summaryrefslogtreecommitdiff
path: root/gcc/cfg.c
blob: 1ed6f1f0742605a4bcb2ad99116f03bcf1f98d14 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
/* Control flow graph manipulation code for GNU compiler.
   Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
   1999, 2000, 2001, 2002, 2003, 2004, 2005
   Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING.  If not, write to the Free
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA.  */

/* This file contains low level functions to manipulate the CFG and
   analyze it.  All other modules should not transform the data structure
   directly and use abstraction instead.  The file is supposed to be
   ordered bottom-up and should not contain any code dependent on a
   particular intermediate language (RTL or trees).

   Available functionality:
     - Initialization/deallocation
	 init_flow, clear_edges
     - Low level basic block manipulation
	 alloc_block, expunge_block
     - Edge manipulation
	 make_edge, make_single_succ_edge, cached_make_edge, remove_edge
	 - Low level edge redirection (without updating instruction chain)
	     redirect_edge_succ, redirect_edge_succ_nodup, redirect_edge_pred
     - Dumping and debugging
	 dump_flow_info, debug_flow_info, dump_edge_info
     - Allocation of AUX fields for basic blocks
	 alloc_aux_for_blocks, free_aux_for_blocks, alloc_aux_for_block
     - clear_bb_flags
     - Consistency checking
	 verify_flow_info
     - Dumping and debugging
	 print_rtl_with_bb, dump_bb, debug_bb, debug_bb_n
 */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "rtl.h"
#include "hard-reg-set.h"
#include "regs.h"
#include "flags.h"
#include "output.h"
#include "function.h"
#include "except.h"
#include "toplev.h"
#include "tm_p.h"
#include "obstack.h"
#include "timevar.h"
#include "tree-pass.h"
#include "ggc.h"
#include "hashtab.h"
#include "alloc-pool.h"

/* The obstack on which the flow graph components are allocated.  */

struct bitmap_obstack reg_obstack;

void debug_flow_info (void);
static void free_edge (edge);

#define RDIV(X,Y) (((X) + (Y) / 2) / (Y))

/* Called once at initialization time.  */

void
init_flow (void)
{
  if (!cfun->cfg)
    cfun->cfg = ggc_alloc_cleared (sizeof (struct control_flow_graph));
  n_edges = 0;
  ENTRY_BLOCK_PTR = ggc_alloc_cleared (sizeof (struct basic_block_def));
  ENTRY_BLOCK_PTR->index = ENTRY_BLOCK;
  EXIT_BLOCK_PTR = ggc_alloc_cleared (sizeof (struct basic_block_def));
  EXIT_BLOCK_PTR->index = EXIT_BLOCK;
  ENTRY_BLOCK_PTR->next_bb = EXIT_BLOCK_PTR;
  EXIT_BLOCK_PTR->prev_bb = ENTRY_BLOCK_PTR;
}

/* Helper function for remove_edge and clear_edges.  Frees edge structure
   without actually unlinking it from the pred/succ lists.  */

static void
free_edge (edge e ATTRIBUTE_UNUSED)
{
  n_edges--;
  ggc_free (e);
}

/* Free the memory associated with the edge structures.  */

void
clear_edges (void)
{
  basic_block bb;
  edge e;
  edge_iterator ei;

  FOR_EACH_BB (bb)
    {
      FOR_EACH_EDGE (e, ei, bb->succs)
	free_edge (e);
      VEC_truncate (edge, bb->succs, 0);
      VEC_truncate (edge, bb->preds, 0);
    }

  FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
    free_edge (e);
  VEC_truncate (edge, EXIT_BLOCK_PTR->preds, 0);
  VEC_truncate (edge, ENTRY_BLOCK_PTR->succs, 0);

  gcc_assert (!n_edges);
}

/* Allocate memory for basic_block.  */

basic_block
alloc_block (void)
{
  basic_block bb;
  bb = ggc_alloc_cleared (sizeof (*bb));
  return bb;
}

/* Link block B to chain after AFTER.  */
void
link_block (basic_block b, basic_block after)
{
  b->next_bb = after->next_bb;
  b->prev_bb = after;
  after->next_bb = b;
  b->next_bb->prev_bb = b;
}

/* Unlink block B from chain.  */
void
unlink_block (basic_block b)
{
  b->next_bb->prev_bb = b->prev_bb;
  b->prev_bb->next_bb = b->next_bb;
  b->prev_bb = NULL;
  b->next_bb = NULL;
}

