1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
|
/* AddressSanitizer, a fast memory error detector.
Copyright (C) 2012-2013 Free Software Foundation, Inc.
Contributed by Kostya Serebryany <kcc@google.com>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "gimple.h"
#include "tree-iterator.h"
#include "tree-flow.h"
#include "tree-pass.h"
#include "asan.h"
#include "gimple-pretty-print.h"
#include "target.h"
#include "expr.h"
#include "optabs.h"
#include "output.h"
#include "tm_p.h"
#include "langhooks.h"
#include "hash-table.h"
#include "alloc-pool.h"
#include "cfgloop.h"
/* AddressSanitizer finds out-of-bounds and use-after-free bugs
with <2x slowdown on average.
The tool consists of two parts:
instrumentation module (this file) and a run-time library.
The instrumentation module adds a run-time check before every memory insn.
For a 8- or 16- byte load accessing address X:
ShadowAddr = (X >> 3) + Offset
ShadowValue = *(char*)ShadowAddr; // *(short*) for 16-byte access.
if (ShadowValue)
__asan_report_load8(X);
For a load of N bytes (N=1, 2 or 4) from address X:
ShadowAddr = (X >> 3) + Offset
ShadowValue = *(char*)ShadowAddr;
if (ShadowValue)
if ((X & 7) + N - 1 > ShadowValue)
__asan_report_loadN(X);
Stores are instrumented similarly, but using __asan_report_storeN functions.
A call too __asan_init() is inserted to the list of module CTORs.
The run-time library redefines malloc (so that redzone are inserted around
the allocated memory) and free (so that reuse of free-ed memory is delayed),
provides __asan_report* and __asan_init functions.
Read more:
http://code.google.com/p/address-sanitizer/wiki/AddressSanitizerAlgorithm
The current implementation supports detection of out-of-bounds and
use-after-free in the heap, on the stack and for global variables.
[Protection of stack variables]
To understand how detection of out-of-bounds and use-after-free works
for stack variables, lets look at this example on x86_64 where the
stack grows downward:
int
foo ()
{
char a[23] = {0};
int b[2] = {0};
a[5] = 1;
b[1] = 2;
return a[5] + b[1];
}
For this function, the stack protected by asan will be organized as
follows, from the top of the stack to the bottom:
Slot 1/ [red zone of 32 bytes called 'RIGHT RedZone']
Slot 2/ [8 bytes of red zone, that adds up to the space of 'a' to make
the next slot be 32 bytes aligned; this one is called Partial
Redzone; this 32 bytes alignment is an asan constraint]
Slot 3/ [24 bytes for variable 'a']
Slot 4/ [red zone of 32 bytes called 'Middle RedZone']
Slot 5/ [24 bytes of Partial Red Zone (similar to slot 2]
Slot 6/ [8 bytes for variable 'b']
Slot 7/ [32 bytes of Red Zone at the bottom of the stack, called
'LEFT RedZone']
The 32 bytes of LEFT red zone at the bottom of the stack can be
decomposed as such:
1/ The first 8 bytes contain a magical asan number that is always
0x41B58AB3.
2/ The following 8 bytes contains a pointer to a string (to be
parsed at runtime by the runtime asan library), which format is
the following:
"<function-name> <space> <num-of-variables-on-the-stack>
(<32-bytes-aligned-offset-in-bytes-of-variable> <space>
<length-of-var-in-bytes> ){n} "
where '(...){n}' means the content inside the parenthesis occurs 'n'
times, with 'n' being the number of variables on the stack.
3/ The following 16 bytes of the red zone have no particular
format.
The shadow memory for that stack layout is going to look like this:
- content of shadow memory 8 bytes for slot 7: 0xF1F1F1F1.
The F1 byte pattern is a magic number called
ASAN_STACK_MAGIC_LEFT and is a way for the runtime to know that
the memory for that shadow byte is part of a the LEFT red zone
intended to seat at the bottom of the variables on the stack.
- content of shadow memory 8 bytes for slots 6 and 5:
0xF4F4F400. The F4 byte pattern is a magic number
called ASAN_STACK_MAGIC_PARTIAL. It flags the fact that the
memory region for this shadow byte is a PARTIAL red zone
intended to pad a variable A, so that the slot following
{A,padding} is 32 bytes aligned.
Note that the fact that the least significant byte of this
shadow memory content is 00 means that 8 bytes of its
corresponding memory (which corresponds to the memory of
variable 'b') is addressable.
- content of shadow memory 8 bytes for slot 4: 0xF2F2F2F2.
The F2 byte pattern is a magic number called
ASAN_STACK_MAGIC_MIDDLE. It flags the fact that the memory
region for this shadow byte is a MIDDLE red zone intended to
seat between two 32 aligned slots of {variable,padding}.
- content of shadow memory 8 bytes for slot 3 and 2:
0xF4000000. This represents is the concatenation of
variable 'a' and the partial red zone following it, like what we
had for variable 'b'. The least significant 3 bytes being 00
means that the 3 bytes of variable 'a' are addressable.
- content of shadow memory 8 bytes for slot 1: 0xF3F3F3F3.
The F3 byte pattern is a magic number called
ASAN_STACK_MAGIC_RIGHT. It flags the fact that the memory
region for this shadow byte is a RIGHT red zone intended to seat
at the top of the variables of the stack.
Note that the real variable layout is done in expand_used_vars in
cfgexpand.c. As far as Address Sanitizer is concerned, it lays out
stack variables as well as the different red zones, emits some
prologue code to populate the shadow memory as to poison (mark as
non-accessible) the regions of the red zones and mark the regions of
stack variables as accessible, and emit some epilogue code to
un-poison (mark as accessible) the regions of red zones right before
the function exits.
[Protection of global variables]
The basic idea is to insert a red zone between two global variables
and install a constructor function that calls the asan runtime to do
the populating of the relevant shadow memory regions at load time.
So the global variables are laid out as to insert a red zone between
them. The size of the red zones is so that each variable starts on a
32 bytes boundary.
Then a constructor function is installed so that, for each global
variable, it calls the runtime asan library function
__asan_register_globals_with an instance of this type:
struct __asan_global
{
// Address of the beginning of the global variable.
const void *__beg;
// Initial size of the global variable.
uptr __size;
// Size of the global variable + size of the red zone. This
// size is 32 bytes aligned.
uptr __size_with_redzone;
// Name of the global variable.
const void *__name;
// This is always set to NULL for now.
uptr __has_dynamic_init;
}
A destructor function that calls the runtime asan library function
_asan_unregister_globals is also installed. */
alias_set_type asan_shadow_set = -1;
/* Pointer types to 1 resp. 2 byte integers in shadow memory. A separate
alias set is used for all shadow memory accesses. */
static GTY(()) tree shadow_ptr_types[2];
/* Hashtable support for memory references used by gimple
statements. */
/* This type represents a reference to a memory region. */
struct asan_mem_ref
{
/* The expression of the begining of the memory region. */
tree start;
/* The size of the access (can be 1, 2, 4, 8, 16 for now). */
char access_size;
};
static alloc_pool asan_mem_ref_alloc_pool;
/* This creates the alloc pool used to store the instances of
asan_mem_ref that are stored in the hash table asan_mem_ref_ht. */
static alloc_pool
asan_mem_ref_get_alloc_pool ()
{
if (asan_mem_ref_alloc_pool == NULL)
asan_mem_ref_alloc_pool = create_alloc_pool ("asan_mem_ref",
sizeof (asan_mem_ref),
10);
return asan_mem_ref_alloc_pool;
}
/* Initializes an instance of asan_mem_ref. */
static void
asan_mem_ref_init (asan_mem_ref *ref, tree start, char access_size)
{
ref->start = start;
ref->access_size = access_size;
}
/* Allocates memory for an instance of asan_mem_ref into the memory
pool returned by asan_mem_ref_get_alloc_pool and initialize it.
START is the address of (or the expression pointing to) the
beginning of memory reference. ACCESS_SIZE is the size of the
access to the referenced memory. */
static asan_mem_ref*
asan_mem_ref_new (tree start, char access_size)
{
asan_mem_ref *ref =
(asan_mem_ref *) pool_alloc (asan_mem_ref_get_alloc_pool ());
asan_mem_ref_init (ref, start, access_size);
return ref;
}
/* This builds and returns a pointer to the end of the memory region
that starts at START and of length LEN. */
tree
asan_mem_ref_get_end (tree start, tree len)
{
if (len == NULL_TREE || integer_zerop (len))
return start;
return fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (start), start, len);
}
/* Return a tree expression that represents the end of the referenced
memory region. Beware that this function can actually build a new
tree expression. */
tree
asan_mem_ref_get_end (const asan_mem_ref *ref, tree len)
{
return asan_mem_ref_get_end (ref->start, len);
}
struct asan_mem_ref_hasher
: typed_noop_remove <asan_mem_ref>
{
typedef asan_mem_ref value_type;
typedef asan_mem_ref compare_type;
static inline hashval_t hash (const value_type *);
static inline bool equal (const value_type *, const compare_type *);
};
/* Hash a memory reference. */
inline hashval_t
asan_mem_ref_hasher::hash (const asan_mem_ref *mem_ref)
{
hashval_t h = iterative_hash_expr (mem_ref->start, 0);
h = iterative_hash_hashval_t (h, mem_ref->access_size);
return h;
}
/* Compare two memory references. We accept the length of either
memory references to be NULL_TREE. */
inline bool
asan_mem_ref_hasher::equal (const asan_mem_ref *m1,
const asan_mem_ref *m2)
{
return (m1->access_size == m2->access_size
&& operand_equal_p (m1->start, m2->start, 0));
}
static hash_table <asan_mem_ref_hasher> asan_mem_ref_ht;
/* Returns a reference to the hash table containing memory references.
