summaryrefslogtreecommitdiff
path: root/gcc/caller-save.c
blob: da083da144685a65c761f4e6f6735a5bef6474be (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
/* Save and restore call-clobbered registers which are live across a call.
   Copyright (C) 1989, 1992, 1994, 1995, 1997, 1998,
   1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING.  If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "rtl.h"
#include "insn-config.h"
#include "flags.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "recog.h"
#include "basic-block.h"
#include "reload.h"
#include "function.h"
#include "expr.h"
#include "toplev.h"
#include "tm_p.h"

#ifndef MAX_MOVE_MAX
#define MAX_MOVE_MAX MOVE_MAX
#endif

#ifndef MIN_UNITS_PER_WORD
#define MIN_UNITS_PER_WORD UNITS_PER_WORD
#endif

#define MOVE_MAX_WORDS (MOVE_MAX / UNITS_PER_WORD)

/* Modes for each hard register that we can save.  The smallest mode is wide
   enough to save the entire contents of the register.  When saving the
   register because it is live we first try to save in multi-register modes.
   If that is not possible the save is done one register at a time.  */

static enum machine_mode
  regno_save_mode[FIRST_PSEUDO_REGISTER][MAX_MOVE_MAX / MIN_UNITS_PER_WORD + 1];

/* For each hard register, a place on the stack where it can be saved,
   if needed.  */

static rtx
  regno_save_mem[FIRST_PSEUDO_REGISTER][MAX_MOVE_MAX / MIN_UNITS_PER_WORD + 1];

/* We will only make a register eligible for caller-save if it can be
   saved in its widest mode with a simple SET insn as long as the memory
   address is valid.  We record the INSN_CODE is those insns here since
   when we emit them, the addresses might not be valid, so they might not
   be recognized.  */

static int
  reg_save_code[FIRST_PSEUDO_REGISTER][MAX_MACHINE_MODE];
static int
  reg_restore_code[FIRST_PSEUDO_REGISTER][MAX_MACHINE_MODE];

/* Set of hard regs currently residing in save area (during insn scan).  */

static HARD_REG_SET hard_regs_saved;

/* Number of registers currently in hard_regs_saved.  */

static int n_regs_saved;

/* Computed by mark_referenced_regs, all regs referenced in a given
   insn.  */
static HARD_REG_SET referenced_regs;

/* Computed in mark_set_regs, holds all registers set by the current
   instruction.  */
static HARD_REG_SET this_insn_sets;


static void mark_set_regs (rtx, rtx, void *);
static void mark_referenced_regs (rtx);
static int insert_save (struct insn_chain *, int, int, HARD_REG_SET *,
			enum machine_mode *);
static int insert_restore (struct insn_chain *, int, int, int,
			   enum machine_mode *);
static struct insn_chain *insert_one_insn (struct insn_chain *, int, int,
					   rtx);
static void add_stored_regs (rtx, rtx, void *);

/* Initialize for caller-save.

   Look at all the hard registers that are used by a call and for which
   regclass.c has not already excluded from being used across a call.

   Ensure that we can find a mode to save the register and that there is a
   simple insn to save and restore the register.  This latter check avoids
   problems that would occur if we tried to save the MQ register of some
   machines directly into memory.  */

void
init_caller_save (void)
{
  rtx addr_reg;
  int offset;
  rtx address;
  int i, j;
  enum machine_mode mode;
  rtx savepat, restpat;
  rtx test_reg, test_mem;
  rtx saveinsn, restinsn;

  /* First find all the registers that we need to deal with and all
     the modes that they can have.  If we can't find a mode to use,
     we can't have the register live over calls.  */

  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
    {
      if (call_used_regs[i] && ! call_fixed_regs[i])
	{
	  for (j = 1; j <= MOVE_MAX_WORDS; j++)
	    {
	      regno_save_mode[i][j] = HARD_REGNO_CALLER_SAVE_MODE (i, j,
								   VOIDmode);
	      if (regno_save_mode[i][j] == VOIDmode && j == 1)
		{
		  call_fixed_regs[i] = 1;
		  SET_HARD_REG_BIT (call_fixed_reg_set, i);
		}
	    }
	}
      else
	regno_save_mode[i][1] = VOIDmode;
    }

  /* The following code tries to approximate the conditions under which
     we can easily save and restore a register without scratch registers or
     other complexities.  It will usually work, except under conditions where
     the validity of an insn operand is dependent on the address offset.
     No such cases are currently known.

