but two back-to-back fldd
;; insns stall for two cycles.
(define_insn_reservation "v10_floadd" 5
(and (eq_attr "vfp10" "yes")
(eq_attr "type" "f_loadd"))
"1020a_e+1020l_e+v10_ls1+v10_ls2+v10_ls3,v10_ls2+v10_ls3,v10_ls3")
;; Moves to/from arm regs also use the load/store pipeline.
(define_insn_reservation "v10_c2v" 4
(and (eq_attr "vfp10" "yes")
(eq_attr "type" "f_mcr,f_mcrr"))
"1020a_e+1020l_e+v10_ls1,v10_ls2")
(define_insn_reservation "v10_fstores" 1
(and (eq_attr "vfp10" "yes")
(eq_attr "type" "f_stores"))
"1020a_e+1020l_e+v10_ls1,v10_ls2")
(define_insn_reservation "v10_fstored" 1
(and (eq_attr "vfp10" "yes")
(eq_attr "type" "f_stored"))
"1020a_e+1020l_e+v10_ls1+v10_ls2+v10_ls3,v10_ls2+v10_ls3,v10_ls3")
(define_insn_reservation "v10_v2c" 1
(and (eq_attr "vfp10" "yes")
(eq_attr "type" "f_mrc,f_mrrc"))
"1020a_e+1020l_e,1020l_m,1020l_w")
(define_insn_reservation "v10_to_cpsr" 2
(and (eq_attr "vfp10" "yes")
(eq_attr "type" "f_flag"))
"1020a_e+v10_fmstat,1020a_e+1020l_e,1020l_m,1020l_w")
;; VFP bypasses
;; There are bypasses for most operations other than store
(define_bypass 3
"v10_c2v,v10_floads"
"v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd,v10_cvt")
(define_bypass 4
"v10_floadd"
"v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd")
;; Arithmetic to other arithmetic saves a cycle due to forwarding
(define_bypass 4
"v10_ffarith,v10_farith"
"v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd")
(define_bypass 5
"v10_fmul"
"v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd")
(define_bypass 17
"v10_fdivs"
"v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd")
(define_bypass 31
"v10_fdivd"
"v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd")
;; VFP anti-dependencies.
;; There is one anti-dependence in the following case (not yet modelled):
;; - After a store: one extra cycle for both fsts and fstd
;; Note, back-to-back fstd instructions will overload the load/store datapath
;; causing a two-cycle stall.
|