summaryrefslogtreecommitdiff
path: root/gcc/cgraphunit.c
blob: e9402dbfb6e6828822ad484c3cfa66bdb37a4f8d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
/* Callgraph based intraprocedural optimizations.
   Copyright (C) 2003, 2004 Free Software Foundation, Inc.
   Contributed by Jan Hubicka

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING.  If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.  */

/* This module implements main driver of compilation process as well as
   few basic intraprocedural optimizers.

   The main scope of this file is to act as an interface in between
   tree based frontends and the backend (and middle end)

   The front-end is supposed to use following functionality:

    - cgraph_finalize_function

      This function is called once front-end has parsed whole body of function
      and it is certain that the function body nor the declaration will change.

      (There is one exception needed for implementing GCC extern inline function.)

    - cgraph_varpool_finalize_variable

      This function has same behavior as the above but is used for static
      variables.

    - cgraph_finalize_compilation_unit

      This function is called once compilation unit is finalized and it will
      no longer change.

      In the unit-at-a-time the call-graph construction and local function
      analysis takes place here.  Bodies of unreachable functions are released
      to conserve memory usage.

      ???  The compilation unit in this point of view should be compilation
      unit as defined by the language - for instance C frontend allows multiple
      compilation units to be parsed at once and it should call function each
      time parsing is done so we save memory.

    - cgraph_optimize

      In this unit-at-a-time compilation the intra procedural analysis takes
      place here.  In particular the static functions whose address is never
      taken are marked as local.  Backend can then use this information to
      modify calling conventions, do better inlining or similar optimizations.

    - cgraph_assemble_pending_functions
    - cgraph_varpool_assemble_pending_variables

      In non-unit-at-a-time mode these functions can be used to force compilation
      of functions or variables that are known to be needed at given stage
      of compilation

    - cgraph_mark_needed_node
    - cgraph_varpool_mark_needed_node

      When function or variable is referenced by some hidden way (for instance
      via assembly code and marked by attribute "used"), the call-graph data structure
      must be updated accordingly by this function.

    - analyze_expr callback

      This function is responsible for lowering tree nodes not understood by
      generic code into understandable ones or alternatively marking
      callgraph and varpool nodes referenced by the as needed.

      ??? On the tree-ssa genericizing should take place here and we will avoid
      need for these hooks (replacing them by genericizing hook)

    - expand_function callback

      This function is used to expand function and pass it into RTL back-end.
      Front-end should not make any assumptions about when this function can be
      called.  In particular cgraph_assemble_pending_functions,
      cgraph_varpool_assemble_pending_variables, cgraph_finalize_function,
      cgraph_varpool_finalize_function, cgraph_optimize can cause arbitrarily
      previously finalized functions to be expanded.

    We implement two compilation modes.

      - unit-at-a-time:  In this mode analyzing of all functions is deferred
	to cgraph_finalize_compilation_unit and expansion into cgraph_optimize.

	In cgraph_finalize_compilation_unit the reachable functions are
	analyzed.  During analysis the call-graph edges from reachable
	functions are constructed and their destinations are marked as
	reachable.  References to functions and variables are discovered too
	and variables found to be needed output to the assembly file.  Via
	mark_referenced call in assemble_variable functions referenced by
	static variables are noticed too.

	The intra-procedural information is produced and it's existence
	indicated by global_info_ready.  Once this flag is set it is impossible
	to change function from !reachable to reachable and thus
	assemble_variable no longer call mark_referenced.

	Finally the call-graph is topologically sorted and all reachable functions
	that has not been completely inlined or are not external are output.

	??? It is possible that reference to function or variable is optimized
	out.  We can not deal with this nicely because topological order is not
	suitable for it.  For tree-ssa we may consider another pass doing
	optimization and re-discovering reachable functions.

	??? Reorganize code so variables are output very last and only if they
	really has been referenced by produced code, so we catch more cases
	where reference has been optimized out.

      - non-unit-at-a-time

	All functions are variables are output as early as possible to conserve
	memory consumption.  This may or may not result in less memory used but
	it is still needed for some legacy code that rely on particular ordering
	of things output from the compiler.

	Varpool data structures are not used and variables are output directly.

	Functions are output early using call of
	cgraph_assemble_pending_function from cgraph_finalize_function.  The
	decision on whether function is needed is made more conservative so
	uninlininable static functions are needed too.  During the call-graph
	construction the edge destinations are not marked as reachable and it
	is completely relied upn assemble_variable to mark them.
	
     Inlining decision heuristics
        ??? Move this to separate file after tree-ssa merge.

	We separate inlining decisions from the inliner itself and store it
	inside callgraph as so called inline plan.  Reffer to cgraph.c
	documentation about particular representation of inline plans in the
	callgraph

	The implementation of particular heuristics is separated from
	the rest of code to make it easier to replace it with more complicated
	implementation in the future.  The rest of inlining code acts as a
	library aimed to modify the callgraph and verify that the parameters
	on code size growth fits.

	To mark given call inline, use cgraph_mark_inline function, the
	verification is performed by cgraph_default_inline_p and
	cgraph_check_inline_limits.

	The heuristics implements simple knapsack style algorithm ordering
	all functions by their "profitability" (estimated by code size growth)
	and inlining them in priority order.

	cgraph_decide_inlining implements heuristics taking whole callgraph
	into account, while cgraph_decide_inlining_incrementally considers
	only one function at a time and is used in non-unit-at-a-time mode.  */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "tree-inline.h"
#include "langhooks.h"
#include "hashtab.h"
#include "toplev.h"
#include "flags.h"
#include "ggc.h"
#include "debug.h"
#include "target.h"
#include "cgraph.h"
#include "diagnostic.h"
#include "timevar.h"
#include "params.h"
#include "fibheap.h"
#include "c-common.h"
#include "intl.h"
#include "function.h"

#define INSNS_PER_CALL 10

static void cgraph_expand_all_functions (void);
static void cgraph_mark_functions_to_output (void);
static void cgraph_expand_function (struct cgraph_node *);
static tree record_call_1 (tree *, int *, void *);
static void cgraph_mark_local_functions (void);
static bool cgraph_default_inline_p (struct cgraph_node *n);
static void cgraph_analyze_function (struct cgraph_node *node);
static void cgraph_decide_inlining_incrementally (struct cgraph_node *);

/* Statistics we collect about inlining algorithm.  */
static int ncalls_inlined;
static int nfunctions_inlined;
static int initial_insns;
static int overall_insns;

/* Records tree nodes seen in cgraph_create_edges.  Simply using
   walk_tree_without_duplicates doesn't guarantee each node is visited
   once because it gets a new htab upon each recursive call from
   record_calls_1.  */
static htab_t visited_nodes;

