1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
|
/* Define control and data flow tables, and regsets.
Copyright (C) 1987, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
2005, 2006, 2007, 2008 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#ifndef GCC_BASIC_BLOCK_H
#define GCC_BASIC_BLOCK_H
#include "bitmap.h"
#include "sbitmap.h"
#include "varray.h"
#include "partition.h"
#include "hard-reg-set.h"
#include "predict.h"
#include "vec.h"
#include "function.h"
/* Head of register set linked list. */
typedef bitmap_head regset_head;
/* A pointer to a regset_head. */
typedef bitmap regset;
/* Allocate a register set with oballoc. */
#define ALLOC_REG_SET(OBSTACK) BITMAP_ALLOC (OBSTACK)
/* Do any cleanup needed on a regset when it is no longer used. */
#define FREE_REG_SET(REGSET) BITMAP_FREE (REGSET)
/* Initialize a new regset. */
#define INIT_REG_SET(HEAD) bitmap_initialize (HEAD, ®_obstack)
/* Clear a register set by freeing up the linked list. */
#define CLEAR_REG_SET(HEAD) bitmap_clear (HEAD)
/* Copy a register set to another register set. */
#define COPY_REG_SET(TO, FROM) bitmap_copy (TO, FROM)
/* Compare two register sets. */
#define REG_SET_EQUAL_P(A, B) bitmap_equal_p (A, B)
/* `and' a register set with a second register set. */
#define AND_REG_SET(TO, FROM) bitmap_and_into (TO, FROM)
/* `and' the complement of a register set with a register set. */
#define AND_COMPL_REG_SET(TO, FROM) bitmap_and_compl_into (TO, FROM)
/* Inclusive or a register set with a second register set. */
#define IOR_REG_SET(TO, FROM) bitmap_ior_into (TO, FROM)
/* Exclusive or a register set with a second register set. */
#define XOR_REG_SET(TO, FROM) bitmap_xor_into (TO, FROM)
/* Or into TO the register set FROM1 `and'ed with the complement of FROM2. */
#define IOR_AND_COMPL_REG_SET(TO, FROM1, FROM2) \
bitmap_ior_and_compl_into (TO, FROM1, FROM2)
/* Clear a single register in a register set. */
#define CLEAR_REGNO_REG_SET(HEAD, REG) bitmap_clear_bit (HEAD, REG)
/* Set a single register in a register set. */
#define SET_REGNO_REG_SET(HEAD, REG) bitmap_set_bit (HEAD, REG)
/* Return true if a register is set in a register set. */
#define REGNO_REG_SET_P(TO, REG) bitmap_bit_p (TO, REG)
/* Copy the hard registers in a register set to the hard register set. */
extern void reg_set_to_hard_reg_set (HARD_REG_SET *, const_bitmap);
#define REG_SET_TO_HARD_REG_SET(TO, FROM) \
do { \
CLEAR_HARD_REG_SET (TO); \
reg_set_to_hard_reg_set (&TO, FROM); \
} while (0)
typedef bitmap_iterator reg_set_iterator;
/* Loop over all registers in REGSET, starting with MIN, setting REGNUM to the
register number and executing CODE for all registers that are set. */
#define EXECUTE_IF_SET_IN_REG_SET(REGSET, MIN, REGNUM, RSI) \
EXECUTE_IF_SET_IN_BITMAP (REGSET, MIN, REGNUM, RSI)
/* Loop over all registers in REGSET1 and REGSET2, starting with MIN, setting
REGNUM to the register number and executing CODE for all registers that are
set in the first regset and not set in the second. */
#define EXECUTE_IF_AND_COMPL_IN_REG_SET(REGSET1, REGSET2, MIN, REGNUM, RSI) \
EXECUTE_IF_AND_COMPL_IN_BITMAP (REGSET1, REGSET2, MIN, REGNUM, RSI)
/* Loop over all registers in REGSET1 and REGSET2, starting with MIN, setting
REGNUM to the register number and executing CODE for all registers that are
set in both regsets. */
#define EXECUTE_IF_AND_IN_REG_SET(REGSET1, REGSET2, MIN, REGNUM, RSI) \
EXECUTE_IF_AND_IN_BITMAP (REGSET1, REGSET2, MIN, REGNUM, RSI) \
/* Type we use to hold basic block counters. Should be at least
64bit. Although a counter cannot be negative, we use a signed
type, because erroneous negative counts can be generated when the
flow graph is manipulated by various optimizations. A signed type
makes those easy to detect. */
typedef HOST_WIDEST_INT gcov_type;
/* Control flow edge information. */
struct edge_def GTY(())
{
/* The two blocks at the ends of the edge. */
struct basic_block_def *src;
struct basic_block_def *dest;
/* Instructions queued on the edge. */
union edge_def_insns {
gimple_seq GTY ((tag ("true"))) g;
rtx GTY ((tag ("false"))) r;
} GTY ((desc ("current_ir_type () == IR_GIMPLE"))) insns;
/* Auxiliary info specific to a pass. */
PTR GTY ((skip (""))) aux;
/* Location of any goto implicit in the edge, during tree-ssa. */
location_t goto_locus;
/* The index number corresponding to this edge in the edge vector
dest->preds. */
unsigned int dest_idx;
int flags; /* see EDGE_* below */
int probability; /* biased by REG_BR_PROB_BASE */
