summaryrefslogtreecommitdiff
path: root/gcc/analyzer/region-model.cc
blob: 0ca454a0f9c567918f6125245733e11958726b68 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
/* Classes for modeling the state of memory.
   Copyright (C) 2019-2022 Free Software Foundation, Inc.
   Contributed by David Malcolm <dmalcolm@redhat.com>.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.

GCC is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#define INCLUDE_MEMORY
#include "system.h"
#include "coretypes.h"
#include "make-unique.h"
#include "tree.h"
#include "function.h"
#include "basic-block.h"
#include "gimple.h"
#include "gimple-iterator.h"
#include "diagnostic-core.h"
#include "graphviz.h"
#include "options.h"
#include "cgraph.h"
#include "tree-dfa.h"
#include "stringpool.h"
#include "convert.h"
#include "target.h"
#include "fold-const.h"
#include "tree-pretty-print.h"
#include "diagnostic-color.h"
#include "diagnostic-metadata.h"
#include "bitmap.h"
#include "selftest.h"
#include "analyzer/analyzer.h"
#include "analyzer/analyzer-logging.h"
#include "ordered-hash-map.h"
#include "options.h"
#include "cgraph.h"
#include "cfg.h"
#include "analyzer/supergraph.h"
#include "sbitmap.h"
#include "analyzer/call-string.h"
#include "analyzer/program-point.h"
#include "analyzer/store.h"
#include "analyzer/region-model.h"
#include "analyzer/constraint-manager.h"
#include "diagnostic-event-id.h"
#include "analyzer/sm.h"
#include "diagnostic-event-id.h"
#include "analyzer/sm.h"
#include "analyzer/pending-diagnostic.h"
#include "analyzer/region-model-reachability.h"
#include "analyzer/analyzer-selftests.h"
#include "analyzer/program-state.h"
#include "analyzer/call-summary.h"
#include "stor-layout.h"
#include "attribs.h"
#include "tree-object-size.h"
#include "gimple-ssa.h"
#include "tree-phinodes.h"
#include "tree-ssa-operands.h"
#include "ssa-iterators.h"
#include "calls.h"
#include "is-a.h"
#include "gcc-rich-location.h"

#if ENABLE_ANALYZER

namespace ana {

/* Dump T to PP in language-independent form, for debugging/logging/dumping
   purposes.  */

void
dump_tree (pretty_printer *pp, tree t)
{
  dump_generic_node (pp, t, 0, TDF_SLIM, 0);
}

/* Dump T to PP in language-independent form in quotes, for
   debugging/logging/dumping purposes.  */

void
dump_quoted_tree (pretty_printer *pp, tree t)
{
  pp_begin_quote (pp, pp_show_color (pp));
  dump_tree (pp, t);
  pp_end_quote (pp, pp_show_color (pp));
}

/* Equivalent to pp_printf (pp, "%qT", t), to avoid nesting pp_printf
   calls within other pp_printf calls.

   default_tree_printer handles 'T' and some other codes by calling
     dump_generic_node (pp, t, 0, TDF_SLIM, 0);
   dump_generic_node calls pp_printf in various places, leading to
   garbled output.

   Ideally pp_printf could be made to be reentrant, but in the meantime
   this function provides a workaround.  */

void
print_quoted_type (pretty_printer *pp, tree t)
{
  pp_begin_quote (pp, pp_show_color (pp));
  dump_generic_node (pp, t, 0, TDF_SLIM, 0);
  pp_end_quote (pp, pp_show_color (pp));
}

/* class region_to_value_map.  */

/* Assignment operator for region_to_value_map.  */

region_to_value_map &
region_to_value_map::operator= (const region_to_value_map &other)
{
  m_hash_map.empty ();
  for (auto iter : other.m_hash_map)
    {
      const region *reg = iter.first;
      const svalue *sval = iter.second;
      m_hash_map.put (reg, sval);
    }
  return *this;
}

/* Equality operator for region_to_value_map.  */

bool
region_to_value_map::operator== (const region_to_value_map &other) const
{
  if (m_hash_map.elements () != other.m_hash_map.elements ())
    return false;

  for (auto iter : *this)
    {
      const region *reg = iter.first;
      const svalue *sval = iter.second;
      const svalue * const *other_slot = other.get (reg);
      if (other_slot == NULL)
	return false;
      if (sval != *other_slot)
	return false;
    }

  return true;
}

/* Dump this object to PP.  */

void
region_to_value_map::dump_to_pp (pretty_printer *pp, bool simple,
				 bool multiline) const
{
  auto_vec<const region *> regs;
  for (iterator iter = begin (); iter != end (); ++iter)
    regs.safe_push ((*iter).first);
  regs.qsort (region::cmp_ptr_ptr);
  if (multiline)
    pp_newline (pp);
  else
    pp_string (pp, " {");
  unsigned i;
  const region *reg;
  FOR_EACH_VEC_ELT (regs, i, reg)
    {
      if (multiline)
	pp_string (pp, "  ");
      else if (i > 0)
	pp_string (pp, ", ");
      reg->dump_to_pp (pp, simple);
      pp_string (pp, ": ");
      const svalue *sval = *get (reg);
      sval->dump_to_pp (pp, true);
      if (multiline)
	pp_newline (pp);
    }
  if (!multiline)
    pp_string (pp, "}");
}

/* Dump this object to stderr.  */

DEBUG_FUNCTION void
region_to_value_map::dump (bool simple) const
{
  pretty_printer pp;
  pp_format_decoder (&pp) = default_tree_printer;
  pp_show_color (&pp) = pp_show_color (global_dc->printer);
  pp.buffer->stream = stderr;
  dump_to_pp (&pp, simple, true);
  pp_newline (&pp);
  pp_flush (&pp);
}


/* Attempt to merge THIS with OTHER, writing the result
   to OUT.

   For now, write (region, value) mappings that are in common between THIS
   and OTHER to OUT, effectively taking the intersection, rather than
   rejecting differences.  */

bool
region_to_value_map::can_merge_with_p (const region_to_value_map &other,
				       region_to_value_map *out) const
{
  for (auto iter : *this)
    {
      const region *iter_reg = iter.first;
      const svalue *iter_sval = iter.second;
      const svalue * const * other_slot = other.get (iter_reg);
      if (other_slot)
	if (iter_sval == *other_slot)
	  out->put (iter_reg, iter_sval);
    }
  return true;
}

/* Purge any state involving SVAL.  */

void
region_to_value_map::purge_state_involving (const svalue *sval)
{
  auto_vec<const region *> to_purge;
  for (auto iter : *this)
    {
      const region *iter_reg = iter.first;
      const svalue *iter_sval = iter.second;
      if (iter_reg->involves_p (sval) || iter_sval->involves_p (sval))
	to_purge.safe_push (iter_reg);
    }
  for (auto iter : to_purge)
    m_hash_map.remove (iter);
}

/* class region_model.  */

/* Ctor for region_model: construct an "empty" model.  */

region_model::region_model (region_model_manager *mgr)
: m_mgr (mgr), m_store (), m_current_frame (NULL),
  m_dynamic_extents ()
{
  m_constraints = new constraint_manager (mgr);
}

/* region_model's copy ctor.  */

region_model::region_model (const region_model &other)
: m_mgr (other.m_mgr), m_store (other.m_store),
  m_constraints (new constraint_manager (*other.m_constraints)),
  m_current_frame (other.m_current_frame),
  m_dynamic_extents (other.m_dynamic_extents)
{
}

/* region_model's dtor.  */

region_model::~region_model ()
{
  delete m_constraints;
}

/* region_model's assignment operator.  */

region_model &
region_model::operator= (const region_model &other)
{
  /* m_mgr is const.  */
  gcc_assert (m_mgr == other.m_mgr);

  m_store = other.m_store;

  delete m_constraints;
  m_constraints = new constraint_manager (*other.m_constraints);

  m_current_frame = other.m_current_frame;

  m_dynamic_extents = other.m_dynamic_extents;

  return *this;
}

/* Equality operator for region_model.

   Amongst other things this directly compares the stores and the constraint
   managers, so for this to be meaningful both this and OTHER should
   have been canonicalized.  */

bool
region_model::operator== (const region_model &other) const
{
  /* We can only compare instances that use the same manager.  */
  gcc_assert (m_mgr == other.m_mgr);

  if (m_store != other.m_store)
    return false;

  if (*m_constraints != *other.m_constraints)
    return false;

  if (m_current_frame != other.m_current_frame)
    return false;

  if (m_dynamic_extents != other.m_dynamic_extents)
    return false;

  gcc_checking_assert (hash () == other.hash ());

  return true;
}

/* Generate a hash value for this region_model.  */

hashval_t
region_model::hash () const
{
  hashval_t result = m_store.hash ();
  result ^= m_constraints->hash ();
  return result;
}

/* Dump a representation of this model to PP, showing the
   stack, the store, and any constraints.
   Use SIMPLE to control how svalues and regions are printed.  */

void
region_model::dump_to_pp (pretty_printer *pp, bool simple,
			  bool multiline) const
{
  /* Dump stack.  */
  pp_printf (pp, "stack depth: %i", get_stack_depth ());
  if (multiline)
    pp_newline (pp);
  else
    pp_string (pp, " {");
  for (const frame_region *iter_frame = m_current_frame; iter_frame;
       iter_frame = iter_frame->get_calling_frame ())
    {
      if (multiline)
	pp_string (pp, "  ");
      else if (iter_frame != m_current_frame)
	pp_string (pp, ", ");
      pp_printf (pp, "frame (index %i): ", iter_frame->get_index ());
      iter_frame->dump_to_pp (pp, simple);
      if (multiline)
	pp_newline (pp);
    }
  if (!multiline)
    pp_string (pp, "}");

  /* Dump store.  */
  if (!multiline)
    pp_string (pp, ", {");
  m_store.dump_to_pp (pp, simple, multiline,
		      m_mgr->get_store_manager ());
  if (!multiline)
    pp_string (pp, "}");

  /* Dump constraints.  */
  pp_string (pp, "constraint_manager:");
  if (multiline)
    pp_newline (pp);
  else
    pp_string (pp, " {");
  m_constraints->dump_to_pp (pp, multiline);
  if (!multiline)
    pp_string (pp, "}");

  /* Dump sizes of dynamic regions, if any are known.  */
  if (!m_dynamic_extents.is_empty ())
    {
      pp_string (pp, "dynamic_extents:");
      m_dynamic_extents.dump_to_pp (pp, simple, multiline);
    }
}

/* Dump a representation of this model to FILE.  */

void
region_model::dump (FILE *fp, bool simple, bool multiline) const
{
  pretty_printer pp;
  pp_format_decoder (&pp) = default_tree_printer;
  pp_show_color (&pp) = pp_show_color (global_dc->printer);
  pp.buffer->stream = fp;
  dump_to_pp (&pp, simple, multiline);
  pp_newline (&pp);
  pp_flush (&pp);
}

/* Dump a multiline representation of this model to stderr.  */

DEBUG_FUNCTION void
region_model::dump (bool simple) const
{
  dump (stderr, simple, true);
}

/* Dump a multiline representation of this model to stderr.  */

DEBUG_FUNCTION void
region_model::debug () const
{
  dump (true);
}

/* Assert that this object is valid.  */

void
region_model::validate () const
{
  m_store.validate ();
}

/* Canonicalize the store and constraints, to maximize the chance of
   equality between region_model instances.  */

void
region_model::canonicalize ()
{
  m_store.canonicalize (m_mgr->get_store_manager ());
  m_constraints->canonicalize ();
}

/* Return true if this region_model is in canonical form.  */

bool
region_model::canonicalized_p () const
{
  region_model copy (*this);
  copy.canonicalize ();
  return *this == copy;
}

/* See the comment for store::loop_replay_fixup.  */

void
region_model::loop_replay_fixup (const region_model *dst_state)
{
  m_store.loop_replay_fixup (dst_state->get_store (), m_mgr);
}

/* A subclass of pending_diagnostic for complaining about uses of
   poisoned values.  */

class poisoned_value_diagnostic
: public pending_diagnostic_subclass<poisoned_value_diagnostic>
{
public:
  poisoned_value_diagnostic (tree expr, enum poison_kind pkind,
			     const region *src_region)
  : m_expr (expr), m_pkind (pkind),
    m_src_region (src_region)
  {}

  const char *get_kind () const final override { return "poisoned_value_diagnostic"; }

  bool use_of_uninit_p () const final override
  {
    return m_pkind == POISON_KIND_UNINIT;
  }

  bool operator== (const poisoned_value_diagnostic &other) const
  {
    return (m_expr == other.m_expr
	    && m_pkind == other.m_pkind
	    && m_src_region == other.m_src_region);
  }

  int get_controlling_option () const final override
  {
    switch (m_pkind)
      {
      default:
	gcc_unreachable ();
      case POISON_KIND_UNINIT:
	return OPT_Wanalyzer_use_of_uninitialized_value;
      case POISON_KIND_FREED:
	return OPT_Wanalyzer_use_after_free;
      case POISON_KIND_POPPED_STACK:
	return OPT_Wanalyzer_use_of_pointer_in_stale_stack_frame;
      }
  }

  bool emit (rich_location *rich_loc) final override
  {
    switch (m_pkind)
      {
      default:
	gcc_unreachable ();
      case POISON_KIND_UNINIT:
	{
	  diagnostic_metadata m;
	  m.add_cwe (457); /* "CWE-457: Use of Uninitialized Variable".  */
	  return warning_meta (rich_loc, m, get_controlling_option (),
			       "use of uninitialized value %qE",
			       m_expr);
	}
	break;
      case POISON_KIND_FREED:
	{
	  diagnostic_metadata m;
	  m.add_cwe (416); /* "CWE-416: Use After Free".  */
	  return warning_meta (rich_loc, m, get_controlling_option (),
			       "use after %<free%> of %qE",
			       m_expr);
	}
	break;
      case POISON_KIND_POPPED_STACK:
	{
	  /* TODO: which CWE?  */
	  return warning_at
	    (rich_loc, get_controlling_option (),
	     "dereferencing pointer %qE to within stale stack frame",
	     m_expr);
	}
	break;
      }
  }

  label_text describe_final_event (const evdesc::final_event &ev) final override
  {
    switch (m_pkind)
      {
      default:
	gcc_unreachable ();
      case POISON_KIND_UNINIT:
	return ev.formatted_print ("use of uninitialized value %qE here",
				   m_expr);
      case POISON_KIND_FREED:
	return ev.formatted_print ("use after %<free%> of %qE here",
				   m_expr);
      case POISON_KIND_POPPED_STACK:
	return ev.formatted_print
	  ("dereferencing pointer %qE to within stale stack frame",
	   m_expr);
      }
  }

  void mark_interesting_stuff (interesting_t *interest) final override
  {
    if (m_src_region)
      interest->add_region_creation (m_src_region);
  }

private:
  tree m_expr;
  enum poison_kind m_pkind;
  const region *m_src_region;
};

/* A subclass of pending_diagnostic for complaining about shifts
   by negative counts.  */

class shift_count_negative_diagnostic
: public pending_diagnostic_subclass<shift_count_negative_diagnostic>
{
public:
  shift_count_negative_diagnostic (const gassign *assign, tree count_cst)
  : m_assign (assign), m_count_cst (count_cst)
  {}

  const char *get_kind () const final override
  {
    return "shift_count_negative_diagnostic";
  }

  bool operator== (const shift_count_negative_diagnostic &other) const
  {
    return (m_assign == other.m_assign
	    && same_tree_p (m_count_cst, other.m_count_cst));
  }

  int get_controlling_option () const final override
  {
    return OPT_Wanalyzer_shift_count_negative;
  }

  bool emit (rich_location *rich_loc) final override
  {
    return warning_at (rich_loc, get_controlling_option (),
		       "shift by negative count (%qE)", m_count_cst);
  }

  label_text describe_final_event (const evdesc::final_event &ev) final override
  {
    return ev.formatted_print ("shift by negative amount here (%qE)", m_count_cst);
  }

private:
  const gassign *m_assign;
  tree m_count_cst;
};

/* A subclass of pending_diagnostic for complaining about shifts
   by counts >= the width of the operand type.  */

class shift_count_overflow_diagnostic
: public pending_diagnostic_subclass<shift_count_overflow_diagnostic>
{
public:
  shift_count_overflow_diagnostic (const gassign *assign,
				   int operand_precision,
				   tree count_cst)
  : m_assign (assign), m_operand_precision (operand_precision),
    m_count_cst (count_cst)
  {}

  const char *get_kind () const final override
  {
    return "shift_count_overflow_diagnostic";
  }

  bool operator== (const shift_count_overflow_diagnostic &other) const
  {
    return (m_assign == other.m_assign
	    && m_operand_precision == other.m_operand_precision
	    && same_tree_p (m_count_cst, other.m_count_cst));
  }

  int get_controlling_option () const final override
  {
    return OPT_Wanalyzer_shift_count_overflow;
  }

  bool emit (rich_location *rich_loc) final override
  {
    return warning_at (rich_loc, get_controlling_option (),
		       "shift by count (%qE) >= precision of type (%qi)",
		       m_count_cst, m_operand_precision);
  }

  label_text describe_final_event (const evdesc::final_event &ev) final override
  {
    return ev.formatted_print ("shift by count %qE here", m_count_cst);
  }

private:
  const gassign *m_assign;
  int m_operand_precision;
  tree m_count_cst;
};

/* If ASSIGN is a stmt that can be modelled via
     set_value (lhs_reg, SVALUE, CTXT)
   for some SVALUE, get the SVALUE.
   Otherwise return NULL.  */

const svalue *
region_model::get_gassign_result (const gassign *assign,
				   region_model_context *ctxt)
{
  tree lhs = gimple_assign_lhs (assign);
  tree rhs1 = gimple_assign_rhs1 (assign);
  enum tree_code op = gimple_assign_rhs_code (assign);
  switch (op)
    {
    default:
      return NULL;

    case POINTER_PLUS_EXPR:
      {
	/* e.g. "_1 = a_10(D) + 12;" */
	tree ptr = rhs1;
	tree offset = gimple_assign_rhs2 (assign);

	const svalue *ptr_sval = get_rvalue (ptr, ctxt);
	const svalue *offset_sval = get_rvalue (offset, ctxt);
	/* Quoting tree.def, "the second operand [of a POINTER_PLUS_EXPR]
	   is an integer of type sizetype".  */
	offset_sval = m_mgr->get_or_create_cast (size_type_node, offset_sval);

	const svalue *sval_binop
	  = m_mgr->get_or_create_binop (TREE_TYPE (lhs), op,
					ptr_sval, offset_sval);
	return sval_binop;
      }
      break;

    case POINTER_DIFF_EXPR:
      {
	/* e.g. "_1 = p_2(D) - q_3(D);".  */
	tree rhs2 = gimple_assign_rhs2 (assign);
	const svalue *rhs1_sval = get_rvalue (rhs1, ctxt);
	const svalue *rhs2_sval = get_rvalue (rhs2, ctxt);

	// TODO: perhaps fold to zero if they're known to be equal?

	const svalue *sval_binop
	  = m_mgr->get_or_create_binop (TREE_TYPE (lhs), op,
					rhs1_sval, rhs2_sval);
	return sval_binop;
      }
      break;

    /* Assignments of the form
	set_value (lvalue (LHS), rvalue (EXPR))
       for various EXPR.
       We already have the lvalue for the LHS above, as "lhs_reg".  */
    case ADDR_EXPR: /* LHS = &RHS;  */
    case BIT_FIELD_REF:
    case COMPONENT_REF: /* LHS = op0.op1;  */
    case MEM_REF:
    case REAL_CST:
    case COMPLEX_CST:
    case VECTOR_CST:
    case INTEGER_CST:
    case ARRAY_REF:
    case SSA_NAME: /* LHS = VAR; */
    case VAR_DECL: /* LHS = VAR; */
    case PARM_DECL:/* LHS = VAR; */
    case REALPART_EXPR:
    case IMAGPART_EXPR:
      return get_rvalue (rhs1, ctxt);

    case ABS_EXPR:
    case ABSU_EXPR:
    case CONJ_EXPR:
    case BIT_NOT_EXPR:
    case FIX_TRUNC_EXPR:
    case FLOAT_EXPR:
    case NEGATE_EXPR:
    case NOP_EXPR:
    case VIEW_CONVERT_EXPR:
      {
	/* Unary ops.  */
	const svalue *rhs_sval = get_rvalue (rhs1, ctxt);
	const svalue *sval_unaryop
	  = m_mgr->get_or_create_unaryop (TREE_TYPE (lhs), op, rhs_sval);
	return sval_unaryop;
      }

    case EQ_EXPR:
    case GE_EXPR:
    case LE_EXPR:
    case NE_EXPR:
    case GT_EXPR:
    case LT_EXPR:
    case UNORDERED_EXPR:
    case ORDERED_EXPR:
      {
	tree rhs2 = gimple_assign_rhs2 (assign);

	const svalue *rhs1_sval = get_rvalue (rhs1, ctxt);
	const svalue *rhs2_sval = get_rvalue (rhs2, ctxt);

	if (TREE_TYPE (lhs) == boolean_type_node)
	  {
	    /* Consider constraints between svalues.  */
	    tristate t = eval_condition (rhs1_sval, op, rhs2_sval);
	    if (t.is_known ())
	      return m_mgr->get_or_create_constant_svalue
		(t.is_true () ? boolean_true_node : boolean_false_node);
	  }

	/* Otherwise, generate a symbolic binary op.  */
	const svalue *sval_binop
	  = m_mgr->get_or_create_binop (TREE_TYPE (lhs), op,
					rhs1_sval, rhs2_sval);
	return sval_binop;
      }
      break;

    case PLUS_EXPR:
    case MINUS_EXPR:
    case MULT_EXPR:
    case MULT_HIGHPART_EXPR:
    case TRUNC_DIV_EXPR:
    case CEIL_DIV_EXPR:
    case FLOOR_DIV_EXPR:
    case ROUND_DIV_EXPR:
    case TRUNC_MOD_EXPR:
    case CEIL_MOD_EXPR:
    case FLOOR_MOD_EXPR:
    case ROUND_MOD_EXPR:
    case RDIV_EXPR:
    case EXACT_DIV_EXPR:
    case LSHIFT_EXPR:
    case RSHIFT_EXPR:
    case LROTATE_EXPR:
    case RROTATE_EXPR:
    case BIT_IOR_EXPR:
    case BIT_XOR_EXPR:
    case BIT_AND_EXPR:
    case MIN_EXPR:
    case MAX_EXPR:
    case COMPLEX_EXPR:
      {
	/* Binary ops.  */
	tree rhs2 = gimple_assign_rhs2 (assign);

	const svalue *rhs1_sval = get_rvalue (rhs1, ctxt);
	const svalue *rhs2_sval = get_rvalue (rhs2, ctxt);

	if (ctxt && (op == LSHIFT_EXPR || op == RSHIFT_EXPR))
	  {
	    /* "INT34-C. Do not shift an expression by a negative number of bits
	       or by greater than or equal to the number of bits that exist in
	       the operand."  */
	    if (const tree rhs2_cst = rhs2_sval->maybe_get_constant ())
	      if (TREE_CODE (rhs2_cst) == INTEGER_CST)
		{
		  if (tree_int_cst_sgn (rhs2_cst) < 0)
		    ctxt->warn
		      (make_unique<shift_count_negative_diagnostic>
			 (assign, rhs2_cst));
		  else if (compare_tree_int (rhs2_cst,
					     TYPE_PRECISION (TREE_TYPE (rhs1)))
			   >= 0)
		    ctxt->warn
		      (make_unique<shift_count_overflow_diagnostic>
			 (assign,
			  int (TYPE_PRECISION (TREE_TYPE (rhs1))),
			  rhs2_cst));
		}
	  }

	const svalue *sval_binop
	  = m_mgr->get_or_create_binop (TREE_TYPE (lhs), op,
					rhs1_sval, rhs2_sval);
	return sval_binop;
      }

    /* Vector expressions.  In theory we could implement these elementwise,
       but for now, simply return unknown values.  */
    case VEC_DUPLICATE_EXPR:
    case VEC_SERIES_EXPR:
    case VEC_COND_EXPR:
    case VEC_PERM_EXPR:
    case VEC_WIDEN_MULT_HI_EXPR:
    case VEC_WIDEN_MULT_LO_EXPR:
    case VEC_WIDEN_MULT_EVEN_EXPR:
    case VEC_WIDEN_MULT_ODD_EXPR:
    case VEC_UNPACK_HI_EXPR:
    case VEC_UNPACK_LO_EXPR:
    case VEC_UNPACK_FLOAT_HI_EXPR:
    case VEC_UNPACK_FLOAT_LO_EXPR:
    case VEC_UNPACK_FIX_TRUNC_HI_EXPR:
    case VEC_UNPACK_FIX_TRUNC_LO_EXPR:
    case VEC_PACK_TRUNC_EXPR:
    case VEC_PACK_SAT_EXPR:
    case VEC_PACK_FIX_TRUNC_EXPR:
    case VEC_PACK_FLOAT_EXPR:
    case VEC_WIDEN_LSHIFT_HI_EXPR:
    case VEC_WIDEN_LSHIFT_LO_EXPR:
      return m_mgr->get_or_create_unknown_svalue (TREE_TYPE (lhs));
    }
}

/* Workaround for discarding certain false positives from
   -Wanalyzer-use-of-uninitialized-value
   of the form:
     ((A OR-IF B) OR-IF C)
   and:
     ((A AND-IF B) AND-IF C)
   where evaluating B is redundant, but could involve simple accesses of
   uninitialized locals.

   When optimization is turned on the FE can immediately fold compound
   conditionals.  Specifically, c_parser_condition parses this condition:
     ((A OR-IF B) OR-IF C)
   and calls c_fully_fold on the condition.
   Within c_fully_fold, fold_truth_andor is called, which bails when
   optimization is off, but if any optimization is turned on can convert the
     ((A OR-IF B) OR-IF C)
   into:
     ((A OR B) OR_IF C)
   for sufficiently simple B
   i.e. the inner OR-IF becomes an OR.
   At gimplification time the inner OR becomes BIT_IOR_EXPR (in gimplify_expr),
   giving this for the inner condition:
      tmp = A | B;
      if (tmp)
   thus effectively synthesizing a redundant access of B when optimization
   is turned on, when compared to:
      if (A) goto L1; else goto L4;
  L1: if (B) goto L2; else goto L4;
  L2: if (C) goto L3; else goto L4;
   for the unoptimized case.

   Return true if CTXT appears to be  handling such a short-circuitable stmt,
   such as the def-stmt for B for the:
      tmp = A | B;
   case above, for the case where A is true and thus B would have been
   short-circuited without optimization, using MODEL for the value of A.  */

static bool
within_short_circuited_stmt_p (const region_model *model,
			       const gassign *assign_stmt)
{
  /* We must have an assignment to a temporary of _Bool type.  */
  tree lhs = gimple_assign_lhs (assign_stmt);
  if (TREE_TYPE (lhs) != boolean_type_node)
    return false;
  if (TREE_CODE (lhs) != SSA_NAME)
    return false;
  if (SSA_NAME_VAR (lhs) != NULL_TREE)
    return false;

  /* The temporary bool must be used exactly once: as the second arg of
     a BIT_IOR_EXPR or BIT_AND_EXPR.  */
  use_operand_p use_op;
  gimple *use_stmt;
  if (!single_imm_use (lhs, &use_op, &use_stmt))
    return false;
  const gassign *use_assign = dyn_cast <const gassign *> (use_stmt);
  if (!use_assign)
    return false;
  enum tree_code op = gimple_assign_rhs_code (use_assign);
  if (!(op == BIT_IOR_EXPR ||op == BIT_AND_EXPR))
    return false;
  if (!(gimple_assign_rhs1 (use_assign) != lhs
	&& gimple_assign_rhs2 (use_assign) == lhs))
    return false;

  /* The first arg of the bitwise stmt must have a known value in MODEL
     that implies that the value of the second arg doesn't matter, i.e.
     1 for bitwise or, 0 for bitwise and.  */
  tree other_arg = gimple_assign_rhs1 (use_assign);
  /* Use a NULL ctxt here to avoid generating warnings.  */
  const svalue *other_arg_sval = model->get_rvalue (other_arg, NULL);
  tree other_arg_cst = other_arg_sval->maybe_get_constant ();
  if (!other_arg_cst)
    return false;
  switch (op)
    {
    default:
      gcc_unreachable ();
    case BIT_IOR_EXPR:
      if (zerop (other_arg_cst))
	return false;
      break;
    case BIT_AND_EXPR:
      if (!zerop (other_arg_cst))
	return false;
      break;
    }

  /* All tests passed.  We appear to be in a stmt that generates a boolean
     temporary with a value that won't matter.  */
  return true;
}

/* Workaround for discarding certain false positives from
   -Wanalyzer-use-of-uninitialized-value
   seen with -ftrivial-auto-var-init=.

   -ftrivial-auto-var-init= will generate calls to IFN_DEFERRED_INIT.

   If the address of the var is taken, gimplification will give us
   something like:

     _1 = .DEFERRED_INIT (4, 2, &"len"[0]);
     len = _1;

   The result of DEFERRED_INIT will be an uninit value; we don't
   want to emit a false positive for "len = _1;"

   Return true if ASSIGN_STMT is such a stmt.  */

static bool
due_to_ifn_deferred_init_p (const gassign *assign_stmt)

{
  /* We must have an assignment to a decl from an SSA name that's the
     result of a IFN_DEFERRED_INIT call.  */
  if (gimple_assign_rhs_code (assign_stmt) != SSA_NAME)
    return false;
  tree lhs = gimple_assign_lhs (assign_stmt);
  if (TREE_CODE (lhs) != VAR_DECL)
    return false;
  tree rhs = gimple_assign_rhs1 (assign_stmt);
  if (TREE_CODE (rhs) != SSA_NAME)
    return false;
  const gimple *def_stmt = SSA_NAME_DEF_STMT (rhs);
  const gcall *call = dyn_cast <const gcall *> (def_stmt);
  if (!call)
    return false;
  if (gimple_call_internal_p (call)
      && gimple_call_internal_fn (call) == IFN_DEFERRED_INIT)
    return true;
  return false;
}

/* Check for SVAL being poisoned, adding a warning to CTXT.
   Return SVAL, or, if a warning is added, another value, to avoid
   repeatedly complaining about the same poisoned value in followup code.  */

const svalue *
region_model::check_for_poison (const svalue *sval,
				tree expr,
				region_model_context *ctxt) const
{
  if (!ctxt)
    return sval;

  if (const poisoned_svalue *poisoned_sval = sval->dyn_cast_poisoned_svalue ())
    {
      enum poison_kind pkind = poisoned_sval->get_poison_kind ();

      /* Ignore uninitialized uses of empty types; there's nothing
	 to initialize.  */
      if (pkind == POISON_KIND_UNINIT
	  && sval->get_type ()
	  && is_empty_type (sval->get_type ()))
	return sval;

      if (pkind == POISON_KIND_UNINIT)
	if (const gimple *curr_stmt = ctxt->get_stmt ())
	  if (const gassign *assign_stmt
		= dyn_cast <const gassign *> (curr_stmt))
	    {
	      /* Special case to avoid certain false positives.  */
	      if (within_short_circuited_stmt_p (this, assign_stmt))
		return sval;

	      /* Special case to avoid false positive on
		 -ftrivial-auto-var-init=.  */
	      if (due_to_ifn_deferred_init_p (assign_stmt))
		return sval;
	  }

      /* If we have an SSA name for a temporary, we don't want to print
	 '<unknown>'.
	 Poisoned values are shared by type, and so we can't reconstruct
	 the tree other than via the def stmts, using
	 fixup_tree_for_diagnostic.  */
      tree diag_arg = fixup_tree_for_diagnostic (expr);
      const region *src_region = NULL;
      if (pkind == POISON_KIND_UNINIT)
	src_region = get_region_for_poisoned_expr (expr);
      if (ctxt->warn (make_unique<poisoned_value_diagnostic> (diag_arg,
							      pkind,
							      src_region)))
	{
	  /* We only want to report use of a poisoned value at the first
	     place it gets used; return an unknown value to avoid generating
	     a chain of followup warnings.  */
	  sval = m_mgr->get_or_create_unknown_svalue (sval->get_type ());
	}

      return sval;
    }

  return sval;
}

/* Attempt to get a region for describing EXPR, the source of region of
   a poisoned_svalue for use in a poisoned_value_diagnostic.
   Return NULL if there is no good region to use.  */

const region *
region_model::get_region_for_poisoned_expr (tree expr) const
{
  if (TREE_CODE (expr) == SSA_NAME)
    {
      tree decl = SSA_NAME_VAR (expr);
      if (decl && DECL_P (decl))
	expr = decl;
      else
	return NULL;
    }
  return get_lvalue (expr, NULL);
}

/* Update this model for the ASSIGN stmt, using CTXT to report any
   diagnostics.  */

void
region_model::on_assignment (const gassign *assign, region_model_context *ctxt)
{
  tree lhs = gimple_assign_lhs (assign);
  tree rhs1 = gimple_assign_rhs1 (assign);

  const region *lhs_reg = get_lvalue (lhs, ctxt);

  /* Most assignments are handled by:
       set_value (lhs_reg, SVALUE, CTXT)
     for some SVALUE.  */
  if (const svalue *sval = get_gassign_result (assign, ctxt))
    {
      tree expr = get_diagnostic_tree_for_gassign (assign);
      check_for_poison (sval, expr, ctxt);
      set_value (lhs_reg, sval, ctxt);
      return;
    }

  enum tree_code op = gimple_assign_rhs_code (assign);
  switch (op)
    {
    default:
      {
	if (0)
	  sorry_at (assign->location, "unhandled assignment op: %qs",
		    get_tree_code_name (op));
	const svalue *unknown_sval
	  = m_mgr->get_or_create_unknown_svalue (TREE_TYPE (lhs));
	set_value (lhs_reg, unknown_sval, ctxt);
      }
      break;

    case CONSTRUCTOR:
      {
	if (TREE_CLOBBER_P (rhs1))
	  {
	    /* e.g. "x ={v} {CLOBBER};"  */
	    clobber_region (lhs_reg);
	  }
	else
	  {
	    /* Any CONSTRUCTOR that survives to this point is either
	       just a zero-init of everything, or a vector.  */
	    if (!CONSTRUCTOR_NO_CLEARING (rhs1))
	      zero_fill_region (lhs_reg);
	    unsigned ix;
	    tree index;
	    tree val;
	    FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (rhs1), ix, index, val)
	      {
		gcc_assert (TREE_CODE (TREE_TYPE (rhs1)) == VECTOR_TYPE);
		if (!index)
		  index = build_int_cst (integer_type_node, ix);
		gcc_assert (TREE_CODE (index) == INTEGER_CST);
		const svalue *index_sval
		  = m_mgr->get_or_create_constant_svalue (index);
		gcc_assert (index_sval);
		const region *sub_reg
		  = m_mgr->get_element_region (lhs_reg,
					       TREE_TYPE (val),
					       index_sval);
		const svalue *val_sval = get_rvalue (val, ctxt);
		set_value (sub_reg, val_sval, ctxt);
	      }
	  }
      }
      break;

    case STRING_CST:
      {
	/* e.g. "struct s2 x = {{'A', 'B', 'C', 'D'}};".  */
	const svalue *rhs_sval = get_rvalue (rhs1, ctxt);
	m_store.set_value (m_mgr->get_store_manager(), lhs_reg, rhs_sval,
			   ctxt ? ctxt->get_uncertainty () : NULL);
      }
      break;
    }
}

/* A pending_diagnostic subclass for implementing "__analyzer_dump_path".  */

class dump_path_diagnostic
  : public pending_diagnostic_subclass<dump_path_diagnostic>
{
public:
  int get_controlling_option () const final override
  {
    return 0;
  }

  bool emit (rich_location *richloc) final override
  {
    inform (richloc, "path");
    return true;
  }

  const char *get_kind () const final override { return "dump_path_diagnostic"; }

  bool operator== (const dump_path_diagnostic &) const
  {
    return true;
  }
};