/* Sequentially order blocks and compact the arrays.  */
void
compact_blocks (void)
{
  int i;
  basic_block bb;

  SET_BASIC_BLOCK (ENTRY_BLOCK, ENTRY_BLOCK_PTR);
  SET_BASIC_BLOCK (EXIT_BLOCK, EXIT_BLOCK_PTR);

  i = NUM_FIXED_BLOCKS;
  FOR_EACH_BB (bb) 
    {
      SET_BASIC_BLOCK (i, bb);
      bb->index = i;
      i++;
    }

  gcc_assert (i == n_basic_blocks);

  for (; i < last_basic_block; i++)
    SET_BASIC_BLOCK (i, NULL);

  last_basic_block = n_basic_blocks;
}

/* Remove block B from the basic block array.  */

void
expunge_block (basic_block b)
{
  unlink_block (b);
  SET_BASIC_BLOCK (b->index, NULL);
  n_basic_blocks--;
  /* We should be able to ggc_free here, but we are not.
     The dead SSA_NAMES are left pointing to dead statements that are pointing
     to dead basic blocks making garbage collector to die.
     We should be able to release all dead SSA_NAMES and at the same time we should
     clear out BB pointer of dead statements consistently.  */
}

/* Connect E to E->src.  */

static inline void
connect_src (edge e)
{
  VEC_safe_push (edge, gc, e->src->succs, e);
}

/* Connect E to E->dest.  */

static inline void
connect_dest (edge e)
{
  basic_block dest = e->dest;
  VEC_safe_push (edge, gc, dest->preds, e);
  e->dest_idx = EDGE_COUNT (dest->preds) - 1;
}

/* Disconnect edge E from E->src.  */

static inline void
disconnect_src (edge e)
{
  basic_block src = e->src;
  edge_iterator ei;
  edge tmp;

  for (ei = ei_start (src->succs); (tmp = ei_safe_edge (ei)); )
    {
      if (tmp == e)
	{
	  VEC_unordered_remove (edge, src->succs, ei.index);
	  return;
	}
      else
	ei_next (&ei);
    }

  gcc_unreachable ();
}

/* Disconnect edge E from E->dest.  */

static inline void
disconnect_dest (edge e)
{
  basic_block dest = e->dest;
  unsigned int dest_idx = e->dest_idx;

  VEC_unordered_remove (edge, dest->preds, dest_idx);

  /* If we removed an edge in the middle of the edge vector, we need
     to update dest_idx of the edge that moved into the "hole".  */
  if (dest_idx < EDGE_COUNT (dest->preds))
    EDGE_PRED (dest, dest_idx)->dest_idx = dest_idx;
}

/* Create an edge connecting SRC and DEST with flags FLAGS.  Return newly
   created edge.  Use this only if you are sure that this edge can't
   possibly already exist.  */

edge
unchecked_make_edge (basic_block src, basic_block dst, int flags)
{
  edge e;
  e = ggc_alloc_cleared (sizeof (*e));
  n_edges++;

  e->src = src;
  e->dest = dst;
  e->flags = flags;

  connect_src (e);
  connect_dest (e);

  execute_on_growing_pred (e);

  return e;
}

/* Create an edge connecting SRC and DST with FLAGS optionally using
   edge cache CACHE.  Return the new edge, NULL if already exist.  */

edge
cached_make_edge (sbitmap edge_cache, basic_block src, basic_block dst, int flags)
{
  if (edge_cache == NULL
      || src == ENTRY_BLOCK_PTR
      || dst == EXIT_BLOCK_PTR)
    return make_edge (src, dst, flags);

  /* Does the requested edge already exist?  */
  if (! TEST_BIT (edge_cache, dst->index))
    {
      /* The edge does not exist.  Create one and update the
	 cache.  */
      SET_BIT (edge_cache, dst->index);
      return unchecked_make_edge (src, dst, flags);
    }

  /* At this point, we know that the requested edge exists.  Adjust
     flags if necessary.  */
  if (flags)
    {
      edge e = find_edge (src, dst);
      e->flags |= flags;
    }

  return NULL;
}

/* Create an edge connecting SRC and DEST with flags FLAGS.  Return newly
   created edge or NULL if already exist.  */

edge
make_edge (basic_block src, basic_block dest, int flags)
{
  edge e = find_edge (src, dest);