/* Determine if function DECL is needed.  That is, visible to something
   either outside this translation unit, something magic in the system
   configury, or (if not doing unit-at-a-time) to something we havn't
   seen yet.  */

static bool
decide_is_function_needed (struct cgraph_node *node, tree decl)
{
  /* If we decided it was needed before, but at the time we didn't have
     the body of the function available, then it's still needed.  We have
     to go back and re-check its dependencies now.  */
  if (node->needed)
    return true;

  /* Externally visible functions must be output.  The exception is
     COMDAT functions that must be output only when they are needed.  */
  if (TREE_PUBLIC (decl) && !DECL_COMDAT (decl) && !DECL_EXTERNAL (decl))
    return true;

  /* Constructors and destructors are reachable from the runtime by
     some mechanism.  */
  if (DECL_STATIC_CONSTRUCTOR (decl) || DECL_STATIC_DESTRUCTOR (decl))
    return true;

  /* If the user told us it is used, then it must be so.  */
  if (lookup_attribute ("used", DECL_ATTRIBUTES (decl)))
    return true;

  /* ??? If the assembler name is set by hand, it is possible to assemble
     the name later after finalizing the function and the fact is noticed
     in assemble_name then.  This is arguably a bug.  */
  if (DECL_ASSEMBLER_NAME_SET_P (decl)
      && TREE_SYMBOL_REFERENCED (DECL_ASSEMBLER_NAME (decl)))
    return true;

  if (flag_unit_at_a_time)
    return false;

  /* If not doing unit at a time, then we'll only defer this function
     if its marked for inlining.  Otherwise we want to emit it now.  */

  /* "extern inline" functions are never output locally.  */
  if (DECL_EXTERNAL (decl))
    return false;
  /* We want to emit COMDAT functions only when absolutely necessary.  */
  if (DECL_COMDAT (decl))
    return false;
  if (!DECL_INLINE (decl)
      || (!node->local.disregard_inline_limits
	  /* When declared inline, defer even the uninlinable functions.
	     This allows them to be eliminated when unused.  */
	  && !DECL_DECLARED_INLINE_P (decl) 
	  && (!node->local.inlinable || !cgraph_default_inline_p (node))))
    return true;

  return false;
}

/* When not doing unit-at-a-time, output all functions enqueued.
   Return true when such a functions were found.  */

bool
cgraph_assemble_pending_functions (void)
{
  bool output = false;

  if (flag_unit_at_a_time)
    return false;

  while (cgraph_nodes_queue)
    {
      struct cgraph_node *n = cgraph_nodes_queue;

      cgraph_nodes_queue = cgraph_nodes_queue->next_needed;
      n->next_needed = NULL;
      if (!n->origin && !n->global.inlined_to && !DECL_EXTERNAL (n->decl))
	{
	  cgraph_expand_function (n);
	  output = true;
	}
    }

  return output;
}

/* DECL has been parsed.  Take it, queue it, compile it at the whim of the
   logic in effect.  If NESTED is true, then our caller cannot stand to have
   the garbage collector run at the moment.  We would need to either create
   a new GC context, or just not compile right now.  */

void
cgraph_finalize_function (tree decl, bool nested)
{
  struct cgraph_node *node = cgraph_node (decl);

  if (node->local.finalized)
    {
      /* As an GCC extension we allow redefinition of the function.  The
	 semantics when both copies of bodies differ is not well defined.
	 We replace the old body with new body so in unit at a time mode
	 we always use new body, while in normal mode we may end up with
	 old body inlined into some functions and new body expanded and
	 inlined in others.
	 
	 ??? It may make more sense to use one body for inlining and other
	 body for expanding the function but this is difficult to do.  */

      /* If node->output is set, then this is a unit-at-a-time compilation
	 and we have already begun whole-unit analysis.  This is *not*
	 testing for whether we've already emitted the function.  That
	 case can be sort-of legitimately seen with real function 
	 redefinition errors.  I would argue that the front end should
	 never present us with such a case, but don't enforce that for now.  */
      if (node->output)
	abort ();

      /* Reset our data structures so we can analyze the function again.  */
      memset (&node->local, 0, sizeof (node->local));
      memset (&node->global, 0, sizeof (node->global));
      memset (&node->rtl, 0, sizeof (node->rtl));
      node->analyzed = false;
      node->local.redefined_extern_inline = true;
      while (node->callees)
	cgraph_remove_edge (node->callees);

      /* We may need to re-queue the node for assembling in case
         we already proceeded it and ignored as not needed.  */
      if (node->reachable && !flag_unit_at_a_time)
	{
	  struct cgraph_node *n;

	  for (n = cgraph_nodes_queue; n; n = n->next_needed)
	    if (n == node)
	      break;
	  if (!n)
	    node->reachable = 0;
	}
    }

  notice_global_symbol (decl);
  node->decl = decl;
  node->local.finalized = true;

  /* If not unit at a time, then we need to create the call graph
     now, so that called functions can be queued and emitted now.  */
  if (!flag_unit_at_a_time)
    {
      cgraph_analyze_function (node);
      cgraph_decide_inlining_incrementally (node);
    }

  if (decide_is_function_needed (node, decl))
    cgraph_mark_needed_node (node);

  /* If not unit at a time, go ahead and emit everything we've found
     to be reachable at this time.  */
  if (!nested)
    {
      if (!cgraph_assemble_pending_functions ())
	ggc_collect ();
    }

  /* If we've not yet emitted decl, tell the debug info about it.  */
  if (!TREE_ASM_WRITTEN (decl))
    (*debug_hooks->deferred_inline_function) (decl);

  /* We will never really output the function body, clear the STRUCT_FUNCTION array
     early then.  */
  if (DECL_EXTERNAL (decl))
    DECL_STRUCT_FUNCTION (decl) = NULL;

  /* Possibly warn about unused parameters.  */
  if (warn_unused_parameter)
    do_warn_unused_parameter (decl);
}

/* Walk tree and record all calls.  Called via walk_tree.  */
static tree
record_call_1 (tree *tp, int *walk_subtrees, void *data)
{
  tree t = *tp;

  switch (TREE_CODE (t))
    {
    case VAR_DECL:
      /* ??? Really, we should mark this decl as *potentially* referenced
	 by this function and re-examine whether the decl is actually used
	 after rtl has been generated.  */
      if (TREE_STATIC (t))
        cgraph_varpool_mark_needed_node (cgraph_varpool_node (t));
      break;

    case ADDR_EXPR:
      if (flag_unit_at_a_time)
	{
	  /* Record dereferences to the functions.  This makes the
	     functions reachable unconditionally.  */
	  tree decl = TREE_OPERAND (*tp, 0);
	  if (TREE_CODE (decl) == FUNCTION_DECL)
	    cgraph_mark_needed_node (cgraph_node (decl));
	}
      break;

    case CALL_EXPR:
      {
	tree decl = get_callee_fndecl (*tp);
	if (decl && TREE_CODE (decl) == FUNCTION_DECL)
	  {
	    cgraph_create_edge (data, cgraph_node (decl), *tp);