/* Handle the pre-sm-state part of STMT, modifying this object in-place.
   Write true to *OUT_TERMINATE_PATH if the path should be terminated.
   Write true to *OUT_UNKNOWN_SIDE_EFFECTS if the stmt has unknown
   side effects.  */

void
region_model::on_stmt_pre (const gimple *stmt,
			   bool *out_terminate_path,
			   bool *out_unknown_side_effects,
			   region_model_context *ctxt)
{
  switch (gimple_code (stmt))
    {
    default:
      /* No-op for now.  */
      break;

    case GIMPLE_ASSIGN:
      {
	const gassign *assign = as_a <const gassign *> (stmt);
	on_assignment (assign, ctxt);
      }
      break;

    case GIMPLE_ASM:
      {
	const gasm *asm_stmt = as_a <const gasm *> (stmt);
	on_asm_stmt (asm_stmt, ctxt);
      }
      break;

    case GIMPLE_CALL:
      {
	/* Track whether we have a gcall to a function that's not recognized by
	   anything, for which we don't have a function body, or for which we
	   don't know the fndecl.  */
	const gcall *call = as_a <const gcall *> (stmt);

	/* Debugging/test support.  */
	if (is_special_named_call_p (call, "__analyzer_describe", 2))
	  impl_call_analyzer_describe (call, ctxt);
	else if (is_special_named_call_p (call, "__analyzer_dump_capacity", 1))
	  impl_call_analyzer_dump_capacity (call, ctxt);
	else if (is_special_named_call_p (call, "__analyzer_dump_escaped", 0))
	  impl_call_analyzer_dump_escaped (call);
	else if (is_special_named_call_p (call, "__analyzer_dump_path", 0))
	  {
	    /* Handle the builtin "__analyzer_dump_path" by queuing a
	       diagnostic at this exploded_node.  */
	    ctxt->warn (make_unique<dump_path_diagnostic> ());
	  }
	else if (is_special_named_call_p (call, "__analyzer_dump_region_model",
					  0))
	  {
	    /* Handle the builtin "__analyzer_dump_region_model" by dumping
	       the region model's state to stderr.  */
	    dump (false);
	  }
	else if (is_special_named_call_p (call, "__analyzer_eval", 1))
	  impl_call_analyzer_eval (call, ctxt);
	else if (is_special_named_call_p (call, "__analyzer_break", 0))
	  {
	    /* Handle the builtin "__analyzer_break" by triggering a
	       breakpoint.  */
	    /* TODO: is there a good cross-platform way to do this?  */
	    raise (SIGINT);
	  }
	else if (is_special_named_call_p (call,
					  "__analyzer_dump_exploded_nodes",
					  1))
	  {
	    /* This is handled elsewhere.  */
	  }
	else if (is_special_named_call_p (call, "__analyzer_get_unknown_ptr",
					  0))
	  {
	    call_details cd (call, this, ctxt);
	    impl_call_analyzer_get_unknown_ptr (cd);
	  }
	else
	  *out_unknown_side_effects = on_call_pre (call, ctxt,
						   out_terminate_path);
      }
      break;

    case GIMPLE_RETURN:
      {
	const greturn *return_ = as_a <const greturn *> (stmt);
	on_return (return_, ctxt);
      }
      break;
    }
}

/* Abstract base class for all out-of-bounds warnings with concrete values.  */

class out_of_bounds : public pending_diagnostic_subclass<out_of_bounds>
{
public:
  out_of_bounds (const region *reg, tree diag_arg,
		 byte_range out_of_bounds_range)
  : m_reg (reg), m_diag_arg (diag_arg),
    m_out_of_bounds_range (out_of_bounds_range)
  {}

  const char *get_kind () const final override
  {
    return "out_of_bounds_diagnostic";
  }

  bool operator== (const out_of_bounds &other) const
  {
    return m_reg == other.m_reg
	   && m_out_of_bounds_range == other.m_out_of_bounds_range
	   && pending_diagnostic::same_tree_p (m_diag_arg, other.m_diag_arg);
  }

  int get_controlling_option () const final override
  {
    return OPT_Wanalyzer_out_of_bounds;
  }

  void mark_interesting_stuff (interesting_t *interest) final override
  {
    interest->add_region_creation (m_reg);
  }

protected:
  const region *m_reg;
  tree m_diag_arg;
  byte_range m_out_of_bounds_range;
};

/* Abstract subclass to complaing about out-of-bounds
   past the end of the buffer.  */

class past_the_end : public out_of_bounds
{
public:
  past_the_end (const region *reg, tree diag_arg, byte_range range,
		tree byte_bound)
  : out_of_bounds (reg, diag_arg, range), m_byte_bound (byte_bound)
  {}

  bool operator== (const past_the_end &other) const
  {
    return out_of_bounds::operator== (other)
	   && pending_diagnostic::same_tree_p (m_byte_bound,
					       other.m_byte_bound);
  }

  label_text
  describe_region_creation_event (const evdesc::region_creation &ev) final
  override
  {
    if (m_byte_bound && TREE_CODE (m_byte_bound) == INTEGER_CST)
      return ev.formatted_print ("capacity is %E bytes", m_byte_bound);

    return label_text ();
  }

protected:
  tree m_byte_bound;
};

/* Concrete subclass to complain about buffer overflows.  */

class buffer_overflow : public past_the_end
{
public:
  buffer_overflow (const region *reg, tree diag_arg,
		   byte_range range, tree byte_bound)
  : past_the_end (reg, diag_arg, range, byte_bound)
  {}

  bool emit (rich_location *rich_loc) final override
  {
    diagnostic_metadata m;
    bool warned;
    switch (m_reg->get_memory_space ())
      {
      default:
	m.add_cwe (787);
	warned = warning_meta (rich_loc, m, get_controlling_option (),
			       "buffer overflow");
	break;
      case MEMSPACE_STACK:
	m.add_cwe (121);
	warned = warning_meta (rich_loc, m, get_controlling_option (),
			       "stack-based buffer overflow");
	break;
      case MEMSPACE_HEAP:
	m.add_cwe (122);
	warned = warning_meta (rich_loc, m, get_controlling_option (),
			       "heap-based buffer overflow");
	break;
      }

    if (warned)
      {
	char num_bytes_past_buf[WIDE_INT_PRINT_BUFFER_SIZE];
	print_dec (m_out_of_bounds_range.m_size_in_bytes,
		   num_bytes_past_buf, UNSIGNED);
	if (m_diag_arg)
	  inform (rich_loc->get_loc (), "write is %s bytes past the end"
					" of %qE", num_bytes_past_buf,
						   m_diag_arg);
	else
	  inform (rich_loc->get_loc (), "write is %s bytes past the end"
					"of the region",
					num_bytes_past_buf);
      }

    return warned;
  }

  label_text describe_final_event (const evdesc::final_event &ev)
  final override
  {
    byte_size_t start = m_out_of_bounds_range.get_start_byte_offset ();
    byte_size_t end = m_out_of_bounds_range.get_last_byte_offset ();
    char start_buf[WIDE_INT_PRINT_BUFFER_SIZE];
    print_dec (start, start_buf, SIGNED);
    char end_buf[WIDE_INT_PRINT_BUFFER_SIZE];
    print_dec (end, end_buf, SIGNED);

    if (start == end)
      {
	if (m_diag_arg)
	  return ev.formatted_print ("out-of-bounds write at byte %s but %qE"
				     " ends at byte %E", start_buf, m_diag_arg,
							 m_byte_bound);
	return ev.formatted_print ("out-of-bounds write at byte %s but region"
				   " ends at byte %E", start_buf,
						       m_byte_bound);
      }
    else
      {
	if (m_diag_arg)
	  return ev.formatted_print ("out-of-bounds write from byte %s till"
				     " byte %s but %qE ends at byte %E",
				     start_buf, end_buf, m_diag_arg,
				     m_byte_bound);
	return ev.formatted_print ("out-of-bounds write from byte %s till"
				   " byte %s but region ends at byte %E",
				   start_buf, end_buf, m_byte_bound);
      }
  }
};

/* Concrete subclass to complain about buffer overreads.  */

class buffer_overread : public past_the_end
{
public:
  buffer_overread (const region *reg, tree diag_arg,
		   byte_range range, tree byte_bound)
  : past_the_end (reg, diag_arg, range, byte_bound)
  {}

  bool emit (rich_location *rich_loc) final override
  {
    diagnostic_metadata m;
    m.add_cwe (126);
    bool warned = warning_meta (rich_loc, m, get_controlling_option (),
				"buffer overread");

    if (warned)
      {
	char num_bytes_past_buf[WIDE_INT_PRINT_BUFFER_SIZE];
	print_dec (m_out_of_bounds_range.m_size_in_bytes,
		   num_bytes_past_buf, UNSIGNED);
	if (m_diag_arg)
	  inform (rich_loc->get_loc (), "read is %s bytes past the end"
					" of %qE", num_bytes_past_buf,
						    m_diag_arg);
	else
	  inform (rich_loc->get_loc (), "read is %s bytes past the end"
					"of the region",
					num_bytes_past_buf);
      }

    return warned;
  }

  label_text describe_final_event (const evdesc::final_event &ev)
  final override
  {
    byte_size_t start = m_out_of_bounds_range.get_start_byte_offset ();
    byte_size_t end = m_out_of_bounds_range.get_last_byte_offset ();
    char start_buf[WIDE_INT_PRINT_BUFFER_SIZE];
    print_dec (start, start_buf, SIGNED);
    char end_buf[WIDE_INT_PRINT_BUFFER_SIZE];
    print_dec (end, end_buf, SIGNED);

    if (start == end)
      {
	if (m_diag_arg)
	  return ev.formatted_print ("out-of-bounds read at byte %s but %qE"
				     " ends at byte %E", start_buf, m_diag_arg,
							 m_byte_bound);
	return ev.formatted_print ("out-of-bounds read at byte %s but region"
				   " ends at byte %E", start_buf,
						       m_byte_bound);
      }
    else
      {
	if (m_diag_arg)
	  return ev.formatted_print ("out-of-bounds read from byte %s till"
				     " byte %s but %qE ends at byte %E",
				     start_buf, end_buf, m_diag_arg,
				     m_byte_bound);
	return ev.formatted_print ("out-of-bounds read from byte %s till"
				   " byte %s but region ends at byte %E",
				   start_buf, end_buf, m_byte_bound);
      }
  }
};

/* Concrete subclass to complain about buffer underflows.  */

class buffer_underflow : public out_of_bounds
{
public:
  buffer_underflow (const region *reg, tree diag_arg, byte_range range)
  : out_of_bounds (reg, diag_arg, range)
  {}

  bool emit (rich_location *rich_loc) final override
  {
    diagnostic_metadata m;
    m.add_cwe (124);
    return warning_meta (rich_loc, m, get_controlling_option (),
			 "buffer underflow");
  }

  label_text describe_final_event (const evdesc::final_event &ev)
  final override
  {
    byte_size_t start = m_out_of_bounds_range.get_start_byte_offset ();
    byte_size_t end = m_out_of_bounds_range.get_last_byte_offset ();
    char start_buf[WIDE_INT_PRINT_BUFFER_SIZE];
    print_dec (start, start_buf, SIGNED);
    char end_buf[WIDE_INT_PRINT_BUFFER_SIZE];
    print_dec (end, end_buf, SIGNED);

    if (start == end)
      {
	if (m_diag_arg)
	  return ev.formatted_print ("out-of-bounds write at byte %s but %qE"
				     " starts at byte 0", start_buf,
							  m_diag_arg);
	return ev.formatted_print ("out-of-bounds write at byte %s but region"
				   " starts at byte 0", start_buf);
      }
    else
      {
	if (m_diag_arg)
	  return ev.formatted_print ("out-of-bounds write from byte %s till"
				     " byte %s but %qE starts at byte 0",
				     start_buf, end_buf, m_diag_arg);
	return ev.formatted_print ("out-of-bounds write from byte %s till"
				   " byte %s but region starts at byte 0",
				   start_buf, end_buf);;
      }
  }
};

/* Concrete subclass to complain about buffer underreads.  */

class buffer_underread : public out_of_bounds
{
public:
  buffer_underread (const region *reg, tree diag_arg, byte_range range)
  : out_of_bounds (reg, diag_arg, range)
  {}

  bool emit (rich_location *rich_loc) final override
  {
    diagnostic_metadata m;
    m.add_cwe (127);
    return warning_meta (rich_loc, m, get_controlling_option (),
			 "buffer underread");
  }

  label_text describe_final_event (const evdesc::final_event &ev)
  final override
  {
    byte_size_t start = m_out_of_bounds_range.get_start_byte_offset ();
    byte_size_t end = m_out_of_bounds_range.get_last_byte_offset ();
    char start_buf[WIDE_INT_PRINT_BUFFER_SIZE];
    print_dec (start, start_buf, SIGNED);
    char end_buf[WIDE_INT_PRINT_BUFFER_SIZE];
    print_dec (end, end_buf, SIGNED);

    if (start == end)
      {
	if (m_diag_arg)
	  return ev.formatted_print ("out-of-bounds read at byte %s but %qE"
				     " starts at byte 0", start_buf,
							  m_diag_arg);
	return ev.formatted_print ("out-of-bounds read at byte %s but region"
				  " starts at byte 0", start_buf);
      }
    else
      {
	if (m_diag_arg)
	  return ev.formatted_print ("out-of-bounds read from byte %s till"
				     " byte %s but %qE starts at byte 0",
				     start_buf, end_buf, m_diag_arg);
	return ev.formatted_print ("out-of-bounds read from byte %s till"
				   " byte %s but region starts at byte 0",
				   start_buf, end_buf);;
      }
  }
};

/* Abstract class to complain about out-of-bounds read/writes where
   the values are symbolic.  */

class symbolic_past_the_end
  : public pending_diagnostic_subclass<symbolic_past_the_end>
{
public:
  symbolic_past_the_end (const region *reg, tree diag_arg, tree offset,
			 tree num_bytes, tree capacity)
  : m_reg (reg), m_diag_arg (diag_arg), m_offset (offset),
    m_num_bytes (num_bytes), m_capacity (capacity)
  {}

  const char *get_kind () const final override
  {
    return "symbolic_past_the_end";
  }

  bool operator== (const symbolic_past_the_end &other) const
  {
    return m_reg == other.m_reg
	   && pending_diagnostic::same_tree_p (m_diag_arg, other.m_diag_arg)
	   && pending_diagnostic::same_tree_p (m_offset, other.m_offset)
	   && pending_diagnostic::same_tree_p (m_num_bytes, other.m_num_bytes)
	   && pending_diagnostic::same_tree_p (m_capacity, other.m_capacity);
  }

  int get_controlling_option () const final override
  {
    return OPT_Wanalyzer_out_of_bounds;
  }

  void mark_interesting_stuff (interesting_t *interest) final override
  {
    interest->add_region_creation (m_reg);
  }

  label_text
  describe_region_creation_event (const evdesc::region_creation &ev) final
  override
  {
    if (m_capacity)
      return ev.formatted_print ("capacity is %qE bytes", m_capacity);

    return label_text ();
  }

  label_text
  describe_final_event (const evdesc::final_event &ev) final override
  {
    const char *byte_str;
    if (pending_diagnostic::same_tree_p (m_num_bytes, integer_one_node))
      byte_str = "byte";
    else
      byte_str = "bytes";

    if (m_offset)
      {
	if (m_num_bytes && TREE_CODE (m_num_bytes) == INTEGER_CST)
	  {
	    if (m_diag_arg)
	      return ev.formatted_print ("%s of %E %s at offset %qE"
					 " exceeds %qE", m_dir_str,
					 m_num_bytes, byte_str,
					 m_offset, m_diag_arg);
	    else
	      return ev.formatted_print ("%s of %E %s at offset %qE"
					 " exceeds the buffer", m_dir_str,
					 m_num_bytes, byte_str, m_offset);
	  }
	else if (m_num_bytes)
	  {
	    if (m_diag_arg)
	      return ev.formatted_print ("%s of %qE %s at offset %qE"
					 " exceeds %qE", m_dir_str,
					 m_num_bytes, byte_str,
					 m_offset, m_diag_arg);
	    else
	      return ev.formatted_print ("%s of %qE %s at offset %qE"
					 " exceeds the buffer", m_dir_str,
					 m_num_bytes, byte_str, m_offset);
	  }
	else
	  {
	    if (m_diag_arg)
	      return ev.formatted_print ("%s at offset %qE exceeds %qE",
					 m_dir_str, m_offset, m_diag_arg);
	    else
	      return ev.formatted_print ("%s at offset %qE exceeds the"
					 " buffer", m_dir_str, m_offset);
	  }
      }
    if (m_diag_arg)
      return ev.formatted_print ("out-of-bounds %s on %qE",
				 m_dir_str, m_diag_arg);
    return ev.formatted_print ("out-of-bounds %s", m_dir_str);
  }

protected:
  const region *m_reg;
  tree m_diag_arg;
  tree m_offset;
  tree m_num_bytes;
  tree m_capacity;
  const char *m_dir_str;
};

/* Concrete subclass to complain about overflows with symbolic values.  */

class symbolic_buffer_overflow : public symbolic_past_the_end
{
public:
  symbolic_buffer_overflow (const region *reg, tree diag_arg, tree offset,
			    tree num_bytes, tree capacity)
  : symbolic_past_the_end (reg, diag_arg, offset, num_bytes, capacity)
  {
    m_dir_str = "write";
  }

  bool emit (rich_location *rich_loc) final override
  {
    diagnostic_metadata m;
    switch (m_reg->get_memory_space ())
      {
      default:
	m.add_cwe (787);
	return warning_meta (rich_loc, m, get_controlling_option (),
			     "buffer overflow");
      case MEMSPACE_STACK:
	m.add_cwe (121);
	return warning_meta (rich_loc, m, get_controlling_option (),
			     "stack-based buffer overflow");
      case MEMSPACE_HEAP:
	m.add_cwe (122);
	return warning_meta (rich_loc, m, get_controlling_option (),
			     "heap-based buffer overflow");
      }
  }
};

/* Concrete subclass to complain about overreads with symbolic values.  */

class symbolic_buffer_overread : public symbolic_past_the_end
{
public:
  symbolic_buffer_overread (const region *reg, tree diag_arg, tree offset,
			    tree num_bytes, tree capacity)
  : symbolic_past_the_end (reg, diag_arg, offset, num_bytes, capacity)
  {
    m_dir_str = "read";
  }

  bool emit (rich_location *rich_loc) final override
  {
    diagnostic_metadata m;
    m.add_cwe (126);
    return warning_meta (rich_loc, m, get_controlling_option (),
			 "buffer overread");
  }
};

/* Check whether an access is past the end of the BASE_REG.  */

void region_model::check_symbolic_bounds (const region *base_reg,
					  const svalue *sym_byte_offset,
					  const svalue *num_bytes_sval,
					  const svalue *capacity,
					  enum access_direction dir,
					  region_model_context *ctxt) const
{
  gcc_assert (ctxt);

  const svalue *next_byte
    = m_mgr->get_or_create_binop (num_bytes_sval->get_type (), PLUS_EXPR,
				  sym_byte_offset, num_bytes_sval);

  if (eval_condition_without_cm (next_byte, GT_EXPR, capacity).is_true ())
    {
      tree diag_arg = get_representative_tree (base_reg);
      tree offset_tree = get_representative_tree (sym_byte_offset);
      tree num_bytes_tree = get_representative_tree (num_bytes_sval);
      tree capacity_tree = get_representative_tree (capacity);
      switch (dir)
	{
	default:
	  gcc_unreachable ();
	  break;
	case DIR_READ:
	  ctxt->warn (make_unique<symbolic_buffer_overread> (base_reg,
							     diag_arg,
							     offset_tree,
							     num_bytes_tree,
							     capacity_tree));
	  break;
	case DIR_WRITE:
	  ctxt->warn (make_unique<symbolic_buffer_overflow> (base_reg,
							     diag_arg,
							     offset_tree,
							     num_bytes_tree,
							     capacity_tree));
	  break;
	}
    }
}

static tree
maybe_get_integer_cst_tree (const svalue *sval)
{
  tree cst_tree = sval->maybe_get_constant ();
  if (cst_tree && TREE_CODE (cst_tree) == INTEGER_CST)
    return cst_tree;

  return NULL_TREE;
}

/* May complain when the access on REG is out-of-bounds.  */

void
region_model::check_region_bounds (const region *reg,
				   enum access_direction dir,
				   region_model_context *ctxt) const
{
  gcc_assert (ctxt);

  /* Get the offset.  */
  region_offset reg_offset = reg->get_offset (m_mgr);
  const region *base_reg = reg_offset.get_base_region ();

  /* Bail out on symbolic regions.
     (e.g. because the analyzer did not see previous offsets on the latter,
     it might think that a negative access is before the buffer).  */
  if (base_reg->symbolic_p ())
    return;

  /* Find out how many bytes were accessed.  */
  const svalue *num_bytes_sval = reg->get_byte_size_sval (m_mgr);
  tree num_bytes_tree = maybe_get_integer_cst_tree (num_bytes_sval);
  /* Bail out if 0 bytes are accessed.  */
  if (num_bytes_tree && zerop (num_bytes_tree))
    return;

  /* Get the capacity of the buffer.  */
  const svalue *capacity = get_capacity (base_reg);
  tree cst_capacity_tree = maybe_get_integer_cst_tree (capacity);

  /* The constant offset from a pointer is represented internally as a sizetype
     but should be interpreted as a signed value here.  The statement below
     converts the offset from bits to bytes and then to a signed integer with
     the same precision the sizetype has on the target system.

     For example, this is needed for out-of-bounds-3.c test1 to pass when
     compiled with a 64-bit gcc build targeting 32-bit systems.  */
  byte_offset_t offset;
  if (!reg_offset.symbolic_p ())
    offset = wi::sext (reg_offset.get_bit_offset () >> LOG2_BITS_PER_UNIT,
		       TYPE_PRECISION (size_type_node));

  /* If either the offset or the number of bytes accessed are symbolic,
     we have to reason about symbolic values.  */
  if (reg_offset.symbolic_p () || !num_bytes_tree)
    {
      const svalue* byte_offset_sval;
      if (!reg_offset.symbolic_p ())
	{
	  tree offset_tree = wide_int_to_tree (integer_type_node, offset);
	  byte_offset_sval
	    = m_mgr->get_or_create_constant_svalue (offset_tree);
	}
      else
	byte_offset_sval = reg_offset.get_symbolic_byte_offset ();
      check_symbolic_bounds (base_reg, byte_offset_sval, num_bytes_sval,
			     capacity, dir, ctxt);
      return;
    }

  /* Otherwise continue to check with concrete values.  */
  byte_range out (0, 0);
  /* NUM_BYTES_TREE should always be interpreted as unsigned.  */
  byte_offset_t num_bytes_unsigned = wi::to_offset (num_bytes_tree);
  byte_range read_bytes (offset, num_bytes_unsigned);
  /* If read_bytes has a subset < 0, we do have an underflow.  */
  if (read_bytes.falls_short_of_p (0, &out))
    {
      tree diag_arg = get_representative_tree (base_reg);
      switch (dir)
	{
	default:
	  gcc_unreachable ();
	  break;
	case DIR_READ:
	  ctxt->warn (make_unique<buffer_underread> (reg, diag_arg, out));
	  break;
	case DIR_WRITE:
	  ctxt->warn (make_unique<buffer_underflow> (reg, diag_arg, out));
	  break;
	}
    }

  /* For accesses past the end, we do need a concrete capacity.  No need to
     do a symbolic check here because the inequality check does not reason
     whether constants are greater than symbolic values.  */
  if (!cst_capacity_tree)
    return;

  byte_range buffer (0, wi::to_offset (cst_capacity_tree));
  /* If READ_BYTES exceeds BUFFER, we do have an overflow.  */
  if (read_bytes.exceeds_p (buffer, &out))
    {
      tree byte_bound = wide_int_to_tree (size_type_node,
					  buffer.get_next_byte_offset ());
      tree diag_arg = get_representative_tree (base_reg);

      switch (dir)
	{
	default:
	  gcc_unreachable ();
	  break;
	case DIR_READ:
	  ctxt->warn (make_unique<buffer_overread> (reg, diag_arg,
						    out, byte_bound));
	  break;
	case DIR_WRITE:
	  ctxt->warn (make_unique<buffer_overflow> (reg, diag_arg,
						    out, byte_bound));
	  break;
	}
    }
}

/* Ensure that all arguments at the call described by CD are checked
   for poisoned values, by calling get_rvalue on each argument.  */

void
region_model::check_call_args (const call_details &cd) const
{
  for (unsigned arg_idx = 0; arg_idx < cd.num_args (); arg_idx++)
    cd.get_arg_svalue (arg_idx);
}

/* Return true if CD is known to be a call to a function with
   __attribute__((const)).  */

static bool
const_fn_p (const call_details &cd)
{
  tree fndecl = cd.get_fndecl_for_call ();
  if (!fndecl)
    return false;
  gcc_assert (DECL_P (fndecl));
  return TREE_READONLY (fndecl);
}

/* If this CD is known to be a call to a function with
   __attribute__((const)), attempt to get a const_fn_result_svalue
   based on the arguments, or return NULL otherwise.  */

static const svalue *
maybe_get_const_fn_result (const call_details &cd)
{
  if (!const_fn_p (cd))
    return NULL;

  unsigned num_args = cd.num_args ();
  if (num_args > const_fn_result_svalue::MAX_INPUTS)
    /* Too many arguments.  */
    return NULL;

  auto_vec<const svalue *> inputs (num_args);
  for (unsigned arg_idx = 0; arg_idx < num_args; arg_idx++)
    {
      const svalue *arg_sval = cd.get_arg_svalue (arg_idx);
      if (!arg_sval->can_have_associated_state_p ())
	return NULL;
      inputs.quick_push (arg_sval);
    }

  region_model_manager *mgr = cd.get_manager ();
  const svalue *sval
    = mgr->get_or_create_const_fn_result_svalue (cd.get_lhs_type (),
						 cd.get_fndecl_for_call (),
						 inputs);
  return sval;
}

/* Update this model for an outcome of a call that returns a specific
   integer constant.
   If UNMERGEABLE, then make the result unmergeable, e.g. to prevent
   the state-merger code from merging success and failure outcomes.  */

void
region_model::update_for_int_cst_return (const call_details &cd,
					 int retval,
					 bool unmergeable)
{
  if (!cd.get_lhs_type ())
    return;
  const svalue *result
    = m_mgr->get_or_create_int_cst (cd.get_lhs_type (), retval);
  if (unmergeable)
    result = m_mgr->get_or_create_unmergeable (result);
  set_value (cd.get_lhs_region (), result, cd.get_ctxt ());
}

/* Update this model for an outcome of a call that returns zero.
   If UNMERGEABLE, then make the result unmergeable, e.g. to prevent
   the state-merger code from merging success and failure outcomes.  */

void
region_model::update_for_zero_return (const call_details &cd,
				      bool unmergeable)
{
  update_for_int_cst_return (cd, 0, unmergeable);
}

/* Update this model for an outcome of a call that returns non-zero.  */

void
region_model::update_for_nonzero_return (const call_details &cd)
{
  if (!cd.get_lhs_type ())
    return;
  const svalue *zero
    = m_mgr->get_or_create_int_cst (cd.get_lhs_type (), 0);
  const svalue *result
    = get_store_value (cd.get_lhs_region (), cd.get_ctxt ());
  add_constraint (result, NE_EXPR, zero, cd.get_ctxt ());
}

/* Subroutine of region_model::maybe_get_copy_bounds.
   The Linux kernel commonly uses
     min_t([unsigned] long, VAR, sizeof(T));
   to set an upper bound on the size of a copy_to_user.
   Attempt to simplify such sizes by trying to get the upper bound as a
   constant.
   Return the simplified svalue if possible, or NULL otherwise.  */

static const svalue *
maybe_simplify_upper_bound (const svalue *num_bytes_sval,
			    region_model_manager *mgr)
{
  tree type = num_bytes_sval->get_type ();
  while (const svalue *raw = num_bytes_sval->maybe_undo_cast ())
    num_bytes_sval = raw;
  if (const binop_svalue *binop_sval = num_bytes_sval->dyn_cast_binop_svalue ())
    if (binop_sval->get_op () == MIN_EXPR)
      if (binop_sval->get_arg1 ()->get_kind () == SK_CONSTANT)
	{
	  return mgr->get_or_create_cast (type, binop_sval->get_arg1 ());
	  /* TODO: we might want to also capture the constraint
	     when recording the diagnostic, or note that we're using
	     the upper bound.  */
	}
  return NULL;
}

/* Attempt to get an upper bound for the size of a copy when simulating a
   copy function.

   NUM_BYTES_SVAL is the symbolic value for the size of the copy.
   Use it if it's constant, otherwise try to simplify it.  Failing
   that, use the size of SRC_REG if constant.

   Return a symbolic value for an upper limit on the number of bytes
   copied, or NULL if no such value could be determined.  */

const svalue *
region_model::maybe_get_copy_bounds (const region *src_reg,
				     const svalue *num_bytes_sval)
{
  if (num_bytes_sval->maybe_get_constant ())
    return num_bytes_sval;

  if (const svalue *simplified
      = maybe_simplify_upper_bound (num_bytes_sval, m_mgr))
    num_bytes_sval = simplified;

  if (num_bytes_sval->maybe_get_constant ())
    return num_bytes_sval;

  /* For now, try just guessing the size as the capacity of the
     base region of the src.
     This is a hack; we might get too large a value.  */
  const region *src_base_reg = src_reg->get_base_region ();
  num_bytes_sval = get_capacity (src_base_reg);

  if (num_bytes_sval->maybe_get_constant ())
    return num_bytes_sval;

  /* Non-constant: give up. */
  return NULL;
}

/* Get any known_function for FNDECL, or NULL if there is none.  */

const known_function *
region_model::get_known_function (tree fndecl) const
{
  known_function_manager *known_fn_mgr = m_mgr->get_known_function_manager ();
  return known_fn_mgr->get_by_fndecl (fndecl);
}

/* Update this model for the CALL stmt, using CTXT to report any
   diagnostics - the first half.

   Updates to the region_model that should be made *before* sm-states
   are updated are done here; other updates to the region_model are done
   in region_model::on_call_post.

   Return true if the function call has unknown side effects (it wasn't
   recognized and we don't have a body for it, or are unable to tell which
   fndecl it is).

   Write true to *OUT_TERMINATE_PATH if this execution path should be
   terminated (e.g. the function call terminates the process).  */

bool
region_model::on_call_pre (const gcall *call, region_model_context *ctxt,
			   bool *out_terminate_path)
{
  call_details cd (call, this, ctxt);

  bool unknown_side_effects = false;

  /* Special-case for IFN_DEFERRED_INIT.
     We want to report uninitialized variables with -fanalyzer (treating
     -ftrivial-auto-var-init= as purely a mitigation feature).
     Handle IFN_DEFERRED_INIT by treating it as no-op: don't touch the
     lhs of the call, so that it is still uninitialized from the point of
     view of the analyzer.  */
  if (gimple_call_internal_p (call)
      && gimple_call_internal_fn (call) == IFN_DEFERRED_INIT)
    return false;

  /* Get svalues for all of the arguments at the callsite, to ensure that we
     complain about any uninitialized arguments.  This might lead to
     duplicates if any of the handling below also looks up the svalues,
     but the deduplication code should deal with that.  */
  if (ctxt)
    check_call_args (cd);

  /* Some of the cases below update the lhs of the call based on the
     return value, but not all.  Provide a default value, which may
     get overwritten below.  */
  if (tree lhs = gimple_call_lhs (call))
    {
      const region *lhs_region = get_lvalue (lhs, ctxt);
      const svalue *sval = maybe_get_const_fn_result (cd);
      if (!sval)
	{
	  /* For the common case of functions without __attribute__((const)),
	     use a conjured value, and purge any prior state involving that
	     value (in case this is in a loop).  */
	  sval = m_mgr->get_or_create_conjured_svalue (TREE_TYPE (lhs), call,
						       lhs_region,
						       conjured_purge (this,
								       ctxt));
	}
      set_value (lhs_region, sval, ctxt);
    }

  if (gimple_call_internal_p (call))
    {
      switch (gimple_call_internal_fn (call))
       {
       default:
	 break;
       case IFN_BUILTIN_EXPECT:
	 impl_call_builtin_expect (cd);
	 return false;
       case IFN_UBSAN_BOUNDS:
	 return false;
       case IFN_VA_ARG:
	 impl_call_va_arg (cd);
	 return false;
       }
    }

  if (tree callee_fndecl = get_fndecl_for_call (call, ctxt))
    {
      /* The various impl_call_* member functions are implemented
	 in region-model-impl-calls.cc.
	 Having them split out into separate functions makes it easier
	 to put breakpoints on the handling of specific functions.  */
      int callee_fndecl_flags = flags_from_decl_or_type (callee_fndecl);

      if (fndecl_built_in_p (callee_fndecl, BUILT_IN_NORMAL)
	  && gimple_builtin_call_types_compatible_p (call, callee_fndecl))
	switch (DECL_UNCHECKED_FUNCTION_CODE (callee_fndecl))
	  {
	  default:
	    if (!(callee_fndecl_flags & (ECF_CONST | ECF_PURE)))
	      unknown_side_effects = true;
	    break;
	  case BUILT_IN_ALLOCA:
	  case BUILT_IN_ALLOCA_WITH_ALIGN:
	    impl_call_alloca (cd);
	    return false;
	  case BUILT_IN_CALLOC:
	    impl_call_calloc (cd);
	    return false;
	  case BUILT_IN_EXPECT:
	  case BUILT_IN_EXPECT_WITH_PROBABILITY:
	    impl_call_builtin_expect (cd);
	    return false;
	  case BUILT_IN_FREE:
	    /* Handle in "on_call_post".  */
	    break;
	  case BUILT_IN_MALLOC:
	    impl_call_malloc (cd);
	    return false;
	  case BUILT_IN_MEMCPY:
	  case BUILT_IN_MEMCPY_CHK:
	    impl_call_memcpy (cd);
	    return false;
	  case BUILT_IN_MEMSET:
	  case BUILT_IN_MEMSET_CHK:
	    impl_call_memset (cd);
	    return false;
	    break;
	  case BUILT_IN_REALLOC:
	    return false;
	  case BUILT_IN_STRCHR:
	    /* Handle in "on_call_post".  */
	    return false;
	  case BUILT_IN_STRCPY:
	  case BUILT_IN_STRCPY_CHK:
	    impl_call_strcpy (cd);
	    return false;
	  case BUILT_IN_STRLEN:
	    impl_call_strlen (cd);
	    return false;

	  case BUILT_IN_STACK_SAVE:
	  case BUILT_IN_STACK_RESTORE:
	    return false;

	  /* Stdio builtins.  */
	  case BUILT_IN_FPRINTF:
	  case BUILT_IN_FPRINTF_UNLOCKED:
	  case BUILT_IN_PUTC:
	  case BUILT_IN_PUTC_UNLOCKED:
	  case BUILT_IN_FPUTC:
	  case BUILT_IN_FPUTC_UNLOCKED:
	  case BUILT_IN_FPUTS:
	  case BUILT_IN_FPUTS_UNLOCKED:
	  case BUILT_IN_FWRITE:
	  case BUILT_IN_FWRITE_UNLOCKED:
	  case BUILT_IN_PRINTF:
	  case BUILT_IN_PRINTF_UNLOCKED:
	  case BUILT_IN_PUTCHAR:
	  case BUILT_IN_PUTCHAR_UNLOCKED:
	  case BUILT_IN_PUTS:
	  case BUILT_IN_PUTS_UNLOCKED:
	  case BUILT_IN_VFPRINTF:
	  case BUILT_IN_VPRINTF:
	    /* These stdio builtins have external effects that are out
	       of scope for the analyzer: we only want to model the effects
	       on the return value.  */
	    break;

	  case BUILT_IN_VA_START:
	    impl_call_va_start (cd);
	    return false;
	  case BUILT_IN_VA_COPY:
	    impl_call_va_copy (cd);
	    return false;
	  }
      else if (is_named_call_p (callee_fndecl, "malloc", call, 1))
	{
	  impl_call_malloc (cd);
	  return false;
	}
      else if (is_named_call_p (callee_fndecl, "calloc", call, 2))
	{
	  impl_call_calloc (cd);
	  return false;
	}
      else if (is_named_call_p (callee_fndecl, "alloca", call, 1))
	{
	  impl_call_alloca (cd);
	  return false;
	}
      else if (is_named_call_p (callee_fndecl, "realloc", call, 2))
	{
	  impl_call_realloc (cd);
	  return false;
	}
      else if (is_named_call_p (callee_fndecl, "__errno_location", call, 0))
	{
	  impl_call_errno_location (cd);
	  return false;
	}
      else if (is_named_call_p (callee_fndecl, "error"))
	{
	  if (impl_call_error (cd, 3, out_terminate_path))
	    return false;
	  else
	    unknown_side_effects = true;
	}
      else if (is_named_call_p (callee_fndecl, "error_at_line"))
	{
	  if (impl_call_error (cd, 5, out_terminate_path))
	    return false;
	  else
	    unknown_side_effects = true;
	}
      else if (is_named_call_p (callee_fndecl, "fgets", call, 3)
	       || is_named_call_p (callee_fndecl, "fgets_unlocked", call, 3))
	{
	  impl_call_fgets (cd);
	  return false;
	}
      else if (is_named_call_p (callee_fndecl, "fread", call, 4))
	{
	  impl_call_fread (cd);
	  return false;
	}
      else if (is_named_call_p (callee_fndecl, "getchar", call, 0))
	{
	  /* No side-effects (tracking stream state is out-of-scope
	     for the analyzer).  */
	}
      else if (is_named_call_p (callee_fndecl, "memset", call, 3)
	       && POINTER_TYPE_P (cd.get_arg_type (0)))
	{
	  impl_call_memset (cd);
	  return false;
	}
      else if (is_pipe_call_p (callee_fndecl, "pipe", call, 1)
	       || is_pipe_call_p (callee_fndecl, "pipe2", call, 2))
	{
	  /* Handle in "on_call_post"; bail now so that fd array
	     is left untouched so that we can detect use-of-uninit
	     for the case where the call fails.  */
	  return false;
	}
      else if (is_named_call_p (callee_fndecl, "putenv", call, 1)
	       && POINTER_TYPE_P (cd.get_arg_type (0)))
	{
	  impl_call_putenv (cd);
	  return false;
	}
      else if (is_named_call_p (callee_fndecl, "strchr", call, 2)
	       && POINTER_TYPE_P (cd.get_arg_type (0)))
	{
	  /* Handle in "on_call_post".  */
	  return false;
	}
      else if (is_named_call_p (callee_fndecl, "strlen", call, 1)
	       && POINTER_TYPE_P (cd.get_arg_type (0)))
	{
	  impl_call_strlen (cd);
	  return false;
	}
      else if (is_named_call_p (callee_fndecl, "operator new", call, 1))
	{
	  impl_call_operator_new (cd);
	  return false;
	}
      else if (is_named_call_p (callee_fndecl, "operator new []", call, 1))
	{
	  impl_call_operator_new (cd);
	  return false;
	}
      else if (is_named_call_p (callee_fndecl, "operator delete", call, 1)
	       || is_named_call_p (callee_fndecl, "operator delete", call, 2)
	       || is_named_call_p (callee_fndecl, "operator delete []", call, 1))
	{
	  /* Handle in "on_call_post".  */
	}
      else if (const known_function *kf = get_known_function (callee_fndecl))
	{
	  kf->impl_call_pre (cd);
	  return false;
	}
      else if (!fndecl_has_gimple_body_p (callee_fndecl)
	       && (!(callee_fndecl_flags & (ECF_CONST | ECF_PURE)))
	       && !fndecl_built_in_p (callee_fndecl))
	unknown_side_effects = true;
    }
  else
    unknown_side_effects = true;

  return unknown_side_effects;
}

/* Update this model for the CALL stmt, using CTXT to report any
   diagnostics - the second half.