  /* Make sure we don't add duplicate edges.  */
  if (e)
    {
      e->flags |= flags;
      return NULL;
    }

  return unchecked_make_edge (src, dest, flags);
}

/* Create an edge connecting SRC to DEST and set probability by knowing
   that it is the single edge leaving SRC.  */

edge
make_single_succ_edge (basic_block src, basic_block dest, int flags)
{
  edge e = make_edge (src, dest, flags);

  e->probability = REG_BR_PROB_BASE;
  e->count = src->count;
  return e;
}

/* This function will remove an edge from the flow graph.  */

void
remove_edge (edge e)
{
  remove_predictions_associated_with_edge (e);
  execute_on_shrinking_pred (e);

  disconnect_src (e);
  disconnect_dest (e);

  free_edge (e);
}

/* Redirect an edge's successor from one block to another.  */

void
redirect_edge_succ (edge e, basic_block new_succ)
{
  execute_on_shrinking_pred (e);

  disconnect_dest (e);

  e->dest = new_succ;

  /* Reconnect the edge to the new successor block.  */
  connect_dest (e);

  execute_on_growing_pred (e);
}

/* Like previous but avoid possible duplicate edge.  */

edge
redirect_edge_succ_nodup (edge e, basic_block new_succ)
{
  edge s;

  s = find_edge (e->src, new_succ);
  if (s && s != e)
    {
      s->flags |= e->flags;
      s->probability += e->probability;
      if (s->probability > REG_BR_PROB_BASE)
	s->probability = REG_BR_PROB_BASE;
      s->count += e->count;
      remove_edge (e);
      e = s;
    }
  else
    redirect_edge_succ (e, new_succ);

  return e;
}

/* Redirect an edge's predecessor from one block to another.  */

void
redirect_edge_pred (edge e, basic_block new_pred)
{
  disconnect_src (e);

  e->src = new_pred;

  /* Reconnect the edge to the new predecessor block.  */
  connect_src (e);
}

/* Clear all basic block flags, with the exception of partitioning.  */
void
clear_bb_flags (void)
{
  basic_block bb;

  FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
    bb->flags = (BB_PARTITION (bb)  | (bb->flags & BB_DISABLE_SCHEDULE)
		 | (bb->flags & BB_RTL));
}

/* Check the consistency of profile information.  We can't do that
   in verify_flow_info, as the counts may get invalid for incompletely
   solved graphs, later eliminating of conditionals or roundoff errors.
   It is still practical to have them reported for debugging of simple
   testcases.  */
void
check_bb_profile (basic_block bb, FILE * file)
{
  edge e;
  int sum = 0;
  gcov_type lsum;
  edge_iterator ei;

  if (profile_status == PROFILE_ABSENT)
    return;

  if (bb != EXIT_BLOCK_PTR)
    {
      FOR_EACH_EDGE (e, ei, bb->succs)
	sum += e->probability;
      if (EDGE_COUNT (bb->succs) && abs (sum - REG_BR_PROB_BASE) > 100)
	fprintf (file, "Invalid sum of outgoing probabilities %.1f%%\n",
		 sum * 100.0 / REG_BR_PROB_BASE);
      lsum = 0;
      FOR_EACH_EDGE (e, ei, bb->succs)
	lsum += e->count;
      if (EDGE_COUNT (bb->succs)
	  && (lsum - bb->count > 100 || lsum - bb->count < -100))
	fprintf (file, "Invalid sum of outgoing counts %i, should be %i\n",
		 (int) lsum, (int) bb->count);
    }
  if (bb != ENTRY_BLOCK_PTR)
    {
      sum = 0;
      FOR_EACH_EDGE (e, ei, bb->preds)
	sum += EDGE_FREQUENCY (e);
      if (abs (sum - bb->frequency) > 100)
	fprintf (file,
		 "Invalid sum of incoming frequencies %i, should be %i\n",
		 sum, bb->frequency);
      lsum = 0;
      FOR_EACH_EDGE (e, ei, bb->preds)
	lsum += e->count;
      if (lsum - bb->count > 100 || lsum - bb->count < -100)
	fprintf (file, "Invalid sum of incoming counts %i, should be %i\n",
		 (int) lsum, (int) bb->count);
    }
}