gcov_type count; /* Expected number of executions calculated
in profile.c */
};
typedef struct edge_def *edge;
typedef const struct edge_def *const_edge;
DEF_VEC_P(edge);
DEF_VEC_ALLOC_P(edge,gc);
DEF_VEC_ALLOC_P(edge,heap);
#define EDGE_FALLTHRU 1 /* 'Straight line' flow */
#define EDGE_ABNORMAL 2 /* Strange flow, like computed
label, or eh */
#define EDGE_ABNORMAL_CALL 4 /* Call with abnormal exit
like an exception, or sibcall */
#define EDGE_EH 8 /* Exception throw */
#define EDGE_FAKE 16 /* Not a real edge (profile.c) */
#define EDGE_DFS_BACK 32 /* A backwards edge */
#define EDGE_CAN_FALLTHRU 64 /* Candidate for straight line
flow. */
#define EDGE_IRREDUCIBLE_LOOP 128 /* Part of irreducible loop. */
#define EDGE_SIBCALL 256 /* Edge from sibcall to exit. */
#define EDGE_LOOP_EXIT 512 /* Exit of a loop. */
#define EDGE_TRUE_VALUE 1024 /* Edge taken when controlling
predicate is nonzero. */
#define EDGE_FALSE_VALUE 2048 /* Edge taken when controlling
predicate is zero. */
#define EDGE_EXECUTABLE 4096 /* Edge is executable. Only
valid during SSA-CCP. */
#define EDGE_CROSSING 8192 /* Edge crosses between hot
and cold sections, when we
do partitioning. */
#define EDGE_ALL_FLAGS 16383
#define EDGE_COMPLEX (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL | EDGE_EH)
/* Counter summary from the last set of coverage counts read by
profile.c. */
extern const struct gcov_ctr_summary *profile_info;
/* Declared in cfgloop.h. */
struct loop;
/* Declared in tree-flow.h. */
struct edge_prediction;
struct rtl_bb_info;
/* A basic block is a sequence of instructions with only entry and
only one exit. If any one of the instructions are executed, they
will all be executed, and in sequence from first to last.
There may be COND_EXEC instructions in the basic block. The
COND_EXEC *instructions* will be executed -- but if the condition
is false the conditionally executed *expressions* will of course
not be executed. We don't consider the conditionally executed
expression (which might have side-effects) to be in a separate
basic block because the program counter will always be at the same
location after the COND_EXEC instruction, regardless of whether the
condition is true or not.
Basic blocks need not start with a label nor end with a jump insn.
For example, a previous basic block may just "conditionally fall"
into the succeeding basic block, and the last basic block need not
end with a jump insn. Block 0 is a descendant of the entry block.
A basic block beginning with two labels cannot have notes between
the labels.
Data for jump tables are stored in jump_insns that occur in no
basic block even though these insns can follow or precede insns in
basic blocks. */
/* Basic block information indexed by block number. */
struct basic_block_def GTY((chain_next ("%h.next_bb"), chain_prev ("%h.prev_bb")))
{
/* The edges into and out of the block. */
VEC(edge,gc) *preds;
VEC(edge,gc) *succs;
/* Auxiliary info specific to a pass. */
PTR GTY ((skip (""))) aux;
/* Innermost loop containing the block. */
struct loop *loop_father;
/* The dominance and postdominance information node. */
struct et_node * GTY ((skip (""))) dom[2];
/* Previous and next blocks in the chain. */
struct basic_block_def *prev_bb;
struct basic_block_def *next_bb;
union basic_block_il_dependent {
struct gimple_bb_info * GTY ((tag ("0"))) gimple;
struct rtl_bb_info * GTY ((tag ("1"))) rtl;
} GTY ((desc ("((%1.flags & BB_RTL) != 0)"))) il;
/* Expected number of executions: calculated in profile.c. */
gcov_type count;
/* The index of this block. */
int index;
/* The loop depth of this block. */
int loop_depth;
/* Expected frequency. Normalized to be in range 0 to BB_FREQ_MAX. */
int frequency;
/* Various flags. See BB_* below. */
int flags;
};
struct rtl_bb_info GTY(())
{
/* The first and last insns of the block. */
rtx head_;
rtx end_;
/* In CFGlayout mode points to insn notes/jumptables to be placed just before
and after the block. */
rtx header;
rtx footer;
/* This field is used by the bb-reorder and tracer passes. */
int visited;
};
struct gimple_bb_info GTY(())
{
/* Sequence of statements in this block. */
gimple_seq seq;
/* PHI nodes for this block. */
gimple_seq phi_nodes;
};
typedef struct basic_block_def *basic_block;
typedef const struct basic_block_def *const_basic_block;
DEF_VEC_P(basic_block);
DEF_VEC_ALLOC_P(basic_block,gc);
DEF_VEC_ALLOC_P(basic_block,heap);
#define BB_FREQ_MAX 10000
/* Masks for basic_block.flags.
