1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
|
---------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- S E M _ E V A L --
-- --
-- B o d y --
-- --
-- --
-- Copyright (C) 1992-2002 Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 2, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING. If not, write --
-- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
-- MA 02111-1307, USA. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- It is now maintained by Ada Core Technologies Inc (http://www.gnat.com). --
-- --
------------------------------------------------------------------------------
with Atree; use Atree;
with Checks; use Checks;
with Debug; use Debug;
with Einfo; use Einfo;
with Elists; use Elists;
with Errout; use Errout;
with Eval_Fat; use Eval_Fat;
with Nmake; use Nmake;
with Nlists; use Nlists;
with Opt; use Opt;
with Sem; use Sem;
with Sem_Cat; use Sem_Cat;
with Sem_Ch8; use Sem_Ch8;
with Sem_Res; use Sem_Res;
with Sem_Util; use Sem_Util;
with Sem_Type; use Sem_Type;
with Sem_Warn; use Sem_Warn;
with Sinfo; use Sinfo;
with Snames; use Snames;
with Stand; use Stand;
with Stringt; use Stringt;
with Tbuild; use Tbuild;
package body Sem_Eval is
-----------------------------------------
-- Handling of Compile Time Evaluation --
-----------------------------------------
-- The compile time evaluation of expressions is distributed over several
-- Eval_xxx procedures. These procedures are called immediatedly after
-- a subexpression is resolved and is therefore accomplished in a bottom
-- up fashion. The flags are synthesized using the following approach.
-- Is_Static_Expression is determined by following the detailed rules
-- in RM 4.9(4-14). This involves testing the Is_Static_Expression
-- flag of the operands in many cases.
-- Raises_Constraint_Error is set if any of the operands have the flag
-- set or if an attempt to compute the value of the current expression
-- results in detection of a runtime constraint error.
-- As described in the spec, the requirement is that Is_Static_Expression
-- be accurately set, and in addition for nodes for which this flag is set,
-- Raises_Constraint_Error must also be set. Furthermore a node which has
-- Is_Static_Expression set, and Raises_Constraint_Error clear, then the
-- requirement is that the expression value must be precomputed, and the
-- node is either a literal, or the name of a constant entity whose value
-- is a static expression.
-- The general approach is as follows. First compute Is_Static_Expression.
-- If the node is not static, then the flag is left off in the node and
-- we are all done. Otherwise for a static node, we test if any of the
-- operands will raise constraint error, and if so, propagate the flag
-- Raises_Constraint_Error to the result node and we are done (since the
-- error was already posted at a lower level).
-- For the case of a static node whose operands do not raise constraint
-- error, we attempt to evaluate the node. If this evaluation succeeds,
-- then the node is replaced by the result of this computation. If the
-- evaluation raises constraint error, then we rewrite the node with
-- Apply_Compile_Time_Constraint_Error to raise the exception and also
-- to post appropriate error messages.
----------------
-- Local Data --
----------------
type Bits is array (Nat range <>) of Boolean;
-- Used to convert unsigned (modular) values for folding logical ops
-- The following definitions are used to maintain a cache of nodes that
-- have compile time known values. The cache is maintained only for
-- discrete types (the most common case), and is populated by calls to
-- Compile_Time_Known_Value and Expr_Value, but only used by Expr_Value
-- since it is possible for the status to change (in particular it is
-- possible for a node to get replaced by a constraint error node).
CV_Bits : constant := 5;
-- Number of low order bits of Node_Id value used to reference entries
-- in the cache table.
CV_Cache_Size : constant Nat := 2 ** CV_Bits;
-- Size of cache for compile time values
subtype CV_Range is Nat range 0 .. CV_Cache_Size;
type CV_Entry is record
N : Node_Id;
V : Uint;
end record;
type CV_Cache_Array is array (CV_Range) of CV_Entry;
CV_Cache : CV_Cache_Array := (others => (Node_High_Bound, Uint_0));
-- This is the actual cache, with entries consisting of node/value pairs,
-- and the impossible value Node_High_Bound used for unset entries.
-----------------------
-- Local Subprograms --
-----------------------
function Constant_Array_Ref (Op : Node_Id) return Node_Id;
-- The caller has checked that Op is an array reference (i.e. that its
-- node kind is N_Indexed_Component). If the array reference is constant
-- at compile time, and yields a constant value of a discrete type, then
-- the expression node for the constant value is returned. otherwise Empty
-- is returned. This is used by Compile_Time_Known_Value, as well as by
-- Expr_Value and Expr_Rep_Value.
function From_Bits (B : Bits; T : Entity_Id) return Uint;
-- Converts a bit string of length B'Length to a Uint value to be used
-- for a target of type T, which is a modular type. This procedure
-- includes the necessary reduction by the modulus in the case of a
-- non-binary modulus (for a binary modulus, the bit string is the
-- right length any way so all is well).
function Get_String_Val (N : Node_Id) return Node_Id;
-- Given a tree node for a folded string or character value, returns
-- the corresponding string literal or character literal (one of the
-- two must be available, or the operand would not have been marked
-- as foldable in the earlier analysis of the operation).
function OK_Bits (N : Node_Id; Bits : Uint) return Boolean;
-- Bits represents the number of bits in an integer value to be computed
-- (but the value has not been computed yet). If this value in Bits is
-- reasonable, a result of True is returned, with the implication that
-- the caller should go ahead and complete the calculation. If the value
-- in Bits is unreasonably large, then an error is posted on node N, and
-- False is returned (and the caller skips the proposed calculation).
procedure Out_Of_Range (N : Node_Id);
-- This procedure is called if it is determined that node N, which
-- appears in a non-static context, is a compile time known value
-- which is outside its range, i.e. the range of Etype. This is used
-- in contexts where this is an illegality if N is static, and should
-- generate a warning otherwise.
procedure Rewrite_In_Raise_CE (N : Node_Id; Exp : Node_Id);
-- N and Exp are nodes representing an expression, Exp is known
-- to raise CE. N is rewritten in term of Exp in the optimal way.
function String_Type_Len (Stype : Entity_Id) return Uint;
-- Given a string type, determines the length of the index type, or,
-- if this index type is non-static, the length of the base type of
-- this index type. Note that if the string type is itself static,
-- then the index type is static, so the second case applies only
-- if the string type passed is non-static.
function Test (Cond : Boolean) return Uint;
pragma Inline (Test);
-- This function simply returns the appropriate Boolean'Pos value
-- corresponding to the value of Cond as a universal integer. It is
-- used for producing the result of the static evaluation of the
-- logical operators
procedure Test_Expression_Is_Foldable
(N : Node_Id;
Op1 : Node_Id;
Stat : out Boolean;
Fold : out Boolean);
-- Tests to see if expression N whose single operand is Op1 is foldable,
-- i.e. the operand value is known at compile time. If the operation is
-- foldable, then Fold is True on return, and Stat indicates whether
-- the result is static (i.e. both operands were static). Note that it
-- is quite possible for Fold to be True, and Stat to be False, since
-- there are cases in which we know the value of an operand even though
-- it is not technically static (e.g. the static lower bound of a range
-- whose upper bound is non-static).
--
-- If Stat is set False on return, then Expression_Is_Foldable makes a
-- call to Check_Non_Static_Context on the operand. If Fold is False on
-- return, then all processing is complete, and the caller should
-- return, since there is nothing else to do.
procedure Test_Expression_Is_Foldable
(N : Node_Id;
Op1 : Node_Id;
Op2 : Node_Id;
Stat : out Boolean;
Fold : out Boolean);
-- Same processing, except applies to an expression N with two operands
-- Op1 and Op2.
procedure To_Bits (U : Uint; B : out Bits);
-- Converts a Uint value to a bit string of length B'Length
------------------------------
-- Check_Non_Static_Context --
------------------------------
procedure Check_Non_Static_Context (N : Node_Id) is
T : Entity_Id := Etype (N);
Checks_On : constant Boolean :=
not Index_Checks_Suppressed (T)
and not Range_Checks_Suppressed (T);
begin
-- We need the check only for static expressions not raising CE
-- We can also ignore cases in which the type is Any_Type
if not Is_OK_Static_Expression (N)
or else Etype (N) = Any_Type
then
return;
-- Skip this check for non-scalar expressions
elsif not Is_Scalar_Type (T) then
return;
end if;
-- Here we have the case of outer level static expression of
-- scalar type, where the processing of this procedure is needed.
-- For real types, this is where we convert the value to a machine
-- number (see RM 4.9(38)). Also see ACVC test C490001. We should
-- only need to do this if the parent is a constant declaration,
-- since in other cases, gigi should do the necessary conversion
-- correctly, but experimentation shows that this is not the case
-- on all machines, in particular if we do not convert all literals
-- to machine values in non-static contexts, then ACVC test C490001
-- fails on Sparc/Solaris and SGI/Irix.
if Nkind (N) = N_Real_Literal
and then not Is_Machine_Number (N)
and then not Is_Generic_Type (Etype (N))
and then Etype (N) /= Universal_Real
then
-- Check that value is in bounds before converting to machine
-- number, so as not to lose case where value overflows in the
-- least significant bit or less. See B490001.
if Is_Out_Of_Range (N, Base_Type (T)) then
Out_Of_Range (N);
return;
end if;
-- Note: we have to copy the node, to avoid problems with conformance
-- of very similar numbers (see ACVC tests B4A010C and B63103A).
Rewrite (N, New_Copy (N));
if not Is_Floating_Point_Type (T) then
Set_Realval
(N, Corresponding_Integer_Value (N) * Small_Value (T));
elsif not UR_Is_Zero (Realval (N)) then
declare
RT : constant Entity_Id := Base_Type (T);
X : constant Ureal := Machine (RT, Realval (N), Round);
begin
-- Warn if result of static rounding actually differs from
-- runtime evaluation, which uses round to even.
if Warn_On_Biased_Rounding and Rounding_Was_Biased then
Error_Msg_N ("static expression does not round to even"
& " ('R'M 4.9(38))?", N);
end if;
Set_Realval (N, X);
end;
end if;
Set_Is_Machine_Number (N);
end if;
-- Check for out of range universal integer. This is a non-static
-- context, so the integer value must be in range of the runtime
-- representation of universal integers.
-- We do this only within an expression, because that is the only
-- case in which non-static universal integer values can occur, and
-- furthermore, Check_Non_Static_Context is currently (incorrectly???)
-- called in contexts like the expression of a number declaration where
-- we certainly want to allow out of range values.
if Etype (N) = Universal_Integer
and then Nkind (N) = N_Integer_Literal
and then Nkind (Parent (N)) in N_Subexpr
and then
(Intval (N) < Expr_Value (Type_Low_Bound (Universal_Integer))
or else
Intval (N) > Expr_Value (Type_High_Bound (Universal_Integer)))
then
Apply_Compile_Time_Constraint_Error
(N, "non-static universal integer value out of range?",
CE_Range_Check_Failed);
-- Check out of range of base type
elsif Is_Out_Of_Range (N, Base_Type (T)) then
Out_Of_Range (N);
-- Give warning if outside subtype (where one or both of the
-- bounds of the subtype is static). This warning is omitted
-- if the expression appears in a range that could be null
-- (warnings are handled elsewhere for this case).
elsif T /= Base_Type (T)
and then Nkind (Parent (N)) /= N_Range
then
if Is_In_Range (N, T) then
null;
elsif Is_Out_Of_Range (N, T) then
Apply_Compile_Time_Constraint_Error
(N, "value not in range of}?", CE_Range_Check_Failed);
elsif Checks_On then
Enable_Range_Check (N);
else
Set_Do_Range_Check (N, False);
end if;
end if;
end Check_Non_Static_Context;
---------------------------------
-- Check_String_Literal_Length --
---------------------------------
procedure Check_String_Literal_Length (N : Node_Id; Ttype : Entity_Id) is
begin
if not Raises_Constraint_Error (N)
and then Is_Constrained (Ttype)
then
if
UI_From_Int (String_Length (Strval (N))) /= String_Type_Len (Ttype)
then
Apply_Compile_Time_Constraint_Error
(N, "string length wrong for}?",
CE_Length_Check_Failed,
Ent => Ttype,
Typ => Ttype);
end if;
end if;
end Check_String_Literal_Length;
--------------------------
-- Compile_Time_Compare --
--------------------------
function Compile_Time_Compare (L, R : Node_Id) return Compare_Result is
Ltyp : constant Entity_Id := Etype (L);
Rtyp : constant Entity_Id := Etype (R);
procedure Compare_Decompose
(N : Node_Id;
R : out Node_Id;
V : out Uint);
-- This procedure decomposes the node N into an expression node
-- and a signed offset, so that the value of N is equal to the
-- value of R plus the value V (which may be negative). If no
-- such decomposition is possible, then on return R is a copy
-- of N, and V is set to zero.
function Compare_Fixup (N : Node_Id) return Node_Id;
-- This function deals with replacing 'Last and 'First references
-- with their corresponding type bounds, which we then can compare.
