summaryrefslogtreecommitdiff
path: root/gcc/cfganal.c
blob: 7cecd984a02ab5ff0546d8de454323b4827aab5a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
/* Control flow graph analysis code for GNU compiler.
   Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
   1999, 2000, 2001, 2003, 2004, 2005 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING.  If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.  */

/* This file contains various simple utilities to analyze the CFG.  */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "rtl.h"
#include "obstack.h"
#include "hard-reg-set.h"
#include "basic-block.h"
#include "insn-config.h"
#include "recog.h"
#include "toplev.h"
#include "tm_p.h"
#include "timevar.h"

/* Store the data structures necessary for depth-first search.  */
struct depth_first_search_dsS {
  /* stack for backtracking during the algorithm */
  basic_block *stack;

  /* number of edges in the stack.  That is, positions 0, ..., sp-1
     have edges.  */
  unsigned int sp;

  /* record of basic blocks already seen by depth-first search */
  sbitmap visited_blocks;
};
typedef struct depth_first_search_dsS *depth_first_search_ds;

static void flow_dfs_compute_reverse_init (depth_first_search_ds);
static void flow_dfs_compute_reverse_add_bb (depth_first_search_ds,
					     basic_block);
static basic_block flow_dfs_compute_reverse_execute (depth_first_search_ds,
						     basic_block);
static void flow_dfs_compute_reverse_finish (depth_first_search_ds);
static bool flow_active_insn_p (rtx);

/* Like active_insn_p, except keep the return value clobber around
   even after reload.  */

static bool
flow_active_insn_p (rtx insn)
{
  if (active_insn_p (insn))
    return true;

  /* A clobber of the function return value exists for buggy
     programs that fail to return a value.  Its effect is to
     keep the return value from being live across the entire
     function.  If we allow it to be skipped, we introduce the
     possibility for register livetime aborts.  */
  if (GET_CODE (PATTERN (insn)) == CLOBBER
      && REG_P (XEXP (PATTERN (insn), 0))
      && REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))
    return true;

  return false;
}

/* Return true if the block has no effect and only forwards control flow to
   its single destination.  */

bool
forwarder_block_p (basic_block bb)
{
  rtx insn;

  if (bb == EXIT_BLOCK_PTR || bb == ENTRY_BLOCK_PTR
      || !single_succ_p (bb))
    return false;

  for (insn = BB_HEAD (bb); insn != BB_END (bb); insn = NEXT_INSN (insn))
    if (INSN_P (insn) && flow_active_insn_p (insn))
      return false;

  return (!INSN_P (insn)
	  || (JUMP_P (insn) && simplejump_p (insn))
	  || !flow_active_insn_p (insn));
}

/* Return nonzero if we can reach target from src by falling through.  */

bool
can_fallthru (basic_block src, basic_block target)
{
  rtx insn = BB_END (src);
  rtx insn2;
  edge e;
  edge_iterator ei;

  if (target == EXIT_BLOCK_PTR)
    return true;
  if (src->next_bb != target)
    return 0;
  FOR_EACH_EDGE (e, ei, src->succs)
    if (e->dest == EXIT_BLOCK_PTR
	&& e->flags & EDGE_FALLTHRU)
      return 0;

  insn2 = BB_HEAD (target);
  if (insn2 && !active_insn_p (insn2))
    insn2 = next_active_insn (insn2);

  /* ??? Later we may add code to move jump tables offline.  */
  return next_active_insn (insn) == insn2;
}

/* Return nonzero if we could reach target from src by falling through,
   if the target was made adjacent.  If we already have a fall-through
   edge to the exit block, we can't do that.  */
bool
could_fall_through (basic_block src, basic_block target)
{
  edge e;
  edge_iterator ei;

  if (target == EXIT_BLOCK_PTR)
    return true;
  FOR_EACH_EDGE (e, ei, src->succs)
    if (e->dest == EXIT_BLOCK_PTR
	&& e->flags & EDGE_FALLTHRU)
      return 0;
  return true;
}

/* Mark the back edges in DFS traversal.
   Return nonzero if a loop (natural or otherwise) is present.
   Inspired by Depth_First_Search_PP described in:

