summaryrefslogtreecommitdiff
path: root/gcc/cfg.c
blob: 57743dfef0ae12c8b46bbd2461032751045d789d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
/* Control flow graph manipulation code for GNU compiler.
   Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
   1999, 2000, 2001 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING.  If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.  */

/* This file contains low level functions to manipulate with CFG and analyze it.
   All other modules should not transform the datastructure directly and use
   abstraction instead.  The file is supposed to be ordered bottom-up and should
   not contain any code dependent on particular intermediate language (RTL or trees)

   Available functionality:
     - Initialization/deallocation
	 init_flow, clear_edges
     - Low level basic block manipulation
	 alloc_block, expunge_block
     - Edge manipulation
	 make_edge, make_single_succ_edge, cached_make_edge, remove_edge
	 - Low level edge redirection (without updating instruction chain)
	     redirect_edge_succ, redirect_edge_succ_nodup, redirect_edge_pred
     - Dumping and debugging
	 dump_flow_info, debug_flow_info, dump_edge_info
     - Allocation of AUX fields for basic blocks
	 alloc_aux_for_blocks, free_aux_for_blocks, alloc_aux_for_block
 */

#include "config.h"
#include "system.h"
#include "tree.h"
#include "rtl.h"
#include "hard-reg-set.h"
#include "basic-block.h"
#include "regs.h"
#include "flags.h"
#include "output.h"
#include "function.h"
#include "except.h"
#include "toplev.h"
#include "tm_p.h"
#include "obstack.h"

/* The obstack on which the flow graph components are allocated.  */

struct obstack flow_obstack;
static char *flow_firstobj;

/* Number of basic blocks in the current function.  */

int n_basic_blocks;

/* Number of edges in the current function.  */

int n_edges;

/* First edge in the deleted edges chain.  */

edge first_deleted_edge;
static basic_block first_deleted_block;

/* The basic block array.  */

varray_type basic_block_info;

/* The special entry and exit blocks.  */

struct basic_block_def entry_exit_blocks[2]
= {{NULL,			/* head */
    NULL,			/* end */
    NULL,			/* head_tree */
    NULL,			/* end_tree */
    NULL,			/* pred */
    NULL,			/* succ */
    NULL,			/* local_set */
    NULL,			/* cond_local_set */
    NULL,			/* global_live_at_start */
    NULL,			/* global_live_at_end */
    NULL,			/* aux */
    ENTRY_BLOCK,		/* index */
    0,				/* loop_depth */
    0,				/* count */
    0,				/* frequency */
    0				/* flags */
  },
  {
    NULL,			/* head */
    NULL,			/* end */
    NULL,			/* head_tree */
    NULL,			/* end_tree */
    NULL,			/* pred */
    NULL,			/* succ */
    NULL,			/* local_set */
    NULL,			/* cond_local_set */
    NULL,			/* global_live_at_start */
    NULL,			/* global_live_at_end */
    NULL,			/* aux */
    EXIT_BLOCK,			/* index */
    0,				/* loop_depth */
    0,				/* count */
    0,				/* frequency */
    0				/* flags */
  }
};

void debug_flow_info			PARAMS ((void));
static void free_edge			PARAMS ((edge));

/* Called once at initialization time.  */

void
init_flow ()
{
  static int initialized;

  first_deleted_edge = 0;
  first_deleted_block = 0;
  n_edges = 0;

  if (!initialized)
    {
      gcc_obstack_init (&flow_obstack);
      flow_firstobj = (char *) obstack_alloc (&flow_obstack, 0);
      initialized = 1;
    }
  else
    {
      obstack_free (&flow_obstack, flow_firstobj);
      flow_firstobj = (char *) obstack_alloc (&flow_obstack, 0);
    }
}

/* Helper function for remove_edge and clear_edges.  Frees edge structure
   without actually unlinking it from the pred/succ lists.  */

static void
free_edge (e)
     edge e;
{
  n_edges--;
  memset (e, 0, sizeof (*e));
  e->succ_next = first_deleted_edge;
  first_deleted_edge = e;
}