	    /* When we see a function call, we don't want to look at the
	       function reference in the ADDR_EXPR that is hanging from
	       the CALL_EXPR we're examining here, because we would
	       conclude incorrectly that the function's address could be
	       taken by something that is not a function call.  So only
	       walk the function parameter list, skip the other subtrees.  */

	    walk_tree (&TREE_OPERAND (*tp, 1), record_call_1, data,
		       visited_nodes);
	    *walk_subtrees = 0;
	  }
	break;
      }

    default:
      /* Save some cycles by not walking types and declaration as we
	 won't find anything useful there anyway.  */
      if (DECL_P (*tp) || TYPE_P (*tp))
	{
	  *walk_subtrees = 0;
	  break;
	}

      if ((unsigned int) TREE_CODE (t) >= LAST_AND_UNUSED_TREE_CODE)
	return lang_hooks.callgraph.analyze_expr (tp, walk_subtrees, data);
      break;
    }

  return NULL;
}

/* Create cgraph edges for function calls inside BODY from NODE.  */

void
cgraph_create_edges (struct cgraph_node *node, tree body)
{
  /* The nodes we're interested in are never shared, so walk
     the tree ignoring duplicates.  */
  visited_nodes = htab_create (37, htab_hash_pointer,
				    htab_eq_pointer, NULL);
  walk_tree (&body, record_call_1, node, visited_nodes);
  htab_delete (visited_nodes);
  visited_nodes = NULL;
}

static bool error_found;

/* Callbrack of verify_cgraph_node.  Check that all call_exprs have cgraph nodes.  */
static tree
verify_cgraph_node_1 (tree *tp, int *walk_subtrees, void *data)
{
  tree t = *tp;
  tree decl;

  if (TREE_CODE (t) == CALL_EXPR && (decl = get_callee_fndecl (t)))
    {
      struct cgraph_edge *e = cgraph_edge (data, t);
      if (e)
	{
	  if (e->aux)
	    {
	      error ("Shared call_expr:");
	      debug_tree (t);
	      error_found = true;
	    }
	  if (e->callee->decl != cgraph_node (decl)->decl)
	    {
	      error ("Edge points to wrong declaration:");
	      debug_tree (e->callee->decl);
	      fprintf (stderr," Instead of:");
	      debug_tree (decl);
	    }
	  e->aux = (void *)1;
	}
      else
	{
	  error ("Missing callgraph edge for call expr:");
	  debug_tree (t);
	  error_found = true;
	}
    }
  /* Save some cycles by not walking types and declaration as we
     won't find anything useful there anyway.  */
  if (DECL_P (*tp) || TYPE_P (*tp))
    {
      *walk_subtrees = 0;
    }
  return NULL_TREE;
}

/* Verify cgraph nodes of given cgraph node.  */
void
verify_cgraph_node (struct cgraph_node *node)
{
  struct cgraph_edge *e;
  struct cgraph_node *main_clone;

  timevar_push (TV_CGRAPH_VERIFY);
  error_found = false;
  for (e = node->callees; e; e = e->next_callee)
    if (e->aux)
      {
	error ("Aux field set for edge %s->%s",
	       cgraph_node_name (e->caller), cgraph_node_name (e->callee));
	error_found = true;
      }
  for (e = node->callers; e; e = e->next_caller)
    {
      if (!e->inline_failed)
	{
	  if (node->global.inlined_to
	      != (e->caller->global.inlined_to
		  ? e->caller->global.inlined_to : e->caller))
	    {
	      error ("Inlined_to pointer is wrong");
	      error_found = true;
	    }
	  if (node->callers->next_caller)
	    {
	      error ("Multiple inline callers");
	      error_found = true;
	    }
	}
      else
	if (node->global.inlined_to)
	  {
	    error ("Inlined_to pointer set for noninline callers");
	    error_found = true;
	  }
    }
  if (!node->callers && node->global.inlined_to)
    {
      error ("Inlined_to pointer is set but no predecesors found");
      error_found = true;
    }
  if (node->global.inlined_to == node)
    {
      error ("Inlined_to pointer reffers to itself");
      error_found = true;
    }

  for (main_clone = cgraph_node (node->decl); main_clone;
       main_clone = main_clone->next_clone)
    if (main_clone == node)
      break;
  if (!node)
    {
      error ("Node not found in DECL_ASSEMBLER_NAME hash");
      error_found = true;
    }
  
  if (node->analyzed
      && DECL_SAVED_TREE (node->decl) && !TREE_ASM_WRITTEN (node->decl)
      && (!DECL_EXTERNAL (node->decl) || node->global.inlined_to))
    {
      walk_tree_without_duplicates (&DECL_SAVED_TREE (node->decl),
				    verify_cgraph_node_1, node);
      for (e = node->callees; e; e = e->next_callee)
	{
	  if (!e->aux)
	    {
	      error ("Edge %s->%s has no corresponding call_expr",
		     cgraph_node_name (e->caller),
		     cgraph_node_name (e->callee));
	      error_found = true;
	    }
	  e->aux = 0;
	}
    }
  if (error_found)
    {
      dump_cgraph_node (stderr, node);
      internal_error ("verify_cgraph_node failed.");
    }
  timevar_pop (TV_CGRAPH_VERIFY);
}

/* Verify whole cgraph structure.  */
void
verify_cgraph (void)
{
  struct cgraph_node *node;

  for (node = cgraph_nodes; node; node = node->next)
    verify_cgraph_node (node);
}

/* Analyze the function scheduled to be output.  */
static void
cgraph_analyze_function (struct cgraph_node *node)
{
  tree decl = node->decl;
  struct cgraph_edge *e;

  current_function_decl = decl;

