1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
|
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- S E M _ C H 6 --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2004, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 2, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING. If not, write --
-- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
-- MA 02111-1307, USA. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Atree; use Atree;
with Checks; use Checks;
with Debug; use Debug;
with Einfo; use Einfo;
with Elists; use Elists;
with Errout; use Errout;
with Expander; use Expander;
with Exp_Ch7; use Exp_Ch7;
with Fname; use Fname;
with Freeze; use Freeze;
with Lib.Xref; use Lib.Xref;
with Namet; use Namet;
with Lib; use Lib;
with Nlists; use Nlists;
with Nmake; use Nmake;
with Opt; use Opt;
with Output; use Output;
with Rtsfind; use Rtsfind;
with Sem; use Sem;
with Sem_Cat; use Sem_Cat;
with Sem_Ch3; use Sem_Ch3;
with Sem_Ch4; use Sem_Ch4;
with Sem_Ch5; use Sem_Ch5;
with Sem_Ch8; use Sem_Ch8;
with Sem_Ch10; use Sem_Ch10;
with Sem_Ch12; use Sem_Ch12;
with Sem_Disp; use Sem_Disp;
with Sem_Dist; use Sem_Dist;
with Sem_Elim; use Sem_Elim;
with Sem_Eval; use Sem_Eval;
with Sem_Mech; use Sem_Mech;
with Sem_Prag; use Sem_Prag;
with Sem_Res; use Sem_Res;
with Sem_Util; use Sem_Util;
with Sem_Type; use Sem_Type;
with Sem_Warn; use Sem_Warn;
with Sinput; use Sinput;
with Stand; use Stand;
with Sinfo; use Sinfo;
with Sinfo.CN; use Sinfo.CN;
with Snames; use Snames;
with Stringt; use Stringt;
with Style;
with Stylesw; use Stylesw;
with Tbuild; use Tbuild;
with Uintp; use Uintp;
with Urealp; use Urealp;
with Validsw; use Validsw;
package body Sem_Ch6 is
-----------------------
-- Local Subprograms --
-----------------------
procedure Analyze_Generic_Subprogram_Body (N : Node_Id; Gen_Id : Entity_Id);
-- Analyze a generic subprogram body. N is the body to be analyzed,
-- and Gen_Id is the defining entity Id for the corresponding spec.
procedure Build_Body_To_Inline (N : Node_Id; Subp : Entity_Id);
-- If a subprogram has pragma Inline and inlining is active, use generic
-- machinery to build an unexpanded body for the subprogram. This body is
-- subsequenty used for inline expansions at call sites. If subprogram can
-- be inlined (depending on size and nature of local declarations) this
-- function returns true. Otherwise subprogram body is treated normally.
-- If proper warnings are enabled and the subprogram contains a construct
-- that cannot be inlined, the offending construct is flagged accordingly.
type Conformance_Type is
(Type_Conformant, Mode_Conformant, Subtype_Conformant, Fully_Conformant);
-- Conformance type used for following call, meaning matches the
-- RM definitions of the corresponding terms.
procedure Check_Conformance
(New_Id : Entity_Id;
Old_Id : Entity_Id;
Ctype : Conformance_Type;
Errmsg : Boolean;
Conforms : out Boolean;
Err_Loc : Node_Id := Empty;
Get_Inst : Boolean := False);
-- Given two entities, this procedure checks that the profiles associated
-- with these entities meet the conformance criterion given by the third
-- parameter. If they conform, Conforms is set True and control returns
-- to the caller. If they do not conform, Conforms is set to False, and
-- in addition, if Errmsg is True on the call, proper messages are output
-- to complain about the conformance failure. If Err_Loc is non_Empty
-- the error messages are placed on Err_Loc, if Err_Loc is empty, then
-- error messages are placed on the appropriate part of the construct
-- denoted by New_Id. If Get_Inst is true, then this is a mode conformance
-- against a formal access-to-subprogram type so Get_Instance_Of must
-- be called.