     We first find a typical offset from some BASE_REG_CLASS register.
     This address is chosen by finding the first register in the class
     and by finding the smallest power of two that is a valid offset from
     that register in every mode we will use to save registers.  */

  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
    if (TEST_HARD_REG_BIT
	(reg_class_contents
	 [(int) MODE_BASE_REG_CLASS (regno_save_mode [i][1])], i))
      break;

  if (i == FIRST_PSEUDO_REGISTER)
    abort ();

  addr_reg = gen_rtx_REG (Pmode, i);

  for (offset = 1 << (HOST_BITS_PER_INT / 2); offset; offset >>= 1)
    {
      address = gen_rtx_PLUS (Pmode, addr_reg, GEN_INT (offset));

      for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
	if (regno_save_mode[i][1] != VOIDmode
	  && ! strict_memory_address_p (regno_save_mode[i][1], address))
	  break;

      if (i == FIRST_PSEUDO_REGISTER)
	break;
    }

  /* If we didn't find a valid address, we must use register indirect.  */
  if (offset == 0)
    address = addr_reg;

  /* Next we try to form an insn to save and restore the register.  We
     see if such an insn is recognized and meets its constraints.

     To avoid lots of unnecessary RTL allocation, we construct all the RTL
     once, then modify the memory and register operands in-place.  */

  test_reg = gen_rtx_REG (VOIDmode, 0);
  test_mem = gen_rtx_MEM (VOIDmode, address);
  savepat = gen_rtx_SET (VOIDmode, test_mem, test_reg);
  restpat = gen_rtx_SET (VOIDmode, test_reg, test_mem);

  saveinsn = gen_rtx_INSN (VOIDmode, 0, 0, 0, 0, 0, savepat, -1, 0, 0);
  restinsn = gen_rtx_INSN (VOIDmode, 0, 0, 0, 0, 0, restpat, -1, 0, 0);

  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
    for (mode = 0 ; mode < MAX_MACHINE_MODE; mode++)
      if (HARD_REGNO_MODE_OK (i, mode))
        {
	  int ok;

	  /* Update the register number and modes of the register
	     and memory operand.  */
	  REGNO (test_reg) = i;
	  PUT_MODE (test_reg, mode);
	  PUT_MODE (test_mem, mode);

	  /* Force re-recognition of the modified insns.  */
	  INSN_CODE (saveinsn) = -1;
	  INSN_CODE (restinsn) = -1;

	  reg_save_code[i][mode] = recog_memoized (saveinsn);
	  reg_restore_code[i][mode] = recog_memoized (restinsn);

	  /* Now extract both insns and see if we can meet their
             constraints.  */
	  ok = (reg_save_code[i][mode] != -1
		&& reg_restore_code[i][mode] != -1);
	  if (ok)
	    {
	      extract_insn (saveinsn);
	      ok = constrain_operands (1);
	      extract_insn (restinsn);
	      ok &= constrain_operands (1);
	    }

	  if (! ok)
	    {
	      reg_save_code[i][mode] = -1;
	      reg_restore_code[i][mode] = -1;
	    }
        }
      else
	{
	  reg_save_code[i][mode] = -1;
	  reg_restore_code[i][mode] = -1;
	}

  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
    for (j = 1; j <= MOVE_MAX_WORDS; j++)
      if (reg_save_code [i][regno_save_mode[i][j]] == -1)
	{
	  regno_save_mode[i][j] = VOIDmode;
	  if (j == 1)
	    {
	      call_fixed_regs[i] = 1;
	      SET_HARD_REG_BIT (call_fixed_reg_set, i);
	    }
	}
}

/* Initialize save areas by showing that we haven't allocated any yet.  */

void
init_save_areas (void)
{
  int i, j;

  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
    for (j = 1; j <= MOVE_MAX_WORDS; j++)
      regno_save_mem[i][j] = 0;
}

/* Allocate save areas for any hard registers that might need saving.
   We take a conservative approach here and look for call-clobbered hard
   registers that are assigned to pseudos that cross calls.  This may
   overestimate slightly (especially if some of these registers are later
   used as spill registers), but it should not be significant.