  /* First kill forward declaration so reverse inlining works properly.  */
  cgraph_create_edges (node, DECL_SAVED_TREE (decl));

  node->local.inlinable = tree_inlinable_function_p (decl);
  if (!node->local.self_insns)
    node->local.self_insns
      = lang_hooks.tree_inlining.estimate_num_insns (decl);
  if (node->local.inlinable)
    node->local.disregard_inline_limits
      = lang_hooks.tree_inlining.disregard_inline_limits (decl);
  for (e = node->callers; e; e = e->next_caller)
    {
      if (node->local.redefined_extern_inline)
	e->inline_failed = N_("redefined extern inline functions are not "
			   "considered for inlining");
      else if (!node->local.inlinable)
	e->inline_failed = N_("function not inlinable");
      else
	e->inline_failed = N_("function not considered for inlining");
    }
  if (flag_really_no_inline && !node->local.disregard_inline_limits)
    node->local.inlinable = 0;
  /* Inlining characteristics are maintained by the cgraph_mark_inline.  */
  node->global.insns = node->local.self_insns;

  node->analyzed = true;
  current_function_decl = NULL;
}

/* Analyze the whole compilation unit once it is parsed completely.  */

void
cgraph_finalize_compilation_unit (void)
{
  struct cgraph_node *node;

  if (!flag_unit_at_a_time)
    {
      cgraph_assemble_pending_functions ();
      return;
    }

  cgraph_varpool_assemble_pending_decls ();
  if (!quiet_flag)
    fprintf (stderr, "\nAnalyzing compilation unit\n");

  timevar_push (TV_CGRAPH);
  if (cgraph_dump_file)
    {
      fprintf (cgraph_dump_file, "Initial entry points:");
      for (node = cgraph_nodes; node; node = node->next)
	if (node->needed && DECL_SAVED_TREE (node->decl))
	  fprintf (cgraph_dump_file, " %s", cgraph_node_name (node));
      fprintf (cgraph_dump_file, "\n");
    }

  /* Propagate reachability flag and lower representation of all reachable
     functions.  In the future, lowering will introduce new functions and
     new entry points on the way (by template instantiation and virtual
     method table generation for instance).  */
  while (cgraph_nodes_queue)
    {
      struct cgraph_edge *edge;
      tree decl = cgraph_nodes_queue->decl;

      node = cgraph_nodes_queue;
      cgraph_nodes_queue = cgraph_nodes_queue->next_needed;
      node->next_needed = NULL;

      /* ??? It is possible to create extern inline function and later using
	 weak alas attribute to kill its body. See
	 gcc.c-torture/compile/20011119-1.c  */
      if (!DECL_SAVED_TREE (decl))
	continue;

      if (node->analyzed || !node->reachable || !DECL_SAVED_TREE (decl))
	abort ();

      cgraph_analyze_function (node);

      for (edge = node->callees; edge; edge = edge->next_callee)
	if (!edge->callee->reachable)
	  cgraph_mark_reachable_node (edge->callee);

      cgraph_varpool_assemble_pending_decls ();
    }

  /* Collect entry points to the unit.  */

  if (cgraph_dump_file)
    {
      fprintf (cgraph_dump_file, "Unit entry points:");
      for (node = cgraph_nodes; node; node = node->next)
	if (node->needed && DECL_SAVED_TREE (node->decl))
	  fprintf (cgraph_dump_file, " %s", cgraph_node_name (node));
      fprintf (cgraph_dump_file, "\n\nInitial ");
      dump_cgraph (cgraph_dump_file);
    }

  if (cgraph_dump_file)
    fprintf (cgraph_dump_file, "\nReclaiming functions:");

  for (node = cgraph_nodes; node; node = node->next)
    {
      tree decl = node->decl;

      if (!node->reachable && DECL_SAVED_TREE (decl))
	{
	  if (cgraph_dump_file)
	    fprintf (cgraph_dump_file, " %s", cgraph_node_name (node));
	  cgraph_remove_node (node);
	}
      else
	node->next_needed = NULL;
    }
  if (cgraph_dump_file)
    {
      fprintf (cgraph_dump_file, "\n\nReclaimed ");
      dump_cgraph (cgraph_dump_file);
    }
  ggc_collect ();
  timevar_pop (TV_CGRAPH);
}

/* Figure out what functions we want to assemble.  */

static void
cgraph_mark_functions_to_output (void)
{
  struct cgraph_node *node;

  for (node = cgraph_nodes; node; node = node->next)
    {
      tree decl = node->decl;
      struct cgraph_edge *e;

      if (node->output)
	abort ();

      for (e = node->callers; e; e = e->next_caller)
	if (e->inline_failed)
	  break;

      /* We need to output all local functions that are used and not
	 always inlined, as well as those that are reachable from
	 outside the current compilation unit.  */
      if (DECL_SAVED_TREE (decl)
	  && !node->global.inlined_to
	  && (node->needed
	      || (e && node->reachable))
	  && !TREE_ASM_WRITTEN (decl) && !node->origin
	  && !DECL_EXTERNAL (decl))
	node->output = 1;
      /* We should've reclaimed all functions that are not needed.  */
      else if (!node->global.inlined_to && DECL_SAVED_TREE (decl)
	       && !node->origin && !DECL_EXTERNAL (decl))
	{
	  dump_cgraph_node (stderr, node);
	  abort ();
	}
    }
}

/* Expand function specified by NODE.  */

static void
cgraph_expand_function (struct cgraph_node *node)
{
  tree decl = node->decl;

  /* We ought to not compile any inline clones.  */
  if (node->global.inlined_to)
    abort ();

  if (flag_unit_at_a_time)
    announce_function (decl);

  /* Generate RTL for the body of DECL.  Nested functions are expanded
     via lang_expand_decl_stmt.  */
  lang_hooks.callgraph.expand_function (decl);
  if (DECL_DEFER_OUTPUT (decl))
    abort ();

  /* Make sure that BE didn't gave up on compiling.  */
  if (!TREE_ASM_WRITTEN (node->decl)
      && !(sorrycount || errorcount))
    abort ();

  current_function_decl = NULL;
}

/* Fill array order with all nodes with output flag set in the reverse
   topological order.  */

static int
cgraph_postorder (struct cgraph_node **order)
{
  struct cgraph_node *node, *node2;
  int stack_size = 0;
  int order_pos = 0;
  struct cgraph_edge *edge, last;

  struct cgraph_node **stack =
    xcalloc (cgraph_n_nodes, sizeof (struct cgraph_node *));

  /* We have to deal with cycles nicely, so use a depth first traversal
     output algorithm.  Ignore the fact that some functions won't need
     to be output and put them into order as well, so we get dependencies
     right throughout inline functions.  */
  for (node = cgraph_nodes; node; node = node->next)
    node->aux = NULL;
  for (node = cgraph_nodes; node; node = node->next)
    if (!node->aux)
      {
	node2 = node;
	if (!node->callers)
	  node->aux = &last;
	else
	  node->aux = node->callers;
	while (node2)
	  {
	    while (node2->aux != &last)
	      {
		edge = node2->aux;
		if (edge->next_caller)
		  node2->aux = edge->next_caller;
		else
		  node2->aux = &last;
		if (!edge->caller->aux)
		  {
		    if (!edge->caller->callers)
		      edge->caller->aux = &last;
		    else
		      edge->caller->aux = edge->caller->callers;
		    stack[stack_size++] = node2;
		    node2 = edge->caller;
		    break;
		  }
	      }
	    if (node2->aux == &last)
	      {
		order[order_pos++] = node2;
		if (stack_size)
		  node2 = stack[--stack_size];
		else
		  node2 = NULL;
	      }
	  }
      }
  free (stack);
  return order_pos;
}

