summaryrefslogtreecommitdiff
path: root/gcc/c-aux-info.c
blob: f3b375f5794a66191ab7fbfd466febe879e846ba (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
/* Generate information regarding function declarations and definitions based
   on information stored in GCC's tree structure.  This code implements the
   -aux-info option.
   Copyright (C) 1989, 1991, 1994, 1995, 1997, 1998,
   1999, 2000 Free Software Foundation, Inc.
   Contributed by Ron Guilmette (rfg@segfault.us.com).

This file is part of GNU CC.

GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING.  If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.  */

#include "config.h"
#include "system.h"
#include "toplev.h"
#include "flags.h"
#include "tree.h"
#include "c-tree.h"

enum formals_style_enum {
  ansi,
  k_and_r_names,
  k_and_r_decls
};
typedef enum formals_style_enum formals_style;


static const char *data_type;

static char *affix_data_type		PARAMS ((const char *));
static const char *gen_formal_list_for_type PARAMS ((tree, formals_style));
static int   deserves_ellipsis		PARAMS ((tree));
static const char *gen_formal_list_for_func_def PARAMS ((tree, formals_style));
static const char *gen_type		PARAMS ((const char *, tree, formals_style));
static const char *gen_decl		PARAMS ((tree, int, formals_style));

/* Given a string representing an entire type or an entire declaration
   which only lacks the actual "data-type" specifier (at its left end),
   affix the data-type specifier to the left end of the given type
   specification or object declaration.

   Because of C language weirdness, the data-type specifier (which normally
   goes in at the very left end) may have to be slipped in just to the
   right of any leading "const" or "volatile" qualifiers (there may be more
   than one).  Actually this may not be strictly necessary because it seems
   that GCC (at least) accepts `<data-type> const foo;' and treats it the
   same as `const <data-type> foo;' but people are accustomed to seeing
   `const char *foo;' and *not* `char const *foo;' so we try to create types
   that look as expected.  */

static char *
affix_data_type (param)
     const char *param;
{
  char *type_or_decl = (char *) alloca (strlen (param) + 1);
  char *p = type_or_decl;
  char *qualifiers_then_data_type;
  char saved;

  strcpy (type_or_decl, param);
  
  /* Skip as many leading const's or volatile's as there are.  */

  for (;;)
    {
      if (!strncmp (p, "volatile ", 9))
        {
          p += 9;
          continue;
        }
      if (!strncmp (p, "const ", 6))
        {
          p += 6;
          continue;
        }
      break;
    }

  /* p now points to the place where we can insert the data type.  We have to
     add a blank after the data-type of course.  */

  if (p == type_or_decl)
    return concat (data_type, " ", type_or_decl, NULL_PTR);

  saved = *p;
  *p = '\0';
  qualifiers_then_data_type = concat (type_or_decl, data_type, NULL_PTR);
  *p = saved;
  return concat (qualifiers_then_data_type, " ", p, NULL_PTR);
}

/* Given a tree node which represents some "function type", generate the
   source code version of a formal parameter list (of some given style) for
   this function type.  Return the whole formal parameter list (including
   a pair of surrounding parens) as a string.   Note that if the style
   we are currently aiming for is non-ansi, then we just return a pair
   of empty parens here.  */

static const char *
gen_formal_list_for_type (fntype, style)
     tree fntype;
     formals_style style;
{
  const char *formal_list = "";
  tree formal_type;

  if (style != ansi)
    return "()";

  formal_type = TYPE_ARG_TYPES (fntype);
  while (formal_type && TREE_VALUE (formal_type) != void_type_node)
    {
      const char *this_type;

      if (*formal_list)
        formal_list = concat (formal_list, ", ", NULL_PTR);

      this_type = gen_type ("", TREE_VALUE (formal_type), ansi);
      formal_list
	= ((strlen (this_type))
	   ? concat (formal_list, affix_data_type (this_type), NULL_PTR)
	   : concat (formal_list, data_type, NULL_PTR));

      formal_type = TREE_CHAIN (formal_type);
    }

  /* If we got to here, then we are trying to generate an ANSI style formal
     parameters list.

     New style prototyped ANSI formal parameter lists should in theory always
     contain some stuff between the opening and closing parens, even if it is
     only "void".

