summaryrefslogtreecommitdiff
path: root/gcc/bb-reorder.c
blob: 0a433424fb5b80a238436109aacfe7a1fda5d2c6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
/* Basic block reordering routines for the GNU compiler.
   Copyright (C) 2000, 2002, 2003 Free Software Foundation, Inc.

   This file is part of GCC.

   GCC is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2, or (at your option)
   any later version.

   GCC is distributed in the hope that it will be useful, but WITHOUT
   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
   or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
   License for more details.

   You should have received a copy of the GNU General Public License
   along with GCC; see the file COPYING.  If not, write to the Free
   Software Foundation, 59 Temple Place - Suite 330, Boston, MA
   02111-1307, USA.  */

/* This (greedy) algorithm constructs traces in several rounds.
   The construction starts from "seeds".  The seed for the first round
   is the entry point of function.  When there are more than one seed
   that one is selected first that has the lowest key in the heap
   (see function bb_to_key).  Then the algorithm repeatedly adds the most
   probable successor to the end of a trace.  Finally it connects the traces.

   There are two parameters: Branch Threshold and Exec Threshold.
   If the edge to a successor of the actual basic block is lower than
   Branch Threshold or the frequency of the successor is lower than
   Exec Threshold the successor will be the seed in one of the next rounds.
   Each round has these parameters lower than the previous one.
   The last round has to have these parameters set to zero
   so that the remaining blocks are picked up.

   The algorithm selects the most probable successor from all unvisited
   successors and successors that have been added to this trace.
   The other successors (that has not been "sent" to the next round) will be
   other seeds for this round and the secondary traces will start in them.
   If the successor has not been visited in this trace it is added to the trace
   (however, there is some heuristic for simple branches).
   If the successor has been visited in this trace the loop has been found.
   If the loop has many iterations the loop is rotated so that the
   source block of the most probable edge going out from the loop
   is the last block of the trace.
   If the loop has few iterations and there is no edge from the last block of
   the loop going out from loop the loop header is duplicated.
   Finally, the construction of the trace is terminated.

   When connecting traces it first checks whether there is an edge from the
   last block of one trace to the first block of another trace.
   When there are still some unconnected traces it checks whether there exists
   a basic block BB such that BB is a successor of the last bb of one trace
   and BB is a predecessor of the first block of another trace. In this case,
   BB is duplicated and the traces are connected through this duplicate.
   The rest of traces are simply connected so there will be a jump to the
   beginning of the rest of trace.


   References:

   "Software Trace Cache"
   A. Ramirez, J. Larriba-Pey, C. Navarro, J. Torrellas and M. Valero; 1999
   http://citeseer.nj.nec.com/15361.html

*/

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "rtl.h"
#include "basic-block.h"
#include "flags.h"
#include "output.h"
#include "cfglayout.h"
#include "fibheap.h"
#include "target.h"

/* The number of rounds.  */
#define N_ROUNDS 4

/* Branch thresholds in thousandths (per mille) of the REG_BR_PROB_BASE.  */
static int branch_threshold[N_ROUNDS] = {400, 200, 100, 0};

/* Exec thresholds in thousandths (per mille) of the frequency of bb 0.  */
static int exec_threshold[N_ROUNDS] = {500, 200, 50, 0};

/* If edge frequency is lower than DUPLICATION_THRESHOLD per mille of entry
   block the edge destination is not duplicated while connecting traces.  */
#define DUPLICATION_THRESHOLD 100

/* Length of unconditional jump instruction.  */
static int uncond_jump_length;

/* Structure to hold needed information for each basic block.  */
typedef struct bbro_basic_block_data_def
{
  /* Which trace is the bb start of (-1 means it is not a start of a trace).  */
  int start_of_trace;

  /* Which trace is the bb end of (-1 means it is not an end of a trace).  */
  int end_of_trace;

  /* Which heap is BB in (if any)?  */
  fibheap_t heap;

  /* Which heap node is BB in (if any)?  */
  fibnode_t node;
} bbro_basic_block_data;

/* The current size of the following dynamic array.  */
static int array_size;

/* The array which holds needed information for basic blocks.  */
static bbro_basic_block_data *bbd;

/* To avoid frequent reallocation the size of arrays is greater than needed,
   the number of elements is (not less than) 1.25 * size_wanted.  */
#define GET_ARRAY_SIZE(X) ((((X) / 4) + 1) * 5)