This function ensures that the hash table is created. Note that
this hash table is updated by the function
update_mem_ref_hash_table. */
static hash_table <asan_mem_ref_hasher> &
get_mem_ref_hash_table ()
{
if (!asan_mem_ref_ht.is_created ())
asan_mem_ref_ht.create (10);
return asan_mem_ref_ht;
}
/* Clear all entries from the memory references hash table. */
static void
empty_mem_ref_hash_table ()
{
if (asan_mem_ref_ht.is_created ())
asan_mem_ref_ht.empty ();
}
/* Free the memory references hash table. */
static void
free_mem_ref_resources ()
{
if (asan_mem_ref_ht.is_created ())
asan_mem_ref_ht.dispose ();
if (asan_mem_ref_alloc_pool)
{
free_alloc_pool (asan_mem_ref_alloc_pool);
asan_mem_ref_alloc_pool = NULL;
}
}
/* Return true iff the memory reference REF has been instrumented. */
static bool
has_mem_ref_been_instrumented (tree ref, char access_size)
{
asan_mem_ref r;
asan_mem_ref_init (&r, ref, access_size);
return (get_mem_ref_hash_table ().find (&r) != NULL);
}
/* Return true iff the memory reference REF has been instrumented. */
static bool
has_mem_ref_been_instrumented (const asan_mem_ref *ref)
{
return has_mem_ref_been_instrumented (ref->start, ref->access_size);
}
/* Return true iff access to memory region starting at REF and of
length LEN has been instrumented. */
static bool
has_mem_ref_been_instrumented (const asan_mem_ref *ref, tree len)
{
/* First let's see if the address of the beginning of REF has been
instrumented. */
if (!has_mem_ref_been_instrumented (ref))
return false;
if (len != 0)
{
/* Let's see if the end of the region has been instrumented. */
if (!has_mem_ref_been_instrumented (asan_mem_ref_get_end (ref, len),
ref->access_size))
return false;
}
return true;
}
/* Set REF to the memory reference present in a gimple assignment
ASSIGNMENT. Return true upon successful completion, false
otherwise. */
static bool
get_mem_ref_of_assignment (const gimple assignment,
asan_mem_ref *ref,
bool *ref_is_store)
{
gcc_assert (gimple_assign_single_p (assignment));
if (gimple_store_p (assignment)
&& !gimple_clobber_p (assignment))
{
ref->start = gimple_assign_lhs (assignment);
*ref_is_store = true;
}
else if (gimple_assign_load_p (assignment))
{
ref->start = gimple_assign_rhs1 (assignment);
*ref_is_store = false;
}
else
return false;
ref->access_size = int_size_in_bytes (TREE_TYPE (ref->start));
return true;
}
/* Return the memory references contained in a gimple statement
representing a builtin call that has to do with memory access. */
static bool
get_mem_refs_of_builtin_call (const gimple call,
asan_mem_ref *src0,
tree *src0_len,
bool *src0_is_store,
asan_mem_ref *src1,
tree *src1_len,
bool *src1_is_store,
asan_mem_ref *dst,
tree *dst_len,
bool *dst_is_store,
bool *dest_is_deref)
{
gcc_checking_assert (gimple_call_builtin_p (call, BUILT_IN_NORMAL));
tree callee = gimple_call_fndecl (call);
tree source0 = NULL_TREE, source1 = NULL_TREE,
dest = NULL_TREE, len = NULL_TREE;
bool is_store = true, got_reference_p = false;
char access_size = 1;
switch (DECL_FUNCTION_CODE (callee))
{
/* (s, s, n) style memops. */
case BUILT_IN_BCMP:
case BUILT_IN_MEMCMP:
source0 = gimple_call_arg (call, 0);
source1 = gimple_call_arg (call, 1);
len = gimple_call_arg (call, 2);
break;
/* (src, dest, n) style memops. */
case BUILT_IN_BCOPY:
source0 = gimple_call_arg (call, 0);
dest = gimple_call_arg (call, 1);
len = gimple_call_arg (call, 2);
break;
/* (dest, src, n) style memops. */
case BUILT_IN_MEMCPY:
case BUILT_IN_MEMCPY_CHK:
case BUILT_IN_MEMMOVE:
case BUILT_IN_MEMMOVE_CHK:
case BUILT_IN_MEMPCPY:
case BUILT_IN_MEMPCPY_CHK:
dest = gimple_call_arg (call, 0);
source0 = gimple_call_arg (call, 1);
len = gimple_call_arg (call, 2);
break;
/* (dest, n) style memops. */
case BUILT_IN_BZERO:
dest = gimple_call_arg (call, 0);
len = gimple_call_arg (call, 1);
break;
/* (dest, x, n) style memops*/
case BUILT_IN_MEMSET:
case BUILT_IN_MEMSET_CHK:
dest = gimple_call_arg (call, 0);
len = gimple_call_arg (call, 2);
break;
case BUILT_IN_STRLEN:
source0 = gimple_call_arg (call, 0);
len = gimple_call_lhs (call);
break ;
/* And now the __atomic* and __sync builtins.
These are handled differently from the classical memory memory
access builtins above. */
case BUILT_IN_ATOMIC_LOAD_1:
case BUILT_IN_ATOMIC_LOAD_2:
case BUILT_IN_ATOMIC_LOAD_4:
case BUILT_IN_ATOMIC_LOAD_8:
case BUILT_IN_ATOMIC_LOAD_16:
is_store = false;
/* fall through. */
case BUILT_IN_SYNC_FETCH_AND_ADD_1:
case BUILT_IN_SYNC_FETCH_AND_ADD_2:
case BUILT_IN_SYNC_FETCH_AND_ADD_4:
case BUILT_IN_SYNC_FETCH_AND_ADD_8:
case BUILT_IN_SYNC_FETCH_AND_ADD_16:
case BUILT_IN_SYNC_FETCH_AND_SUB_1:
case BUILT_IN_SYNC_FETCH_AND_SUB_2:
case BUILT_IN_SYNC_FETCH_AND_SUB_4:
case BUILT_IN_SYNC_FETCH_AND_SUB_8:
case BUILT_IN_SYNC_FETCH_AND_SUB_16:
case BUILT_IN_SYNC_FETCH_AND_OR_1:
case BUILT_IN_SYNC_FETCH_AND_OR_2:
case BUILT_IN_SYNC_FETCH_AND_OR_4:
case BUILT_IN_SYNC_FETCH_AND_OR_8:
case BUILT_IN_SYNC_FETCH_AND_OR_16:
case BUILT_IN_SYNC_FETCH_AND_AND_1:
case BUILT_IN_SYNC_FETCH_AND_AND_2:
case BUILT_IN_SYNC_FETCH_AND_AND_4:
case BUILT_IN_SYNC_FETCH_AND_AND_8:
case BUILT_IN_SYNC_FETCH_AND_AND_16:
case BUILT_IN_SYNC_FETCH_AND_XOR_1:
case BUILT_IN_SYNC_FETCH_AND_XOR_2:
case BUILT_IN_SYNC_FETCH_AND_XOR_4:
case BUILT_IN_SYNC_FETCH_AND_XOR_8:
case BUILT_IN_SYNC_FETCH_AND_XOR_16:
case BUILT_IN_SYNC_FETCH_AND_NAND_1:
case BUILT_IN_SYNC_FETCH_AND_NAND_2:
case BUILT_IN_SYNC_FETCH_AND_NAND_4:
case BUILT_IN_SYNC_FETCH_AND_NAND_8:
case BUILT_IN_SYNC_ADD_AND_FETCH_1:
case BUILT_IN_SYNC_ADD_AND_FETCH_2:
case BUILT_IN_SYNC_ADD_AND_FETCH_4:
case BUILT_IN_SYNC_ADD_AND_FETCH_8:
case BUILT_IN_SYNC_ADD_AND_FETCH_16:
case BUILT_IN_SYNC_SUB_AND_FETCH_1:
case BUILT_IN_SYNC_SUB_AND_FETCH_2:
case BUILT_IN_SYNC_SUB_AND_FETCH_4:
case BUILT_IN_SYNC_SUB_AND_FETCH_8:
case BUILT_IN_SYNC_SUB_AND_FETCH_16:
case BUILT_IN_SYNC_OR_AND_FETCH_1:
case BUILT_IN_SYNC_OR_AND_FETCH_2:
case BUILT_IN_SYNC_OR_AND_FETCH_4:
case BUILT_IN_SYNC_OR_AND_FETCH_8:
case BUILT_IN_SYNC_OR_AND_FETCH_16:
case BUILT_IN_SYNC_AND_AND_FETCH_1:
case BUILT_IN_SYNC_AND_AND_FETCH_2:
case BUILT_IN_SYNC_AND_AND_FETCH_4:
case BUILT_IN_SYNC_AND_AND_FETCH_8:
case BUILT_IN_SYNC_AND_AND_FETCH_16:
case BUILT_IN_SYNC_XOR_AND_FETCH_1:
case BUILT_IN_SYNC_XOR_AND_FETCH_2:
case BUILT_IN_SYNC_XOR_AND_FETCH_4:
case BUILT_IN_SYNC_XOR_AND_FETCH_8:
case BUILT_IN_SYNC_XOR_AND_FETCH_16:
case BUILT_IN_SYNC_NAND_AND_FETCH_1:
case BUILT_IN_SYNC_NAND_AND_FETCH_2:
case BUILT_IN_SYNC_NAND_AND_FETCH_4:
case BUILT_IN_SYNC_NAND_AND_FETCH_8:
case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_1:
case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_2:
case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_4:
case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_8:
case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_16:
case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_1:
case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_2:
case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_4:
case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_8:
case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_16:
case BUILT_IN_SYNC_LOCK_TEST_AND_SET_1:
case BUILT_IN_SYNC_LOCK_TEST_AND_SET_2:
case BUILT_IN_SYNC_LOCK_TEST_AND_SET_4:
case BUILT_IN_SYNC_LOCK_TEST_AND_SET_8:
case BUILT_IN_SYNC_LOCK_TEST_AND_SET_16:
case BUILT_IN_SYNC_LOCK_RELEASE_1:
case BUILT_IN_SYNC_LOCK_RELEASE_2:
case BUILT_IN_SYNC_LOCK_RELEASE_4:
case BUILT_IN_SYNC_LOCK_RELEASE_8:
case BUILT_IN_SYNC_LOCK_RELEASE_16:
case BUILT_IN_ATOMIC_EXCHANGE_1:
case BUILT_IN_ATOMIC_EXCHANGE_2:
case BUILT_IN_ATOMIC_EXCHANGE_4:
case BUILT_IN_ATOMIC_EXCHANGE_8:
case BUILT_IN_ATOMIC_EXCHANGE_16:
case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_1:
case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_2:
case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4:
case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8:
case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_16:
case BUILT_IN_ATOMIC_STORE_1:
case BUILT_IN_ATOMIC_STORE_2:
case BUILT_IN_ATOMIC_STORE_4:
case BUILT_IN_ATOMIC_STORE_8:
case BUILT_IN_ATOMIC_STORE_16:
case BUILT_IN_ATOMIC_ADD_FETCH_1:
case BUILT_IN_ATOMIC_ADD_FETCH_2:
case BUILT_IN_ATOMIC_ADD_FETCH_4:
case BUILT_IN_ATOMIC_ADD_FETCH_8:
case BUILT_IN_ATOMIC_ADD_FETCH_16:
case BUILT_IN_ATOMIC_SUB_FETCH_1:
case BUILT_IN_ATOMIC_SUB_FETCH_2:
case BUILT_IN_ATOMIC_SUB_FETCH_4:
case BUILT_IN_ATOMIC_SUB_FETCH_8:
case BUILT_IN_ATOMIC_SUB_FETCH_16:
case BUILT_IN_ATOMIC_AND_FETCH_1:
case BUILT_IN_ATOMIC_AND_FETCH_2:
case BUILT_IN_ATOMIC_AND_FETCH_4:
case BUILT_IN_ATOMIC_AND_FETCH_8:
case BUILT_IN_ATOMIC_AND_FETCH_16:
case BUILT_IN_ATOMIC_NAND_FETCH_1:
case BUILT_IN_ATOMIC_NAND_FETCH_2:
case BUILT_IN_ATOMIC_NAND_FETCH_4:
case BUILT_IN_ATOMIC_NAND_FETCH_8:
case BUILT_IN_ATOMIC_NAND_FETCH_16:
case BUILT_IN_ATOMIC_XOR_FETCH_1:
case BUILT_IN_ATOMIC_XOR_FETCH_2:
case BUILT_IN_ATOMIC_XOR_FETCH_4:
case BUILT_IN_ATOMIC_XOR_FETCH_8:
case BUILT_IN_ATOMIC_XOR_FETCH_16:
case BUILT_IN_ATOMIC_OR_FETCH_1:
case BUILT_IN_ATOMIC_OR_FETCH_2:
case BUILT_IN_ATOMIC_OR_FETCH_4:
case BUILT_IN_ATOMIC_OR_FETCH_8:
case BUILT_IN_ATOMIC_OR_FETCH_16:
case BUILT_IN_ATOMIC_FETCH_ADD_1:
case BUILT_IN_ATOMIC_FETCH_ADD_2:
case BUILT_IN_ATOMIC_FETCH_ADD_4:
case BUILT_IN_ATOMIC_FETCH_ADD_8:
case BUILT_IN_ATOMIC_FETCH_ADD_16:
case BUILT_IN_ATOMIC_FETCH_SUB_1:
case BUILT_IN_ATOMIC_FETCH_SUB_2:
case BUILT_IN_ATOMIC_FETCH_SUB_4:
case BUILT_IN_ATOMIC_FETCH_SUB_8:
case BUILT_IN_ATOMIC_FETCH_SUB_16:
case BUILT_IN_ATOMIC_FETCH_AND_1:
case BUILT_IN_ATOMIC_FETCH_AND_2:
case BUILT_IN_ATOMIC_FETCH_AND_4:
case BUILT_IN_ATOMIC_FETCH_AND_8:
case BUILT_IN_ATOMIC_FETCH_AND_16:
case BUILT_IN_ATOMIC_FETCH_NAND_1:
case BUILT_IN_ATOMIC_FETCH_NAND_2:
case BUILT_IN_ATOMIC_FETCH_NAND_4:
case BUILT_IN_ATOMIC_FETCH_NAND_8:
case BUILT_IN_ATOMIC_FETCH_NAND_16:
case BUILT_IN_ATOMIC_FETCH_XOR_1:
case BUILT_IN_ATOMIC_FETCH_XOR_2:
case BUILT_IN_ATOMIC_FETCH_XOR_4:
case BUILT_IN_ATOMIC_FETCH_XOR_8:
case BUILT_IN_ATOMIC_FETCH_XOR_16:
case BUILT_IN_ATOMIC_FETCH_OR_1:
case BUILT_IN_ATOMIC_FETCH_OR_2:
case BUILT_IN_ATOMIC_FETCH_OR_4:
case BUILT_IN_ATOMIC_FETCH_OR_8:
case BUILT_IN_ATOMIC_FETCH_OR_16:
{
dest = gimple_call_arg (call, 0);
/* DEST represents the address of a memory location.
instrument_derefs wants the memory location, so lets
dereference the address DEST before handing it to
instrument_derefs. */
if (TREE_CODE (dest) == ADDR_EXPR)
dest = TREE_OPERAND (dest, 0);
else if (TREE_CODE (dest) == SSA_NAME)
dest = build2 (MEM_REF, TREE_TYPE (TREE_TYPE (dest)),
dest, build_int_cst (TREE_TYPE (dest), 0));
else
gcc_unreachable ();
access_size = int_size_in_bytes (TREE_TYPE (dest));
}
default:
/* The other builtins memory access are not instrumented in this
function because they either don't have any length parameter,
or their length parameter is just a limit. */
break;
}
if (len != NULL_TREE)
{
if (source0 != NULL_TREE)
{
src0->start = source0;
src0->access_size = access_size;
*src0_len = len;
*src0_is_store = false;
}
if (source1 != NULL_TREE)
{
src1->start = source1;
src1->access_size = access_size;
*src1_len = len;
*src1_is_store = false;
}
if (dest != NULL_TREE)
{
dst->start = dest;
dst->access_size = access_size;
*dst_len = len;
*dst_is_store = true;
}
got_reference_p = true;
}
else if (dest)
{
dst->start = dest;
dst->access_size = access_size;
*dst_len = NULL_TREE;
*dst_is_store = is_store;
*dest_is_deref = true;
got_reference_p = true;
}
return got_reference_p;
}
/* Return true iff a given gimple statement has been instrumented.
Note that the statement is "defined" by the memory references it
contains. */
static bool
has_stmt_been_instrumented_p (gimple stmt)
{
if (gimple_assign_single_p (stmt))
{
bool r_is_store;
asan_mem_ref r;
asan_mem_ref_init (&r, NULL, 1);
if (get_mem_ref_of_assignment (stmt, &r, &r_is_store))
return has_mem_ref_been_instrumented (&r);
}
else if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
{
asan_mem_ref src0, src1, dest;
asan_mem_ref_init (&src0, NULL, 1);
asan_mem_ref_init (&src1, NULL, 1);
asan_mem_ref_init (&dest, NULL, 1);
tree src0_len = NULL_TREE, src1_len = NULL_TREE, dest_len = NULL_TREE;
bool src0_is_store = false, src1_is_store = false,
dest_is_store = false, dest_is_deref = false;
if (get_mem_refs_of_builtin_call (stmt,
&src0, &src0_len, &src0_is_store,
&src1, &src1_len, &src1_is_store,
&dest, &dest_len, &dest_is_store,
&dest_is_deref))
{
if (src0.start != NULL_TREE
&& !has_mem_ref_been_instrumented (&src0, src0_len))
return false;
if (src1.start != NULL_TREE
&& !has_mem_ref_been_instrumented (&src1, src1_len))
return false;
if (dest.start != NULL_TREE
&& !has_mem_ref_been_instrumented (&dest, dest_len))
return false;
return true;
}
}
return false;
}
/* Insert a memory reference into the hash table. */
static void
update_mem_ref_hash_table (tree ref, char access_size)
{
hash_table <asan_mem_ref_hasher> ht = get_mem_ref_hash_table ();
asan_mem_ref r;
asan_mem_ref_init (&r, ref, access_size);
asan_mem_ref **slot = ht.find_slot (&r, INSERT);
if (*slot == NULL)
*slot = asan_mem_ref_new (ref, access_size);
}
/* Initialize shadow_ptr_types array. */
static void
asan_init_shadow_ptr_types (void)
{
asan_shadow_set = new_alias_set ();
shadow_ptr_types[0] = build_distinct_type_copy (signed_char_type_node);
TYPE_ALIAS_SET (shadow_ptr_types[0]) = asan_shadow_set;
shadow_ptr_types[0] = build_pointer_type (shadow_ptr_types[0]);
shadow_ptr_types[1] = build_distinct_type_copy (short_integer_type_node);
TYPE_ALIAS_SET (shadow_ptr_types[1]) = asan_shadow_set;
shadow_ptr_types[1] = build_pointer_type (shadow_ptr_types[1]);
initialize_sanitizer_builtins ();
}
/* Asan pretty-printer, used for buidling of the description STRING_CSTs. */
static pretty_printer asan_pp;
static bool asan_pp_initialized;
/* Initialize asan_pp. */
static void
asan_pp_initialize (void)
{
pp_construct (&asan_pp, /* prefix */NULL, /* line-width */0);
asan_pp_initialized = true;
}
/* Create ADDR_EXPR of STRING_CST with asan_pp text. */
static tree
asan_pp_string (void)
{
const char *buf = pp_base_formatted_text (&asan_pp);
size_t len = strlen (buf);
tree ret = build_string (len + 1, buf);
TREE_TYPE (ret)
= build_array_type (TREE_TYPE (shadow_ptr_types[0]),
build_index_type (size_int (len)));
TREE_READONLY (ret) = 1;
TREE_STATIC (ret) = 1;
return build1 (ADDR_EXPR, shadow_ptr_types[0], ret);
}
/* Return a CONST_INT representing 4 subsequent shadow memory bytes. */
static rtx
asan_shadow_cst (unsigned char shadow_bytes[4])
{
int i;
unsigned HOST_WIDE_INT val = 0;
gcc_assert (WORDS_BIG_ENDIAN == BYTES_BIG_ENDIAN);
for (i = 0; i < 4; i++)
val |= (unsigned HOST_WIDE_INT) shadow_bytes[BYTES_BIG_ENDIAN ? 3 - i : i]
<< (BITS_PER_UNIT * i);
return GEN_INT (trunc_int_for_mode (val, SImode));
}
/* Clear shadow memory at SHADOW_MEM, LEN bytes. Can't call a library call here
though. */
static void
asan_clear_shadow (rtx shadow_mem, HOST_WIDE_INT len)
{
rtx insn, insns, top_label, end, addr, tmp, jump;
start_sequence ();
clear_storage (shadow_mem, GEN_INT (len), BLOCK_OP_NORMAL);
insns = get_insns ();
end_sequence ();
for (insn = insns; insn; insn = NEXT_INSN (insn))
if (CALL_P (insn))
break;
if (insn == NULL_RTX)
{
emit_insn (insns);
return;
}
gcc_assert ((len & 3) == 0);
top_label = gen_label_rtx ();
addr = force_reg (Pmode, XEXP (shadow_mem, 0));
shadow_mem = adjust_automodify_address (shadow_mem, SImode, addr, 0);
end = force_reg (Pmode, plus_constant (Pmode, addr, len));
emit_label (top_label);
emit_move_insn (shadow_mem, const0_rtx);
tmp = expand_simple_binop (Pmode, PLUS, addr, GEN_INT (4), addr,
true, OPTAB_LIB_WIDEN);
if (tmp != addr)
emit_move_insn (addr, tmp);
emit_cmp_and_jump_insns (addr, end, LT, NULL_RTX, Pmode, true, top_label);
jump = get_last_insn ();
gcc_assert (JUMP_P (jump));
add_reg_note (jump, REG_BR_PROB, GEN_INT (REG_BR_PROB_BASE * 80 / 100));
}
/* Insert code to protect stack vars. The prologue sequence should be emitted
directly, epilogue sequence returned. BASE is the register holding the
stack base, against which OFFSETS array offsets are relative to, OFFSETS
array contains pairs of offsets in reverse order, always the end offset
of some gap that needs protection followed by starting offset,
and DECLS is an array of representative decls for each var partition.