     Advanced Compiler Design and Implementation
     Steven Muchnick
     Morgan Kaufmann, 1997

   and heavily borrowed from flow_depth_first_order_compute.  */

bool
mark_dfs_back_edges (void)
{
  edge_iterator *stack;
  int *pre;
  int *post;
  int sp;
  int prenum = 1;
  int postnum = 1;
  sbitmap visited;
  bool found = false;

  /* Allocate the preorder and postorder number arrays.  */
  pre = xcalloc (last_basic_block, sizeof (int));
  post = xcalloc (last_basic_block, sizeof (int));

  /* Allocate stack for back-tracking up CFG.  */
  stack = xmalloc ((n_basic_blocks + 1) * sizeof (edge_iterator));
  sp = 0;

  /* Allocate bitmap to track nodes that have been visited.  */
  visited = sbitmap_alloc (last_basic_block);

  /* None of the nodes in the CFG have been visited yet.  */
  sbitmap_zero (visited);

  /* Push the first edge on to the stack.  */
  stack[sp++] = ei_start (ENTRY_BLOCK_PTR->succs);

  while (sp)
    {
      edge_iterator ei;
      basic_block src;
      basic_block dest;

      /* Look at the edge on the top of the stack.  */
      ei = stack[sp - 1];
      src = ei_edge (ei)->src;
      dest = ei_edge (ei)->dest;
      ei_edge (ei)->flags &= ~EDGE_DFS_BACK;

      /* Check if the edge destination has been visited yet.  */
      if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
	{
	  /* Mark that we have visited the destination.  */
	  SET_BIT (visited, dest->index);

	  pre[dest->index] = prenum++;
	  if (EDGE_COUNT (dest->succs) > 0)
	    {
	      /* Since the DEST node has been visited for the first
		 time, check its successors.  */
	      stack[sp++] = ei_start (dest->succs);
	    }
	  else
	    post[dest->index] = postnum++;
	}
      else
	{
	  if (dest != EXIT_BLOCK_PTR && src != ENTRY_BLOCK_PTR
	      && pre[src->index] >= pre[dest->index]
	      && post[dest->index] == 0)
	    ei_edge (ei)->flags |= EDGE_DFS_BACK, found = true;

	  if (ei_one_before_end_p (ei) && src != ENTRY_BLOCK_PTR)
	    post[src->index] = postnum++;

	  if (!ei_one_before_end_p (ei))
	    ei_next (&stack[sp - 1]);
	  else
	    sp--;
	}
    }

  free (pre);
  free (post);
  free (stack);
  sbitmap_free (visited);

  return found;
}

/* Set the flag EDGE_CAN_FALLTHRU for edges that can be fallthru.  */

void
set_edge_can_fallthru_flag (void)
{
  basic_block bb;

  FOR_EACH_BB (bb)
    {
      edge e;
      edge_iterator ei;

      FOR_EACH_EDGE (e, ei, bb->succs)
	{
	  e->flags &= ~EDGE_CAN_FALLTHRU;

	  /* The FALLTHRU edge is also CAN_FALLTHRU edge.  */
	  if (e->flags & EDGE_FALLTHRU)
	    e->flags |= EDGE_CAN_FALLTHRU;
	}

      /* If the BB ends with an invertible condjump all (2) edges are
	 CAN_FALLTHRU edges.  */
      if (EDGE_COUNT (bb->succs) != 2)
	continue;
      if (!any_condjump_p (BB_END (bb)))
	continue;
      if (!invert_jump (BB_END (bb), JUMP_LABEL (BB_END (bb)), 0))
	continue;
      invert_jump (BB_END (bb), JUMP_LABEL (BB_END (bb)), 0);
      EDGE_SUCC (bb, 0)->flags |= EDGE_CAN_FALLTHRU;
      EDGE_SUCC (bb, 1)->flags |= EDGE_CAN_FALLTHRU;
    }
}

/* Find unreachable blocks.  An unreachable block will have 0 in
   the reachable bit in block->flags.  A nonzero value indicates the
   block is reachable.  */

void
find_unreachable_blocks (void)
{
  edge e;
  edge_iterator ei;
  basic_block *tos, *worklist, bb;

  tos = worklist = xmalloc (sizeof (basic_block) * n_basic_blocks);

  /* Clear all the reachability flags.  */

  FOR_EACH_BB (bb)
    bb->flags &= ~BB_REACHABLE;