BB_HOT_PARTITION and BB_COLD_PARTITION should be preserved throughout
the compilation, so they are never cleared.
All other flags may be cleared by clear_bb_flags(). It is generally
a bad idea to rely on any flags being up-to-date. */
enum bb_flags
{
/* Only set on blocks that have just been created by create_bb. */
BB_NEW = 1 << 0,
/* Set by find_unreachable_blocks. Do not rely on this being set in any
pass. */
BB_REACHABLE = 1 << 1,
/* Set for blocks in an irreducible loop by loop analysis. */
BB_IRREDUCIBLE_LOOP = 1 << 2,
/* Set on blocks that may actually not be single-entry single-exit block. */
BB_SUPERBLOCK = 1 << 3,
/* Set on basic blocks that the scheduler should not touch. This is used
by SMS to prevent other schedulers from messing with the loop schedule. */
BB_DISABLE_SCHEDULE = 1 << 4,
/* Set on blocks that should be put in a hot section. */
BB_HOT_PARTITION = 1 << 5,
/* Set on blocks that should be put in a cold section. */
BB_COLD_PARTITION = 1 << 6,
/* Set on block that was duplicated. */
BB_DUPLICATED = 1 << 7,
/* Set if the label at the top of this block is the target of a non-local goto. */
BB_NON_LOCAL_GOTO_TARGET = 1 << 8,
/* Set on blocks that are in RTL format. */
BB_RTL = 1 << 9 ,
/* Set on blocks that are forwarder blocks.
Only used in cfgcleanup.c. */
BB_FORWARDER_BLOCK = 1 << 10,
/* Set on blocks that cannot be threaded through.
Only used in cfgcleanup.c. */
BB_NONTHREADABLE_BLOCK = 1 << 11
};
/* Dummy flag for convenience in the hot/cold partitioning code. */
#define BB_UNPARTITIONED 0
/* Partitions, to be used when partitioning hot and cold basic blocks into
separate sections. */
#define BB_PARTITION(bb) ((bb)->flags & (BB_HOT_PARTITION|BB_COLD_PARTITION))
#define BB_SET_PARTITION(bb, part) do { \
basic_block bb_ = (bb); \
bb_->flags = ((bb_->flags & ~(BB_HOT_PARTITION|BB_COLD_PARTITION)) \
| (part)); \
} while (0)
#define BB_COPY_PARTITION(dstbb, srcbb) \
BB_SET_PARTITION (dstbb, BB_PARTITION (srcbb))
/* State of dominance information. */
enum dom_state
{
DOM_NONE, /* Not computed at all. */
DOM_NO_FAST_QUERY, /* The data is OK, but the fast query data are not usable. */
DOM_OK /* Everything is ok. */
};
/* A structure to group all the per-function control flow graph data.
The x_* prefixing is necessary because otherwise references to the
fields of this struct are interpreted as the defines for backward
source compatibility following the definition of this struct. */
struct control_flow_graph GTY(())
{
/* Block pointers for the exit and entry of a function.