/* Perform reachability analysis and reclaim all unreachable nodes.
   This function also remove unneeded bodies of extern inline functions
   and thus needs to be done only after inlining decisions has been made.  */
static bool
cgraph_remove_unreachable_nodes (void)
{
  struct cgraph_node *first = (void *) 1;
  struct cgraph_node *node;
  bool changed = false;
  int insns = 0;

#ifdef ENABLE_CHECKING
  verify_cgraph ();
#endif
  if (cgraph_dump_file)
    fprintf (cgraph_dump_file, "\nReclaiming functions:");
#ifdef ENABLE_CHECKING
  for (node = cgraph_nodes; node; node = node->next)
    if (node->aux)
      abort ();
#endif
  for (node = cgraph_nodes; node; node = node->next)
    if (node->needed && !node->global.inlined_to
	&& (!DECL_EXTERNAL (node->decl) || !node->analyzed))
      {
	node->aux = first;
	first = node;
      }
    else if (node->aux)
      abort ();

  /* Perform reachability analysis.  As a special case do not consider
     extern inline functions not inlined as live because we won't output
     them at all.  */
  while (first != (void *) 1)
    {
      struct cgraph_edge *e;
      node = first;
      first = first->aux;

      for (e = node->callees; e; e = e->next_callee)
	if (!e->callee->aux
	    && node->analyzed
	    && (!e->inline_failed || !e->callee->analyzed
		|| !DECL_EXTERNAL (e->callee->decl)))
	  {
	    e->callee->aux = first;
	    first = e->callee;
	  }
    }

  /* Remove unreachable nodes.  Extern inline functions need special care;
     Unreachable extern inline functions shall be removed.
     Reachable extern inline functions we never inlined shall get their bodies
     eliminated
     Reachable extern inline functions we sometimes inlined will be turned into
     unanalyzed nodes so they look like for true extern functions to the rest
     of code.  Body of such functions is released via remove_node once the
     inline clones are eliminated.  */
  for (node = cgraph_nodes; node; node = node->next)
    {
      if (!node->aux)
	{
	  int local_insns;
	  tree decl = node->decl;

          node->global.inlined_to = NULL;
	  if (DECL_STRUCT_FUNCTION (decl))
	    local_insns = node->local.self_insns;
	  else
	    local_insns = 0;
	  if (cgraph_dump_file)
	    fprintf (cgraph_dump_file, " %s", cgraph_node_name (node));
	  if (!node->analyzed || !DECL_EXTERNAL (node->decl))
	    cgraph_remove_node (node);
	  else
	    {
	      struct cgraph_edge *e;

	      for (e = node->callers; e; e = e->next_caller)
		if (e->caller->aux)
		  break;
	      if (e || node->needed)
		{
		  struct cgraph_node *clone;

		  for (clone = node->next_clone; clone;
		       clone = clone->next_clone)
		    if (clone->aux)
		      break;
		  if (!clone)
		    {
		      DECL_SAVED_TREE (node->decl) = NULL;
		      DECL_STRUCT_FUNCTION (node->decl) = NULL;
		      DECL_ARGUMENTS (node->decl) = NULL;
		      DECL_INITIAL (node->decl) = error_mark_node;
		    }
		  while (node->callees)
		    cgraph_remove_edge (node->callees);
		  node->analyzed = false;
		}
	      else
		cgraph_remove_node (node);
	    }
	  if (!DECL_SAVED_TREE (decl))
	    insns += local_insns;
	  changed = true;
	}
    }
  for (node = cgraph_nodes; node; node = node->next)
    node->aux = NULL;
  if (cgraph_dump_file)
    fprintf (cgraph_dump_file, "\nReclaimed %i insns", insns);
  return changed;
}

/* Estimate size of the function after inlining WHAT into TO.  */

static int
cgraph_estimate_size_after_inlining (int times, struct cgraph_node *to,
				     struct cgraph_node *what)
{
  return (what->global.insns - INSNS_PER_CALL) * times + to->global.insns;
}

/* Estimate the growth caused by inlining NODE into all callees.  */

static int
cgraph_estimate_growth (struct cgraph_node *node)
{
  int growth = 0;
  struct cgraph_edge *e;

  for (e = node->callers; e; e = e->next_caller)
    if (e->inline_failed)
      growth += (cgraph_estimate_size_after_inlining (1, e->caller, node)
		 - e->caller->global.insns);

  /* ??? Wrong for self recursive functions or cases where we decide to not
     inline for different reasons, but it is not big deal as in that case
     we will keep the body around, but we will also avoid some inlining.  */
  if (!node->needed && !node->origin && !DECL_EXTERNAL (node->decl))
    growth -= node->global.insns;

  return growth;
}

/* E is expected to be an edge being inlined.  Clone destination node of
   the edge and redirect it to the new clone.
   DUPLICATE is used for bookeeping on whether we are actually creating new
   clones or re-using node originally representing out-of-line function call.
   */
void
cgraph_clone_inlined_nodes (struct cgraph_edge *e, bool duplicate)
{
  struct cgraph_node *n;

  /* We may eliminate the need for out-of-line copy to be output.  In that
     case just go ahead and re-use it.  */
  if (!e->callee->callers->next_caller
      && (!e->callee->needed || DECL_EXTERNAL (e->callee->decl))
      && !e->callee->origin
      && duplicate
      && flag_unit_at_a_time)
    {
      if (e->callee->global.inlined_to)
	abort ();
      if (!DECL_EXTERNAL (e->callee->decl))
        overall_insns -= e->callee->global.insns, nfunctions_inlined++;
      duplicate = 0;
    }
   else if (duplicate)
    {
      n = cgraph_clone_node (e->callee);
      cgraph_redirect_edge_callee (e, n);
    }

  if (e->caller->global.inlined_to)
    e->callee->global.inlined_to = e->caller->global.inlined_to;
  else
    e->callee->global.inlined_to = e->caller;

  /* Recursively clone all bodies.  */
  for (e = e->callee->callees; e; e = e->next_callee)
    if (!e->inline_failed)
      cgraph_clone_inlined_nodes (e, duplicate);
}