  /* Add our starting points to the worklist.  Almost always there will
     be only one.  It isn't inconceivable that we might one day directly
     support Fortran alternate entry points.  */

  FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
    {
      *tos++ = e->dest;

      /* Mark the block reachable.  */
      e->dest->flags |= BB_REACHABLE;
    }

  /* Iterate: find everything reachable from what we've already seen.  */

  while (tos != worklist)
    {
      basic_block b = *--tos;

      FOR_EACH_EDGE (e, ei, b->succs)
	{
	  basic_block dest = e->dest;

	  if (!(dest->flags & BB_REACHABLE))
	    {
	      *tos++ = dest;
	      dest->flags |= BB_REACHABLE;
	    }
	}
    }

  free (worklist);
}

/* Functions to access an edge list with a vector representation.
   Enough data is kept such that given an index number, the
   pred and succ that edge represents can be determined, or
   given a pred and a succ, its index number can be returned.
   This allows algorithms which consume a lot of memory to
   represent the normally full matrix of edge (pred,succ) with a
   single indexed vector,  edge (EDGE_INDEX (pred, succ)), with no
   wasted space in the client code due to sparse flow graphs.  */

/* This functions initializes the edge list. Basically the entire
   flowgraph is processed, and all edges are assigned a number,
   and the data structure is filled in.  */

struct edge_list *
create_edge_list (void)
{
  struct edge_list *elist;
  edge e;
  int num_edges;
  int block_count;
  basic_block bb;
  edge_iterator ei;

  block_count = n_basic_blocks + 2;   /* Include the entry and exit blocks.  */

  num_edges = 0;

  /* Determine the number of edges in the flow graph by counting successor
     edges on each basic block.  */
  FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
    {
      num_edges += EDGE_COUNT (bb->succs);
    }

  elist = xmalloc (sizeof (struct edge_list));
  elist->num_blocks = block_count;
  elist->num_edges = num_edges;
  elist->index_to_edge = xmalloc (sizeof (edge) * num_edges);

  num_edges = 0;

  /* Follow successors of blocks, and register these edges.  */
  FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
    FOR_EACH_EDGE (e, ei, bb->succs)
      elist->index_to_edge[num_edges++] = e;

  return elist;
}

/* This function free's memory associated with an edge list.  */

void
free_edge_list (struct edge_list *elist)
{
  if (elist)
    {
      free (elist->index_to_edge);
      free (elist);
    }
}

/* This function provides debug output showing an edge list.  */

void
print_edge_list (FILE *f, struct edge_list *elist)
{
  int x;

  fprintf (f, "Compressed edge list, %d BBs + entry & exit, and %d edges\n",
	   elist->num_blocks - 2, elist->num_edges);

  for (x = 0; x < elist->num_edges; x++)
    {
      fprintf (f, " %-4d - edge(", x);
      if (INDEX_EDGE_PRED_BB (elist, x) == ENTRY_BLOCK_PTR)
	fprintf (f, "entry,");
      else
	fprintf (f, "%d,", INDEX_EDGE_PRED_BB (elist, x)->index);

      if (INDEX_EDGE_SUCC_BB (elist, x) == EXIT_BLOCK_PTR)
	fprintf (f, "exit)\n");
      else
	fprintf (f, "%d)\n", INDEX_EDGE_SUCC_BB (elist, x)->index);
    }
}

/* This function provides an internal consistency check of an edge list,
   verifying that all edges are present, and that there are no
   extra edges.  */

void
verify_edge_list (FILE *f, struct edge_list *elist)
{
  int pred, succ, index;
  edge e;
  basic_block bb, p, s;
  edge_iterator ei;

  FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
    {
      FOR_EACH_EDGE (e, ei, bb->succs)
	{
	  pred = e->src->index;
	  succ = e->dest->index;
	  index = EDGE_INDEX (elist, e->src, e->dest);
	  if (index == EDGE_INDEX_NO_EDGE)
	    {
	      fprintf (f, "*p* No index for edge from %d to %d\n", pred, succ);
	      continue;
	    }

	  if (INDEX_EDGE_PRED_BB (elist, index)->index != pred)
	    fprintf (f, "*p* Pred for index %d should be %d not %d\n",
		     index, pred, INDEX_EDGE_PRED_BB (elist, index)->index);
	  if (INDEX_EDGE_SUCC_BB (elist, index)->index != succ)
	    fprintf (f, "*p* Succ for index %d should be %d not %d\n",
		     index, succ, INDEX_EDGE_SUCC_BB (elist, index)->index);
	}
    }