   Future work:

     In the fallback case we should iterate backwards across all possible
     modes for the save, choosing the largest available one instead of
     falling back to the smallest mode immediately.  (eg TF -> DF -> SF).

     We do not try to use "move multiple" instructions that exist
     on some machines (such as the 68k moveml).  It could be a win to try
     and use them when possible.  The hard part is doing it in a way that is
     machine independent since they might be saving non-consecutive
     registers. (imagine caller-saving d0,d1,a0,a1 on the 68k) */

void
setup_save_areas (void)
{
  int i, j, k;
  unsigned int r;
  HARD_REG_SET hard_regs_used;

  /* Allocate space in the save area for the largest multi-register
     pseudos first, then work backwards to single register
     pseudos.  */

  /* Find and record all call-used hard-registers in this function.  */
  CLEAR_HARD_REG_SET (hard_regs_used);
  for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
    if (reg_renumber[i] >= 0 && REG_N_CALLS_CROSSED (i) > 0)
      {
	unsigned int regno = reg_renumber[i];
	unsigned int endregno
	  = regno + hard_regno_nregs[regno][GET_MODE (regno_reg_rtx[i])];

	for (r = regno; r < endregno; r++)
	  if (call_used_regs[r])
	    SET_HARD_REG_BIT (hard_regs_used, r);
      }

  /* Now run through all the call-used hard-registers and allocate
     space for them in the caller-save area.  Try to allocate space
     in a manner which allows multi-register saves/restores to be done.  */

  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
    for (j = MOVE_MAX_WORDS; j > 0; j--)
      {
	int do_save = 1;

	/* If no mode exists for this size, try another.  Also break out
	   if we have already saved this hard register.  */
	if (regno_save_mode[i][j] == VOIDmode || regno_save_mem[i][1] != 0)
	  continue;

	/* See if any register in this group has been saved.  */
	for (k = 0; k < j; k++)
	  if (regno_save_mem[i + k][1])
	    {
	      do_save = 0;
	      break;
	    }
	if (! do_save)
	  continue;

	for (k = 0; k < j; k++)
	  if (! TEST_HARD_REG_BIT (hard_regs_used, i + k))
	    {
	      do_save = 0;
	      break;
	    }
	if (! do_save)
	  continue;

	/* We have found an acceptable mode to store in.  */
	regno_save_mem[i][j]
	  = assign_stack_local (regno_save_mode[i][j],
				GET_MODE_SIZE (regno_save_mode[i][j]), 0);

	/* Setup single word save area just in case...  */
	for (k = 0; k < j; k++)
	  /* This should not depend on WORDS_BIG_ENDIAN.
	     The order of words in regs is the same as in memory.  */
	  regno_save_mem[i + k][1]
	    = adjust_address_nv (regno_save_mem[i][j],
				 regno_save_mode[i + k][1],
				 k * UNITS_PER_WORD);
      }

  /* Now loop again and set the alias set of any save areas we made to
     the alias set used to represent frame objects.  */
  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
    for (j = MOVE_MAX_WORDS; j > 0; j--)
      if (regno_save_mem[i][j] != 0)
	set_mem_alias_set (regno_save_mem[i][j], get_frame_alias_set ());
}

/* Find the places where hard regs are live across calls and save them.  */

void
save_call_clobbered_regs (void)
{
  struct insn_chain *chain, *next;
  enum machine_mode save_mode [FIRST_PSEUDO_REGISTER];