procedure Check_Overriding_Operation
(N : Node_Id;
Subp : Entity_Id);
-- Check that a subprogram with a pragma Overriding or Optional_Overriding
-- is legal. This check is performed here rather than in Sem_Prag because
-- the pragma must follow immediately the declaration, and can be treated
-- as part of the declaration itself, as described in AI-218.
procedure Check_Subprogram_Order (N : Node_Id);
-- N is the N_Subprogram_Body node for a subprogram. This routine applies
-- the alpha ordering rule for N if this ordering requirement applicable.
function Is_Non_Overriding_Operation
(Prev_E : Entity_Id;
New_E : Entity_Id) return Boolean;
-- Enforce the rule given in 12.3(18): a private operation in an instance
-- overrides an inherited operation only if the corresponding operation
-- was overriding in the generic. This can happen for primitive operations
-- of types derived (in the generic unit) from formal private or formal
-- derived types.
procedure Check_Returns
(HSS : Node_Id;
Mode : Character;
Err : out Boolean);
-- Called to check for missing return statements in a function body,
-- or for returns present in a procedure body which has No_Return set.
-- L is the handled statement sequence for the subprogram body. This
-- procedure checks all flow paths to make sure they either have a
-- return (Mode = 'F') or do not have a return (Mode = 'P'). The flag
-- Err is set if there are any control paths not explicitly terminated
-- by a return in the function case, and is True otherwise.
function Conforming_Types
(T1 : Entity_Id;
T2 : Entity_Id;
Ctype : Conformance_Type;
Get_Inst : Boolean := False) return Boolean;
-- Check that two formal parameter types conform, checking both
-- for equality of base types, and where required statically
-- matching subtypes, depending on the setting of Ctype.
procedure Enter_Overloaded_Entity (S : Entity_Id);
-- This procedure makes S, a new overloaded entity, into the first
-- visible entity with that name.
procedure Install_Entity (E : Entity_Id);
-- Make single entity visible. Used for generic formals as well.
procedure Install_Formals (Id : Entity_Id);
-- On entry to a subprogram body, make the formals visible. Note
-- that simply placing the subprogram on the scope stack is not
-- sufficient: the formals must become the current entities for
-- their names.
procedure Make_Inequality_Operator (S : Entity_Id);
-- Create the declaration for an inequality operator that is implicitly
-- created by a user-defined equality operator that yields a boolean.
procedure May_Need_Actuals (Fun : Entity_Id);
-- Flag functions that can be called without parameters, i.e. those that
-- have no parameters, or those for which defaults exist for all parameters
procedure Reference_Body_Formals (Spec : Entity_Id; Bod : Entity_Id);
-- If there is a separate spec for a subprogram or generic subprogram,
-- the formals of the body are treated as references to the corresponding
-- formals of the spec. This reference does not count as an actual use of
-- the formal, in order to diagnose formals that are unused in the body.
procedure Set_Formal_Validity (Formal_Id : Entity_Id);
-- Formal_Id is an formal parameter entity. This procedure deals with
-- setting the proper validity status for this entity, which depends
-- on the kind of parameter and the validity checking mode.