     The brutal truth though is that there is lots of old K&R code out there
     which contains declarations of "pointer-to-function" parameters and
     these almost never have fully specified formal parameter lists associated
     with them.  That is, the pointer-to-function parameters are declared
     with just empty parameter lists.

     In cases such as these, protoize should really insert *something* into
     the vacant parameter lists, but what?  It has no basis on which to insert
     anything in particular.

     Here, we make life easy for protoize by trying to distinguish between
     K&R empty parameter lists and new-style prototyped parameter lists
     that actually contain "void".  In the latter case we (obviously) want
     to output the "void" verbatim, and that what we do.  In the former case,
     we do our best to give protoize something nice to insert.

     This "something nice" should be something that is still valid (when
     re-compiled) but something that can clearly indicate to the user that
     more typing information (for the parameter list) should be added (by
     hand) at some convenient moment.

     The string chosen here is a comment with question marks in it.  */

  if (!*formal_list)
    {
      if (TYPE_ARG_TYPES (fntype))
        /* assert (TREE_VALUE (TYPE_ARG_TYPES (fntype)) == void_type_node);  */
        formal_list = "void";
      else
        formal_list = "/* ??? */";
    }
  else
    {
      /* If there were at least some parameters, and if the formals-types-list
         petered out to a NULL (i.e. without being terminated by a
         void_type_node) then we need to tack on an ellipsis.  */
      if (!formal_type)
        formal_list = concat (formal_list, ", ...", NULL_PTR);
    }

  return concat (" (", formal_list, ")", NULL_PTR);
}

/* For the generation of an ANSI prototype for a function definition, we have
   to look at the formal parameter list of the function's own "type" to
   determine if the function's formal parameter list should end with an
   ellipsis.  Given a tree node, the following function will return non-zero
   if the "function type" parameter list should end with an ellipsis.  */

static int
deserves_ellipsis (fntype)
     tree fntype;
{
  tree formal_type;

  formal_type = TYPE_ARG_TYPES (fntype);
  while (formal_type && TREE_VALUE (formal_type) != void_type_node)
    formal_type = TREE_CHAIN (formal_type);

  /* If there were at least some parameters, and if the formals-types-list
     petered out to a NULL (i.e. without being terminated by a void_type_node)
     then we need to tack on an ellipsis.  */

  return (!formal_type && TYPE_ARG_TYPES (fntype));
}

/* Generate a parameter list for a function definition (in some given style).

   Note that this routine has to be separate (and different) from the code that
   generates the prototype parameter lists for function declarations, because
   in the case of a function declaration, all we have to go on is a tree node
   representing the function's own "function type".  This can tell us the types
   of all of the formal parameters for the function, but it cannot tell us the
   actual *names* of each of the formal parameters.  We need to output those
   parameter names for each function definition.

   This routine gets a pointer to a tree node which represents the actual
   declaration of the given function, and this DECL node has a list of formal
   parameter (variable) declarations attached to it.  These formal parameter
   (variable) declaration nodes give us the actual names of the formal
   parameters for the given function definition.

   This routine returns a string which is the source form for the entire
   function formal parameter list.  */

static const char *
gen_formal_list_for_func_def (fndecl, style)
     tree fndecl;
     formals_style style;
{
  const char *formal_list = "";
  tree formal_decl;

  formal_decl = DECL_ARGUMENTS (fndecl);
  while (formal_decl)
    {
      const char *this_formal;

      if (*formal_list && ((style == ansi) || (style == k_and_r_names)))
        formal_list = concat (formal_list, ", ", NULL_PTR);
      this_formal = gen_decl (formal_decl, 0, style);
      if (style == k_and_r_decls)
        formal_list = concat (formal_list, this_formal, "; ", NULL_PTR);
      else
        formal_list = concat (formal_list, this_formal, NULL_PTR);
      formal_decl = TREE_CHAIN (formal_decl);
    }
  if (style == ansi)
    {
      if (!DECL_ARGUMENTS (fndecl))
        formal_list = concat (formal_list, "void", NULL_PTR);
      if (deserves_ellipsis (TREE_TYPE (fndecl)))
        formal_list = concat (formal_list, ", ...", NULL_PTR);
    }
  if ((style == ansi) || (style == k_and_r_names))
    formal_list = concat (" (", formal_list, ")", NULL_PTR);
  return formal_list;
}

/* Generate a string which is the source code form for a given type (t).  This
   routine is ugly and complex because the C syntax for declarations is ugly
   and complex.  This routine is straightforward so long as *no* pointer types,
   array types, or function types are involved.