/* Emit basic block information for BB.  HEADER is true if the user wants
   the generic information and the predecessors, FOOTER is true if they want
   the successors.  FLAGS is the dump flags of interest; TDF_DETAILS emit
   global register liveness information.  PREFIX is put in front of every
   line.  The output is emitted to FILE.  */
void
dump_bb_info (basic_block bb, bool header, bool footer, int flags,
	      const char *prefix, FILE *file)
{
  edge e;
  edge_iterator ei;

  if (header)
    {
      fprintf (file, "\n%sBasic block %d ", prefix, bb->index);
      if (bb->prev_bb)
        fprintf (file, ", prev %d", bb->prev_bb->index);
      if (bb->next_bb)
        fprintf (file, ", next %d", bb->next_bb->index);
      fprintf (file, ", loop_depth %d, count ", bb->loop_depth);
      fprintf (file, HOST_WIDEST_INT_PRINT_DEC, bb->count);
      fprintf (file, ", freq %i", bb->frequency);
      if (maybe_hot_bb_p (bb))
	fprintf (file, ", maybe hot");
      if (probably_never_executed_bb_p (bb))
	fprintf (file, ", probably never executed");
      fprintf (file, ".\n");

      fprintf (file, "%sPredecessors: ", prefix);
      FOR_EACH_EDGE (e, ei, bb->preds)
	dump_edge_info (file, e, 0);
   }

  if (footer)
    {
      fprintf (file, "\n%sSuccessors: ", prefix);
      FOR_EACH_EDGE (e, ei, bb->succs)
	dump_edge_info (file, e, 1);
   }

  if ((flags & TDF_DETAILS)
      && (bb->flags & BB_RTL))
    {
      if (bb->il.rtl->global_live_at_start && header)
	{
	  fprintf (file, "\n%sRegisters live at start:", prefix);
	  dump_regset (bb->il.rtl->global_live_at_start, file);
	}

      if (bb->il.rtl->global_live_at_end && footer)
	{
	  fprintf (file, "\n%sRegisters live at end:", prefix);
	  dump_regset (bb->il.rtl->global_live_at_end, file);
	}
   }

  putc ('\n', file);
}

void
dump_flow_info (FILE *file, int flags)
{
  basic_block bb;

  /* There are no pseudo registers after reload.  Don't dump them.  */
  if (reg_n_info && !reload_completed
      && (flags & TDF_DETAILS) != 0)
    {
      unsigned int i, max = max_reg_num ();
      fprintf (file, "%d registers.\n", max);
      for (i = FIRST_PSEUDO_REGISTER; i < max; i++)
	if (REG_N_REFS (i))
	  {
	    enum reg_class class, altclass;

	    fprintf (file, "\nRegister %d used %d times across %d insns",
		     i, REG_N_REFS (i), REG_LIVE_LENGTH (i));
	    if (REG_BASIC_BLOCK (i) >= 0)
	      fprintf (file, " in block %d", REG_BASIC_BLOCK (i));
	    if (REG_N_SETS (i))
	      fprintf (file, "; set %d time%s", REG_N_SETS (i),
		       (REG_N_SETS (i) == 1) ? "" : "s");
	    if (regno_reg_rtx[i] != NULL && REG_USERVAR_P (regno_reg_rtx[i]))
	      fprintf (file, "; user var");
	    if (REG_N_DEATHS (i) != 1)
	      fprintf (file, "; dies in %d places", REG_N_DEATHS (i));
	    if (REG_N_CALLS_CROSSED (i) == 1)
	      fprintf (file, "; crosses 1 call");
	    else if (REG_N_CALLS_CROSSED (i))
	      fprintf (file, "; crosses %d calls", REG_N_CALLS_CROSSED (i));
	    if (regno_reg_rtx[i] != NULL
		&& PSEUDO_REGNO_BYTES (i) != UNITS_PER_WORD)
	      fprintf (file, "; %d bytes", PSEUDO_REGNO_BYTES (i));

	    class = reg_preferred_class (i);
	    altclass = reg_alternate_class (i);
	    if (class != GENERAL_REGS || altclass != ALL_REGS)
	      {
		if (altclass == ALL_REGS || class == ALL_REGS)
		  fprintf (file, "; pref %s", reg_class_names[(int) class]);
		else if (altclass == NO_REGS)
		  fprintf (file, "; %s or none", reg_class_names[(int) class]);
		else
		  fprintf (file, "; pref %s, else %s",
			   reg_class_names[(int) class],
			   reg_class_names[(int) altclass]);
	      }