These are always the head and tail of the basic block list. */
basic_block x_entry_block_ptr;
basic_block x_exit_block_ptr;
/* Index by basic block number, get basic block struct info. */
VEC(basic_block,gc) *x_basic_block_info;
/* Number of basic blocks in this flow graph. */
int x_n_basic_blocks;
/* Number of edges in this flow graph. */
int x_n_edges;
/* The first free basic block number. */
int x_last_basic_block;
/* Mapping of labels to their associated blocks. At present
only used for the gimple CFG. */
VEC(basic_block,gc) *x_label_to_block_map;
enum profile_status {
PROFILE_ABSENT,
PROFILE_GUESSED,
PROFILE_READ
} x_profile_status;
/* Whether the dominators and the postdominators are available. */
enum dom_state x_dom_computed[2];
/* Number of basic blocks in the dominance tree. */
unsigned x_n_bbs_in_dom_tree[2];
/* Maximal number of entities in the single jumptable. Used to estimate
final flowgraph size. */
int max_jumptable_ents;
/* UIDs for LABEL_DECLs. */
int last_label_uid;
};
/* Defines for accessing the fields of the CFG structure for function FN. */
#define ENTRY_BLOCK_PTR_FOR_FUNCTION(FN) ((FN)->cfg->x_entry_block_ptr)
#define EXIT_BLOCK_PTR_FOR_FUNCTION(FN) ((FN)->cfg->x_exit_block_ptr)
#define basic_block_info_for_function(FN) ((FN)->cfg->x_basic_block_info)
#define n_basic_blocks_for_function(FN) ((FN)->cfg->x_n_basic_blocks)
#define n_edges_for_function(FN) ((FN)->cfg->x_n_edges)
#define last_basic_block_for_function(FN) ((FN)->cfg->x_last_basic_block)
#define label_to_block_map_for_function(FN) ((FN)->cfg->x_label_to_block_map)
#define profile_status_for_function(FN) ((FN)->cfg->x_profile_status)
#define BASIC_BLOCK_FOR_FUNCTION(FN,N) \
(VEC_index (basic_block, basic_block_info_for_function(FN), (N)))
#define SET_BASIC_BLOCK_FOR_FUNCTION(FN,N,BB) \
(VEC_replace (basic_block, basic_block_info_for_function(FN), (N), (BB)))
/* Defines for textual backward source compatibility. */
#define ENTRY_BLOCK_PTR (cfun->cfg->x_entry_block_ptr)
#define EXIT_BLOCK_PTR (cfun->cfg->x_exit_block_ptr)
#define basic_block_info (cfun->cfg->x_basic_block_info)
#define n_basic_blocks (cfun->cfg->x_n_basic_blocks)
#define n_edges (cfun->cfg->x_n_edges)
#define last_basic_block (cfun->cfg->x_last_basic_block)
#define label_to_block_map (cfun->cfg->x_label_to_block_map)
#define profile_status (cfun->cfg->x_profile_status)
#define BASIC_BLOCK(N) (VEC_index (basic_block, basic_block_info, (N)))
#define SET_BASIC_BLOCK(N,BB) (VEC_replace (basic_block, basic_block_info, (N), (BB)))
/* For iterating over basic blocks. */
#define FOR_BB_BETWEEN(BB, FROM, TO, DIR) \
for (BB = FROM; BB != TO; BB = BB->DIR)
#define FOR_EACH_BB_FN(BB, FN) \
FOR_BB_BETWEEN (BB, (FN)->cfg->x_entry_block_ptr->next_bb, (FN)->cfg->x_exit_block_ptr, next_bb)
#define FOR_EACH_BB(BB) FOR_EACH_BB_FN (BB, cfun)
#define FOR_EACH_BB_REVERSE_FN(BB, FN) \
FOR_BB_BETWEEN (BB, (FN)->cfg->x_exit_block_ptr->prev_bb, (FN)->cfg->x_entry_block_ptr, prev_bb)
#define FOR_EACH_BB_REVERSE(BB) FOR_EACH_BB_REVERSE_FN(BB, cfun)
/* For iterating over insns in basic block. */
#define FOR_BB_INSNS(BB, INSN) \
for ((INSN) = BB_HEAD (BB); \
(INSN) && (INSN) != NEXT_INSN (BB_END (BB)); \
(INSN) = NEXT_INSN (INSN))
/* For iterating over insns in basic block when we might remove the
current insn. */
#define FOR_BB_INSNS_SAFE(BB, INSN, CURR) \
for ((INSN) = BB_HEAD (BB), (CURR) = (INSN) ? NEXT_INSN ((INSN)): NULL; \
(INSN) && (INSN) != NEXT_INSN (BB_END (BB)); \
(INSN) = (CURR), (CURR) = (INSN) ? NEXT_INSN ((INSN)) : NULL)
#define FOR_BB_INSNS_REVERSE(BB, INSN) \
for ((INSN) = BB_END (BB); \
(INSN) && (INSN) != PREV_INSN (BB_HEAD (BB)); \
(INSN) = PREV_INSN (INSN))
#define FOR_BB_INSNS_REVERSE_SAFE(BB, INSN, CURR) \
for ((INSN) = BB_END (BB),(CURR) = (INSN) ? PREV_INSN ((INSN)) : NULL; \
(INSN) && (INSN) != PREV_INSN (BB_HEAD (BB)); \
(INSN) = (CURR), (CURR) = (INSN) ? PREV_INSN ((INSN)) : NULL)
/* Cycles through _all_ basic blocks, even the fake ones (entry and
exit block). */
#define FOR_ALL_BB(BB) \
for (BB = ENTRY_BLOCK_PTR; BB; BB = BB->next_bb)
#define FOR_ALL_BB_FN(BB, FN) \