-- The argument is the original node, the result is the identity,
-- unless we have a 'Last/'First reference in which case the value
-- returned is the appropriate type bound.
function Is_Same_Value (L, R : Node_Id) return Boolean;
-- Returns True iff L and R represent expressions that definitely
-- have identical (but not necessarily compile time known) values
-- Indeed the caller is expected to have already dealt with the
-- cases of compile time known values, so these are not tested here.
-----------------------
-- Compare_Decompose --
-----------------------
procedure Compare_Decompose
(N : Node_Id;
R : out Node_Id;
V : out Uint)
is
begin
if Nkind (N) = N_Op_Add
and then Nkind (Right_Opnd (N)) = N_Integer_Literal
then
R := Left_Opnd (N);
V := Intval (Right_Opnd (N));
return;
elsif Nkind (N) = N_Op_Subtract
and then Nkind (Right_Opnd (N)) = N_Integer_Literal
then
R := Left_Opnd (N);
V := UI_Negate (Intval (Right_Opnd (N)));
return;
elsif Nkind (N) = N_Attribute_Reference then
if Attribute_Name (N) = Name_Succ then
R := First (Expressions (N));
V := Uint_1;
return;
elsif Attribute_Name (N) = Name_Pred then
R := First (Expressions (N));
V := Uint_Minus_1;
return;
end if;
end if;
R := N;
V := Uint_0;
end Compare_Decompose;
-------------------
-- Compare_Fixup --
-------------------
function Compare_Fixup (N : Node_Id) return Node_Id is
Indx : Node_Id;
Xtyp : Entity_Id;
Subs : Nat;
begin
if Nkind (N) = N_Attribute_Reference
and then (Attribute_Name (N) = Name_First
or else
Attribute_Name (N) = Name_Last)
then
Xtyp := Etype (Prefix (N));
-- If we have no type, then just abandon the attempt to do
-- a fixup, this is probably the result of some other error.
if No (Xtyp) then
return N;
end if;
-- Dereference an access type
if Is_Access_Type (Xtyp) then
Xtyp := Designated_Type (Xtyp);
end if;
-- If we don't have an array type at this stage, something
-- is peculiar, e.g. another error, and we abandon the attempt
-- at a fixup.
if not Is_Array_Type (Xtyp) then
return N;
end if;
-- Ignore unconstrained array, since bounds are not meaningful
if not Is_Constrained (Xtyp) then
return N;
end if;
if Ekind (Xtyp) = E_String_Literal_Subtype then
if Attribute_Name (N) = Name_First then
return String_Literal_Low_Bound (Xtyp);
else -- Attribute_Name (N) = Name_Last
return Make_Integer_Literal (Sloc (N),
Intval => Intval (String_Literal_Low_Bound (Xtyp))
+ String_Literal_Length (Xtyp));
end if;
end if;
-- Find correct index type
Indx := First_Index (Xtyp);
if Present (Expressions (N)) then
Subs := UI_To_Int (Expr_Value (First (Expressions (N))));
for J in 2 .. Subs loop
Indx := Next_Index (Indx);
end loop;
end if;
Xtyp := Etype (Indx);
if Attribute_Name (N) = Name_First then
return Type_Low_Bound (Xtyp);
else -- Attribute_Name (N) = Name_Last
return Type_High_Bound (Xtyp);
end if;
end if;
return N;
end Compare_Fixup;
-------------------
-- Is_Same_Value --
-------------------
function Is_Same_Value (L, R : Node_Id) return Boolean is
Lf : constant Node_Id := Compare_Fixup (L);
Rf : constant Node_Id := Compare_Fixup (R);
begin
-- Values are the same if they are the same identifier and the
-- identifier refers to a constant object (E_Constant)
if Nkind (Lf) = N_Identifier and then Nkind (Rf) = N_Identifier
and then Entity (Lf) = Entity (Rf)
and then (Ekind (Entity (Lf)) = E_Constant or else
Ekind (Entity (Lf)) = E_In_Parameter or else
Ekind (Entity (Lf)) = E_Loop_Parameter)
then
return True;
-- Or if they are compile time known and identical
elsif Compile_Time_Known_Value (Lf)
and then
Compile_Time_Known_Value (Rf)
and then Expr_Value (Lf) = Expr_Value (Rf)
then
return True;
-- Or if they are both 'First or 'Last values applying to the
-- same entity (first and last don't change even if value does)
elsif Nkind (Lf) = N_Attribute_Reference
and then
Nkind (Rf) = N_Attribute_Reference
and then Attribute_Name (Lf) = Attribute_Name (Rf)
and then (Attribute_Name (Lf) = Name_First
or else
Attribute_Name (Lf) = Name_Last)
and then Is_Entity_Name (Prefix (Lf))
and then Is_Entity_Name (Prefix (Rf))
and then Entity (Prefix (Lf)) = Entity (Prefix (Rf))
then
return True;
-- All other cases, we can't tell
else
return False;
end if;
end Is_Same_Value;
-- Start of processing for Compile_Time_Compare
begin
-- If either operand could raise constraint error, then we cannot
-- know the result at compile time (since CE may be raised!)
if not (Cannot_Raise_Constraint_Error (L)
and then
Cannot_Raise_Constraint_Error (R))
then
return Unknown;
end if;
-- Identical operands are most certainly equal
if L = R then
return EQ;
-- If expressions have no types, then do not attempt to determine
-- if they are the same, since something funny is going on. One
-- case in which this happens is during generic template analysis,
-- when bounds are not fully analyzed.
elsif No (Ltyp) or else No (Rtyp) then
return Unknown;
-- We only attempt compile time analysis for scalar values
elsif not Is_Scalar_Type (Ltyp)
or else Is_Packed_Array_Type (Ltyp)
then
return Unknown;
-- Case where comparison involves two compile time known values
elsif Compile_Time_Known_Value (L)
and then Compile_Time_Known_Value (R)
then
-- For the floating-point case, we have to be a little careful, since
-- at compile time we are dealing with universal exact values, but at
-- runtime, these will be in non-exact target form. That's why the
-- returned results are LE and GE below instead of LT and GT.
if Is_Floating_Point_Type (Ltyp)
or else
Is_Floating_Point_Type (Rtyp)
then
declare
Lo : constant Ureal := Expr_Value_R (L);
Hi : constant Ureal := Expr_Value_R (R);
begin
if Lo < Hi then
return LE;
elsif Lo = Hi then
return EQ;
else
return GE;
end if;
end;
-- For the integer case we know exactly (note that this includes the
-- fixed-point case, where we know the run time integer values now)
else
declare
Lo : constant Uint := Expr_Value (L);
Hi : constant Uint := Expr_Value (R);
begin
if Lo < Hi then
return LT;
elsif Lo = Hi then
return EQ;
else
return GT;
end if;
end;
end if;
-- Cases where at least one operand is not known at compile time
else
-- Here is where we check for comparisons against maximum bounds of
-- types, where we know that no value can be outside the bounds of
-- the subtype. Note that this routine is allowed to assume that all
-- expressions are within their subtype bounds. Callers wishing to
-- deal with possibly invalid values must in any case take special
-- steps (e.g. conversions to larger types) to avoid this kind of
-- optimization, which is always considered to be valid. We do not
-- attempt this optimization with generic types, since the type
-- bounds may not be meaningful in this case.
if Is_Discrete_Type (Ltyp)
and then not Is_Generic_Type (Ltyp)
and then not Is_Generic_Type (Rtyp)
then
if Is_Same_Value (R, Type_High_Bound (Ltyp)) then
return LE;
elsif Is_Same_Value (R, Type_Low_Bound (Ltyp)) then
return GE;
elsif Is_Same_Value (L, Type_High_Bound (Rtyp)) then
return GE;
elsif Is_Same_Value (L, Type_Low_Bound (Ltyp)) then
return LE;
end if;
end if;
-- Next attempt is to decompose the expressions to extract
-- a constant offset resulting from the use of any of the forms:
-- expr + literal
-- expr - literal
-- typ'Succ (expr)
-- typ'Pred (expr)
-- Then we see if the two expressions are the same value, and if so
-- the result is obtained by comparing the offsets.
declare
Lnode : Node_Id;
Loffs : Uint;
Rnode : Node_Id;
Roffs : Uint;
begin
Compare_Decompose (L, Lnode, Loffs);
Compare_Decompose (R, Rnode, Roffs);
if Is_Same_Value (Lnode, Rnode) then
if Loffs = Roffs then
return EQ;
elsif Loffs < Roffs then
return LT;
else
return GT;
end if;
-- If the expressions are different, we cannot say at compile
-- time how they compare, so we return the Unknown indication.
else
return Unknown;
end if;
end;
end if;
end Compile_Time_Compare;
------------------------------
-- Compile_Time_Known_Value --
------------------------------
function Compile_Time_Known_Value (Op : Node_Id) return Boolean is
K : constant Node_Kind := Nkind (Op);
CV_Ent : CV_Entry renames CV_Cache (Nat (Op) mod CV_Cache_Size);
Val : Node_Id;
begin
-- Never known at compile time if bad type or raises constraint error
-- or empty (latter case occurs only as a result of a previous error)
if No (Op)
or else Op = Error
or else Etype (Op) = Any_Type
or else Raises_Constraint_Error (Op)
then
return False;
end if;
-- If we have an entity name, then see if it is the name of a constant
-- and if so, test the corresponding constant value, or the name of
-- an enumeration literal, which is always a constant.
if Present (Etype (Op)) and then Is_Entity_Name (Op) then
declare
E : constant Entity_Id := Entity (Op);
V : Node_Id;
begin
-- Never known at compile time if it is a packed array value.
-- We might want to try to evaluate these at compile time one
-- day, but we do not make that attempt now.
if Is_Packed_Array_Type (Etype (Op)) then
return False;
end if;
if Ekind (E) = E_Enumeration_Literal then
return True;
elsif Ekind (E) = E_Constant then
V := Constant_Value (E);
return Present (V) and then Compile_Time_Known_Value (V);
end if;
end;
-- We have a value, see if it is compile time known
else
-- Integer literals are worth storing in the cache
if K = N_Integer_Literal then
CV_Ent.N := Op;
CV_Ent.V := Intval (Op);
return True;
-- Other literals and NULL are known at compile time
elsif
K = N_Character_Literal
or else
K = N_Real_Literal
or else
K = N_String_Literal
or else
K = N_Null
then
return True;
-- Any reference to Null_Parameter is known at compile time. No
-- other attribute references (that have not already been folded)
-- are known at compile time.
elsif K = N_Attribute_Reference then
return Attribute_Name (Op) = Name_Null_Parameter;
-- A reference to an element of a constant array may be constant.
elsif K = N_Indexed_Component then
Val := Constant_Array_Ref (Op);
if Present (Val) then
CV_Ent.N := Op;
CV_Ent.V := Expr_Value (Val);
return True;
end if;
end if;
end if;
-- If we fall through, not known at compile time
return False;
-- If we get an exception while trying to do this test, then some error
-- has occurred, and we simply say that the value is not known after all
exception
when others =>
return False;
end Compile_Time_Known_Value;
--------------------------------------
-- Compile_Time_Known_Value_Or_Aggr --
--------------------------------------
function Compile_Time_Known_Value_Or_Aggr (Op : Node_Id) return Boolean is
begin
-- If we have an entity name, then see if it is the name of a constant
-- and if so, test the corresponding constant value, or the name of
-- an enumeration literal, which is always a constant.