  CLEAR_HARD_REG_SET (hard_regs_saved);
  n_regs_saved = 0;

  for (chain = reload_insn_chain; chain != 0; chain = next)
    {
      rtx insn = chain->insn;
      enum rtx_code code = GET_CODE (insn);

      next = chain->next;

      if (chain->is_caller_save_insn)
	abort ();

      if (INSN_P (insn))
	{
	  /* If some registers have been saved, see if INSN references
	     any of them.  We must restore them before the insn if so.  */

	  if (n_regs_saved)
	    {
	      int regno;

	      if (code == JUMP_INSN)
		/* Restore all registers if this is a JUMP_INSN.  */
		COPY_HARD_REG_SET (referenced_regs, hard_regs_saved);
	      else
		{
		  CLEAR_HARD_REG_SET (referenced_regs);
		  mark_referenced_regs (PATTERN (insn));
		  AND_HARD_REG_SET (referenced_regs, hard_regs_saved);
		}

	      for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
		if (TEST_HARD_REG_BIT (referenced_regs, regno))
		  regno += insert_restore (chain, 1, regno, MOVE_MAX_WORDS, save_mode);
	    }

	  if (code == CALL_INSN && ! find_reg_note (insn, REG_NORETURN, NULL))
	    {
	      int regno;
	      HARD_REG_SET hard_regs_to_save;

	      /* Use the register life information in CHAIN to compute which
		 regs are live during the call.  */
	      REG_SET_TO_HARD_REG_SET (hard_regs_to_save,
				       &chain->live_throughout);
	      /* Save hard registers always in the widest mode available.  */
	      for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
		if (TEST_HARD_REG_BIT (hard_regs_to_save, regno))
		  save_mode [regno] = regno_save_mode [regno][1];
		else
		  save_mode [regno] = VOIDmode;

	      /* Look through all live pseudos, mark their hard registers
		 and choose proper mode for saving.  */
	      EXECUTE_IF_SET_IN_REG_SET
		(&chain->live_throughout, FIRST_PSEUDO_REGISTER, regno,
		 {
		   int r = reg_renumber[regno];
		   int nregs;

		   if (r >= 0)
		     {
		       enum machine_mode mode;

		       nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (regno)];
		       mode = HARD_REGNO_CALLER_SAVE_MODE
			        (r, nregs, PSEUDO_REGNO_MODE (regno));
		       if (GET_MODE_BITSIZE (mode)
			   > GET_MODE_BITSIZE (save_mode[r]))
			 save_mode[r] = mode;
		       while (nregs-- > 0)
			 SET_HARD_REG_BIT (hard_regs_to_save, r + nregs);
		     }
		   else
		     abort ();
		 });

	      /* Record all registers set in this call insn.  These don't need
		 to be saved.  N.B. the call insn might set a subreg of a
		 multi-hard-reg pseudo; then the pseudo is considered live
		 during the call, but the subreg that is set isn't.  */
	      CLEAR_HARD_REG_SET (this_insn_sets);
	      note_stores (PATTERN (insn), mark_set_regs, NULL);

	      /* Compute which hard regs must be saved before this call.  */
	      AND_COMPL_HARD_REG_SET (hard_regs_to_save, call_fixed_reg_set);
	      AND_COMPL_HARD_REG_SET (hard_regs_to_save, this_insn_sets);
	      AND_COMPL_HARD_REG_SET (hard_regs_to_save, hard_regs_saved);
	      AND_HARD_REG_SET (hard_regs_to_save, call_used_reg_set);

	      for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
		if (TEST_HARD_REG_BIT (hard_regs_to_save, regno))
		  regno += insert_save (chain, 1, regno, &hard_regs_to_save, save_mode);

	      /* Must recompute n_regs_saved.  */
	      n_regs_saved = 0;
	      for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
		if (TEST_HARD_REG_BIT (hard_regs_saved, regno))
		  n_regs_saved++;
	    }
	}

      if (chain->next == 0 || chain->next->block > chain->block)
	{
	  int regno;
	  /* At the end of the basic block, we must restore any registers that
	     remain saved.  If the last insn in the block is a JUMP_INSN, put
	     the restore before the insn, otherwise, put it after the insn.  */

	  if (n_regs_saved)
	    for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
	      if (TEST_HARD_REG_BIT (hard_regs_saved, regno))
		regno += insert_restore (chain, GET_CODE (insn) == JUMP_INSN,
					 regno, MOVE_MAX_WORDS, save_mode);
	}
    }
}