/* Free the memory and set the pointer to NULL.  */
#define FREE(P) \
  do { if (P) { free (P); P = 0; } else { abort (); } } while (0)

/* Structure for holding information about a trace.  */
struct trace
{
  /* First and last basic block of the trace.  */
  basic_block first, last;

  /* The round of the STC creation which this trace was found in.  */
  int round;

  /* The length (i.e. the number of basic blocks) of the trace.  */
  int length;
};

/* Maximum frequency and count of one of the entry blocks.  */
int max_entry_frequency;
gcov_type max_entry_count;

/* Local function prototypes.  */
static void find_traces (int *, struct trace *);
static basic_block rotate_loop (edge, struct trace *, int);
static void mark_bb_visited (basic_block, int);
static void find_traces_1_round (int, int, gcov_type, struct trace *, int *,
				 int, fibheap_t *);
static basic_block copy_bb (basic_block, edge, basic_block, int);
static fibheapkey_t bb_to_key (basic_block);
static bool better_edge_p (basic_block, edge, int, int, int, int);
static void connect_traces (int, struct trace *);
static bool copy_bb_p (basic_block, int);
static int get_uncond_jump_length (void);

/* Find the traces for Software Trace Cache.  Chain each trace through
   RBI()->next.  Store the number of traces to N_TRACES and description of
   traces to TRACES.  */

static void
find_traces (int *n_traces, struct trace *traces)
{
  int i;
  edge e;
  fibheap_t heap;

  /* Insert entry points of function into heap.  */
  heap = fibheap_new ();
  max_entry_frequency = 0;
  max_entry_count = 0;
  for (e = ENTRY_BLOCK_PTR->succ; e; e = e->succ_next)
    {
      bbd[e->dest->index].heap = heap;
      bbd[e->dest->index].node = fibheap_insert (heap, bb_to_key (e->dest),
						    e->dest);
      if (e->dest->frequency > max_entry_frequency)
	max_entry_frequency = e->dest->frequency;
      if (e->dest->count > max_entry_count)
	max_entry_count = e->dest->count;
    }

  /* Find the traces.  */
  for (i = 0; i < N_ROUNDS; i++)
    {
      gcov_type count_threshold;

      if (rtl_dump_file)
	fprintf (rtl_dump_file, "STC - round %d\n", i + 1);

      if (max_entry_count < INT_MAX / 1000)
	count_threshold = max_entry_count * exec_threshold[i] / 1000;
      else
	count_threshold = max_entry_count / 1000 * exec_threshold[i];

      find_traces_1_round (REG_BR_PROB_BASE * branch_threshold[i] / 1000,
			   max_entry_frequency * exec_threshold[i] / 1000,
			   count_threshold, traces, n_traces, i, &heap);
    }
  fibheap_delete (heap);

  if (rtl_dump_file)
    {
      for (i = 0; i < *n_traces; i++)
	{
	  basic_block bb;
	  fprintf (rtl_dump_file, "Trace %d (round %d):  ", i + 1,
		   traces[i].round + 1);
	  for (bb = traces[i].first; bb != traces[i].last; bb = bb->rbi->next)
	    fprintf (rtl_dump_file, "%d [%d] ", bb->index, bb->frequency);
	  fprintf (rtl_dump_file, "%d [%d]\n", bb->index, bb->frequency);
	}
      fflush (rtl_dump_file);
    }
}

/* Rotate loop whose back edge is BACK_EDGE in the tail of trace TRACE
   (with sequential number TRACE_N).  */

static basic_block
rotate_loop (edge back_edge, struct trace *trace, int trace_n)
{
  basic_block bb;

  /* Information about the best end (end after rotation) of the loop.  */
  basic_block best_bb = NULL;
  edge best_edge = NULL;
  int best_freq = -1;
  gcov_type best_count = -1;
  /* The best edge is preferred when its destination is not visited yet
     or is a start block of some trace.  */
  bool is_preferred = false;