for (BB = ENTRY_BLOCK_PTR_FOR_FUNCTION (FN); BB; BB = BB->next_bb)
extern bitmap_obstack reg_obstack;
/* Stuff for recording basic block info. */
#define BB_HEAD(B) (B)->il.rtl->head_
#define BB_END(B) (B)->il.rtl->end_
/* Special block numbers [markers] for entry and exit. */
#define ENTRY_BLOCK (0)
#define EXIT_BLOCK (1)
/* The two blocks that are always in the cfg. */
#define NUM_FIXED_BLOCKS (2)
#define BLOCK_NUM(INSN) (BLOCK_FOR_INSN (INSN)->index + 0)
#define set_block_for_insn(INSN, BB) (BLOCK_FOR_INSN (INSN) = BB)
extern void compute_bb_for_insn (void);
extern unsigned int free_bb_for_insn (void);
extern void update_bb_for_insn (basic_block);
extern void insert_insn_on_edge (rtx, edge);
basic_block split_edge_and_insert (edge, rtx);
extern void commit_edge_insertions (void);
extern void remove_fake_edges (void);
extern void remove_fake_exit_edges (void);
extern void add_noreturn_fake_exit_edges (void);
extern void connect_infinite_loops_to_exit (void);
extern edge unchecked_make_edge (basic_block, basic_block, int);
extern edge cached_make_edge (sbitmap, basic_block, basic_block, int);
extern edge make_edge (basic_block, basic_block, int);
extern edge make_single_succ_edge (basic_block, basic_block, int);
extern void remove_edge_raw (edge);
extern void redirect_edge_succ (edge, basic_block);
extern edge redirect_edge_succ_nodup (edge, basic_block);
extern void redirect_edge_pred (edge, basic_block);
extern basic_block create_basic_block_structure (rtx, rtx, rtx, basic_block);
extern void clear_bb_flags (void);
extern int post_order_compute (int *, bool, bool);
extern int inverted_post_order_compute (int *);
extern int pre_and_rev_post_order_compute (int *, int *, bool);
extern int dfs_enumerate_from (basic_block, int,
bool (*)(const_basic_block, const void *),
basic_block *, int, const void *);
extern void compute_dominance_frontiers (bitmap *);
extern bitmap compute_idf (bitmap, bitmap *);
extern void dump_bb_info (basic_block, bool, bool, int, const char *, FILE *);
extern void dump_edge_info (FILE *, edge, int);
extern void brief_dump_cfg (FILE *);
extern void clear_edges (void);
extern void scale_bbs_frequencies_int (basic_block *, int, int, int);
extern void scale_bbs_frequencies_gcov_type (basic_block *, int, gcov_type,
gcov_type);
/* Structure to group all of the information to process IF-THEN and
IF-THEN-ELSE blocks for the conditional execution support. This
needs to be in a public file in case the IFCVT macros call
functions passing the ce_if_block data structure. */
typedef struct ce_if_block
{
basic_block test_bb; /* First test block. */
basic_block then_bb; /* THEN block. */
basic_block else_bb; /* ELSE block or NULL. */
basic_block join_bb; /* Join THEN/ELSE blocks. */
basic_block last_test_bb; /* Last bb to hold && or || tests. */
int num_multiple_test_blocks; /* # of && and || basic blocks. */
int num_and_and_blocks; /* # of && blocks. */
int num_or_or_blocks; /* # of || blocks. */
int num_multiple_test_insns; /* # of insns in && and || blocks. */
int and_and_p; /* Complex test is &&. */
int num_then_insns; /* # of insns in THEN block. */
int num_else_insns; /* # of insns in ELSE block. */
int pass; /* Pass number. */
#ifdef IFCVT_EXTRA_FIELDS
IFCVT_EXTRA_FIELDS /* Any machine dependent fields. */
#endif
} ce_if_block_t;
/* This structure maintains an edge list vector. */
struct edge_list
{
int num_blocks;
int num_edges;
edge *index_to_edge;
};
/* The base value for branch probability notes and edge probabilities. */
#define REG_BR_PROB_BASE 10000
/* This is the value which indicates no edge is present. */
#define EDGE_INDEX_NO_EDGE -1
/* EDGE_INDEX returns an integer index for an edge, or EDGE_INDEX_NO_EDGE
if there is no edge between the 2 basic blocks. */
#define EDGE_INDEX(el, pred, succ) (find_edge_index ((el), (pred), (succ)))
/* INDEX_EDGE_PRED_BB and INDEX_EDGE_SUCC_BB return a pointer to the basic
block which is either the pred or succ end of the indexed edge. */
#define INDEX_EDGE_PRED_BB(el, index) ((el)->index_to_edge[(index)]->src)
#define INDEX_EDGE_SUCC_BB(el, index) ((el)->index_to_edge[(index)]->dest)