   Updates to the region_model that should be made *after* sm-states
   are updated are done here; other updates to the region_model are done
   in region_model::on_call_pre.

   If UNKNOWN_SIDE_EFFECTS is true, also call handle_unrecognized_call
   to purge state.  */

void
region_model::on_call_post (const gcall *call,
			    bool unknown_side_effects,
			    region_model_context *ctxt)
{
  if (tree callee_fndecl = get_fndecl_for_call (call, ctxt))
    {
      call_details cd (call, this, ctxt);
      if (is_named_call_p (callee_fndecl, "free", call, 1))
	{
	  impl_call_free (cd);
	  return;
	}
      if (is_named_call_p (callee_fndecl, "operator delete", call, 1)
	  || is_named_call_p (callee_fndecl, "operator delete", call, 2)
	  || is_named_call_p (callee_fndecl, "operator delete []", call, 1))
	{
	  impl_call_operator_delete (cd);
	  return;
	}
      else if (is_pipe_call_p (callee_fndecl, "pipe", call, 1)
	       || is_pipe_call_p (callee_fndecl, "pipe2", call, 2))
	{
	  impl_call_pipe (cd);
	  return;
	}
      else if (is_named_call_p (callee_fndecl, "strchr", call, 2)
	       && POINTER_TYPE_P (cd.get_arg_type (0)))
	{
	  impl_call_strchr (cd);
	  return;
	}
      /* Was this fndecl referenced by
	 __attribute__((malloc(FOO)))?  */
      if (lookup_attribute ("*dealloc", DECL_ATTRIBUTES (callee_fndecl)))
	{
	  impl_deallocation_call (cd);
	  return;
	}
      if (fndecl_built_in_p (callee_fndecl, BUILT_IN_NORMAL)
	  && gimple_builtin_call_types_compatible_p (call, callee_fndecl))
	switch (DECL_UNCHECKED_FUNCTION_CODE (callee_fndecl))
	  {
	  default:
	    break;
	  case BUILT_IN_REALLOC:
	    impl_call_realloc (cd);
	    return;

	  case BUILT_IN_STRCHR:
	    impl_call_strchr (cd);
	    return;

	  case BUILT_IN_VA_END:
	    impl_call_va_end (cd);
	    return;
	  }
    }

  if (unknown_side_effects)
    handle_unrecognized_call (call, ctxt);
}

/* Purge state involving SVAL from this region_model, using CTXT
   (if non-NULL) to purge other state in a program_state.

   For example, if we're at the def-stmt of an SSA name, then we need to
   purge any state for svalues that involve that SSA name.  This avoids
   false positives in loops, since a symbolic value referring to the
   SSA name will be referring to the previous value of that SSA name.

   For example, in:
     while ((e = hashmap_iter_next(&iter))) {
       struct oid2strbuf *e_strbuf = (struct oid2strbuf *)e;
       free (e_strbuf->value);
     }
   at the def-stmt of e_8:
     e_8 = hashmap_iter_next (&iter);
   we should purge the "freed" state of:
     INIT_VAL(CAST_REG(‘struct oid2strbuf’, (*INIT_VAL(e_8))).value)
   which is the "e_strbuf->value" value from the previous iteration,
   or we will erroneously report a double-free - the "e_8" within it
   refers to the previous value.  */

void
region_model::purge_state_involving (const svalue *sval,
				     region_model_context *ctxt)
{
  if (!sval->can_have_associated_state_p ())
    return;
  m_store.purge_state_involving (sval, m_mgr);
  m_constraints->purge_state_involving (sval);
  m_dynamic_extents.purge_state_involving (sval);
  if (ctxt)
    ctxt->purge_state_involving (sval);
}

/* A pending_note subclass for adding a note about an
   __attribute__((access, ...)) to a diagnostic.  */

class reason_attr_access : public pending_note_subclass<reason_attr_access>
{
public:
  reason_attr_access (tree callee_fndecl, const attr_access &access)
  : m_callee_fndecl (callee_fndecl),
    m_ptr_argno (access.ptrarg),
    m_access_str (TREE_STRING_POINTER (access.to_external_string ()))
  {
  }

  const char *get_kind () const final override { return "reason_attr_access"; }

  void emit () const final override
  {
    inform (DECL_SOURCE_LOCATION (m_callee_fndecl),
	    "parameter %i of %qD marked with attribute %qs",
	    m_ptr_argno + 1, m_callee_fndecl, m_access_str);
  }

  bool operator== (const reason_attr_access &other) const
  {
    return (m_callee_fndecl == other.m_callee_fndecl
	    && m_ptr_argno == other.m_ptr_argno
	    && !strcmp (m_access_str, other.m_access_str));
  }

private:
  tree m_callee_fndecl;
  unsigned m_ptr_argno;
  const char *m_access_str;
};

/* Check CALL a call to external function CALLEE_FNDECL based on
   any __attribute__ ((access, ....) on the latter, complaining to
   CTXT about any issues.

   Currently we merely call check_region_for_write on any regions
   pointed to by arguments marked with a "write_only" or "read_write"
   attribute.  */

void
region_model::
check_external_function_for_access_attr (const gcall *call,
					 tree callee_fndecl,
					 region_model_context *ctxt) const
{
  gcc_assert (call);
  gcc_assert (callee_fndecl);
  gcc_assert (ctxt);

  tree fntype = TREE_TYPE (callee_fndecl);
  if (!fntype)
    return;

  if (!TYPE_ATTRIBUTES (fntype))
    return;

  /* Initialize a map of attribute access specifications for arguments
     to the function call.  */
  rdwr_map rdwr_idx;
  init_attr_rdwr_indices (&rdwr_idx, TYPE_ATTRIBUTES (fntype));

  unsigned argno = 0;

  for (tree iter = TYPE_ARG_TYPES (fntype); iter;
       iter = TREE_CHAIN (iter), ++argno)
    {
      const attr_access* access = rdwr_idx.get (argno);
      if (!access)
	continue;

      /* Ignore any duplicate entry in the map for the size argument.  */
      if (access->ptrarg != argno)
	continue;

      if (access->mode == access_write_only
	  || access->mode == access_read_write)
	{
	  /* Subclass of decorated_region_model_context that
	     adds a note about the attr access to any saved diagnostics.  */
	  class annotating_ctxt : public note_adding_context
	  {
	  public:
	    annotating_ctxt (tree callee_fndecl,
			     const attr_access &access,
			     region_model_context *ctxt)
	    : note_adding_context (ctxt),
	      m_callee_fndecl (callee_fndecl),
	      m_access (access)
	    {
	    }
	    std::unique_ptr<pending_note> make_note () final override
	    {
	      return make_unique<reason_attr_access>
		(m_callee_fndecl, m_access);
	    }
	  private:
	    tree m_callee_fndecl;
	    const attr_access &m_access;
	  };

	  /* Use this ctxt below so that any diagnostics get the
	     note added to them.  */
	  annotating_ctxt my_ctxt (callee_fndecl, *access, ctxt);

	  tree ptr_tree = gimple_call_arg (call, access->ptrarg);
	  const svalue *ptr_sval = get_rvalue (ptr_tree, &my_ctxt);
	  const region *reg = deref_rvalue (ptr_sval, ptr_tree, &my_ctxt);
	  check_region_for_write (reg, &my_ctxt);
	  /* We don't use the size arg for now.  */
	}
    }
}

/* Handle a call CALL to a function with unknown behavior.

   Traverse the regions in this model, determining what regions are
   reachable from pointer arguments to CALL and from global variables,
   recursively.

   Set all reachable regions to new unknown values and purge sm-state
   from their values, and from values that point to them.  */

void
region_model::handle_unrecognized_call (const gcall *call,
					region_model_context *ctxt)
{
  tree fndecl = get_fndecl_for_call (call, ctxt);

  if (fndecl && ctxt)
    check_external_function_for_access_attr (call, fndecl, ctxt);

  reachable_regions reachable_regs (this);

  /* Determine the reachable regions and their mutability.  */
  {
    /* Add globals and regions that already escaped in previous
       unknown calls.  */
    m_store.for_each_cluster (reachable_regions::init_cluster_cb,
			      &reachable_regs);

    /* Params that are pointers.  */
    tree iter_param_types = NULL_TREE;
    if (fndecl)
      iter_param_types = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
    for (unsigned arg_idx = 0; arg_idx < gimple_call_num_args (call); arg_idx++)
      {
	/* Track expected param type, where available.  */
	tree param_type = NULL_TREE;
	if (iter_param_types)
	  {
	    param_type = TREE_VALUE (iter_param_types);
	    gcc_assert (param_type);
	    iter_param_types = TREE_CHAIN (iter_param_types);
	  }

	tree parm = gimple_call_arg (call, arg_idx);
	const svalue *parm_sval = get_rvalue (parm, ctxt);
	reachable_regs.handle_parm (parm_sval, param_type);
      }
  }

  uncertainty_t *uncertainty = ctxt ? ctxt->get_uncertainty () : NULL;

  /* Purge sm-state for the svalues that were reachable,
     both in non-mutable and mutable form.  */
  for (svalue_set::iterator iter
	 = reachable_regs.begin_reachable_svals ();
       iter != reachable_regs.end_reachable_svals (); ++iter)
    {
      const svalue *sval = (*iter);
      if (ctxt)
	ctxt->on_unknown_change (sval, false);
    }
  for (svalue_set::iterator iter
	 = reachable_regs.begin_mutable_svals ();
       iter != reachable_regs.end_mutable_svals (); ++iter)
    {
      const svalue *sval = (*iter);
      if (ctxt)
	ctxt->on_unknown_change (sval, true);
      if (uncertainty)
	uncertainty->on_mutable_sval_at_unknown_call (sval);
    }

  /* Mark any clusters that have escaped.  */
  reachable_regs.mark_escaped_clusters (ctxt);

  /* Update bindings for all clusters that have escaped, whether above,
     or previously.  */
  m_store.on_unknown_fncall (call, m_mgr->get_store_manager (),
			     conjured_purge (this, ctxt));

  /* Purge dynamic extents from any regions that have escaped mutably:
     realloc could have been called on them.  */
  for (hash_set<const region *>::iterator
	 iter = reachable_regs.begin_mutable_base_regs ();
       iter != reachable_regs.end_mutable_base_regs ();
       ++iter)
    {
      const region *base_reg = (*iter);
      unset_dynamic_extents (base_reg);
    }
}

/* Traverse the regions in this model, determining what regions are
   reachable from the store and populating *OUT.

   If EXTRA_SVAL is non-NULL, treat it as an additional "root"
   for reachability (for handling return values from functions when
   analyzing return of the only function on the stack).

   If UNCERTAINTY is non-NULL, treat any svalues that were recorded
   within it as being maybe-bound as additional "roots" for reachability.

   Find svalues that haven't leaked.    */

void
region_model::get_reachable_svalues (svalue_set *out,
				     const svalue *extra_sval,
				     const uncertainty_t *uncertainty)
{
  reachable_regions reachable_regs (this);

  /* Add globals and regions that already escaped in previous
     unknown calls.  */
  m_store.for_each_cluster (reachable_regions::init_cluster_cb,
			    &reachable_regs);

  if (extra_sval)
    reachable_regs.handle_sval (extra_sval);

  if (uncertainty)
    for (uncertainty_t::iterator iter
	   = uncertainty->begin_maybe_bound_svals ();
	 iter != uncertainty->end_maybe_bound_svals (); ++iter)
      reachable_regs.handle_sval (*iter);

  /* Get regions for locals that have explicitly bound values.  */
  for (store::cluster_map_t::iterator iter = m_store.begin ();
       iter != m_store.end (); ++iter)
    {
      const region *base_reg = (*iter).first;
      if (const region *parent = base_reg->get_parent_region ())
	if (parent->get_kind () == RK_FRAME)
	  reachable_regs.add (base_reg, false);
    }

  /* Populate *OUT based on the values that were reachable.  */
  for (svalue_set::iterator iter
	 = reachable_regs.begin_reachable_svals ();
       iter != reachable_regs.end_reachable_svals (); ++iter)
    out->add (*iter);
}

/* Update this model for the RETURN_STMT, using CTXT to report any
   diagnostics.  */

void
region_model::on_return (const greturn *return_stmt, region_model_context *ctxt)
{
  tree callee = get_current_function ()->decl;
  tree lhs = DECL_RESULT (callee);
  tree rhs = gimple_return_retval (return_stmt);

  if (lhs && rhs)
    {
      const svalue *sval = get_rvalue (rhs, ctxt);
      const region *ret_reg = get_lvalue (lhs, ctxt);
      set_value (ret_reg, sval, ctxt);
    }
}

/* Update this model for a call and return of setjmp/sigsetjmp at CALL within
   ENODE, using CTXT to report any diagnostics.

   This is for the initial direct invocation of setjmp/sigsetjmp (which returns
   0), as opposed to any second return due to longjmp/sigsetjmp.  */

void
region_model::on_setjmp (const gcall *call, const exploded_node *enode,
			 region_model_context *ctxt)
{
  const svalue *buf_ptr = get_rvalue (gimple_call_arg (call, 0), ctxt);
  const region *buf_reg = deref_rvalue (buf_ptr, gimple_call_arg (call, 0),
					 ctxt);

  /* Create a setjmp_svalue for this call and store it in BUF_REG's
     region.  */
  if (buf_reg)
    {
      setjmp_record r (enode, call);
      const svalue *sval
	= m_mgr->get_or_create_setjmp_svalue (r, buf_reg->get_type ());
      set_value (buf_reg, sval, ctxt);
    }

  /* Direct calls to setjmp return 0.  */
  if (tree lhs = gimple_call_lhs (call))
    {
      const svalue *new_sval
	= m_mgr->get_or_create_int_cst (TREE_TYPE (lhs), 0);
      const region *lhs_reg = get_lvalue (lhs, ctxt);
      set_value (lhs_reg, new_sval, ctxt);
    }
}

/* Update this region_model for rewinding from a "longjmp" at LONGJMP_CALL
   to a "setjmp" at SETJMP_CALL where the final stack depth should be
   SETJMP_STACK_DEPTH.  Pop any stack frames.  Leak detection is *not*
   done, and should be done by the caller.  */

void
region_model::on_longjmp (const gcall *longjmp_call, const gcall *setjmp_call,
			   int setjmp_stack_depth, region_model_context *ctxt)
{
  /* Evaluate the val, using the frame of the "longjmp".  */
  tree fake_retval = gimple_call_arg (longjmp_call, 1);
  const svalue *fake_retval_sval = get_rvalue (fake_retval, ctxt);

  /* Pop any frames until we reach the stack depth of the function where
     setjmp was called.  */
  gcc_assert (get_stack_depth () >= setjmp_stack_depth);
  while (get_stack_depth () > setjmp_stack_depth)
    pop_frame (NULL, NULL, ctxt);

  gcc_assert (get_stack_depth () == setjmp_stack_depth);

  /* Assign to LHS of "setjmp" in new_state.  */
  if (tree lhs = gimple_call_lhs (setjmp_call))
    {
      /* Passing 0 as the val to longjmp leads to setjmp returning 1.  */
      const svalue *zero_sval
	= m_mgr->get_or_create_int_cst (TREE_TYPE (fake_retval), 0);
      tristate eq_zero = eval_condition (fake_retval_sval, EQ_EXPR, zero_sval);
      /* If we have 0, use 1.  */
      if (eq_zero.is_true ())
	{
	  const svalue *one_sval
	    = m_mgr->get_or_create_int_cst (TREE_TYPE (fake_retval), 1);
	  fake_retval_sval = one_sval;
	}
      else
	{
	  /* Otherwise note that the value is nonzero.  */
	  m_constraints->add_constraint (fake_retval_sval, NE_EXPR, zero_sval);
	}

      /* Decorate the return value from setjmp as being unmergeable,
	 so that we don't attempt to merge states with it as zero
	 with states in which it's nonzero, leading to a clean distinction
	 in the exploded_graph betweeen the first return and the second
	 return.  */
      fake_retval_sval = m_mgr->get_or_create_unmergeable (fake_retval_sval);

      const region *lhs_reg = get_lvalue (lhs, ctxt);
      set_value (lhs_reg, fake_retval_sval, ctxt);
    }
}

/* Update this region_model for a phi stmt of the form
     LHS = PHI <...RHS...>.
   where RHS is for the appropriate edge.
   Get state from OLD_STATE so that all of the phi stmts for a basic block
   are effectively handled simultaneously.  */

void
region_model::handle_phi (const gphi *phi,
			  tree lhs, tree rhs,
			  const region_model &old_state,
			  region_model_context *ctxt)
{
  /* For now, don't bother tracking the .MEM SSA names.  */
  if (tree var = SSA_NAME_VAR (lhs))
    if (TREE_CODE (var) == VAR_DECL)
      if (VAR_DECL_IS_VIRTUAL_OPERAND (var))
	return;

  const svalue *src_sval = old_state.get_rvalue (rhs, ctxt);
  const region *dst_reg = old_state.get_lvalue (lhs, ctxt);

  set_value (dst_reg, src_sval, ctxt);

  if (ctxt)
    ctxt->on_phi (phi, rhs);
}

/* Implementation of region_model::get_lvalue; the latter adds type-checking.

   Get the id of the region for PV within this region_model,
   emitting any diagnostics to CTXT.  */

const region *
region_model::get_lvalue_1 (path_var pv, region_model_context *ctxt) const
{
  tree expr = pv.m_tree;

  gcc_assert (expr);

  switch (TREE_CODE (expr))
    {
    default:
      return m_mgr->get_region_for_unexpected_tree_code (ctxt, expr,
							 dump_location_t ());

    case ARRAY_REF:
      {
	tree array = TREE_OPERAND (expr, 0);
	tree index = TREE_OPERAND (expr, 1);

	const region *array_reg = get_lvalue (array, ctxt);
	const svalue *index_sval = get_rvalue (index, ctxt);
	return m_mgr->get_element_region (array_reg,
					  TREE_TYPE (TREE_TYPE (array)),
					  index_sval);
      }
      break;

    case BIT_FIELD_REF:
      {
	tree inner_expr = TREE_OPERAND (expr, 0);
	const region *inner_reg = get_lvalue (inner_expr, ctxt);
	tree num_bits = TREE_OPERAND (expr, 1);
	tree first_bit_offset = TREE_OPERAND (expr, 2);
	gcc_assert (TREE_CODE (num_bits) == INTEGER_CST);
	gcc_assert (TREE_CODE (first_bit_offset) == INTEGER_CST);
	bit_range bits (TREE_INT_CST_LOW (first_bit_offset),
			TREE_INT_CST_LOW (num_bits));
	return m_mgr->get_bit_range (inner_reg, TREE_TYPE (expr), bits);
      }
      break;

    case MEM_REF:
      {
	tree ptr = TREE_OPERAND (expr, 0);
	tree offset = TREE_OPERAND (expr, 1);
	const svalue *ptr_sval = get_rvalue (ptr, ctxt);
	const svalue *offset_sval = get_rvalue (offset, ctxt);
	const region *star_ptr = deref_rvalue (ptr_sval, ptr, ctxt);
	return m_mgr->get_offset_region (star_ptr,
					 TREE_TYPE (expr),
					 offset_sval);
      }
      break;

    case FUNCTION_DECL:
      return m_mgr->get_region_for_fndecl (expr);

    case LABEL_DECL:
      return m_mgr->get_region_for_label (expr);

    case VAR_DECL:
      /* Handle globals.  */
      if (is_global_var (expr))
	return m_mgr->get_region_for_global (expr);

      /* Fall through.  */

    case SSA_NAME:
    case PARM_DECL:
    case RESULT_DECL:
      {
	gcc_assert (TREE_CODE (expr) == SSA_NAME
		    || TREE_CODE (expr) == PARM_DECL
		    || TREE_CODE (expr) == VAR_DECL
		    || TREE_CODE (expr) == RESULT_DECL);

	int stack_index = pv.m_stack_depth;
	const frame_region *frame = get_frame_at_index (stack_index);
	gcc_assert (frame);
	return frame->get_region_for_local (m_mgr, expr, ctxt);
      }

    case COMPONENT_REF:
      {
	/* obj.field  */
	tree obj = TREE_OPERAND (expr, 0);
	tree field = TREE_OPERAND (expr, 1);
	const region *obj_reg = get_lvalue (obj, ctxt);
	return m_mgr->get_field_region (obj_reg, field);
      }
      break;

    case STRING_CST:
      return m_mgr->get_region_for_string (expr);
    }
}

/* Assert that SRC_TYPE can be converted to DST_TYPE as a no-op.  */

static void
assert_compat_types (tree src_type, tree dst_type)
{
  if (src_type && dst_type && !VOID_TYPE_P (dst_type))
    {
#if CHECKING_P
      if (!(useless_type_conversion_p (src_type, dst_type)))
	internal_error ("incompatible types: %qT and %qT", src_type, dst_type);
#endif
    }
}

/* Return true if SRC_TYPE can be converted to DST_TYPE as a no-op.  */

bool
compat_types_p (tree src_type, tree dst_type)
{
  if (src_type && dst_type && !VOID_TYPE_P (dst_type))
    if (!(useless_type_conversion_p (src_type, dst_type)))
      return false;
  return true;
}

/* Get the region for PV within this region_model,
   emitting any diagnostics to CTXT.  */

const region *
region_model::get_lvalue (path_var pv, region_model_context *ctxt) const
{
  if (pv.m_tree == NULL_TREE)
    return NULL;

  const region *result_reg = get_lvalue_1 (pv, ctxt);
  assert_compat_types (result_reg->get_type (), TREE_TYPE (pv.m_tree));
  return result_reg;
}

/* Get the region for EXPR within this region_model (assuming the most
   recent stack frame if it's a local).  */

const region *
region_model::get_lvalue (tree expr, region_model_context *ctxt) const
{
  return get_lvalue (path_var (expr, get_stack_depth () - 1), ctxt);
}

/* Implementation of region_model::get_rvalue; the latter adds type-checking.

   Get the value of PV within this region_model,
   emitting any diagnostics to CTXT.  */

const svalue *
region_model::get_rvalue_1 (path_var pv, region_model_context *ctxt) const
{
  gcc_assert (pv.m_tree);

  switch (TREE_CODE (pv.m_tree))
    {
    default:
      return m_mgr->get_or_create_unknown_svalue (TREE_TYPE (pv.m_tree));

    case ADDR_EXPR:
      {
	/* "&EXPR".  */
	tree expr = pv.m_tree;
	tree op0 = TREE_OPERAND (expr, 0);
	const region *expr_reg = get_lvalue (op0, ctxt);
	return m_mgr->get_ptr_svalue (TREE_TYPE (expr), expr_reg);
      }
      break;

    case BIT_FIELD_REF:
      {
	tree expr = pv.m_tree;
	tree op0 = TREE_OPERAND (expr, 0);
	const region *reg = get_lvalue (op0, ctxt);
	tree num_bits = TREE_OPERAND (expr, 1);
	tree first_bit_offset = TREE_OPERAND (expr, 2);
	gcc_assert (TREE_CODE (num_bits) == INTEGER_CST);
	gcc_assert (TREE_CODE (first_bit_offset) == INTEGER_CST);
	bit_range bits (TREE_INT_CST_LOW (first_bit_offset),
			TREE_INT_CST_LOW (num_bits));
	return get_rvalue_for_bits (TREE_TYPE (expr), reg, bits, ctxt);
      }

    case SSA_NAME:
    case VAR_DECL:
    case PARM_DECL:
    case RESULT_DECL:
    case ARRAY_REF:
      {
	const region *reg = get_lvalue (pv, ctxt);
	return get_store_value (reg, ctxt);
      }

    case REALPART_EXPR:
    case IMAGPART_EXPR:
    case VIEW_CONVERT_EXPR:
      {
	tree expr = pv.m_tree;
	tree arg = TREE_OPERAND (expr, 0);
	const svalue *arg_sval = get_rvalue (arg, ctxt);
	const svalue *sval_unaryop
	  = m_mgr->get_or_create_unaryop (TREE_TYPE (expr), TREE_CODE (expr),
					  arg_sval);
	return sval_unaryop;
      };

    case INTEGER_CST:
    case REAL_CST:
    case COMPLEX_CST:
    case VECTOR_CST:
    case STRING_CST:
      return m_mgr->get_or_create_constant_svalue (pv.m_tree);

    case POINTER_PLUS_EXPR:
	{
	  tree expr = pv.m_tree;
	  tree ptr = TREE_OPERAND (expr, 0);
	  tree offset = TREE_OPERAND (expr, 1);
	  const svalue *ptr_sval = get_rvalue (ptr, ctxt);
	  const svalue *offset_sval = get_rvalue (offset, ctxt);
	  const svalue *sval_binop
	    = m_mgr->get_or_create_binop (TREE_TYPE (expr), POINTER_PLUS_EXPR,
					  ptr_sval, offset_sval);
	  return sval_binop;
	}

    /* Binary ops.  */
    case PLUS_EXPR:
    case MULT_EXPR:
	{
	  tree expr = pv.m_tree;
	  tree arg0 = TREE_OPERAND (expr, 0);
	  tree arg1 = TREE_OPERAND (expr, 1);
	  const svalue *arg0_sval = get_rvalue (arg0, ctxt);
	  const svalue *arg1_sval = get_rvalue (arg1, ctxt);
	  const svalue *sval_binop
	    = m_mgr->get_or_create_binop (TREE_TYPE (expr), TREE_CODE (expr),
					  arg0_sval, arg1_sval);
	  return sval_binop;
	}

    case COMPONENT_REF:
    case MEM_REF:
      {
	const region *ref_reg = get_lvalue (pv, ctxt);
	return get_store_value (ref_reg, ctxt);
      }
    case OBJ_TYPE_REF:
      {
        tree expr = OBJ_TYPE_REF_EXPR (pv.m_tree);
        return get_rvalue (expr, ctxt);
      }
    }
}

/* Get the value of PV within this region_model,
   emitting any diagnostics to CTXT.  */

const svalue *
region_model::get_rvalue (path_var pv, region_model_context *ctxt) const
{
  if (pv.m_tree == NULL_TREE)
    return NULL;

  const svalue *result_sval = get_rvalue_1 (pv, ctxt);

  assert_compat_types (result_sval->get_type (), TREE_TYPE (pv.m_tree));

  result_sval = check_for_poison (result_sval, pv.m_tree, ctxt);

  return result_sval;
}

/* Get the value of EXPR within this region_model (assuming the most
   recent stack frame if it's a local).  */

const svalue *
region_model::get_rvalue (tree expr, region_model_context *ctxt) const
{
  return get_rvalue (path_var (expr, get_stack_depth () - 1), ctxt);
}

/* Return true if this model is on a path with "main" as the entrypoint
   (as opposed to one in which we're merely analyzing a subset of the
   path through the code).  */

bool
region_model::called_from_main_p () const
{
  if (!m_current_frame)
    return false;
  /* Determine if the oldest stack frame in this model is for "main".  */
  const frame_region *frame0 = get_frame_at_index (0);
  gcc_assert (frame0);
  return id_equal (DECL_NAME (frame0->get_function ()->decl), "main");
}

/* Subroutine of region_model::get_store_value for when REG is (or is within)
   a global variable that hasn't been touched since the start of this path
   (or was implicitly touched due to a call to an unknown function).  */

const svalue *
region_model::get_initial_value_for_global (const region *reg) const
{
  /* Get the decl that REG is for (or is within).  */
  const decl_region *base_reg
    = reg->get_base_region ()->dyn_cast_decl_region ();
  gcc_assert (base_reg);
  tree decl = base_reg->get_decl ();

  /* Special-case: to avoid having to explicitly update all previously
     untracked globals when calling an unknown fn, they implicitly have
     an unknown value if an unknown call has occurred, unless this is
     static to-this-TU and hasn't escaped.  Globals that have escaped
     are explicitly tracked, so we shouldn't hit this case for them.  */
  if (m_store.called_unknown_fn_p ()
      && TREE_PUBLIC (decl)
      && !TREE_READONLY (decl))
    return m_mgr->get_or_create_unknown_svalue (reg->get_type ());

  /* If we are on a path from the entrypoint from "main" and we have a
     global decl defined in this TU that hasn't been touched yet, then
     the initial value of REG can be taken from the initialization value
     of the decl.  */
  if (called_from_main_p () || TREE_READONLY (decl))
    {
      /* Attempt to get the initializer value for base_reg.  */
      if (const svalue *base_reg_init
	    = base_reg->get_svalue_for_initializer (m_mgr))
	{
	  if (reg == base_reg)
	    return base_reg_init;
	  else
	    {
	      /* Get the value for REG within base_reg_init.  */
	      binding_cluster c (base_reg);
	      c.bind (m_mgr->get_store_manager (), base_reg, base_reg_init);
	      const svalue *sval
		= c.get_any_binding (m_mgr->get_store_manager (), reg);
	      if (sval)
		{
		  if (reg->get_type ())
		    sval = m_mgr->get_or_create_cast (reg->get_type (),
						      sval);
		  return sval;
		}
	    }
	}
    }

  /* Otherwise, return INIT_VAL(REG).  */
  return m_mgr->get_or_create_initial_value (reg);
}

/* Get a value for REG, looking it up in the store, or otherwise falling
   back to "initial" or "unknown" values.
   Use CTXT to report any warnings associated with reading from REG. */

const svalue *
region_model::get_store_value (const region *reg,
			       region_model_context *ctxt) const
{
  check_region_for_read (reg, ctxt);

  /* Special-case: handle var_decls in the constant pool.  */
  if (const decl_region *decl_reg = reg->dyn_cast_decl_region ())
    if (const svalue *sval = decl_reg->maybe_get_constant_value (m_mgr))
      return sval;

  const svalue *sval
    = m_store.get_any_binding (m_mgr->get_store_manager (), reg);
  if (sval)
    {
      if (reg->get_type ())
	sval = m_mgr->get_or_create_cast (reg->get_type (), sval);
      return sval;
    }

  /* Special-case: read at a constant index within a STRING_CST.  */
  if (const offset_region *offset_reg = reg->dyn_cast_offset_region ())
    if (tree byte_offset_cst
	  = offset_reg->get_byte_offset ()->maybe_get_constant ())
      if (const string_region *str_reg
	  = reg->get_parent_region ()->dyn_cast_string_region ())
	{
	  tree string_cst = str_reg->get_string_cst ();
	  if (const svalue *char_sval
		= m_mgr->maybe_get_char_from_string_cst (string_cst,
							 byte_offset_cst))
	    return m_mgr->get_or_create_cast (reg->get_type (), char_sval);
	}

  /* Special-case: read the initial char of a STRING_CST.  */
  if (const cast_region *cast_reg = reg->dyn_cast_cast_region ())
    if (const string_region *str_reg
	= cast_reg->get_original_region ()->dyn_cast_string_region ())
      {
	tree string_cst = str_reg->get_string_cst ();
	tree byte_offset_cst = build_int_cst (integer_type_node, 0);
	if (const svalue *char_sval
	    = m_mgr->maybe_get_char_from_string_cst (string_cst,
						     byte_offset_cst))
	  return m_mgr->get_or_create_cast (reg->get_type (), char_sval);
      }

  /* Otherwise we implicitly have the initial value of the region
     (if the cluster had been touched, binding_cluster::get_any_binding,
     would have returned UNKNOWN, and we would already have returned
     that above).  */

  /* Handle globals.  */
  if (reg->get_base_region ()->get_parent_region ()->get_kind ()
      == RK_GLOBALS)
    return get_initial_value_for_global (reg);

  return m_mgr->get_or_create_initial_value (reg);
}

/* Return false if REG does not exist, true if it may do.
   This is for detecting regions within the stack that don't exist anymore
   after frames are popped.  */

bool
region_model::region_exists_p (const region *reg) const
{
  /* If within a stack frame, check that the stack frame is live.  */
  if (const frame_region *enclosing_frame = reg->maybe_get_frame_region ())
    {
      /* Check that the current frame is the enclosing frame, or is called
	 by it.  */
      for (const frame_region *iter_frame = get_current_frame (); iter_frame;
	   iter_frame = iter_frame->get_calling_frame ())
	if (iter_frame == enclosing_frame)
	  return true;
      return false;
    }

  return true;
}

/* Get a region for referencing PTR_SVAL, creating a region if need be, and
   potentially generating warnings via CTXT.
   PTR_SVAL must be of pointer type.
   PTR_TREE if non-NULL can be used when emitting diagnostics.  */

const region *
region_model::deref_rvalue (const svalue *ptr_sval, tree ptr_tree,
			    region_model_context *ctxt) const
{
  gcc_assert (ptr_sval);
  gcc_assert (POINTER_TYPE_P (ptr_sval->get_type ()));