/* Free the memory associated with the edge structures.  */

void
clear_edges ()
{
  int i;
  edge e;

  for (i = 0; i < n_basic_blocks; ++i)
    {
      basic_block bb = BASIC_BLOCK (i);
      edge e = bb->succ;

      while (e)
	{
	  edge next = e->succ_next;

	  free_edge (e);
	  e = next;
	}
      bb->succ = NULL;
      bb->pred = NULL;
    }

  e = ENTRY_BLOCK_PTR->succ;
  while (e)
    {
      edge next = e->succ_next;

      free_edge (e);
      e = next;
    }
  EXIT_BLOCK_PTR->pred = NULL;
  ENTRY_BLOCK_PTR->succ = NULL;

  if (n_edges)
    abort ();
}

/* Allocate memory for basic_block.  */

basic_block
alloc_block ()
{
  basic_block bb;

  if (first_deleted_block)
    {
      bb = first_deleted_block;
      first_deleted_block = (basic_block) bb->succ;
      bb->succ = NULL;
    }
  else
    {
      bb = (basic_block) obstack_alloc (&flow_obstack, sizeof (*bb));
      memset (bb, 0, sizeof (*bb));
    }
  return bb;
}

/* Remove block B from the basic block array and compact behind it.  */

void
expunge_block (b)
     basic_block b;
{
  int i, n = n_basic_blocks;

  for (i = b->index; i + 1 < n; ++i)
    {
      basic_block x = BASIC_BLOCK (i + 1);
      BASIC_BLOCK (i) = x;
      x->index = i;
    }

  /* Invalidate data to make bughunting easier.  */
  memset (b, 0, sizeof (*b));
  b->index = -3;
  basic_block_info->num_elements--;
  n_basic_blocks--;
  b->succ = (edge) first_deleted_block;
  first_deleted_block = (basic_block) b;
}

/* Create an edge connecting SRC and DST with FLAGS optionally using
   edge cache CACHE.  Return the new edge, NULL if already exist.  */

edge
cached_make_edge (edge_cache, src, dst, flags)
     sbitmap *edge_cache;
     basic_block src, dst;
     int flags;
{
  int use_edge_cache;
  edge e;

  /* Don't bother with edge cache for ENTRY or EXIT; there aren't that
     many edges to them, and we didn't allocate memory for it.  */
  use_edge_cache = (edge_cache
		    && src != ENTRY_BLOCK_PTR
		    && dst != EXIT_BLOCK_PTR);

  /* Make sure we don't add duplicate edges.  */
  switch (use_edge_cache)
    {
    default:
      /* Quick test for non-existence of the edge.  */
      if (! TEST_BIT (edge_cache[src->index], dst->index))
	break;

      /* The edge exists; early exit if no work to do.  */
      if (flags == 0)
	return NULL;

      /* FALLTHRU */
    case 0:
      for (e = src->succ; e; e = e->succ_next)
	if (e->dest == dst)
	  {
	    e->flags |= flags;
	    return NULL;
	  }
      break;
    }

  if (first_deleted_edge)
    {
      e = first_deleted_edge;
      first_deleted_edge = e->succ_next;
    }
  else
    {
      e = (edge) obstack_alloc (&flow_obstack, sizeof (*e));
      memset (e, 0, sizeof (*e));
    }
  n_edges++;

  e->succ_next = src->succ;
  e->pred_next = dst->pred;
  e->src = src;
  e->dest = dst;
  e->flags = flags;

  src->succ = e;
  dst->pred = e;

  if (use_edge_cache)
    SET_BIT (edge_cache[src->index], dst->index);

  return e;
}

/* Create an edge connecting SRC and DEST with flags FLAGS.  Return newly
   created edge or NULL if already exist.  */

edge
make_edge (src, dest, flags)
     basic_block src, dest;
     int flags;
{
  return cached_make_edge (NULL, src, dest, flags);
}