/* Mark edge E as inlined and update callgraph accordingly.  */

void
cgraph_mark_inline_edge (struct cgraph_edge *e)
{
  int old_insns = 0, new_insns = 0;
  struct cgraph_node *to = NULL, *what;

  if (!e->inline_failed)
    abort ();
  e->inline_failed = NULL;

  if (!e->callee->global.inlined && flag_unit_at_a_time)
    {
      void **slot;
      if (!cgraph_inline_hash)
        cgraph_inline_hash = htab_create_ggc (42, htab_hash_pointer,
					      htab_eq_pointer, NULL);
      slot = htab_find_slot (cgraph_inline_hash,
			     DECL_ASSEMBLER_NAME (e->callee->decl), INSERT);
      *slot = DECL_ASSEMBLER_NAME (e->callee->decl);
    }
  e->callee->global.inlined = true;

  cgraph_clone_inlined_nodes (e, true);

  what = e->callee;

  /* Now update size of caller and all functions caller is inlined into. */
  for (;e && !e->inline_failed; e = e->caller->callers)
    {
      old_insns = e->caller->global.insns;
      new_insns = cgraph_estimate_size_after_inlining (1, e->caller,
						       what);
      if (new_insns < 0)
	abort ();
      to = e->caller;
      to->global.insns = new_insns;
    }
  if (what->global.inlined_to != to)
    abort ();
  overall_insns += new_insns - old_insns;
  ncalls_inlined++;
}

/* Mark all calls of EDGE->CALLEE inlined into EDGE->CALLER.
   Return following unredirected edge in the list of callers
   of EDGE->CALLEE  */

static struct cgraph_edge *
cgraph_mark_inline (struct cgraph_edge *edge)
{
  struct cgraph_node *to = edge->caller;
  struct cgraph_node *what = edge->callee;
  struct cgraph_edge *e, *next;
  int times = 0;

  /* Look for all calls, mark them inline and clone recursively
     all inlined functions.  */
  for (e = what->callers; e; e = next)
    {
      next = e->next_caller;
      if (e->caller == to && e->inline_failed)
	{
          cgraph_mark_inline_edge (e);
	  if (e == edge)
	    edge = next;
	  times ++;
	}
    }
  if (!times)
    abort ();
  return edge;
}

/* Return false when inlining WHAT into TO is not good idea
   as it would cause too large growth of function bodies.  */

static bool
cgraph_check_inline_limits (struct cgraph_node *to, struct cgraph_node *what,
			    const char **reason)
{
  int times = 0;
  struct cgraph_edge *e;
  int newsize;
  int limit;

  if (to->global.inlined_to)
    to = to->global.inlined_to;

  for (e = to->callees; e; e = e->next_callee)
    if (e->callee == what)
      times++;

  /* When inlining large function body called once into small function,
     take the inlined function as base for limiting the growth.  */
  if (to->local.self_insns > what->local.self_insns)
    limit = to->local.self_insns;
  else
    limit = what->local.self_insns;

  limit += limit * PARAM_VALUE (PARAM_LARGE_FUNCTION_GROWTH) / 100;

  newsize = cgraph_estimate_size_after_inlining (times, to, what);
  if (newsize > PARAM_VALUE (PARAM_LARGE_FUNCTION_INSNS)
      && newsize > limit)
    {
      if (reason)
        *reason = N_("--param large-function-growth limit reached");
      return false;
    }
  return true;
}

/* Return true when function N is small enough to be inlined.  */

static bool
cgraph_default_inline_p (struct cgraph_node *n)
{
  if (!DECL_INLINE (n->decl) || !DECL_SAVED_TREE (n->decl))
    return false;
  if (DECL_DECLARED_INLINE_P (n->decl))
    return n->global.insns < MAX_INLINE_INSNS_SINGLE;
  else
    return n->global.insns < MAX_INLINE_INSNS_AUTO;
}

/* Return true when inlining WHAT would create recursive inlining.
   We call recursive inlining all cases where same function appears more than
   once in the single recursion nest path in the inline graph.  */

static bool
cgraph_recursive_inlining_p (struct cgraph_node *to,
			     struct cgraph_node *what,
			     const char **reason)
{
  struct cgraph_node *node;

  /* Walk TO and all functions TO is inlined in.  */
  while (1)
    {
      /* We create recursive inlining either by inlining WHAT into something
	 already inlined in possibly different clone of WHAT.  */
      if (what->decl == to->decl)
	goto recursive;
      /* Or by inlining WHAT into something that is already inlined in WHAT.  */
      for (node = cgraph_node (to->decl); node; node = node->next_clone)
	if (node->global.inlined_to == what)
	  goto recursive;
      if (!to->callers || to->callers->inline_failed)
	return false;
      to = to->callers->caller;
    }
recursive:
  if (reason)
    *reason = (what->local.disregard_inline_limits
	       ? N_("recursive inlining") : "");
  return true;
}

/* Recompute heap nodes for each of callees.  */
static void
update_callee_keys (fibheap_t heap, struct fibnode **heap_node,
		    struct cgraph_node *node)
{
  struct cgraph_edge *e;

  for (e = node->callees; e; e = e->next_callee)
    if (e->inline_failed && heap_node[e->callee->uid])
      fibheap_replace_key (heap, heap_node[e->callee->uid],
			   cgraph_estimate_growth (e->callee));
    else if (!e->inline_failed)
      update_callee_keys (heap, heap_node, e->callee);
}

/* Set inline_failed for all callers of given function to REASON.  */

static void
cgraph_set_inline_failed (struct cgraph_node *node, const char *reason)
{
  struct cgraph_edge *e;

  if (cgraph_dump_file)
    fprintf (cgraph_dump_file, "Inlining failed: %s\n", reason);
  for (e = node->callers; e; e = e->next_caller)
    if (e->inline_failed)
      e->inline_failed = reason;
}

/* We use greedy algorithm for inlining of small functions:
   All inline candidates are put into prioritized heap based on estimated
   growth of the overall number of instructions and then update the estimates.