  /* If we're dereferencing PTR_SVAL, assume that it is non-NULL; add this
     as a constraint.  This suppresses false positives from
     -Wanalyzer-null-dereference for the case where we later have an
     if (PTR_SVAL) that would occur if we considered the false branch
     and transitioned the malloc state machine from start->null.  */
  tree null_ptr_cst = build_int_cst (ptr_sval->get_type (), 0);
  const svalue *null_ptr = m_mgr->get_or_create_constant_svalue (null_ptr_cst);
  m_constraints->add_constraint (ptr_sval, NE_EXPR, null_ptr);

  switch (ptr_sval->get_kind ())
    {
    default:
      break;

    case SK_REGION:
      {
	const region_svalue *region_sval
	  = as_a <const region_svalue *> (ptr_sval);
	return region_sval->get_pointee ();
      }

    case SK_BINOP:
      {
	const binop_svalue *binop_sval
	  = as_a <const binop_svalue *> (ptr_sval);
	switch (binop_sval->get_op ())
	  {
	  case POINTER_PLUS_EXPR:
	    {
	      /* If we have a symbolic value expressing pointer arithmentic,
		 try to convert it to a suitable region.  */
	      const region *parent_region
		= deref_rvalue (binop_sval->get_arg0 (), NULL_TREE, ctxt);
	      const svalue *offset = binop_sval->get_arg1 ();
	      tree type= TREE_TYPE (ptr_sval->get_type ());
	      return m_mgr->get_offset_region (parent_region, type, offset);
	    }
	  default:
	    break;
	  }
      }
      break;

    case SK_POISONED:
      {
	if (ctxt)
	  {
	    tree ptr = get_representative_tree (ptr_sval);
	    /* If we can't get a representative tree for PTR_SVAL
	       (e.g. if it hasn't been bound into the store), then
	       fall back on PTR_TREE, if non-NULL.  */
	    if (!ptr)
	      ptr = ptr_tree;
	    if (ptr)
	      {
		const poisoned_svalue *poisoned_sval
		  = as_a <const poisoned_svalue *> (ptr_sval);
		enum poison_kind pkind = poisoned_sval->get_poison_kind ();
		ctxt->warn (make_unique<poisoned_value_diagnostic>
			      (ptr, pkind, NULL));
	      }
	  }
      }
      break;
    }

  return m_mgr->get_symbolic_region (ptr_sval);
}

/* Attempt to get BITS within any value of REG, as TYPE.
   In particular, extract values from compound_svalues for the case
   where there's a concrete binding at BITS.
   Return an unknown svalue if we can't handle the given case.
   Use CTXT to report any warnings associated with reading from REG.  */

const svalue *
region_model::get_rvalue_for_bits (tree type,
				   const region *reg,
				   const bit_range &bits,
				   region_model_context *ctxt) const
{
  const svalue *sval = get_store_value (reg, ctxt);
  return m_mgr->get_or_create_bits_within (type, bits, sval);
}

/* A subclass of pending_diagnostic for complaining about writes to
   constant regions of memory.  */

class write_to_const_diagnostic
: public pending_diagnostic_subclass<write_to_const_diagnostic>
{
public:
  write_to_const_diagnostic (const region *reg, tree decl)
  : m_reg (reg), m_decl (decl)
  {}

  const char *get_kind () const final override
  {
    return "write_to_const_diagnostic";
  }

  bool operator== (const write_to_const_diagnostic &other) const
  {
    return (m_reg == other.m_reg
	    && m_decl == other.m_decl);
  }

  int get_controlling_option () const final override
  {
    return OPT_Wanalyzer_write_to_const;
  }

  bool emit (rich_location *rich_loc) final override
  {
    auto_diagnostic_group d;
    bool warned;
    switch (m_reg->get_kind ())
      {
      default:
	warned = warning_at (rich_loc, get_controlling_option (),
			     "write to %<const%> object %qE", m_decl);
	break;
      case RK_FUNCTION:
	warned = warning_at (rich_loc, get_controlling_option (),
			     "write to function %qE", m_decl);
	break;
      case RK_LABEL:
	warned = warning_at (rich_loc, get_controlling_option (),
			     "write to label %qE", m_decl);
	break;
      }
    if (warned)
      inform (DECL_SOURCE_LOCATION (m_decl), "declared here");
    return warned;
  }

  label_text describe_final_event (const evdesc::final_event &ev) final override
  {
    switch (m_reg->get_kind ())
      {
      default:
	return ev.formatted_print ("write to %<const%> object %qE here", m_decl);
      case RK_FUNCTION:
	return ev.formatted_print ("write to function %qE here", m_decl);
      case RK_LABEL:
	return ev.formatted_print ("write to label %qE here", m_decl);
      }
  }

private:
  const region *m_reg;
  tree m_decl;
};

/* A subclass of pending_diagnostic for complaining about writes to
   string literals.  */

class write_to_string_literal_diagnostic
: public pending_diagnostic_subclass<write_to_string_literal_diagnostic>
{
public:
  write_to_string_literal_diagnostic (const region *reg)
  : m_reg (reg)
  {}

  const char *get_kind () const final override
  {
    return "write_to_string_literal_diagnostic";
  }

  bool operator== (const write_to_string_literal_diagnostic &other) const
  {
    return m_reg == other.m_reg;
  }

  int get_controlling_option () const final override
  {
    return OPT_Wanalyzer_write_to_string_literal;
  }

  bool emit (rich_location *rich_loc) final override
  {
    return warning_at (rich_loc, get_controlling_option (),
		       "write to string literal");
    /* Ideally we would show the location of the STRING_CST as well,
       but it is not available at this point.  */
  }

  label_text describe_final_event (const evdesc::final_event &ev) final override
  {
    return ev.formatted_print ("write to string literal here");
  }

private:
  const region *m_reg;
};

/* Use CTXT to warn If DEST_REG is a region that shouldn't be written to.  */

void
region_model::check_for_writable_region (const region* dest_reg,
					 region_model_context *ctxt) const
{
  /* Fail gracefully if CTXT is NULL.  */
  if (!ctxt)
    return;

  const region *base_reg = dest_reg->get_base_region ();
  switch (base_reg->get_kind ())
    {
    default:
      break;
    case RK_FUNCTION:
      {
	const function_region *func_reg = as_a <const function_region *> (base_reg);
	tree fndecl = func_reg->get_fndecl ();
	ctxt->warn (make_unique<write_to_const_diagnostic>
		      (func_reg, fndecl));
      }
      break;
    case RK_LABEL:
      {
	const label_region *label_reg = as_a <const label_region *> (base_reg);
	tree label = label_reg->get_label ();
	ctxt->warn (make_unique<write_to_const_diagnostic>
		      (label_reg, label));
      }
      break;
    case RK_DECL:
      {
	const decl_region *decl_reg = as_a <const decl_region *> (base_reg);
	tree decl = decl_reg->get_decl ();
	/* Warn about writes to const globals.
	   Don't warn for writes to const locals, and params in particular,
	   since we would warn in push_frame when setting them up (e.g the
	   "this" param is "T* const").  */
	if (TREE_READONLY (decl)
	    && is_global_var (decl))
	  ctxt->warn (make_unique<write_to_const_diagnostic> (dest_reg, decl));
      }
      break;
    case RK_STRING:
      ctxt->warn (make_unique<write_to_string_literal_diagnostic> (dest_reg));
      break;
    }
}

/* Get the capacity of REG in bytes.  */

const svalue *
region_model::get_capacity (const region *reg) const
{
  switch (reg->get_kind ())
    {
    default:
      break;
    case RK_DECL:
      {
	const decl_region *decl_reg = as_a <const decl_region *> (reg);
	tree decl = decl_reg->get_decl ();
	if (TREE_CODE (decl) == SSA_NAME)
	  {
	    tree type = TREE_TYPE (decl);
	    tree size = TYPE_SIZE (type);
	    return get_rvalue (size, NULL);
	  }
	else
	  {
	    tree size = decl_init_size (decl, false);
	    if (size)
	      return get_rvalue (size, NULL);
	  }
      }
      break;
    case RK_SIZED:
      /* Look through sized regions to get at the capacity
	 of the underlying regions.  */
      return get_capacity (reg->get_parent_region ());
    }

  if (const svalue *recorded = get_dynamic_extents (reg))
    return recorded;

  return m_mgr->get_or_create_unknown_svalue (sizetype);
}

/* Return the string size, including the 0-terminator, if SVAL is a
   constant_svalue holding a string.  Otherwise, return an unknown_svalue.  */

const svalue *
region_model::get_string_size (const svalue *sval) const
{
  tree cst = sval->maybe_get_constant ();
  if (!cst || TREE_CODE (cst) != STRING_CST)
    return m_mgr->get_or_create_unknown_svalue (size_type_node);

  tree out = build_int_cst (size_type_node, TREE_STRING_LENGTH (cst));
  return m_mgr->get_or_create_constant_svalue (out);
}

/* Return the string size, including the 0-terminator, if REG is a
   string_region.  Otherwise, return an unknown_svalue.  */

const svalue *
region_model::get_string_size (const region *reg) const
{
  const string_region *str_reg = dyn_cast <const string_region *> (reg);
  if (!str_reg)
    return m_mgr->get_or_create_unknown_svalue (size_type_node);

  tree cst = str_reg->get_string_cst ();
  tree out = build_int_cst (size_type_node, TREE_STRING_LENGTH (cst));
  return m_mgr->get_or_create_constant_svalue (out);
}

/* If CTXT is non-NULL, use it to warn about any problems accessing REG,
   using DIR to determine if this access is a read or write.  */

void
region_model::check_region_access (const region *reg,
				   enum access_direction dir,
				   region_model_context *ctxt) const
{
  /* Fail gracefully if CTXT is NULL.  */
  if (!ctxt)
    return;

  check_region_for_taint (reg, dir, ctxt);
  check_region_bounds (reg, dir, ctxt);

  switch (dir)
    {
    default:
      gcc_unreachable ();
    case DIR_READ:
      /* Currently a no-op.  */
      break;
    case DIR_WRITE:
      check_for_writable_region (reg, ctxt);
      break;
    }
}

/* If CTXT is non-NULL, use it to warn about any problems writing to REG.  */

void
region_model::check_region_for_write (const region *dest_reg,
				      region_model_context *ctxt) const
{
  check_region_access (dest_reg, DIR_WRITE, ctxt);
}

/* If CTXT is non-NULL, use it to warn about any problems reading from REG.  */

void
region_model::check_region_for_read (const region *src_reg,
				     region_model_context *ctxt) const
{
  check_region_access (src_reg, DIR_READ, ctxt);
}

/* Concrete subclass for casts of pointers that lead to trailing bytes.  */

class dubious_allocation_size
: public pending_diagnostic_subclass<dubious_allocation_size>
{
public:
  dubious_allocation_size (const region *lhs, const region *rhs)
  : m_lhs (lhs), m_rhs (rhs), m_expr (NULL_TREE)
  {}

  dubious_allocation_size (const region *lhs, const region *rhs,
			   tree expr)
  : m_lhs (lhs), m_rhs (rhs), m_expr (expr)
  {}

  const char *get_kind () const final override
  {
    return "dubious_allocation_size";
  }

  bool operator== (const dubious_allocation_size &other) const
  {
    return m_lhs == other.m_lhs && m_rhs == other.m_rhs
	   && pending_diagnostic::same_tree_p (m_expr, other.m_expr);
  }

  int get_controlling_option () const final override
  {
    return OPT_Wanalyzer_allocation_size;
  }

  bool emit (rich_location *rich_loc) final override
  {
    diagnostic_metadata m;
    m.add_cwe (131);

    return warning_meta (rich_loc, m, get_controlling_option (),
			 "allocated buffer size is not a multiple"
			 " of the pointee's size");
  }

  label_text
  describe_region_creation_event (const evdesc::region_creation &ev) final
  override
  {
    m_allocation_event = &ev;
    if (m_expr)
      {
	if (TREE_CODE (m_expr) == INTEGER_CST)
	  return ev.formatted_print ("allocated %E bytes here", m_expr);
	else
	  return ev.formatted_print ("allocated %qE bytes here", m_expr);
      }

    return ev.formatted_print ("allocated here");
  }

  label_text describe_final_event (const evdesc::final_event &ev) final
  override
  {
    tree pointee_type = TREE_TYPE (m_lhs->get_type ());
    if (m_allocation_event)
      /* Fallback: Typically, we should always
	 see an m_allocation_event before.  */
      return ev.formatted_print ("assigned to %qT here;"
				 " %<sizeof (%T)%> is %qE",
				 m_lhs->get_type (), pointee_type,
				 size_in_bytes (pointee_type));

    if (m_expr)
      {
	if (TREE_CODE (m_expr) == INTEGER_CST)
	  return ev.formatted_print ("allocated %E bytes and assigned to"
				    " %qT here; %<sizeof (%T)%> is %qE",
				    m_expr, m_lhs->get_type (), pointee_type,
				    size_in_bytes (pointee_type));
	else
	  return ev.formatted_print ("allocated %qE bytes and assigned to"
				    " %qT here; %<sizeof (%T)%> is %qE",
				    m_expr, m_lhs->get_type (), pointee_type,
				    size_in_bytes (pointee_type));
      }

    return ev.formatted_print ("allocated and assigned to %qT here;"
			       " %<sizeof (%T)%> is %qE",
			       m_lhs->get_type (), pointee_type,
			       size_in_bytes (pointee_type));
  }

  void mark_interesting_stuff (interesting_t *interest) final override
  {
    interest->add_region_creation (m_rhs);
  }

private:
  const region *m_lhs;
  const region *m_rhs;
  const tree m_expr;
  const evdesc::region_creation *m_allocation_event;
};

/* Return true on dubious allocation sizes for constant sizes.  */

static bool
capacity_compatible_with_type (tree cst, tree pointee_size_tree,
			       bool is_struct)
{
  gcc_assert (TREE_CODE (cst) == INTEGER_CST);
  gcc_assert (TREE_CODE (pointee_size_tree) == INTEGER_CST);

  unsigned HOST_WIDE_INT pointee_size = TREE_INT_CST_LOW (pointee_size_tree);
  unsigned HOST_WIDE_INT alloc_size = TREE_INT_CST_LOW (cst);

  if (is_struct)
    return alloc_size == 0 || alloc_size >= pointee_size;
  return alloc_size % pointee_size == 0;
}

static bool
capacity_compatible_with_type (tree cst, tree pointee_size_tree)
{
  return capacity_compatible_with_type (cst, pointee_size_tree, false);
}

/* Checks whether SVAL could be a multiple of SIZE_CST.

   It works by visiting all svalues inside SVAL until it reaches
   atomic nodes.  From those, it goes back up again and adds each
   node that might be a multiple of SIZE_CST to the RESULT_SET.  */

class size_visitor : public visitor
{
public:
  size_visitor (tree size_cst, const svalue *root_sval, constraint_manager *cm)
  : m_size_cst (size_cst), m_root_sval (root_sval), m_cm (cm)
  {
    m_root_sval->accept (this);
  }

  bool get_result ()
  {
    return result_set.contains (m_root_sval);
  }

  void visit_constant_svalue (const constant_svalue *sval) final override
  {
    check_constant (sval->get_constant (), sval);
  }

  void visit_unknown_svalue (const unknown_svalue *sval ATTRIBUTE_UNUSED)
    final override
  {
    result_set.add (sval);
  }

  void visit_poisoned_svalue (const poisoned_svalue *sval ATTRIBUTE_UNUSED)
    final override
  {
    result_set.add (sval);
  }

  void visit_unaryop_svalue (const unaryop_svalue *sval) final override
  {
    const svalue *arg = sval->get_arg ();
    if (result_set.contains (arg))
      result_set.add (sval);
  }

  void visit_binop_svalue (const binop_svalue *sval) final override
  {
    const svalue *arg0 = sval->get_arg0 ();
    const svalue *arg1 = sval->get_arg1 ();

    if (sval->get_op () == MULT_EXPR)
      {
	if (result_set.contains (arg0) || result_set.contains (arg1))
	  result_set.add (sval);
      }
    else
      {
	if (result_set.contains (arg0) && result_set.contains (arg1))
	  result_set.add (sval);
      }
  }

  void visit_repeated_svalue (const repeated_svalue *sval) final override
  {
    sval->get_inner_svalue ()->accept (this);
    if (result_set.contains (sval->get_inner_svalue ()))
      result_set.add (sval);
  }

  void visit_unmergeable_svalue (const unmergeable_svalue *sval) final override
  {
    sval->get_arg ()->accept (this);
    if (result_set.contains (sval->get_arg ()))
      result_set.add (sval);
  }

  void visit_widening_svalue (const widening_svalue *sval) final override
  {
    const svalue *base = sval->get_base_svalue ();
    const svalue *iter = sval->get_iter_svalue ();

    if (result_set.contains (base) && result_set.contains (iter))
      result_set.add (sval);
  }

  void visit_conjured_svalue (const conjured_svalue *sval ATTRIBUTE_UNUSED)
    final override
  {
    equiv_class_id id (-1);
    if (m_cm->get_equiv_class_by_svalue (sval, &id))
      {
	if (tree cst = id.get_obj (*m_cm).get_any_constant ())
	  check_constant (cst, sval);
	else
	  result_set.add (sval);
      }
  }

  void visit_asm_output_svalue (const asm_output_svalue *sval ATTRIBUTE_UNUSED)
    final override
  {
    result_set.add (sval);
  }

  void visit_const_fn_result_svalue (const const_fn_result_svalue
				      *sval ATTRIBUTE_UNUSED) final override
  {
    result_set.add (sval);
  }

private:
  void check_constant (tree cst, const svalue *sval)
  {
    switch (TREE_CODE (cst))
      {
      default:
	/* Assume all unhandled operands are compatible.  */
	result_set.add (sval);
	break;
      case INTEGER_CST:
	if (capacity_compatible_with_type (cst, m_size_cst))
	  result_set.add (sval);
	break;
      }
  }

  tree m_size_cst;
  const svalue *m_root_sval;
  constraint_manager *m_cm;
  svalue_set result_set; /* Used as a mapping of svalue*->bool.  */
};

/* Return true if a struct or union either uses the inheritance pattern,
   where the first field is a base struct, or the flexible array member
   pattern, where the last field is an array without a specified size.  */

static bool
struct_or_union_with_inheritance_p (tree struc)
{
  tree iter = TYPE_FIELDS (struc);
  if (iter == NULL_TREE)
	  return false;
  if (RECORD_OR_UNION_TYPE_P (TREE_TYPE (iter)))
	  return true;

  tree last_field;
  while (iter != NULL_TREE)
    {
      last_field = iter;
      iter = DECL_CHAIN (iter);
    }

  if (last_field != NULL_TREE
      && TREE_CODE (TREE_TYPE (last_field)) == ARRAY_TYPE)
	  return true;

  return false;
}

/* Return true if the lhs and rhs of an assignment have different types.  */

static bool
is_any_cast_p (const gimple *stmt)
{
  if (const gassign *assign = dyn_cast <const gassign *> (stmt))
    return gimple_assign_cast_p (assign)
	   || !pending_diagnostic::same_tree_p (
		  TREE_TYPE (gimple_assign_lhs (assign)),
		  TREE_TYPE (gimple_assign_rhs1 (assign)));
  else if (const gcall *call = dyn_cast <const gcall *> (stmt))
    {
      tree lhs = gimple_call_lhs (call);
      return lhs != NULL_TREE && !pending_diagnostic::same_tree_p (
				    TREE_TYPE (gimple_call_lhs (call)),
				    gimple_call_return_type (call));
    }

  return false;
}

/* On pointer assignments, check whether the buffer size of
   RHS_SVAL is compatible with the type of the LHS_REG.
   Use a non-null CTXT to report allocation size warnings.  */

void
region_model::check_region_size (const region *lhs_reg, const svalue *rhs_sval,
				 region_model_context *ctxt) const
{
  if (!ctxt || ctxt->get_stmt () == NULL)
    return;
  /* Only report warnings on assignments that actually change the type.  */
  if (!is_any_cast_p (ctxt->get_stmt ()))
    return;

  const region_svalue *reg_sval = dyn_cast <const region_svalue *> (rhs_sval);
  if (!reg_sval)
    return;

  tree pointer_type = lhs_reg->get_type ();
  if (pointer_type == NULL_TREE || !POINTER_TYPE_P (pointer_type))
    return;

  tree pointee_type = TREE_TYPE (pointer_type);
  /* Make sure that the type on the left-hand size actually has a size.  */
  if (pointee_type == NULL_TREE || VOID_TYPE_P (pointee_type)
      || TYPE_SIZE_UNIT (pointee_type) == NULL_TREE)
    return;

  /* Bail out early on pointers to structs where we can
     not deduce whether the buffer size is compatible.  */
  bool is_struct = RECORD_OR_UNION_TYPE_P (pointee_type);
  if (is_struct && struct_or_union_with_inheritance_p (pointee_type))
    return;

  tree pointee_size_tree = size_in_bytes (pointee_type);
  /* We give up if the type size is not known at compile-time or the
     type size is always compatible regardless of the buffer size.  */
  if (TREE_CODE (pointee_size_tree) != INTEGER_CST
      || integer_zerop (pointee_size_tree)
      || integer_onep (pointee_size_tree))
    return;

  const region *rhs_reg = reg_sval->get_pointee ();
  const svalue *capacity = get_capacity (rhs_reg);
  switch (capacity->get_kind ())
    {
    case svalue_kind::SK_CONSTANT:
      {
	const constant_svalue *cst_cap_sval
	  = as_a <const constant_svalue *> (capacity);
	tree cst_cap = cst_cap_sval->get_constant ();
	if (TREE_CODE (cst_cap) == INTEGER_CST
	    && !capacity_compatible_with_type (cst_cap, pointee_size_tree,
					       is_struct))
	  ctxt->warn (make_unique <dubious_allocation_size> (lhs_reg, rhs_reg,
							     cst_cap));
      }
      break;
    default:
      {
	if (!is_struct)
	  {
	    size_visitor v (pointee_size_tree, capacity, m_constraints);
	    if (!v.get_result ())
	      {
		tree expr = get_representative_tree (capacity);
		ctxt->warn (make_unique <dubious_allocation_size> (lhs_reg,
								   rhs_reg,
								   expr));
	      }
	  }
      break;
      }
    }
}

/* Set the value of the region given by LHS_REG to the value given
   by RHS_SVAL.
   Use CTXT to report any warnings associated with writing to LHS_REG.  */

void
region_model::set_value (const region *lhs_reg, const svalue *rhs_sval,
			 region_model_context *ctxt)
{
  gcc_assert (lhs_reg);
  gcc_assert (rhs_sval);

  check_region_size (lhs_reg, rhs_sval, ctxt);

  check_region_for_write (lhs_reg, ctxt);

  m_store.set_value (m_mgr->get_store_manager(), lhs_reg, rhs_sval,
		     ctxt ? ctxt->get_uncertainty () : NULL);
}

/* Set the value of the region given by LHS to the value given by RHS.  */

void
region_model::set_value (tree lhs, tree rhs, region_model_context *ctxt)
{
  const region *lhs_reg = get_lvalue (lhs, ctxt);
  const svalue *rhs_sval = get_rvalue (rhs, ctxt);
  gcc_assert (lhs_reg);
  gcc_assert (rhs_sval);
  set_value (lhs_reg, rhs_sval, ctxt);
}

/* Remove all bindings overlapping REG within the store.  */

void
region_model::clobber_region (const region *reg)
{
  m_store.clobber_region (m_mgr->get_store_manager(), reg);
}

/* Remove any bindings for REG within the store.  */

void
region_model::purge_region (const region *reg)
{
  m_store.purge_region (m_mgr->get_store_manager(), reg);
}

/* Fill REG with SVAL.  */

void
region_model::fill_region (const region *reg, const svalue *sval)
{
  m_store.fill_region (m_mgr->get_store_manager(), reg, sval);
}

/* Zero-fill REG.  */

void
region_model::zero_fill_region (const region *reg)
{
  m_store.zero_fill_region (m_mgr->get_store_manager(), reg);
}

/* Mark REG as having unknown content.  */

void
region_model::mark_region_as_unknown (const region *reg,
				      uncertainty_t *uncertainty)
{
  m_store.mark_region_as_unknown (m_mgr->get_store_manager(), reg,
				  uncertainty);
}

/* Determine what is known about the condition "LHS_SVAL OP RHS_SVAL" within
   this model.  */

tristate
region_model::eval_condition (const svalue *lhs,
			       enum tree_code op,
			       const svalue *rhs) const
{
  /* For now, make no attempt to capture constraints on floating-point
     values.  */
  if ((lhs->get_type () && FLOAT_TYPE_P (lhs->get_type ()))
      || (rhs->get_type () && FLOAT_TYPE_P (rhs->get_type ())))
    return tristate::unknown ();

  tristate ts = eval_condition_without_cm (lhs, op, rhs);
  if (ts.is_known ())
    return ts;

  /* Otherwise, try constraints.  */
  return m_constraints->eval_condition (lhs, op, rhs);
}

/* Determine what is known about the condition "LHS_SVAL OP RHS_SVAL" within
   this model, without resorting to the constraint_manager.

   This is exposed so that impl_region_model_context::on_state_leak can
   check for equality part-way through region_model::purge_unused_svalues
   without risking creating new ECs.  */

tristate
region_model::eval_condition_without_cm (const svalue *lhs,
					  enum tree_code op,
					  const svalue *rhs) const
{
  gcc_assert (lhs);
  gcc_assert (rhs);

  /* See what we know based on the values.  */

  /* For now, make no attempt to capture constraints on floating-point
     values.  */
  if ((lhs->get_type () && FLOAT_TYPE_P (lhs->get_type ()))
      || (rhs->get_type () && FLOAT_TYPE_P (rhs->get_type ())))
    return tristate::unknown ();

  /* Unwrap any unmergeable values.  */
  lhs = lhs->unwrap_any_unmergeable ();
  rhs = rhs->unwrap_any_unmergeable ();

  if (lhs == rhs)
    {
      /* If we have the same svalue, then we have equality
	 (apart from NaN-handling).
	 TODO: should this definitely be the case for poisoned values?  */
      /* Poisoned and unknown values are "unknowable".  */
      if (lhs->get_kind () == SK_POISONED
	  || lhs->get_kind () == SK_UNKNOWN)
	return tristate::TS_UNKNOWN;

      switch (op)
	{
	case EQ_EXPR:
	case GE_EXPR:
	case LE_EXPR:
	  return tristate::TS_TRUE;

	case NE_EXPR:
	case GT_EXPR:
	case LT_EXPR:
	  return tristate::TS_FALSE;

	default:
	  /* For other ops, use the logic below.  */
	  break;
	}
    }

  /* If we have a pair of region_svalues, compare them.  */
  if (const region_svalue *lhs_ptr = lhs->dyn_cast_region_svalue ())
    if (const region_svalue *rhs_ptr = rhs->dyn_cast_region_svalue ())
      {
	tristate res = region_svalue::eval_condition (lhs_ptr, op, rhs_ptr);
	if (res.is_known ())
	  return res;
	/* Otherwise, only known through constraints.  */
      }

  if (const constant_svalue *cst_lhs = lhs->dyn_cast_constant_svalue ())
    {
      /* If we have a pair of constants, compare them.  */
      if (const constant_svalue *cst_rhs = rhs->dyn_cast_constant_svalue ())
	return constant_svalue::eval_condition (cst_lhs, op, cst_rhs);
      else
	{
	  /* When we have one constant, put it on the RHS.  */
	  std::swap (lhs, rhs);
	  op = swap_tree_comparison (op);
	}
    }
  gcc_assert (lhs->get_kind () != SK_CONSTANT);

  /* Handle comparison against zero.  */
  if (const constant_svalue *cst_rhs = rhs->dyn_cast_constant_svalue ())
    if (zerop (cst_rhs->get_constant ()))
      {
	if (const region_svalue *ptr = lhs->dyn_cast_region_svalue ())
	  {
	    /* A region_svalue is a non-NULL pointer, except in certain
	       special cases (see the comment for region::non_null_p).  */
	    const region *pointee = ptr->get_pointee ();
	    if (pointee->non_null_p ())
	      {
		switch (op)
		  {
		  default:
		    gcc_unreachable ();

		  case EQ_EXPR:
		  case GE_EXPR:
		  case LE_EXPR:
		    return tristate::TS_FALSE;

		  case NE_EXPR:
		  case GT_EXPR:
		  case LT_EXPR:
		    return tristate::TS_TRUE;
		  }
	      }
	  }
	else if (const binop_svalue *binop = lhs->dyn_cast_binop_svalue ())
	  {
	    /* Treat offsets from a non-NULL pointer as being non-NULL.  This
	       isn't strictly true, in that eventually ptr++ will wrap
	       around and be NULL, but it won't occur in practise and thus
	       can be used to suppress effectively false positives that we
	       shouldn't warn for.  */
	    if (binop->get_op () == POINTER_PLUS_EXPR)
	      {
		tristate lhs_ts
		  = eval_condition_without_cm (binop->get_arg0 (),
					       op, rhs);
		if (lhs_ts.is_known ())
		  return lhs_ts;
	      }
	  }
      }

  /* Handle rejection of equality for comparisons of the initial values of
     "external" values (such as params) with the address of locals.  */
  if (const initial_svalue *init_lhs = lhs->dyn_cast_initial_svalue ())
    if (const region_svalue *rhs_ptr = rhs->dyn_cast_region_svalue ())
      {
	tristate res = compare_initial_and_pointer (init_lhs, rhs_ptr);
	if (res.is_known ())
	  return res;
      }
  if (const initial_svalue *init_rhs = rhs->dyn_cast_initial_svalue ())
    if (const region_svalue *lhs_ptr = lhs->dyn_cast_region_svalue ())
      {
	tristate res = compare_initial_and_pointer (init_rhs, lhs_ptr);
	if (res.is_known ())
	  return res;
      }

  if (const widening_svalue *widen_lhs = lhs->dyn_cast_widening_svalue ())
    if (tree rhs_cst = rhs->maybe_get_constant ())
      {
	tristate res = widen_lhs->eval_condition_without_cm (op, rhs_cst);
	if (res.is_known ())
	  return res;
      }

  /* Handle comparisons between two svalues with more than one operand.  */
	if (const binop_svalue *binop = lhs->dyn_cast_binop_svalue ())
    {
      switch (op)
	{
	default:
	  break;
	case EQ_EXPR:
	  {
	    /* TODO: binops can be equal even if they are not structurally
		     equal in case of commutative operators.  */
	    tristate res = structural_equality (lhs, rhs);
	    if (res.is_true ())
	      return res;
	  }
	  break;
	case LE_EXPR:
	  {
	    tristate res = structural_equality (lhs, rhs);
	    if (res.is_true ())
	      return res;
	  }
	  break;
	case GE_EXPR:
	  {
	    tristate res = structural_equality (lhs, rhs);
	    if (res.is_true ())
	      return res;
	    res = symbolic_greater_than (binop, rhs);
	    if (res.is_true ())
	      return res;
	  }
	  break;
	case GT_EXPR:
	  {
	    tristate res = symbolic_greater_than (binop, rhs);
	    if (res.is_true ())
	      return res;
	  }
	  break;
	}
    }

  return tristate::TS_UNKNOWN;
}

/* Subroutine of region_model::eval_condition_without_cm, for rejecting
   equality of INIT_VAL(PARM) with &LOCAL.  */

tristate
region_model::compare_initial_and_pointer (const initial_svalue *init,
					    const region_svalue *ptr) const
{
  const region *pointee = ptr->get_pointee ();

  /* If we have a pointer to something within a stack frame, it can't be the
     initial value of a param.  */
  if (pointee->maybe_get_frame_region ())
    if (init->initial_value_of_param_p ())
      return tristate::TS_FALSE;

  return tristate::TS_UNKNOWN;
}

/* Return true if SVAL is definitely positive.  */

static bool
is_positive_svalue (const svalue *sval)
{
  if (tree cst = sval->maybe_get_constant ())
    return !zerop (cst) && get_range_pos_neg (cst) == 1;
  tree type = sval->get_type ();
  if (!type)
    return false;
  /* Consider a binary operation size_t + int.  The analyzer wraps the int in
     an unaryop_svalue, converting it to a size_t, but in the dynamic execution
     the result is smaller than the first operand.  Thus, we have to look if
     the argument of the unaryop_svalue is also positive.  */
  if (const unaryop_svalue *un_op = dyn_cast <const unaryop_svalue *> (sval))
    return CONVERT_EXPR_CODE_P (un_op->get_op ()) && TYPE_UNSIGNED (type)
	   && is_positive_svalue (un_op->get_arg ());
  return TYPE_UNSIGNED (type);
}

/* Return true if A is definitely larger than B.

   Limitation: does not account for integer overflows and does not try to
	       return false, so it can not be used negated.  */

tristate
region_model::symbolic_greater_than (const binop_svalue *bin_a,
				     const svalue *b) const
{
  if (bin_a->get_op () == PLUS_EXPR || bin_a->get_op () == MULT_EXPR)
    {
      /* Eliminate the right-hand side of both svalues.  */
      if (const binop_svalue *bin_b = dyn_cast <const binop_svalue *> (b))
	if (bin_a->get_op () == bin_b->get_op ()
	    && eval_condition_without_cm (bin_a->get_arg1 (),
					  GT_EXPR,
					  bin_b->get_arg1 ()).is_true ()
	    && eval_condition_without_cm (bin_a->get_arg0 (),
					  GE_EXPR,
					  bin_b->get_arg0 ()).is_true ())
	  return tristate (tristate::TS_TRUE);

      /* Otherwise, try to remove a positive offset or factor from BIN_A.  */
      if (is_positive_svalue (bin_a->get_arg1 ())
	  && eval_condition_without_cm (bin_a->get_arg0 (),
					GE_EXPR, b).is_true ())
	  return tristate (tristate::TS_TRUE);
    }
  return tristate::unknown ();
}

/* Return true if A and B are equal structurally.

   Structural equality means that A and B are equal if the svalues A and B have
   the same nodes at the same positions in the tree and the leafs are equal.
   Equality for conjured_svalues and initial_svalues is determined by comparing
   the pointers while constants are compared by value.  That behavior is useful
   to check for binaryop_svlaues that evaluate to the same concrete value but
   might use one operand with a different type but the same constant value.

   For example,
     binop_svalue (mult_expr,
       initial_svalue (‘size_t’, decl_region (..., 'some_var')),
       constant_svalue (‘size_t’, 4))
   and
     binop_svalue (mult_expr,
       initial_svalue (‘size_t’, decl_region (..., 'some_var'),
       constant_svalue (‘sizetype’, 4))
   are structurally equal.  A concrete C code example, where this occurs, can
   be found in test7 of out-of-bounds-5.c.  */

tristate
region_model::structural_equality (const svalue *a, const svalue *b) const
{
  /* If A and B are referentially equal, they are also structurally equal.  */
  if (a == b)
    return tristate (tristate::TS_TRUE);

  switch (a->get_kind ())
    {
    default:
      return tristate::unknown ();
    /* SK_CONJURED and SK_INITIAL are already handled
       by the referential equality above.  */
    case SK_CONSTANT:
      {
	tree a_cst = a->maybe_get_constant ();
	tree b_cst = b->maybe_get_constant ();
	if (a_cst && b_cst)
	  return tristate (tree_int_cst_equal (a_cst, b_cst));
      }
      return tristate (tristate::TS_FALSE);
    case SK_UNARYOP:
      {
	const unaryop_svalue *un_a = as_a <const unaryop_svalue *> (a);
	if (const unaryop_svalue *un_b = dyn_cast <const unaryop_svalue *> (b))
	  return tristate (pending_diagnostic::same_tree_p (un_a->get_type (),
							    un_b->get_type ())
			   && un_a->get_op () == un_b->get_op ()
			   && structural_equality (un_a->get_arg (),
						   un_b->get_arg ()));
      }
      return tristate (tristate::TS_FALSE);
    case SK_BINOP:
      {
	const binop_svalue *bin_a = as_a <const binop_svalue *> (a);
	if (const binop_svalue *bin_b = dyn_cast <const binop_svalue *> (b))
	  return tristate (bin_a->get_op () == bin_b->get_op ()
			   && structural_equality (bin_a->get_arg0 (),
						   bin_b->get_arg0 ())
			   && structural_equality (bin_a->get_arg1 (),
						   bin_b->get_arg1 ()));
      }
      return tristate (tristate::TS_FALSE);
    }
}

/* Handle various constraints of the form:
     LHS: ((bool)INNER_LHS INNER_OP INNER_RHS))
     OP : == or !=
     RHS: zero
   and (with a cast):
     LHS: CAST([long]int, ((bool)INNER_LHS INNER_OP INNER_RHS))
     OP : == or !=
     RHS: zero
   by adding constraints for INNER_LHS INNEROP INNER_RHS.

   Return true if this function can fully handle the constraint; if
   so, add the implied constraint(s) and write true to *OUT if they
   are consistent with existing constraints, or write false to *OUT
   if they contradicts existing constraints.

   Return false for cases that this function doeesn't know how to handle.