/* Here from note_stores when an insn stores a value in a register.
   Set the proper bit or bits in this_insn_sets.  All pseudos that have
   been assigned hard regs have had their register number changed already,
   so we can ignore pseudos.  */
static void
mark_set_regs (rtx reg, rtx setter ATTRIBUTE_UNUSED,
	       void *data ATTRIBUTE_UNUSED)
{
  int regno, endregno, i;
  enum machine_mode mode = GET_MODE (reg);

  if (GET_CODE (reg) == SUBREG)
    {
      rtx inner = SUBREG_REG (reg);
      if (GET_CODE (inner) != REG || REGNO (inner) >= FIRST_PSEUDO_REGISTER)
	return;

      regno = subreg_hard_regno (reg, 1);
    }
  else if (GET_CODE (reg) == REG
	   && REGNO (reg) < FIRST_PSEUDO_REGISTER)
    regno = REGNO (reg);
  else
    return;

  endregno = regno + hard_regno_nregs[regno][mode];

  for (i = regno; i < endregno; i++)
    SET_HARD_REG_BIT (this_insn_sets, i);
}

/* Here from note_stores when an insn stores a value in a register.
   Set the proper bit or bits in the passed regset.  All pseudos that have
   been assigned hard regs have had their register number changed already,
   so we can ignore pseudos.  */
static void
add_stored_regs (rtx reg, rtx setter, void *data)
{
  int regno, endregno, i;
  enum machine_mode mode = GET_MODE (reg);
  int offset = 0;

  if (GET_CODE (setter) == CLOBBER)
    return;

  if (GET_CODE (reg) == SUBREG && GET_CODE (SUBREG_REG (reg)) == REG)
    {
      offset = subreg_regno_offset (REGNO (SUBREG_REG (reg)),
				    GET_MODE (SUBREG_REG (reg)),
				    SUBREG_BYTE (reg),
				    GET_MODE (reg));
      reg = SUBREG_REG (reg);
    }

  if (GET_CODE (reg) != REG || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
    return;

  regno = REGNO (reg) + offset;
  endregno = regno + hard_regno_nregs[regno][mode];

  for (i = regno; i < endregno; i++)
    SET_REGNO_REG_SET ((regset) data, i);
}

/* Walk X and record all referenced registers in REFERENCED_REGS.  */
static void
mark_referenced_regs (rtx x)
{
  enum rtx_code code = GET_CODE (x);
  const char *fmt;
  int i, j;

  if (code == SET)
    mark_referenced_regs (SET_SRC (x));
  if (code == SET || code == CLOBBER)
    {
      x = SET_DEST (x);
      code = GET_CODE (x);
      if ((code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
	  || code == PC || code == CC0
	  || (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG
	      && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER
	      /* If we're setting only part of a multi-word register,
		 we shall mark it as referenced, because the words
		 that are not being set should be restored.  */
	      && ((GET_MODE_SIZE (GET_MODE (x))
		   >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
		  || (GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))
		      <= UNITS_PER_WORD))))
	return;
    }
  if (code == MEM || code == SUBREG)
    {
      x = XEXP (x, 0);
      code = GET_CODE (x);
    }

  if (code == REG)
    {
      int regno = REGNO (x);
      int hardregno = (regno < FIRST_PSEUDO_REGISTER ? regno
		       : reg_renumber[regno]);

      if (hardregno >= 0)
	{
	  int nregs = hard_regno_nregs[hardregno][GET_MODE (x)];
	  while (nregs-- > 0)
	    SET_HARD_REG_BIT (referenced_regs, hardregno + nregs);
	}
      /* If this is a pseudo that did not get a hard register, scan its
	 memory location, since it might involve the use of another
	 register, which might be saved.  */
      else if (reg_equiv_mem[regno] != 0)
	mark_referenced_regs (XEXP (reg_equiv_mem[regno], 0));
      else if (reg_equiv_address[regno] != 0)
	mark_referenced_regs (reg_equiv_address[regno]);
      return;
    }

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'e')
	mark_referenced_regs (XEXP (x, i));
      else if (fmt[i] == 'E')
	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
	  mark_referenced_regs (XVECEXP (x, i, j));
    }
}

/* Insert a sequence of insns to restore.  Place these insns in front of
   CHAIN if BEFORE_P is nonzero, behind the insn otherwise.  MAXRESTORE is
   the maximum number of registers which should be restored during this call.
   It should never be less than 1 since we only work with entire registers.