  /* Find the most frequent edge that goes out from current trace.  */
  bb = back_edge->dest;
  do
    {
      edge e;
      for (e = bb->succ; e; e = e->succ_next)
	if (e->dest != EXIT_BLOCK_PTR
	    && e->dest->rbi->visited != trace_n
	    && (e->flags & EDGE_CAN_FALLTHRU)
	    && !(e->flags & EDGE_COMPLEX))
	{
	  if (is_preferred)
	    {
	      /* The best edge is preferred.  */
	      if (!e->dest->rbi->visited
		  || bbd[e->dest->index].start_of_trace >= 0)
		{
		  /* The current edge E is also preferred.  */
		  int freq = EDGE_FREQUENCY (e);
		  if (freq > best_freq || e->count > best_count)
		    {
		      best_freq = freq;
		      best_count = e->count;
		      best_edge = e;
		      best_bb = bb;
		    }
		}
	    }
	  else
	    {
	      if (!e->dest->rbi->visited
		  || bbd[e->dest->index].start_of_trace >= 0)
		{
		  /* The current edge E is preferred.  */
		  is_preferred = true;
		  best_freq = EDGE_FREQUENCY (e);
		  best_count = e->count;
		  best_edge = e;
		  best_bb = bb;
		}
	      else
		{
		  int freq = EDGE_FREQUENCY (e);
		  if (!best_edge || freq > best_freq || e->count > best_count)
		    {
		      best_freq = freq;
		      best_count = e->count;
		      best_edge = e;
		      best_bb = bb;
		    }
		}
	    }
	}
      bb = bb->rbi->next;
    }
  while (bb != back_edge->dest);

  if (best_bb)
    {
      /* Rotate the loop so that the BEST_EDGE goes out from the last block of
	 the trace.  */
      if (back_edge->dest == trace->first)
	{
	  trace->first = best_bb->rbi->next;
	}
      else
	{
	  basic_block prev_bb;

	  for (prev_bb = trace->first;
	       prev_bb->rbi->next != back_edge->dest;
	       prev_bb = prev_bb->rbi->next)
	    ;
	  prev_bb->rbi->next = best_bb->rbi->next;

	  /* Try to get rid of uncond jump to cond jump.  */
	  if (prev_bb->succ && !prev_bb->succ->succ_next)
	    {
	      basic_block header = prev_bb->succ->dest;

	      /* Duplicate HEADER if it is a small block containing cond jump
		 in the end.  */
	      if (any_condjump_p (BB_END (header)) && copy_bb_p (header, 0))
		{
		  copy_bb (header, prev_bb->succ, prev_bb, trace_n);
		}
	    }
	}
    }
  else
    {
      /* We have not found suitable loop tail so do no rotation.  */
      best_bb = back_edge->src;
    }
  best_bb->rbi->next = NULL;
  return best_bb;
}

/* This function marks BB that it was visited in trace number TRACE.  */

static void
mark_bb_visited (basic_block bb, int trace)
{
  bb->rbi->visited = trace;
  if (bbd[bb->index].heap)
    {
      fibheap_delete_node (bbd[bb->index].heap, bbd[bb->index].node);
      bbd[bb->index].heap = NULL;
      bbd[bb->index].node = NULL;
    }
}

/* One round of finding traces. Find traces for BRANCH_TH and EXEC_TH i.e. do
   not include basic blocks their probability is lower than BRANCH_TH or their
   frequency is lower than EXEC_TH into traces (or count is lower than
   COUNT_TH).  It stores the new traces into TRACES and modifies the number of
   traces *N_TRACES. Sets the round (which the trace belongs to) to ROUND. It
   expects that starting basic blocks are in *HEAP and at the end it deletes
   *HEAP and stores starting points for the next round into new *HEAP.  */

static void
find_traces_1_round (int branch_th, int exec_th, gcov_type count_th,
		     struct trace *traces, int *n_traces, int round,
		     fibheap_t *heap)
{
  /* Heap for discarded basic blocks which are possible starting points for
     the next round.  */
  fibheap_t new_heap = fibheap_new ();

  while (!fibheap_empty (*heap))
    {
      basic_block bb;
      struct trace *trace;
      edge best_edge, e;
      fibheapkey_t key;

      bb = fibheap_extract_min (*heap);
      bbd[bb->index].heap = NULL;
      bbd[bb->index].node = NULL;

      if (rtl_dump_file)
	fprintf (rtl_dump_file, "Getting bb %d\n", bb->index);