   For example, if we're checking a stored conditional, we'll have
   something like:
     LHS: CAST(long int, (&HEAP_ALLOCATED_REGION(8)!=(int *)0B))
     OP : NE_EXPR
     RHS: zero
   which this function can turn into an add_constraint of:
     (&HEAP_ALLOCATED_REGION(8) != (int *)0B)

   Similarly, optimized && and || conditionals lead to e.g.
     if (p && q)
   becoming gimple like this:
     _1 = p_6 == 0B;
     _2 = q_8 == 0B
     _3 = _1 | _2
   On the "_3 is false" branch we can have constraints of the form:
     ((&HEAP_ALLOCATED_REGION(8)!=(int *)0B)
      | (&HEAP_ALLOCATED_REGION(10)!=(int *)0B))
     == 0
   which implies that both _1 and _2 are false,
   which this function can turn into a pair of add_constraints of
     (&HEAP_ALLOCATED_REGION(8)!=(int *)0B)
   and:
     (&HEAP_ALLOCATED_REGION(10)!=(int *)0B).  */

bool
region_model::add_constraints_from_binop (const svalue *outer_lhs,
					  enum tree_code outer_op,
					  const svalue *outer_rhs,
					  bool *out,
					  region_model_context *ctxt)
{
  while (const svalue *cast = outer_lhs->maybe_undo_cast ())
    outer_lhs = cast;
  const binop_svalue *binop_sval = outer_lhs->dyn_cast_binop_svalue ();
  if (!binop_sval)
    return false;
  if (!outer_rhs->all_zeroes_p ())
    return false;

  const svalue *inner_lhs = binop_sval->get_arg0 ();
  enum tree_code inner_op = binop_sval->get_op ();
  const svalue *inner_rhs = binop_sval->get_arg1 ();

  if (outer_op != NE_EXPR && outer_op != EQ_EXPR)
    return false;

  /* We have either
     - "OUTER_LHS != false" (i.e. OUTER is true), or
     - "OUTER_LHS == false" (i.e. OUTER is false).  */
  bool is_true = outer_op == NE_EXPR;

  switch (inner_op)
    {
    default:
      return false;

    case EQ_EXPR:
    case NE_EXPR:
      {
	/* ...and "(inner_lhs OP inner_rhs) == 0"
	   then (inner_lhs OP inner_rhs) must have the same
	   logical value as LHS.  */
	if (!is_true)
	  inner_op = invert_tree_comparison (inner_op, false /* honor_nans */);
	*out = add_constraint (inner_lhs, inner_op, inner_rhs, ctxt);
	return true;
      }
      break;

    case BIT_AND_EXPR:
      if (is_true)
	{
	  /* ...and "(inner_lhs & inner_rhs) != 0"
	     then both inner_lhs and inner_rhs must be true.  */
	  const svalue *false_sval
	    = m_mgr->get_or_create_constant_svalue (boolean_false_node);
	  bool sat1 = add_constraint (inner_lhs, NE_EXPR, false_sval, ctxt);
	  bool sat2 = add_constraint (inner_rhs, NE_EXPR, false_sval, ctxt);
	  *out = sat1 && sat2;
	  return true;
	}
      return false;

    case BIT_IOR_EXPR:
      if (!is_true)
	{
	  /* ...and "(inner_lhs | inner_rhs) == 0"
	     i.e. "(inner_lhs | inner_rhs)" is false
	     then both inner_lhs and inner_rhs must be false.  */
	  const svalue *false_sval
	    = m_mgr->get_or_create_constant_svalue (boolean_false_node);
	  bool sat1 = add_constraint (inner_lhs, EQ_EXPR, false_sval, ctxt);
	  bool sat2 = add_constraint (inner_rhs, EQ_EXPR, false_sval, ctxt);
	  *out = sat1 && sat2;
	  return true;
	}
      return false;
    }
}

/* Attempt to add the constraint "LHS OP RHS" to this region_model.
   If it is consistent with existing constraints, add it, and return true.
   Return false if it contradicts existing constraints.
   Use CTXT for reporting any diagnostics associated with the accesses.  */

bool
region_model::add_constraint (tree lhs, enum tree_code op, tree rhs,
			      region_model_context *ctxt)
{
  /* For now, make no attempt to capture constraints on floating-point
     values.  */
  if (FLOAT_TYPE_P (TREE_TYPE (lhs)) || FLOAT_TYPE_P (TREE_TYPE (rhs)))
    return true;

  const svalue *lhs_sval = get_rvalue (lhs, ctxt);
  const svalue *rhs_sval = get_rvalue (rhs, ctxt);

  return add_constraint (lhs_sval, op, rhs_sval, ctxt);
}

/* Attempt to add the constraint "LHS OP RHS" to this region_model.
   If it is consistent with existing constraints, add it, and return true.
   Return false if it contradicts existing constraints.
   Use CTXT for reporting any diagnostics associated with the accesses.  */

bool
region_model::add_constraint (const svalue *lhs,
			      enum tree_code op,
			      const svalue *rhs,
			      region_model_context *ctxt)
{
  tristate t_cond = eval_condition (lhs, op, rhs);

  /* If we already have the condition, do nothing.  */
  if (t_cond.is_true ())
    return true;

  /* Reject a constraint that would contradict existing knowledge, as
     unsatisfiable.  */
  if (t_cond.is_false ())
    return false;

  bool out;
  if (add_constraints_from_binop (lhs, op, rhs, &out, ctxt))
    return out;

  /* Attempt to store the constraint.  */
  if (!m_constraints->add_constraint (lhs, op, rhs))
    return false;

  /* Notify the context, if any.  This exists so that the state machines
     in a program_state can be notified about the condition, and so can
     set sm-state for e.g. unchecked->checked, both for cfg-edges, and
     when synthesizing constraints as above.  */
  if (ctxt)
    ctxt->on_condition (lhs, op, rhs);

  /* If we have &REGION == NULL, then drop dynamic extents for REGION (for
     the case where REGION is heap-allocated and thus could be NULL).  */
  if (tree rhs_cst = rhs->maybe_get_constant ())
    if (op == EQ_EXPR && zerop (rhs_cst))
      if (const region_svalue *region_sval = lhs->dyn_cast_region_svalue ())
	unset_dynamic_extents (region_sval->get_pointee ());

  return true;
}

/* As above, but when returning false, if OUT is non-NULL, write a
   new rejected_constraint to *OUT.  */

bool
region_model::add_constraint (tree lhs, enum tree_code op, tree rhs,
			      region_model_context *ctxt,
			      rejected_constraint **out)
{
  bool sat = add_constraint (lhs, op, rhs, ctxt);
  if (!sat && out)
    *out = new rejected_op_constraint (*this, lhs, op, rhs);
  return sat;
}

/* Determine what is known about the condition "LHS OP RHS" within
   this model.
   Use CTXT for reporting any diagnostics associated with the accesses.  */

tristate
region_model::eval_condition (tree lhs,
			      enum tree_code op,
			      tree rhs,
			      region_model_context *ctxt)
{
  /* For now, make no attempt to model constraints on floating-point
     values.  */
  if (FLOAT_TYPE_P (TREE_TYPE (lhs)) || FLOAT_TYPE_P (TREE_TYPE (rhs)))
    return tristate::unknown ();

  return eval_condition (get_rvalue (lhs, ctxt), op, get_rvalue (rhs, ctxt));
}

/* Implementation of region_model::get_representative_path_var.
   Attempt to return a path_var that represents SVAL, or return NULL_TREE.
   Use VISITED to prevent infinite mutual recursion with the overload for
   regions.  */

path_var
region_model::get_representative_path_var_1 (const svalue *sval,
					     svalue_set *visited) const
{
  gcc_assert (sval);

  /* Prevent infinite recursion.  */
  if (visited->contains (sval))
    return path_var (NULL_TREE, 0);
  visited->add (sval);

  /* Handle casts by recursion into get_representative_path_var.  */
  if (const svalue *cast_sval = sval->maybe_undo_cast ())
    {
      path_var result = get_representative_path_var (cast_sval, visited);
      tree orig_type = sval->get_type ();
      /* If necessary, wrap the result in a cast.  */
      if (result.m_tree && orig_type)
	result.m_tree = build1 (NOP_EXPR, orig_type, result.m_tree);
      return result;
    }

  auto_vec<path_var> pvs;
  m_store.get_representative_path_vars (this, visited, sval, &pvs);

  if (tree cst = sval->maybe_get_constant ())
    pvs.safe_push (path_var (cst, 0));

  /* Handle string literals and various other pointers.  */
  if (const region_svalue *ptr_sval = sval->dyn_cast_region_svalue ())
    {
      const region *reg = ptr_sval->get_pointee ();
      if (path_var pv = get_representative_path_var (reg, visited))
	return path_var (build1 (ADDR_EXPR,
				 sval->get_type (),
				 pv.m_tree),
			 pv.m_stack_depth);
    }

  /* If we have a sub_svalue, look for ways to represent the parent.  */
  if (const sub_svalue *sub_sval = sval->dyn_cast_sub_svalue ())
    {
      const svalue *parent_sval = sub_sval->get_parent ();
      const region *subreg = sub_sval->get_subregion ();
      if (path_var parent_pv
	    = get_representative_path_var (parent_sval, visited))
	if (const field_region *field_reg = subreg->dyn_cast_field_region ())
	  return path_var (build3 (COMPONENT_REF,
				   sval->get_type (),
				   parent_pv.m_tree,
				   field_reg->get_field (),
				   NULL_TREE),
			   parent_pv.m_stack_depth);
    }

  /* Handle binops.  */
  if (const binop_svalue *binop_sval = sval->dyn_cast_binop_svalue ())
    if (path_var lhs_pv
	= get_representative_path_var (binop_sval->get_arg0 (), visited))
      if (path_var rhs_pv
	  = get_representative_path_var (binop_sval->get_arg1 (), visited))
	return path_var (build2 (binop_sval->get_op (),
				 sval->get_type (),
				 lhs_pv.m_tree, rhs_pv.m_tree),
			 lhs_pv.m_stack_depth);

  if (pvs.length () < 1)
    return path_var (NULL_TREE, 0);

  pvs.qsort (readability_comparator);
  return pvs[0];
}

/* Attempt to return a path_var that represents SVAL, or return NULL_TREE.
   Use VISITED to prevent infinite mutual recursion with the overload for
   regions

   This function defers to get_representative_path_var_1 to do the work;
   it adds verification that get_representative_path_var_1 returned a tree
   of the correct type.  */

path_var
region_model::get_representative_path_var (const svalue *sval,
					   svalue_set *visited) const
{
  if (sval == NULL)
    return path_var (NULL_TREE, 0);

  tree orig_type = sval->get_type ();

  path_var result = get_representative_path_var_1 (sval, visited);

  /* Verify that the result has the same type as SVAL, if any.  */
  if (result.m_tree && orig_type)
    gcc_assert (TREE_TYPE (result.m_tree) == orig_type);

  return result;
}

/* Attempt to return a tree that represents SVAL, or return NULL_TREE.

   Strip off any top-level cast, to avoid messages like
     double-free of '(void *)ptr'
   from analyzer diagnostics.  */

tree
region_model::get_representative_tree (const svalue *sval) const
{
  svalue_set visited;
  tree expr = get_representative_path_var (sval, &visited).m_tree;

  /* Strip off any top-level cast.  */
  if (expr && TREE_CODE (expr) == NOP_EXPR)
    expr = TREE_OPERAND (expr, 0);

  return fixup_tree_for_diagnostic (expr);
}

tree
region_model::get_representative_tree (const region *reg) const
{
  svalue_set visited;
  tree expr = get_representative_path_var (reg, &visited).m_tree;

  /* Strip off any top-level cast.  */
  if (expr && TREE_CODE (expr) == NOP_EXPR)
    expr = TREE_OPERAND (expr, 0);

  return fixup_tree_for_diagnostic (expr);
}

/* Implementation of region_model::get_representative_path_var.

   Attempt to return a path_var that represents REG, or return
   the NULL path_var.
   For example, a region for a field of a local would be a path_var
   wrapping a COMPONENT_REF.
   Use VISITED to prevent infinite mutual recursion with the overload for
   svalues.  */

path_var
region_model::get_representative_path_var_1 (const region *reg,
					     svalue_set *visited) const
{
  switch (reg->get_kind ())
    {
    default:
      gcc_unreachable ();

    case RK_FRAME:
    case RK_GLOBALS:
    case RK_CODE:
    case RK_HEAP:
    case RK_STACK:
    case RK_ROOT:
       /* Regions that represent memory spaces are not expressible as trees.  */
      return path_var (NULL_TREE, 0);

    case RK_FUNCTION:
      {
	const function_region *function_reg
	  = as_a <const function_region *> (reg);
	return path_var (function_reg->get_fndecl (), 0);
      }
    case RK_LABEL:
      {
	const label_region *label_reg = as_a <const label_region *> (reg);
	return path_var (label_reg->get_label (), 0);
      }

    case RK_SYMBOLIC:
      {
	const symbolic_region *symbolic_reg
	  = as_a <const symbolic_region *> (reg);
	const svalue *pointer = symbolic_reg->get_pointer ();
	path_var pointer_pv = get_representative_path_var (pointer, visited);
	if (!pointer_pv)
	  return path_var (NULL_TREE, 0);
	tree offset = build_int_cst (pointer->get_type (), 0);
	return path_var (build2 (MEM_REF,
				 reg->get_type (),
				 pointer_pv.m_tree,
				 offset),
			 pointer_pv.m_stack_depth);
      }
    case RK_DECL:
      {
	const decl_region *decl_reg = as_a <const decl_region *> (reg);
	return path_var (decl_reg->get_decl (), decl_reg->get_stack_depth ());
      }
    case RK_FIELD:
      {
	const field_region *field_reg = as_a <const field_region *> (reg);
	path_var parent_pv
	  = get_representative_path_var (reg->get_parent_region (), visited);
	if (!parent_pv)
	  return path_var (NULL_TREE, 0);
	return path_var (build3 (COMPONENT_REF,
				 reg->get_type (),
				 parent_pv.m_tree,
				 field_reg->get_field (),
				 NULL_TREE),
			 parent_pv.m_stack_depth);
      }

    case RK_ELEMENT:
      {
	const element_region *element_reg
	  = as_a <const element_region *> (reg);
	path_var parent_pv
	  = get_representative_path_var (reg->get_parent_region (), visited);
	if (!parent_pv)
	  return path_var (NULL_TREE, 0);
	path_var index_pv
	  = get_representative_path_var (element_reg->get_index (), visited);
	if (!index_pv)
	  return path_var (NULL_TREE, 0);
	return path_var (build4 (ARRAY_REF,
				 reg->get_type (),
				 parent_pv.m_tree, index_pv.m_tree,
				 NULL_TREE, NULL_TREE),
			 parent_pv.m_stack_depth);
      }

    case RK_OFFSET:
      {
	const offset_region *offset_reg
	  = as_a <const offset_region *> (reg);
	path_var parent_pv
	  = get_representative_path_var (reg->get_parent_region (), visited);
	if (!parent_pv)
	  return path_var (NULL_TREE, 0);
	path_var offset_pv
	  = get_representative_path_var (offset_reg->get_byte_offset (),
					 visited);
	if (!offset_pv || TREE_CODE (offset_pv.m_tree) != INTEGER_CST)
	  return path_var (NULL_TREE, 0);
	tree addr_parent = build1 (ADDR_EXPR,
				   build_pointer_type (reg->get_type ()),
				   parent_pv.m_tree);
	return path_var (build2 (MEM_REF,
				 reg->get_type (),
				 addr_parent, offset_pv.m_tree),
			 parent_pv.m_stack_depth);
      }

    case RK_SIZED:
      return path_var (NULL_TREE, 0);

    case RK_CAST:
      {
	path_var parent_pv
	  = get_representative_path_var (reg->get_parent_region (), visited);
	if (!parent_pv)
	  return path_var (NULL_TREE, 0);
	return path_var (build1 (NOP_EXPR,
				 reg->get_type (),
				 parent_pv.m_tree),
			 parent_pv.m_stack_depth);
      }

    case RK_HEAP_ALLOCATED:
    case RK_ALLOCA:
      /* No good way to express heap-allocated/alloca regions as trees.  */
      return path_var (NULL_TREE, 0);

    case RK_STRING:
      {
	const string_region *string_reg = as_a <const string_region *> (reg);
	return path_var (string_reg->get_string_cst (), 0);
      }

    case RK_VAR_ARG:
    case RK_UNKNOWN:
      return path_var (NULL_TREE, 0);
    }
}

/* Attempt to return a path_var that represents REG, or return
   the NULL path_var.
   For example, a region for a field of a local would be a path_var
   wrapping a COMPONENT_REF.
   Use VISITED to prevent infinite mutual recursion with the overload for
   svalues.

   This function defers to get_representative_path_var_1 to do the work;
   it adds verification that get_representative_path_var_1 returned a tree
   of the correct type.  */

path_var
region_model::get_representative_path_var (const region *reg,
					   svalue_set *visited) const
{
  path_var result = get_representative_path_var_1 (reg, visited);

  /* Verify that the result has the same type as REG, if any.  */
  if (result.m_tree && reg->get_type ())
    gcc_assert (TREE_TYPE (result.m_tree) == reg->get_type ());

  return result;
}

/* Update this model for any phis in SNODE, assuming we came from
   LAST_CFG_SUPEREDGE.  */

void
region_model::update_for_phis (const supernode *snode,
			       const cfg_superedge *last_cfg_superedge,
			       region_model_context *ctxt)
{
  gcc_assert (last_cfg_superedge);

  /* Copy this state and pass it to handle_phi so that all of the phi stmts
     are effectively handled simultaneously.  */
  const region_model old_state (*this);

  for (gphi_iterator gpi = const_cast<supernode *>(snode)->start_phis ();
       !gsi_end_p (gpi); gsi_next (&gpi))
    {
      gphi *phi = gpi.phi ();

      tree src = last_cfg_superedge->get_phi_arg (phi);
      tree lhs = gimple_phi_result (phi);

      /* Update next_state based on phi and old_state.  */
      handle_phi (phi, lhs, src, old_state, ctxt);
    }
}

/* Attempt to update this model for taking EDGE (where the last statement
   was LAST_STMT), returning true if the edge can be taken, false
   otherwise.
   When returning false, if OUT is non-NULL, write a new rejected_constraint
   to it.

   For CFG superedges where LAST_STMT is a conditional or a switch
   statement, attempt to add the relevant conditions for EDGE to this
   model, returning true if they are feasible, or false if they are
   impossible.

   For call superedges, push frame information and store arguments
   into parameters.

   For return superedges, pop frame information and store return
   values into any lhs.

   Rejection of call/return superedges happens elsewhere, in
   program_point::on_edge (i.e. based on program point, rather
   than program state).  */

bool
region_model::maybe_update_for_edge (const superedge &edge,
				     const gimple *last_stmt,
				     region_model_context *ctxt,
				     rejected_constraint **out)
{
  /* Handle frame updates for interprocedural edges.  */
  switch (edge.m_kind)
    {
    default:
      break;

    case SUPEREDGE_CALL:
      {
	const call_superedge *call_edge = as_a <const call_superedge *> (&edge);
	update_for_call_superedge (*call_edge, ctxt);
      }
      break;

    case SUPEREDGE_RETURN:
      {
	const return_superedge *return_edge
	  = as_a <const return_superedge *> (&edge);
	update_for_return_superedge (*return_edge, ctxt);
      }
      break;

    case SUPEREDGE_INTRAPROCEDURAL_CALL:
      /* This is a no-op for call summaries; we should already
	 have handled the effect of the call summary at the call stmt.  */
      break;
    }

  if (last_stmt == NULL)
    return true;

  /* Apply any constraints for conditionals/switch statements.  */

  if (const gcond *cond_stmt = dyn_cast <const gcond *> (last_stmt))
    {
      const cfg_superedge *cfg_sedge = as_a <const cfg_superedge *> (&edge);
      return apply_constraints_for_gcond (*cfg_sedge, cond_stmt, ctxt, out);
    }

  if (const gswitch *switch_stmt = dyn_cast <const gswitch *> (last_stmt))
    {
      const switch_cfg_superedge *switch_sedge
	= as_a <const switch_cfg_superedge *> (&edge);
      return apply_constraints_for_gswitch (*switch_sedge, switch_stmt,
					    ctxt, out);
    }

  /* Apply any constraints due to an exception being thrown.  */
  if (const cfg_superedge *cfg_sedge = dyn_cast <const cfg_superedge *> (&edge))
    if (cfg_sedge->get_flags () & EDGE_EH)
      return apply_constraints_for_exception (last_stmt, ctxt, out);

  return true;
}

/* Push a new frame_region on to the stack region.
   Populate the frame_region with child regions for the function call's
   parameters, using values from the arguments at the callsite in the
   caller's frame.  */

void
region_model::update_for_gcall (const gcall *call_stmt,
				region_model_context *ctxt,
				function *callee)
{
  /* Build a vec of argument svalues, using the current top
     frame for resolving tree expressions.  */
  auto_vec<const svalue *> arg_svals (gimple_call_num_args (call_stmt));

  for (unsigned i = 0; i < gimple_call_num_args (call_stmt); i++)
    {
      tree arg = gimple_call_arg (call_stmt, i);
      arg_svals.quick_push (get_rvalue (arg, ctxt));
    }

  if(!callee)
  {
    /* Get the function * from the gcall.  */
    tree fn_decl = get_fndecl_for_call (call_stmt,ctxt);
    callee = DECL_STRUCT_FUNCTION (fn_decl);
  }

  push_frame (callee, &arg_svals, ctxt);
}

/* Pop the top-most frame_region from the stack, and copy the return
   region's values (if any) into the region for the lvalue of the LHS of
   the call (if any).  */

void
region_model::update_for_return_gcall (const gcall *call_stmt,
				       region_model_context *ctxt)
{
  /* Get the lvalue for the result of the call, passing it to pop_frame,
     so that pop_frame can determine the region with respect to the
     *caller* frame.  */
  tree lhs = gimple_call_lhs (call_stmt);
  pop_frame (lhs, NULL, ctxt);
}

/* Extract calling information from the superedge and update the model for the 
   call  */

void
region_model::update_for_call_superedge (const call_superedge &call_edge,
					 region_model_context *ctxt)
{
  const gcall *call_stmt = call_edge.get_call_stmt ();
  update_for_gcall (call_stmt, ctxt, call_edge.get_callee_function ());
}

/* Extract calling information from the return superedge and update the model 
   for the returning call */

void
region_model::update_for_return_superedge (const return_superedge &return_edge,
					   region_model_context *ctxt)
{
  const gcall *call_stmt = return_edge.get_call_stmt ();
  update_for_return_gcall (call_stmt, ctxt);
}

/* Attempt to to use R to replay SUMMARY into this object.
   Return true if it is possible.  */

bool
region_model::replay_call_summary (call_summary_replay &r,
				   const region_model &summary)
{
  gcc_assert (summary.get_stack_depth () == 1);

  m_store.replay_call_summary (r, summary.m_store);

  if (!m_constraints->replay_call_summary (r, *summary.m_constraints))
    return false;

  for (auto kv : summary.m_dynamic_extents)
    {
      const region *summary_reg = kv.first;
      const region *caller_reg = r.convert_region_from_summary (summary_reg);
      if (!caller_reg)
	continue;
      const svalue *summary_sval = kv.second;
      const svalue *caller_sval = r.convert_svalue_from_summary (summary_sval);
      if (!caller_sval)
	continue;
      m_dynamic_extents.put (caller_reg, caller_sval);
    }

  return true;
}

/* Given a true or false edge guarded by conditional statement COND_STMT,
   determine appropriate constraints for the edge to be taken.

   If they are feasible, add the constraints and return true.

   Return false if the constraints contradict existing knowledge
   (and so the edge should not be taken).
   When returning false, if OUT is non-NULL, write a new rejected_constraint
   to it.  */

bool
region_model::apply_constraints_for_gcond (const cfg_superedge &sedge,
					   const gcond *cond_stmt,
					   region_model_context *ctxt,
					   rejected_constraint **out)
{
  ::edge cfg_edge = sedge.get_cfg_edge ();
  gcc_assert (cfg_edge != NULL);
  gcc_assert (cfg_edge->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE));

  enum tree_code op = gimple_cond_code (cond_stmt);
  tree lhs = gimple_cond_lhs (cond_stmt);
  tree rhs = gimple_cond_rhs (cond_stmt);
  if (cfg_edge->flags & EDGE_FALSE_VALUE)
    op = invert_tree_comparison (op, false /* honor_nans */);
  return add_constraint (lhs, op, rhs, ctxt, out);
}

/* Given an EDGE guarded by SWITCH_STMT, determine appropriate constraints
   for the edge to be taken.

   If they are feasible, add the constraints and return true.

   Return false if the constraints contradict existing knowledge
   (and so the edge should not be taken).
   When returning false, if OUT is non-NULL, write a new rejected_constraint
   to it.  */

bool
region_model::apply_constraints_for_gswitch (const switch_cfg_superedge &edge,
					     const gswitch *switch_stmt,
					     region_model_context *ctxt,
					     rejected_constraint **out)
{
  bounded_ranges_manager *ranges_mgr = get_range_manager ();
  const bounded_ranges *all_cases_ranges
    = ranges_mgr->get_or_create_ranges_for_switch (&edge, switch_stmt);
  tree index  = gimple_switch_index (switch_stmt);
  const svalue *index_sval = get_rvalue (index, ctxt);
  bool sat = m_constraints->add_bounded_ranges (index_sval, all_cases_ranges);
  if (!sat && out)
    *out = new rejected_ranges_constraint (*this, index, all_cases_ranges);
  if (sat && ctxt && !all_cases_ranges->empty_p ())
    ctxt->on_bounded_ranges (*index_sval, *all_cases_ranges);
  return sat;
}

/* Apply any constraints due to an exception being thrown at LAST_STMT.

   If they are feasible, add the constraints and return true.

   Return false if the constraints contradict existing knowledge
   (and so the edge should not be taken).
   When returning false, if OUT is non-NULL, write a new rejected_constraint
   to it.  */

bool
region_model::apply_constraints_for_exception (const gimple *last_stmt,
					       region_model_context *ctxt,
					       rejected_constraint **out)
{
  gcc_assert (last_stmt);
  if (const gcall *call = dyn_cast <const gcall *> (last_stmt))
    if (tree callee_fndecl = get_fndecl_for_call (call, ctxt))
      if (is_named_call_p (callee_fndecl, "operator new", call, 1)
	  || is_named_call_p (callee_fndecl, "operator new []", call, 1))
	{
	  /* We have an exception thrown from operator new.
	     Add a constraint that the result was NULL, to avoid a false
	     leak report due to the result being lost when following
	     the EH edge.  */
	  if (tree lhs = gimple_call_lhs (call))
	    return add_constraint (lhs, EQ_EXPR, null_pointer_node, ctxt, out);
	  return true;
	}
  return true;
}

/* For use with push_frame when handling a top-level call within the analysis.
   PARAM has a defined but unknown initial value.
   Anything it points to has escaped, since the calling context "knows"
   the pointer, and thus calls to unknown functions could read/write into
   the region.  */

void
region_model::on_top_level_param (tree param,
				   region_model_context *ctxt)
{
  if (POINTER_TYPE_P (TREE_TYPE (param)))
    {
      const region *param_reg = get_lvalue (param, ctxt);
      const svalue *init_ptr_sval
	= m_mgr->get_or_create_initial_value (param_reg);
      const region *pointee_reg = m_mgr->get_symbolic_region (init_ptr_sval);
      m_store.mark_as_escaped (pointee_reg);
    }
}

/* Update this region_model to reflect pushing a frame onto the stack
   for a call to FUN.

   If ARG_SVALS is non-NULL, use it to populate the parameters
   in the new frame.
   Otherwise, the params have their initial_svalues.

   Return the frame_region for the new frame.  */

const region *
region_model::push_frame (function *fun, const vec<const svalue *> *arg_svals,
			  region_model_context *ctxt)
{
  m_current_frame = m_mgr->get_frame_region (m_current_frame, fun);
  if (arg_svals)
    {
      /* Arguments supplied from a caller frame.  */
      tree fndecl = fun->decl;
      unsigned idx = 0;
      for (tree iter_parm = DECL_ARGUMENTS (fndecl); iter_parm;
	   iter_parm = DECL_CHAIN (iter_parm), ++idx)
	{
	  /* If there's a mismatching declaration, the call stmt might
	     not have enough args.  Handle this case by leaving the
	     rest of the params as uninitialized.  */
	  if (idx >= arg_svals->length ())
	    break;
	  tree parm_lval = iter_parm;
	  if (tree parm_default_ssa = ssa_default_def (fun, iter_parm))
	    parm_lval = parm_default_ssa;
	  const region *parm_reg = get_lvalue (parm_lval, ctxt);
	  const svalue *arg_sval = (*arg_svals)[idx];
	  set_value (parm_reg, arg_sval, ctxt);
	}

      /* Handle any variadic args.  */
      unsigned va_arg_idx = 0;
      for (; idx < arg_svals->length (); idx++, va_arg_idx++)
	{
	  const svalue *arg_sval = (*arg_svals)[idx];
	  const region *var_arg_reg
	    = m_mgr->get_var_arg_region (m_current_frame,
					 va_arg_idx);
	  set_value (var_arg_reg, arg_sval, ctxt);
	}
    }
  else
    {
      /* Otherwise we have a top-level call within the analysis.  The params
	 have defined but unknown initial values.
	 Anything they point to has escaped.  */
      tree fndecl = fun->decl;
      for (tree iter_parm = DECL_ARGUMENTS (fndecl); iter_parm;
	   iter_parm = DECL_CHAIN (iter_parm))
	{
	  if (tree parm_default_ssa = ssa_default_def (fun, iter_parm))
	    on_top_level_param (parm_default_ssa, ctxt);
	  else
	    on_top_level_param (iter_parm, ctxt);
	}
    }

  return m_current_frame;
}

/* Get the function of the top-most frame in this region_model's stack.
   There must be such a frame.  */

function *
region_model::get_current_function () const
{
  const frame_region *frame = get_current_frame ();
  gcc_assert (frame);
  return frame->get_function ();
}

/* Pop the topmost frame_region from this region_model's stack;

   If RESULT_LVALUE is non-null, copy any return value from the frame
   into the corresponding region (evaluated with respect to the *caller*
   frame, rather than the called frame).
   If OUT_RESULT is non-null, copy any return value from the frame
   into *OUT_RESULT.

   Purge the frame region and all its descendent regions.
   Convert any pointers that point into such regions into
   POISON_KIND_POPPED_STACK svalues.  */

void
region_model::pop_frame (tree result_lvalue,
			 const svalue **out_result,
			 region_model_context *ctxt)
{
  gcc_assert (m_current_frame);

  /* Evaluate the result, within the callee frame.  */
  const frame_region *frame_reg = m_current_frame;
  tree fndecl = m_current_frame->get_function ()->decl;
  tree result = DECL_RESULT (fndecl);
  const svalue *retval = NULL;
  if (result && TREE_TYPE (result) != void_type_node)
    {
      retval = get_rvalue (result, ctxt);
      if (out_result)
	*out_result = retval;
    }

  /* Pop the frame.  */
  m_current_frame = m_current_frame->get_calling_frame ();

  if (result_lvalue && retval)
    {
      /* Compute result_dst_reg using RESULT_LVALUE *after* popping
	 the frame, but before poisoning pointers into the old frame.  */
      const region *result_dst_reg = get_lvalue (result_lvalue, ctxt);
      set_value (result_dst_reg, retval, ctxt);
    }

  unbind_region_and_descendents (frame_reg,POISON_KIND_POPPED_STACK);
}

/* Get the number of frames in this region_model's stack.  */

int
region_model::get_stack_depth () const
{
  const frame_region *frame = get_current_frame ();
  if (frame)
    return frame->get_stack_depth ();
  else
    return 0;
}

/* Get the frame_region with the given index within the stack.
   The frame_region must exist.  */

const frame_region *
region_model::get_frame_at_index (int index) const
{
  const frame_region *frame = get_current_frame ();
  gcc_assert (frame);
  gcc_assert (index >= 0);
  gcc_assert (index <= frame->get_index ());
  while (index != frame->get_index ())
    {
      frame = frame->get_calling_frame ();
      gcc_assert (frame);
    }
  return frame;
}

/* Unbind svalues for any regions in REG and below.
   Find any pointers to such regions; convert them to
   poisoned values of kind PKIND.
   Also purge any dynamic extents.  */

void
region_model::unbind_region_and_descendents (const region *reg,
					     enum poison_kind pkind)
{
  /* Gather a set of base regions to be unbound.  */
  hash_set<const region *> base_regs;
  for (store::cluster_map_t::iterator iter = m_store.begin ();
       iter != m_store.end (); ++iter)
    {
      const region *iter_base_reg = (*iter).first;
      if (iter_base_reg->descendent_of_p (reg))
	base_regs.add (iter_base_reg);
    }
  for (hash_set<const region *>::iterator iter = base_regs.begin ();
       iter != base_regs.end (); ++iter)
    m_store.purge_cluster (*iter);

  /* Find any pointers to REG or its descendents; convert to poisoned.  */
  poison_any_pointers_to_descendents (reg, pkind);

  /* Purge dynamic extents of any base regions in REG and below
     (e.g. VLAs and alloca stack regions).  */
  for (auto iter : m_dynamic_extents)
    {
      const region *iter_reg = iter.first;
      if (iter_reg->descendent_of_p (reg))
	unset_dynamic_extents (iter_reg);
    }
}

/* Implementation of BindingVisitor.
   Update the bound svalues for regions below REG to use poisoned
   values instead.  */

struct bad_pointer_finder
{
  bad_pointer_finder (const region *reg, enum poison_kind pkind,
		      region_model_manager *mgr)
  : m_reg (reg), m_pkind (pkind), m_mgr (mgr), m_count (0)
  {}

  void on_binding (const binding_key *, const svalue *&sval)
  {
    if (const region_svalue *ptr_sval = sval->dyn_cast_region_svalue ())
      {
	const region *ptr_dst = ptr_sval->get_pointee ();
	/* Poison ptrs to descendents of REG, but not to REG itself,
	   otherwise double-free detection doesn't work (since sm-state
	   for "free" is stored on the original ptr svalue).  */
	if (ptr_dst->descendent_of_p (m_reg)
	    && ptr_dst != m_reg)
	  {
	    sval = m_mgr->get_or_create_poisoned_svalue (m_pkind,
							 sval->get_type ());
	    ++m_count;
	  }
      }
  }

  const region *m_reg;
  enum poison_kind m_pkind;
  region_model_manager *const m_mgr;
  int m_count;
};

/* Find any pointers to REG or its descendents; convert them to
   poisoned values of kind PKIND.
   Return the number of pointers that were poisoned.  */

int
region_model::poison_any_pointers_to_descendents (const region *reg,
						   enum poison_kind pkind)
{
  bad_pointer_finder bv (reg, pkind, m_mgr);
  m_store.for_each_binding (bv);
  return bv.m_count;
}

/* Attempt to merge THIS with OTHER_MODEL, writing the result
   to OUT_MODEL.  Use POINT to distinguish values created as a
   result of merging.  */

bool
region_model::can_merge_with_p (const region_model &other_model,
				const program_point &point,
				region_model *out_model,
				const extrinsic_state *ext_state,
				const program_state *state_a,
				const program_state *state_b) const
{
  gcc_assert (out_model);
  gcc_assert (m_mgr == other_model.m_mgr);
  gcc_assert (m_mgr == out_model->m_mgr);

  if (m_current_frame != other_model.m_current_frame)
    return false;
  out_model->m_current_frame = m_current_frame;

  model_merger m (this, &other_model, point, out_model,
		  ext_state, state_a, state_b);

  if (!store::can_merge_p (&m_store, &other_model.m_store,
			   &out_model->m_store, m_mgr->get_store_manager (),
			   &m))
    return false;

  if (!m_dynamic_extents.can_merge_with_p (other_model.m_dynamic_extents,
					   &out_model->m_dynamic_extents))
    return false;

  /* Merge constraints.  */
  constraint_manager::merge (*m_constraints,
			      *other_model.m_constraints,
			      out_model->m_constraints);

  return true;
}

/* Attempt to get the fndecl used at CALL, if known, or NULL_TREE
   otherwise.  */

tree
region_model::get_fndecl_for_call (const gcall *call,
				   region_model_context *ctxt)
{
  tree fn_ptr = gimple_call_fn (call);
  if (fn_ptr == NULL_TREE)
    return NULL_TREE;
  const svalue *fn_ptr_sval = get_rvalue (fn_ptr, ctxt);
  if (const region_svalue *fn_ptr_ptr
	= fn_ptr_sval->dyn_cast_region_svalue ())
    {
      const region *reg = fn_ptr_ptr->get_pointee ();
      if (const function_region *fn_reg = reg->dyn_cast_function_region ())
	{
	  tree fn_decl = fn_reg->get_fndecl ();
	  cgraph_node *node = cgraph_node::get (fn_decl);
	  if (!node)
	    return NULL_TREE;
	  const cgraph_node *ultimate_node = node->ultimate_alias_target ();
	  if (ultimate_node)
	    return ultimate_node->decl;
	}
    }

  return NULL_TREE;
}

/* Would be much simpler to use a lambda here, if it were supported.  */

struct append_regions_cb_data
{
  const region_model *model;
  auto_vec<const decl_region *> *out;
};