   In the simple cases, this routine will return the (string) value which was
   passed in as the "ret_val" argument.  Usually, this starts out either as an
   empty string, or as the name of the declared item (i.e. the formal function
   parameter variable).

   This routine will also return with the global variable "data_type" set to
   some string value which is the "basic" data-type of the given complete type.
   This "data_type" string can be concatenated onto the front of the returned
   string after this routine returns to its caller.

   In complicated cases involving pointer types, array types, or function
   types, the C declaration syntax requires an "inside out" approach, i.e. if
   you have a type which is a "pointer-to-function" type, you need to handle
   the "pointer" part first, but it also has to be "innermost" (relative to
   the declaration stuff for the "function" type).  Thus, is this case, you
   must prepend a "(*" and append a ")" to the name of the item (i.e. formal
   variable).  Then you must append and prepend the other info for the
   "function type" part of the overall type.

   To handle the "innermost precedence" rules of complicated C declarators, we
   do the following (in this routine).  The input parameter called "ret_val"
   is treated as a "seed".  Each time gen_type is called (perhaps recursively)
   some additional strings may be appended or prepended (or both) to the "seed"
   string.  If yet another (lower) level of the GCC tree exists for the given
   type (as in the case of a pointer type, an array type, or a function type)
   then the (wrapped) seed is passed to a (recursive) invocation of gen_type()
   this recursive invocation may again "wrap" the (new) seed with yet more
   declarator stuff, by appending, prepending (or both).  By the time the
   recursion bottoms out, the "seed value" at that point will have a value
   which is (almost) the complete source version of the declarator (except
   for the data_type info).  Thus, this deepest "seed" value is simply passed
   back up through all of the recursive calls until it is given (as the return
   value) to the initial caller of the gen_type() routine.  All that remains
   to do at this point is for the initial caller to prepend the "data_type"
   string onto the returned "seed".  */

static const char *
gen_type (ret_val, t, style)
     const char *ret_val;
     tree t;
     formals_style style;
{
  tree chain_p;

  /* If there is a typedef name for this type, use it.  */
  if (TYPE_NAME (t) && TREE_CODE (TYPE_NAME (t)) == TYPE_DECL)
    data_type = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (t)));
  else
    {
      switch (TREE_CODE (t))
        {
        case POINTER_TYPE:
          if (TYPE_READONLY (t))
            ret_val = concat ("const ", ret_val, NULL_PTR);
          if (TYPE_VOLATILE (t))
            ret_val = concat ("volatile ", ret_val, NULL_PTR);

          ret_val = concat ("*", ret_val, NULL_PTR);

	  if (TREE_CODE (TREE_TYPE (t)) == ARRAY_TYPE || TREE_CODE (TREE_TYPE (t)) == FUNCTION_TYPE)
	    ret_val = concat ("(", ret_val, ")", NULL_PTR);

          ret_val = gen_type (ret_val, TREE_TYPE (t), style);

          return ret_val;

        case ARRAY_TYPE:
	  if (!COMPLETE_TYPE_P (t) || TREE_CODE (TYPE_SIZE (t)) != INTEGER_CST)
	    ret_val = gen_type (concat (ret_val, "[]", NULL_PTR),
				TREE_TYPE (t), style);
	  else if (int_size_in_bytes (t) == 0)
	    ret_val = gen_type (concat (ret_val, "[0]", NULL_PTR),
				TREE_TYPE (t), style);
	  else
	    {
	      int size = (int_size_in_bytes (t) / int_size_in_bytes (TREE_TYPE (t)));
	      char buff[10];
	      sprintf (buff, "[%d]", size);
	      ret_val = gen_type (concat (ret_val, buff, NULL_PTR),
				  TREE_TYPE (t), style);
	    }
          break;

        case FUNCTION_TYPE:
          ret_val = gen_type (concat (ret_val,
				      gen_formal_list_for_type (t, style),
				      NULL_PTR),
			      TREE_TYPE (t), style);
          break;

        case IDENTIFIER_NODE:
          data_type = IDENTIFIER_POINTER (t);
          break;