/* INDEX_EDGE returns a pointer to the edge. */
#define INDEX_EDGE(el, index) ((el)->index_to_edge[(index)])
/* Number of edges in the compressed edge list. */
#define NUM_EDGES(el) ((el)->num_edges)
/* BB is assumed to contain conditional jump. Return the fallthru edge. */
#define FALLTHRU_EDGE(bb) (EDGE_SUCC ((bb), 0)->flags & EDGE_FALLTHRU \
? EDGE_SUCC ((bb), 0) : EDGE_SUCC ((bb), 1))
/* BB is assumed to contain conditional jump. Return the branch edge. */
#define BRANCH_EDGE(bb) (EDGE_SUCC ((bb), 0)->flags & EDGE_FALLTHRU \
? EDGE_SUCC ((bb), 1) : EDGE_SUCC ((bb), 0))
/* Return expected execution frequency of the edge E. */
#define EDGE_FREQUENCY(e) (((e)->src->frequency \
* (e)->probability \
+ REG_BR_PROB_BASE / 2) \
/ REG_BR_PROB_BASE)
/* Return nonzero if edge is critical. */
#define EDGE_CRITICAL_P(e) (EDGE_COUNT ((e)->src->succs) >= 2 \
&& EDGE_COUNT ((e)->dest->preds) >= 2)
#define EDGE_COUNT(ev) VEC_length (edge, (ev))
#define EDGE_I(ev,i) VEC_index (edge, (ev), (i))
#define EDGE_PRED(bb,i) VEC_index (edge, (bb)->preds, (i))
#define EDGE_SUCC(bb,i) VEC_index (edge, (bb)->succs, (i))
/* Returns true if BB has precisely one successor. */
static inline bool
single_succ_p (const_basic_block bb)
{
return EDGE_COUNT (bb->succs) == 1;
}
/* Returns true if BB has precisely one predecessor. */
static inline bool
single_pred_p (const_basic_block bb)
{
return EDGE_COUNT (bb->preds) == 1;
}
/* Returns the single successor edge of basic block BB. Aborts if
BB does not have exactly one successor. */
static inline edge
single_succ_edge (const_basic_block bb)
{
gcc_assert (single_succ_p (bb));
return EDGE_SUCC (bb, 0);
}
/* Returns the single predecessor edge of basic block BB. Aborts
if BB does not have exactly one predecessor. */
static inline edge
single_pred_edge (const_basic_block bb)
{
gcc_assert (single_pred_p (bb));
return EDGE_PRED (bb, 0);
}
/* Returns the single successor block of basic block BB. Aborts
if BB does not have exactly one successor. */
static inline basic_block
single_succ (const_basic_block bb)
{
return single_succ_edge (bb)->dest;
}
/* Returns the single predecessor block of basic block BB. Aborts
if BB does not have exactly one predecessor.*/
static inline basic_block
single_pred (const_basic_block bb)
{
return single_pred_edge (bb)->src;
}
/* Iterator object for edges. */
typedef struct {
unsigned index;
VEC(edge,gc) **container;
} edge_iterator;
static inline VEC(edge,gc) *
ei_container (edge_iterator i)
{
gcc_assert (i.container);
return *i.container;
}
#define ei_start(iter) ei_start_1 (&(iter))
#define ei_last(iter) ei_last_1 (&(iter))
/* Return an iterator pointing to the start of an edge vector. */
static inline edge_iterator
ei_start_1 (VEC(edge,gc) **ev)
{
edge_iterator i;
i.index = 0;
i.container = ev;
return i;
}
/* Return an iterator pointing to the last element of an edge
vector. */
static inline edge_iterator
ei_last_1 (VEC(edge,gc) **ev)
{
edge_iterator i;
i.index = EDGE_COUNT (*ev) - 1;
i.container = ev;
return i;
}
/* Is the iterator `i' at the end of the sequence? */
static inline bool
ei_end_p (edge_iterator i)
{
return (i.index == EDGE_COUNT (ei_container (i)));
}
/* Is the iterator `i' at one position before the end of the
sequence? */
static inline bool
ei_one_before_end_p (edge_iterator i)
{
return (i.index + 1 == EDGE_COUNT (ei_container (i)));
}
/* Advance the iterator to the next element. */
static inline void
ei_next (edge_iterator *i)
{
gcc_assert (i->index < EDGE_COUNT (ei_container (*i)));
i->index++;
}
/* Move the iterator to the previous element. */
static inline void
ei_prev (edge_iterator *i)
{
gcc_assert (i->index > 0);
i->index--;
}
/* Return the edge pointed to by the iterator `i'. */
static inline edge
ei_edge (edge_iterator i)
{
return EDGE_I (ei_container (i), i.index);
}
/* Return an edge pointed to by the iterator. Do it safely so that
NULL is returned when the iterator is pointing at the end of the
sequence. */
static inline edge
ei_safe_edge (edge_iterator i)
{
return !ei_end_p (i) ? ei_edge (i) : NULL;
}
/* Return 1 if we should continue to iterate. Return 0 otherwise.