LENGTH is the length of the OFFSETS array, DECLS array is LENGTH / 2 - 1
elements long (OFFSETS include gap before the first variable as well
as gaps after each stack variable). */
rtx
asan_emit_stack_protection (rtx base, HOST_WIDE_INT *offsets, tree *decls,
int length)
{
rtx shadow_base, shadow_mem, ret, mem;
unsigned char shadow_bytes[4];
HOST_WIDE_INT base_offset = offsets[length - 1], offset, prev_offset;
HOST_WIDE_INT last_offset, last_size;
int l;
unsigned char cur_shadow_byte = ASAN_STACK_MAGIC_LEFT;
tree str_cst;
if (shadow_ptr_types[0] == NULL_TREE)
asan_init_shadow_ptr_types ();
/* First of all, prepare the description string. */
if (!asan_pp_initialized)
asan_pp_initialize ();
pp_clear_output_area (&asan_pp);
if (DECL_NAME (current_function_decl))
pp_base_tree_identifier (&asan_pp, DECL_NAME (current_function_decl));
else
pp_string (&asan_pp, "<unknown>");
pp_space (&asan_pp);
pp_decimal_int (&asan_pp, length / 2 - 1);
pp_space (&asan_pp);
for (l = length - 2; l; l -= 2)
{
tree decl = decls[l / 2 - 1];
pp_wide_integer (&asan_pp, offsets[l] - base_offset);
pp_space (&asan_pp);
pp_wide_integer (&asan_pp, offsets[l - 1] - offsets[l]);
pp_space (&asan_pp);
if (DECL_P (decl) && DECL_NAME (decl))
{
pp_decimal_int (&asan_pp, IDENTIFIER_LENGTH (DECL_NAME (decl)));
pp_space (&asan_pp);
pp_base_tree_identifier (&asan_pp, DECL_NAME (decl));
}
else
pp_string (&asan_pp, "9 <unknown>");
pp_space (&asan_pp);
}
str_cst = asan_pp_string ();
/* Emit the prologue sequence. */
base = expand_binop (Pmode, add_optab, base, GEN_INT (base_offset),
NULL_RTX, 1, OPTAB_DIRECT);
mem = gen_rtx_MEM (ptr_mode, base);
emit_move_insn (mem, GEN_INT (ASAN_STACK_FRAME_MAGIC));
mem = adjust_address (mem, VOIDmode, GET_MODE_SIZE (ptr_mode));
emit_move_insn (mem, expand_normal (str_cst));
shadow_base = expand_binop (Pmode, lshr_optab, base,
GEN_INT (ASAN_SHADOW_SHIFT),
NULL_RTX, 1, OPTAB_DIRECT);
shadow_base = expand_binop (Pmode, add_optab, shadow_base,
GEN_INT (targetm.asan_shadow_offset ()),
NULL_RTX, 1, OPTAB_DIRECT);
gcc_assert (asan_shadow_set != -1
&& (ASAN_RED_ZONE_SIZE >> ASAN_SHADOW_SHIFT) == 4);
shadow_mem = gen_rtx_MEM (SImode, shadow_base);
set_mem_alias_set (shadow_mem, asan_shadow_set);
prev_offset = base_offset;
for (l = length; l; l -= 2)
{
if (l == 2)
cur_shadow_byte = ASAN_STACK_MAGIC_RIGHT;
offset = offsets[l - 1];
if ((offset - base_offset) & (ASAN_RED_ZONE_SIZE - 1))
{
int i;
HOST_WIDE_INT aoff
= base_offset + ((offset - base_offset)
& ~(ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1));
shadow_mem = adjust_address (shadow_mem, VOIDmode,
(aoff - prev_offset)
>> ASAN_SHADOW_SHIFT);
prev_offset = aoff;
for (i = 0; i < 4; i++, aoff += (1 << ASAN_SHADOW_SHIFT))
if (aoff < offset)
{
if (aoff < offset - (1 << ASAN_SHADOW_SHIFT) + 1)
shadow_bytes[i] = 0;
else
shadow_bytes[i] = offset - aoff;
}
else
shadow_bytes[i] = ASAN_STACK_MAGIC_PARTIAL;
emit_move_insn (shadow_mem, asan_shadow_cst (shadow_bytes));
offset = aoff;
}
while (offset <= offsets[l - 2] - ASAN_RED_ZONE_SIZE)
{
shadow_mem = adjust_address (shadow_mem, VOIDmode,
(offset - prev_offset)
>> ASAN_SHADOW_SHIFT);
prev_offset = offset;
memset (shadow_bytes, cur_shadow_byte, 4);
emit_move_insn (shadow_mem, asan_shadow_cst (shadow_bytes));
offset += ASAN_RED_ZONE_SIZE;
}
cur_shadow_byte = ASAN_STACK_MAGIC_MIDDLE;
}
do_pending_stack_adjust ();
/* Construct epilogue sequence. */
start_sequence ();
shadow_mem = gen_rtx_MEM (BLKmode, shadow_base);
set_mem_alias_set (shadow_mem, asan_shadow_set);
prev_offset = base_offset;
last_offset = base_offset;
last_size = 0;
for (l = length; l; l -= 2)
{
offset = base_offset + ((offsets[l - 1] - base_offset)
& ~(ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1));
if (last_offset + last_size != offset)
{
shadow_mem = adjust_address (shadow_mem, VOIDmode,
(last_offset - prev_offset)
>> ASAN_SHADOW_SHIFT);
prev_offset = last_offset;
asan_clear_shadow (shadow_mem, last_size >> ASAN_SHADOW_SHIFT);
last_offset = offset;
last_size = 0;
}
last_size += base_offset + ((offsets[l - 2] - base_offset)
& ~(ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1))
- offset;
}
if (last_size)
{
shadow_mem = adjust_address (shadow_mem, VOIDmode,
(last_offset - prev_offset)
>> ASAN_SHADOW_SHIFT);
asan_clear_shadow (shadow_mem, last_size >> ASAN_SHADOW_SHIFT);
}
do_pending_stack_adjust ();
ret = get_insns ();
end_sequence ();
return ret;
}
/* Return true if DECL, a global var, might be overridden and needs
therefore a local alias. */
static bool
asan_needs_local_alias (tree decl)
{
return DECL_WEAK (decl) || !targetm.binds_local_p (decl);
}
/* Return true if DECL is a VAR_DECL that should be protected
by Address Sanitizer, by appending a red zone with protected
shadow memory after it and aligning it to at least
ASAN_RED_ZONE_SIZE bytes. */
bool
asan_protect_global (tree decl)
{
rtx rtl, symbol;
if (TREE_CODE (decl) == STRING_CST)
{
/* Instrument all STRING_CSTs except those created
by asan_pp_string here. */
if (shadow_ptr_types[0] != NULL_TREE
&& TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE
&& TREE_TYPE (TREE_TYPE (decl)) == TREE_TYPE (shadow_ptr_types[0]))
return false;
return true;
}
if (TREE_CODE (decl) != VAR_DECL
/* TLS vars aren't statically protectable. */
|| DECL_THREAD_LOCAL_P (decl)
/* Externs will be protected elsewhere. */
|| DECL_EXTERNAL (decl)
|| !DECL_RTL_SET_P (decl)
/* Comdat vars pose an ABI problem, we can't know if
the var that is selected by the linker will have
padding or not. */
|| DECL_ONE_ONLY (decl)
/* Similarly for common vars. People can use -fno-common. */
|| (DECL_COMMON (decl) && TREE_PUBLIC (decl))
/* Don't protect if using user section, often vars placed
into user section from multiple TUs are then assumed
to be an array of such vars, putting padding in there
breaks this assumption. */
|| (DECL_SECTION_NAME (decl) != NULL_TREE
&& !DECL_HAS_IMPLICIT_SECTION_NAME_P (decl))
|| DECL_SIZE (decl) == 0
|| ASAN_RED_ZONE_SIZE * BITS_PER_UNIT > MAX_OFILE_ALIGNMENT
|| !valid_constant_size_p (DECL_SIZE_UNIT (decl))
|| DECL_ALIGN_UNIT (decl) > 2 * ASAN_RED_ZONE_SIZE)
return false;
rtl = DECL_RTL (decl);
if (!MEM_P (rtl) || GET_CODE (XEXP (rtl, 0)) != SYMBOL_REF)
return false;
symbol = XEXP (rtl, 0);
if (CONSTANT_POOL_ADDRESS_P (symbol)
|| TREE_CONSTANT_POOL_ADDRESS_P (symbol))
return false;
if (lookup_attribute ("weakref", DECL_ATTRIBUTES (decl)))
return false;
#ifndef ASM_OUTPUT_DEF
if (asan_needs_local_alias (decl))
return false;
#endif
return true;
}
/* Construct a function tree for __asan_report_{load,store}{1,2,4,8,16}.
IS_STORE is either 1 (for a store) or 0 (for a load).