if Is_Entity_Name (Op) then
declare
E : constant Entity_Id := Entity (Op);
V : Node_Id;
begin
if Ekind (E) = E_Enumeration_Literal then
return True;
elsif Ekind (E) /= E_Constant then
return False;
else
V := Constant_Value (E);
return Present (V)
and then Compile_Time_Known_Value_Or_Aggr (V);
end if;
end;
-- We have a value, see if it is compile time known
else
if Compile_Time_Known_Value (Op) then
return True;
elsif Nkind (Op) = N_Aggregate then
if Present (Expressions (Op)) then
declare
Expr : Node_Id;
begin
Expr := First (Expressions (Op));
while Present (Expr) loop
if not Compile_Time_Known_Value_Or_Aggr (Expr) then
return False;
end if;
Next (Expr);
end loop;
end;
end if;
if Present (Component_Associations (Op)) then
declare
Cass : Node_Id;
begin
Cass := First (Component_Associations (Op));
while Present (Cass) loop
if not
Compile_Time_Known_Value_Or_Aggr (Expression (Cass))
then
return False;
end if;
Next (Cass);
end loop;
end;
end if;
return True;
-- All other types of values are not known at compile time
else
return False;
end if;
end if;
end Compile_Time_Known_Value_Or_Aggr;
------------------------
-- Constant_Array_Ref --
------------------------
function Constant_Array_Ref (Op : Node_Id) return Node_Id is
begin
if List_Length (Expressions (Op)) = 1
and then Is_Entity_Name (Prefix (Op))
and then Ekind (Entity (Prefix (Op))) = E_Constant
then
declare
Arr : constant Node_Id := Constant_Value (Entity (Prefix (Op)));
Sub : constant Node_Id := First (Expressions (Op));
Aty : constant Node_Id := Etype (Arr);
Lin : Nat;
-- Linear one's origin subscript value for array reference
Lbd : Node_Id;
-- Lower bound of the first array index
Elm : Node_Id;
-- Value from constant array
begin
if Ekind (Aty) = E_String_Literal_Subtype then
Lbd := String_Literal_Low_Bound (Aty);
else
Lbd := Type_Low_Bound (Etype (First_Index (Aty)));
end if;
if Compile_Time_Known_Value (Sub)
and then Nkind (Arr) = N_Aggregate
and then Compile_Time_Known_Value (Lbd)
and then Is_Discrete_Type (Component_Type (Aty))
then
Lin := UI_To_Int (Expr_Value (Sub) - Expr_Value (Lbd)) + 1;
if List_Length (Expressions (Arr)) >= Lin then
Elm := Pick (Expressions (Arr), Lin);
if Compile_Time_Known_Value (Elm) then
return Elm;
end if;
end if;
end if;
end;
end if;
return Empty;
end Constant_Array_Ref;
-----------------
-- Eval_Actual --
-----------------
-- This is only called for actuals of functions that are not predefined
-- operators (which have already been rewritten as operators at this
-- stage), so the call can never be folded, and all that needs doing for
-- the actual is to do the check for a non-static context.
procedure Eval_Actual (N : Node_Id) is
begin
Check_Non_Static_Context (N);
end Eval_Actual;
--------------------
-- Eval_Allocator --
--------------------
-- Allocators are never static, so all we have to do is to do the
-- check for a non-static context if an expression is present.
procedure Eval_Allocator (N : Node_Id) is
Expr : constant Node_Id := Expression (N);
begin
if Nkind (Expr) = N_Qualified_Expression then
Check_Non_Static_Context (Expression (Expr));
end if;
end Eval_Allocator;
------------------------
-- Eval_Arithmetic_Op --
------------------------
-- Arithmetic operations are static functions, so the result is static
-- if both operands are static (RM 4.9(7), 4.9(20)).
procedure Eval_Arithmetic_Op (N : Node_Id) is
Left : constant Node_Id := Left_Opnd (N);
Right : constant Node_Id := Right_Opnd (N);
Ltype : constant Entity_Id := Etype (Left);
Rtype : constant Entity_Id := Etype (Right);
Stat : Boolean;
Fold : Boolean;
begin
-- If not foldable we are done
Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
if not Fold then
return;
end if;
-- Fold for cases where both operands are of integer type
if Is_Integer_Type (Ltype) and then Is_Integer_Type (Rtype) then
declare
Left_Int : constant Uint := Expr_Value (Left);
Right_Int : constant Uint := Expr_Value (Right);
Result : Uint;
begin
case Nkind (N) is
when N_Op_Add =>
Result := Left_Int + Right_Int;
when N_Op_Subtract =>
Result := Left_Int - Right_Int;
when N_Op_Multiply =>
if OK_Bits
(N, UI_From_Int
(Num_Bits (Left_Int) + Num_Bits (Right_Int)))
then
Result := Left_Int * Right_Int;
else
Result := Left_Int;
end if;
when N_Op_Divide =>
-- The exception Constraint_Error is raised by integer
-- division, rem and mod if the right operand is zero.
if Right_Int = 0 then
Apply_Compile_Time_Constraint_Error
(N, "division by zero", CE_Divide_By_Zero);
return;
else
Result := Left_Int / Right_Int;
end if;
when N_Op_Mod =>
-- The exception Constraint_Error is raised by integer
-- division, rem and mod if the right operand is zero.
if Right_Int = 0 then
Apply_Compile_Time_Constraint_Error
(N, "mod with zero divisor", CE_Divide_By_Zero);
return;
else
Result := Left_Int mod Right_Int;
end if;
when N_Op_Rem =>
-- The exception Constraint_Error is raised by integer
-- division, rem and mod if the right operand is zero.
if Right_Int = 0 then
Apply_Compile_Time_Constraint_Error
(N, "rem with zero divisor", CE_Divide_By_Zero);
return;
else
Result := Left_Int rem Right_Int;
end if;
when others =>
raise Program_Error;
end case;
-- Adjust the result by the modulus if the type is a modular type
if Is_Modular_Integer_Type (Ltype) then
Result := Result mod Modulus (Ltype);
end if;
Fold_Uint (N, Result);
end;
-- Cases where at least one operand is a real. We handle the cases
-- of both reals, or mixed/real integer cases (the latter happen
-- only for divide and multiply, and the result is always real).
elsif Is_Real_Type (Ltype) or else Is_Real_Type (Rtype) then
declare
Left_Real : Ureal;
Right_Real : Ureal;
Result : Ureal;
begin
if Is_Real_Type (Ltype) then
Left_Real := Expr_Value_R (Left);
else
Left_Real := UR_From_Uint (Expr_Value (Left));
end if;
if Is_Real_Type (Rtype) then
Right_Real := Expr_Value_R (Right);
else
Right_Real := UR_From_Uint (Expr_Value (Right));
end if;
if Nkind (N) = N_Op_Add then
Result := Left_Real + Right_Real;
elsif Nkind (N) = N_Op_Subtract then
Result := Left_Real - Right_Real;
elsif Nkind (N) = N_Op_Multiply then
Result := Left_Real * Right_Real;
else pragma Assert (Nkind (N) = N_Op_Divide);
if UR_Is_Zero (Right_Real) then
Apply_Compile_Time_Constraint_Error
(N, "division by zero", CE_Divide_By_Zero);
return;
end if;
Result := Left_Real / Right_Real;
end if;
Fold_Ureal (N, Result);
end;
end if;
Set_Is_Static_Expression (N, Stat);
end Eval_Arithmetic_Op;
----------------------------
-- Eval_Character_Literal --
----------------------------
-- Nothing to be done!
procedure Eval_Character_Literal (N : Node_Id) is
pragma Warnings (Off, N);
begin
null;
end Eval_Character_Literal;
------------------------
-- Eval_Concatenation --
------------------------
-- Concatenation is a static function, so the result is static if
-- both operands are static (RM 4.9(7), 4.9(21)).
procedure Eval_Concatenation (N : Node_Id) is
Left : constant Node_Id := Left_Opnd (N);
Right : constant Node_Id := Right_Opnd (N);
C_Typ : constant Entity_Id := Root_Type (Component_Type (Etype (N)));
Stat : Boolean;
Fold : Boolean;
begin
-- Concatenation is never static in Ada 83, so if Ada 83
-- check operand non-static context
if Ada_83
and then Comes_From_Source (N)
then
Check_Non_Static_Context (Left);
Check_Non_Static_Context (Right);
return;
end if;
-- If not foldable we are done. In principle concatenation that yields
-- any string type is static (i.e. an array type of character types).
-- However, character types can include enumeration literals, and
-- concatenation in that case cannot be described by a literal, so we
-- only consider the operation static if the result is an array of
-- (a descendant of) a predefined character type.
Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
if (C_Typ = Standard_Character
or else C_Typ = Standard_Wide_Character)
and then Fold
then
null;
else
Set_Is_Static_Expression (N, False);
return;
end if;
-- Compile time string concatenation.
-- ??? Note that operands that are aggregates can be marked as
-- static, so we should attempt at a later stage to fold
-- concatenations with such aggregates.
declare
Left_Str : constant Node_Id := Get_String_Val (Left);
Left_Len : Nat;
Right_Str : constant Node_Id := Get_String_Val (Right);
begin
-- Establish new string literal, and store left operand. We make
-- sure to use the special Start_String that takes an operand if
-- the left operand is a string literal. Since this is optimized
-- in the case where that is the most recently created string
-- literal, we ensure efficient time/space behavior for the
-- case of a concatenation of a series of string literals.
if Nkind (Left_Str) = N_String_Literal then
Left_Len := String_Length (Strval (Left_Str));
Start_String (Strval (Left_Str));
else
Start_String;
Store_String_Char (Char_Literal_Value (Left_Str));
Left_Len := 1;
end if;
-- Now append the characters of the right operand
if Nkind (Right_Str) = N_String_Literal then
declare
S : constant String_Id := Strval (Right_Str);
begin
for J in 1 .. String_Length (S) loop
Store_String_Char (Get_String_Char (S, J));
end loop;
end;
else
Store_String_Char (Char_Literal_Value (Right_Str));
end if;
Set_Is_Static_Expression (N, Stat);
if Stat then
-- If left operand is the empty string, the result is the
-- right operand, including its bounds if anomalous.
if Left_Len = 0
and then Is_Array_Type (Etype (Right))
and then Etype (Right) /= Any_String
then
Set_Etype (N, Etype (Right));
end if;
Fold_Str (N, End_String);
end if;
end;
end Eval_Concatenation;
---------------------------------
-- Eval_Conditional_Expression --
---------------------------------
-- This GNAT internal construct can never be statically folded, so the
-- only required processing is to do the check for non-static context
-- for the two expression operands.
procedure Eval_Conditional_Expression (N : Node_Id) is
Condition : constant Node_Id := First (Expressions (N));
Then_Expr : constant Node_Id := Next (Condition);
Else_Expr : constant Node_Id := Next (Then_Expr);
begin
Check_Non_Static_Context (Then_Expr);
Check_Non_Static_Context (Else_Expr);
end Eval_Conditional_Expression;
----------------------
-- Eval_Entity_Name --
----------------------
-- This procedure is used for identifiers and expanded names other than
-- named numbers (see Eval_Named_Integer, Eval_Named_Real. These are
-- static if they denote a static constant (RM 4.9(6)) or if the name
-- denotes an enumeration literal (RM 4.9(22)).
procedure Eval_Entity_Name (N : Node_Id) is
Def_Id : constant Entity_Id := Entity (N);
Val : Node_Id;
begin
-- Enumeration literals are always considered to be constants
-- and cannot raise constraint error (RM 4.9(22)).
if Ekind (Def_Id) = E_Enumeration_Literal then
Set_Is_Static_Expression (N);
return;
-- A name is static if it denotes a static constant (RM 4.9(5)), and
-- we also copy Raise_Constraint_Error. Notice that even if non-static,
-- it does not violate 10.2.1(8) here, since this is not a variable.
elsif Ekind (Def_Id) = E_Constant then
-- Deferred constants must always be treated as nonstatic
-- outside the scope of their full view.
if Present (Full_View (Def_Id))
and then not In_Open_Scopes (Scope (Def_Id))
then
Val := Empty;
else
Val := Constant_Value (Def_Id);
end if;
if Present (Val) then
Set_Is_Static_Expression
(N, Is_Static_Expression (Val)
and then Is_Static_Subtype (Etype (Def_Id)));
Set_Raises_Constraint_Error (N, Raises_Constraint_Error (Val));
if not Is_Static_Expression (N)
and then not Is_Generic_Type (Etype (N))
then
Validate_Static_Object_Name (N);
end if;
return;
end if;
end if;
-- Fall through if the name is not static.