      /* If the BB's frequency is too low send BB to the next round.  */
      if (round < N_ROUNDS - 1
	  && (bb->frequency < exec_th || bb->count < count_th
	      || probably_never_executed_bb_p (bb)))
	{
	  int key = bb_to_key (bb);
	  bbd[bb->index].heap = new_heap;
	  bbd[bb->index].node = fibheap_insert (new_heap, key, bb);

	  if (rtl_dump_file)
	    fprintf (rtl_dump_file,
		     "  Possible start point of next round: %d (key: %d)\n",
		     bb->index, key);
	  continue;
	}

      trace = traces + *n_traces;
      trace->first = bb;
      trace->round = round;
      trace->length = 0;
      (*n_traces)++;

      do
	{
	  int prob, freq;

	  /* The probability and frequency of the best edge.  */
	  int best_prob = INT_MIN / 2;
	  int best_freq = INT_MIN / 2;

	  best_edge = NULL;
	  mark_bb_visited (bb, *n_traces);
	  trace->length++;

	  if (rtl_dump_file)
	    fprintf (rtl_dump_file, "Basic block %d was visited in trace %d\n",
		     bb->index, *n_traces - 1);

	  /* Select the successor that will be placed after BB.  */
	  for (e = bb->succ; e; e = e->succ_next)
	    {
	      if (e->flags & EDGE_FAKE)
		abort ();

	      if (e->dest == EXIT_BLOCK_PTR)
		continue;

	      if (e->dest->rbi->visited
		  && e->dest->rbi->visited != *n_traces)
		continue;

	      prob = e->probability;
	      freq = EDGE_FREQUENCY (e);

	      /* Edge that cannot be fallthru or improbable or infrequent
		 successor (ie. it is unsuitable successor).  */
	      if (!(e->flags & EDGE_CAN_FALLTHRU) || (e->flags & EDGE_COMPLEX)
		  || prob < branch_th || freq < exec_th || e->count < count_th)
		continue;

	      if (better_edge_p (bb, e, prob, freq, best_prob, best_freq))
		{
		  best_edge = e;
		  best_prob = prob;
		  best_freq = freq;
		}
	    }

	  /* If the best destination has multiple predecessors, and can be
	     duplicated cheaper than a jump, don't allow it to be added
	     to a trace.  We'll duplicate it when connecting traces.  */
	  if (best_edge && best_edge->dest->pred->pred_next
	      && copy_bb_p (best_edge->dest, 0))
	    best_edge = NULL;

	  /* Add all non-selected successors to the heaps.  */
	  for (e = bb->succ; e; e = e->succ_next)
	    {
	      if (e == best_edge
		  || e->dest == EXIT_BLOCK_PTR
		  || e->dest->rbi->visited)
		continue;

	      key = bb_to_key (e->dest);

	      if (bbd[e->dest->index].heap)
		{
		  /* E->DEST is already in some heap.  */
		  if (key != bbd[e->dest->index].node->key)
		    {
		      if (rtl_dump_file)
			{
			  fprintf (rtl_dump_file,
				   "Changing key for bb %d from %ld to %ld.\n",
				   e->dest->index,
				   (long) bbd[e->dest->index].node->key,
				   key);
			}
		      fibheap_replace_key (bbd[e->dest->index].heap,
					   bbd[e->dest->index].node, key);
		    }
		}
	      else
		{
		  fibheap_t which_heap = *heap;

		  prob = e->probability;
		  freq = EDGE_FREQUENCY (e);

		  if (!(e->flags & EDGE_CAN_FALLTHRU)
		      || (e->flags & EDGE_COMPLEX)
		      || prob < branch_th || freq < exec_th
		      || e->count < count_th)
		    {
		      if (round < N_ROUNDS - 1)
			which_heap = new_heap;
		    }

		  bbd[e->dest->index].heap = which_heap;
		  bbd[e->dest->index].node = fibheap_insert (which_heap,
								key, e->dest);

		  if (rtl_dump_file)
		    {
		      fprintf (rtl_dump_file,
			       "  Possible start of %s round: %d (key: %ld)\n",
			       (which_heap == new_heap) ? "next" : "this",
			       e->dest->index, (long) key);
		    }

		}
	    }

	  if (best_edge) /* Suitable successor was found.  */
	    {
	      if (best_edge->dest->rbi->visited == *n_traces)
		{
		  /* We do nothing with one basic block loops.  */
		  if (best_edge->dest != bb)
		    {
		      if (EDGE_FREQUENCY (best_edge)
			  > 4 * best_edge->dest->frequency / 5)
			{
			  /* The loop has at least 4 iterations.  If the loop
			     header is not the first block of the function
			     we can rotate the loop.  */

			  if (best_edge->dest != ENTRY_BLOCK_PTR->next_bb)
			    {
			      if (rtl_dump_file)
				{
				  fprintf (rtl_dump_file,
					   "Rotating loop %d - %d\n",
					   best_edge->dest->index, bb->index);
				}
			      bb->rbi->next = best_edge->dest;
			      bb = rotate_loop (best_edge, trace, *n_traces);
			    }
			}
		      else
			{
			  /* The loop has less than 4 iterations.  */