SIZE_IN_BYTES is one of 1, 2, 4, 8, 16. */
static tree
report_error_func (bool is_store, int size_in_bytes)
{
static enum built_in_function report[2][5]
= { { BUILT_IN_ASAN_REPORT_LOAD1, BUILT_IN_ASAN_REPORT_LOAD2,
BUILT_IN_ASAN_REPORT_LOAD4, BUILT_IN_ASAN_REPORT_LOAD8,
BUILT_IN_ASAN_REPORT_LOAD16 },
{ BUILT_IN_ASAN_REPORT_STORE1, BUILT_IN_ASAN_REPORT_STORE2,
BUILT_IN_ASAN_REPORT_STORE4, BUILT_IN_ASAN_REPORT_STORE8,
BUILT_IN_ASAN_REPORT_STORE16 } };
return builtin_decl_implicit (report[is_store][exact_log2 (size_in_bytes)]);
}
#define PROB_VERY_UNLIKELY (REG_BR_PROB_BASE / 2000 - 1)
#define PROB_ALWAYS (REG_BR_PROB_BASE)
/* Split the current basic block and create a condition statement
insertion point right before or after the statement pointed to by
ITER. Return an iterator to the point at which the caller might
safely insert the condition statement.
THEN_BLOCK must be set to the address of an uninitialized instance
of basic_block. The function will then set *THEN_BLOCK to the
'then block' of the condition statement to be inserted by the
caller.
If CREATE_THEN_FALLTHRU_EDGE is false, no edge will be created from
*THEN_BLOCK to *FALLTHROUGH_BLOCK.
Similarly, the function will set *FALLTRHOUGH_BLOCK to the 'else
block' of the condition statement to be inserted by the caller.
Note that *FALLTHROUGH_BLOCK is a new block that contains the
statements starting from *ITER, and *THEN_BLOCK is a new empty
block.
*ITER is adjusted to point to always point to the first statement
of the basic block * FALLTHROUGH_BLOCK. That statement is the
same as what ITER was pointing to prior to calling this function,
if BEFORE_P is true; otherwise, it is its following statement. */
static gimple_stmt_iterator
create_cond_insert_point (gimple_stmt_iterator *iter,
bool before_p,
bool then_more_likely_p,
bool create_then_fallthru_edge,
basic_block *then_block,
basic_block *fallthrough_block)
{
gimple_stmt_iterator gsi = *iter;
if (!gsi_end_p (gsi) && before_p)
gsi_prev (&gsi);
basic_block cur_bb = gsi_bb (*iter);
edge e = split_block (cur_bb, gsi_stmt (gsi));
/* Get a hold on the 'condition block', the 'then block' and the
'else block'. */
basic_block cond_bb = e->src;
basic_block fallthru_bb = e->dest;
basic_block then_bb = create_empty_bb (cond_bb);
if (current_loops)
{
add_bb_to_loop (then_bb, cond_bb->loop_father);
loops_state_set (LOOPS_NEED_FIXUP);
}
/* Set up the newly created 'then block'. */
e = make_edge (cond_bb, then_bb, EDGE_TRUE_VALUE);
int fallthrough_probability
= then_more_likely_p
? PROB_VERY_UNLIKELY
: PROB_ALWAYS - PROB_VERY_UNLIKELY;
e->probability = PROB_ALWAYS - fallthrough_probability;
if (create_then_fallthru_edge)
make_single_succ_edge (then_bb, fallthru_bb, EDGE_FALLTHRU);
/* Set up the fallthrough basic block. */
e = find_edge (cond_bb, fallthru_bb);
e->flags = EDGE_FALSE_VALUE;
e->count = cond_bb->count;
e->probability = fallthrough_probability;
/* Update dominance info for the newly created then_bb; note that
fallthru_bb's dominance info has already been updated by
split_bock. */
if (dom_info_available_p (CDI_DOMINATORS))
set_immediate_dominator (CDI_DOMINATORS, then_bb, cond_bb);
*then_block = then_bb;
*fallthrough_block = fallthru_bb;
*iter = gsi_start_bb (fallthru_bb);
return gsi_last_bb (cond_bb);
}
/* Insert an if condition followed by a 'then block' right before the
statement pointed to by ITER. The fallthrough block -- which is the
else block of the condition as well as the destination of the
outcoming edge of the 'then block' -- starts with the statement
pointed to by ITER.
COND is the condition of the if.
If THEN_MORE_LIKELY_P is true, the probability of the edge to the
'then block' is higher than the probability of the edge to the
fallthrough block.
Upon completion of the function, *THEN_BB is set to the newly
inserted 'then block' and similarly, *FALLTHROUGH_BB is set to the
fallthrough block.
*ITER is adjusted to still point to the same statement it was
pointing to initially. */
static void
insert_if_then_before_iter (gimple cond,
gimple_stmt_iterator *iter,
bool then_more_likely_p,
basic_block *then_bb,
basic_block *fallthrough_bb)
{
gimple_stmt_iterator cond_insert_point =
create_cond_insert_point (iter,
/*before_p=*/true,
then_more_likely_p,
/*create_then_fallthru_edge=*/true,
then_bb,
fallthrough_bb);
gsi_insert_after (&cond_insert_point, cond, GSI_NEW_STMT);
}
/* Instrument the memory access instruction BASE. Insert new
statements before or after ITER.
Note that the memory access represented by BASE can be either an
SSA_NAME, or a non-SSA expression. LOCATION is the source code
location. IS_STORE is TRUE for a store, FALSE for a load.
BEFORE_P is TRUE for inserting the instrumentation code before
ITER, FALSE for inserting it after ITER. SIZE_IN_BYTES is one of
1, 2, 4, 8, 16.
If BEFORE_P is TRUE, *ITER is arranged to still point to the
statement it was pointing to prior to calling this function,
otherwise, it points to the statement logically following it. */
static void
build_check_stmt (location_t location, tree base, gimple_stmt_iterator *iter,
bool before_p, bool is_store, int size_in_bytes)
{
gimple_stmt_iterator gsi;
basic_block then_bb, else_bb;
tree t, base_addr, shadow;
gimple g;
tree shadow_ptr_type = shadow_ptr_types[size_in_bytes == 16 ? 1 : 0];
tree shadow_type = TREE_TYPE (shadow_ptr_type);
tree uintptr_type
= build_nonstandard_integer_type (TYPE_PRECISION (TREE_TYPE (base)), 1);
tree base_ssa = base;
/* Get an iterator on the point where we can add the condition
statement for the instrumentation. */
gsi = create_cond_insert_point (iter, before_p,
/*then_more_likely_p=*/false,
/*create_then_fallthru_edge=*/false,
&then_bb,
&else_bb);
base = unshare_expr (base);
/* BASE can already be an SSA_NAME; in that case, do not create a
new SSA_NAME for it. */
if (TREE_CODE (base) != SSA_NAME)
{
g = gimple_build_assign_with_ops (TREE_CODE (base),
make_ssa_name (TREE_TYPE (base), NULL),
base, NULL_TREE);
gimple_set_location (g, location);
gsi_insert_after (&gsi, g, GSI_NEW_STMT);
base_ssa = gimple_assign_lhs (g);
}
g = gimple_build_assign_with_ops (NOP_EXPR,
make_ssa_name (uintptr_type, NULL),
base_ssa, NULL_TREE);
gimple_set_location (g, location);
gsi_insert_after (&gsi, g, GSI_NEW_STMT);
base_addr = gimple_assign_lhs (g);
/* Build
(base_addr >> ASAN_SHADOW_SHIFT) + targetm.asan_shadow_offset (). */
t = build_int_cst (uintptr_type, ASAN_SHADOW_SHIFT);
g = gimple_build_assign_with_ops (RSHIFT_EXPR,
make_ssa_name (uintptr_type, NULL),
base_addr, t);
gimple_set_location (g, location);
gsi_insert_after (&gsi, g, GSI_NEW_STMT);
t = build_int_cst (uintptr_type, targetm.asan_shadow_offset ());
g = gimple_build_assign_with_ops (PLUS_EXPR,
make_ssa_name (uintptr_type, NULL),
gimple_assign_lhs (g), t);
gimple_set_location (g, location);
gsi_insert_after (&gsi, g, GSI_NEW_STMT);
g = gimple_build_assign_with_ops (NOP_EXPR,
make_ssa_name (shadow_ptr_type, NULL),
gimple_assign_lhs (g), NULL_TREE);
gimple_set_location (g, location);
gsi_insert_after (&gsi, g, GSI_NEW_STMT);
t = build2 (MEM_REF, shadow_type, gimple_assign_lhs (g),
build_int_cst (shadow_ptr_type, 0));
g = gimple_build_assign_with_ops (MEM_REF,
make_ssa_name (shadow_type, NULL),
t, NULL_TREE);
gimple_set_location (g, location);
gsi_insert_after (&gsi, g, GSI_NEW_STMT);
shadow = gimple_assign_lhs (g);
if (size_in_bytes < 8)
{
/* Slow path for 1, 2 and 4 byte accesses.
Test (shadow != 0)
& ((base_addr & 7) + (size_in_bytes - 1)) >= shadow). */
gimple_seq seq = NULL;
gimple shadow_test = build_assign (NE_EXPR, shadow, 0);
gimple_seq_add_stmt (&seq, shadow_test);
gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR, base_addr, 7));
gimple_seq_add_stmt (&seq, build_type_cast (shadow_type,
gimple_seq_last (seq)));
if (size_in_bytes > 1)
gimple_seq_add_stmt (&seq,
build_assign (PLUS_EXPR, gimple_seq_last (seq),
size_in_bytes - 1));
gimple_seq_add_stmt (&seq, build_assign (GE_EXPR, gimple_seq_last (seq),
shadow));
gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR, shadow_test,
gimple_seq_last (seq)));
t = gimple_assign_lhs (gimple_seq_last (seq));
gimple_seq_set_location (seq, location);
gsi_insert_seq_after (&gsi, seq, GSI_CONTINUE_LINKING);
}
else
t = shadow;
g = gimple_build_cond (NE_EXPR, t, build_int_cst (TREE_TYPE (t), 0),
NULL_TREE, NULL_TREE);
gimple_set_location (g, location);
gsi_insert_after (&gsi, g, GSI_NEW_STMT);
/* Generate call to the run-time library (e.g. __asan_report_load8). */
gsi = gsi_start_bb (then_bb);
g = gimple_build_call (report_error_func (is_store, size_in_bytes),
1, base_addr);
gimple_set_location (g, location);
gsi_insert_after (&gsi, g, GSI_NEW_STMT);
*iter = gsi_start_bb (else_bb);
}
/* If T represents a memory access, add instrumentation code before ITER.