Validate_Static_Object_Name (N);
end Eval_Entity_Name;
----------------------------
-- Eval_Indexed_Component --
----------------------------
-- Indexed components are never static, so the only required processing
-- is to perform the check for non-static context on the index values.
procedure Eval_Indexed_Component (N : Node_Id) is
Expr : Node_Id;
begin
Expr := First (Expressions (N));
while Present (Expr) loop
Check_Non_Static_Context (Expr);
Next (Expr);
end loop;
end Eval_Indexed_Component;
--------------------------
-- Eval_Integer_Literal --
--------------------------
-- Numeric literals are static (RM 4.9(1)), and have already been marked
-- as static by the analyzer. The reason we did it that early is to allow
-- the possibility of turning off the Is_Static_Expression flag after
-- analysis, but before resolution, when integer literals are generated
-- in the expander that do not correspond to static expressions.
procedure Eval_Integer_Literal (N : Node_Id) is
T : constant Entity_Id := Etype (N);
begin
-- If the literal appears in a non-expression context, then it is
-- certainly appearing in a non-static context, so check it. This
-- is actually a redundant check, since Check_Non_Static_Context
-- would check it, but it seems worth while avoiding the call.
if Nkind (Parent (N)) not in N_Subexpr then
Check_Non_Static_Context (N);
end if;
-- Modular integer literals must be in their base range
if Is_Modular_Integer_Type (T)
and then Is_Out_Of_Range (N, Base_Type (T))
then
Out_Of_Range (N);
end if;
end Eval_Integer_Literal;
---------------------
-- Eval_Logical_Op --
---------------------
-- Logical operations are static functions, so the result is potentially
-- static if both operands are potentially static (RM 4.9(7), 4.9(20)).
procedure Eval_Logical_Op (N : Node_Id) is
Left : constant Node_Id := Left_Opnd (N);
Right : constant Node_Id := Right_Opnd (N);
Stat : Boolean;
Fold : Boolean;
begin
-- If not foldable we are done
Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
if not Fold then
return;
end if;
-- Compile time evaluation of logical operation
declare
Left_Int : constant Uint := Expr_Value (Left);
Right_Int : constant Uint := Expr_Value (Right);
begin
if Is_Modular_Integer_Type (Etype (N)) then
declare
Left_Bits : Bits (0 .. UI_To_Int (Esize (Etype (N))) - 1);
Right_Bits : Bits (0 .. UI_To_Int (Esize (Etype (N))) - 1);
begin
To_Bits (Left_Int, Left_Bits);
To_Bits (Right_Int, Right_Bits);
-- Note: should really be able to use array ops instead of
-- these loops, but they weren't working at the time ???
if Nkind (N) = N_Op_And then
for J in Left_Bits'Range loop
Left_Bits (J) := Left_Bits (J) and Right_Bits (J);
end loop;
elsif Nkind (N) = N_Op_Or then
for J in Left_Bits'Range loop
Left_Bits (J) := Left_Bits (J) or Right_Bits (J);
end loop;
else
pragma Assert (Nkind (N) = N_Op_Xor);
for J in Left_Bits'Range loop
Left_Bits (J) := Left_Bits (J) xor Right_Bits (J);
end loop;
end if;
Fold_Uint (N, From_Bits (Left_Bits, Etype (N)));
end;
else
pragma Assert (Is_Boolean_Type (Etype (N)));
if Nkind (N) = N_Op_And then
Fold_Uint (N,
Test (Is_True (Left_Int) and then Is_True (Right_Int)));
elsif Nkind (N) = N_Op_Or then
Fold_Uint (N,
Test (Is_True (Left_Int) or else Is_True (Right_Int)));
else
pragma Assert (Nkind (N) = N_Op_Xor);
Fold_Uint (N,
Test (Is_True (Left_Int) xor Is_True (Right_Int)));
end if;
end if;
Set_Is_Static_Expression (N, Stat);
end;
end Eval_Logical_Op;
------------------------
-- Eval_Membership_Op --
------------------------
-- A membership test is potentially static if the expression is static,
-- and the range is a potentially static range, or is a subtype mark
-- denoting a static subtype (RM 4.9(12)).
procedure Eval_Membership_Op (N : Node_Id) is
Left : constant Node_Id := Left_Opnd (N);
Right : constant Node_Id := Right_Opnd (N);
Def_Id : Entity_Id;
Lo : Node_Id;
Hi : Node_Id;
Result : Boolean;
Stat : Boolean;
Fold : Boolean;
begin
-- Ignore if error in either operand, except to make sure that
-- Any_Type is properly propagated to avoid junk cascaded errors.
if Etype (Left) = Any_Type
or else Etype (Right) = Any_Type
then
Set_Etype (N, Any_Type);
return;
end if;
-- Case of right operand is a subtype name
if Is_Entity_Name (Right) then
Def_Id := Entity (Right);
if (Is_Scalar_Type (Def_Id) or else Is_String_Type (Def_Id))
and then Is_OK_Static_Subtype (Def_Id)
then
Test_Expression_Is_Foldable (N, Left, Stat, Fold);
if not Fold or else not Stat then
return;
end if;
else
Check_Non_Static_Context (Left);
return;
end if;
-- For string membership tests we will check the length
-- further below.
if not Is_String_Type (Def_Id) then
Lo := Type_Low_Bound (Def_Id);
Hi := Type_High_Bound (Def_Id);
else
Lo := Empty;
Hi := Empty;
end if;
-- Case of right operand is a range
else
if Is_Static_Range (Right) then
Test_Expression_Is_Foldable (N, Left, Stat, Fold);
if not Fold or else not Stat then
return;
-- If one bound of range raises CE, then don't try to fold
elsif not Is_OK_Static_Range (Right) then
Check_Non_Static_Context (Left);
return;
end if;
else
Check_Non_Static_Context (Left);
return;
end if;
-- Here we know range is an OK static range
Lo := Low_Bound (Right);
Hi := High_Bound (Right);
end if;
-- For strings we check that the length of the string expression is
-- compatible with the string subtype if the subtype is constrained,
-- or if unconstrained then the test is always true.
if Is_String_Type (Etype (Right)) then
if not Is_Constrained (Etype (Right)) then
Result := True;
else
declare
Typlen : constant Uint := String_Type_Len (Etype (Right));
Strlen : constant Uint :=
UI_From_Int (String_Length (Strval (Get_String_Val (Left))));
begin
Result := (Typlen = Strlen);
end;
end if;
-- Fold the membership test. We know we have a static range and Lo
-- and Hi are set to the expressions for the end points of this range.
elsif Is_Real_Type (Etype (Right)) then
declare
Leftval : constant Ureal := Expr_Value_R (Left);
begin
Result := Expr_Value_R (Lo) <= Leftval
and then Leftval <= Expr_Value_R (Hi);
end;
else
declare
Leftval : constant Uint := Expr_Value (Left);
begin
Result := Expr_Value (Lo) <= Leftval
and then Leftval <= Expr_Value (Hi);
end;
end if;
if Nkind (N) = N_Not_In then
Result := not Result;
end if;
Fold_Uint (N, Test (Result));
Warn_On_Known_Condition (N);
end Eval_Membership_Op;
------------------------
-- Eval_Named_Integer --
------------------------
procedure Eval_Named_Integer (N : Node_Id) is
begin
Fold_Uint (N,
Expr_Value (Expression (Declaration_Node (Entity (N)))));
end Eval_Named_Integer;
---------------------
-- Eval_Named_Real --
---------------------
procedure Eval_Named_Real (N : Node_Id) is
begin
Fold_Ureal (N,
Expr_Value_R (Expression (Declaration_Node (Entity (N)))));
end Eval_Named_Real;
-------------------
-- Eval_Op_Expon --
-------------------
-- Exponentiation is a static functions, so the result is potentially
-- static if both operands are potentially static (RM 4.9(7), 4.9(20)).
procedure Eval_Op_Expon (N : Node_Id) is
Left : constant Node_Id := Left_Opnd (N);
Right : constant Node_Id := Right_Opnd (N);
Stat : Boolean;
Fold : Boolean;
begin
-- If not foldable we are done
Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
if not Fold then
return;
end if;
-- Fold exponentiation operation
declare
Right_Int : constant Uint := Expr_Value (Right);
begin
-- Integer case
if Is_Integer_Type (Etype (Left)) then
declare
Left_Int : constant Uint := Expr_Value (Left);
Result : Uint;
begin
-- Exponentiation of an integer raises the exception
-- Constraint_Error for a negative exponent (RM 4.5.6)
if Right_Int < 0 then
Apply_Compile_Time_Constraint_Error
(N, "integer exponent negative", CE_Range_Check_Failed);
return;
else
if OK_Bits (N, Num_Bits (Left_Int) * Right_Int) then
Result := Left_Int ** Right_Int;
else
Result := Left_Int;
end if;
if Is_Modular_Integer_Type (Etype (N)) then
Result := Result mod Modulus (Etype (N));
end if;
Fold_Uint (N, Result);
end if;
end;
-- Real case
else
declare
Left_Real : constant Ureal := Expr_Value_R (Left);
begin
-- Cannot have a zero base with a negative exponent
if UR_Is_Zero (Left_Real) then
if Right_Int < 0 then
Apply_Compile_Time_Constraint_Error
(N, "zero ** negative integer", CE_Range_Check_Failed);
return;
else
Fold_Ureal (N, Ureal_0);
end if;
else
Fold_Ureal (N, Left_Real ** Right_Int);
end if;
end;
end if;
Set_Is_Static_Expression (N, Stat);
end;
end Eval_Op_Expon;
-----------------
-- Eval_Op_Not --
-----------------
-- The not operation is a static functions, so the result is potentially
-- static if the operand is potentially static (RM 4.9(7), 4.9(20)).
procedure Eval_Op_Not (N : Node_Id) is
Right : constant Node_Id := Right_Opnd (N);
Stat : Boolean;
Fold : Boolean;
begin
-- If not foldable we are done
Test_Expression_Is_Foldable (N, Right, Stat, Fold);
if not Fold then
return;
end if;
-- Fold not operation
declare
Rint : constant Uint := Expr_Value (Right);
Typ : constant Entity_Id := Etype (N);
begin
-- Negation is equivalent to subtracting from the modulus minus
-- one. For a binary modulus this is equivalent to the ones-
-- component of the original value. For non-binary modulus this
-- is an arbitrary but consistent definition.
if Is_Modular_Integer_Type (Typ) then
Fold_Uint (N, Modulus (Typ) - 1 - Rint);
else
pragma Assert (Is_Boolean_Type (Typ));
Fold_Uint (N, Test (not Is_True (Rint)));
end if;
Set_Is_Static_Expression (N, Stat);
end;
end Eval_Op_Not;
-------------------------------
-- Eval_Qualified_Expression --
-------------------------------
-- A qualified expression is potentially static if its subtype mark denotes
-- a static subtype and its expression is potentially static (RM 4.9 (11)).
procedure Eval_Qualified_Expression (N : Node_Id) is
Operand : constant Node_Id := Expression (N);
Target_Type : constant Entity_Id := Entity (Subtype_Mark (N));
Stat : Boolean;
Fold : Boolean;
Hex : Boolean;
begin
-- Can only fold if target is string or scalar and subtype is static
-- Also, do not fold if our parent is an allocator (this is because
-- the qualified expression is really part of the syntactic structure
-- of an allocator, and we do not want to end up with something that
-- corresponds to "new 1" where the 1 is the result of folding a
-- qualified expression).
if not Is_Static_Subtype (Target_Type)
or else Nkind (Parent (N)) = N_Allocator
then
Check_Non_Static_Context (Operand);
return;
end if;
-- If not foldable we are done
Test_Expression_Is_Foldable (N, Operand, Stat, Fold);
if not Fold then
return;
-- Don't try fold if target type has constraint error bounds
elsif not Is_OK_Static_Subtype (Target_Type) then
Set_Raises_Constraint_Error (N);
return;
end if;
-- Here we will fold, save Print_In_Hex indication
Hex := Nkind (Operand) = N_Integer_Literal
and then Print_In_Hex (Operand);
-- Fold the result of qualification
if Is_Discrete_Type (Target_Type) then
Fold_Uint (N, Expr_Value (Operand));
Set_Is_Static_Expression (N, Stat);
-- Preserve Print_In_Hex indication
if Hex and then Nkind (N) = N_Integer_Literal then
Set_Print_In_Hex (N);
end if;
elsif Is_Real_Type (Target_Type) then
Fold_Ureal (N, Expr_Value_R (Operand));
Set_Is_Static_Expression (N, Stat);
else
Fold_Str (N, Strval (Get_String_Val (Operand)));
if not Stat then
Set_Is_Static_Expression (N, False);
else
Check_String_Literal_Length (N, Target_Type);
end if;
return;
end if;
if Is_Out_Of_Range (N, Etype (N)) then
Out_Of_Range (N);
end if;
end Eval_Qualified_Expression;
-----------------------
-- Eval_Real_Literal --
-----------------------
-- Numeric literals are static (RM 4.9(1)), and have already been marked
-- as static by the analyzer. The reason we did it that early is to allow
-- the possibility of turning off the Is_Static_Expression flag after
-- analysis, but before resolution, when integer literals are generated
-- in the expander that do not correspond to static expressions.
procedure Eval_Real_Literal (N : Node_Id) is
begin
-- If the literal appears in a non-expression context, then it is
-- certainly appearing in a non-static context, so check it.
if Nkind (Parent (N)) not in N_Subexpr then
Check_Non_Static_Context (N);
end if;
end Eval_Real_Literal;
------------------------
-- Eval_Relational_Op --
------------------------
-- Relational operations are static functions, so the result is static
-- if both operands are static (RM 4.9(7), 4.9(20)).
procedure Eval_Relational_Op (N : Node_Id) is
Left : constant Node_Id := Left_Opnd (N);
Right : constant Node_Id := Right_Opnd (N);
Typ : constant Entity_Id := Etype (Left);
Result : Boolean;
Stat : Boolean;
Fold : Boolean;
begin
-- One special case to deal with first. If we can tell that
-- the result will be false because the lengths of one or
-- more index subtypes are compile time known and different,
-- then we can replace the entire result by False. We only
-- do this for one dimensional arrays, because the case of
-- multi-dimensional arrays is rare and too much trouble!
if Is_Array_Type (Typ)
and then Number_Dimensions (Typ) = 1
and then (Nkind (N) = N_Op_Eq
or else Nkind (N) = N_Op_Ne)
then
if Raises_Constraint_Error (Left)
or else Raises_Constraint_Error (Right)
then
return;
end if;
declare
procedure Get_Static_Length (Op : Node_Id; Len : out Uint);
-- If Op is an expression for a constrained array with a
-- known at compile time length, then Len is set to this
-- (non-negative length). Otherwise Len is set to minus 1.