*Edge P is set to the next edge if we are to continue to iterate
and NULL otherwise. */
static inline bool
ei_cond (edge_iterator ei, edge *p)
{
if (!ei_end_p (ei))
{
*p = ei_edge (ei);
return 1;
}
else
{
*p = NULL;
return 0;
}
}
/* This macro serves as a convenient way to iterate each edge in a
vector of predecessor or successor edges. It must not be used when
an element might be removed during the traversal, otherwise
elements will be missed. Instead, use a for-loop like that shown
in the following pseudo-code:
FOR (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
{
IF (e != taken_edge)
remove_edge (e);
ELSE
ei_next (&ei);
}
*/
#define FOR_EACH_EDGE(EDGE,ITER,EDGE_VEC) \
for ((ITER) = ei_start ((EDGE_VEC)); \
ei_cond ((ITER), &(EDGE)); \
ei_next (&(ITER)))
struct edge_list * create_edge_list (void);
void free_edge_list (struct edge_list *);
void print_edge_list (FILE *, struct edge_list *);
void verify_edge_list (FILE *, struct edge_list *);
int find_edge_index (struct edge_list *, basic_block, basic_block);
edge find_edge (basic_block, basic_block);
#define CLEANUP_EXPENSIVE 1 /* Do relatively expensive optimizations
except for edge forwarding */
#define CLEANUP_CROSSJUMP 2 /* Do crossjumping. */
#define CLEANUP_POST_REGSTACK 4 /* We run after reg-stack and need
to care REG_DEAD notes. */
#define CLEANUP_THREADING 8 /* Do jump threading. */
#define CLEANUP_NO_INSN_DEL 16 /* Do not try to delete trivially dead
insns. */
#define CLEANUP_CFGLAYOUT 32 /* Do cleanup in cfglayout mode. */
/* In lcm.c */
extern struct edge_list *pre_edge_lcm (int, sbitmap *, sbitmap *,
sbitmap *, sbitmap *, sbitmap **,
sbitmap **);
extern struct edge_list *pre_edge_rev_lcm (int, sbitmap *,
sbitmap *, sbitmap *,
sbitmap *, sbitmap **,
sbitmap **);
extern void compute_available (sbitmap *, sbitmap *, sbitmap *, sbitmap *);
/* In predict.c */
extern bool maybe_hot_bb_p (const_basic_block);
extern bool maybe_hot_edge_p (edge);
extern bool probably_cold_bb_p (const_basic_block);
extern bool probably_never_executed_bb_p (const_basic_block);
extern bool optimize_bb_for_size_p (const_basic_block);
extern bool optimize_bb_for_speed_p (const_basic_block);
extern bool optimize_edge_for_size_p (edge);
extern bool optimize_edge_for_speed_p (edge);
extern bool optimize_insn_for_size_p (void);
extern bool optimize_insn_for_speed_p (void);
extern bool optimize_function_for_size_p (struct function *);
extern bool optimize_function_for_speed_p (struct function *);
extern bool optimize_loop_for_size_p (struct loop *);
extern bool optimize_loop_for_speed_p (struct loop *);
extern bool optimize_loop_nest_for_size_p (struct loop *);
extern bool optimize_loop_nest_for_speed_p (struct loop *);
extern bool gimple_predicted_by_p (const_basic_block, enum br_predictor);
extern bool rtl_predicted_by_p (const_basic_block, enum br_predictor);
extern void gimple_predict_edge (edge, enum br_predictor, int);
extern void rtl_predict_edge (edge, enum br_predictor, int);
extern void predict_edge_def (edge, enum br_predictor, enum prediction);
extern void guess_outgoing_edge_probabilities (basic_block);
extern void remove_predictions_associated_with_edge (edge);
extern bool edge_probability_reliable_p (const_edge);
extern bool br_prob_note_reliable_p (const_rtx);
extern bool predictable_edge_p (edge);
/* In cfg.c */
extern void dump_regset (regset, FILE *);
extern void debug_regset (regset);
extern void init_flow (struct function *);
extern void debug_bb (basic_block);
extern basic_block debug_bb_n (int);
extern void dump_regset (regset, FILE *);
extern void debug_regset (regset);
extern void expunge_block (basic_block);
extern void link_block (basic_block, basic_block);
extern void unlink_block (basic_block);
extern void compact_blocks (void);
extern basic_block alloc_block (void);
extern void alloc_aux_for_block (basic_block, int);
extern void alloc_aux_for_blocks (int);
extern void clear_aux_for_blocks (void);
extern void free_aux_for_blocks (void);
extern void alloc_aux_for_edge (edge, int);
extern void alloc_aux_for_edges (int);
extern void clear_aux_for_edges (void);
extern void free_aux_for_edges (void);
/* In cfganal.c */
extern void find_unreachable_blocks (void);
extern bool forwarder_block_p (const_basic_block);
extern bool can_fallthru (basic_block, basic_block);