LOCATION is source code location.
IS_STORE is either TRUE (for a store) or FALSE (for a load). */
static void
instrument_derefs (gimple_stmt_iterator *iter, tree t,
location_t location, bool is_store)
{
tree type, base;
HOST_WIDE_INT size_in_bytes;
type = TREE_TYPE (t);
switch (TREE_CODE (t))
{
case ARRAY_REF:
case COMPONENT_REF:
case INDIRECT_REF:
case MEM_REF:
break;
default:
return;
}
size_in_bytes = int_size_in_bytes (type);
if ((size_in_bytes & (size_in_bytes - 1)) != 0
|| (unsigned HOST_WIDE_INT) size_in_bytes - 1 >= 16)
return;
HOST_WIDE_INT bitsize, bitpos;
tree offset;
enum machine_mode mode;
int volatilep = 0, unsignedp = 0;
get_inner_reference (t, &bitsize, &bitpos, &offset,
&mode, &unsignedp, &volatilep, false);
if (bitpos % (size_in_bytes * BITS_PER_UNIT)
|| bitsize != size_in_bytes * BITS_PER_UNIT)
{
if (TREE_CODE (t) == COMPONENT_REF
&& DECL_BIT_FIELD_REPRESENTATIVE (TREE_OPERAND (t, 1)) != NULL_TREE)
{
tree repr = DECL_BIT_FIELD_REPRESENTATIVE (TREE_OPERAND (t, 1));
instrument_derefs (iter, build3 (COMPONENT_REF, TREE_TYPE (repr),
TREE_OPERAND (t, 0), repr,
NULL_TREE), location, is_store);
}
return;
}
base = build_fold_addr_expr (t);
if (!has_mem_ref_been_instrumented (base, size_in_bytes))
{
build_check_stmt (location, base, iter, /*before_p=*/true,
is_store, size_in_bytes);
update_mem_ref_hash_table (base, size_in_bytes);
update_mem_ref_hash_table (t, size_in_bytes);
}
}
/* Instrument an access to a contiguous memory region that starts at
the address pointed to by BASE, over a length of LEN (expressed in
the sizeof (*BASE) bytes). ITER points to the instruction before
which the instrumentation instructions must be inserted. LOCATION
is the source location that the instrumentation instructions must
have. If IS_STORE is true, then the memory access is a store;
otherwise, it's a load. */
static void
instrument_mem_region_access (tree base, tree len,
gimple_stmt_iterator *iter,
location_t location, bool is_store)
{
if (!POINTER_TYPE_P (TREE_TYPE (base))
|| !INTEGRAL_TYPE_P (TREE_TYPE (len))
|| integer_zerop (len))
return;
gimple_stmt_iterator gsi = *iter;
basic_block fallthrough_bb = NULL, then_bb = NULL;
/* If the beginning of the memory region has already been
instrumented, do not instrument it. */
bool start_instrumented = has_mem_ref_been_instrumented (base, 1);
/* If the end of the memory region has already been instrumented, do
not instrument it. */
tree end = asan_mem_ref_get_end (base, len);
bool end_instrumented = has_mem_ref_been_instrumented (end, 1);
if (start_instrumented && end_instrumented)
return;
if (!is_gimple_constant (len))
{
/* So, the length of the memory area to asan-protect is
non-constant. Let's guard the generated instrumentation code
like:
if (len != 0)
{
//asan instrumentation code goes here.
}
// falltrough instructions, starting with *ITER. */
gimple g = gimple_build_cond (NE_EXPR,
len,
build_int_cst (TREE_TYPE (len), 0),
NULL_TREE, NULL_TREE);
gimple_set_location (g, location);
insert_if_then_before_iter (g, iter, /*then_more_likely_p=*/true,
&then_bb, &fallthrough_bb);
/* Note that fallthrough_bb starts with the statement that was
pointed to by ITER. */
/* The 'then block' of the 'if (len != 0) condition is where
we'll generate the asan instrumentation code now. */
gsi = gsi_last_bb (then_bb);
}
if (!start_instrumented)
{
/* Instrument the beginning of the memory region to be accessed,
and arrange for the rest of the intrumentation code to be
inserted in the then block *after* the current gsi. */
build_check_stmt (location, base, &gsi, /*before_p=*/true, is_store, 1);
if (then_bb)
/* We are in the case where the length of the region is not
constant; so instrumentation code is being generated in the
'then block' of the 'if (len != 0) condition. Let's arrange
for the subsequent instrumentation statements to go in the
'then block'. */
gsi = gsi_last_bb (then_bb);
else
{
*iter = gsi;
/* Don't remember this access as instrumented, if length
is unknown. It might be zero and not being actually
instrumented, so we can't rely on it being instrumented. */
update_mem_ref_hash_table (base, 1);
}
}
if (end_instrumented)
return;
/* We want to instrument the access at the end of the memory region,
which is at (base + len - 1). */
/* offset = len - 1; */
len = unshare_expr (len);
tree offset;
gimple_seq seq = NULL;
if (TREE_CODE (len) == INTEGER_CST)
offset = fold_build2 (MINUS_EXPR, size_type_node,
fold_convert (size_type_node, len),
build_int_cst (size_type_node, 1));
else
{
gimple g;
tree t;
if (TREE_CODE (len) != SSA_NAME)
{
t = make_ssa_name (TREE_TYPE (len), NULL);
g = gimple_build_assign_with_ops (TREE_CODE (len), t, len, NULL);
gimple_set_location (g, location);
gimple_seq_add_stmt_without_update (&seq, g);
len = t;
}
if (!useless_type_conversion_p (size_type_node, TREE_TYPE (len)))
{
t = make_ssa_name (size_type_node, NULL);
g = gimple_build_assign_with_ops (NOP_EXPR, t, len, NULL);
gimple_set_location (g, location);
gimple_seq_add_stmt_without_update (&seq, g);
len = t;
}
t = make_ssa_name (size_type_node, NULL);
g = gimple_build_assign_with_ops (MINUS_EXPR, t, len,
build_int_cst (size_type_node, 1));
gimple_set_location (g, location);
gimple_seq_add_stmt_without_update (&seq, g);
offset = gimple_assign_lhs (g);
}
/* _1 = base; */
base = unshare_expr (base);
gimple region_end =
gimple_build_assign_with_ops (TREE_CODE (base),
make_ssa_name (TREE_TYPE (base), NULL),
base, NULL);
gimple_set_location (region_end, location);
gimple_seq_add_stmt_without_update (&seq, region_end);
/* _2 = _1 + offset; */
region_end =
gimple_build_assign_with_ops (POINTER_PLUS_EXPR,
make_ssa_name (TREE_TYPE (base), NULL),
gimple_assign_lhs (region_end),
offset);
gimple_set_location (region_end, location);
gimple_seq_add_stmt_without_update (&seq, region_end);
gsi_insert_seq_before (&gsi, seq, GSI_SAME_STMT);
/* instrument access at _2; */
gsi = gsi_for_stmt (region_end);
build_check_stmt (location, gimple_assign_lhs (region_end),
&gsi, /*before_p=*/false, is_store, 1);
if (then_bb == NULL)
update_mem_ref_hash_table (end, 1);
*iter = gsi_for_stmt (gsi_stmt (*iter));
}
/* Instrument the call (to the builtin strlen function) pointed to by
ITER.
This function instruments the access to the first byte of the
argument, right before the call. After the call it instruments the
access to the last byte of the argument; it uses the result of the
call to deduce the offset of that last byte.
Upon completion, iff the call has actullay been instrumented, this
function returns TRUE and *ITER points to the statement logically
following the built-in strlen function call *ITER was initially
pointing to. Otherwise, the function returns FALSE and *ITER
remains unchanged. */
static bool
instrument_strlen_call (gimple_stmt_iterator *iter)
{
gimple call = gsi_stmt (*iter);
gcc_assert (is_gimple_call (call));
tree callee = gimple_call_fndecl (call);
gcc_assert (is_builtin_fn (callee)
&& DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL
&& DECL_FUNCTION_CODE (callee) == BUILT_IN_STRLEN);
tree len = gimple_call_lhs (call);
if (len == NULL)
/* Some passes might clear the return value of the strlen call;
bail out in that case. Return FALSE as we are not advancing
*ITER. */
return false;
gcc_assert (INTEGRAL_TYPE_P (TREE_TYPE (len)));
location_t loc = gimple_location (call);
tree str_arg = gimple_call_arg (call, 0);
/* Instrument the access to the first byte of str_arg. i.e:
_1 = str_arg; instrument (_1); */
gimple str_arg_ssa =
gimple_build_assign_with_ops (NOP_EXPR,
make_ssa_name (build_pointer_type
(char_type_node), NULL),
str_arg, NULL);
gimple_set_location (str_arg_ssa, loc);
gimple_stmt_iterator gsi = *iter;
gsi_insert_before (&gsi, str_arg_ssa, GSI_NEW_STMT);
build_check_stmt (loc, gimple_assign_lhs (str_arg_ssa), &gsi,
/*before_p=*/false, /*is_store=*/false, 1);
/* If we initially had an instruction like:
int n = strlen (str)
we now want to instrument the access to str[n], after the
instruction above.*/
/* So let's build the access to str[n] that is, access through the
pointer_plus expr: (_1 + len). */
gimple stmt =
gimple_build_assign_with_ops (POINTER_PLUS_EXPR,
make_ssa_name (TREE_TYPE (str_arg),
NULL),
gimple_assign_lhs (str_arg_ssa),
len);
gimple_set_location (stmt, loc);
gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
build_check_stmt (loc, gimple_assign_lhs (stmt), &gsi,
/*before_p=*/false, /*is_store=*/false, 1);
/* Ensure that iter points to the statement logically following the
one it was initially pointing to. */
*iter = gsi;
/* As *ITER has been advanced to point to the next statement, let's
return true to inform transform_statements that it shouldn't
advance *ITER anymore; otherwises it will skip that next
statement, which wouldn't be instrumented. */
return true;
}
/* Instrument the call to a built-in memory access function that is
pointed to by the iterator ITER.