---------------------------------------------
-- Analyze_Abstract_Subprogram_Declaration --
---------------------------------------------
procedure Analyze_Abstract_Subprogram_Declaration (N : Node_Id) is
Designator : constant Entity_Id :=
Analyze_Subprogram_Specification (Specification (N));
Scop : constant Entity_Id := Current_Scope;
begin
Generate_Definition (Designator);
Set_Is_Abstract (Designator);
New_Overloaded_Entity (Designator);
Check_Delayed_Subprogram (Designator);
Set_Categorization_From_Scope (Designator, Scop);
if Ekind (Scope (Designator)) = E_Protected_Type then
Error_Msg_N
("abstract subprogram not allowed in protected type", N);
end if;
Generate_Reference_To_Formals (Designator);
end Analyze_Abstract_Subprogram_Declaration;
----------------------------
-- Analyze_Function_Call --
----------------------------
procedure Analyze_Function_Call (N : Node_Id) is
P : constant Node_Id := Name (N);
L : constant List_Id := Parameter_Associations (N);
Actual : Node_Id;
begin
Analyze (P);
-- If error analyzing name, then set Any_Type as result type and return
if Etype (P) = Any_Type then
Set_Etype (N, Any_Type);
return;
end if;
-- Otherwise analyze the parameters
if Present (L) then
Actual := First (L);
while Present (Actual) loop
Analyze (Actual);
Check_Parameterless_Call (Actual);
Next (Actual);
end loop;
end if;
Analyze_Call (N);
end Analyze_Function_Call;
-------------------------------------
-- Analyze_Generic_Subprogram_Body --
-------------------------------------
procedure Analyze_Generic_Subprogram_Body
(N : Node_Id;
Gen_Id : Entity_Id)
is
Gen_Decl : constant Node_Id := Unit_Declaration_Node (Gen_Id);
Kind : constant Entity_Kind := Ekind (Gen_Id);
Body_Id : Entity_Id;
New_N : Node_Id;
Spec : Node_Id;
begin
-- Copy body and disable expansion while analyzing the generic
-- For a stub, do not copy the stub (which would load the proper body),
-- this will be done when the proper body is analyzed.
if Nkind (N) /= N_Subprogram_Body_Stub then
New_N := Copy_Generic_Node (N, Empty, Instantiating => False);
Rewrite (N, New_N);
Start_Generic;
end if;
Spec := Specification (N);
-- Within the body of the generic, the subprogram is callable, and
-- behaves like the corresponding non-generic unit.
Body_Id := Defining_Entity (Spec);
if Kind = E_Generic_Procedure
and then Nkind (Spec) /= N_Procedure_Specification
then
Error_Msg_N ("invalid body for generic procedure ", Body_Id);
return;
elsif Kind = E_Generic_Function
and then Nkind (Spec) /= N_Function_Specification
then
Error_Msg_N ("invalid body for generic function ", Body_Id);
return;
end if;
Set_Corresponding_Body (Gen_Decl, Body_Id);
if Has_Completion (Gen_Id)
and then Nkind (Parent (N)) /= N_Subunit
then
Error_Msg_N ("duplicate generic body", N);
return;
else
Set_Has_Completion (Gen_Id);
end if;
if Nkind (N) = N_Subprogram_Body_Stub then
Set_Ekind (Defining_Entity (Specification (N)), Kind);
else
Set_Corresponding_Spec (N, Gen_Id);
end if;
if Nkind (Parent (N)) = N_Compilation_Unit then
Set_Cunit_Entity (Current_Sem_Unit, Defining_Entity (N));
end if;
-- Make generic parameters immediately visible in the body. They are
-- needed to process the formals declarations. Then make the formals
-- visible in a separate step.
New_Scope (Gen_Id);
declare
E : Entity_Id;
First_Ent : Entity_Id;
begin
First_Ent := First_Entity (Gen_Id);
E := First_Ent;
while Present (E) and then not Is_Formal (E) loop
Install_Entity (E);
Next_Entity (E);
end loop;
Set_Use (Generic_Formal_Declarations (Gen_Decl));
-- Now generic formals are visible, and the specification can be
-- analyzed, for subsequent conformance check.
Body_Id := Analyze_Subprogram_Specification (Spec);
-- Make formal parameters visible
if Present (E) then
-- E is the first formal parameter, we loop through the formals
-- installing them so that they will be visible.
Set_First_Entity (Gen_Id, E);
while Present (E) loop
Install_Entity (E);
Next_Formal (E);
end loop;
end if;
-- Visible generic entity is callable within its own body.
Set_Ekind (Gen_Id, Ekind (Body_Id));
Set_Ekind (Body_Id, E_Subprogram_Body);
Set_Convention (Body_Id, Convention (Gen_Id));
Set_Scope (Body_Id, Scope (Gen_Id));
Check_Fully_Conformant (Body_Id, Gen_Id, Body_Id);
if Nkind (N) = N_Subprogram_Body_Stub then
-- No body to analyze, so restore state of generic unit.