extern bool could_fall_through (basic_block, basic_block);
extern void flow_nodes_print (const char *, const_sbitmap, FILE *);
extern void flow_edge_list_print (const char *, const edge *, int, FILE *);
/* In cfgrtl.c */
extern basic_block force_nonfallthru (edge);
extern rtx block_label (basic_block);
extern bool purge_all_dead_edges (void);
extern bool purge_dead_edges (basic_block);
/* In cfgbuild.c. */
extern void find_many_sub_basic_blocks (sbitmap);
extern void rtl_make_eh_edge (sbitmap, basic_block, rtx);
extern void find_basic_blocks (rtx);
/* In cfgcleanup.c. */
extern bool cleanup_cfg (int);
extern bool delete_unreachable_blocks (void);
extern bool mark_dfs_back_edges (void);
extern void set_edge_can_fallthru_flag (void);
extern void update_br_prob_note (basic_block);
extern void fixup_abnormal_edges (void);
extern bool inside_basic_block_p (const_rtx);
extern bool control_flow_insn_p (const_rtx);
extern rtx get_last_bb_insn (basic_block);
/* In bb-reorder.c */
extern void reorder_basic_blocks (void);
/* In dominance.c */
enum cdi_direction
{
CDI_DOMINATORS = 1,
CDI_POST_DOMINATORS = 2
};
extern enum dom_state dom_info_state (enum cdi_direction);
extern void set_dom_info_availability (enum cdi_direction, enum dom_state);
extern bool dom_info_available_p (enum cdi_direction);
extern void calculate_dominance_info (enum cdi_direction);
extern void free_dominance_info (enum cdi_direction);
extern basic_block nearest_common_dominator (enum cdi_direction,
basic_block, basic_block);
extern basic_block nearest_common_dominator_for_set (enum cdi_direction,
bitmap);
extern void set_immediate_dominator (enum cdi_direction, basic_block,
basic_block);
extern basic_block get_immediate_dominator (enum cdi_direction, basic_block);
extern bool dominated_by_p (enum cdi_direction, const_basic_block, const_basic_block);
extern VEC (basic_block, heap) *get_dominated_by (enum cdi_direction, basic_block);
extern VEC (basic_block, heap) *get_dominated_by_region (enum cdi_direction,
basic_block *,
unsigned);
extern void add_to_dominance_info (enum cdi_direction, basic_block);
extern void delete_from_dominance_info (enum cdi_direction, basic_block);
basic_block recompute_dominator (enum cdi_direction, basic_block);
extern void redirect_immediate_dominators (enum cdi_direction, basic_block,
basic_block);
extern void iterate_fix_dominators (enum cdi_direction,
VEC (basic_block, heap) *, bool);
extern void verify_dominators (enum cdi_direction);
extern basic_block first_dom_son (enum cdi_direction, basic_block);
extern basic_block next_dom_son (enum cdi_direction, basic_block);
unsigned bb_dom_dfs_in (enum cdi_direction, basic_block);
unsigned bb_dom_dfs_out (enum cdi_direction, basic_block);
extern edge try_redirect_by_replacing_jump (edge, basic_block, bool);
extern void break_superblocks (void);
extern void relink_block_chain (bool);
extern void check_bb_profile (basic_block, FILE *);
extern void update_bb_profile_for_threading (basic_block, int, gcov_type, edge);
extern void init_rtl_bb_info (basic_block);
extern void initialize_original_copy_tables (void);
extern void free_original_copy_tables (void);
extern void set_bb_original (basic_block, basic_block);
extern basic_block get_bb_original (basic_block);
extern void set_bb_copy (basic_block, basic_block);
extern basic_block get_bb_copy (basic_block);
void set_loop_copy (struct loop *, struct loop *);
struct loop *get_loop_copy (struct loop *);
extern rtx insert_insn_end_bb_new (rtx, basic_block);
#include "cfghooks.h"
/* Return true when one of the predecessor edges of BB is marked with EDGE_EH. */
static inline bool
bb_has_eh_pred (basic_block bb)
{
edge e;
edge_iterator ei;
FOR_EACH_EDGE (e, ei, bb->preds)
{
if (e->flags & EDGE_EH)
return true;
}
return false;
}
/* Return true when one of the predecessor edges of BB is marked with EDGE_ABNORMAL. */
static inline bool
bb_has_abnormal_pred (basic_block bb)
{
edge e;
edge_iterator ei;
FOR_EACH_EDGE (e, ei, bb->preds)
{
if (e->flags & EDGE_ABNORMAL)
return true;
}
return false;
}
/* In cfgloopmanip.c. */
extern edge mfb_kj_edge;
extern bool mfb_keep_just (edge);
/* In cfgexpand.c. */
extern void rtl_profile_for_bb (basic_block);
extern void rtl_profile_for_edge (edge);
extern void default_rtl_profile (void);
#endif /* GCC_BASIC_BLOCK_H */
|