	    if (regno_reg_rtx[i] != NULL && REG_POINTER (regno_reg_rtx[i]))
	      fprintf (file, "; pointer");
	    fprintf (file, ".\n");
	  }
    }

  fprintf (file, "\n%d basic blocks, %d edges.\n", n_basic_blocks, n_edges);
  FOR_EACH_BB (bb)
    {
      dump_bb_info (bb, true, true, flags, "", file);
      check_bb_profile (bb, file);
    }

  putc ('\n', file);
}

void
debug_flow_info (void)
{
  dump_flow_info (stderr, TDF_DETAILS);
}

void
dump_edge_info (FILE *file, edge e, int do_succ)
{
  basic_block side = (do_succ ? e->dest : e->src);

  if (side == ENTRY_BLOCK_PTR)
    fputs (" ENTRY", file);
  else if (side == EXIT_BLOCK_PTR)
    fputs (" EXIT", file);
  else
    fprintf (file, " %d", side->index);

  if (e->probability)
    fprintf (file, " [%.1f%%] ", e->probability * 100.0 / REG_BR_PROB_BASE);

  if (e->count)
    {
      fprintf (file, " count:");
      fprintf (file, HOST_WIDEST_INT_PRINT_DEC, e->count);
    }

  if (e->flags)
    {
      static const char * const bitnames[] = {
	"fallthru", "ab", "abcall", "eh", "fake", "dfs_back",
	"can_fallthru", "irreducible", "sibcall", "loop_exit",
	"true", "false", "exec"
      };
      int comma = 0;
      int i, flags = e->flags;

      fputs (" (", file);
      for (i = 0; flags; i++)
	if (flags & (1 << i))
	  {
	    flags &= ~(1 << i);

	    if (comma)
	      fputc (',', file);
	    if (i < (int) ARRAY_SIZE (bitnames))
	      fputs (bitnames[i], file);
	    else
	      fprintf (file, "%d", i);
	    comma = 1;
	  }

      fputc (')', file);
    }
}

/* Simple routines to easily allocate AUX fields of basic blocks.  */

static struct obstack block_aux_obstack;
static void *first_block_aux_obj = 0;
static struct obstack edge_aux_obstack;
static void *first_edge_aux_obj = 0;

/* Allocate a memory block of SIZE as BB->aux.  The obstack must
   be first initialized by alloc_aux_for_blocks.  */

inline void
alloc_aux_for_block (basic_block bb, int size)
{
  /* Verify that aux field is clear.  */
  gcc_assert (!bb->aux && first_block_aux_obj);
  bb->aux = obstack_alloc (&block_aux_obstack, size);
  memset (bb->aux, 0, size);
}

/* Initialize the block_aux_obstack and if SIZE is nonzero, call
   alloc_aux_for_block for each basic block.  */

void
alloc_aux_for_blocks (int size)
{
  static int initialized;

  if (!initialized)
    {
      gcc_obstack_init (&block_aux_obstack);
      initialized = 1;
    }
  else
    /* Check whether AUX data are still allocated.  */
    gcc_assert (!first_block_aux_obj);
  
  first_block_aux_obj = obstack_alloc (&block_aux_obstack, 0);
  if (size)
    {
      basic_block bb;

      FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
	alloc_aux_for_block (bb, size);
    }
}

/* Clear AUX pointers of all blocks.  */

void
clear_aux_for_blocks (void)
{
  basic_block bb;

  FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
    bb->aux = NULL;
}

/* Free data allocated in block_aux_obstack and clear AUX pointers
   of all blocks.  */

void
free_aux_for_blocks (void)
{
  gcc_assert (first_block_aux_obj);
  obstack_free (&block_aux_obstack, first_block_aux_obj);
  first_block_aux_obj = NULL;

  clear_aux_for_blocks ();
}

/* Allocate a memory edge of SIZE as BB->aux.  The obstack must
   be first initialized by alloc_aux_for_edges.  */

inline void
alloc_aux_for_edge (edge e, int size)
{
  /* Verify that aux field is clear.  */
  gcc_assert (!e->aux && first_edge_aux_obj);
  e->aux = obstack_alloc (&edge_aux_obstack, size);
  memset (e->aux, 0, size);
}