procedure Get_Static_Length (Op : Node_Id; Len : out Uint) is
T : Entity_Id;
begin
if Nkind (Op) = N_String_Literal then
Len := UI_From_Int (String_Length (Strval (Op)));
elsif not Is_Constrained (Etype (Op)) then
Len := Uint_Minus_1;
else
T := Etype (First_Index (Etype (Op)));
if Is_Discrete_Type (T)
and then
Compile_Time_Known_Value (Type_Low_Bound (T))
and then
Compile_Time_Known_Value (Type_High_Bound (T))
then
Len := UI_Max (Uint_0,
Expr_Value (Type_High_Bound (T)) -
Expr_Value (Type_Low_Bound (T)) + 1);
else
Len := Uint_Minus_1;
end if;
end if;
end Get_Static_Length;
Len_L : Uint;
Len_R : Uint;
begin
Get_Static_Length (Left, Len_L);
Get_Static_Length (Right, Len_R);
if Len_L /= Uint_Minus_1
and then Len_R /= Uint_Minus_1
and then Len_L /= Len_R
then
Fold_Uint (N, Test (Nkind (N) = N_Op_Ne));
Set_Is_Static_Expression (N, False);
Warn_On_Known_Condition (N);
return;
end if;
end;
end if;
-- Can only fold if type is scalar (don't fold string ops)
if not Is_Scalar_Type (Typ) then
Check_Non_Static_Context (Left);
Check_Non_Static_Context (Right);
return;
end if;
-- If not foldable we are done
Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
if not Fold then
return;
end if;
-- Integer and Enumeration (discrete) type cases
if Is_Discrete_Type (Typ) then
declare
Left_Int : constant Uint := Expr_Value (Left);
Right_Int : constant Uint := Expr_Value (Right);
begin
case Nkind (N) is
when N_Op_Eq => Result := Left_Int = Right_Int;
when N_Op_Ne => Result := Left_Int /= Right_Int;
when N_Op_Lt => Result := Left_Int < Right_Int;
when N_Op_Le => Result := Left_Int <= Right_Int;
when N_Op_Gt => Result := Left_Int > Right_Int;
when N_Op_Ge => Result := Left_Int >= Right_Int;
when others =>
raise Program_Error;
end case;
Fold_Uint (N, Test (Result));
end;
-- Real type case
else
pragma Assert (Is_Real_Type (Typ));
declare
Left_Real : constant Ureal := Expr_Value_R (Left);
Right_Real : constant Ureal := Expr_Value_R (Right);
begin
case Nkind (N) is
when N_Op_Eq => Result := (Left_Real = Right_Real);
when N_Op_Ne => Result := (Left_Real /= Right_Real);
when N_Op_Lt => Result := (Left_Real < Right_Real);
when N_Op_Le => Result := (Left_Real <= Right_Real);
when N_Op_Gt => Result := (Left_Real > Right_Real);
when N_Op_Ge => Result := (Left_Real >= Right_Real);
when others =>
raise Program_Error;
end case;
Fold_Uint (N, Test (Result));
end;
end if;
Set_Is_Static_Expression (N, Stat);
Warn_On_Known_Condition (N);
end Eval_Relational_Op;
----------------
-- Eval_Shift --
----------------
-- Shift operations are intrinsic operations that can never be static,
-- so the only processing required is to perform the required check for
-- a non static context for the two operands.
-- Actually we could do some compile time evaluation here some time ???
procedure Eval_Shift (N : Node_Id) is
begin
Check_Non_Static_Context (Left_Opnd (N));
Check_Non_Static_Context (Right_Opnd (N));
end Eval_Shift;
------------------------
-- Eval_Short_Circuit --
------------------------
-- A short circuit operation is potentially static if both operands
-- are potentially static (RM 4.9 (13))
procedure Eval_Short_Circuit (N : Node_Id) is
Kind : constant Node_Kind := Nkind (N);
Left : constant Node_Id := Left_Opnd (N);
Right : constant Node_Id := Right_Opnd (N);
Left_Int : Uint;
Rstat : constant Boolean :=
Is_Static_Expression (Left)
and then Is_Static_Expression (Right);
begin
-- Short circuit operations are never static in Ada 83
if Ada_83
and then Comes_From_Source (N)
then
Check_Non_Static_Context (Left);
Check_Non_Static_Context (Right);
return;
end if;
-- Now look at the operands, we can't quite use the normal call to
-- Test_Expression_Is_Foldable here because short circuit operations
-- are a special case, they can still be foldable, even if the right
-- operand raises constraint error.
-- If either operand is Any_Type, just propagate to result and
-- do not try to fold, this prevents cascaded errors.
if Etype (Left) = Any_Type or else Etype (Right) = Any_Type then
Set_Etype (N, Any_Type);
return;
-- If left operand raises constraint error, then replace node N with
-- the raise constraint error node, and we are obviously not foldable.
-- Is_Static_Expression is set from the two operands in the normal way,
-- and we check the right operand if it is in a non-static context.
elsif Raises_Constraint_Error (Left) then
if not Rstat then
Check_Non_Static_Context (Right);
end if;
Rewrite_In_Raise_CE (N, Left);
Set_Is_Static_Expression (N, Rstat);
return;
-- If the result is not static, then we won't in any case fold
elsif not Rstat then
Check_Non_Static_Context (Left);
Check_Non_Static_Context (Right);
return;
end if;
-- Here the result is static, note that, unlike the normal processing
-- in Test_Expression_Is_Foldable, we did *not* check above to see if
-- the right operand raises constraint error, that's because it is not
-- significant if the left operand is decisive.
Set_Is_Static_Expression (N);
-- It does not matter if the right operand raises constraint error if
-- it will not be evaluated. So deal specially with the cases where
-- the right operand is not evaluated. Note that we will fold these
-- cases even if the right operand is non-static, which is fine, but
-- of course in these cases the result is not potentially static.
Left_Int := Expr_Value (Left);
if (Kind = N_And_Then and then Is_False (Left_Int))
or else (Kind = N_Or_Else and Is_True (Left_Int))
then
Fold_Uint (N, Left_Int);
return;
end if;
-- If first operand not decisive, then it does matter if the right
-- operand raises constraint error, since it will be evaluated, so
-- we simply replace the node with the right operand. Note that this
-- properly propagates Is_Static_Expression and Raises_Constraint_Error
-- (both are set to True in Right).
if Raises_Constraint_Error (Right) then
Rewrite_In_Raise_CE (N, Right);
Check_Non_Static_Context (Left);
return;
end if;
-- Otherwise the result depends on the right operand
Fold_Uint (N, Expr_Value (Right));
return;
end Eval_Short_Circuit;
----------------
-- Eval_Slice --
----------------
-- Slices can never be static, so the only processing required is to
-- check for non-static context if an explicit range is given.
procedure Eval_Slice (N : Node_Id) is
Drange : constant Node_Id := Discrete_Range (N);
begin
if Nkind (Drange) = N_Range then
Check_Non_Static_Context (Low_Bound (Drange));
Check_Non_Static_Context (High_Bound (Drange));
end if;
end Eval_Slice;
-------------------------
-- Eval_String_Literal --
-------------------------
procedure Eval_String_Literal (N : Node_Id) is
T : constant Entity_Id := Etype (N);
B : constant Entity_Id := Base_Type (T);
I : Entity_Id;
begin
-- Nothing to do if error type (handles cases like default expressions
-- or generics where we have not yet fully resolved the type)
if B = Any_Type or else B = Any_String then
return;
-- String literals are static if the subtype is static (RM 4.9(2)), so
-- reset the static expression flag (it was set unconditionally in
-- Analyze_String_Literal) if the subtype is non-static. We tell if
-- the subtype is static by looking at the lower bound.
elsif not Is_OK_Static_Expression (String_Literal_Low_Bound (T)) then
Set_Is_Static_Expression (N, False);
elsif Nkind (Original_Node (N)) = N_Type_Conversion then
Set_Is_Static_Expression (N, False);
-- Test for illegal Ada 95 cases. A string literal is illegal in
-- Ada 95 if its bounds are outside the index base type and this
-- index type is static. This can hapen in only two ways. Either
-- the string literal is too long, or it is null, and the lower
-- bound is type'First. In either case it is the upper bound that
-- is out of range of the index type.
elsif Ada_95 then
if Root_Type (B) = Standard_String
or else Root_Type (B) = Standard_Wide_String
then
I := Standard_Positive;
else
I := Etype (First_Index (B));
end if;
if String_Literal_Length (T) > String_Type_Len (B) then
Apply_Compile_Time_Constraint_Error
(N, "string literal too long for}", CE_Length_Check_Failed,
Ent => B,
Typ => First_Subtype (B));
elsif String_Literal_Length (T) = 0
and then not Is_Generic_Type (I)
and then Expr_Value (String_Literal_Low_Bound (T)) =
Expr_Value (Type_Low_Bound (Base_Type (I)))
then
Apply_Compile_Time_Constraint_Error
(N, "null string literal not allowed for}",
CE_Length_Check_Failed,
Ent => B,
Typ => First_Subtype (B));
end if;
end if;
end Eval_String_Literal;
--------------------------
-- Eval_Type_Conversion --
--------------------------
-- A type conversion is potentially static if its subtype mark is for a
-- static scalar subtype, and its operand expression is potentially static
-- (RM 4.9 (10))
procedure Eval_Type_Conversion (N : Node_Id) is
Operand : constant Node_Id := Expression (N);
Source_Type : constant Entity_Id := Etype (Operand);
Target_Type : constant Entity_Id := Etype (N);
Stat : Boolean;
Fold : Boolean;
function To_Be_Treated_As_Integer (T : Entity_Id) return Boolean;
-- Returns true if type T is an integer type, or if it is a
-- fixed-point type to be treated as an integer (i.e. the flag
-- Conversion_OK is set on the conversion node).
function To_Be_Treated_As_Real (T : Entity_Id) return Boolean;
-- Returns true if type T is a floating-point type, or if it is a
-- fixed-point type that is not to be treated as an integer (i.e. the
-- flag Conversion_OK is not set on the conversion node).
function To_Be_Treated_As_Integer (T : Entity_Id) return Boolean is
begin
return
Is_Integer_Type (T)
or else (Is_Fixed_Point_Type (T) and then Conversion_OK (N));
end To_Be_Treated_As_Integer;
function To_Be_Treated_As_Real (T : Entity_Id) return Boolean is
begin
return
Is_Floating_Point_Type (T)
or else (Is_Fixed_Point_Type (T) and then not Conversion_OK (N));
end To_Be_Treated_As_Real;
-- Start of processing for Eval_Type_Conversion
begin
-- Cannot fold if target type is non-static or if semantic error.
if not Is_Static_Subtype (Target_Type) then
Check_Non_Static_Context (Operand);
return;
elsif Error_Posted (N) then
return;
end if;
-- If not foldable we are done
Test_Expression_Is_Foldable (N, Operand, Stat, Fold);
if not Fold then
return;
-- Don't try fold if target type has constraint error bounds
elsif not Is_OK_Static_Subtype (Target_Type) then
Set_Raises_Constraint_Error (N);
return;
end if;
-- Remaining processing depends on operand types. Note that in the
-- following type test, fixed-point counts as real unless the flag
-- Conversion_OK is set, in which case it counts as integer.