Upon completion, return TRUE iff *ITER has been advanced to the
statement following the one it was originally pointing to. */
static bool
instrument_builtin_call (gimple_stmt_iterator *iter)
{
bool iter_advanced_p = false;
gimple call = gsi_stmt (*iter);
gcc_checking_assert (gimple_call_builtin_p (call, BUILT_IN_NORMAL));
tree callee = gimple_call_fndecl (call);
location_t loc = gimple_location (call);
if (DECL_FUNCTION_CODE (callee) == BUILT_IN_STRLEN)
iter_advanced_p = instrument_strlen_call (iter);
else
{
asan_mem_ref src0, src1, dest;
asan_mem_ref_init (&src0, NULL, 1);
asan_mem_ref_init (&src1, NULL, 1);
asan_mem_ref_init (&dest, NULL, 1);
tree src0_len = NULL_TREE, src1_len = NULL_TREE, dest_len = NULL_TREE;
bool src0_is_store = false, src1_is_store = false,
dest_is_store = false, dest_is_deref = false;
if (get_mem_refs_of_builtin_call (call,
&src0, &src0_len, &src0_is_store,
&src1, &src1_len, &src1_is_store,
&dest, &dest_len, &dest_is_store,
&dest_is_deref))
{
if (dest_is_deref)
{
instrument_derefs (iter, dest.start, loc, dest_is_store);
gsi_next (iter);
iter_advanced_p = true;
}
else if (src0_len || src1_len || dest_len)
{
if (src0.start != NULL_TREE)
instrument_mem_region_access (src0.start, src0_len,
iter, loc, /*is_store=*/false);
if (src1.start != NULL_TREE)
instrument_mem_region_access (src1.start, src1_len,
iter, loc, /*is_store=*/false);
if (dest.start != NULL_TREE)
instrument_mem_region_access (dest.start, dest_len,
iter, loc, /*is_store=*/true);
*iter = gsi_for_stmt (call);
gsi_next (iter);
iter_advanced_p = true;
}
}
}
return iter_advanced_p;
}
/* Instrument the assignment statement ITER if it is subject to
instrumentation. Return TRUE iff instrumentation actually
happened. In that case, the iterator ITER is advanced to the next
logical expression following the one initially pointed to by ITER,
and the relevant memory reference that which access has been
instrumented is added to the memory references hash table. */
static bool
maybe_instrument_assignment (gimple_stmt_iterator *iter)
{
gimple s = gsi_stmt (*iter);
gcc_assert (gimple_assign_single_p (s));
tree ref_expr = NULL_TREE;
bool is_store, is_instrumented = false;
if (gimple_store_p (s))
{
ref_expr = gimple_assign_lhs (s);
is_store = true;
instrument_derefs (iter, ref_expr,
gimple_location (s),
is_store);
is_instrumented = true;
}
if (gimple_assign_load_p (s))
{
ref_expr = gimple_assign_rhs1 (s);
is_store = false;
instrument_derefs (iter, ref_expr,
gimple_location (s),
is_store);
is_instrumented = true;
}
if (is_instrumented)
gsi_next (iter);
return is_instrumented;
}
/* Instrument the function call pointed to by the iterator ITER, if it
is subject to instrumentation. At the moment, the only function
calls that are instrumented are some built-in functions that access
memory. Look at instrument_builtin_call to learn more.
Upon completion return TRUE iff *ITER was advanced to the statement
following the one it was originally pointing to. */
static bool
maybe_instrument_call (gimple_stmt_iterator *iter)
{
gimple stmt = gsi_stmt (*iter);
bool is_builtin = gimple_call_builtin_p (stmt, BUILT_IN_NORMAL);
if (is_builtin && instrument_builtin_call (iter))
return true;
if (gimple_call_noreturn_p (stmt))
{
if (is_builtin)
{
tree callee = gimple_call_fndecl (stmt);
switch (DECL_FUNCTION_CODE (callee))
{
case BUILT_IN_UNREACHABLE:
case BUILT_IN_TRAP:
/* Don't instrument these. */
return false;
}
}
tree decl = builtin_decl_implicit (BUILT_IN_ASAN_HANDLE_NO_RETURN);
gimple g = gimple_build_call (decl, 0);
gimple_set_location (g, gimple_location (stmt));
gsi_insert_before (iter, g, GSI_SAME_STMT);
}
return false;
}
/* Walk each instruction of all basic block and instrument those that
represent memory references: loads, stores, or function calls.
In a given basic block, this function avoids instrumenting memory
references that have already been instrumented. */
static void
transform_statements (void)
{
basic_block bb, last_bb = NULL;
gimple_stmt_iterator i;
int saved_last_basic_block = last_basic_block;
FOR_EACH_BB (bb)
{
basic_block prev_bb = bb;
if (bb->index >= saved_last_basic_block) continue;
/* Flush the mem ref hash table, if current bb doesn't have
exactly one predecessor, or if that predecessor (skipping
over asan created basic blocks) isn't the last processed
basic block. Thus we effectively flush on extended basic
block boundaries. */
while (single_pred_p (prev_bb))
{
prev_bb = single_pred (prev_bb);
if (prev_bb->index < saved_last_basic_block)
break;
}
if (prev_bb != last_bb)
empty_mem_ref_hash_table ();
last_bb = bb;
for (i = gsi_start_bb (bb); !gsi_end_p (i);)
{
gimple s = gsi_stmt (i);
if (has_stmt_been_instrumented_p (s))
gsi_next (&i);
else if (gimple_assign_single_p (s)
&& maybe_instrument_assignment (&i))
/* Nothing to do as maybe_instrument_assignment advanced
the iterator I. */;
else if (is_gimple_call (s) && maybe_instrument_call (&i))
/* Nothing to do as maybe_instrument_call
advanced the iterator I. */;
else
{
/* No instrumentation happened.
If the current instruction is a function call that
might free something, let's forget about the memory
references that got instrumented. Otherwise we might
miss some instrumentation opportunities. */
if (is_gimple_call (s) && !nonfreeing_call_p (s))
empty_mem_ref_hash_table ();
gsi_next (&i);
}
}
}
free_mem_ref_resources ();
}
/* Build
struct __asan_global
{
const void *__beg;
uptr __size;
uptr __size_with_redzone;
const void *__name;
uptr __has_dynamic_init;
} type. */
static tree
asan_global_struct (void)
{
static const char *field_names[5]
= { "__beg", "__size", "__size_with_redzone",
"__name", "__has_dynamic_init" };
tree fields[5], ret;
int i;
ret = make_node (RECORD_TYPE);
for (i = 0; i < 5; i++)
{
fields[i]
= build_decl (UNKNOWN_LOCATION, FIELD_DECL,
get_identifier (field_names[i]),
(i == 0 || i == 3) ? const_ptr_type_node
: build_nonstandard_integer_type (POINTER_SIZE, 1));
DECL_CONTEXT (fields[i]) = ret;
if (i)
DECL_CHAIN (fields[i - 1]) = fields[i];
}
TYPE_FIELDS (ret) = fields[0];
TYPE_NAME (ret) = get_identifier ("__asan_global");
layout_type (ret);
return ret;
}
/* Append description of a single global DECL into vector V.
TYPE is __asan_global struct type as returned by asan_global_struct. */
static void
asan_add_global (tree decl, tree type, vec<constructor_elt, va_gc> *v)
{
tree init, uptr = TREE_TYPE (DECL_CHAIN (TYPE_FIELDS (type)));
unsigned HOST_WIDE_INT size;
tree str_cst, refdecl = decl;
vec<constructor_elt, va_gc> *vinner = NULL;
if (!asan_pp_initialized)
asan_pp_initialize ();
pp_clear_output_area (&asan_pp);
if (DECL_NAME (decl))
pp_base_tree_identifier (&asan_pp, DECL_NAME (decl));
else
pp_string (&asan_pp, "<unknown>");
pp_space (&asan_pp);
pp_left_paren (&asan_pp);
pp_string (&asan_pp, main_input_filename);
pp_right_paren (&asan_pp);
str_cst = asan_pp_string ();
if (asan_needs_local_alias (decl))
{
char buf[20];
ASM_GENERATE_INTERNAL_LABEL (buf, "LASAN", vec_safe_length (v) + 1);
refdecl = build_decl (DECL_SOURCE_LOCATION (decl),
VAR_DECL, get_identifier (buf), TREE_TYPE (decl));
TREE_ADDRESSABLE (refdecl) = TREE_ADDRESSABLE (decl);
TREE_READONLY (refdecl) = TREE_READONLY (decl);
TREE_THIS_VOLATILE (refdecl) = TREE_THIS_VOLATILE (decl);
DECL_GIMPLE_REG_P (refdecl) = DECL_GIMPLE_REG_P (decl);
DECL_ARTIFICIAL (refdecl) = DECL_ARTIFICIAL (decl);
DECL_IGNORED_P (refdecl) = DECL_IGNORED_P (decl);
TREE_STATIC (refdecl) = 1;
TREE_PUBLIC (refdecl) = 0;
TREE_USED (refdecl) = 1;
assemble_alias (refdecl, DECL_ASSEMBLER_NAME (decl));
}
CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
fold_convert (const_ptr_type_node,
build_fold_addr_expr (refdecl)));
size = tree_low_cst (DECL_SIZE_UNIT (decl), 1);
CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, build_int_cst (uptr, size));
size += asan_red_zone_size (size);
CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, build_int_cst (uptr, size));
CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
fold_convert (const_ptr_type_node, str_cst));
CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, build_int_cst (uptr, 0));
init = build_constructor (type, vinner);
CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, init);
}
/* Initialize sanitizer.def builtins if the FE hasn't initialized them. */
void
initialize_sanitizer_builtins (void)
{
tree decl;
if (builtin_decl_implicit_p (BUILT_IN_ASAN_INIT))