/* Create an edge connecting SRC to DEST and set probability by knowing
   that it is the single edge leaving SRC.  */

edge
make_single_succ_edge (src, dest, flags)
     basic_block src, dest;
     int flags;
{
  edge e = make_edge (src, dest, flags);

  e->probability = REG_BR_PROB_BASE;
  e->count = src->count;
  return e;
}

/* This function will remove an edge from the flow graph.  */

void
remove_edge (e)
     edge e;
{
  edge last_pred = NULL;
  edge last_succ = NULL;
  edge tmp;
  basic_block src, dest;
  src = e->src;
  dest = e->dest;
  for (tmp = src->succ; tmp && tmp != e; tmp = tmp->succ_next)
    last_succ = tmp;

  if (!tmp)
    abort ();
  if (last_succ)
    last_succ->succ_next = e->succ_next;
  else
    src->succ = e->succ_next;

  for (tmp = dest->pred; tmp && tmp != e; tmp = tmp->pred_next)
    last_pred = tmp;

  if (!tmp)
    abort ();
  if (last_pred)
    last_pred->pred_next = e->pred_next;
  else
    dest->pred = e->pred_next;

  free_edge (e);
}

/* Redirect an edge's successor from one block to another.  */

void
redirect_edge_succ (e, new_succ)
     edge e;
     basic_block new_succ;
{
  edge *pe;

  /* Disconnect the edge from the old successor block.  */
  for (pe = &e->dest->pred; *pe != e; pe = &(*pe)->pred_next)
    continue;
  *pe = (*pe)->pred_next;

  /* Reconnect the edge to the new successor block.  */
  e->pred_next = new_succ->pred;
  new_succ->pred = e;
  e->dest = new_succ;
}

/* Like previous but avoid possible duplicate edge.  */

edge
redirect_edge_succ_nodup (e, new_succ)
     edge e;
     basic_block new_succ;
{
  edge s;
  /* Check whether the edge is already present.  */
  for (s = e->src->succ; s; s = s->succ_next)
    if (s->dest == new_succ && s != e)
      break;
  if (s)
    {
      s->flags |= e->flags;
      s->probability += e->probability;
      s->count += e->count;
      remove_edge (e);
      e = s;
    }
  else
    redirect_edge_succ (e, new_succ);
  return e;
}

/* Redirect an edge's predecessor from one block to another.  */

void
redirect_edge_pred (e, new_pred)
     edge e;
     basic_block new_pred;
{
  edge *pe;

  /* Disconnect the edge from the old predecessor block.  */
  for (pe = &e->src->succ; *pe != e; pe = &(*pe)->succ_next)
    continue;
  *pe = (*pe)->succ_next;

  /* Reconnect the edge to the new predecessor block.  */
  e->succ_next = new_pred->succ;
  new_pred->succ = e;
  e->src = new_pred;
}

void
dump_flow_info (file)
     FILE *file;
{
  int i;
  static const char * const reg_class_names[] = REG_CLASS_NAMES;

  fprintf (file, "%d registers.\n", max_regno);
  for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
    if (REG_N_REFS (i))
      {
	enum reg_class class, altclass;
	fprintf (file, "\nRegister %d used %d times across %d insns",
		 i, REG_N_REFS (i), REG_LIVE_LENGTH (i));
	if (REG_BASIC_BLOCK (i) >= 0)
	  fprintf (file, " in block %d", REG_BASIC_BLOCK (i));
	if (REG_N_SETS (i))
	  fprintf (file, "; set %d time%s", REG_N_SETS (i),
		   (REG_N_SETS (i) == 1) ? "" : "s");
	if (REG_USERVAR_P (regno_reg_rtx[i]))
	  fprintf (file, "; user var");
	if (REG_N_DEATHS (i) != 1)
	  fprintf (file, "; dies in %d places", REG_N_DEATHS (i));
	if (REG_N_CALLS_CROSSED (i) == 1)
	  fprintf (file, "; crosses 1 call");
	else if (REG_N_CALLS_CROSSED (i))
	  fprintf (file, "; crosses %d calls", REG_N_CALLS_CROSSED (i));
	if (PSEUDO_REGNO_BYTES (i) != UNITS_PER_WORD)
	  fprintf (file, "; %d bytes", PSEUDO_REGNO_BYTES (i));
	class = reg_preferred_class (i);
	altclass = reg_alternate_class (i);
	if (class != GENERAL_REGS || altclass != ALL_REGS)
	  {
	    if (altclass == ALL_REGS || class == ALL_REGS)
	      fprintf (file, "; pref %s", reg_class_names[(int) class]);
	    else if (altclass == NO_REGS)
	      fprintf (file, "; %s or none", reg_class_names[(int) class]);
	    else
	      fprintf (file, "; pref %s, else %s",
		       reg_class_names[(int) class],
		       reg_class_names[(int) altclass]);
	  }
	if (REG_POINTER (regno_reg_rtx[i]))
	  fprintf (file, "; pointer");
	fprintf (file, ".\n");
      }