-- Fold conversion, case of string type. The result is not static.
if Is_String_Type (Target_Type) then
Fold_Str (N, Strval (Get_String_Val (Operand)));
Set_Is_Static_Expression (N, False);
return;
-- Fold conversion, case of integer target type
elsif To_Be_Treated_As_Integer (Target_Type) then
declare
Result : Uint;
begin
-- Integer to integer conversion
if To_Be_Treated_As_Integer (Source_Type) then
Result := Expr_Value (Operand);
-- Real to integer conversion
else
Result := UR_To_Uint (Expr_Value_R (Operand));
end if;
-- If fixed-point type (Conversion_OK must be set), then the
-- result is logically an integer, but we must replace the
-- conversion with the corresponding real literal, since the
-- type from a semantic point of view is still fixed-point.
if Is_Fixed_Point_Type (Target_Type) then
Fold_Ureal
(N, UR_From_Uint (Result) * Small_Value (Target_Type));
-- Otherwise result is integer literal
else
Fold_Uint (N, Result);
end if;
end;
-- Fold conversion, case of real target type
elsif To_Be_Treated_As_Real (Target_Type) then
declare
Result : Ureal;
begin
if To_Be_Treated_As_Real (Source_Type) then
Result := Expr_Value_R (Operand);
else
Result := UR_From_Uint (Expr_Value (Operand));
end if;
Fold_Ureal (N, Result);
end;
-- Enumeration types
else
Fold_Uint (N, Expr_Value (Operand));
end if;
Set_Is_Static_Expression (N, Stat);
if Is_Out_Of_Range (N, Etype (N)) then
Out_Of_Range (N);
end if;
end Eval_Type_Conversion;
-------------------
-- Eval_Unary_Op --
-------------------
-- Predefined unary operators are static functions (RM 4.9(20)) and thus
-- are potentially static if the operand is potentially static (RM 4.9(7))
procedure Eval_Unary_Op (N : Node_Id) is
Right : constant Node_Id := Right_Opnd (N);
Stat : Boolean;
Fold : Boolean;
begin
-- If not foldable we are done
Test_Expression_Is_Foldable (N, Right, Stat, Fold);
if not Fold then
return;
end if;
-- Fold for integer case
if Is_Integer_Type (Etype (N)) then
declare
Rint : constant Uint := Expr_Value (Right);
Result : Uint;
begin
-- In the case of modular unary plus and abs there is no need
-- to adjust the result of the operation since if the original
-- operand was in bounds the result will be in the bounds of the
-- modular type. However, in the case of modular unary minus the
-- result may go out of the bounds of the modular type and needs
-- adjustment.
if Nkind (N) = N_Op_Plus then
Result := Rint;
elsif Nkind (N) = N_Op_Minus then
if Is_Modular_Integer_Type (Etype (N)) then
Result := (-Rint) mod Modulus (Etype (N));
else
Result := (-Rint);
end if;
else
pragma Assert (Nkind (N) = N_Op_Abs);
Result := abs Rint;
end if;
Fold_Uint (N, Result);
end;
-- Fold for real case
elsif Is_Real_Type (Etype (N)) then
declare
Rreal : constant Ureal := Expr_Value_R (Right);
Result : Ureal;
begin
if Nkind (N) = N_Op_Plus then
Result := Rreal;
elsif Nkind (N) = N_Op_Minus then
Result := UR_Negate (Rreal);
else
pragma Assert (Nkind (N) = N_Op_Abs);
Result := abs Rreal;
end if;
Fold_Ureal (N, Result);
end;
end if;
Set_Is_Static_Expression (N, Stat);
end Eval_Unary_Op;
-------------------------------
-- Eval_Unchecked_Conversion --
-------------------------------
-- Unchecked conversions can never be static, so the only required
-- processing is to check for a non-static context for the operand.
procedure Eval_Unchecked_Conversion (N : Node_Id) is
begin
Check_Non_Static_Context (Expression (N));
end Eval_Unchecked_Conversion;
--------------------
-- Expr_Rep_Value --
--------------------
function Expr_Rep_Value (N : Node_Id) return Uint is
Kind : constant Node_Kind := Nkind (N);
Ent : Entity_Id;
Vexp : Node_Id;
begin
if Is_Entity_Name (N) then
Ent := Entity (N);
-- An enumeration literal that was either in the source or
-- created as a result of static evaluation.
if Ekind (Ent) = E_Enumeration_Literal then
return Enumeration_Rep (Ent);
-- A user defined static constant
else
pragma Assert (Ekind (Ent) = E_Constant);
return Expr_Rep_Value (Constant_Value (Ent));
end if;
-- An integer literal that was either in the source or created
-- as a result of static evaluation.
elsif Kind = N_Integer_Literal then
return Intval (N);
-- A real literal for a fixed-point type. This must be the fixed-point
-- case, either the literal is of a fixed-point type, or it is a bound
-- of a fixed-point type, with type universal real. In either case we
-- obtain the desired value from Corresponding_Integer_Value.
elsif Kind = N_Real_Literal then
pragma Assert (Is_Fixed_Point_Type (Underlying_Type (Etype (N))));
return Corresponding_Integer_Value (N);
-- Peculiar VMS case, if we have xxx'Null_Parameter, return zero
elsif Kind = N_Attribute_Reference
and then Attribute_Name (N) = Name_Null_Parameter
then
return Uint_0;
-- Array reference case
elsif Kind = N_Indexed_Component then
Vexp := Constant_Array_Ref (N);
pragma Assert (Present (Vexp));
return Expr_Rep_Value (Vexp);
-- Otherwise must be character literal
else
pragma Assert (Kind = N_Character_Literal);
Ent := Entity (N);
-- Since Character literals of type Standard.Character don't
-- have any defining character literals built for them, they
-- do not have their Entity set, so just use their Char
-- code. Otherwise for user-defined character literals use
-- their Pos value as usual which is the same as the Rep value.
if No (Ent) then
return UI_From_Int (Int (Char_Literal_Value (N)));
else
return Enumeration_Rep (Ent);
end if;
end if;
end Expr_Rep_Value;
----------------
-- Expr_Value --
----------------
function Expr_Value (N : Node_Id) return Uint is
Kind : constant Node_Kind := Nkind (N);
CV_Ent : CV_Entry renames CV_Cache (Nat (N) mod CV_Cache_Size);
Ent : Entity_Id;
Val : Uint;
Vexp : Node_Id;
begin
-- If already in cache, then we know it's compile time known and
-- we can return the value that was previously stored in the cache
-- since compile time known values cannot change :-)
if CV_Ent.N = N then
return CV_Ent.V;
end if;
-- Otherwise proceed to test value
if Is_Entity_Name (N) then
Ent := Entity (N);
-- An enumeration literal that was either in the source or
-- created as a result of static evaluation.
if Ekind (Ent) = E_Enumeration_Literal then
Val := Enumeration_Pos (Ent);
-- A user defined static constant
else
pragma Assert (Ekind (Ent) = E_Constant);
Val := Expr_Value (Constant_Value (Ent));
end if;
-- An integer literal that was either in the source or created
-- as a result of static evaluation.
elsif Kind = N_Integer_Literal then
Val := Intval (N);
-- A real literal for a fixed-point type. This must be the fixed-point
-- case, either the literal is of a fixed-point type, or it is a bound
-- of a fixed-point type, with type universal real. In either case we
-- obtain the desired value from Corresponding_Integer_Value.
elsif Kind = N_Real_Literal then
pragma Assert (Is_Fixed_Point_Type (Underlying_Type (Etype (N))));
Val := Corresponding_Integer_Value (N);
-- Peculiar VMS case, if we have xxx'Null_Parameter, return zero
elsif Kind = N_Attribute_Reference
and then Attribute_Name (N) = Name_Null_Parameter
then
Val := Uint_0;
-- Array reference case
elsif Kind = N_Indexed_Component then
Vexp := Constant_Array_Ref (N);
pragma Assert (Present (Vexp));
Val := Expr_Value (Vexp);
-- Otherwise must be character literal
else
pragma Assert (Kind = N_Character_Literal);
Ent := Entity (N);
-- Since Character literals of type Standard.Character don't
-- have any defining character literals built for them, they
-- do not have their Entity set, so just use their Char
-- code. Otherwise for user-defined character literals use
-- their Pos value as usual.
if No (Ent) then
Val := UI_From_Int (Int (Char_Literal_Value (N)));
else
Val := Enumeration_Pos (Ent);
end if;
end if;
-- Come here with Val set to value to be returned, set cache
CV_Ent.N := N;
CV_Ent.V := Val;
return Val;
end Expr_Value;
------------------
-- Expr_Value_E --
------------------
function Expr_Value_E (N : Node_Id) return Entity_Id is
Ent : constant Entity_Id := Entity (N);
begin
if Ekind (Ent) = E_Enumeration_Literal then
return Ent;
else
pragma Assert (Ekind (Ent) = E_Constant);
return Expr_Value_E (Constant_Value (Ent));
end if;
end Expr_Value_E;
------------------
-- Expr_Value_R --
------------------
function Expr_Value_R (N : Node_Id) return Ureal is
Kind : constant Node_Kind := Nkind (N);
Ent : Entity_Id;
Expr : Node_Id;
begin
if Kind = N_Real_Literal then
return Realval (N);
elsif Kind = N_Identifier or else Kind = N_Expanded_Name then
Ent := Entity (N);
pragma Assert (Ekind (Ent) = E_Constant);
return Expr_Value_R (Constant_Value (Ent));
elsif Kind = N_Integer_Literal then
return UR_From_Uint (Expr_Value (N));
-- Strange case of VAX literals, which are at this stage transformed
-- into Vax_Type!x_To_y(IEEE_Literal). See Expand_N_Real_Literal in
-- Exp_Vfpt for further details.
elsif Vax_Float (Etype (N))
and then Nkind (N) = N_Unchecked_Type_Conversion
then
Expr := Expression (N);
if Nkind (Expr) = N_Function_Call
and then Present (Parameter_Associations (Expr))
then
Expr := First (Parameter_Associations (Expr));
if Nkind (Expr) = N_Real_Literal then
return Realval (Expr);
end if;
end if;
-- Peculiar VMS case, if we have xxx'Null_Parameter, return 0.0
elsif Kind = N_Attribute_Reference
and then Attribute_Name (N) = Name_Null_Parameter
then
return Ureal_0;
end if;
-- If we fall through, we have a node that cannot be interepreted
-- as a compile time constant. That is definitely an error.
raise Program_Error;
end Expr_Value_R;
------------------
-- Expr_Value_S --
------------------
function Expr_Value_S (N : Node_Id) return Node_Id is
begin
if Nkind (N) = N_String_Literal then
return N;
else
pragma Assert (Ekind (Entity (N)) = E_Constant);
return Expr_Value_S (Constant_Value (Entity (N)));
end if;
end Expr_Value_S;
--------------
-- Fold_Str --
--------------
procedure Fold_Str (N : Node_Id; Val : String_Id) is
Loc : constant Source_Ptr := Sloc (N);
Typ : constant Entity_Id := Etype (N);
begin
Rewrite (N, Make_String_Literal (Loc, Strval => Val));
Analyze_And_Resolve (N, Typ);
end Fold_Str;
---------------
-- Fold_Uint --
---------------
procedure Fold_Uint (N : Node_Id; Val : Uint) is
Loc : constant Source_Ptr := Sloc (N);
Typ : constant Entity_Id := Etype (N);
begin
-- For a result of type integer, subsitute an N_Integer_Literal node
-- for the result of the compile time evaluation of the expression.
if Is_Integer_Type (Etype (N)) then
Rewrite (N, Make_Integer_Literal (Loc, Val));
-- Otherwise we have an enumeration type, and we substitute either
-- an N_Identifier or N_Character_Literal to represent the enumeration
-- literal corresponding to the given value, which must always be in
-- range, because appropriate tests have already been made for this.
else pragma Assert (Is_Enumeration_Type (Etype (N)));
Rewrite (N, Get_Enum_Lit_From_Pos (Etype (N), Val, Loc));
end if;
-- We now have the literal with the right value, both the actual type
-- and the expected type of this literal are taken from the expression
-- that was evaluated.
Analyze (N);
Set_Etype (N, Typ);
Resolve (N, Typ);
end Fold_Uint;
----------------
-- Fold_Ureal --
----------------
procedure Fold_Ureal (N : Node_Id; Val : Ureal) is
Loc : constant Source_Ptr := Sloc (N);
Typ : constant Entity_Id := Etype (N);
begin
Rewrite (N, Make_Real_Literal (Loc, Realval => Val));
Analyze (N);
-- Both the actual and expected type comes from the original expression
Set_Etype (N, Typ);
Resolve (N, Typ);
end Fold_Ureal;
---------------
-- From_Bits --
---------------
function From_Bits (B : Bits; T : Entity_Id) return Uint is
V : Uint := Uint_0;
begin
for J in 0 .. B'Last loop
if B (J) then
V := V + 2 ** J;
end if;
end loop;
if Non_Binary_Modulus (T) then
V := V mod Modulus (T);
end if;
return V;
end From_Bits;
--------------------
-- Get_String_Val --
--------------------
function Get_String_Val (N : Node_Id) return Node_Id is
begin
if Nkind (N) = N_String_Literal then
return N;
elsif Nkind (N) = N_Character_Literal then
return N;
else
pragma Assert (Is_Entity_Name (N));
return Get_String_Val (Constant_Value (Entity (N)));
end if;
end Get_String_Val;
--------------------
-- In_Subrange_Of --
--------------------
function In_Subrange_Of
(T1 : Entity_Id;
T2 : Entity_Id;
Fixed_Int : Boolean := False)
return Boolean
is
L1 : Node_Id;
H1 : Node_Id;
L2 : Node_Id;
H2 : Node_Id;
begin
if T1 = T2 or else Is_Subtype_Of (T1, T2) then
return True;
-- Never in range if both types are not scalar. Don't know if this can
-- actually happen, but just in case.
elsif not Is_Scalar_Type (T1) or else not Is_Scalar_Type (T1) then
return False;
else
L1 := Type_Low_Bound (T1);
H1 := Type_High_Bound (T1);
L2 := Type_Low_Bound (T2);
H2 := Type_High_Bound (T2);
-- Check bounds to see if comparison possible at compile time
if Compile_Time_Compare (L1, L2) in Compare_GE
and then
Compile_Time_Compare (H1, H2) in Compare_LE
then
return True;
end if;
-- If bounds not comparable at compile time, then the bounds of T2
-- must be compile time known or we cannot answer the query.