/* Initialize the edge_aux_obstack and if SIZE is nonzero, call
   alloc_aux_for_edge for each basic edge.  */

void
alloc_aux_for_edges (int size)
{
  static int initialized;

  if (!initialized)
    {
      gcc_obstack_init (&edge_aux_obstack);
      initialized = 1;
    }
  else
    /* Check whether AUX data are still allocated.  */
    gcc_assert (!first_edge_aux_obj);

  first_edge_aux_obj = obstack_alloc (&edge_aux_obstack, 0);
  if (size)
    {
      basic_block bb;

      FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
	{
	  edge e;
	  edge_iterator ei;

	  FOR_EACH_EDGE (e, ei, bb->succs)
	    alloc_aux_for_edge (e, size);
	}
    }
}

/* Clear AUX pointers of all edges.  */

void
clear_aux_for_edges (void)
{
  basic_block bb;
  edge e;

  FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
    {
      edge_iterator ei;
      FOR_EACH_EDGE (e, ei, bb->succs)
	e->aux = NULL;
    }
}

/* Free data allocated in edge_aux_obstack and clear AUX pointers
   of all edges.  */

void
free_aux_for_edges (void)
{
  gcc_assert (first_edge_aux_obj);
  obstack_free (&edge_aux_obstack, first_edge_aux_obj);
  first_edge_aux_obj = NULL;

  clear_aux_for_edges ();
}

void
debug_bb (basic_block bb)
{
  dump_bb (bb, stderr, 0);
}

basic_block
debug_bb_n (int n)
{
  basic_block bb = BASIC_BLOCK (n);
  dump_bb (bb, stderr, 0);
  return bb;
}

/* Dumps cfg related information about basic block BB to FILE.  */

static void
dump_cfg_bb_info (FILE *file, basic_block bb)
{
  unsigned i;
  edge_iterator ei;
  bool first = true;
  static const char * const bb_bitnames[] =
    {
      "dirty", "new", "reachable", "visited", "irreducible_loop", "superblock"
    };
  const unsigned n_bitnames = sizeof (bb_bitnames) / sizeof (char *);
  edge e;

  fprintf (file, "Basic block %d", bb->index);
  for (i = 0; i < n_bitnames; i++)
    if (bb->flags & (1 << i))
      {
	if (first)
	  fprintf (file, " (");
	else
	  fprintf (file, ", ");
	first = false;
	fprintf (file, bb_bitnames[i]);
      }
  if (!first)
    fprintf (file, ")");
  fprintf (file, "\n");

  fprintf (file, "Predecessors: ");
  FOR_EACH_EDGE (e, ei, bb->preds)
    dump_edge_info (file, e, 0);

  fprintf (file, "\nSuccessors: ");
  FOR_EACH_EDGE (e, ei, bb->succs)
    dump_edge_info (file, e, 1);
  fprintf (file, "\n\n");
}

/* Dumps a brief description of cfg to FILE.  */

void
brief_dump_cfg (FILE *file)
{
  basic_block bb;

  FOR_EACH_BB (bb)
    {
      dump_cfg_bb_info (file, bb);
    }
}

/* An edge originally destinating BB of FREQUENCY and COUNT has been proved to
   leave the block by TAKEN_EDGE.  Update profile of BB such that edge E can be
   redirected to destination of TAKEN_EDGE. 

   This function may leave the profile inconsistent in the case TAKEN_EDGE
   frequency or count is believed to be lower than FREQUENCY or COUNT
   respectively.  */
void
update_bb_profile_for_threading (basic_block bb, int edge_frequency,
				 gcov_type count, edge taken_edge)
{
  edge c;
  int prob;
  edge_iterator ei;

  bb->count -= count;
  if (bb->count < 0)
    {
      if (dump_file)
	fprintf (dump_file, "bb %i count became negative after threading",
		 bb->index);
      bb->count = 0;
    }

  /* Compute the probability of TAKEN_EDGE being reached via threaded edge.
     Watch for overflows.  */
  if (bb->frequency)
    prob = edge_frequency * REG_BR_PROB_BASE / bb->frequency;
  else
    prob = 0;
  if (prob > taken_edge->probability)
    {
      if (dump_file)
	fprintf (dump_file, "Jump threading proved probability of edge "
		 "%i->%i too small (it is %i, should be %i).\n",
		 taken_edge->src->index, taken_edge->dest->index,
		 taken_edge->probability, prob);
      prob = taken_edge->probability;
    }