  fprintf (file, "\n%d basic blocks, %d edges.\n", n_basic_blocks, n_edges);
  for (i = 0; i < n_basic_blocks; i++)
    {
      basic_block bb = BASIC_BLOCK (i);
      edge e;

      fprintf (file, "\nBasic block %d: first insn %d, last %d, loop_depth %d, count ",
	       i, INSN_UID (bb->head), INSN_UID (bb->end), bb->loop_depth);
      fprintf (file, HOST_WIDEST_INT_PRINT_DEC, (HOST_WIDEST_INT) bb->count);
      fprintf (file, ", freq %i.\n", bb->frequency);

      fprintf (file, "Predecessors: ");
      for (e = bb->pred; e; e = e->pred_next)
	dump_edge_info (file, e, 0);

      fprintf (file, "\nSuccessors: ");
      for (e = bb->succ; e; e = e->succ_next)
	dump_edge_info (file, e, 1);

      fprintf (file, "\nRegisters live at start:");
      dump_regset (bb->global_live_at_start, file);

      fprintf (file, "\nRegisters live at end:");
      dump_regset (bb->global_live_at_end, file);

      putc ('\n', file);
    }

  putc ('\n', file);
}

void
debug_flow_info ()
{
  dump_flow_info (stderr);
}

void
dump_edge_info (file, e, do_succ)
     FILE *file;
     edge e;
     int do_succ;
{
  basic_block side = (do_succ ? e->dest : e->src);

  if (side == ENTRY_BLOCK_PTR)
    fputs (" ENTRY", file);
  else if (side == EXIT_BLOCK_PTR)
    fputs (" EXIT", file);
  else
    fprintf (file, " %d", side->index);

  if (e->probability)
    fprintf (file, " [%.1f%%] ", e->probability * 100.0 / REG_BR_PROB_BASE);

  if (e->count)
    {
      fprintf (file, " count:");
      fprintf (file, HOST_WIDEST_INT_PRINT_DEC, (HOST_WIDEST_INT) e->count);
    }

  if (e->flags)
    {
      static const char * const bitnames[] = {
	"fallthru", "ab", "abcall", "eh", "fake", "dfs_back"
      };
      int comma = 0;
      int i, flags = e->flags;

      fputc (' ', file);
      fputc ('(', file);
      for (i = 0; flags; i++)
	if (flags & (1 << i))
	  {
	    flags &= ~(1 << i);

	    if (comma)
	      fputc (',', file);
	    if (i < (int) ARRAY_SIZE (bitnames))
	      fputs (bitnames[i], file);
	    else
	      fprintf (file, "%d", i);
	    comma = 1;
	  }
      fputc (')', file);
    }
}

/* Simple routines to easily allocate AUX fields of basic blocks.  */
static struct obstack block_aux_obstack;
static void *first_block_aux_obj = 0;
static struct obstack edge_aux_obstack;
static void *first_edge_aux_obj = 0;