Set_Ekind (Gen_Id, Kind);
Set_Ekind (Body_Id, Kind);
if Present (First_Ent) then
Set_First_Entity (Gen_Id, First_Ent);
end if;
End_Scope;
return;
end if;
-- If this is a compilation unit, it must be made visible
-- explicitly, because the compilation of the declaration,
-- unlike other library unit declarations, does not. If it
-- is not a unit, the following is redundant but harmless.
Set_Is_Immediately_Visible (Gen_Id);
Reference_Body_Formals (Gen_Id, Body_Id);
Set_Actual_Subtypes (N, Current_Scope);
Analyze_Declarations (Declarations (N));
Check_Completion;
Analyze (Handled_Statement_Sequence (N));
Save_Global_References (Original_Node (N));
-- Prior to exiting the scope, include generic formals again
-- (if any are present) in the set of local entities.
if Present (First_Ent) then
Set_First_Entity (Gen_Id, First_Ent);
end if;
Check_References (Gen_Id);
end;
Process_End_Label (Handled_Statement_Sequence (N), 't', Current_Scope);
End_Scope;
Check_Subprogram_Order (N);
-- Outside of its body, unit is generic again.
Set_Ekind (Gen_Id, Kind);
Generate_Reference (Gen_Id, Body_Id, 'b', Set_Ref => False);
Style.Check_Identifier (Body_Id, Gen_Id);
End_Generic;
end Analyze_Generic_Subprogram_Body;
-----------------------------
-- Analyze_Operator_Symbol --
-----------------------------
-- An operator symbol such as "+" or "and" may appear in context where
-- the literal denotes an entity name, such as "+"(x, y) or in a
-- context when it is just a string, as in (conjunction = "or"). In
-- these cases the parser generates this node, and the semantics does
-- the disambiguation. Other such case are actuals in an instantiation,
-- the generic unit in an instantiation, and pragma arguments.
procedure Analyze_Operator_Symbol (N : Node_Id) is
Par : constant Node_Id := Parent (N);
begin
if (Nkind (Par) = N_Function_Call and then N = Name (Par))
or else Nkind (Par) = N_Function_Instantiation
or else (Nkind (Par) = N_Indexed_Component and then N = Prefix (Par))
or else (Nkind (Par) = N_Pragma_Argument_Association
and then not Is_Pragma_String_Literal (Par))
or else Nkind (Par) = N_Subprogram_Renaming_Declaration
or else (Nkind (Par) = N_Attribute_Reference
and then Attribute_Name (Par) /= Name_Value)
then
Find_Direct_Name (N);
else
Change_Operator_Symbol_To_String_Literal (N);
Analyze (N);
end if;
end Analyze_Operator_Symbol;
-----------------------------------
-- Analyze_Parameter_Association --
-----------------------------------
procedure Analyze_Parameter_Association (N : Node_Id) is
begin
Analyze (Explicit_Actual_Parameter (N));
end Analyze_Parameter_Association;
----------------------------
-- Analyze_Procedure_Call --
----------------------------
procedure Analyze_Procedure_Call (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
P : constant Node_Id := Name (N);
Actuals : constant List_Id := Parameter_Associations (N);
Actual : Node_Id;
New_N : Node_Id;
procedure Analyze_Call_And_Resolve;
-- Do Analyze and Resolve calls for procedure call
------------------------------
-- Analyze_Call_And_Resolve --
------------------------------
procedure Analyze_Call_And_Resolve is
begin
if Nkind (N) = N_Procedure_Call_Statement then
Analyze_Call (N);
Resolve (N, Standard_Void_Type);
else
Analyze (N);
end if;
end Analyze_Call_And_Resolve;
-- Start of processing for Analyze_Procedure_Call
begin
-- The syntactic construct: PREFIX ACTUAL_PARAMETER_PART can denote
-- a procedure call or an entry call. The prefix may denote an access
-- to subprogram type, in which case an implicit dereference applies.