   Note that we have verified in init_caller_save that we can do this
   with a simple SET, so use it.  Set INSN_CODE to what we save there
   since the address might not be valid so the insn might not be recognized.
   These insns will be reloaded and have register elimination done by
   find_reload, so we need not worry about that here.

   Return the extra number of registers saved.  */

static int
insert_restore (struct insn_chain *chain, int before_p, int regno,
		int maxrestore, enum machine_mode *save_mode)
{
  int i, k;
  rtx pat = NULL_RTX;
  int code;
  unsigned int numregs = 0;
  struct insn_chain *new;
  rtx mem;

  /* A common failure mode if register status is not correct in the RTL
     is for this routine to be called with a REGNO we didn't expect to
     save.  That will cause us to write an insn with a (nil) SET_DEST
     or SET_SRC.  Instead of doing so and causing a crash later, check
     for this common case and abort here instead.  This will remove one
     step in debugging such problems.  */

  if (regno_save_mem[regno][1] == 0)
    abort ();

  /* Get the pattern to emit and update our status.

     See if we can restore `maxrestore' registers at once.  Work
     backwards to the single register case.  */
  for (i = maxrestore; i > 0; i--)
    {
      int j;
      int ok = 1;

      if (regno_save_mem[regno][i] == 0)
	continue;

      for (j = 0; j < i; j++)
	if (! TEST_HARD_REG_BIT (hard_regs_saved, regno + j))
	  {
	    ok = 0;
	    break;
	  }
      /* Must do this one restore at a time.  */
      if (! ok)
	continue;

      numregs = i;
      break;
    }

  mem = regno_save_mem [regno][numregs];
  if (save_mode [regno] != VOIDmode
      && save_mode [regno] != GET_MODE (mem)
      && numregs == (unsigned int) hard_regno_nregs[regno][save_mode [regno]])
    mem = adjust_address (mem, save_mode[regno], 0);
  else
    mem = copy_rtx (mem);
  pat = gen_rtx_SET (VOIDmode,
		     gen_rtx_REG (GET_MODE (mem),
				  regno), mem);
  code = reg_restore_code[regno][GET_MODE (mem)];
  new = insert_one_insn (chain, before_p, code, pat);

  /* Clear status for all registers we restored.  */
  for (k = 0; k < i; k++)
    {
      CLEAR_HARD_REG_BIT (hard_regs_saved, regno + k);
      SET_REGNO_REG_SET (&new->dead_or_set, regno + k);
      n_regs_saved--;
    }

  /* Tell our callers how many extra registers we saved/restored.  */
  return numregs - 1;
}

/* Like insert_restore above, but save registers instead.  */

static int
insert_save (struct insn_chain *chain, int before_p, int regno,
	     HARD_REG_SET (*to_save), enum machine_mode *save_mode)
{
  int i;
  unsigned int k;
  rtx pat = NULL_RTX;
  int code;
  unsigned int numregs = 0;
  struct insn_chain *new;
  rtx mem;

  /* A common failure mode if register status is not correct in the RTL
     is for this routine to be called with a REGNO we didn't expect to
     save.  That will cause us to write an insn with a (nil) SET_DEST
     or SET_SRC.  Instead of doing so and causing a crash later, check
     for this common case and abort here instead.  This will remove one
     step in debugging such problems.  */

  if (regno_save_mem[regno][1] == 0)
    abort ();

  /* Get the pattern to emit and update our status.

     See if we can save several registers with a single instruction.
     Work backwards to the single register case.  */
  for (i = MOVE_MAX_WORDS; i > 0; i--)
    {
      int j;
      int ok = 1;
      if (regno_save_mem[regno][i] == 0)
	continue;

      for (j = 0; j < i; j++)
	if (! TEST_HARD_REG_BIT (*to_save, regno + j))
	  {
	    ok = 0;
	    break;
	  }
      /* Must do this one save at a time.  */
      if (! ok)
	continue;

      numregs = i;
      break;
    }

  mem = regno_save_mem [regno][numregs];
  if (save_mode [regno] != VOIDmode
      && save_mode [regno] != GET_MODE (mem)
      && numregs == (unsigned int) hard_regno_nregs[regno][save_mode [regno]])
    mem = adjust_address (mem, save_mode[regno], 0);
  else
    mem = copy_rtx (mem);
  pat = gen_rtx_SET (VOIDmode, mem,
		     gen_rtx_REG (GET_MODE (mem),
				  regno));
  code = reg_save_code[regno][GET_MODE (mem)];
  new = insert_one_insn (chain, before_p, code, pat);