  /* We've verified that all the edges are in the list, now lets make sure
     there are no spurious edges in the list.  */

  FOR_BB_BETWEEN (p, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
    FOR_BB_BETWEEN (s, ENTRY_BLOCK_PTR->next_bb, NULL, next_bb)
      {
	int found_edge = 0;

	FOR_EACH_EDGE (e, ei, p->succs)
	  if (e->dest == s)
	    {
	      found_edge = 1;
	      break;
	    }

	FOR_EACH_EDGE (e, ei, s->preds)
	  if (e->src == p)
	    {
	      found_edge = 1;
	      break;
	    }

	if (EDGE_INDEX (elist, p, s)
	    == EDGE_INDEX_NO_EDGE && found_edge != 0)
	  fprintf (f, "*** Edge (%d, %d) appears to not have an index\n",
		   p->index, s->index);
	if (EDGE_INDEX (elist, p, s)
	    != EDGE_INDEX_NO_EDGE && found_edge == 0)
	  fprintf (f, "*** Edge (%d, %d) has index %d, but there is no edge\n",
		   p->index, s->index, EDGE_INDEX (elist, p, s));
      }
}

/* Given PRED and SUCC blocks, return the edge which connects the blocks.
   If no such edge exists, return NULL.  */

edge
find_edge (basic_block pred, basic_block succ)
{
  edge e;
  edge_iterator ei;

  if (EDGE_COUNT (pred->succs) <= EDGE_COUNT (succ->preds))
    {
      FOR_EACH_EDGE (e, ei, pred->succs)
	if (e->dest == succ)
	  return e;
    }
  else
    {
      FOR_EACH_EDGE (e, ei, succ->preds)
	if (e->src == pred)
	  return e;
    }

  return NULL;
}

/* This routine will determine what, if any, edge there is between
   a specified predecessor and successor.  */

int
find_edge_index (struct edge_list *edge_list, basic_block pred, basic_block succ)
{
  int x;

  for (x = 0; x < NUM_EDGES (edge_list); x++)
    if (INDEX_EDGE_PRED_BB (edge_list, x) == pred
	&& INDEX_EDGE_SUCC_BB (edge_list, x) == succ)
      return x;

  return (EDGE_INDEX_NO_EDGE);
}

/* Dump the list of basic blocks in the bitmap NODES.  */

void
flow_nodes_print (const char *str, const sbitmap nodes, FILE *file)
{
  int node;

  if (! nodes)
    return;

  fprintf (file, "%s { ", str);
  EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, node, {fprintf (file, "%d ", node);});
  fputs ("}\n", file);
}

/* Dump the list of edges in the array EDGE_LIST.  */

void
flow_edge_list_print (const char *str, const edge *edge_list, int num_edges, FILE *file)
{
  int i;

  if (! edge_list)
    return;

  fprintf (file, "%s { ", str);
  for (i = 0; i < num_edges; i++)
    fprintf (file, "%d->%d ", edge_list[i]->src->index,
	     edge_list[i]->dest->index);

  fputs ("}\n", file);
}


/* This routine will remove any fake predecessor edges for a basic block.
   When the edge is removed, it is also removed from whatever successor
   list it is in.  */

static void
remove_fake_predecessors (basic_block bb)
{
  edge e;
  edge_iterator ei;

  for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
    {
      if ((e->flags & EDGE_FAKE) == EDGE_FAKE)
	remove_edge (e);
      else
	ei_next (&ei);
    }
}

/* This routine will remove all fake edges from the flow graph.  If
   we remove all fake successors, it will automatically remove all
   fake predecessors.  */

void
remove_fake_edges (void)
{
  basic_block bb;

  FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb, NULL, next_bb)
    remove_fake_predecessors (bb);
}

/* This routine will remove all fake edges to the EXIT_BLOCK.  */

void
remove_fake_exit_edges (void)
{
  remove_fake_predecessors (EXIT_BLOCK_PTR);
}


/* This function will add a fake edge between any block which has no
   successors, and the exit block. Some data flow equations require these
   edges to exist.  */

void
add_noreturn_fake_exit_edges (void)
{
  basic_block bb;

  FOR_EACH_BB (bb)
    if (EDGE_COUNT (bb->succs) == 0)
      make_single_succ_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
}

/* This function adds a fake edge between any infinite loops to the
   exit block.  Some optimizations require a path from each node to
   the exit node.