			  /* Check whether there is another edge from BB.  */
			  edge another_edge;
			  for (another_edge = bb->succ;
			       another_edge;
			       another_edge = another_edge->succ_next)
			    if (another_edge != best_edge)
			      break;

			  if (!another_edge && copy_bb_p (best_edge->dest,
							  !optimize_size))
			    {
			      bb = copy_bb (best_edge->dest, best_edge, bb,
					    *n_traces);
			    }
			}
		    }

		  /* Terminate the trace.  */
		  break;
		}
	      else
		{
		  /* Check for a situation

		    A
		   /|
		  B |
		   \|
		    C

		  where
		  EDGE_FREQUENCY (AB) + EDGE_FREQUENCY (BC)
		    >= EDGE_FREQUENCY (AC).
		  (i.e. 2 * B->frequency >= EDGE_FREQUENCY (AC) )
		  Best ordering is then A B C.

		  This situation is created for example by:

		  if (A) B;
		  C;

		  */

		  for (e = bb->succ; e; e = e->succ_next)
		    if (e != best_edge
			&& (e->flags & EDGE_CAN_FALLTHRU)
			&& !(e->flags & EDGE_COMPLEX)
			&& !e->dest->rbi->visited
			&& !e->dest->pred->pred_next
			&& e->dest->succ
			&& (e->dest->succ->flags & EDGE_CAN_FALLTHRU)
			&& !(e->dest->succ->flags & EDGE_COMPLEX)
			&& !e->dest->succ->succ_next
			&& e->dest->succ->dest == best_edge->dest
			&& 2 * e->dest->frequency >= EDGE_FREQUENCY (best_edge))
		      {
			best_edge = e;
			if (rtl_dump_file)
			  fprintf (rtl_dump_file, "Selecting BB %d\n",
				   best_edge->dest->index);
			break;
		      }

		  bb->rbi->next = best_edge->dest;
		  bb = best_edge->dest;
		}
	    }
	}
      while (best_edge);
      trace->last = bb;
      bbd[trace->first->index].start_of_trace = *n_traces - 1;
      bbd[trace->last->index].end_of_trace = *n_traces - 1;

      /* The trace is terminated so we have to recount the keys in heap
	 (some block can have a lower key because now one of its predecessors
	 is an end of the trace).  */
      for (e = bb->succ; e; e = e->succ_next)
	{
	  if (e->dest == EXIT_BLOCK_PTR
	      || e->dest->rbi->visited)
	    continue;

	  if (bbd[e->dest->index].heap)
	    {
	      key = bb_to_key (e->dest);
	      if (key != bbd[e->dest->index].node->key)
		{
		  if (rtl_dump_file)
		    {
		      fprintf (rtl_dump_file,
			       "Changing key for bb %d from %ld to %ld.\n",
			       e->dest->index,
			       (long) bbd[e->dest->index].node->key, key);
		    }
		  fibheap_replace_key (bbd[e->dest->index].heap,
				       bbd[e->dest->index].node,
				       key);
		}
	    }
	}
    }

  fibheap_delete (*heap);

  /* "Return" the new heap.  */
  *heap = new_heap;
}

/* Create a duplicate of the basic block OLD_BB and redirect edge E to it, add
   it to trace after BB, mark OLD_BB visited and update pass' data structures
   (TRACE is a number of trace which OLD_BB is duplicated to).  */

static basic_block
copy_bb (basic_block old_bb, edge e, basic_block bb, int trace)
{
  basic_block new_bb;

  new_bb = cfg_layout_duplicate_bb (old_bb, e);
  if (e->dest != new_bb)
    abort ();
  if (e->dest->rbi->visited)
    abort ();
  if (rtl_dump_file)
    fprintf (rtl_dump_file,
	     "Duplicated bb %d (created bb %d)\n",
	     old_bb->index, new_bb->index);
  new_bb->rbi->visited = trace;
  new_bb->rbi->next = bb->rbi->next;
  bb->rbi->next = new_bb;