   INLINED and INLINED_CALEES are just pointers to arrays large enough
   to be passed to cgraph_inlined_into and cgraph_inlined_callees.  */

static void
cgraph_decide_inlining_of_small_functions (void)
{
  struct cgraph_node *node;
  fibheap_t heap = fibheap_new ();
  struct fibnode **heap_node =
    xcalloc (cgraph_max_uid, sizeof (struct fibnode *));
  int max_insns = ((HOST_WIDEST_INT) initial_insns
		   * (100 + PARAM_VALUE (PARAM_INLINE_UNIT_GROWTH)) / 100);

  /* Put all inline candidates into the heap.  */

  for (node = cgraph_nodes; node; node = node->next)
    {
      if (!node->local.inlinable || !node->callers
	  || node->local.disregard_inline_limits)
	continue;

      if (!cgraph_default_inline_p (node))
	{
	  cgraph_set_inline_failed (node,
	    N_("--param max-inline-insns-single limit reached"));
	  continue;
	}
      heap_node[node->uid] =
	fibheap_insert (heap, cgraph_estimate_growth (node), node);
    }

  if (cgraph_dump_file)
    fprintf (cgraph_dump_file, "\nDeciding on smaller functions:\n");
  while (overall_insns <= max_insns && (node = fibheap_extract_min (heap)))
    {
      struct cgraph_edge *e, *next;
      int old_insns = overall_insns;

      heap_node[node->uid] = NULL;
      if (cgraph_dump_file)
	fprintf (cgraph_dump_file, 
		 "\nConsidering %s with %i insns\n"
		 " Estimated growth is %+i insns.\n",
		 cgraph_node_name (node), node->global.insns,
		 cgraph_estimate_growth (node));
      if (!cgraph_default_inline_p (node))
	{
	  cgraph_set_inline_failed (node,
	    N_("--param max-inline-insns-single limit reached after inlining into the callee"));
	  continue;
	}
      for (e = node->callers; e; e = next)
	{
	  next = e->next_caller;
	  if (e->inline_failed)
	    {
	      struct cgraph_node *where;

	      if (cgraph_recursive_inlining_p (e->caller, e->callee,
				      	       &e->inline_failed)
		  || !cgraph_check_inline_limits (e->caller, e->callee,
			  			  &e->inline_failed))
		{
		  if (cgraph_dump_file)
		    fprintf (cgraph_dump_file, " Not inlining into %s:%s.\n",
			     cgraph_node_name (e->caller), e->inline_failed);
		  continue;
		}
	      next = cgraph_mark_inline (e);
	      where = e->caller;
	      if (where->global.inlined_to)
		where = where->global.inlined_to;

	      if (heap_node[where->uid])
		fibheap_replace_key (heap, heap_node[where->uid],
				     cgraph_estimate_growth (where));

	      if (cgraph_dump_file)
		fprintf (cgraph_dump_file, 
			 " Inlined into %s which now has %i insns.\n",
			 cgraph_node_name (e->caller),
			 e->caller->global.insns);
	    }
	}

      /* Similarly all functions called by the function we just inlined
         are now called more times; update keys.  */
      update_callee_keys (heap, heap_node, node);

      if (cgraph_dump_file)
	fprintf (cgraph_dump_file, 
		 " Inlined for a net change of %+i insns.\n",
		 overall_insns - old_insns);
    }
  while ((node = fibheap_extract_min (heap)) != NULL)
    if (!node->local.disregard_inline_limits)
      cgraph_set_inline_failed (node, N_("--param inline-unit-growth limit reached"));
  fibheap_delete (heap);
  free (heap_node);
}

/* Decide on the inlining.  We do so in the topological order to avoid
   expenses on updating data structures.  */

static void
cgraph_decide_inlining (void)
{
  struct cgraph_node *node;
  int nnodes;
  struct cgraph_node **order =
    xcalloc (cgraph_n_nodes, sizeof (struct cgraph_node *));
  int old_insns = 0;
  int i;

  for (node = cgraph_nodes; node; node = node->next)
    initial_insns += node->local.self_insns;
  overall_insns = initial_insns;

  nnodes = cgraph_postorder (order);

  if (cgraph_dump_file)
    fprintf (cgraph_dump_file,
	     "\nDeciding on inlining.  Starting with %i insns.\n",
	     initial_insns);

  for (node = cgraph_nodes; node; node = node->next)
    node->aux = 0;

  if (cgraph_dump_file)
    fprintf (cgraph_dump_file, "\nInlining always_inline functions:\n");

  /* In the first pass mark all always_inline edges.  Do this with a priority
     so none of our later choices will make this impossible.  */
  for (i = nnodes - 1; i >= 0; i--)
    {
      struct cgraph_edge *e;

      node = order[i];

      for (e = node->callees; e; e = e->next_callee)
	if (e->callee->local.disregard_inline_limits)
	  break;
      if (!e)
	continue;
      if (cgraph_dump_file)
	fprintf (cgraph_dump_file,
		 "\nConsidering %s %i insns (always inline)\n",
		 cgraph_node_name (e->callee), e->callee->global.insns);
      for (; e; e = e->next_callee)
	{
	  old_insns = overall_insns;
	  if (!e->inline_failed || !e->callee->local.disregard_inline_limits)
	    continue;
	  if (cgraph_recursive_inlining_p (order[i], e->callee,
				  	   &e->inline_failed))
	    continue;
	  cgraph_mark_inline (e);
	  if (cgraph_dump_file)
	    fprintf (cgraph_dump_file, 
		     " Inlined into %s which now has %i insns.\n",
		     cgraph_node_name (node->callees->caller),
	             node->callees->caller->global.insns);
	}
	if (cgraph_dump_file)
	  fprintf (cgraph_dump_file, 
		   " Inlined for a net change of %+i insns.\n",
		   overall_insns - old_insns);
    }

  if (!flag_really_no_inline)
    {
      cgraph_decide_inlining_of_small_functions ();

      if (cgraph_dump_file)
	fprintf (cgraph_dump_file, "\nDeciding on functions called once:\n");

      /* And finally decide what functions are called once.  */

      for (i = nnodes - 1; i >= 0; i--)
	{
	  node = order[i];

	  if (node->callers && !node->callers->next_caller && !node->needed
	      && node->local.inlinable && node->callers->inline_failed
	      && !DECL_EXTERNAL (node->decl) && !DECL_COMDAT (node->decl))
	    {
	      bool ok = true;
	      struct cgraph_node *node1;

	      /* Verify that we won't duplicate the caller.  */
	      for (node1 = node->callers->caller;
		   node1->callers && !node1->callers->inline_failed
		   && ok; node1 = node1->callers->caller)
		if (node1->callers->next_caller || node1->needed)
		  ok = false;
	      if (ok)
		{
		  if (cgraph_dump_file)
		    fprintf (cgraph_dump_file,
			     "\nConsidering %s %i insns.\n"
			     " Called once from %s %i insns.\n",
			     cgraph_node_name (node), node->global.insns,
			     cgraph_node_name (node->callers->caller),
			     node->callers->caller->global.insns);

		  old_insns = overall_insns;

		  if (cgraph_check_inline_limits (node->callers->caller, node,
					  	  NULL))
		    {
		      cgraph_mark_inline (node->callers);
		      if (cgraph_dump_file)
			fprintf (cgraph_dump_file,
				 " Inlined into %s which now has %i insns"
				 " for a net change of %+i insns.\n",
				 cgraph_node_name (node->callers->caller),
				 node->callers->caller->global.insns,
				 overall_insns - old_insns);
		    }
		  else
		    {
		      if (cgraph_dump_file)
			fprintf (cgraph_dump_file,
				 " Inline limit reached, not inlined.\n");
		    }
		}
	    }
	}
    }