if not Compile_Time_Known_Value (L2)
or else not Compile_Time_Known_Value (H2)
then
return False;
end if;
-- If the bounds of T1 are know at compile time then use these
-- ones, otherwise use the bounds of the base type (which are of
-- course always static).
if not Compile_Time_Known_Value (L1) then
L1 := Type_Low_Bound (Base_Type (T1));
end if;
if not Compile_Time_Known_Value (H1) then
H1 := Type_High_Bound (Base_Type (T1));
end if;
-- Fixed point types should be considered as such only if
-- flag Fixed_Int is set to False.
if Is_Floating_Point_Type (T1) or else Is_Floating_Point_Type (T2)
or else (Is_Fixed_Point_Type (T1) and then not Fixed_Int)
or else (Is_Fixed_Point_Type (T2) and then not Fixed_Int)
then
return
Expr_Value_R (L2) <= Expr_Value_R (L1)
and then
Expr_Value_R (H2) >= Expr_Value_R (H1);
else
return
Expr_Value (L2) <= Expr_Value (L1)
and then
Expr_Value (H2) >= Expr_Value (H1);
end if;
end if;
-- If any exception occurs, it means that we have some bug in the compiler
-- possibly triggered by a previous error, or by some unforseen peculiar
-- occurrence. However, this is only an optimization attempt, so there is
-- really no point in crashing the compiler. Instead we just decide, too
-- bad, we can't figure out the answer in this case after all.
exception
when others =>
-- Debug flag K disables this behavior (useful for debugging)
if Debug_Flag_K then
raise;
else
return False;
end if;
end In_Subrange_Of;
-----------------
-- Is_In_Range --
-----------------
function Is_In_Range
(N : Node_Id;
Typ : Entity_Id;
Fixed_Int : Boolean := False;
Int_Real : Boolean := False)
return Boolean
is
Val : Uint;
Valr : Ureal;
begin
-- Universal types have no range limits, so always in range.
if Typ = Universal_Integer or else Typ = Universal_Real then
return True;
-- Never in range if not scalar type. Don't know if this can
-- actually happen, but our spec allows it, so we must check!
elsif not Is_Scalar_Type (Typ) then
return False;
-- Never in range unless we have a compile time known value.
elsif not Compile_Time_Known_Value (N) then
return False;
else
declare
Lo : constant Node_Id := Type_Low_Bound (Typ);
Hi : constant Node_Id := Type_High_Bound (Typ);
LB_Known : constant Boolean := Compile_Time_Known_Value (Lo);
UB_Known : constant Boolean := Compile_Time_Known_Value (Hi);
begin
-- Fixed point types should be considered as such only in
-- flag Fixed_Int is set to False.
if Is_Floating_Point_Type (Typ)
or else (Is_Fixed_Point_Type (Typ) and then not Fixed_Int)
or else Int_Real
then
Valr := Expr_Value_R (N);
if LB_Known and then Valr >= Expr_Value_R (Lo)
and then UB_Known and then Valr <= Expr_Value_R (Hi)
then
return True;
else
return False;
end if;
else
Val := Expr_Value (N);
if LB_Known and then Val >= Expr_Value (Lo)
and then UB_Known and then Val <= Expr_Value (Hi)
then
return True;
else
return False;
end if;
end if;
end;
end if;
end Is_In_Range;
-------------------
-- Is_Null_Range --
-------------------
function Is_Null_Range (Lo : Node_Id; Hi : Node_Id) return Boolean is
Typ : constant Entity_Id := Etype (Lo);
begin
if not Compile_Time_Known_Value (Lo)
or else not Compile_Time_Known_Value (Hi)
then
return False;
end if;
if Is_Discrete_Type (Typ) then
return Expr_Value (Lo) > Expr_Value (Hi);
else
pragma Assert (Is_Real_Type (Typ));
return Expr_Value_R (Lo) > Expr_Value_R (Hi);
end if;
end Is_Null_Range;
-----------------------------
-- Is_OK_Static_Expression --
-----------------------------
function Is_OK_Static_Expression (N : Node_Id) return Boolean is
begin
return Is_Static_Expression (N)
and then not Raises_Constraint_Error (N);
end Is_OK_Static_Expression;
------------------------
-- Is_OK_Static_Range --
------------------------
-- A static range is a range whose bounds are static expressions, or a
-- Range_Attribute_Reference equivalent to such a range (RM 4.9(26)).
-- We have already converted range attribute references, so we get the
-- "or" part of this rule without needing a special test.
function Is_OK_Static_Range (N : Node_Id) return Boolean is
begin
return Is_OK_Static_Expression (Low_Bound (N))
and then Is_OK_Static_Expression (High_Bound (N));
end Is_OK_Static_Range;
--------------------------
-- Is_OK_Static_Subtype --
--------------------------
-- Determines if Typ is a static subtype as defined in (RM 4.9(26))
-- where neither bound raises constraint error when evaluated.
function Is_OK_Static_Subtype (Typ : Entity_Id) return Boolean is
Base_T : constant Entity_Id := Base_Type (Typ);
Anc_Subt : Entity_Id;
begin
-- First a quick check on the non static subtype flag. As described
-- in further detail in Einfo, this flag is not decisive in all cases,
-- but if it is set, then the subtype is definitely non-static.
if Is_Non_Static_Subtype (Typ) then
return False;
end if;
Anc_Subt := Ancestor_Subtype (Typ);
if Anc_Subt = Empty then
Anc_Subt := Base_T;
end if;
if Is_Generic_Type (Root_Type (Base_T))
or else Is_Generic_Actual_Type (Base_T)
then
return False;
-- String types
elsif Is_String_Type (Typ) then
return
Ekind (Typ) = E_String_Literal_Subtype
or else
(Is_OK_Static_Subtype (Component_Type (Typ))
and then Is_OK_Static_Subtype (Etype (First_Index (Typ))));
-- Scalar types
elsif Is_Scalar_Type (Typ) then
if Base_T = Typ then
return True;
else
-- Scalar_Range (Typ) might be an N_Subtype_Indication, so
-- use Get_Type_Low,High_Bound.
return Is_OK_Static_Subtype (Anc_Subt)
and then Is_OK_Static_Expression (Type_Low_Bound (Typ))
and then Is_OK_Static_Expression (Type_High_Bound (Typ));
end if;
-- Types other than string and scalar types are never static
else
return False;
end if;
end Is_OK_Static_Subtype;
---------------------
-- Is_Out_Of_Range --
---------------------
function Is_Out_Of_Range
(N : Node_Id;
Typ : Entity_Id;
Fixed_Int : Boolean := False;
Int_Real : Boolean := False)
return Boolean
is
Val : Uint;
Valr : Ureal;
begin
-- Universal types have no range limits, so always in range.
if Typ = Universal_Integer or else Typ = Universal_Real then
return False;
-- Never out of range if not scalar type. Don't know if this can
-- actually happen, but our spec allows it, so we must check!
elsif not Is_Scalar_Type (Typ) then
return False;
-- Never out of range if this is a generic type, since the bounds
-- of generic types are junk. Note that if we only checked for
-- static expressions (instead of compile time known values) below,
-- we would not need this check, because values of a generic type
-- can never be static, but they can be known at compile time.
elsif Is_Generic_Type (Typ) then
return False;
-- Never out of range unless we have a compile time known value.
elsif not Compile_Time_Known_Value (N) then
return False;
else
declare
Lo : constant Node_Id := Type_Low_Bound (Typ);
Hi : constant Node_Id := Type_High_Bound (Typ);
LB_Known : constant Boolean := Compile_Time_Known_Value (Lo);
UB_Known : constant Boolean := Compile_Time_Known_Value (Hi);
begin
-- Real types (note that fixed-point types are not treated
-- as being of a real type if the flag Fixed_Int is set,
-- since in that case they are regarded as integer types).
if Is_Floating_Point_Type (Typ)
or else (Is_Fixed_Point_Type (Typ) and then not Fixed_Int)
or else Int_Real
then
Valr := Expr_Value_R (N);
if LB_Known and then Valr < Expr_Value_R (Lo) then
return True;
elsif UB_Known and then Expr_Value_R (Hi) < Valr then
return True;
else
return False;
end if;
else
Val := Expr_Value (N);
if LB_Known and then Val < Expr_Value (Lo) then
return True;
elsif UB_Known and then Expr_Value (Hi) < Val then
return True;
else
return False;
end if;
end if;
end;
end if;
end Is_Out_Of_Range;
---------------------
-- Is_Static_Range --
---------------------
-- A static range is a range whose bounds are static expressions, or a
-- Range_Attribute_Reference equivalent to such a range (RM 4.9(26)).
-- We have already converted range attribute references, so we get the
-- "or" part of this rule without needing a special test.
function Is_Static_Range (N : Node_Id) return Boolean is
begin
return Is_Static_Expression (Low_Bound (N))
and then Is_Static_Expression (High_Bound (N));
end Is_Static_Range;
-----------------------
-- Is_Static_Subtype --
-----------------------
-- Determines if Typ is a static subtype as defined in (RM 4.9(26)).
function Is_Static_Subtype (Typ : Entity_Id) return Boolean is
Base_T : constant Entity_Id := Base_Type (Typ);
Anc_Subt : Entity_Id;
begin
-- First a quick check on the non static subtype flag. As described
-- in further detail in Einfo, this flag is not decisive in all cases,
-- but if it is set, then the subtype is definitely non-static.
if Is_Non_Static_Subtype (Typ) then
return False;
end if;
Anc_Subt := Ancestor_Subtype (Typ);
if Anc_Subt = Empty then
Anc_Subt := Base_T;
end if;
if Is_Generic_Type (Root_Type (Base_T))
or else Is_Generic_Actual_Type (Base_T)
then
return False;
-- String types
elsif Is_String_Type (Typ) then
return
Ekind (Typ) = E_String_Literal_Subtype
or else
(Is_Static_Subtype (Component_Type (Typ))
and then Is_Static_Subtype (Etype (First_Index (Typ))));
-- Scalar types
elsif Is_Scalar_Type (Typ) then
if Base_T = Typ then
return True;
else
return Is_Static_Subtype (Anc_Subt)
and then Is_Static_Expression (Type_Low_Bound (Typ))
and then Is_Static_Expression (Type_High_Bound (Typ));
end if;
-- Types other than string and scalar types are never static
else
return False;
end if;
end Is_Static_Subtype;
--------------------
-- Not_Null_Range --
--------------------
function Not_Null_Range (Lo : Node_Id; Hi : Node_Id) return Boolean is
Typ : constant Entity_Id := Etype (Lo);
begin
if not Compile_Time_Known_Value (Lo)
or else not Compile_Time_Known_Value (Hi)
then
return False;
end if;
if Is_Discrete_Type (Typ) then
return Expr_Value (Lo) <= Expr_Value (Hi);
else
pragma Assert (Is_Real_Type (Typ));
return Expr_Value_R (Lo) <= Expr_Value_R (Hi);
end if;
end Not_Null_Range;
-------------
-- OK_Bits --
-------------
function OK_Bits (N : Node_Id; Bits : Uint) return Boolean is
begin
-- We allow a maximum of 500,000 bits which seems a reasonable limit
if Bits < 500_000 then
return True;
else
Error_Msg_N ("static value too large, capacity exceeded", N);
return False;
end if;
end OK_Bits;
------------------
-- Out_Of_Range --
------------------
procedure Out_Of_Range (N : Node_Id) is
begin
-- If we have the static expression case, then this is an illegality
-- in Ada 95 mode, except that in an instance, we never generate an
-- error (if the error is legitimate, it was already diagnosed in
-- the template). The expression to compute the length of a packed
-- array is attached to the array type itself, and deserves a separate
-- message.
if Is_Static_Expression (N)
and then not In_Instance
and then Ada_95
then
if Nkind (Parent (N)) = N_Defining_Identifier
and then Is_Array_Type (Parent (N))
and then Present (Packed_Array_Type (Parent (N)))
and then Present (First_Rep_Item (Parent (N)))
then
Error_Msg_N
("length of packed array must not exceed Integer''Last",
First_Rep_Item (Parent (N)));
Rewrite (N, Make_Integer_Literal (Sloc (N), Uint_1));
else
Apply_Compile_Time_Constraint_Error
(N, "value not in range of}", CE_Range_Check_Failed);
end if;
-- Here we generate a warning for the Ada 83 case, or when we are
-- in an instance, or when we have a non-static expression case.