/* Populate *OUT with all decl_regions in the current
   frame that have clusters within the store.  */

void
region_model::
get_regions_for_current_frame (auto_vec<const decl_region *> *out) const
{
  append_regions_cb_data data;
  data.model = this;
  data.out = out;
  m_store.for_each_cluster (append_regions_cb, &data);
}

/* Implementation detail of get_regions_for_current_frame.  */

void
region_model::append_regions_cb (const region *base_reg,
				 append_regions_cb_data *cb_data)
{
  if (base_reg->get_parent_region () != cb_data->model->m_current_frame)
    return;
  if (const decl_region *decl_reg = base_reg->dyn_cast_decl_region ())
    cb_data->out->safe_push (decl_reg);
}


/* Abstract class for diagnostics related to the use of
   floating-point arithmetic where precision is needed.  */

class imprecise_floating_point_arithmetic : public pending_diagnostic
{
public:
  int get_controlling_option () const final override
  {
    return OPT_Wanalyzer_imprecise_fp_arithmetic;
  }
};

/* Concrete diagnostic to complain about uses of floating-point arithmetic
   in the size argument of malloc etc.  */

class float_as_size_arg : public imprecise_floating_point_arithmetic
{
public:
  float_as_size_arg (tree arg) : m_arg (arg)
  {}

  const char *get_kind () const final override
  {
    return "float_as_size_arg_diagnostic";
  }

  bool subclass_equal_p (const pending_diagnostic &other) const final override
  {
    return same_tree_p (m_arg, ((const float_as_size_arg &) other).m_arg);
  }

  bool emit (rich_location *rich_loc) final override
  {
    diagnostic_metadata m;
    bool warned = warning_meta (rich_loc, m, get_controlling_option (),
				"use of floating-point arithmetic here might"
				" yield unexpected results");
    if (warned)
      inform (rich_loc->get_loc (), "only use operands of an integer type"
				    " inside the size argument");
    return warned;
  }

  label_text describe_final_event (const evdesc::final_event &ev) final
  override
  {
    if (m_arg)
      return ev.formatted_print ("operand %qE is of type %qT",
				 m_arg, TREE_TYPE (m_arg));
    return ev.formatted_print ("at least one operand of the size argument is"
			       " of a floating-point type");
  }

private:
  tree m_arg;
};

/* Visitor to find uses of floating-point variables/constants in an svalue.  */

class contains_floating_point_visitor : public visitor
{
public:
  contains_floating_point_visitor (const svalue *root_sval) : m_result (NULL)
  {
    root_sval->accept (this);
  }

  const svalue *get_svalue_to_report ()
  {
    return m_result;
  }

  void visit_constant_svalue (const constant_svalue *sval) final override
  {
    /* At the point the analyzer runs, constant integer operands in a floating
       point expression are already implictly converted to floating-points.
       Thus, we do prefer to report non-constants such that the diagnostic
       always reports a floating-point operand.  */
    tree type = sval->get_type ();
    if (type && FLOAT_TYPE_P (type) && !m_result)
      m_result = sval;
  }

  void visit_conjured_svalue (const conjured_svalue *sval) final override
  {
    tree type = sval->get_type ();
    if (type && FLOAT_TYPE_P (type))
      m_result = sval;
  }

  void visit_initial_svalue (const initial_svalue *sval) final override
  {
    tree type = sval->get_type ();
    if (type && FLOAT_TYPE_P (type))
      m_result = sval;
  }

private:
  /* Non-null if at least one floating-point operand was found.  */
  const svalue *m_result;
};

/* May complain about uses of floating-point operands in SIZE_IN_BYTES.  */

void
region_model::check_dynamic_size_for_floats (const svalue *size_in_bytes,
					     region_model_context *ctxt) const
{
  gcc_assert (ctxt);

  contains_floating_point_visitor v (size_in_bytes);
  if (const svalue *float_sval = v.get_svalue_to_report ())
	{
	  tree diag_arg = get_representative_tree (float_sval);
	  ctxt->warn (make_unique<float_as_size_arg> (diag_arg));
	}
}

/* Return a new region describing a heap-allocated block of memory.
   Use CTXT to complain about tainted sizes.  */

const region *
region_model::create_region_for_heap_alloc (const svalue *size_in_bytes,
					    region_model_context *ctxt)
{
  const region *reg = m_mgr->create_region_for_heap_alloc ();
  if (compat_types_p (size_in_bytes->get_type (), size_type_node))
    set_dynamic_extents (reg, size_in_bytes, ctxt);
  return reg;
}

/* Return a new region describing a block of memory allocated within the
   current frame.
   Use CTXT to complain about tainted sizes.  */

const region *
region_model::create_region_for_alloca (const svalue *size_in_bytes,
					region_model_context *ctxt)
{
  const region *reg = m_mgr->create_region_for_alloca (m_current_frame);
  if (compat_types_p (size_in_bytes->get_type (), size_type_node))
    set_dynamic_extents (reg, size_in_bytes, ctxt);
  return reg;
}

/* Record that the size of REG is SIZE_IN_BYTES.
   Use CTXT to complain about tainted sizes.  */

void
region_model::set_dynamic_extents (const region *reg,
				   const svalue *size_in_bytes,
				   region_model_context *ctxt)
{
  assert_compat_types (size_in_bytes->get_type (), size_type_node);
  if (ctxt)
    {
      check_dynamic_size_for_taint (reg->get_memory_space (), size_in_bytes,
				    ctxt);
      check_dynamic_size_for_floats (size_in_bytes, ctxt);
    }
  m_dynamic_extents.put (reg, size_in_bytes);
}

/* Get the recording of REG in bytes, or NULL if no dynamic size was
   recorded.  */

const svalue *
region_model::get_dynamic_extents (const region *reg) const
{
  if (const svalue * const *slot = m_dynamic_extents.get (reg))
    return *slot;
  return NULL;
}

/* Unset any recorded dynamic size of REG.  */

void
region_model::unset_dynamic_extents (const region *reg)
{
  m_dynamic_extents.remove (reg);
}

/* Information of the layout of a RECORD_TYPE, capturing it as a vector
   of items, where each item is either a field or padding.  */

class record_layout
{
public:
  /* An item within a record; either a field, or padding after a field.  */
  struct item
  {
  public:
    item (const bit_range &br,
	  tree field,
	  bool is_padding)
    : m_bit_range (br),
      m_field (field),
      m_is_padding (is_padding)
    {
    }

    bit_offset_t get_start_bit_offset () const
    {
      return m_bit_range.get_start_bit_offset ();
    }
    bit_offset_t get_next_bit_offset () const
    {
      return m_bit_range.get_next_bit_offset ();
    }

    bool contains_p (bit_offset_t offset) const
    {
      return m_bit_range.contains_p (offset);
    }

    void dump_to_pp (pretty_printer *pp) const
    {
      if (m_is_padding)
	pp_printf (pp, "padding after %qD", m_field);
      else
	pp_printf (pp, "%qD", m_field);
      pp_string (pp, ", ");
      m_bit_range.dump_to_pp (pp);
    }

    bit_range m_bit_range;
    tree m_field;
    bool m_is_padding;
  };

  record_layout (tree record_type)
  {
    gcc_assert (TREE_CODE (record_type) == RECORD_TYPE);

    for (tree iter = TYPE_FIELDS (record_type); iter != NULL_TREE;
	 iter = DECL_CHAIN (iter))
      {
	if (TREE_CODE (iter) == FIELD_DECL)
	  {
	    int iter_field_offset = int_bit_position (iter);
	    bit_size_t size_in_bits;
	    if (!int_size_in_bits (TREE_TYPE (iter), &size_in_bits))
	      size_in_bits = 0;

	    maybe_pad_to (iter_field_offset);

	    /* Add field.  */
	    m_items.safe_push (item (bit_range (iter_field_offset,
						size_in_bits),
				     iter, false));
	  }
      }

    /* Add any trailing padding.  */
    bit_size_t size_in_bits;
    if (int_size_in_bits (record_type, &size_in_bits))
      maybe_pad_to (size_in_bits);
  }

  void dump_to_pp (pretty_printer *pp) const
  {
    unsigned i;
    item *it;
    FOR_EACH_VEC_ELT (m_items, i, it)
      {
	it->dump_to_pp (pp);
	pp_newline (pp);
      }
  }

  DEBUG_FUNCTION void dump () const
  {
    pretty_printer pp;
    pp_format_decoder (&pp) = default_tree_printer;
    pp.buffer->stream = stderr;
    dump_to_pp (&pp);
    pp_flush (&pp);
  }

  const record_layout::item *get_item_at (bit_offset_t offset) const
  {
    unsigned i;
    item *it;
    FOR_EACH_VEC_ELT (m_items, i, it)
      if (it->contains_p (offset))
	return it;
    return NULL;
  }

private:
  /* Subroutine of ctor.  Add padding item to NEXT_OFFSET if necessary.  */

  void maybe_pad_to (bit_offset_t next_offset)
  {
    if (m_items.length () > 0)
      {
	const item &last_item = m_items[m_items.length () - 1];
	bit_offset_t offset_after_last_item
	  = last_item.get_next_bit_offset ();
	if (next_offset > offset_after_last_item)
	  {
	    bit_size_t padding_size
	      = next_offset - offset_after_last_item;
	    m_items.safe_push (item (bit_range (offset_after_last_item,
						padding_size),
				     last_item.m_field, true));
	  }
      }
  }

  auto_vec<item> m_items;
};

/* A subclass of pending_diagnostic for complaining about uninitialized data
   being copied across a trust boundary to an untrusted output
   (e.g. copy_to_user infoleaks in the Linux kernel).  */

class exposure_through_uninit_copy
  : public pending_diagnostic_subclass<exposure_through_uninit_copy>
{
public:
  exposure_through_uninit_copy (const region *src_region,
				const region *dest_region,
				const svalue *copied_sval)
  : m_src_region (src_region),
    m_dest_region (dest_region),
    m_copied_sval (copied_sval)
  {
    gcc_assert (m_copied_sval->get_kind () == SK_POISONED
		|| m_copied_sval->get_kind () == SK_COMPOUND);
  }

  const char *get_kind () const final override
  {
    return "exposure_through_uninit_copy";
  }

  bool operator== (const exposure_through_uninit_copy &other) const
  {
    return (m_src_region == other.m_src_region
	    && m_dest_region == other.m_dest_region
	    && m_copied_sval == other.m_copied_sval);
  }

  int get_controlling_option () const final override
  {
    return OPT_Wanalyzer_exposure_through_uninit_copy;
  }

  bool emit (rich_location *rich_loc) final override
  {
    diagnostic_metadata m;
    /* CWE-200: Exposure of Sensitive Information to an Unauthorized Actor.  */
    m.add_cwe (200);
    enum memory_space mem_space = get_src_memory_space ();
    bool warned;
    switch (mem_space)
      {
      default:
	warned = warning_meta
	  (rich_loc, m, get_controlling_option (),
	   "potential exposure of sensitive information"
	   " by copying uninitialized data across trust boundary");
	break;
      case MEMSPACE_STACK:
	warned = warning_meta
	  (rich_loc, m, get_controlling_option (),
	   "potential exposure of sensitive information"
	   " by copying uninitialized data from stack across trust boundary");
	break;
      case MEMSPACE_HEAP:
	warned = warning_meta
	  (rich_loc, m, get_controlling_option (),
	   "potential exposure of sensitive information"
	   " by copying uninitialized data from heap across trust boundary");
	break;
      }
    if (warned)
      {
	location_t loc = rich_loc->get_loc ();
	inform_number_of_uninit_bits (loc);
	complain_about_uninit_ranges (loc);

	if (mem_space == MEMSPACE_STACK)
	  maybe_emit_fixit_hint ();
      }
    return warned;
  }

  label_text describe_final_event (const evdesc::final_event &) final override
  {
    enum memory_space mem_space = get_src_memory_space ();
    switch (mem_space)
      {
      default:
	return label_text::borrow ("uninitialized data copied here");

      case MEMSPACE_STACK:
	return label_text::borrow ("uninitialized data copied from stack here");

      case MEMSPACE_HEAP:
	return label_text::borrow ("uninitialized data copied from heap here");
      }
  }

  void mark_interesting_stuff (interesting_t *interest) final override
  {
    if (m_src_region)
      interest->add_region_creation (m_src_region);
  }

private:
  enum memory_space get_src_memory_space () const
  {
    return m_src_region ? m_src_region->get_memory_space () : MEMSPACE_UNKNOWN;
  }

  bit_size_t calc_num_uninit_bits () const
  {
    switch (m_copied_sval->get_kind ())
      {
      default:
	gcc_unreachable ();
	break;
      case SK_POISONED:
	{
	  const poisoned_svalue *poisoned_sval
	    = as_a <const poisoned_svalue *> (m_copied_sval);
	  gcc_assert (poisoned_sval->get_poison_kind () == POISON_KIND_UNINIT);

	  /* Give up if don't have type information.  */
	  if (m_copied_sval->get_type () == NULL_TREE)
	    return 0;

	  bit_size_t size_in_bits;
	  if (int_size_in_bits (m_copied_sval->get_type (), &size_in_bits))
	    return size_in_bits;

	  /* Give up if we can't get the size of the type.  */
	  return 0;
	}
	break;
      case SK_COMPOUND:
	{
	  const compound_svalue *compound_sval
	    = as_a <const compound_svalue *> (m_copied_sval);
	  bit_size_t result = 0;
	  /* Find keys for uninit svals.  */
	  for (auto iter : *compound_sval)
	    {
	      const svalue *sval = iter.second;
	      if (const poisoned_svalue *psval
		  = sval->dyn_cast_poisoned_svalue ())
		if (psval->get_poison_kind () == POISON_KIND_UNINIT)
		  {
		    const binding_key *key = iter.first;
		    const concrete_binding *ckey
		      = key->dyn_cast_concrete_binding ();
		    gcc_assert (ckey);
		    result += ckey->get_size_in_bits ();
		  }
	    }
	  return result;
	}
      }
  }

  void inform_number_of_uninit_bits (location_t loc) const
  {
    bit_size_t num_uninit_bits = calc_num_uninit_bits ();
    if (num_uninit_bits <= 0)
      return;
    if (num_uninit_bits % BITS_PER_UNIT == 0)
      {
	/* Express in bytes.  */
	byte_size_t num_uninit_bytes = num_uninit_bits / BITS_PER_UNIT;
	if (num_uninit_bytes == 1)
	  inform (loc, "1 byte is uninitialized");
	else
	  inform (loc,
		  "%wu bytes are uninitialized", num_uninit_bytes.to_uhwi ());
      }
    else
      {
	/* Express in bits.  */
	if (num_uninit_bits == 1)
	  inform (loc, "1 bit is uninitialized");
	else
	  inform (loc,
		  "%wu bits are uninitialized", num_uninit_bits.to_uhwi ());
      }
  }

  void complain_about_uninit_ranges (location_t loc) const
  {
    if (const compound_svalue *compound_sval
	= m_copied_sval->dyn_cast_compound_svalue ())
      {
	/* Find keys for uninit svals.  */
	auto_vec<const concrete_binding *> uninit_keys;
	for (auto iter : *compound_sval)
	  {
	    const svalue *sval = iter.second;
	    if (const poisoned_svalue *psval
		= sval->dyn_cast_poisoned_svalue ())
	      if (psval->get_poison_kind () == POISON_KIND_UNINIT)
		{
		  const binding_key *key = iter.first;
		  const concrete_binding *ckey
		    = key->dyn_cast_concrete_binding ();
		  gcc_assert (ckey);
		  uninit_keys.safe_push (ckey);
		}
	  }
	/* Complain about them in sorted order.  */
	uninit_keys.qsort (concrete_binding::cmp_ptr_ptr);

	std::unique_ptr<record_layout> layout;

	tree type = m_copied_sval->get_type ();
	if (type && TREE_CODE (type) == RECORD_TYPE)
	  {
	    // (std::make_unique is C++14)
	    layout = std::unique_ptr<record_layout> (new record_layout (type));

	    if (0)
	      layout->dump ();
	  }

	unsigned i;
	const concrete_binding *ckey;
	FOR_EACH_VEC_ELT (uninit_keys, i, ckey)
	  {
	    bit_offset_t start_bit = ckey->get_start_bit_offset ();
	    bit_offset_t next_bit = ckey->get_next_bit_offset ();
	    complain_about_uninit_range (loc, start_bit, next_bit,
					 layout.get ());
	  }
      }
  }

  void complain_about_uninit_range (location_t loc,
				    bit_offset_t start_bit,
				    bit_offset_t next_bit,
				    const record_layout *layout) const
  {
    if (layout)
      {
	while (start_bit < next_bit)
	  {
	    if (const record_layout::item *item
		  = layout->get_item_at (start_bit))
	      {
		gcc_assert (start_bit >= item->get_start_bit_offset ());
		gcc_assert (start_bit < item->get_next_bit_offset ());
		if (item->get_start_bit_offset () == start_bit
		    && item->get_next_bit_offset () <= next_bit)
		  complain_about_fully_uninit_item (*item);
		else
		  complain_about_partially_uninit_item (*item);
		start_bit = item->get_next_bit_offset ();
		continue;
	      }
	    else
	      break;
	  }
      }

    if (start_bit >= next_bit)
      return;

    if (start_bit % 8 == 0 && next_bit % 8 == 0)
      {
	/* Express in bytes.  */
	byte_offset_t start_byte = start_bit / 8;
	byte_offset_t last_byte = (next_bit / 8) - 1;
	if (last_byte == start_byte)
	  inform (loc,
		  "byte %wu is uninitialized",
		  start_byte.to_uhwi ());
	else
	  inform (loc,
		  "bytes %wu - %wu are uninitialized",
		  start_byte.to_uhwi (),
		  last_byte.to_uhwi ());
      }
    else
      {
	/* Express in bits.  */
	bit_offset_t last_bit = next_bit - 1;
	if (last_bit == start_bit)
	  inform (loc,
		  "bit %wu is uninitialized",
		  start_bit.to_uhwi ());
	else
	  inform (loc,
		  "bits %wu - %wu are uninitialized",
		  start_bit.to_uhwi (),
		  last_bit.to_uhwi ());
      }
  }

  static void
  complain_about_fully_uninit_item (const record_layout::item &item)
  {
    tree field = item.m_field;
    bit_size_t num_bits = item.m_bit_range.m_size_in_bits;
    if (item.m_is_padding)
      {
	if (num_bits % 8 == 0)
	  {
	    /* Express in bytes.  */
	    byte_size_t num_bytes = num_bits / BITS_PER_UNIT;
	    if (num_bytes == 1)
	      inform (DECL_SOURCE_LOCATION (field),
		      "padding after field %qD is uninitialized (1 byte)",
		      field);
	    else
	      inform (DECL_SOURCE_LOCATION (field),
		      "padding after field %qD is uninitialized (%wu bytes)",
		      field, num_bytes.to_uhwi ());
	  }
	else
	  {
	    /* Express in bits.  */
	    if (num_bits == 1)
	      inform (DECL_SOURCE_LOCATION (field),
		      "padding after field %qD is uninitialized (1 bit)",
		      field);
	    else
	      inform (DECL_SOURCE_LOCATION (field),
		      "padding after field %qD is uninitialized (%wu bits)",
		      field, num_bits.to_uhwi ());
	  }
      }
    else
      {
	if (num_bits % 8 == 0)
	  {
	    /* Express in bytes.  */
	    byte_size_t num_bytes = num_bits / BITS_PER_UNIT;
	    if (num_bytes == 1)
	      inform (DECL_SOURCE_LOCATION (field),
		      "field %qD is uninitialized (1 byte)", field);
	    else
	      inform (DECL_SOURCE_LOCATION (field),
		      "field %qD is uninitialized (%wu bytes)",
		      field, num_bytes.to_uhwi ());
	  }
	else
	  {
	    /* Express in bits.  */
	    if (num_bits == 1)
	      inform (DECL_SOURCE_LOCATION (field),
		      "field %qD is uninitialized (1 bit)", field);
	    else
	      inform (DECL_SOURCE_LOCATION (field),
		      "field %qD is uninitialized (%wu bits)",
		      field, num_bits.to_uhwi ());
	  }
      }
  }

  static void
  complain_about_partially_uninit_item (const record_layout::item &item)
  {
    tree field = item.m_field;
    if (item.m_is_padding)
      inform (DECL_SOURCE_LOCATION (field),
	      "padding after field %qD is partially uninitialized",
	      field);
    else
      inform (DECL_SOURCE_LOCATION (field),
	      "field %qD is partially uninitialized",
	      field);
    /* TODO: ideally we'd describe what parts are uninitialized.  */
  }

  void maybe_emit_fixit_hint () const
  {
    if (tree decl = m_src_region->maybe_get_decl ())
      {
	gcc_rich_location hint_richloc (DECL_SOURCE_LOCATION (decl));
	hint_richloc.add_fixit_insert_after (" = {0}");
	inform (&hint_richloc,
		"suggest forcing zero-initialization by"
		" providing a %<{0}%> initializer");
      }
  }

private:
  const region *m_src_region;
  const region *m_dest_region;
  const svalue *m_copied_sval;
};

/* Return true if any part of SVAL is uninitialized.  */

static bool
contains_uninit_p (const svalue *sval)
{
  struct uninit_finder : public visitor
  {
  public:
    uninit_finder () : m_found_uninit (false) {}
    void visit_poisoned_svalue (const poisoned_svalue *sval)
    {
      if (sval->get_poison_kind () == POISON_KIND_UNINIT)
	m_found_uninit = true;
    }
    bool m_found_uninit;
  };

  uninit_finder v;
  sval->accept (&v);

  return v.m_found_uninit;
}

/* Function for use by plugins when simulating writing data through a
   pointer to an "untrusted" region DST_REG (and thus crossing a security
   boundary), such as copying data to user space in an OS kernel.

   Check that COPIED_SVAL is fully initialized.  If not, complain about
   an infoleak to CTXT.

   SRC_REG can be NULL; if non-NULL it is used as a hint in the diagnostic
   as to where COPIED_SVAL came from.  */

void
region_model::maybe_complain_about_infoleak (const region *dst_reg,
					     const svalue *copied_sval,
					     const region *src_reg,
					     region_model_context *ctxt)
{
  /* Check for exposure.  */
  if (contains_uninit_p (copied_sval))
    ctxt->warn (make_unique<exposure_through_uninit_copy> (src_reg,
							   dst_reg,
							   copied_sval));
}

/* Set errno to a positive symbolic int, as if some error has occurred.  */

void
region_model::set_errno (const call_details &cd)
{
  const region *errno_reg = m_mgr->get_errno_region ();
  conjured_purge p (this, cd.get_ctxt ());
  const svalue *new_errno_sval
    = m_mgr->get_or_create_conjured_svalue (integer_type_node,
					    cd.get_call_stmt (),
					    errno_reg, p);
  const svalue *zero
    = m_mgr->get_or_create_int_cst (integer_type_node, 0);
  add_constraint (new_errno_sval, GT_EXPR, zero, cd.get_ctxt ());
  set_value (errno_reg, new_errno_sval, cd.get_ctxt ());
}

/* class noop_region_model_context : public region_model_context.  */

void
noop_region_model_context::add_note (std::unique_ptr<pending_note>)
{
}

void
noop_region_model_context::bifurcate (std::unique_ptr<custom_edge_info>)
{
}

void
noop_region_model_context::terminate_path ()
{
}

/* struct model_merger.  */

/* Dump a multiline representation of this merger to PP.  */

void
model_merger::dump_to_pp (pretty_printer *pp, bool simple) const
{
  pp_string (pp, "model A:");
  pp_newline (pp);
  m_model_a->dump_to_pp (pp, simple, true);
  pp_newline (pp);

  pp_string (pp, "model B:");
  pp_newline (pp);
  m_model_b->dump_to_pp (pp, simple, true);
  pp_newline (pp);

  pp_string (pp, "merged model:");
  pp_newline (pp);
  m_merged_model->dump_to_pp (pp, simple, true);
  pp_newline (pp);
}

/* Dump a multiline representation of this merger to FILE.  */

void
model_merger::dump (FILE *fp, bool simple) const
{
  pretty_printer pp;
  pp_format_decoder (&pp) = default_tree_printer;
  pp_show_color (&pp) = pp_show_color (global_dc->printer);
  pp.buffer->stream = fp;
  dump_to_pp (&pp, simple);
  pp_flush (&pp);
}

/* Dump a multiline representation of this merger to stderr.  */

DEBUG_FUNCTION void
model_merger::dump (bool simple) const
{
  dump (stderr, simple);
}

/* Return true if it's OK to merge SVAL with other svalues.  */

bool
model_merger::mergeable_svalue_p (const svalue *sval) const
{
  if (m_ext_state)
    {
      /* Reject merging svalues that have non-purgable sm-state,
	 to avoid falsely reporting memory leaks by merging them
	 with something else.  For example, given a local var "p",
	 reject the merger of a:
	   store_a mapping "p" to a malloc-ed ptr
	 with:
	   store_b mapping "p" to a NULL ptr.  */
      if (m_state_a)
	if (!m_state_a->can_purge_p (*m_ext_state, sval))
	  return false;
      if (m_state_b)
	if (!m_state_b->can_purge_p (*m_ext_state, sval))
	  return false;
    }
  return true;
}

} // namespace ana

/* Dump RMODEL fully to stderr (i.e. without summarization).  */

DEBUG_FUNCTION void
debug (const region_model &rmodel)
{
  rmodel.dump (false);
}

/* class rejected_op_constraint : public rejected_constraint.  */

void
rejected_op_constraint::dump_to_pp (pretty_printer *pp) const
{
  region_model m (m_model);
  const svalue *lhs_sval = m.get_rvalue (m_lhs, NULL);
  const svalue *rhs_sval = m.get_rvalue (m_rhs, NULL);
  lhs_sval->dump_to_pp (pp, true);
  pp_printf (pp, " %s ", op_symbol_code (m_op));
  rhs_sval->dump_to_pp (pp, true);
}

/* class rejected_ranges_constraint : public rejected_constraint.  */

void
rejected_ranges_constraint::dump_to_pp (pretty_printer *pp) const
{
  region_model m (m_model);
  const svalue *sval = m.get_rvalue (m_expr, NULL);
  sval->dump_to_pp (pp, true);
  pp_string (pp, " in ");
  m_ranges->dump_to_pp (pp, true);
}

/* class engine.  */

/* engine's ctor.  */

engine::engine (const supergraph *sg, logger *logger)
: m_sg (sg), m_mgr (logger)
{
}

/* Dump the managed objects by class to LOGGER, and the per-class totals.  */

void
engine::log_stats (logger *logger) const
{
  m_mgr.log_stats (logger, true);
}

namespace ana {

#if CHECKING_P

namespace selftest {

/* Build a constant tree of the given type from STR.  */

static tree
build_real_cst_from_string (tree type, const char *str)
{
  REAL_VALUE_TYPE real;
  real_from_string (&real, str);
  return build_real (type, real);
}

/* Append various "interesting" constants to OUT (e.g. NaN).  */

static void
append_interesting_constants (auto_vec<tree> *out)
{
  out->safe_push (build_int_cst (integer_type_node, 0));
  out->safe_push (build_int_cst (integer_type_node, 42));
  out->safe_push (build_int_cst (unsigned_type_node, 0));
  out->safe_push (build_int_cst (unsigned_type_node, 42));
  out->safe_push (build_real_cst_from_string (float_type_node, "QNaN"));
  out->safe_push (build_real_cst_from_string (float_type_node, "-QNaN"));
  out->safe_push (build_real_cst_from_string (float_type_node, "SNaN"));
  out->safe_push (build_real_cst_from_string (float_type_node, "-SNaN"));
  out->safe_push (build_real_cst_from_string (float_type_node, "0.0"));
  out->safe_push (build_real_cst_from_string (float_type_node, "-0.0"));
  out->safe_push (build_real_cst_from_string (float_type_node, "Inf"));
  out->safe_push (build_real_cst_from_string (float_type_node, "-Inf"));
}

/* Verify that tree_cmp is a well-behaved comparator for qsort, even
   if the underlying constants aren't comparable.  */

static void
test_tree_cmp_on_constants ()
{
  auto_vec<tree> csts;
  append_interesting_constants (&csts);

  /* Try sorting every triple. */
  const unsigned num = csts.length ();
  for (unsigned i = 0; i < num; i++)
    for (unsigned j = 0; j < num; j++)
      for (unsigned k = 0; k < num; k++)
	{
	  auto_vec<tree> v (3);
	  v.quick_push (csts[i]);
	  v.quick_push (csts[j]);
	  v.quick_push (csts[k]);
	  v.qsort (tree_cmp);
	}
}

/* Implementation detail of the ASSERT_CONDITION_* macros.  */

void
assert_condition (const location &loc,
		  region_model &model,
		  const svalue *lhs, tree_code op, const svalue *rhs,
		  tristate expected)
{
  tristate actual = model.eval_condition (lhs, op, rhs);
  ASSERT_EQ_AT (loc, actual, expected);
}

/* Implementation detail of the ASSERT_CONDITION_* macros.  */

void
assert_condition (const location &loc,
		  region_model &model,
		  tree lhs, tree_code op, tree rhs,
		  tristate expected)
{
  tristate actual = model.eval_condition (lhs, op, rhs, NULL);
  ASSERT_EQ_AT (loc, actual, expected);
}

/* Implementation detail of ASSERT_DUMP_TREE_EQ.  */

static void
assert_dump_tree_eq (const location &loc, tree t, const char *expected)
{
  auto_fix_quotes sentinel;
  pretty_printer pp;
  pp_format_decoder (&pp) = default_tree_printer;
  dump_tree (&pp, t);
  ASSERT_STREQ_AT (loc, pp_formatted_text (&pp), expected);
}

/* Assert that dump_tree (T) is EXPECTED.  */

#define ASSERT_DUMP_TREE_EQ(T, EXPECTED) \
  SELFTEST_BEGIN_STMT							\
  assert_dump_tree_eq ((SELFTEST_LOCATION), (T), (EXPECTED)); \
  SELFTEST_END_STMT

/* Implementation detail of ASSERT_DUMP_EQ.  */

static void
assert_dump_eq (const location &loc,
		const region_model &model,
		bool summarize,
		const char *expected)
{
  auto_fix_quotes sentinel;
  pretty_printer pp;
  pp_format_decoder (&pp) = default_tree_printer;

  model.dump_to_pp (&pp, summarize, true);
  ASSERT_STREQ_AT (loc, pp_formatted_text (&pp), expected);
}

/* Assert that MODEL.dump_to_pp (SUMMARIZE) is EXPECTED.  */

#define ASSERT_DUMP_EQ(MODEL, SUMMARIZE, EXPECTED) \
  SELFTEST_BEGIN_STMT							\
  assert_dump_eq ((SELFTEST_LOCATION), (MODEL), (SUMMARIZE), (EXPECTED)); \
  SELFTEST_END_STMT

/* Smoketest for region_model::dump_to_pp.  */

static void
test_dump ()
{
  region_model_manager mgr;
  region_model model (&mgr);

  ASSERT_DUMP_EQ (model, false,
		  "stack depth: 0\n"
		  "m_called_unknown_fn: FALSE\n"
		  "constraint_manager:\n"
		  "  equiv classes:\n"
		  "  constraints:\n");
  ASSERT_DUMP_EQ (model, true,
		  "stack depth: 0\n"
		  "m_called_unknown_fn: FALSE\n"
		  "constraint_manager:\n"
		  "  equiv classes:\n"
		  "  constraints:\n");
}

/* Helper function for selftests.  Create a struct or union type named NAME,
   with the fields given by the FIELD_DECLS in FIELDS.
   If IS_STRUCT is true create a RECORD_TYPE (aka a struct), otherwise
   create a UNION_TYPE.  */

static tree
make_test_compound_type (const char *name, bool is_struct,
			 const auto_vec<tree> *fields)
{
  tree t = make_node (is_struct ? RECORD_TYPE : UNION_TYPE);
  TYPE_NAME (t) = get_identifier (name);
  TYPE_SIZE (t) = 0;

  tree fieldlist = NULL;
  int i;
  tree field;
  FOR_EACH_VEC_ELT (*fields, i, field)
    {
      gcc_assert (TREE_CODE (field) == FIELD_DECL);
      DECL_CONTEXT (field) = t;
      fieldlist = chainon (field, fieldlist);
    }
  fieldlist = nreverse (fieldlist);
  TYPE_FIELDS (t) = fieldlist;

  layout_type (t);
  return t;
}

/* Selftest fixture for creating the type "struct coord {int x; int y; };".  */

struct coord_test
{
  coord_test ()
  {
    auto_vec<tree> fields;
    m_x_field = build_decl (UNKNOWN_LOCATION, FIELD_DECL,
			       get_identifier ("x"), integer_type_node);
    fields.safe_push (m_x_field);
    m_y_field = build_decl (UNKNOWN_LOCATION, FIELD_DECL,
			       get_identifier ("y"), integer_type_node);
    fields.safe_push (m_y_field);
    m_coord_type = make_test_compound_type ("coord", true, &fields);
  }

  tree m_x_field;
  tree m_y_field;
  tree m_coord_type;
};

/* Verify usage of a struct.  */

static void
test_struct ()
{
  coord_test ct;

  tree c = build_global_decl ("c", ct.m_coord_type);
  tree c_x = build3 (COMPONENT_REF, TREE_TYPE (ct.m_x_field),
		     c, ct.m_x_field, NULL_TREE);
  tree c_y = build3 (COMPONENT_REF, TREE_TYPE (ct.m_y_field),
		     c, ct.m_y_field, NULL_TREE);

  tree int_17 = build_int_cst (integer_type_node, 17);
  tree int_m3 = build_int_cst (integer_type_node, -3);

  region_model_manager mgr;
  region_model model (&mgr);
  model.set_value (c_x, int_17, NULL);
  model.set_value (c_y, int_m3, NULL);

  /* Verify get_offset for "c.x".  */
  {
    const region *c_x_reg = model.get_lvalue (c_x, NULL);
    region_offset offset = c_x_reg->get_offset (&mgr);
    ASSERT_EQ (offset.get_base_region (), model.get_lvalue (c, NULL));
    ASSERT_EQ (offset.get_bit_offset (), 0);
  }

  /* Verify get_offset for "c.y".  */
  {
    const region *c_y_reg = model.get_lvalue (c_y, NULL);
    region_offset offset = c_y_reg->get_offset (&mgr);
    ASSERT_EQ (offset.get_base_region (), model.get_lvalue (c, NULL));
    ASSERT_EQ (offset.get_bit_offset (), INT_TYPE_SIZE);
  }
}

/* Verify usage of an array element.  */

static void
test_array_1 ()
{
  tree tlen = size_int (10);
  tree arr_type = build_array_type (char_type_node, build_index_type (tlen));

  tree a = build_global_decl ("a", arr_type);

  region_model_manager mgr;
  region_model model (&mgr);
  tree int_0 = build_int_cst (integer_type_node, 0);
  tree a_0 = build4 (ARRAY_REF, char_type_node,
		     a, int_0, NULL_TREE, NULL_TREE);
  tree char_A = build_int_cst (char_type_node, 'A');
  model.set_value (a_0, char_A, NULL);
}

/* Verify that region_model::get_representative_tree works as expected.  */

static void
test_get_representative_tree ()
{
  region_model_manager mgr;

  /* STRING_CST.  */
  {
    tree string_cst = build_string (4, "foo");
    region_model m (&mgr);
    const svalue *str_sval = m.get_rvalue (string_cst, NULL);
    tree rep = m.get_representative_tree (str_sval);
    ASSERT_EQ (rep, string_cst);
  }

  /* String literal.  */
  {
    tree string_cst_ptr = build_string_literal (4, "foo");
    region_model m (&mgr);
    const svalue *str_sval = m.get_rvalue (string_cst_ptr, NULL);
    tree rep = m.get_representative_tree (str_sval);
    ASSERT_DUMP_TREE_EQ (rep, "&\"foo\"[0]");
  }

  /* Value of an element within an array.  */
  {
    tree tlen = size_int (10);
    tree arr_type = build_array_type (char_type_node, build_index_type (tlen));
    tree a = build_global_decl ("a", arr_type);
    placeholder_svalue test_sval (char_type_node, "test value");