-- If the prefix is an indexed component (without implicit defererence)
-- then the construct denotes a call to a member of an entire family.
-- If the prefix is a simple name, it may still denote a call to a
-- parameterless member of an entry family. Resolution of these various
-- interpretations is delicate.
Analyze (P);
-- If error analyzing prefix, then set Any_Type as result and return
if Etype (P) = Any_Type then
Set_Etype (N, Any_Type);
return;
end if;
-- Otherwise analyze the parameters
if Present (Actuals) then
Actual := First (Actuals);
while Present (Actual) loop
Analyze (Actual);
Check_Parameterless_Call (Actual);
Next (Actual);
end loop;
end if;
-- Special processing for Elab_Spec and Elab_Body calls
if Nkind (P) = N_Attribute_Reference
and then (Attribute_Name (P) = Name_Elab_Spec
or else Attribute_Name (P) = Name_Elab_Body)
then
if Present (Actuals) then
Error_Msg_N
("no parameters allowed for this call", First (Actuals));
return;
end if;
Set_Etype (N, Standard_Void_Type);
Set_Analyzed (N);
elsif Is_Entity_Name (P)
and then Is_Record_Type (Etype (Entity (P)))
and then Remote_AST_I_Dereference (P)
then
return;
elsif Is_Entity_Name (P)
and then Ekind (Entity (P)) /= E_Entry_Family
then
if Is_Access_Type (Etype (P))
and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
and then No (Actuals)
and then Comes_From_Source (N)
then
Error_Msg_N ("missing explicit dereference in call", N);
end if;
Analyze_Call_And_Resolve;
-- If the prefix is the simple name of an entry family, this is
-- a parameterless call from within the task body itself.
elsif Is_Entity_Name (P)
and then Nkind (P) = N_Identifier
and then Ekind (Entity (P)) = E_Entry_Family
and then Present (Actuals)
and then No (Next (First (Actuals)))
then
-- Can be call to parameterless entry family. What appears to be
-- the sole argument is in fact the entry index. Rewrite prefix
-- of node accordingly. Source representation is unchanged by this
-- transformation.
New_N :=
Make_Indexed_Component (Loc,
Prefix =>
Make_Selected_Component (Loc,
Prefix => New_Occurrence_Of (Scope (Entity (P)), Loc),
Selector_Name => New_Occurrence_Of (Entity (P), Loc)),
Expressions => Actuals);
Set_Name (N, New_N);
Set_Etype (New_N, Standard_Void_Type);
Set_Parameter_Associations (N, No_List);
Analyze_Call_And_Resolve;
elsif Nkind (P) = N_Explicit_Dereference then
if Ekind (Etype (P)) = E_Subprogram_Type then
Analyze_Call_And_Resolve;
else
Error_Msg_N ("expect access to procedure in call", P);
end if;
-- The name can be a selected component or an indexed component
-- that yields an access to subprogram. Such a prefix is legal if
-- the call has parameter associations.
elsif Is_Access_Type (Etype (P))
and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
then
if Present (Actuals) then
Analyze_Call_And_Resolve;
else
Error_Msg_N ("missing explicit dereference in call ", N);
end if;
-- If not an access to subprogram, then the prefix must resolve to
-- the name of an entry, entry family, or protected operation.
-- For the case of a simple entry call, P is a selected component
-- where the prefix is the task and the selector name is the entry.
-- A call to a protected procedure will have the same syntax. If
-- the protected object contains overloaded operations, the entity
-- may appear as a function, the context will select the operation
-- whose type is Void.
elsif Nkind (P) = N_Selected_Component
and then (Ekind (Entity (Selector_Name (P))) = E_Entry
or else
Ekind (Entity (Selector_Name (P))) = E_Procedure
or else
Ekind (Entity (Selector_Name (P))) = E_Function)
then
Analyze_Call_And_Resolve;
elsif Nkind (P) = N_Selected_Component
and then Ekind (Entity (Selector_Name (P))) = E_Entry_Family
and then Present (Actuals)
and then No (Next (First (Actuals)))
then
-- Can be call to parameterless entry family. What appears to be
-- the sole argument is in fact the entry index. Rewrite prefix
-- of node accordingly. Source representation is unchanged by this
-- transformation.