  /* We will never output extern functions we didn't inline. 
     ??? Perhaps we can prevent accounting of growth of external
     inline functions.  */
  cgraph_remove_unreachable_nodes ();

  if (cgraph_dump_file)
    fprintf (cgraph_dump_file,
	     "\nInlined %i calls, eliminated %i functions, "
	     "%i insns turned to %i insns.\n\n",
	     ncalls_inlined, nfunctions_inlined, initial_insns,
	     overall_insns);
  free (order);
}

/* Decide on the inlining.  We do so in the topological order to avoid
   expenses on updating data structures.  */

static void
cgraph_decide_inlining_incrementally (struct cgraph_node *node)
{
  struct cgraph_edge *e;

  /* First of all look for always inline functions.  */
  for (e = node->callees; e; e = e->next_callee)
    if (e->callee->local.disregard_inline_limits
	&& e->inline_failed
        && !cgraph_recursive_inlining_p (node, e->callee, &e->inline_failed)
	/* ??? It is possible that renaming variable removed the function body
	   in duplicate_decls. See gcc.c-torture/compile/20011119-2.c  */
	&& DECL_SAVED_TREE (e->callee->decl))
      cgraph_mark_inline (e);

  /* Now do the automatic inlining.  */
  if (!flag_really_no_inline)
    for (e = node->callees; e; e = e->next_callee)
      if (e->callee->local.inlinable
	  && e->inline_failed
	  && !e->callee->local.disregard_inline_limits
	  && !cgraph_recursive_inlining_p (node, e->callee, &e->inline_failed)
	  && cgraph_check_inline_limits (node, e->callee, &e->inline_failed)
	  && DECL_SAVED_TREE (e->callee->decl))
	{
	  if (cgraph_default_inline_p (e->callee))
	    cgraph_mark_inline (e);
	  else
	    e->inline_failed
	      = N_("--param max-inline-insns-single limit reached");
	}
}


/* Return true when CALLER_DECL should be inlined into CALLEE_DECL.  */

bool
cgraph_inline_p (struct cgraph_edge *e, const char **reason)
{
  *reason = e->inline_failed;
  return !e->inline_failed;
}

/* Expand all functions that must be output.

   Attempt to topologically sort the nodes so function is output when
   all called functions are already assembled to allow data to be
   propagated across the callgraph.  Use a stack to get smaller distance
   between a function and its callees (later we may choose to use a more
   sophisticated algorithm for function reordering; we will likely want
   to use subsections to make the output functions appear in top-down
   order).  */

static void
cgraph_expand_all_functions (void)
{
  struct cgraph_node *node;
  struct cgraph_node **order =
    xcalloc (cgraph_n_nodes, sizeof (struct cgraph_node *));
  int order_pos = 0, new_order_pos = 0;
  int i;

  cgraph_mark_functions_to_output ();

  order_pos = cgraph_postorder (order);
  if (order_pos != cgraph_n_nodes)
    abort ();

  /* Garbage collector may remove inline clones we eliminate during
     optimization.  So we must be sure to not reference them.  */
  for (i = 0; i < order_pos; i++)
    if (order[i]->output)
      order[new_order_pos++] = order[i];

  for (i = new_order_pos - 1; i >= 0; i--)
    {
      node = order[i];
      if (node->output)
	{
	  if (!node->reachable)
	    abort ();
	  node->output = 0;
	  cgraph_expand_function (node);
	}
    }
  free (order);
}

/* Mark all local functions.

   A local function is one whose calls can occur only in the
   current compilation unit and all its calls are explicit,
   so we can change its calling convention.
   We simply mark all static functions whose address is not taken
   as local.  */

static void
cgraph_mark_local_functions (void)
{
  struct cgraph_node *node;

  if (cgraph_dump_file)
    fprintf (cgraph_dump_file, "\nMarking local functions:");

  /* Figure out functions we want to assemble.  */
  for (node = cgraph_nodes; node; node = node->next)
    {
      node->local.local = (!node->needed
		           && DECL_SAVED_TREE (node->decl)
		           && !TREE_PUBLIC (node->decl));
      if (cgraph_dump_file && node->local.local)
	fprintf (cgraph_dump_file, " %s", cgraph_node_name (node));
    }
  if (cgraph_dump_file)
    fprintf (cgraph_dump_file, "\n\n");
}

/* Return true when function body of DECL still needs to be kept around
   for later re-use.  */
bool
cgraph_preserve_function_body_p (tree decl)
{
  struct cgraph_node *node;
  /* Keep the body; we're going to dump it.  */
  if (dump_enabled_p (TDI_all))
    return true;
  if (!cgraph_global_info_ready)
    return (DECL_INLINE (decl) && !flag_really_no_inline);
  /* Look if there is any clone around.  */
  for (node = cgraph_node (decl); node; node = node->next_clone)
    if (node->global.inlined_to)
      return true;
  return false;
}

/* Perform simple optimizations based on callgraph.  */

void
cgraph_optimize (void)
{
#ifdef ENABLE_CHECKING
  verify_cgraph ();
#endif
  if (!flag_unit_at_a_time)
    return;
  timevar_push (TV_CGRAPHOPT);
  if (!quiet_flag)
    fprintf (stderr, "Performing intraprocedural optimizations\n");

  cgraph_mark_local_functions ();
  if (cgraph_dump_file)
    {
      fprintf (cgraph_dump_file, "Marked ");
      dump_cgraph (cgraph_dump_file);
    }

  if (flag_inline_trees)
    cgraph_decide_inlining ();
  cgraph_global_info_ready = true;
  if (cgraph_dump_file)
    {
      fprintf (cgraph_dump_file, "Optimized ");
      dump_cgraph (cgraph_dump_file);
    }
  timevar_pop (TV_CGRAPHOPT);

  /* Output everything.  */
  if (!quiet_flag)
    fprintf (stderr, "Assembling functions:\n");
#ifdef ENABLE_CHECKING
  verify_cgraph ();
#endif
  cgraph_expand_all_functions ();
  if (cgraph_dump_file)
    {
      fprintf (cgraph_dump_file, "\nFinal ");
      dump_cgraph (cgraph_dump_file);
    }
#ifdef ENABLE_CHECKING
  verify_cgraph ();
#endif
}