  /* Set hard_regs_saved and dead_or_set for all the registers we saved.  */
  for (k = 0; k < numregs; k++)
    {
      SET_HARD_REG_BIT (hard_regs_saved, regno + k);
      SET_REGNO_REG_SET (&new->dead_or_set, regno + k);
      n_regs_saved++;
    }

  /* Tell our callers how many extra registers we saved/restored.  */
  return numregs - 1;
}

/* Emit a new caller-save insn and set the code.  */
static struct insn_chain *
insert_one_insn (struct insn_chain *chain, int before_p, int code, rtx pat)
{
  rtx insn = chain->insn;
  struct insn_chain *new;

#ifdef HAVE_cc0
  /* If INSN references CC0, put our insns in front of the insn that sets
     CC0.  This is always safe, since the only way we could be passed an
     insn that references CC0 is for a restore, and doing a restore earlier
     isn't a problem.  We do, however, assume here that CALL_INSNs don't
     reference CC0.  Guard against non-INSN's like CODE_LABEL.  */

  if ((GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
      && before_p
      && reg_referenced_p (cc0_rtx, PATTERN (insn)))
    chain = chain->prev, insn = chain->insn;
#endif

  new = new_insn_chain ();
  if (before_p)
    {
      rtx link;

      new->prev = chain->prev;
      if (new->prev != 0)
	new->prev->next = new;
      else
	reload_insn_chain = new;

      chain->prev = new;
      new->next = chain;
      new->insn = emit_insn_before (pat, insn);
      /* ??? It would be nice if we could exclude the already / still saved
	 registers from the live sets.  */
      COPY_REG_SET (&new->live_throughout, &chain->live_throughout);
      /* Registers that die in CHAIN->INSN still live in the new insn.  */
      for (link = REG_NOTES (chain->insn); link; link = XEXP (link, 1))
	{
	  if (REG_NOTE_KIND (link) == REG_DEAD)
	    {
	      rtx reg = XEXP (link, 0);
	      int regno, i;

	      if (GET_CODE (reg) != REG)
		abort ();

	      regno = REGNO (reg);
	      if (regno >= FIRST_PSEUDO_REGISTER)
		regno = reg_renumber[regno];
	      if (regno < 0)
		continue;
	      for (i = hard_regno_nregs[regno][GET_MODE (reg)] - 1;
		   i >= 0; i--)
		SET_REGNO_REG_SET (&new->live_throughout, regno + i);
	    }
	}
      CLEAR_REG_SET (&new->dead_or_set);
      if (chain->insn == BB_HEAD (BASIC_BLOCK (chain->block)))
	BB_HEAD (BASIC_BLOCK (chain->block)) = new->insn;
    }
  else
    {
      new->next = chain->next;
      if (new->next != 0)
	new->next->prev = new;
      chain->next = new;
      new->prev = chain;
      new->insn = emit_insn_after (pat, insn);
      /* ??? It would be nice if we could exclude the already / still saved
	 registers from the live sets, and observe REG_UNUSED notes.  */
      COPY_REG_SET (&new->live_throughout, &chain->live_throughout);
      /* Registers that are set in CHAIN->INSN live in the new insn.
         (Unless there is a REG_UNUSED note for them, but we don't
	  look for them here.) */
      note_stores (PATTERN (chain->insn), add_stored_regs,
		   &new->live_throughout);
      CLEAR_REG_SET (&new->dead_or_set);
      if (chain->insn == BB_END (BASIC_BLOCK (chain->block)))
	BB_END (BASIC_BLOCK (chain->block)) = new->insn;
    }
  new->block = chain->block;
  new->is_caller_save_insn = 1;

  INSN_CODE (new->insn) = code;
  return new;
}