  /* Now rescale the probabilities.  */
  taken_edge->probability -= prob;
  prob = REG_BR_PROB_BASE - prob;
  bb->frequency -= edge_frequency;
  if (bb->frequency < 0)
    bb->frequency = 0;
  if (prob <= 0)
    {
      if (dump_file)
	fprintf (dump_file, "Edge frequencies of bb %i has been reset, "
		 "frequency of block should end up being 0, it is %i\n",
		 bb->index, bb->frequency);
      EDGE_SUCC (bb, 0)->probability = REG_BR_PROB_BASE;
      ei = ei_start (bb->succs);
      ei_next (&ei);
      for (; (c = ei_safe_edge (ei)); ei_next (&ei))
	c->probability = 0;
    }
  else if (prob != REG_BR_PROB_BASE)
    {
      int scale = RDIV (65536 * REG_BR_PROB_BASE, prob);

      FOR_EACH_EDGE (c, ei, bb->succs)
	{
	  c->probability = RDIV (c->probability * scale, 65536);
	  if (c->probability > REG_BR_PROB_BASE)
	    c->probability = REG_BR_PROB_BASE;
	}
    }

  gcc_assert (bb == taken_edge->src);
  taken_edge->count -= count;
  if (taken_edge->count < 0)
    {
      if (dump_file)
	fprintf (dump_file, "edge %i->%i count became negative after threading",
		 taken_edge->src->index, taken_edge->dest->index);
      taken_edge->count = 0;
    }
}

/* Multiply all frequencies of basic blocks in array BBS of length NBBS
   by NUM/DEN, in int arithmetic.  May lose some accuracy.  */
void
scale_bbs_frequencies_int (basic_block *bbs, int nbbs, int num, int den)
{
  int i;
  edge e;
  if (num < 0)
    num = 0;
  if (num > den)
    return;
  /* Assume that the users are producing the fraction from frequencies
     that never grow far enough to risk arithmetic overflow.  */
  gcc_assert (num < 65536);
  for (i = 0; i < nbbs; i++)
    {
      edge_iterator ei;
      bbs[i]->frequency = RDIV (bbs[i]->frequency * num, den);
      bbs[i]->count = RDIV (bbs[i]->count * num, den);
      FOR_EACH_EDGE (e, ei, bbs[i]->succs)
	e->count = RDIV (e->count * num, den);
    }
}

/* numbers smaller than this value are safe to multiply without getting
   64bit overflow.  */
#define MAX_SAFE_MULTIPLIER (1 << (sizeof (HOST_WIDEST_INT) * 4 - 1))

/* Multiply all frequencies of basic blocks in array BBS of length NBBS
   by NUM/DEN, in gcov_type arithmetic.  More accurate than previous
   function but considerably slower.  */
void
scale_bbs_frequencies_gcov_type (basic_block *bbs, int nbbs, gcov_type num, 
			         gcov_type den)
{
  int i;
  edge e;
  gcov_type fraction = RDIV (num * 65536, den);

  gcc_assert (fraction >= 0);

  if (num < MAX_SAFE_MULTIPLIER)
    for (i = 0; i < nbbs; i++)
      {
	edge_iterator ei;
	bbs[i]->frequency = RDIV (bbs[i]->frequency * num, den);
	if (bbs[i]->count <= MAX_SAFE_MULTIPLIER)
	  bbs[i]->count = RDIV (bbs[i]->count * num, den);
	else
	  bbs[i]->count = RDIV (bbs[i]->count * fraction, 65536);
	FOR_EACH_EDGE (e, ei, bbs[i]->succs)
	  if (bbs[i]->count <= MAX_SAFE_MULTIPLIER)
	    e->count = RDIV (e->count * num, den);
	  else
	    e->count = RDIV (e->count * fraction, 65536);
      }
   else
    for (i = 0; i < nbbs; i++)
      {
	edge_iterator ei;
	if (sizeof (gcov_type) > sizeof (int))
	  bbs[i]->frequency = RDIV (bbs[i]->frequency * num, den);
	else
	  bbs[i]->frequency = RDIV (bbs[i]->frequency * fraction, 65536);
	bbs[i]->count = RDIV (bbs[i]->count * fraction, 65536);
	FOR_EACH_EDGE (e, ei, bbs[i]->succs)
	  e->count = RDIV (e->count * fraction, 65536);
      }
}