   See also Morgan, Figure 3.10, pp. 82-83.

   The current implementation is ugly, not attempting to minimize the
   number of inserted fake edges.  To reduce the number of fake edges
   to insert, add fake edges from _innermost_ loops containing only
   nodes not reachable from the exit block.  */

void
connect_infinite_loops_to_exit (void)
{
  basic_block unvisited_block = EXIT_BLOCK_PTR;
  struct depth_first_search_dsS dfs_ds;

  /* Perform depth-first search in the reverse graph to find nodes
     reachable from the exit block.  */
  flow_dfs_compute_reverse_init (&dfs_ds);
  flow_dfs_compute_reverse_add_bb (&dfs_ds, EXIT_BLOCK_PTR);

  /* Repeatedly add fake edges, updating the unreachable nodes.  */
  while (1)
    {
      unvisited_block = flow_dfs_compute_reverse_execute (&dfs_ds,
							  unvisited_block);
      if (!unvisited_block)
	break;

      make_edge (unvisited_block, EXIT_BLOCK_PTR, EDGE_FAKE);
      flow_dfs_compute_reverse_add_bb (&dfs_ds, unvisited_block);
    }

  flow_dfs_compute_reverse_finish (&dfs_ds);
  return;
}

/* Compute reverse top sort order.  */

void
flow_reverse_top_sort_order_compute (int *rts_order)
{
  edge_iterator *stack;
  int sp;
  int postnum = 0;
  sbitmap visited;

  /* Allocate stack for back-tracking up CFG.  */
  stack = xmalloc ((n_basic_blocks + 1) * sizeof (edge_iterator));
  sp = 0;

  /* Allocate bitmap to track nodes that have been visited.  */
  visited = sbitmap_alloc (last_basic_block);

  /* None of the nodes in the CFG have been visited yet.  */
  sbitmap_zero (visited);

  /* Push the first edge on to the stack.  */
  stack[sp++] = ei_start (ENTRY_BLOCK_PTR->succs);

  while (sp)
    {
      edge_iterator ei;
      basic_block src;
      basic_block dest;

      /* Look at the edge on the top of the stack.  */
      ei = stack[sp - 1];
      src = ei_edge (ei)->src;
      dest = ei_edge (ei)->dest;

      /* Check if the edge destination has been visited yet.  */
      if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
	{
	  /* Mark that we have visited the destination.  */
	  SET_BIT (visited, dest->index);

	  if (EDGE_COUNT (dest->succs) > 0)
	    /* Since the DEST node has been visited for the first
	       time, check its successors.  */
	    stack[sp++] = ei_start (dest->succs);
	  else
	    rts_order[postnum++] = dest->index;
	}
      else
	{
	  if (ei_one_before_end_p (ei) && src != ENTRY_BLOCK_PTR)
	   rts_order[postnum++] = src->index;

	  if (!ei_one_before_end_p (ei))
	    ei_next (&stack[sp - 1]);
	  else
	    sp--;
	}
    }

  free (stack);
  sbitmap_free (visited);
}

/* Compute the depth first search order and store in the array
  DFS_ORDER if nonzero, marking the nodes visited in VISITED.  If
  RC_ORDER is nonzero, return the reverse completion number for each
  node.  Returns the number of nodes visited.  A depth first search
  tries to get as far away from the starting point as quickly as
  possible.  */

int
flow_depth_first_order_compute (int *dfs_order, int *rc_order)
{
  edge_iterator *stack;
  int sp;
  int dfsnum = 0;
  int rcnum = n_basic_blocks - 1;
  sbitmap visited;

  /* Allocate stack for back-tracking up CFG.  */
  stack = xmalloc ((n_basic_blocks + 1) * sizeof (edge_iterator));
  sp = 0;

  /* Allocate bitmap to track nodes that have been visited.  */
  visited = sbitmap_alloc (last_basic_block);

  /* None of the nodes in the CFG have been visited yet.  */
  sbitmap_zero (visited);