New_N :=
Make_Indexed_Component (Loc,
Prefix => New_Copy (P),
Expressions => Actuals);
Set_Name (N, New_N);
Set_Etype (New_N, Standard_Void_Type);
Set_Parameter_Associations (N, No_List);
Analyze_Call_And_Resolve;
-- For the case of a reference to an element of an entry family, P is
-- an indexed component whose prefix is a selected component (task and
-- entry family), and whose index is the entry family index.
elsif Nkind (P) = N_Indexed_Component
and then Nkind (Prefix (P)) = N_Selected_Component
and then Ekind (Entity (Selector_Name (Prefix (P)))) = E_Entry_Family
then
Analyze_Call_And_Resolve;
-- If the prefix is the name of an entry family, it is a call from
-- within the task body itself.
elsif Nkind (P) = N_Indexed_Component
and then Nkind (Prefix (P)) = N_Identifier
and then Ekind (Entity (Prefix (P))) = E_Entry_Family
then
New_N :=
Make_Selected_Component (Loc,
Prefix => New_Occurrence_Of (Scope (Entity (Prefix (P))), Loc),
Selector_Name => New_Occurrence_Of (Entity (Prefix (P)), Loc));
Rewrite (Prefix (P), New_N);
Analyze (P);
Analyze_Call_And_Resolve;
-- Anything else is an error.
else
Error_Msg_N ("Invalid procedure or entry call", N);
end if;
end Analyze_Procedure_Call;
------------------------------
-- Analyze_Return_Statement --
------------------------------
procedure Analyze_Return_Statement (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Expr : Node_Id;
Scope_Id : Entity_Id;
Kind : Entity_Kind;
R_Type : Entity_Id;
begin
-- Find subprogram or accept statement enclosing the return statement
Scope_Id := Empty;
for J in reverse 0 .. Scope_Stack.Last loop
Scope_Id := Scope_Stack.Table (J).Entity;
exit when Ekind (Scope_Id) /= E_Block and then
Ekind (Scope_Id) /= E_Loop;
end loop;
pragma Assert (Present (Scope_Id));
Kind := Ekind (Scope_Id);
Expr := Expression (N);
if Kind /= E_Function
and then Kind /= E_Generic_Function
and then Kind /= E_Procedure
and then Kind /= E_Generic_Procedure
and then Kind /= E_Entry
and then Kind /= E_Entry_Family
then
Error_Msg_N ("illegal context for return statement", N);
elsif Present (Expr) then
if Kind = E_Function or else Kind = E_Generic_Function then
Set_Return_Present (Scope_Id);
R_Type := Etype (Scope_Id);
Set_Return_Type (N, R_Type);
Analyze_And_Resolve (Expr, R_Type);
if (Is_Class_Wide_Type (Etype (Expr))
or else Is_Dynamically_Tagged (Expr))
and then not Is_Class_Wide_Type (R_Type)
then
Error_Msg_N
("dynamically tagged expression not allowed!", Expr);
end if;
Apply_Constraint_Check (Expr, R_Type);
-- ??? A real run-time accessibility check is needed
-- in cases involving dereferences of access parameters.