/* Data structures used to maintain mapping between basic blocks and
   copies.  */
static htab_t bb_original;
static htab_t bb_copy;
static alloc_pool original_copy_bb_pool;

struct htab_bb_copy_original_entry
{
  /* Block we are attaching info to.  */
  int index1;
  /* Index of original or copy (depending on the hashtable) */
  int index2;
};

static hashval_t
bb_copy_original_hash (const void *p)
{
  struct htab_bb_copy_original_entry *data
    = ((struct htab_bb_copy_original_entry *)p);

  return data->index1;
}
static int
bb_copy_original_eq (const void *p, const void *q)
{
  struct htab_bb_copy_original_entry *data
    = ((struct htab_bb_copy_original_entry *)p);
  struct htab_bb_copy_original_entry *data2
    = ((struct htab_bb_copy_original_entry *)q);

  return data->index1 == data2->index1;
}

/* Initialize the data structures to maintain mapping between blocks
   and its copies.  */
void
initialize_original_copy_tables (void)
{
  gcc_assert (!original_copy_bb_pool);
  original_copy_bb_pool
    = create_alloc_pool ("original_copy",
			 sizeof (struct htab_bb_copy_original_entry), 10);
  bb_original = htab_create (10, bb_copy_original_hash,
			     bb_copy_original_eq, NULL);
  bb_copy = htab_create (10, bb_copy_original_hash, bb_copy_original_eq, NULL);
}

/* Free the data structures to maintain mapping between blocks and
   its copies.  */
void
free_original_copy_tables (void)
{
  gcc_assert (original_copy_bb_pool);
  htab_delete (bb_copy);
  htab_delete (bb_original);
  free_alloc_pool (original_copy_bb_pool);
  bb_copy = NULL;
  bb_original = NULL;
  original_copy_bb_pool = NULL;
}

/* Set original for basic block.  Do nothing when data structures are not
   initialized so passes not needing this don't need to care.  */
void
set_bb_original (basic_block bb, basic_block original)
{
  if (original_copy_bb_pool)
    {
      struct htab_bb_copy_original_entry **slot;
      struct htab_bb_copy_original_entry key;

      key.index1 = bb->index;
      slot =
	(struct htab_bb_copy_original_entry **) htab_find_slot (bb_original,
							       &key, INSERT);
      if (*slot)
	(*slot)->index2 = original->index;
      else
	{
	  *slot = pool_alloc (original_copy_bb_pool);
	  (*slot)->index1 = bb->index;
	  (*slot)->index2 = original->index;
	}
    }
}

/* Get the original basic block.  */
basic_block
get_bb_original (basic_block bb)
{
  struct htab_bb_copy_original_entry *entry;
  struct htab_bb_copy_original_entry key;

  gcc_assert (original_copy_bb_pool);

  key.index1 = bb->index;
  entry = (struct htab_bb_copy_original_entry *) htab_find (bb_original, &key);
  if (entry)
    return BASIC_BLOCK (entry->index2);
  else
    return NULL;
}

/* Set copy for basic block.  Do nothing when data structures are not
   initialized so passes not needing this don't need to care.  */
void
set_bb_copy (basic_block bb, basic_block copy)
{
  if (original_copy_bb_pool)
    {
      struct htab_bb_copy_original_entry **slot;
      struct htab_bb_copy_original_entry key;

      key.index1 = bb->index;
      slot =
	(struct htab_bb_copy_original_entry **) htab_find_slot (bb_copy,
							       &key, INSERT);
      if (*slot)
	(*slot)->index2 = copy->index;
      else
	{
	  *slot = pool_alloc (original_copy_bb_pool);
	  (*slot)->index1 = bb->index;
	  (*slot)->index2 = copy->index;
	}
    }
}

/* Get the copy of basic block.  */
basic_block
get_bb_copy (basic_block bb)
{
  struct htab_bb_copy_original_entry *entry;
  struct htab_bb_copy_original_entry key;

  gcc_assert (original_copy_bb_pool);

  key.index1 = bb->index;
  entry = (struct htab_bb_copy_original_entry *) htab_find (bb_copy, &key);
  if (entry)
    return BASIC_BLOCK (entry->index2);
  else
    return NULL;
}