  /* Push the first edge on to the stack.  */
  stack[sp++] = ei_start (ENTRY_BLOCK_PTR->succs);

  while (sp)
    {
      edge_iterator ei;
      basic_block src;
      basic_block dest;

      /* Look at the edge on the top of the stack.  */
      ei = stack[sp - 1];
      src = ei_edge (ei)->src;
      dest = ei_edge (ei)->dest;

      /* Check if the edge destination has been visited yet.  */
      if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
	{
	  /* Mark that we have visited the destination.  */
	  SET_BIT (visited, dest->index);

	  if (dfs_order)
	    dfs_order[dfsnum] = dest->index;

	  dfsnum++;

	  if (EDGE_COUNT (dest->succs) > 0)
	    /* Since the DEST node has been visited for the first
	       time, check its successors.  */
	    stack[sp++] = ei_start (dest->succs);
	  else if (rc_order)
	    /* There are no successors for the DEST node so assign
	       its reverse completion number.  */
	    rc_order[rcnum--] = dest->index;
	}
      else
	{
	  if (ei_one_before_end_p (ei) && src != ENTRY_BLOCK_PTR
	      && rc_order)
	    /* There are no more successors for the SRC node
	       so assign its reverse completion number.  */
	    rc_order[rcnum--] = src->index;

	  if (!ei_one_before_end_p (ei))
	    ei_next (&stack[sp - 1]);
	  else
	    sp--;
	}
    }

  free (stack);
  sbitmap_free (visited);

  /* The number of nodes visited should be the number of blocks.  */
  gcc_assert (dfsnum == n_basic_blocks);

  return dfsnum;
}

/* Compute the depth first search order on the _reverse_ graph and
   store in the array DFS_ORDER, marking the nodes visited in VISITED.
   Returns the number of nodes visited.

   The computation is split into three pieces:

   flow_dfs_compute_reverse_init () creates the necessary data
   structures.

   flow_dfs_compute_reverse_add_bb () adds a basic block to the data
   structures.  The block will start the search.

   flow_dfs_compute_reverse_execute () continues (or starts) the
   search using the block on the top of the stack, stopping when the
   stack is empty.

   flow_dfs_compute_reverse_finish () destroys the necessary data
   structures.

   Thus, the user will probably call ..._init(), call ..._add_bb() to
   add a beginning basic block to the stack, call ..._execute(),
   possibly add another bb to the stack and again call ..._execute(),
   ..., and finally call _finish().  */

/* Initialize the data structures used for depth-first search on the
   reverse graph.  If INITIALIZE_STACK is nonzero, the exit block is
   added to the basic block stack.  DATA is the current depth-first
   search context.  If INITIALIZE_STACK is nonzero, there is an
   element on the stack.  */

static void
flow_dfs_compute_reverse_init (depth_first_search_ds data)
{
  /* Allocate stack for back-tracking up CFG.  */
  data->stack = xmalloc ((n_basic_blocks - (INVALID_BLOCK + 1))
			 * sizeof (basic_block));
  data->sp = 0;

  /* Allocate bitmap to track nodes that have been visited.  */
  data->visited_blocks = sbitmap_alloc (last_basic_block - (INVALID_BLOCK + 1));

  /* None of the nodes in the CFG have been visited yet.  */
  sbitmap_zero (data->visited_blocks);

  return;
}

/* Add the specified basic block to the top of the dfs data
   structures.  When the search continues, it will start at the
   block.  */

static void
flow_dfs_compute_reverse_add_bb (depth_first_search_ds data, basic_block bb)
{
  data->stack[data->sp++] = bb;
  SET_BIT (data->visited_blocks, bb->index - (INVALID_BLOCK + 1));
}

/* Continue the depth-first search through the reverse graph starting with the
   block at the stack's top and ending when the stack is empty.  Visited nodes
   are marked.  Returns an unvisited basic block, or NULL if there is none
   available.  */

static basic_block
flow_dfs_compute_reverse_execute (depth_first_search_ds data,
				  basic_block last_unvisited)
{
  basic_block bb;
  edge e;
  edge_iterator ei;

  while (data->sp > 0)
    {
      bb = data->stack[--data->sp];