return;
tree BT_FN_VOID = build_function_type_list (void_type_node, NULL_TREE);
tree BT_FN_VOID_PTR
= build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
tree BT_FN_VOID_PTR_PTRMODE
= build_function_type_list (void_type_node, ptr_type_node,
build_nonstandard_integer_type (POINTER_SIZE,
1), NULL_TREE);
tree BT_FN_VOID_INT
= build_function_type_list (void_type_node, integer_type_node, NULL_TREE);
tree BT_FN_BOOL_VPTR_PTR_IX_INT_INT[5];
tree BT_FN_IX_CONST_VPTR_INT[5];
tree BT_FN_IX_VPTR_IX_INT[5];
tree BT_FN_VOID_VPTR_IX_INT[5];
tree vptr
= build_pointer_type (build_qualified_type (void_type_node,
TYPE_QUAL_VOLATILE));
tree cvptr
= build_pointer_type (build_qualified_type (void_type_node,
TYPE_QUAL_VOLATILE
|TYPE_QUAL_CONST));
tree boolt
= lang_hooks.types.type_for_size (BOOL_TYPE_SIZE, 1);
int i;
for (i = 0; i < 5; i++)
{
tree ix = build_nonstandard_integer_type (BITS_PER_UNIT * (1 << i), 1);
BT_FN_BOOL_VPTR_PTR_IX_INT_INT[i]
= build_function_type_list (boolt, vptr, ptr_type_node, ix,
integer_type_node, integer_type_node,
NULL_TREE);
BT_FN_IX_CONST_VPTR_INT[i]
= build_function_type_list (ix, cvptr, integer_type_node, NULL_TREE);
BT_FN_IX_VPTR_IX_INT[i]
= build_function_type_list (ix, vptr, ix, integer_type_node,
NULL_TREE);
BT_FN_VOID_VPTR_IX_INT[i]
= build_function_type_list (void_type_node, vptr, ix,
integer_type_node, NULL_TREE);
}
#define BT_FN_BOOL_VPTR_PTR_I1_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[0]
#define BT_FN_I1_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[0]
#define BT_FN_I1_VPTR_I1_INT BT_FN_IX_VPTR_IX_INT[0]
#define BT_FN_VOID_VPTR_I1_INT BT_FN_VOID_VPTR_IX_INT[0]
#define BT_FN_BOOL_VPTR_PTR_I2_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[1]
#define BT_FN_I2_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[1]
#define BT_FN_I2_VPTR_I2_INT BT_FN_IX_VPTR_IX_INT[1]
#define BT_FN_VOID_VPTR_I2_INT BT_FN_VOID_VPTR_IX_INT[1]
#define BT_FN_BOOL_VPTR_PTR_I4_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[2]
#define BT_FN_I4_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[2]
#define BT_FN_I4_VPTR_I4_INT BT_FN_IX_VPTR_IX_INT[2]
#define BT_FN_VOID_VPTR_I4_INT BT_FN_VOID_VPTR_IX_INT[2]
#define BT_FN_BOOL_VPTR_PTR_I8_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[3]
#define BT_FN_I8_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[3]
#define BT_FN_I8_VPTR_I8_INT BT_FN_IX_VPTR_IX_INT[3]
#define BT_FN_VOID_VPTR_I8_INT BT_FN_VOID_VPTR_IX_INT[3]
#define BT_FN_BOOL_VPTR_PTR_I16_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[4]
#define BT_FN_I16_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[4]
#define BT_FN_I16_VPTR_I16_INT BT_FN_IX_VPTR_IX_INT[4]
#define BT_FN_VOID_VPTR_I16_INT BT_FN_VOID_VPTR_IX_INT[4]
#undef ATTR_NOTHROW_LEAF_LIST
#define ATTR_NOTHROW_LEAF_LIST ECF_NOTHROW | ECF_LEAF
#undef ATTR_TMPURE_NOTHROW_LEAF_LIST
#define ATTR_TMPURE_NOTHROW_LEAF_LIST ECF_TM_PURE | ATTR_NOTHROW_LEAF_LIST
#undef ATTR_NORETURN_NOTHROW_LEAF_LIST
#define ATTR_NORETURN_NOTHROW_LEAF_LIST ECF_NORETURN | ATTR_NOTHROW_LEAF_LIST
#undef ATTR_TMPURE_NORETURN_NOTHROW_LEAF_LIST
#define ATTR_TMPURE_NORETURN_NOTHROW_LEAF_LIST \
ECF_TM_PURE | ATTR_NORETURN_NOTHROW_LEAF_LIST
#undef DEF_SANITIZER_BUILTIN
#define DEF_SANITIZER_BUILTIN(ENUM, NAME, TYPE, ATTRS) \
decl = add_builtin_function ("__builtin_" NAME, TYPE, ENUM, \
BUILT_IN_NORMAL, NAME, NULL_TREE); \
set_call_expr_flags (decl, ATTRS); \
set_builtin_decl (ENUM, decl, true);
#include "sanitizer.def"
#undef DEF_SANITIZER_BUILTIN
}
/* Called via htab_traverse. Count number of emitted
STRING_CSTs in the constant hash table. */
static int
count_string_csts (void **slot, void *data)
{
struct constant_descriptor_tree *desc
= (struct constant_descriptor_tree *) *slot;
if (TREE_CODE (desc->value) == STRING_CST
&& TREE_ASM_WRITTEN (desc->value)
&& asan_protect_global (desc->value))
++*((unsigned HOST_WIDE_INT *) data);
return 1;
}
/* Helper structure to pass two parameters to
add_string_csts. */
struct asan_add_string_csts_data
{
tree type;
vec<constructor_elt, va_gc> *v;
};
/* Called via htab_traverse. Call asan_add_global
on emitted STRING_CSTs from the constant hash table. */
static int
add_string_csts (void **slot, void *data)
{
struct constant_descriptor_tree *desc
= (struct constant_descriptor_tree *) *slot;
if (TREE_CODE (desc->value) == STRING_CST
&& TREE_ASM_WRITTEN (desc->value)
&& asan_protect_global (desc->value))
{
struct asan_add_string_csts_data *aascd
= (struct asan_add_string_csts_data *) data;
asan_add_global (SYMBOL_REF_DECL (XEXP (desc->rtl, 0)),
aascd->type, aascd->v);
}
return 1;
}
/* Needs to be GTY(()), because cgraph_build_static_cdtor may
invoke ggc_collect. */
static GTY(()) tree asan_ctor_statements;
/* Module-level instrumentation.
- Insert __asan_init() into the list of CTORs.
- TODO: insert redzones around globals.
*/
void
asan_finish_file (void)
{
struct varpool_node *vnode;
unsigned HOST_WIDE_INT gcount = 0;
if (shadow_ptr_types[0] == NULL_TREE)
asan_init_shadow_ptr_types ();
/* Avoid instrumenting code in the asan ctors/dtors.
We don't need to insert padding after the description strings,
nor after .LASAN* array. */
flag_asan = 0;
tree fn = builtin_decl_implicit (BUILT_IN_ASAN_INIT);
append_to_statement_list (build_call_expr (fn, 0), &asan_ctor_statements);
FOR_EACH_DEFINED_VARIABLE (vnode)
if (TREE_ASM_WRITTEN (vnode->symbol.decl)
&& asan_protect_global (vnode->symbol.decl))
++gcount;
htab_t const_desc_htab = constant_pool_htab ();
htab_traverse (const_desc_htab, count_string_csts, &gcount);
if (gcount)
{
tree type = asan_global_struct (), var, ctor;
tree uptr = build_nonstandard_integer_type (POINTER_SIZE, 1);
tree dtor_statements = NULL_TREE;
vec<constructor_elt, va_gc> *v;
char buf[20];
type = build_array_type_nelts (type, gcount);
ASM_GENERATE_INTERNAL_LABEL (buf, "LASAN", 0);
var = build_decl (UNKNOWN_LOCATION, VAR_DECL, get_identifier (buf),
type);
TREE_STATIC (var) = 1;
TREE_PUBLIC (var) = 0;
DECL_ARTIFICIAL (var) = 1;
DECL_IGNORED_P (var) = 1;
vec_alloc (v, gcount);
FOR_EACH_DEFINED_VARIABLE (vnode)
if (TREE_ASM_WRITTEN (vnode->symbol.decl)
&& asan_protect_global (vnode->symbol.decl))
asan_add_global (vnode->symbol.decl, TREE_TYPE (type), v);
struct asan_add_string_csts_data aascd;
aascd.type = TREE_TYPE (type);
aascd.v = v;
htab_traverse (const_desc_htab, add_string_csts, &aascd);
ctor = build_constructor (type, v);
TREE_CONSTANT (ctor) = 1;
TREE_STATIC (ctor) = 1;
DECL_INITIAL (var) = ctor;
varpool_assemble_decl (varpool_node_for_decl (var));
fn = builtin_decl_implicit (BUILT_IN_ASAN_REGISTER_GLOBALS);
append_to_statement_list (build_call_expr (fn, 2,
build_fold_addr_expr (var),
build_int_cst (uptr, gcount)),
&asan_ctor_statements);
fn = builtin_decl_implicit (BUILT_IN_ASAN_UNREGISTER_GLOBALS);
append_to_statement_list (build_call_expr (fn, 2,
build_fold_addr_expr (var),
build_int_cst (uptr, gcount)),
&dtor_statements);
cgraph_build_static_cdtor ('D', dtor_statements,
MAX_RESERVED_INIT_PRIORITY - 1);
}
cgraph_build_static_cdtor ('I', asan_ctor_statements,
MAX_RESERVED_INIT_PRIORITY - 1);
flag_asan = 1;
}
/* Instrument the current function. */
static unsigned int
asan_instrument (void)
{
if (shadow_ptr_types[0] == NULL_TREE)
asan_init_shadow_ptr_types ();
transform_statements ();
return 0;
}
static bool
gate_asan (void)
{
return flag_asan != 0
&& !lookup_attribute ("no_sanitize_address",
DECL_ATTRIBUTES (current_function_decl));
}
struct gimple_opt_pass pass_asan =
{
{
GIMPLE_PASS,
"asan", /* name */
OPTGROUP_NONE, /* optinfo_flags */
gate_asan, /* gate */
asan_instrument, /* execute */
NULL, /* sub */
NULL, /* next */
0, /* static_pass_number */
TV_NONE, /* tv_id */
PROP_ssa | PROP_cfg | PROP_gimple_leh,/* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_verify_flow | TODO_verify_stmts
| TODO_update_ssa /* todo_flags_finish */
}
};
static bool
gate_asan_O0 (void)
{
return !optimize && gate_asan ();
}
struct gimple_opt_pass pass_asan_O0 =
{
{
GIMPLE_PASS,
"asan0", /* name */
OPTGROUP_NONE, /* optinfo_flags */
gate_asan_O0, /* gate */
asan_instrument, /* execute */
NULL, /* sub */
NULL, /* next */
0, /* static_pass_number */
TV_NONE, /* tv_id */
PROP_ssa | PROP_cfg | PROP_gimple_leh,/* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_verify_flow | TODO_verify_stmts
| TODO_update_ssa /* todo_flags_finish */
}
};
#include "gt-asan.h"
|