  if (new_bb->index >= array_size || last_basic_block > array_size)
    {
      int i;
      int new_size;

      new_size = MAX (last_basic_block, new_bb->index + 1);
      new_size = GET_ARRAY_SIZE (new_size);
      bbd = xrealloc (bbd, new_size * sizeof (bbro_basic_block_data));
      for (i = array_size; i < new_size; i++)
	{
	  bbd[i].start_of_trace = -1;
	  bbd[i].end_of_trace = -1;
	  bbd[i].heap = NULL;
	  bbd[i].node = NULL;
	}
      array_size = new_size;

      if (rtl_dump_file)
	{
	  fprintf (rtl_dump_file,
		   "Growing the dynamic array to %d elements.\n",
		   array_size);
	}
    }

  return new_bb;
}

/* Compute and return the key (for the heap) of the basic block BB.  */

static fibheapkey_t
bb_to_key (basic_block bb)
{
  edge e;

  int priority = 0;

  /* Do not start in probably never executed blocks.  */
  if (probably_never_executed_bb_p (bb))
    return BB_FREQ_MAX;

  /* Prefer blocks whose predecessor is an end of some trace
     or whose predecessor edge is EDGE_DFS_BACK.  */
  for (e = bb->pred; e; e = e->pred_next)
    {
      if ((e->src != ENTRY_BLOCK_PTR && bbd[e->src->index].end_of_trace >= 0)
	  || (e->flags & EDGE_DFS_BACK))
	{
	  int edge_freq = EDGE_FREQUENCY (e);

	  if (edge_freq > priority)
	    priority = edge_freq;
	}
    }

  if (priority)
    /* The block with priority should have significantly lower key.  */
    return -(100 * BB_FREQ_MAX + 100 * priority + bb->frequency);
  return -bb->frequency;
}

/* Return true when the edge E from basic block BB is better than the temporary
   best edge (details are in function).  The probability of edge E is PROB. The
   frequency of the successor is FREQ.  The current best probability is
   BEST_PROB, the best frequency is BEST_FREQ.
   The edge is considered to be equivalent when PROB does not differ much from
   BEST_PROB; similarly for frequency.  */

static bool
better_edge_p (basic_block bb, edge e, int prob, int freq, int best_prob,
	       int best_freq)
{
  bool is_better_edge;

  /* The BEST_* values do not have to be best, but can be a bit smaller than
     maximum values.  */
  int diff_prob = best_prob / 10;
  int diff_freq = best_freq / 10;

  if (prob > best_prob + diff_prob)
    /* The edge has higher probability than the temporary best edge.  */
    is_better_edge = true;
  else if (prob < best_prob - diff_prob)
    /* The edge has lower probability than the temporary best edge.  */
    is_better_edge = false;
  else if (freq < best_freq - diff_freq)
    /* The edge and the temporary best edge  have almost equivalent
       probabilities.  The higher frequency of a successor now means
       that there is another edge going into that successor.
       This successor has lower frequency so it is better.  */
    is_better_edge = true;
  else if (freq > best_freq + diff_freq)
    /* This successor has higher frequency so it is worse.  */
    is_better_edge = false;
  else if (e->dest->prev_bb == bb)
    /* The edges have equivalent probabilities and the successors
       have equivalent frequencies.  Select the previous successor.  */
    is_better_edge = true;
  else
    is_better_edge = false;

  return is_better_edge;
}

/* Connect traces in array TRACES, N_TRACES is the count of traces.  */

static void
connect_traces (int n_traces, struct trace *traces)
{
  int i;
  bool *connected;
  int last_trace;
  int freq_threshold;
  gcov_type count_threshold;

  freq_threshold = max_entry_frequency * DUPLICATION_THRESHOLD / 1000;
  if (max_entry_count < INT_MAX / 1000)
    count_threshold = max_entry_count * DUPLICATION_THRESHOLD / 1000;
  else
    count_threshold = max_entry_count / 1000 * DUPLICATION_THRESHOLD;

  connected = xcalloc (n_traces, sizeof (bool));
  last_trace = -1;
  for (i = 0; i < n_traces; i++)
    {
      int t = i;
      int t2;
      edge e, best;
      int best_len;

      if (connected[t])
	continue;

      connected[t] = true;