	/* The following three cases are complicated by the fact that a
           user may do something really stupid, like creating a brand new
           "anonymous" type specification in a formal argument list (or as
           part of a function return type specification).  For example:

		int f (enum { red, green, blue } color);

	   In such cases, we have no name that we can put into the prototype
	   to represent the (anonymous) type.  Thus, we have to generate the
	   whole darn type specification.  Yuck!  */

        case RECORD_TYPE:
	  if (TYPE_NAME (t))
	    data_type = IDENTIFIER_POINTER (TYPE_NAME (t));
	  else
	    {
	      data_type = "";
	      chain_p = TYPE_FIELDS (t);
	      while (chain_p)
		{
		  data_type = concat (data_type, gen_decl (chain_p, 0, ansi),
				      NULL_PTR);
		  chain_p = TREE_CHAIN (chain_p);
		  data_type = concat (data_type, "; ", NULL_PTR);
		}
	      data_type = concat ("{ ", data_type, "}", NULL_PTR);
	    }
	  data_type = concat ("struct ", data_type, NULL_PTR);
	  break;

        case UNION_TYPE:
	  if (TYPE_NAME (t))
	    data_type = IDENTIFIER_POINTER (TYPE_NAME (t));
	  else
	    {
	      data_type = "";
	      chain_p = TYPE_FIELDS (t);
	      while (chain_p)
		{
		  data_type = concat (data_type, gen_decl (chain_p, 0, ansi),
				      NULL_PTR);
		  chain_p = TREE_CHAIN (chain_p);
		  data_type = concat (data_type, "; ", NULL_PTR);
		}
	      data_type = concat ("{ ", data_type, "}", NULL_PTR);
	    }
	  data_type = concat ("union ", data_type, NULL_PTR);
	  break;

        case ENUMERAL_TYPE:
	  if (TYPE_NAME (t))
	    data_type = IDENTIFIER_POINTER (TYPE_NAME (t));
	  else
	    {
	      data_type = "";
	      chain_p = TYPE_VALUES (t);
	      while (chain_p)
		{
		  data_type = concat (data_type,
			IDENTIFIER_POINTER (TREE_PURPOSE (chain_p)), NULL_PTR);
		  chain_p = TREE_CHAIN (chain_p);
		  if (chain_p)
		    data_type = concat (data_type, ", ", NULL_PTR);
		}
	      data_type = concat ("{ ", data_type, " }", NULL_PTR);
	    }
	  data_type = concat ("enum ", data_type, NULL_PTR);
	  break;

        case TYPE_DECL:
          data_type = IDENTIFIER_POINTER (DECL_NAME (t));
          break;
 
        case INTEGER_TYPE:
          data_type = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (t)));
          /* Normally, `unsigned' is part of the deal.  Not so if it comes
    	     with a type qualifier.  */
          if (TREE_UNSIGNED (t) && TYPE_QUALS (t))
    	    data_type = concat ("unsigned ", data_type, NULL_PTR);
	  break;

        case REAL_TYPE:
          data_type = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (t)));
          break;

        case VOID_TYPE:
          data_type = "void";
          break;

	case ERROR_MARK:
	  data_type = "[ERROR]";
	  break;

        default:
          abort ();
        }
    }
  if (TYPE_READONLY (t))
    ret_val = concat ("const ", ret_val, NULL_PTR);
  if (TYPE_VOLATILE (t))
    ret_val = concat ("volatile ", ret_val, NULL_PTR);
  if (TYPE_RESTRICT (t))
    ret_val = concat ("restrict ", ret_val, NULL_PTR);
  return ret_val;
}

/* Generate a string (source) representation of an entire entity declaration
   (using some particular style for function types).

   The given entity may be either a variable or a function.