    /* Value of a[3].  */
    {
      test_region_model_context ctxt;
      region_model model (&mgr);
      tree int_3 = build_int_cst (integer_type_node, 3);
      tree a_3 = build4 (ARRAY_REF, char_type_node,
			 a, int_3, NULL_TREE, NULL_TREE);
      const region *a_3_reg = model.get_lvalue (a_3, &ctxt);
      model.set_value (a_3_reg, &test_sval, &ctxt);
      tree rep = model.get_representative_tree (&test_sval);
      ASSERT_DUMP_TREE_EQ (rep, "a[3]");
    }

    /* Value of a[0].  */
    {
      test_region_model_context ctxt;
      region_model model (&mgr);
      tree idx = build_int_cst (integer_type_node, 0);
      tree a_0 = build4 (ARRAY_REF, char_type_node,
			 a, idx, NULL_TREE, NULL_TREE);
      const region *a_0_reg = model.get_lvalue (a_0, &ctxt);
      model.set_value (a_0_reg, &test_sval, &ctxt);
      tree rep = model.get_representative_tree (&test_sval);
      ASSERT_DUMP_TREE_EQ (rep, "a[0]");
    }
  }

  /* Value of a field within a struct.  */
  {
    coord_test ct;

    tree c = build_global_decl ("c", ct.m_coord_type);
    tree c_x = build3 (COMPONENT_REF, TREE_TYPE (ct.m_x_field),
		       c, ct.m_x_field, NULL_TREE);
    tree c_y = build3 (COMPONENT_REF, TREE_TYPE (ct.m_y_field),
		       c, ct.m_y_field, NULL_TREE);

    test_region_model_context ctxt;

    /* Value of initial field.  */
    {
      region_model m (&mgr);
      const region *c_x_reg = m.get_lvalue (c_x, &ctxt);
      placeholder_svalue test_sval_x (integer_type_node, "test x val");
      m.set_value (c_x_reg, &test_sval_x, &ctxt);
      tree rep = m.get_representative_tree (&test_sval_x);
      ASSERT_DUMP_TREE_EQ (rep, "c.x");
    }

    /* Value of non-initial field.  */
    {
      region_model m (&mgr);
      const region *c_y_reg = m.get_lvalue (c_y, &ctxt);
      placeholder_svalue test_sval_y (integer_type_node, "test y val");
      m.set_value (c_y_reg, &test_sval_y, &ctxt);
      tree rep = m.get_representative_tree (&test_sval_y);
      ASSERT_DUMP_TREE_EQ (rep, "c.y");
    }
  }
}

/* Verify that calling region_model::get_rvalue repeatedly on the same
   tree constant retrieves the same svalue *.  */

static void
test_unique_constants ()
{
  tree int_0 = build_int_cst (integer_type_node, 0);
  tree int_42 = build_int_cst (integer_type_node, 42);

  test_region_model_context ctxt;
  region_model_manager mgr;
  region_model model (&mgr);
  ASSERT_EQ (model.get_rvalue (int_0, &ctxt), model.get_rvalue (int_0, &ctxt));
  ASSERT_EQ (model.get_rvalue (int_42, &ctxt),
	     model.get_rvalue (int_42, &ctxt));
  ASSERT_NE (model.get_rvalue (int_0, &ctxt), model.get_rvalue (int_42, &ctxt));
  ASSERT_EQ (ctxt.get_num_diagnostics (), 0);

  /* A "(const int)42" will be a different tree from "(int)42)"...  */
  tree const_int_type_node
    = build_qualified_type (integer_type_node, TYPE_QUAL_CONST);
  tree const_int_42 = build_int_cst (const_int_type_node, 42);
  ASSERT_NE (int_42, const_int_42);
  /* It should have a different const_svalue.  */
  const svalue *int_42_sval = model.get_rvalue (int_42, &ctxt);
  const svalue *const_int_42_sval = model.get_rvalue (const_int_42, &ctxt);
  ASSERT_NE (int_42_sval, const_int_42_sval);
  /* But they should compare as equal.  */
  ASSERT_CONDITION_TRUE (model, int_42_sval, EQ_EXPR, const_int_42_sval);
  ASSERT_CONDITION_FALSE (model, int_42_sval, NE_EXPR, const_int_42_sval);
}

/* Verify that each type gets its own singleton unknown_svalue within a
   region_model_manager, and that NULL_TREE gets its own singleton.  */

static void
test_unique_unknowns ()
{
  region_model_manager mgr;
  const svalue *unknown_int
    = mgr.get_or_create_unknown_svalue (integer_type_node);
  /* Repeated calls with the same type should get the same "unknown"
     svalue.  */
  const svalue *unknown_int_2
    = mgr.get_or_create_unknown_svalue (integer_type_node);
  ASSERT_EQ (unknown_int, unknown_int_2);

  /* Different types (or the NULL type) should have different
     unknown_svalues.  */
  const svalue *unknown_NULL_type = mgr.get_or_create_unknown_svalue (NULL);
  ASSERT_NE (unknown_NULL_type, unknown_int);

  /* Repeated calls with NULL for the type should get the same "unknown"
     svalue.  */
  const svalue *unknown_NULL_type_2 = mgr.get_or_create_unknown_svalue (NULL);
  ASSERT_EQ (unknown_NULL_type, unknown_NULL_type_2);
}

/* Verify that initial_svalue are handled as expected.  */

static void
test_initial_svalue_folding ()
{
  region_model_manager mgr;
  tree x = build_global_decl ("x", integer_type_node);
  tree y = build_global_decl ("y", integer_type_node);

  test_region_model_context ctxt;
  region_model model (&mgr);
  const svalue *x_init = model.get_rvalue (x, &ctxt);
  const svalue *y_init = model.get_rvalue (y, &ctxt);
  ASSERT_NE (x_init, y_init);
  const region *x_reg = model.get_lvalue (x, &ctxt);
  ASSERT_EQ (x_init, mgr.get_or_create_initial_value (x_reg));

}

/* Verify that unary ops are folded as expected.  */

static void
test_unaryop_svalue_folding ()
{
  region_model_manager mgr;
  tree x = build_global_decl ("x", integer_type_node);
  tree y = build_global_decl ("y", integer_type_node);

  test_region_model_context ctxt;
  region_model model (&mgr);
  const svalue *x_init = model.get_rvalue (x, &ctxt);
  const svalue *y_init = model.get_rvalue (y, &ctxt);
  const region *x_reg = model.get_lvalue (x, &ctxt);
  ASSERT_EQ (x_init, mgr.get_or_create_initial_value (x_reg));

  /* "(int)x" -> "x".  */
  ASSERT_EQ (x_init, mgr.get_or_create_cast (integer_type_node, x_init));

  /* "(void *)x" -> something other than "x".  */
  ASSERT_NE (x_init, mgr.get_or_create_cast (ptr_type_node, x_init));

  /* "!(x == y)" -> "x != y".  */
  ASSERT_EQ (mgr.get_or_create_unaryop
	       (boolean_type_node, TRUTH_NOT_EXPR,
		mgr.get_or_create_binop (boolean_type_node, EQ_EXPR,
					 x_init, y_init)),
	     mgr.get_or_create_binop (boolean_type_node, NE_EXPR,
				      x_init, y_init));
  /* "!(x > y)" -> "x <= y".  */
  ASSERT_EQ (mgr.get_or_create_unaryop
	       (boolean_type_node, TRUTH_NOT_EXPR,
		mgr.get_or_create_binop (boolean_type_node, GT_EXPR,
					 x_init, y_init)),
	     mgr.get_or_create_binop (boolean_type_node, LE_EXPR,
				      x_init, y_init));
}

/* Verify that binops on constant svalues are folded.  */

static void
test_binop_svalue_folding ()
{
#define NUM_CSTS 10
  tree cst_int[NUM_CSTS];
  region_model_manager mgr;
  const svalue *cst_sval[NUM_CSTS];
  for (int i = 0; i < NUM_CSTS; i++)
    {
      cst_int[i] = build_int_cst (integer_type_node, i);
      cst_sval[i] = mgr.get_or_create_constant_svalue (cst_int[i]);
      ASSERT_EQ (cst_sval[i]->get_kind (), SK_CONSTANT);
      ASSERT_EQ (cst_sval[i]->maybe_get_constant (), cst_int[i]);
    }

  for (int i = 0; i < NUM_CSTS; i++)
    for (int j = 0; j < NUM_CSTS; j++)
      {
	if (i != j)
	  ASSERT_NE (cst_sval[i], cst_sval[j]);
	if (i + j < NUM_CSTS)
	  {
	    const svalue *sum
	      = mgr.get_or_create_binop (integer_type_node, PLUS_EXPR,
					 cst_sval[i], cst_sval[j]);
	    ASSERT_EQ (sum, cst_sval[i + j]);
	  }
	if (i - j >= 0)
	  {
	    const svalue *difference
	      = mgr.get_or_create_binop (integer_type_node, MINUS_EXPR,
					 cst_sval[i], cst_sval[j]);
	    ASSERT_EQ (difference, cst_sval[i - j]);
	  }
	if (i * j < NUM_CSTS)
	  {
	    const svalue *product
	      = mgr.get_or_create_binop (integer_type_node, MULT_EXPR,
					 cst_sval[i], cst_sval[j]);
	    ASSERT_EQ (product, cst_sval[i * j]);
	  }
	const svalue *eq = mgr.get_or_create_binop (integer_type_node, EQ_EXPR,
					       cst_sval[i], cst_sval[j]);
	ASSERT_EQ (eq, i == j ? cst_sval[1] : cst_sval [0]);
	const svalue *neq = mgr.get_or_create_binop (integer_type_node, NE_EXPR,
						cst_sval[i], cst_sval[j]);
	ASSERT_EQ (neq, i != j ? cst_sval[1] : cst_sval [0]);
	// etc
      }

  tree x = build_global_decl ("x", integer_type_node);

  test_region_model_context ctxt;
  region_model model (&mgr);
  const svalue *x_init = model.get_rvalue (x, &ctxt);

  /* PLUS_EXPR folding.  */
  const svalue *x_init_plus_zero
    = mgr.get_or_create_binop (integer_type_node, PLUS_EXPR,
			       x_init, cst_sval[0]);
  ASSERT_EQ (x_init_plus_zero, x_init);
  const svalue *zero_plus_x_init
    = mgr.get_or_create_binop (integer_type_node, PLUS_EXPR,
			       cst_sval[0], x_init);
  ASSERT_EQ (zero_plus_x_init, x_init);

  /* MULT_EXPR folding.  */
  const svalue *x_init_times_zero
    = mgr.get_or_create_binop (integer_type_node, MULT_EXPR,
			       x_init, cst_sval[0]);
  ASSERT_EQ (x_init_times_zero, cst_sval[0]);
  const svalue *zero_times_x_init
    = mgr.get_or_create_binop (integer_type_node, MULT_EXPR,
			       cst_sval[0], x_init);
  ASSERT_EQ (zero_times_x_init, cst_sval[0]);

  const svalue *x_init_times_one
    = mgr.get_or_create_binop (integer_type_node, MULT_EXPR,
			       x_init, cst_sval[1]);
  ASSERT_EQ (x_init_times_one, x_init);
  const svalue *one_times_x_init
    = mgr.get_or_create_binop (integer_type_node, MULT_EXPR,
			       cst_sval[1], x_init);
  ASSERT_EQ (one_times_x_init, x_init);

  // etc
  // TODO: do we want to use the match-and-simplify DSL for this?

  /* Verify that binops put any constants on the RHS.  */
  const svalue *four_times_x_init
    = mgr.get_or_create_binop (integer_type_node, MULT_EXPR,
			       cst_sval[4], x_init);
  const svalue *x_init_times_four
    = mgr.get_or_create_binop (integer_type_node, MULT_EXPR,
			       x_init, cst_sval[4]);
  ASSERT_EQ (four_times_x_init, x_init_times_four);
  const binop_svalue *binop = four_times_x_init->dyn_cast_binop_svalue ();
  ASSERT_EQ (binop->get_op (), MULT_EXPR);
  ASSERT_EQ (binop->get_arg0 (), x_init);
  ASSERT_EQ (binop->get_arg1 (), cst_sval[4]);

  /* Verify that ((x + 1) + 1) == (x + 2).  */
  const svalue *x_init_plus_one
    = mgr.get_or_create_binop (integer_type_node, PLUS_EXPR,
			       x_init, cst_sval[1]);
  const svalue *x_init_plus_two
    = mgr.get_or_create_binop (integer_type_node, PLUS_EXPR,
			       x_init, cst_sval[2]);
  const svalue *x_init_plus_one_plus_one
    = mgr.get_or_create_binop (integer_type_node, PLUS_EXPR,
			       x_init_plus_one, cst_sval[1]);
  ASSERT_EQ (x_init_plus_one_plus_one, x_init_plus_two);

  /* Verify various binops on booleans.  */
  {
    const svalue *sval_true = mgr.get_or_create_int_cst (boolean_type_node, 1);
    const svalue *sval_false = mgr.get_or_create_int_cst (boolean_type_node, 0);
    const svalue *sval_unknown
      = mgr.get_or_create_unknown_svalue (boolean_type_node);
    const placeholder_svalue sval_placeholder (boolean_type_node, "v");
    for (auto op : {BIT_IOR_EXPR, TRUTH_OR_EXPR})
      {
	ASSERT_EQ (mgr.get_or_create_binop (boolean_type_node, op,
					    sval_true, sval_unknown),
		   sval_true);
	ASSERT_EQ (mgr.get_or_create_binop (boolean_type_node, op,
					    sval_false, sval_unknown),
		   sval_unknown);
	ASSERT_EQ (mgr.get_or_create_binop (boolean_type_node, op,
					    sval_false, &sval_placeholder),
		   &sval_placeholder);
      }
    for (auto op : {BIT_AND_EXPR, TRUTH_AND_EXPR})
      {
	ASSERT_EQ (mgr.get_or_create_binop (boolean_type_node, op,
					    sval_false, sval_unknown),
		   sval_false);
	ASSERT_EQ (mgr.get_or_create_binop (boolean_type_node, op,
					    sval_true, sval_unknown),
		   sval_unknown);
	ASSERT_EQ (mgr.get_or_create_binop (boolean_type_node, op,
					    sval_true, &sval_placeholder),
		   &sval_placeholder);
      }
  }
}

/* Verify that sub_svalues are folded as expected.  */

static void
test_sub_svalue_folding ()
{
  coord_test ct;
  tree c = build_global_decl ("c", ct.m_coord_type);
  tree c_x = build3 (COMPONENT_REF, TREE_TYPE (ct.m_x_field),
		     c, ct.m_x_field, NULL_TREE);

  region_model_manager mgr;
  region_model model (&mgr);
  test_region_model_context ctxt;
  const region *c_x_reg = model.get_lvalue (c_x, &ctxt);

  /* Verify that sub_svalue of "unknown" simply
     yields an unknown.  */

  const svalue *unknown = mgr.get_or_create_unknown_svalue (ct.m_coord_type);
  const svalue *sub = mgr.get_or_create_sub_svalue (TREE_TYPE (ct.m_x_field),
						      unknown, c_x_reg);
  ASSERT_EQ (sub->get_kind (), SK_UNKNOWN);
  ASSERT_EQ (sub->get_type (), TREE_TYPE (ct.m_x_field));
}

/* Get BIT within VAL as a symbolic value within MGR.  */

static const svalue *
get_bit (region_model_manager *mgr,
	 bit_offset_t bit,
	 unsigned HOST_WIDE_INT val)
{
  const svalue *inner_svalue
    = mgr->get_or_create_int_cst (unsigned_type_node, val);
  return mgr->get_or_create_bits_within (boolean_type_node,
					 bit_range (bit, 1),
					 inner_svalue);
}

/* Verify that bits_within_svalues are folded as expected.  */

static void
test_bits_within_svalue_folding ()
{
  region_model_manager mgr;

  const svalue *zero = mgr.get_or_create_int_cst (boolean_type_node, 0);
  const svalue *one = mgr.get_or_create_int_cst (boolean_type_node, 1);

  {
    const unsigned val = 0x0000;
    for (unsigned bit = 0; bit < 16; bit++)
      ASSERT_EQ (get_bit (&mgr, bit, val), zero);
  }

  {
    const unsigned val = 0x0001;
    ASSERT_EQ (get_bit (&mgr, 0, val), one);
    for (unsigned bit = 1; bit < 16; bit++)
      ASSERT_EQ (get_bit (&mgr, bit, val), zero);
  }

  {
    const unsigned val = 0x8000;
    for (unsigned bit = 0; bit < 15; bit++)
      ASSERT_EQ (get_bit (&mgr, bit, val), zero);
    ASSERT_EQ (get_bit (&mgr, 15, val), one);
  }

  {
    const unsigned val = 0xFFFF;
    for (unsigned bit = 0; bit < 16; bit++)
      ASSERT_EQ (get_bit (&mgr, bit, val), one);
  }
}

/* Test that region::descendent_of_p works as expected.  */

static void
test_descendent_of_p ()
{
  region_model_manager mgr;
  const region *stack = mgr.get_stack_region ();
  const region *heap = mgr.get_heap_region ();
  const region *code = mgr.get_code_region ();
  const region *globals = mgr.get_globals_region ();

  /* descendent_of_p should return true when used on the region itself.  */
  ASSERT_TRUE (stack->descendent_of_p (stack));
  ASSERT_FALSE (stack->descendent_of_p (heap));
  ASSERT_FALSE (stack->descendent_of_p (code));
  ASSERT_FALSE (stack->descendent_of_p (globals));

  tree x = build_global_decl ("x", integer_type_node);
  const region *x_reg = mgr.get_region_for_global (x);
  ASSERT_TRUE (x_reg->descendent_of_p (globals));

  /* A cast_region should be a descendent of the original region.  */
  const region *cast_reg = mgr.get_cast_region (x_reg, ptr_type_node);
  ASSERT_TRUE (cast_reg->descendent_of_p (x_reg));
}

/* Verify that bit_range_region works as expected.  */

static void
test_bit_range_regions ()
{
  tree x = build_global_decl ("x", integer_type_node);
  region_model_manager mgr;
  const region *x_reg = mgr.get_region_for_global (x);
  const region *byte0
    = mgr.get_bit_range (x_reg, char_type_node, bit_range (0, 8));
  const region *byte1
    = mgr.get_bit_range (x_reg, char_type_node, bit_range (8, 8));
  ASSERT_TRUE (byte0->descendent_of_p (x_reg));
  ASSERT_TRUE (byte1->descendent_of_p (x_reg));
  ASSERT_NE (byte0, byte1);
}

/* Verify that simple assignments work as expected.  */

static void
test_assignment ()
{
  tree int_0 = build_int_cst (integer_type_node, 0);
  tree x = build_global_decl ("x", integer_type_node);
  tree y = build_global_decl ("y", integer_type_node);

  /* "x == 0", then use of y, then "y = 0;".  */
  region_model_manager mgr;
  region_model model (&mgr);
  ADD_SAT_CONSTRAINT (model, x, EQ_EXPR, int_0);
  ASSERT_CONDITION_UNKNOWN (model, y, EQ_EXPR, int_0);
  model.set_value (model.get_lvalue (y, NULL),
		   model.get_rvalue (int_0, NULL),
		   NULL);
  ASSERT_CONDITION_TRUE (model, y, EQ_EXPR, int_0);
  ASSERT_CONDITION_TRUE (model, y, EQ_EXPR, x);
}

/* Verify that compound assignments work as expected.  */

static void
test_compound_assignment ()
{
  coord_test ct;

  tree c = build_global_decl ("c", ct.m_coord_type);
  tree c_x = build3 (COMPONENT_REF, TREE_TYPE (ct.m_x_field),
		     c, ct.m_x_field, NULL_TREE);
  tree c_y = build3 (COMPONENT_REF, TREE_TYPE (ct.m_y_field),
		     c, ct.m_y_field, NULL_TREE);
  tree d = build_global_decl ("d", ct.m_coord_type);
  tree d_x = build3 (COMPONENT_REF, TREE_TYPE (ct.m_x_field),
		     d, ct.m_x_field, NULL_TREE);
  tree d_y = build3 (COMPONENT_REF, TREE_TYPE (ct.m_y_field),
		     d, ct.m_y_field, NULL_TREE);

  tree int_17 = build_int_cst (integer_type_node, 17);
  tree int_m3 = build_int_cst (integer_type_node, -3);

  region_model_manager mgr;
  region_model model (&mgr);
  model.set_value (c_x, int_17, NULL);
  model.set_value (c_y, int_m3, NULL);

  /* Copy c to d.  */
  const svalue *sval = model.get_rvalue (c, NULL);
  model.set_value (model.get_lvalue (d, NULL), sval, NULL);

  /* Check that the fields have the same svalues.  */
  ASSERT_EQ (model.get_rvalue (c_x, NULL), model.get_rvalue (d_x, NULL));
  ASSERT_EQ (model.get_rvalue (c_y, NULL), model.get_rvalue (d_y, NULL));
}

/* Verify the details of pushing and popping stack frames.  */

static void
test_stack_frames ()
{
  tree int_42 = build_int_cst (integer_type_node, 42);
  tree int_10 = build_int_cst (integer_type_node, 10);
  tree int_5 = build_int_cst (integer_type_node, 5);
  tree int_0 = build_int_cst (integer_type_node, 0);

  auto_vec <tree> param_types;
  tree parent_fndecl = make_fndecl (integer_type_node,
				    "parent_fn",
				    param_types);
  allocate_struct_function (parent_fndecl, true);

  tree child_fndecl = make_fndecl (integer_type_node,
				   "child_fn",
				   param_types);
  allocate_struct_function (child_fndecl, true);

  /* "a" and "b" in the parent frame.  */
  tree a = build_decl (UNKNOWN_LOCATION, PARM_DECL,
		       get_identifier ("a"),
		       integer_type_node);
  DECL_CONTEXT (a) = parent_fndecl;
  tree b = build_decl (UNKNOWN_LOCATION, PARM_DECL,
		       get_identifier ("b"),
		       integer_type_node);
  DECL_CONTEXT (b) = parent_fndecl;
  /* "x" and "y" in a child frame.  */
  tree x = build_decl (UNKNOWN_LOCATION, PARM_DECL,
		       get_identifier ("x"),
		       integer_type_node);
  DECL_CONTEXT (x) = child_fndecl;
  tree y = build_decl (UNKNOWN_LOCATION, PARM_DECL,
		       get_identifier ("y"),
		       integer_type_node);
  DECL_CONTEXT (y) = child_fndecl;

  /* "p" global.  */
  tree p = build_global_decl ("p", ptr_type_node);

  /* "q" global.  */
  tree q = build_global_decl ("q", ptr_type_node);

  region_model_manager mgr;
  test_region_model_context ctxt;
  region_model model (&mgr);

  /* Push stack frame for "parent_fn".  */
  const region *parent_frame_reg
    = model.push_frame (DECL_STRUCT_FUNCTION (parent_fndecl),
			NULL, &ctxt);
  ASSERT_EQ (model.get_current_frame (), parent_frame_reg);
  ASSERT_TRUE (model.region_exists_p (parent_frame_reg));
  const region *a_in_parent_reg = model.get_lvalue (a, &ctxt);
  model.set_value (a_in_parent_reg,
		   model.get_rvalue (int_42, &ctxt),
		   &ctxt);
  ASSERT_EQ (a_in_parent_reg->maybe_get_frame_region (), parent_frame_reg);

  model.add_constraint (b, LT_EXPR, int_10, &ctxt);
  ASSERT_EQ (model.eval_condition (b, LT_EXPR, int_10, &ctxt),
	     tristate (tristate::TS_TRUE));

  /* Push stack frame for "child_fn".  */
  const region *child_frame_reg
    = model.push_frame (DECL_STRUCT_FUNCTION (child_fndecl), NULL, &ctxt);
  ASSERT_EQ (model.get_current_frame (), child_frame_reg);
  ASSERT_TRUE (model.region_exists_p (child_frame_reg));
  const region *x_in_child_reg = model.get_lvalue (x, &ctxt);
  model.set_value (x_in_child_reg,
		   model.get_rvalue (int_0, &ctxt),
		   &ctxt);
  ASSERT_EQ (x_in_child_reg->maybe_get_frame_region (), child_frame_reg);

  model.add_constraint (y, NE_EXPR, int_5, &ctxt);
  ASSERT_EQ (model.eval_condition (y, NE_EXPR, int_5, &ctxt),
	     tristate (tristate::TS_TRUE));

  /* Point a global pointer at a local in the child frame:  p = &x.  */
  const region *p_in_globals_reg = model.get_lvalue (p, &ctxt);
  model.set_value (p_in_globals_reg,
		   mgr.get_ptr_svalue (ptr_type_node, x_in_child_reg),
		   &ctxt);
  ASSERT_EQ (p_in_globals_reg->maybe_get_frame_region (), NULL);

  /* Point another global pointer at p: q = &p.  */
  const region *q_in_globals_reg = model.get_lvalue (q, &ctxt);
  model.set_value (q_in_globals_reg,
		   mgr.get_ptr_svalue (ptr_type_node, p_in_globals_reg),
		   &ctxt);

  /* Test region::descendent_of_p.  */
  ASSERT_TRUE (child_frame_reg->descendent_of_p (child_frame_reg));
  ASSERT_TRUE (x_in_child_reg->descendent_of_p (child_frame_reg));
  ASSERT_FALSE (a_in_parent_reg->descendent_of_p (child_frame_reg));

  /* Pop the "child_fn" frame from the stack.  */
  model.pop_frame (NULL, NULL, &ctxt);
  ASSERT_FALSE (model.region_exists_p (child_frame_reg));
  ASSERT_TRUE (model.region_exists_p (parent_frame_reg));

  /* Verify that p (which was pointing at the local "x" in the popped
     frame) has been poisoned.  */
  const svalue *new_p_sval = model.get_rvalue (p, NULL);
  ASSERT_EQ (new_p_sval->get_kind (), SK_POISONED);
  ASSERT_EQ (new_p_sval->dyn_cast_poisoned_svalue ()->get_poison_kind (),
	     POISON_KIND_POPPED_STACK);

  /* Verify that q still points to p, in spite of the region
     renumbering.  */
  const svalue *new_q_sval = model.get_rvalue (q, &ctxt);
  ASSERT_EQ (new_q_sval->get_kind (), SK_REGION);
  ASSERT_EQ (new_q_sval->maybe_get_region (),
	     model.get_lvalue (p, &ctxt));

  /* Verify that top of stack has been updated.  */
  ASSERT_EQ (model.get_current_frame (), parent_frame_reg);

  /* Verify locals in parent frame.  */
  /* Verify "a" still has its value.  */
  const svalue *new_a_sval = model.get_rvalue (a, &ctxt);
  ASSERT_EQ (new_a_sval->get_kind (), SK_CONSTANT);
  ASSERT_EQ (new_a_sval->dyn_cast_constant_svalue ()->get_constant (),
	     int_42);
  /* Verify "b" still has its constraint.  */
  ASSERT_EQ (model.eval_condition (b, LT_EXPR, int_10, &ctxt),
	     tristate (tristate::TS_TRUE));
}

/* Verify that get_representative_path_var works as expected, that
   we can map from regions to parms and back within a recursive call
   stack.  */

static void
test_get_representative_path_var ()
{
  auto_vec <tree> param_types;
  tree fndecl = make_fndecl (integer_type_node,
			     "factorial",
			     param_types);
  allocate_struct_function (fndecl, true);

  /* Parm "n".  */
  tree n = build_decl (UNKNOWN_LOCATION, PARM_DECL,
		       get_identifier ("n"),
		       integer_type_node);
  DECL_CONTEXT (n) = fndecl;

  region_model_manager mgr;
  test_region_model_context ctxt;
  region_model model (&mgr);

  /* Push 5 stack frames for "factorial", each with a param  */
  auto_vec<const region *> parm_regs;
  auto_vec<const svalue *> parm_svals;
  for (int depth = 0; depth < 5; depth++)
    {
      const region *frame_n_reg
	= model.push_frame (DECL_STRUCT_FUNCTION (fndecl), NULL, &ctxt);
      const region *parm_n_reg = model.get_lvalue (path_var (n, depth), &ctxt);
      parm_regs.safe_push (parm_n_reg);

      ASSERT_EQ (parm_n_reg->get_parent_region (), frame_n_reg);
      const svalue *sval_n = mgr.get_or_create_initial_value (parm_n_reg);
      parm_svals.safe_push (sval_n);
    }

  /* Verify that we can recognize that the regions are the parms,
     at every depth.  */
  for (int depth = 0; depth < 5; depth++)
    {
      {
	svalue_set visited;
	ASSERT_EQ (model.get_representative_path_var (parm_regs[depth],
						      &visited),
		   path_var (n, depth + 1));
      }
      /* ...and that we can lookup lvalues for locals for all frames,
	 not just the top.  */
      ASSERT_EQ (model.get_lvalue (path_var (n, depth), NULL),
		 parm_regs[depth]);
      /* ...and that we can locate the svalues.  */
      {
	svalue_set visited;
	ASSERT_EQ (model.get_representative_path_var (parm_svals[depth],
						      &visited),
		   path_var (n, depth + 1));
      }
    }
}

/* Ensure that region_model::operator== works as expected.  */

static void
test_equality_1 ()
{
  tree int_42 = build_int_cst (integer_type_node, 42);
  tree int_17 = build_int_cst (integer_type_node, 17);

/* Verify that "empty" region_model instances are equal to each other.  */
  region_model_manager mgr;
  region_model model0 (&mgr);
  region_model model1 (&mgr);
  ASSERT_EQ (model0, model1);

  /* Verify that setting state in model1 makes the models non-equal.  */
  tree x = build_global_decl ("x", integer_type_node);
  model0.set_value (x, int_42, NULL);
  ASSERT_EQ (model0.get_rvalue (x, NULL)->maybe_get_constant (), int_42);
  ASSERT_NE (model0, model1);

  /* Verify the copy-ctor.  */
  region_model model2 (model0);
  ASSERT_EQ (model0, model2);
  ASSERT_EQ (model2.get_rvalue (x, NULL)->maybe_get_constant (), int_42);
  ASSERT_NE (model1, model2);

  /* Verify that models obtained from copy-ctor are independently editable
     w/o affecting the original model.  */
  model2.set_value (x, int_17, NULL);
  ASSERT_NE (model0, model2);
  ASSERT_EQ (model2.get_rvalue (x, NULL)->maybe_get_constant (), int_17);
  ASSERT_EQ (model0.get_rvalue (x, NULL)->maybe_get_constant (), int_42);
}

/* Verify that region models for
      x = 42; y = 113;
   and
      y = 113; x = 42;
   are equal.  */

static void
test_canonicalization_2 ()
{
  tree int_42 = build_int_cst (integer_type_node, 42);
  tree int_113 = build_int_cst (integer_type_node, 113);
  tree x = build_global_decl ("x", integer_type_node);
  tree y = build_global_decl ("y", integer_type_node);

  region_model_manager mgr;
  region_model model0 (&mgr);
  model0.set_value (model0.get_lvalue (x, NULL),
		    model0.get_rvalue (int_42, NULL),
		    NULL);
  model0.set_value (model0.get_lvalue (y, NULL),
		    model0.get_rvalue (int_113, NULL),
		    NULL);

  region_model model1 (&mgr);
  model1.set_value (model1.get_lvalue (y, NULL),
		    model1.get_rvalue (int_113, NULL),
		    NULL);
  model1.set_value (model1.get_lvalue (x, NULL),
		    model1.get_rvalue (int_42, NULL),
		    NULL);

  ASSERT_EQ (model0, model1);
}

/* Verify that constraints for
     x > 3 && y > 42
   and
     y > 42 && x > 3
   are equal after canonicalization.  */

static void
test_canonicalization_3 ()
{
  tree int_3 = build_int_cst (integer_type_node, 3);
  tree int_42 = build_int_cst (integer_type_node, 42);
  tree x = build_global_decl ("x", integer_type_node);
  tree y = build_global_decl ("y", integer_type_node);

  region_model_manager mgr;
  region_model model0 (&mgr);
  model0.add_constraint (x, GT_EXPR, int_3, NULL);
  model0.add_constraint (y, GT_EXPR, int_42, NULL);

  region_model model1 (&mgr);
  model1.add_constraint (y, GT_EXPR, int_42, NULL);
  model1.add_constraint (x, GT_EXPR, int_3, NULL);

  model0.canonicalize ();
  model1.canonicalize ();
  ASSERT_EQ (model0, model1);
}

/* Verify that we can canonicalize a model containing NaN and other real
   constants.  */

static void
test_canonicalization_4 ()
{
  auto_vec<tree> csts;
  append_interesting_constants (&csts);

  region_model_manager mgr;
  region_model model (&mgr);

  for (tree cst : csts)
    model.get_rvalue (cst, NULL);

  model.canonicalize ();
}

/* Assert that if we have two region_model instances
   with values VAL_A and VAL_B for EXPR that they are
   mergable.  Write the merged model to *OUT_MERGED_MODEL,
   and the merged svalue ptr to *OUT_MERGED_SVALUE.
   If VAL_A or VAL_B are NULL_TREE, don't populate EXPR
   for that region_model.  */

static void
assert_region_models_merge (tree expr, tree val_a, tree val_b,
			     region_model *out_merged_model,
			     const svalue **out_merged_svalue)
{
  region_model_manager *mgr = out_merged_model->get_manager ();
  program_point point (program_point::origin (*mgr));
  test_region_model_context ctxt;
  region_model model0 (mgr);
  region_model model1 (mgr);
  if (val_a)
    model0.set_value (model0.get_lvalue (expr, &ctxt),
		      model0.get_rvalue (val_a, &ctxt),
		      &ctxt);
  if (val_b)
    model1.set_value (model1.get_lvalue (expr, &ctxt),
		      model1.get_rvalue (val_b, &ctxt),
		      &ctxt);

  /* They should be mergeable.  */
  ASSERT_TRUE (model0.can_merge_with_p (model1, point, out_merged_model));
  *out_merged_svalue = out_merged_model->get_rvalue (expr, &ctxt);
}

/* Verify that we can merge region_model instances.  */

static void
test_state_merging ()
{
  tree int_42 = build_int_cst (integer_type_node, 42);
  tree int_113 = build_int_cst (integer_type_node, 113);
  tree x = build_global_decl ("x", integer_type_node);
  tree y = build_global_decl ("y", integer_type_node);
  tree z = build_global_decl ("z", integer_type_node);
  tree p = build_global_decl ("p", ptr_type_node);

  tree addr_of_y = build1 (ADDR_EXPR, ptr_type_node, y);
  tree addr_of_z = build1 (ADDR_EXPR, ptr_type_node, z);

  auto_vec <tree> param_types;
  tree test_fndecl = make_fndecl (integer_type_node, "test_fn", param_types);
  allocate_struct_function (test_fndecl, true);

  /* Param "a".  */
  tree a = build_decl (UNKNOWN_LOCATION, PARM_DECL,
		       get_identifier ("a"),
		       integer_type_node);
  DECL_CONTEXT (a) = test_fndecl;
  tree addr_of_a = build1 (ADDR_EXPR, ptr_type_node, a);

  /* Param "q", a pointer.  */
  tree q = build_decl (UNKNOWN_LOCATION, PARM_DECL,
		       get_identifier ("q"),
		       ptr_type_node);
  DECL_CONTEXT (q) = test_fndecl;

  region_model_manager mgr;
  program_point point (program_point::origin (mgr));

  {
    region_model model0 (&mgr);
    region_model model1 (&mgr);
    region_model merged (&mgr);
    /* Verify empty models can be merged.  */
    ASSERT_TRUE (model0.can_merge_with_p (model1, point, &merged));
    ASSERT_EQ (model0, merged);
  }

  /* Verify that we can merge two contradictory constraints on the
     value for a global.  */
  /* TODO: verify that the merged model doesn't have a value for
     the global  */
  {
    region_model model0 (&mgr);
    region_model model1 (&mgr);
    region_model merged (&mgr);
    test_region_model_context ctxt;
    model0.add_constraint (x, EQ_EXPR, int_42, &ctxt);
    model1.add_constraint (x, EQ_EXPR, int_113, &ctxt);
    ASSERT_TRUE (model0.can_merge_with_p (model1, point, &merged));
    ASSERT_NE (model0, merged);
    ASSERT_NE (model1, merged);
  }

  /* Verify handling of a PARM_DECL.  */
  {
    test_region_model_context ctxt;
    region_model model0 (&mgr);
    region_model model1 (&mgr);
    ASSERT_EQ (model0.get_stack_depth (), 0);
    model0.push_frame (DECL_STRUCT_FUNCTION (test_fndecl), NULL, &ctxt);
    ASSERT_EQ (model0.get_stack_depth (), 1);
    model1.push_frame (DECL_STRUCT_FUNCTION (test_fndecl), NULL, &ctxt);

    placeholder_svalue test_sval (integer_type_node, "test sval");
    model0.set_value (model0.get_lvalue (a, &ctxt), &test_sval, &ctxt);
    model1.set_value (model1.get_lvalue (a, &ctxt), &test_sval, &ctxt);
    ASSERT_EQ (model0, model1);