      /* Find the predecessor traces.  */
      for (t2 = t; t2 > 0;)
	{
	  best = NULL;
	  best_len = 0;
	  for (e = traces[t2].first->pred; e; e = e->pred_next)
	    {
	      int si = e->src->index;

	      if (e->src != ENTRY_BLOCK_PTR
		  && (e->flags & EDGE_CAN_FALLTHRU)
		  && !(e->flags & EDGE_COMPLEX)
		  && bbd[si].end_of_trace >= 0
		  && !connected[bbd[si].end_of_trace]
		  && (!best
		      || e->probability > best->probability
		      || (e->probability == best->probability
			  && traces[bbd[si].end_of_trace].length > best_len)))
		{
		  best = e;
		  best_len = traces[bbd[si].end_of_trace].length;
		}
	    }
	  if (best)
	    {
	      best->src->rbi->next = best->dest;
	      t2 = bbd[best->src->index].end_of_trace;
	      connected[t2] = true;
	      if (rtl_dump_file)
		{
		  fprintf (rtl_dump_file, "Connection: %d %d\n",
			   best->src->index, best->dest->index);
		}
	    }
	  else
	    break;
	}

      if (last_trace >= 0)
	traces[last_trace].last->rbi->next = traces[t2].first;
      last_trace = t;

      /* Find the successor traces.  */
      while (1)
	{
	  /* Find the continuation of the chain.  */
	  best = NULL;
	  best_len = 0;
	  for (e = traces[t].last->succ; e; e = e->succ_next)
	    {
	      int di = e->dest->index;

	      if (e->dest != EXIT_BLOCK_PTR
		  && (e->flags & EDGE_CAN_FALLTHRU)
		  && !(e->flags & EDGE_COMPLEX)
		  && bbd[di].start_of_trace >= 0
		  && !connected[bbd[di].start_of_trace]
		  && (!best
		      || e->probability > best->probability
		      || (e->probability == best->probability
			  && traces[bbd[di].start_of_trace].length > best_len)))
		{
		  best = e;
		  best_len = traces[bbd[di].start_of_trace].length;
		}
	    }

	  if (best)
	    {
	      if (rtl_dump_file)
		{
		  fprintf (rtl_dump_file, "Connection: %d %d\n",
			   best->src->index, best->dest->index);
		}
	      t = bbd[best->dest->index].start_of_trace;
	      traces[last_trace].last->rbi->next = traces[t].first;
	      connected[t] = true;
	      last_trace = t;
	    }
	  else
	    {
	      /* Try to connect the traces by duplication of 1 block.  */
	      edge e2;
	      basic_block next_bb = NULL;
	      bool try_copy = false;

	      for (e = traces[t].last->succ; e; e = e->succ_next)
		if (e->dest != EXIT_BLOCK_PTR
		    && (e->flags & EDGE_CAN_FALLTHRU)
		    && !(e->flags & EDGE_COMPLEX)
		    && (!best || e->probability > best->probability))
		  {
		    edge best2 = NULL;
		    int best2_len = 0;

		    /* If the destination is a start of a trace which is only
		       one block long, then no need to search the successor
		       blocks of the trace.  Accept it.  */
		    if (bbd[e->dest->index].start_of_trace >= 0
			&& traces[bbd[e->dest->index].start_of_trace].length
			   == 1)
		      {
			best = e;
			try_copy = true;
			continue;
		      }

		    for (e2 = e->dest->succ; e2; e2 = e2->succ_next)
		      {
			int di = e2->dest->index;

			if (e2->dest == EXIT_BLOCK_PTR
			    || ((e2->flags & EDGE_CAN_FALLTHRU)
				&& !(e2->flags & EDGE_COMPLEX)
				&& bbd[di].start_of_trace >= 0
				&& !connected[bbd[di].start_of_trace]
				&& (EDGE_FREQUENCY (e2) >= freq_threshold)
				&& (e2->count >= count_threshold)
				&& (!best2
				    || e2->probability > best2->probability
				    || (e2->probability == best2->probability
					&& traces[bbd[di].start_of_trace].length
					   > best2_len))))
			  {
			    best = e;
			    best2 = e2;
			    if (e2->dest != EXIT_BLOCK_PTR)
			      best2_len = traces[bbd[di].start_of_trace].length;
			    else
			      best2_len = INT_MAX;
			    next_bb = e2->dest;
			    try_copy = true;
			  }
		      }
		  }