      /* Perform depth-first search on adjacent vertices.  */
      FOR_EACH_EDGE (e, ei, bb->preds)
	if (!TEST_BIT (data->visited_blocks,
		       e->src->index - (INVALID_BLOCK + 1)))
	  flow_dfs_compute_reverse_add_bb (data, e->src);
    }

  /* Determine if there are unvisited basic blocks.  */
  FOR_BB_BETWEEN (bb, last_unvisited, NULL, prev_bb)
    if (!TEST_BIT (data->visited_blocks, bb->index - (INVALID_BLOCK + 1)))
      return bb;

  return NULL;
}

/* Destroy the data structures needed for depth-first search on the
   reverse graph.  */

static void
flow_dfs_compute_reverse_finish (depth_first_search_ds data)
{
  free (data->stack);
  sbitmap_free (data->visited_blocks);
}

/* Performs dfs search from BB over vertices satisfying PREDICATE;
   if REVERSE, go against direction of edges.  Returns number of blocks
   found and their list in RSLT.  RSLT can contain at most RSLT_MAX items.  */
int
dfs_enumerate_from (basic_block bb, int reverse,
		    bool (*predicate) (basic_block, void *),
		    basic_block *rslt, int rslt_max, void *data)
{
  basic_block *st, lbb;
  int sp = 0, tv = 0;

  st = xcalloc (rslt_max, sizeof (basic_block));
  rslt[tv++] = st[sp++] = bb;
  bb->flags |= BB_VISITED;
  while (sp)
    {
      edge e;
      edge_iterator ei;
      lbb = st[--sp];
      if (reverse)
        {
	  FOR_EACH_EDGE (e, ei, lbb->preds)
	    if (!(e->src->flags & BB_VISITED) && predicate (e->src, data))
	      {
	        gcc_assert (tv != rslt_max);
	        rslt[tv++] = st[sp++] = e->src;
	        e->src->flags |= BB_VISITED;
	      }
        }
      else
        {
	  FOR_EACH_EDGE (e, ei, lbb->succs)
	    if (!(e->dest->flags & BB_VISITED) && predicate (e->dest, data))
	      {
	        gcc_assert (tv != rslt_max);
	        rslt[tv++] = st[sp++] = e->dest;
	        e->dest->flags |= BB_VISITED;
	      }
	}
    }
  free (st);
  for (sp = 0; sp < tv; sp++)
    rslt[sp]->flags &= ~BB_VISITED;
  return tv;
}


/* Compute dominance frontiers, ala Harvey, Ferrante, et al.
   
   This algorithm can be found in Timothy Harvey's PhD thesis, at
   http://www.cs.rice.edu/~harv/dissertation.pdf in the section on iterative
   dominance algorithms.

   First, we identify each join point, j (any node with more than one
   incoming edge is a join point). 

   We then examine each predecessor, p, of j and walk up the dominator tree
   starting at p. 
   
   We stop the walk when we reach j's immediate dominator - j is in the
   dominance frontier of each of  the nodes in the walk, except for j's
   immediate dominator. Intuitively, all of the rest of j's dominators are
   shared by j's predecessors as well.
   Since they dominate j, they will not have j in their dominance frontiers.

   The number of nodes touched by this algorithm is equal to the size 
   of the dominance frontiers, no more, no less.
*/


static void
compute_dominance_frontiers_1 (bitmap *frontiers)
{
  edge p;
  edge_iterator ei;
  basic_block b;
  FOR_EACH_BB (b)
    {
      if (EDGE_COUNT (b->preds) >= 2)
	{
	  FOR_EACH_EDGE (p, ei, b->preds)
	    {
	      basic_block runner = p->src;
	      basic_block domsb;
	      if (runner == ENTRY_BLOCK_PTR)
		continue;
	      
	      domsb = get_immediate_dominator (CDI_DOMINATORS, b);
	      while (runner != domsb)
		{
		  bitmap_set_bit (frontiers[runner->index], 
				  b->index);
		  runner = get_immediate_dominator (CDI_DOMINATORS,
						    runner);
		}
	    }
	}
    }
}	      
  

void
compute_dominance_frontiers (bitmap *frontiers)
{
  timevar_push (TV_DOM_FRONTIERS);

  compute_dominance_frontiers_1 (frontiers);

  timevar_pop (TV_DOM_FRONTIERS);
}