else
Warn_On_Instance := True;
Apply_Compile_Time_Constraint_Error
(N, "value not in range of}?", CE_Range_Check_Failed);
Warn_On_Instance := False;
end if;
end Out_Of_Range;
-------------------------
-- Rewrite_In_Raise_CE --
-------------------------
procedure Rewrite_In_Raise_CE (N : Node_Id; Exp : Node_Id) is
Typ : constant Entity_Id := Etype (N);
begin
-- If we want to raise CE in the condition of a raise_CE node
-- we may as well get rid of the condition
if Present (Parent (N))
and then Nkind (Parent (N)) = N_Raise_Constraint_Error
then
Set_Condition (Parent (N), Empty);
-- If the expression raising CE is a N_Raise_CE node, we can use
-- that one. We just preserve the type of the context
elsif Nkind (Exp) = N_Raise_Constraint_Error then
Rewrite (N, Exp);
Set_Etype (N, Typ);
-- We have to build an explicit raise_ce node
else
Rewrite (N,
Make_Raise_Constraint_Error (Sloc (Exp),
Reason => CE_Range_Check_Failed));
Set_Raises_Constraint_Error (N);
Set_Etype (N, Typ);
end if;
end Rewrite_In_Raise_CE;
---------------------
-- String_Type_Len --
---------------------
function String_Type_Len (Stype : Entity_Id) return Uint is
NT : constant Entity_Id := Etype (First_Index (Stype));
T : Entity_Id;
begin
if Is_OK_Static_Subtype (NT) then
T := NT;
else
T := Base_Type (NT);
end if;
return Expr_Value (Type_High_Bound (T)) -
Expr_Value (Type_Low_Bound (T)) + 1;
end String_Type_Len;
------------------------------------
-- Subtypes_Statically_Compatible --
------------------------------------
function Subtypes_Statically_Compatible
(T1 : Entity_Id;
T2 : Entity_Id)
return Boolean
is
begin
if Is_Scalar_Type (T1) then
-- Definitely compatible if we match
if Subtypes_Statically_Match (T1, T2) then
return True;
-- If either subtype is nonstatic then they're not compatible
elsif not Is_Static_Subtype (T1)
or else not Is_Static_Subtype (T2)
then
return False;
-- If either type has constraint error bounds, then consider that
-- they match to avoid junk cascaded errors here.
elsif not Is_OK_Static_Subtype (T1)
or else not Is_OK_Static_Subtype (T2)
then
return True;
-- Base types must match, but we don't check that (should
-- we???) but we do at least check that both types are
-- real, or both types are not real.
elsif (Is_Real_Type (T1) /= Is_Real_Type (T2)) then
return False;
-- Here we check the bounds
else
declare
LB1 : constant Node_Id := Type_Low_Bound (T1);
HB1 : constant Node_Id := Type_High_Bound (T1);
LB2 : constant Node_Id := Type_Low_Bound (T2);
HB2 : constant Node_Id := Type_High_Bound (T2);
begin
if Is_Real_Type (T1) then
return
(Expr_Value_R (LB1) > Expr_Value_R (HB1))
or else
(Expr_Value_R (LB2) <= Expr_Value_R (LB1)
and then
Expr_Value_R (HB1) <= Expr_Value_R (HB2));
else
return
(Expr_Value (LB1) > Expr_Value (HB1))
or else
(Expr_Value (LB2) <= Expr_Value (LB1)
and then
Expr_Value (HB1) <= Expr_Value (HB2));
end if;
end;
end if;
elsif Is_Access_Type (T1) then
return not Is_Constrained (T2)
or else Subtypes_Statically_Match
(Designated_Type (T1), Designated_Type (T2));
else
return (Is_Composite_Type (T1) and then not Is_Constrained (T2))
or else Subtypes_Statically_Match (T1, T2);
end if;
end Subtypes_Statically_Compatible;
-------------------------------
-- Subtypes_Statically_Match --
-------------------------------
-- Subtypes statically match if they have statically matching constraints
-- (RM 4.9.1(2)). Constraints statically match if there are none, or if
-- they are the same identical constraint, or if they are static and the
-- values match (RM 4.9.1(1)).
function Subtypes_Statically_Match (T1, T2 : Entity_Id) return Boolean is
begin
-- A type always statically matches itself
if T1 = T2 then
return True;
-- Scalar types
elsif Is_Scalar_Type (T1) then
-- Base types must be the same
if Base_Type (T1) /= Base_Type (T2) then
return False;
end if;
-- A constrained numeric subtype never matches an unconstrained
-- subtype, i.e. both types must be constrained or unconstrained.
-- To understand the requirement for this test, see RM 4.9.1(1).
-- As is made clear in RM 3.5.4(11), type Integer, for example
-- is a constrained subtype with constraint bounds matching the
-- bounds of its corresponding uncontrained base type. In this
-- situation, Integer and Integer'Base do not statically match,
-- even though they have the same bounds.
-- We only apply this test to types in Standard and types that
-- appear in user programs. That way, we do not have to be
-- too careful about setting Is_Constrained right for itypes.
if Is_Numeric_Type (T1)
and then (Is_Constrained (T1) /= Is_Constrained (T2))
and then (Scope (T1) = Standard_Standard
or else Comes_From_Source (T1))
and then (Scope (T2) = Standard_Standard
or else Comes_From_Source (T2))
then
return False;
end if;
-- If there was an error in either range, then just assume
-- the types statically match to avoid further junk errors
if Error_Posted (Scalar_Range (T1))
or else
Error_Posted (Scalar_Range (T2))
then
return True;
end if;
-- Otherwise both types have bound that can be compared
declare
LB1 : constant Node_Id := Type_Low_Bound (T1);
HB1 : constant Node_Id := Type_High_Bound (T1);
LB2 : constant Node_Id := Type_Low_Bound (T2);
HB2 : constant Node_Id := Type_High_Bound (T2);
begin
-- If the bounds are the same tree node, then match
if LB1 = LB2 and then HB1 = HB2 then
return True;
-- Otherwise bounds must be static and identical value
else
if not Is_Static_Subtype (T1)
or else not Is_Static_Subtype (T2)
then
return False;
-- If either type has constraint error bounds, then say
-- that they match to avoid junk cascaded errors here.
elsif not Is_OK_Static_Subtype (T1)
or else not Is_OK_Static_Subtype (T2)
then
return True;
elsif Is_Real_Type (T1) then
return
(Expr_Value_R (LB1) = Expr_Value_R (LB2))
and then
(Expr_Value_R (HB1) = Expr_Value_R (HB2));
else
return
Expr_Value (LB1) = Expr_Value (LB2)
and then
Expr_Value (HB1) = Expr_Value (HB2);
end if;
end if;
end;
-- Type with discriminants
elsif Has_Discriminants (T1) or else Has_Discriminants (T2) then
if Has_Discriminants (T1) /= Has_Discriminants (T2) then
return False;
end if;
declare
DL1 : constant Elist_Id := Discriminant_Constraint (T1);
DL2 : constant Elist_Id := Discriminant_Constraint (T2);
DA1 : Elmt_Id := First_Elmt (DL1);
DA2 : Elmt_Id := First_Elmt (DL2);
begin
if DL1 = DL2 then
return True;
elsif Is_Constrained (T1) /= Is_Constrained (T2) then
return False;
end if;
while Present (DA1) loop
declare
Expr1 : constant Node_Id := Node (DA1);
Expr2 : constant Node_Id := Node (DA2);
begin
if not Is_Static_Expression (Expr1)
or else not Is_Static_Expression (Expr2)
then
return False;
-- If either expression raised a constraint error,
-- consider the expressions as matching, since this
-- helps to prevent cascading errors.
elsif Raises_Constraint_Error (Expr1)
or else Raises_Constraint_Error (Expr2)
then
null;
elsif Expr_Value (Expr1) /= Expr_Value (Expr2) then
return False;
end if;
end;
Next_Elmt (DA1);
Next_Elmt (DA2);
end loop;
end;
return True;
-- A definite type does not match an indefinite or classwide type.
elsif
Has_Unknown_Discriminants (T1) /= Has_Unknown_Discriminants (T2)
then
return False;
-- Array type
elsif Is_Array_Type (T1) then
-- If either subtype is unconstrained then both must be,
-- and if both are unconstrained then no further checking
-- is needed.
if not Is_Constrained (T1) or else not Is_Constrained (T2) then
return not (Is_Constrained (T1) or else Is_Constrained (T2));
end if;
-- Both subtypes are constrained, so check that the index
-- subtypes statically match.
declare
Index1 : Node_Id := First_Index (T1);
Index2 : Node_Id := First_Index (T2);
begin
while Present (Index1) loop
if not
Subtypes_Statically_Match (Etype (Index1), Etype (Index2))
then
return False;
end if;
Next_Index (Index1);
Next_Index (Index2);
end loop;
return True;
end;
elsif Is_Access_Type (T1) then
return Subtypes_Statically_Match
(Designated_Type (T1),
Designated_Type (T2));
-- All other types definitely match
else
return True;
end if;
end Subtypes_Statically_Match;
----------
-- Test --
----------
function Test (Cond : Boolean) return Uint is
begin
if Cond then
return Uint_1;
else
return Uint_0;
end if;
end Test;
---------------------------------
-- Test_Expression_Is_Foldable --
---------------------------------
-- One operand case
procedure Test_Expression_Is_Foldable
(N : Node_Id;
Op1 : Node_Id;
Stat : out Boolean;
Fold : out Boolean)
is
begin
Stat := False;
-- If operand is Any_Type, just propagate to result and do not
-- try to fold, this prevents cascaded errors.
if Etype (Op1) = Any_Type then
Set_Etype (N, Any_Type);
Fold := False;
return;
-- If operand raises constraint error, then replace node N with the
-- raise constraint error node, and we are obviously not foldable.
-- Note that this replacement inherits the Is_Static_Expression flag
-- from the operand.
elsif Raises_Constraint_Error (Op1) then
Rewrite_In_Raise_CE (N, Op1);
Fold := False;
return;
-- If the operand is not static, then the result is not static, and
-- all we have to do is to check the operand since it is now known
-- to appear in a non-static context.
elsif not Is_Static_Expression (Op1) then
Check_Non_Static_Context (Op1);
Fold := Compile_Time_Known_Value (Op1);
return;
-- An expression of a formal modular type is not foldable because
-- the modulus is unknown.
elsif Is_Modular_Integer_Type (Etype (Op1))
and then Is_Generic_Type (Etype (Op1))
then
Check_Non_Static_Context (Op1);
Fold := False;
return;
-- Here we have the case of an operand whose type is OK, which is
-- static, and which does not raise constraint error, we can fold.
else
Set_Is_Static_Expression (N);
Fold := True;
Stat := True;
end if;
end Test_Expression_Is_Foldable;
-- Two operand case
procedure Test_Expression_Is_Foldable
(N : Node_Id;
Op1 : Node_Id;
Op2 : Node_Id;
Stat : out Boolean;
Fold : out Boolean)
is
Rstat : constant Boolean := Is_Static_Expression (Op1)
and then Is_Static_Expression (Op2);
begin
Stat := False;
-- If either operand is Any_Type, just propagate to result and
-- do not try to fold, this prevents cascaded errors.
if Etype (Op1) = Any_Type or else Etype (Op2) = Any_Type then
Set_Etype (N, Any_Type);
Fold := False;
return;
-- If left operand raises constraint error, then replace node N with
-- the raise constraint error node, and we are obviously not foldable.
-- Is_Static_Expression is set from the two operands in the normal way,
-- and we check the right operand if it is in a non-static context.
elsif Raises_Constraint_Error (Op1) then
if not Rstat then
Check_Non_Static_Context (Op2);
end if;
Rewrite_In_Raise_CE (N, Op1);
Set_Is_Static_Expression (N, Rstat);
Fold := False;
return;
-- Similar processing for the case of the right operand. Note that
-- we don't use this routine for the short-circuit case, so we do
-- not have to worry about that special case here.
elsif Raises_Constraint_Error (Op2) then
if not Rstat then
Check_Non_Static_Context (Op1);
end if;
Rewrite_In_Raise_CE (N, Op2);
Set_Is_Static_Expression (N, Rstat);
Fold := False;
return;
-- Exclude expressions of a generic modular type, as above.
elsif Is_Modular_Integer_Type (Etype (Op1))
and then Is_Generic_Type (Etype (Op1))
then
Check_Non_Static_Context (Op1);
Fold := False;
return;
-- If result is not static, then check non-static contexts on operands
-- since one of them may be static and the other one may not be static
elsif not Rstat then
Check_Non_Static_Context (Op1);
Check_Non_Static_Context (Op2);
Fold := Compile_Time_Known_Value (Op1)
and then Compile_Time_Known_Value (Op2);
return;
-- Else result is static and foldable. Both operands are static,
-- and neither raises constraint error, so we can definitely fold.
else
Set_Is_Static_Expression (N);
Fold := True;
Stat := True;
return;
end if;
end Test_Expression_Is_Foldable;
--------------
-- To_Bits --
--------------
procedure To_Bits (U : Uint; B : out Bits) is
begin
for J in 0 .. B'Last loop
B (J) := (U / (2 ** J)) mod 2 /= 0;
end loop;
end To_Bits;
end Sem_Eval;
|