	      /* Copy tiny blocks always; copy larger blocks only when the
		 edge is traversed frequently enough.  */
	      if (try_copy
		  && copy_bb_p (best->dest,
				!optimize_size
				&& EDGE_FREQUENCY (best) >= freq_threshold
				&& best->count >= count_threshold))
		{
		  basic_block new_bb;

		  if (rtl_dump_file)
		    {
		      fprintf (rtl_dump_file, "Connection: %d %d ",
			       traces[t].last->index, best->dest->index);
		      if (!next_bb)
			fputc ('\n', rtl_dump_file);
		      else if (next_bb == EXIT_BLOCK_PTR)
			fprintf (rtl_dump_file, "exit\n");
		      else
			fprintf (rtl_dump_file, "%d\n", next_bb->index);
		    }

		  new_bb = copy_bb (best->dest, best, traces[t].last, t);
		  traces[t].last = new_bb;
		  if (next_bb && next_bb != EXIT_BLOCK_PTR)
		    {
		      t = bbd[next_bb->index].start_of_trace;
		      traces[last_trace].last->rbi->next = traces[t].first;
		      connected[t] = true;
		      last_trace = t;
		    }
		  else
		    break;	/* Stop finding the successor traces.  */
		}
	      else
		break;	/* Stop finding the successor traces.  */
	    }
	}
    }

  if (rtl_dump_file)
    {
      basic_block bb;

      fprintf (rtl_dump_file, "Final order:\n");
      for (bb = traces[0].first; bb; bb = bb->rbi->next)
	fprintf (rtl_dump_file, "%d ", bb->index);
      fprintf (rtl_dump_file, "\n");
      fflush (rtl_dump_file);
    }

  FREE (connected);
}

/* Return true when BB can and should be copied. CODE_MAY_GROW is true
   when code size is allowed to grow by duplication.  */

static bool
copy_bb_p (basic_block bb, int code_may_grow)
{
  int size = 0;
  int max_size = uncond_jump_length;
  rtx insn;

  if (!bb->frequency)
    return false;
  if (!bb->pred || !bb->pred->pred_next)
    return false;
  if (!cfg_layout_can_duplicate_bb_p (bb))
    return false;

  if (code_may_grow && maybe_hot_bb_p (bb))
    max_size *= 8;

  for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
       insn = NEXT_INSN (insn))
    {
      if (INSN_P (insn))
	size += get_attr_length (insn);
    }

  if (size <= max_size)
    return true;

  if (rtl_dump_file)
    {
      fprintf (rtl_dump_file,
	       "Block %d can't be copied because its size = %d.\n",
	       bb->index, size);
    }

  return false;
}

/* Return the length of unconditional jump instruction.  */

static int
get_uncond_jump_length (void)
{
  rtx label, jump;
  int length;

  label = emit_label_before (gen_label_rtx (), get_insns ());
  jump = emit_jump_insn (gen_jump (label));

  length = get_attr_length (jump);

  delete_insn (jump);
  delete_insn (label);
  return length;
}

/* Reorder basic blocks.  The main entry point to this file.  */

void
reorder_basic_blocks (void)
{
  int n_traces;
  int i;
  struct trace *traces;

  if (n_basic_blocks <= 1)
    return;

  if ((* targetm.cannot_modify_jumps_p) ())
    return;

  cfg_layout_initialize ();

  set_edge_can_fallthru_flag ();
  mark_dfs_back_edges ();

  /* We are estimating the length of uncond jump insn only once since the code
     for getting the insn length always returns the minimal length now.  */
  if (uncond_jump_length == 0)
    uncond_jump_length = get_uncond_jump_length ();

  /* We need to know some information for each basic block.  */
  array_size = GET_ARRAY_SIZE (last_basic_block);
  bbd = xmalloc (array_size * sizeof (bbro_basic_block_data));
  for (i = 0; i < array_size; i++)
    {
      bbd[i].start_of_trace = -1;
      bbd[i].end_of_trace = -1;
      bbd[i].heap = NULL;
      bbd[i].node = NULL;
    }

  traces = xmalloc (n_basic_blocks * sizeof (struct trace));
  n_traces = 0;
  find_traces (&n_traces, traces);
  connect_traces (n_traces, traces);
  FREE (traces);
  FREE (bbd);

  if (rtl_dump_file)
    dump_flow_info (rtl_dump_file);

  cfg_layout_finalize ();
}