/* Allocate an memory block of SIZE as BB->aux.  The obstack must
   be first initialized by alloc_aux_for_blocks.  */

inline void
alloc_aux_for_block (bb, size)
     basic_block bb;
     int size;
{
  /* Verify that aux field is clear.  */
  if (bb->aux || !first_block_aux_obj)
    abort ();
  bb->aux = obstack_alloc (&block_aux_obstack, size);
  memset (bb->aux, 0, size);
}

/* Initialize the block_aux_obstack and if SIZE is nonzero, call
   alloc_aux_for_block for each basic block.  */

void
alloc_aux_for_blocks (size)
     int size;
{
  static int initialized;

  if (!initialized)
    {
      gcc_obstack_init (&block_aux_obstack);
      initialized = 1;
    }
  /* Check whether AUX data are still allocated.  */
  else if (first_block_aux_obj)
    abort ();
  first_block_aux_obj = (char *) obstack_alloc (&block_aux_obstack, 0);
  if (size)
    {
      int i;
      for (i = 0; i < n_basic_blocks; i++)
	alloc_aux_for_block (BASIC_BLOCK (i), size);
      alloc_aux_for_block (ENTRY_BLOCK_PTR, size);
      alloc_aux_for_block (EXIT_BLOCK_PTR, size);
    }
}

/* Clear AUX pointers of all blocks.  */

void
clear_aux_for_blocks ()
{
  int i;

  for (i = 0; i < n_basic_blocks; i++)
    BASIC_BLOCK (i)->aux = NULL;
  ENTRY_BLOCK_PTR->aux = NULL;
  EXIT_BLOCK_PTR->aux = NULL;
}

/* Free data allocated in block_aux_obstack and clear AUX pointers
   of all blocks.  */

void
free_aux_for_blocks ()
{
  if (!first_block_aux_obj)
    abort ();
  obstack_free (&block_aux_obstack, first_block_aux_obj);
  first_block_aux_obj = NULL;

  clear_aux_for_blocks ();
}

/* Allocate an memory edge of SIZE as BB->aux.  The obstack must
   be first initialized by alloc_aux_for_edges.  */

inline void
alloc_aux_for_edge (e, size)
     edge e;
     int size;
{
  /* Verify that aux field is clear.  */
  if (e->aux || !first_edge_aux_obj)
    abort ();
  e->aux = obstack_alloc (&edge_aux_obstack, size);
  memset (e->aux, 0, size);
}

/* Initialize the edge_aux_obstack and if SIZE is nonzero, call
   alloc_aux_for_edge for each basic edge.  */

void
alloc_aux_for_edges (size)
     int size;
{
  static int initialized;

  if (!initialized)
    {
      gcc_obstack_init (&edge_aux_obstack);
      initialized = 1;
    }
  /* Check whether AUX data are still allocated.  */
  else if (first_edge_aux_obj)
    abort ();
  first_edge_aux_obj = (char *) obstack_alloc (&edge_aux_obstack, 0);
  if (size)
    {
      int i;
      for (i = -1; i < n_basic_blocks; i++)
	{
	  basic_block bb;
	  edge e;

	  if (i >= 0)
	    bb = BASIC_BLOCK (i);
	  else
	    bb = ENTRY_BLOCK_PTR;
	  for (e = bb->succ; e; e = e->succ_next)
	    alloc_aux_for_edge (e, size);
	}
    }
}

/* Clear AUX pointers of all edges.  */

void
clear_aux_for_edges ()
{
  int i;

  for (i = -1; i < n_basic_blocks; i++)
    {
      basic_block bb;
      edge e;

      if (i >= 0)
	bb = BASIC_BLOCK (i);
      else
	bb = ENTRY_BLOCK_PTR;
      for (e = bb->succ; e; e = e->succ_next)
	e->aux = NULL;
    }
}

/* Free data allocated in edge_aux_obstack and clear AUX pointers
   of all edges.  */

void
free_aux_for_edges ()
{
  if (!first_edge_aux_obj)
    abort ();
  obstack_free (&edge_aux_obstack, first_edge_aux_obj);
  first_edge_aux_obj = NULL;

  clear_aux_for_edges ();
}