   If the "is_func_definition" parameter is non-zero, assume that the thing
   we are generating a declaration for is a FUNCTION_DECL node which is
   associated with a function definition.  In this case, we can assume that
   an attached list of DECL nodes for function formal arguments is present.  */

static const char *
gen_decl (decl, is_func_definition, style)
     tree decl;
     int is_func_definition;
     formals_style style;
{
  const char *ret_val;

  if (DECL_NAME (decl))
    ret_val = IDENTIFIER_POINTER (DECL_NAME (decl));
  else
    ret_val = "";

  /* If we are just generating a list of names of formal parameters, we can
     simply return the formal parameter name (with no typing information
     attached to it) now.  */

  if (style == k_and_r_names)
    return ret_val;

  /* Note that for the declaration of some entity (either a function or a
     data object, like for instance a parameter) if the entity itself was
     declared as either const or volatile, then const and volatile properties
     are associated with just the declaration of the entity, and *not* with
     the `type' of the entity.  Thus, for such declared entities, we have to
     generate the qualifiers here.  */

  if (TREE_THIS_VOLATILE (decl))
    ret_val = concat ("volatile ", ret_val, NULL_PTR);
  if (TREE_READONLY (decl))
    ret_val = concat ("const ", ret_val, NULL_PTR);

  data_type = "";

  /* For FUNCTION_DECL nodes, there are two possible cases here.  First, if
     this FUNCTION_DECL node was generated from a function "definition", then
     we will have a list of DECL_NODE's, one for each of the function's formal
     parameters.  In this case, we can print out not only the types of each
     formal, but also each formal's name.  In the second case, this
     FUNCTION_DECL node came from an actual function declaration (and *not*
     a definition).  In this case, we do nothing here because the formal
     argument type-list will be output later, when the "type" of the function
     is added to the string we are building.  Note that the ANSI-style formal
     parameter list is considered to be a (suffix) part of the "type" of the
     function.  */

  if (TREE_CODE (decl) == FUNCTION_DECL && is_func_definition)
    {
      ret_val = concat (ret_val, gen_formal_list_for_func_def (decl, ansi),
			NULL_PTR);

      /* Since we have already added in the formals list stuff, here we don't
         add the whole "type" of the function we are considering (which
         would include its parameter-list info), rather, we only add in
         the "type" of the "type" of the function, which is really just
         the return-type of the function (and does not include the parameter
         list info).  */

      ret_val = gen_type (ret_val, TREE_TYPE (TREE_TYPE (decl)), style);
    }
  else
    ret_val = gen_type (ret_val, TREE_TYPE (decl), style);

  ret_val = affix_data_type (ret_val);

  if (TREE_CODE (decl) != FUNCTION_DECL && DECL_REGISTER (decl))
    ret_val = concat ("register ", ret_val, NULL_PTR);
  if (TREE_PUBLIC (decl))
    ret_val = concat ("extern ", ret_val, NULL_PTR);
  if (TREE_CODE (decl) == FUNCTION_DECL && !TREE_PUBLIC (decl))
    ret_val = concat ("static ", ret_val, NULL_PTR);

  return ret_val;
}

extern FILE *aux_info_file;

/* Generate and write a new line of info to the aux-info (.X) file.  This
   routine is called once for each function declaration, and once for each
   function definition (even the implicit ones).  */

void
gen_aux_info_record (fndecl, is_definition, is_implicit, is_prototyped)
     tree fndecl;
     int is_definition;
     int is_implicit;
     int is_prototyped;
{
  if (flag_gen_aux_info)
    {
      static int compiled_from_record = 0;

      /* Each output .X file must have a header line.  Write one now if we
	 have not yet done so.  */

      if (! compiled_from_record++)
	{
	  /* The first line tells which directory file names are relative to.
	     Currently, -aux-info works only for files in the working
	     directory, so just use a `.' as a placeholder for now.  */
	  fprintf (aux_info_file, "/* compiled from: . */\n");
	}

      /* Write the actual line of auxiliary info.  */

      fprintf (aux_info_file, "/* %s:%d:%c%c */ %s;",
	       DECL_SOURCE_FILE (fndecl),
	       DECL_SOURCE_LINE (fndecl),
	       (is_implicit) ? 'I' : (is_prototyped) ? 'N' : 'O',
	       (is_definition) ? 'F' : 'C',
	       gen_decl (fndecl, is_definition, ansi));

      /* If this is an explicit function declaration, we need to also write
	 out an old-style (i.e. K&R) function header, just in case the user
	 wants to run unprotoize.  */

      if (is_definition)
	{
	  fprintf (aux_info_file, " /*%s %s*/",
		   gen_formal_list_for_func_def (fndecl, k_and_r_names),
		   gen_formal_list_for_func_def (fndecl, k_and_r_decls));
	}

      fprintf (aux_info_file, "\n");
    }
}