    /* They should be mergeable, and the result should be the same.  */
    region_model merged (&mgr);
    ASSERT_TRUE (model0.can_merge_with_p (model1, point, &merged));
    ASSERT_EQ (model0, merged);
    /* In particular, "a" should have the placeholder value.  */
    ASSERT_EQ (merged.get_rvalue (a, &ctxt), &test_sval);
  }

  /* Verify handling of a global.  */
  {
    test_region_model_context ctxt;
    region_model model0 (&mgr);
    region_model model1 (&mgr);

    placeholder_svalue test_sval (integer_type_node, "test sval");
    model0.set_value (model0.get_lvalue (x, &ctxt), &test_sval, &ctxt);
    model1.set_value (model1.get_lvalue (x, &ctxt), &test_sval, &ctxt);
    ASSERT_EQ (model0, model1);

    /* They should be mergeable, and the result should be the same.  */
    region_model merged (&mgr);
    ASSERT_TRUE (model0.can_merge_with_p (model1, point, &merged));
    ASSERT_EQ (model0, merged);
    /* In particular, "x" should have the placeholder value.  */
    ASSERT_EQ (merged.get_rvalue (x, &ctxt), &test_sval);
  }

  /* Use global-handling to verify various combinations of values.  */

  /* Two equal constant values.  */
  {
    region_model merged (&mgr);
    const svalue *merged_x_sval;
    assert_region_models_merge (x, int_42, int_42, &merged, &merged_x_sval);

    /* In particular, there should be a constant value for "x".  */
    ASSERT_EQ (merged_x_sval->get_kind (), SK_CONSTANT);
    ASSERT_EQ (merged_x_sval->dyn_cast_constant_svalue ()->get_constant (),
	       int_42);
  }

  /* Two non-equal constant values.  */
  {
    region_model merged (&mgr);
    const svalue *merged_x_sval;
    assert_region_models_merge (x, int_42, int_113, &merged, &merged_x_sval);

    /* In particular, there should be a "widening" value for "x".  */
    ASSERT_EQ (merged_x_sval->get_kind (), SK_WIDENING);
  }

  /* Initial and constant.  */
  {
    region_model merged (&mgr);
    const svalue *merged_x_sval;
    assert_region_models_merge (x, NULL_TREE, int_113, &merged, &merged_x_sval);

    /* In particular, there should be an unknown value for "x".  */
    ASSERT_EQ (merged_x_sval->get_kind (), SK_UNKNOWN);
  }

  /* Constant and initial.  */
  {
    region_model merged (&mgr);
    const svalue *merged_x_sval;
    assert_region_models_merge (x, int_42, NULL_TREE, &merged, &merged_x_sval);

    /* In particular, there should be an unknown value for "x".  */
    ASSERT_EQ (merged_x_sval->get_kind (), SK_UNKNOWN);
  }

  /* Unknown and constant.  */
  // TODO

  /* Pointers: NULL and NULL.  */
  // TODO

  /* Pointers: NULL and non-NULL.  */
  // TODO

  /* Pointers: non-NULL and non-NULL: ptr to a local.  */
  {
    region_model model0 (&mgr);
    model0.push_frame (DECL_STRUCT_FUNCTION (test_fndecl), NULL, NULL);
    model0.set_value (model0.get_lvalue (p, NULL),
		      model0.get_rvalue (addr_of_a, NULL), NULL);

    region_model model1 (model0);
    ASSERT_EQ (model0, model1);

    /* They should be mergeable, and the result should be the same.  */
    region_model merged (&mgr);
    ASSERT_TRUE (model0.can_merge_with_p (model1, point, &merged));
    ASSERT_EQ (model0, merged);
  }

  /* Pointers: non-NULL and non-NULL: ptr to a global.  */
  {
    region_model merged (&mgr);
    /* p == &y in both input models.  */
    const svalue *merged_p_sval;
    assert_region_models_merge (p, addr_of_y, addr_of_y, &merged,
				&merged_p_sval);

    /* We should get p == &y in the merged model.  */
    ASSERT_EQ (merged_p_sval->get_kind (), SK_REGION);
    const region_svalue *merged_p_ptr
      = merged_p_sval->dyn_cast_region_svalue ();
    const region *merged_p_star_reg = merged_p_ptr->get_pointee ();
    ASSERT_EQ (merged_p_star_reg, merged.get_lvalue (y, NULL));
  }

  /* Pointers: non-NULL ptrs to different globals: should be unknown.  */
  {
    region_model merged (&mgr);
    /* x == &y vs x == &z in the input models; these are actually casts
       of the ptrs to "int".  */
    const svalue *merged_x_sval;
    // TODO:
    assert_region_models_merge (x, addr_of_y, addr_of_z, &merged,
				&merged_x_sval);

    /* We should get x == unknown in the merged model.  */
    ASSERT_EQ (merged_x_sval->get_kind (), SK_UNKNOWN);
  }

  /* Pointers: non-NULL and non-NULL: ptr to a heap region.  */
  {
    test_region_model_context ctxt;
    region_model model0 (&mgr);
    tree size = build_int_cst (size_type_node, 1024);
    const svalue *size_sval = mgr.get_or_create_constant_svalue (size);
    const region *new_reg
      = model0.create_region_for_heap_alloc (size_sval, &ctxt);
    const svalue *ptr_sval = mgr.get_ptr_svalue (ptr_type_node, new_reg);
    model0.set_value (model0.get_lvalue (p, &ctxt),
		      ptr_sval, &ctxt);

    region_model model1 (model0);

    ASSERT_EQ (model0, model1);

    region_model merged (&mgr);
    ASSERT_TRUE (model0.can_merge_with_p (model1, point, &merged));

    /* The merged model ought to be identical.  */
    ASSERT_EQ (model0, merged);
  }

  /* Two regions sharing the same placeholder svalue should continue sharing
     it after self-merger.  */
  {
    test_region_model_context ctxt;
    region_model model0 (&mgr);
    placeholder_svalue placeholder_sval (integer_type_node, "test");
    model0.set_value (model0.get_lvalue (x, &ctxt),
		      &placeholder_sval, &ctxt);
    model0.set_value (model0.get_lvalue (y, &ctxt), &placeholder_sval, &ctxt);
    region_model model1 (model0);

    /* They should be mergeable, and the result should be the same.  */
    region_model merged (&mgr);
    ASSERT_TRUE (model0.can_merge_with_p (model1, point, &merged));
    ASSERT_EQ (model0, merged);

    /* In particular, we should have x == y.  */
    ASSERT_EQ (merged.eval_condition (x, EQ_EXPR, y, &ctxt),
	       tristate (tristate::TS_TRUE));
  }

  {
    region_model model0 (&mgr);
    region_model model1 (&mgr);
    test_region_model_context ctxt;
    model0.add_constraint (x, EQ_EXPR, int_42, &ctxt);
    model1.add_constraint (x, NE_EXPR, int_42, &ctxt);
    region_model merged (&mgr);
    ASSERT_TRUE (model0.can_merge_with_p (model1, point, &merged));
  }

  {
    region_model model0 (&mgr);
    region_model model1 (&mgr);
    test_region_model_context ctxt;
    model0.add_constraint (x, EQ_EXPR, int_42, &ctxt);
    model1.add_constraint (x, NE_EXPR, int_42, &ctxt);
    model1.add_constraint (x, EQ_EXPR, int_113, &ctxt);
    region_model merged (&mgr);
    ASSERT_TRUE (model0.can_merge_with_p (model1, point, &merged));
  }

  // TODO: what can't we merge? need at least one such test

  /* TODO: various things
     - heap regions
     - value merging:
       - every combination, but in particular
	   - pairs of regions
   */

  /* Views.  */
  {
    test_region_model_context ctxt;
    region_model model0 (&mgr);

    const region *x_reg = model0.get_lvalue (x, &ctxt);
    const region *x_as_ptr = mgr.get_cast_region (x_reg, ptr_type_node);
    model0.set_value (x_as_ptr, model0.get_rvalue (addr_of_y, &ctxt), &ctxt);

    region_model model1 (model0);
    ASSERT_EQ (model1, model0);

    /* They should be mergeable, and the result should be the same.  */
    region_model merged (&mgr);
    ASSERT_TRUE (model0.can_merge_with_p (model1, point, &merged));
  }

  /* Verify that we can merge a model in which a local in an older stack
     frame points to a local in a more recent stack frame.  */
  {
    region_model model0 (&mgr);
    model0.push_frame (DECL_STRUCT_FUNCTION (test_fndecl), NULL, NULL);
    const region *q_in_first_frame = model0.get_lvalue (q, NULL);

    /* Push a second frame.  */
    const region *reg_2nd_frame
      = model0.push_frame (DECL_STRUCT_FUNCTION (test_fndecl), NULL, NULL);

    /* Have a pointer in the older frame point to a local in the
       more recent frame.  */
    const svalue *sval_ptr = model0.get_rvalue (addr_of_a, NULL);
    model0.set_value (q_in_first_frame, sval_ptr, NULL);

    /* Verify that it's pointing at the newer frame.  */
    const region *reg_pointee = sval_ptr->maybe_get_region ();
    ASSERT_EQ (reg_pointee->get_parent_region (), reg_2nd_frame);

    model0.canonicalize ();

    region_model model1 (model0);
    ASSERT_EQ (model0, model1);

    /* They should be mergeable, and the result should be the same
       (after canonicalization, at least).  */
    region_model merged (&mgr);
    ASSERT_TRUE (model0.can_merge_with_p (model1, point, &merged));
    merged.canonicalize ();
    ASSERT_EQ (model0, merged);
  }

  /* Verify that we can merge a model in which a local points to a global.  */
  {
    region_model model0 (&mgr);
    model0.push_frame (DECL_STRUCT_FUNCTION (test_fndecl), NULL, NULL);
    model0.set_value (model0.get_lvalue (q, NULL),
		      model0.get_rvalue (addr_of_y, NULL), NULL);

    region_model model1 (model0);
    ASSERT_EQ (model0, model1);

    /* They should be mergeable, and the result should be the same
       (after canonicalization, at least).  */
    region_model merged (&mgr);
    ASSERT_TRUE (model0.can_merge_with_p (model1, point, &merged));
    ASSERT_EQ (model0, merged);
  }
}

/* Verify that constraints are correctly merged when merging region_model
   instances.  */

static void
test_constraint_merging ()
{
  tree int_0 = build_int_cst (integer_type_node, 0);
  tree int_5 = build_int_cst (integer_type_node, 5);
  tree x = build_global_decl ("x", integer_type_node);
  tree y = build_global_decl ("y", integer_type_node);
  tree z = build_global_decl ("z", integer_type_node);
  tree n = build_global_decl ("n", integer_type_node);

  region_model_manager mgr;
  test_region_model_context ctxt;

  /* model0: 0 <= (x == y) < n.  */
  region_model model0 (&mgr);
  model0.add_constraint (x, EQ_EXPR, y, &ctxt);
  model0.add_constraint (x, GE_EXPR, int_0, NULL);
  model0.add_constraint (x, LT_EXPR, n, NULL);

  /* model1: z != 5 && (0 <= x < n).  */
  region_model model1 (&mgr);
  model1.add_constraint (z, NE_EXPR, int_5, NULL);
  model1.add_constraint (x, GE_EXPR, int_0, NULL);
  model1.add_constraint (x, LT_EXPR, n, NULL);

  /* They should be mergeable; the merged constraints should
     be: (0 <= x < n).  */
  program_point point (program_point::origin (mgr));
  region_model merged (&mgr);
  ASSERT_TRUE (model0.can_merge_with_p (model1, point, &merged));

  ASSERT_EQ (merged.eval_condition (x, GE_EXPR, int_0, &ctxt),
	     tristate (tristate::TS_TRUE));
  ASSERT_EQ (merged.eval_condition (x, LT_EXPR, n, &ctxt),
	     tristate (tristate::TS_TRUE));

  ASSERT_EQ (merged.eval_condition (z, NE_EXPR, int_5, &ctxt),
	     tristate (tristate::TS_UNKNOWN));
  ASSERT_EQ (merged.eval_condition (x, LT_EXPR, y, &ctxt),
	     tristate (tristate::TS_UNKNOWN));
}

/* Verify that widening_svalue::eval_condition_without_cm works as
   expected.  */

static void
test_widening_constraints ()
{
  region_model_manager mgr;
  function_point point (program_point::origin (mgr).get_function_point ());
  tree int_0 = build_int_cst (integer_type_node, 0);
  tree int_m1 = build_int_cst (integer_type_node, -1);
  tree int_1 = build_int_cst (integer_type_node, 1);
  tree int_256 = build_int_cst (integer_type_node, 256);
  test_region_model_context ctxt;
  const svalue *int_0_sval = mgr.get_or_create_constant_svalue (int_0);
  const svalue *int_1_sval = mgr.get_or_create_constant_svalue (int_1);
  const svalue *w_zero_then_one_sval
    = mgr.get_or_create_widening_svalue (integer_type_node, point,
					  int_0_sval, int_1_sval);
  const widening_svalue *w_zero_then_one
    = w_zero_then_one_sval->dyn_cast_widening_svalue ();
  ASSERT_EQ (w_zero_then_one->get_direction (),
	     widening_svalue::DIR_ASCENDING);
  ASSERT_EQ (w_zero_then_one->eval_condition_without_cm (LT_EXPR, int_m1),
	     tristate::TS_FALSE);
  ASSERT_EQ (w_zero_then_one->eval_condition_without_cm (LT_EXPR, int_0),
	     tristate::TS_FALSE);
  ASSERT_EQ (w_zero_then_one->eval_condition_without_cm (LT_EXPR, int_1),
	     tristate::TS_UNKNOWN);
  ASSERT_EQ (w_zero_then_one->eval_condition_without_cm (LT_EXPR, int_256),
	     tristate::TS_UNKNOWN);

  ASSERT_EQ (w_zero_then_one->eval_condition_without_cm (LE_EXPR, int_m1),
	     tristate::TS_FALSE);
  ASSERT_EQ (w_zero_then_one->eval_condition_without_cm (LE_EXPR, int_0),
	     tristate::TS_UNKNOWN);
  ASSERT_EQ (w_zero_then_one->eval_condition_without_cm (LE_EXPR, int_1),
	     tristate::TS_UNKNOWN);
  ASSERT_EQ (w_zero_then_one->eval_condition_without_cm (LE_EXPR, int_256),
	     tristate::TS_UNKNOWN);

  ASSERT_EQ (w_zero_then_one->eval_condition_without_cm (GT_EXPR, int_m1),
	     tristate::TS_TRUE);
  ASSERT_EQ (w_zero_then_one->eval_condition_without_cm (GT_EXPR, int_0),
	     tristate::TS_UNKNOWN);
  ASSERT_EQ (w_zero_then_one->eval_condition_without_cm (GT_EXPR, int_1),
	     tristate::TS_UNKNOWN);
  ASSERT_EQ (w_zero_then_one->eval_condition_without_cm (GT_EXPR, int_256),
	     tristate::TS_UNKNOWN);

  ASSERT_EQ (w_zero_then_one->eval_condition_without_cm (GE_EXPR, int_m1),
	     tristate::TS_TRUE);
  ASSERT_EQ (w_zero_then_one->eval_condition_without_cm (GE_EXPR, int_0),
	     tristate::TS_TRUE);
  ASSERT_EQ (w_zero_then_one->eval_condition_without_cm (GE_EXPR, int_1),
	     tristate::TS_UNKNOWN);
  ASSERT_EQ (w_zero_then_one->eval_condition_without_cm (GE_EXPR, int_256),
	     tristate::TS_UNKNOWN);

  ASSERT_EQ (w_zero_then_one->eval_condition_without_cm (EQ_EXPR, int_m1),
	     tristate::TS_FALSE);
  ASSERT_EQ (w_zero_then_one->eval_condition_without_cm (EQ_EXPR, int_0),
	     tristate::TS_UNKNOWN);
  ASSERT_EQ (w_zero_then_one->eval_condition_without_cm (EQ_EXPR, int_1),
	     tristate::TS_UNKNOWN);
  ASSERT_EQ (w_zero_then_one->eval_condition_without_cm (EQ_EXPR, int_256),
	     tristate::TS_UNKNOWN);

  ASSERT_EQ (w_zero_then_one->eval_condition_without_cm (NE_EXPR, int_m1),
	     tristate::TS_TRUE);
  ASSERT_EQ (w_zero_then_one->eval_condition_without_cm (NE_EXPR, int_0),
	     tristate::TS_UNKNOWN);
  ASSERT_EQ (w_zero_then_one->eval_condition_without_cm (NE_EXPR, int_1),
	     tristate::TS_UNKNOWN);
  ASSERT_EQ (w_zero_then_one->eval_condition_without_cm (NE_EXPR, int_256),
	     tristate::TS_UNKNOWN);
}

/* Verify merging constraints for states simulating successive iterations
   of a loop.
   Simulate:
     for (i = 0; i < 256; i++)
       [...body...]
   i.e. this gimple:.
     i_15 = 0;
     goto <bb 4>;

   <bb 4> :
     i_11 = PHI <i_15(2), i_23(3)>
     if (i_11 <= 255)
       goto <bb 3>;
     else
       goto [AFTER LOOP]

   <bb 3> :
     [LOOP BODY]
     i_23 = i_11 + 1;

   and thus these ops (and resultant states):
     i_11 = PHI()
       {i_11: 0}
     add_constraint (i_11 <= 255) [for the true edge]
       {i_11: 0}  [constraint was a no-op]
     i_23 = i_11 + 1;
       {i_22: 1}
     i_11 = PHI()
       {i_11: WIDENED (at phi, 0, 1)}
     add_constraint (i_11 <= 255) [for the true edge]
       {i_11: WIDENED (at phi, 0, 1); WIDENED <= 255}
     i_23 = i_11 + 1;
       {i_23: (WIDENED (at phi, 0, 1) + 1); WIDENED <= 255}
     i_11 = PHI(); merge with state at phi above
       {i_11: WIDENED (at phi, 0, 1); WIDENED <= 256}
         [changing meaning of "WIDENED" here]
     if (i_11 <= 255)
        T: {i_11: WIDENED (at phi, 0, 1); WIDENED <= 255}; cache hit
        F: {i_11: 256}
 */

static void
test_iteration_1 ()
{
  region_model_manager mgr;
  program_point point (program_point::origin (mgr));

  tree int_0 = build_int_cst (integer_type_node, 0);
  tree int_1 = build_int_cst (integer_type_node, 1);
  tree int_256 = build_int_cst (integer_type_node, 256);
  tree int_257 = build_int_cst (integer_type_node, 257);
  tree i = build_global_decl ("i", integer_type_node);

  test_region_model_context ctxt;

  /* model0: i: 0.  */
  region_model model0 (&mgr);
  model0.set_value (i, int_0, &ctxt);

  /* model1: i: 1.  */
  region_model model1 (&mgr);
  model1.set_value (i, int_1, &ctxt);

  /* Should merge "i" to a widened value.  */
  region_model model2 (&mgr);
  ASSERT_TRUE (model1.can_merge_with_p (model0, point, &model2));
  const svalue *merged_i = model2.get_rvalue (i, &ctxt);
  ASSERT_EQ (merged_i->get_kind (), SK_WIDENING);
  const widening_svalue *w = merged_i->dyn_cast_widening_svalue ();
  ASSERT_EQ (w->get_direction (), widening_svalue::DIR_ASCENDING);

  /* Add constraint: i < 256  */
  model2.add_constraint (i, LT_EXPR, int_256, &ctxt);
  ASSERT_EQ (model2.eval_condition (i, LT_EXPR, int_256, &ctxt),
	     tristate (tristate::TS_TRUE));
  ASSERT_EQ (model2.eval_condition (i, GE_EXPR, int_0, &ctxt),
	     tristate (tristate::TS_TRUE));

  /* Try merging with the initial state.  */
  region_model model3 (&mgr);
  ASSERT_TRUE (model2.can_merge_with_p (model0, point, &model3));
  /* Merging the merged value with the initial value should be idempotent,
     so that the analysis converges.  */
  ASSERT_EQ (model3.get_rvalue (i, &ctxt), merged_i);
  /* Merger of 0 and a widening value with constraint < CST
     should retain the constraint, even though it was implicit
     for the 0 case.  */
  ASSERT_EQ (model3.eval_condition (i, LT_EXPR, int_256, &ctxt),
	     tristate (tristate::TS_TRUE));
  /* ...and we should have equality: the analysis should have converged.  */
  ASSERT_EQ (model3, model2);

  /* "i_23 = i_11 + 1;"  */
  region_model model4 (model3);
  ASSERT_EQ (model4, model2);
  model4.set_value (i, build2 (PLUS_EXPR, integer_type_node, i, int_1), &ctxt);
  const svalue *plus_one = model4.get_rvalue (i, &ctxt);
  ASSERT_EQ (plus_one->get_kind (), SK_BINOP);

  /* Try merging with the "i: 1" state.  */
  region_model model5 (&mgr);
  ASSERT_TRUE (model4.can_merge_with_p (model1, point, &model5));
  ASSERT_EQ (model5.get_rvalue (i, &ctxt), plus_one);
  ASSERT_EQ (model5, model4);

  /* "i_11 = PHI();" merge with state at phi above.
     For i, we should have a merger of WIDENING with WIDENING + 1,
     and this should be WIDENING again.  */
  region_model model6 (&mgr);
  ASSERT_TRUE (model5.can_merge_with_p (model2, point, &model6));
  const svalue *merged_widening = model6.get_rvalue (i, &ctxt);
  ASSERT_EQ (merged_widening->get_kind (), SK_WIDENING);

  ASSERT_CONDITION_TRUE (model6, i, LT_EXPR, int_257);
}

/* Verify that if we mark a pointer to a malloc-ed region as non-NULL,
   all cast pointers to that region are also known to be non-NULL.  */

static void
test_malloc_constraints ()
{
  region_model_manager mgr;
  region_model model (&mgr);
  tree p = build_global_decl ("p", ptr_type_node);
  tree char_star = build_pointer_type (char_type_node);
  tree q = build_global_decl ("q", char_star);
  tree null_ptr = build_int_cst (ptr_type_node, 0);

  const svalue *size_in_bytes
    = mgr.get_or_create_unknown_svalue (size_type_node);
  const region *reg = model.create_region_for_heap_alloc (size_in_bytes, NULL);
  const svalue *sval = mgr.get_ptr_svalue (ptr_type_node, reg);
  model.set_value (model.get_lvalue (p, NULL), sval, NULL);
  model.set_value (q, p, NULL);

  ASSERT_CONDITION_UNKNOWN (model, p, NE_EXPR, null_ptr);
  ASSERT_CONDITION_UNKNOWN (model, p, EQ_EXPR, null_ptr);
  ASSERT_CONDITION_UNKNOWN (model, q, NE_EXPR, null_ptr);
  ASSERT_CONDITION_UNKNOWN (model, q, EQ_EXPR, null_ptr);

  model.add_constraint (p, NE_EXPR, null_ptr, NULL);

  ASSERT_CONDITION_TRUE (model, p, NE_EXPR, null_ptr);
  ASSERT_CONDITION_FALSE (model, p, EQ_EXPR, null_ptr);
  ASSERT_CONDITION_TRUE (model, q, NE_EXPR, null_ptr);
  ASSERT_CONDITION_FALSE (model, q, EQ_EXPR, null_ptr);
}

/* Smoketest of getting and setting the value of a variable.  */

static void
test_var ()
{
  /* "int i;"  */
  tree i = build_global_decl ("i", integer_type_node);

  tree int_17 = build_int_cst (integer_type_node, 17);
  tree int_m3 = build_int_cst (integer_type_node, -3);

  region_model_manager mgr;
  region_model model (&mgr);

  const region *i_reg = model.get_lvalue (i, NULL);
  ASSERT_EQ (i_reg->get_kind (), RK_DECL);

  /* Reading "i" should give a symbolic "initial value".  */
  const svalue *sval_init = model.get_rvalue (i, NULL);
  ASSERT_EQ (sval_init->get_kind (), SK_INITIAL);
  ASSERT_EQ (sval_init->dyn_cast_initial_svalue ()->get_region (), i_reg);
  /* ..and doing it again should give the same "initial value".  */
  ASSERT_EQ (model.get_rvalue (i, NULL), sval_init);

  /* "i = 17;".  */
  model.set_value (i, int_17, NULL);
  ASSERT_EQ (model.get_rvalue (i, NULL),
	     model.get_rvalue (int_17, NULL));

  /* "i = -3;".  */
  model.set_value (i, int_m3, NULL);
  ASSERT_EQ (model.get_rvalue (i, NULL),
	     model.get_rvalue (int_m3, NULL));

  /* Verify get_offset for "i".  */
  {
    region_offset offset = i_reg->get_offset (&mgr);
    ASSERT_EQ (offset.get_base_region (), i_reg);
    ASSERT_EQ (offset.get_bit_offset (), 0);
  }
}

static void
test_array_2 ()
{
  /* "int arr[10];"  */
  tree tlen = size_int (10);
  tree arr_type
    = build_array_type (integer_type_node, build_index_type (tlen));
  tree arr = build_global_decl ("arr", arr_type);

  /* "int i;"  */
  tree i = build_global_decl ("i", integer_type_node);

  tree int_0 = build_int_cst (integer_type_node, 0);
  tree int_1 = build_int_cst (integer_type_node, 1);

  tree arr_0 = build4 (ARRAY_REF, integer_type_node,
		       arr, int_0, NULL_TREE, NULL_TREE);
  tree arr_1 = build4 (ARRAY_REF, integer_type_node,
		       arr, int_1, NULL_TREE, NULL_TREE);
  tree arr_i = build4 (ARRAY_REF, integer_type_node,
		       arr, i, NULL_TREE, NULL_TREE);

  tree int_17 = build_int_cst (integer_type_node, 17);
  tree int_42 = build_int_cst (integer_type_node, 42);
  tree int_m3 = build_int_cst (integer_type_node, -3);

  region_model_manager mgr;
  region_model model (&mgr);
  /* "arr[0] = 17;".  */
  model.set_value (arr_0, int_17, NULL);
  /* "arr[1] = -3;".  */
  model.set_value (arr_1, int_m3, NULL);

  ASSERT_EQ (model.get_rvalue (arr_0, NULL), model.get_rvalue (int_17, NULL));
  ASSERT_EQ (model.get_rvalue (arr_1, NULL), model.get_rvalue (int_m3, NULL));

  /* Overwrite a pre-existing binding: "arr[1] = 42;".  */
  model.set_value (arr_1, int_42, NULL);
  ASSERT_EQ (model.get_rvalue (arr_1, NULL), model.get_rvalue (int_42, NULL));

  /* Verify get_offset for "arr[0]".  */
  {
    const region *arr_0_reg = model.get_lvalue (arr_0, NULL);
    region_offset offset = arr_0_reg->get_offset (&mgr);
    ASSERT_EQ (offset.get_base_region (), model.get_lvalue (arr, NULL));
    ASSERT_EQ (offset.get_bit_offset (), 0);
  }

  /* Verify get_offset for "arr[1]".  */
  {
    const region *arr_1_reg = model.get_lvalue (arr_1, NULL);
    region_offset offset = arr_1_reg->get_offset (&mgr);
    ASSERT_EQ (offset.get_base_region (), model.get_lvalue (arr, NULL));
    ASSERT_EQ (offset.get_bit_offset (), INT_TYPE_SIZE);
  }

  /* Verify get_offset for "arr[i]".  */
  {
    const region *arr_i_reg = model.get_lvalue (arr_i, NULL);
    region_offset offset = arr_i_reg->get_offset (&mgr);
    ASSERT_EQ (offset.get_base_region (), model.get_lvalue (arr, NULL));
    ASSERT_EQ (offset.get_symbolic_byte_offset ()->get_kind (), SK_BINOP);
  }

  /* "arr[i] = i;" - this should remove the earlier bindings.  */
  model.set_value (arr_i, i, NULL);
  ASSERT_EQ (model.get_rvalue (arr_i, NULL), model.get_rvalue (i, NULL));
  ASSERT_EQ (model.get_rvalue (arr_0, NULL)->get_kind (), SK_UNKNOWN);

  /* "arr[0] = 17;" - this should remove the arr[i] binding.  */
  model.set_value (arr_0, int_17, NULL);
  ASSERT_EQ (model.get_rvalue (arr_0, NULL), model.get_rvalue (int_17, NULL));
  ASSERT_EQ (model.get_rvalue (arr_i, NULL)->get_kind (), SK_UNKNOWN);
}

/* Smoketest of dereferencing a pointer via MEM_REF.  */

static void
test_mem_ref ()
{
  /*
    x = 17;
    p = &x;
    *p;
   */
  tree x = build_global_decl ("x", integer_type_node);
  tree int_star = build_pointer_type (integer_type_node);
  tree p = build_global_decl ("p", int_star);

  tree int_17 = build_int_cst (integer_type_node, 17);
  tree addr_of_x = build1 (ADDR_EXPR, int_star, x);
  tree offset_0 = build_int_cst (integer_type_node, 0);
  tree star_p = build2 (MEM_REF, integer_type_node, p, offset_0);

  region_model_manager mgr;
  region_model model (&mgr);

  /* "x = 17;".  */
  model.set_value (x, int_17, NULL);

  /* "p = &x;".  */
  model.set_value (p, addr_of_x, NULL);

  const svalue *sval = model.get_rvalue (star_p, NULL);
  ASSERT_EQ (sval->maybe_get_constant (), int_17);
}

/* Test for a POINTER_PLUS_EXPR followed by a MEM_REF.
   Analogous to this code:
     void test_6 (int a[10])
     {
       __analyzer_eval (a[3] == 42); [should be UNKNOWN]
       a[3] = 42;
       __analyzer_eval (a[3] == 42); [should be TRUE]
     }
   from data-model-1.c, which looks like this at the gimple level:
       # __analyzer_eval (a[3] == 42); [should be UNKNOWN]
       int *_1 = a_10(D) + 12;   # POINTER_PLUS_EXPR
       int _2 = *_1;             # MEM_REF
       _Bool _3 = _2 == 42;
       int _4 = (int) _3;
       __analyzer_eval (_4);

       # a[3] = 42;
       int *_5 = a_10(D) + 12;   # POINTER_PLUS_EXPR
       *_5 = 42;                 # MEM_REF

       # __analyzer_eval (a[3] == 42); [should be TRUE]
       int *_6 = a_10(D) + 12;   # POINTER_PLUS_EXPR
       int _7 = *_6;             # MEM_REF
       _Bool _8 = _7 == 42;
       int _9 = (int) _8;
       __analyzer_eval (_9);  */

static void
test_POINTER_PLUS_EXPR_then_MEM_REF ()
{
  tree int_star = build_pointer_type (integer_type_node);
  tree a = build_global_decl ("a", int_star);
  tree offset_12 = build_int_cst (size_type_node, 12);
  tree pointer_plus_expr = build2 (POINTER_PLUS_EXPR, int_star, a, offset_12);
  tree offset_0 = build_int_cst (integer_type_node, 0);
  tree mem_ref = build2 (MEM_REF, integer_type_node,
			 pointer_plus_expr, offset_0);
  region_model_manager mgr;
  region_model m (&mgr);

  tree int_42 = build_int_cst (integer_type_node, 42);
  m.set_value (mem_ref, int_42, NULL);
  ASSERT_EQ (m.get_rvalue (mem_ref, NULL)->maybe_get_constant (), int_42);
}

/* Verify that malloc works.  */

static void
test_malloc ()
{
  tree int_star = build_pointer_type (integer_type_node);
  tree p = build_global_decl ("p", int_star);
  tree n = build_global_decl ("n", integer_type_node);
  tree n_times_4 = build2 (MULT_EXPR, size_type_node,
			   n, build_int_cst (size_type_node, 4));

  region_model_manager mgr;
  test_region_model_context ctxt;
  region_model model (&mgr);

  /* "p = malloc (n * 4);".  */
  const svalue *size_sval = model.get_rvalue (n_times_4, &ctxt);
  const region *reg = model.create_region_for_heap_alloc (size_sval, &ctxt);
  const svalue *ptr = mgr.get_ptr_svalue (int_star, reg);
  model.set_value (model.get_lvalue (p, &ctxt), ptr, &ctxt);
  ASSERT_EQ (model.get_capacity (reg), size_sval);
}

/* Verify that alloca works.  */

static void
test_alloca ()
{
  auto_vec <tree> param_types;
  tree fndecl = make_fndecl (integer_type_node,
			     "test_fn",
			     param_types);
  allocate_struct_function (fndecl, true);


  tree int_star = build_pointer_type (integer_type_node);
  tree p = build_global_decl ("p", int_star);
  tree n = build_global_decl ("n", integer_type_node);
  tree n_times_4 = build2 (MULT_EXPR, size_type_node,
			   n, build_int_cst (size_type_node, 4));

  region_model_manager mgr;
  test_region_model_context ctxt;
  region_model model (&mgr);

  /* Push stack frame.  */
  const region *frame_reg
    = model.push_frame (DECL_STRUCT_FUNCTION (fndecl),
			NULL, &ctxt);
  /* "p = alloca (n * 4);".  */
  const svalue *size_sval = model.get_rvalue (n_times_4, &ctxt);
  const region *reg = model.create_region_for_alloca (size_sval, &ctxt);
  ASSERT_EQ (reg->get_parent_region (), frame_reg);
  const svalue *ptr = mgr.get_ptr_svalue (int_star, reg);
  model.set_value (model.get_lvalue (p, &ctxt), ptr, &ctxt);
  ASSERT_EQ (model.get_capacity (reg), size_sval);

  /* Verify that the pointers to the alloca region are replaced by
     poisoned values when the frame is popped.  */
  model.pop_frame (NULL, NULL, &ctxt);
  ASSERT_EQ (model.get_rvalue (p, NULL)->get_kind (), SK_POISONED);
}

/* Verify that svalue::involves_p works.  */

static void
test_involves_p ()
{
  region_model_manager mgr;
  tree int_star = build_pointer_type (integer_type_node);
  tree p = build_global_decl ("p", int_star);
  tree q = build_global_decl ("q", int_star);

  test_region_model_context ctxt;
  region_model model (&mgr);
  const svalue *p_init = model.get_rvalue (p, &ctxt);
  const svalue *q_init = model.get_rvalue (q, &ctxt);

  ASSERT_TRUE (p_init->involves_p (p_init));
  ASSERT_FALSE (p_init->involves_p (q_init));

  const region *star_p_reg = mgr.get_symbolic_region (p_init);
  const region *star_q_reg = mgr.get_symbolic_region (q_init);

  const svalue *init_star_p = mgr.get_or_create_initial_value (star_p_reg);
  const svalue *init_star_q = mgr.get_or_create_initial_value (star_q_reg);

  ASSERT_TRUE (init_star_p->involves_p (p_init));
  ASSERT_FALSE (p_init->involves_p (init_star_p));
  ASSERT_FALSE (init_star_p->involves_p (q_init));
  ASSERT_TRUE (init_star_q->involves_p (q_init));
  ASSERT_FALSE (init_star_q->involves_p (p_init));
}

/* Run all of the selftests within this file.  */

void
analyzer_region_model_cc_tests ()
{
  test_tree_cmp_on_constants ();
  test_dump ();
  test_struct ();
  test_array_1 ();
  test_get_representative_tree ();
  test_unique_constants ();
  test_unique_unknowns ();
  test_initial_svalue_folding ();
  test_unaryop_svalue_folding ();
  test_binop_svalue_folding ();
  test_sub_svalue_folding ();
  test_bits_within_svalue_folding ();
  test_descendent_of_p ();
  test_bit_range_regions ();
  test_assignment ();
  test_compound_assignment ();
  test_stack_frames ();
  test_get_representative_path_var ();
  test_equality_1 ();
  test_canonicalization_2 ();
  test_canonicalization_3 ();
  test_canonicalization_4 ();
  test_state_merging ();
  test_constraint_merging ();
  test_widening_constraints ();
  test_iteration_1 ();
  test_malloc_constraints ();
  test_var ();
  test_array_2 ();
  test_mem_ref ();
  test_POINTER_PLUS_EXPR_then_MEM_REF ();
  test_malloc ();
  test_alloca ();
  test_involves_p ();
}

} // namespace selftest

#endif /* CHECKING_P */

} // namespace ana

#endif /* #if ENABLE_ANALYZER */