-- For now we just check the static cases.
if Is_Return_By_Reference_Type (Etype (Scope_Id))
and then Object_Access_Level (Expr)
> Subprogram_Access_Level (Scope_Id)
then
Rewrite (N,
Make_Raise_Program_Error (Loc,
Reason => PE_Accessibility_Check_Failed));
Analyze (N);
Error_Msg_N
("cannot return a local value by reference?", N);
Error_Msg_NE
("& will be raised at run time?!",
N, Standard_Program_Error);
end if;
elsif Kind = E_Procedure or else Kind = E_Generic_Procedure then
Error_Msg_N ("procedure cannot return value (use function)", N);
else
Error_Msg_N ("accept statement cannot return value", N);
end if;
-- No expression present
else
if Kind = E_Function or Kind = E_Generic_Function then
Error_Msg_N ("missing expression in return from function", N);
end if;
if (Ekind (Scope_Id) = E_Procedure
or else Ekind (Scope_Id) = E_Generic_Procedure)
and then No_Return (Scope_Id)
then
Error_Msg_N
("RETURN statement not allowed (No_Return)", N);
end if;
end if;
Check_Unreachable_Code (N);
end Analyze_Return_Statement;
-----------------------------
-- Analyze_Subprogram_Body --
-----------------------------
-- This procedure is called for regular subprogram bodies, generic bodies,
-- and for subprogram stubs of both kinds. In the case of stubs, only the
-- specification matters, and is used to create a proper declaration for
-- the subprogram, or to perform conformance checks.
procedure Analyze_Subprogram_Body (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Body_Spec : constant Node_Id := Specification (N);
Body_Id : Entity_Id := Defining_Entity (Body_Spec);
Prev_Id : constant Entity_Id := Current_Entity_In_Scope (Body_Id);
Body_Deleted : constant Boolean := False;
HSS : Node_Id;
Spec_Id : Entity_Id;
Spec_Decl : Node_Id := Empty;
Last_Formal : Entity_Id := Empty;
Conformant : Boolean;
Missing_Ret : Boolean;
P_Ent : Entity_Id;
begin
if Debug_Flag_C then
Write_Str ("==== Compiling subprogram body ");
Write_Name (Chars (Body_Id));
Write_Str (" from ");
Write_Location (Loc);
Write_Eol;
end if;
Trace_Scope (N, Body_Id, " Analyze subprogram");
-- Generic subprograms are handled separately. They always have
-- a generic specification. Determine whether current scope has
-- a previous declaration.
-- If the subprogram body is defined within an instance of the
-- same name, the instance appears as a package renaming, and
-- will be hidden within the subprogram.
if Present (Prev_Id)
and then not Is_Overloadable (Prev_Id)
and then (Nkind (Parent (Prev_Id)) /= N_Package_Renaming_Declaration
or else Comes_From_Source (Prev_Id))
then
if Is_Generic_Subprogram (Prev_Id) then
Spec_Id := Prev_Id;
Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
Analyze_Generic_Subprogram_Body (N, Spec_Id);
return;
else
-- Previous entity conflicts with subprogram name.
-- Attempting to enter name will post error.
Enter_Name (Body_Id);
return;
end if;
-- Non-generic case, find the subprogram declaration, if one was
-- seen, or enter new overloaded entity in the current scope.
-- If the current_entity is the body_id itself, the unit is being
-- analyzed as part of the context of one of its subunits. No need
-- to redo the analysis.
elsif Prev_Id = Body_Id
and then Has_Completion (Body_Id)
then
return;
else
Body_Id := Analyze_Subprogram_Specification (Body_Spec);
if Nkind (N) = N_Subprogram_Body_Stub
or else No (Corresponding_Spec (N))
then
Spec_Id := Find_Corresponding_Spec (N);
-- If this is a duplicate body, no point in analyzing it
if Error_Posted (N) then
return;
end if;
-- A subprogram body should cause freezing of its own
-- declaration, but if there was no previous explicit
-- declaration, then the subprogram will get frozen too
-- late (there may be code within the body that depends
-- on the subprogram having been frozen, such as uses of
-- extra formals), so we force it to be frozen here.
-- Same holds if the body and the spec are compilation units.
if No (Spec_Id) then
Freeze_Before (N, Body_Id);
elsif Nkind (Parent (N)) = N_Compilation_Unit then
Freeze_Before (N, Spec_Id);
end if;
else
Spec_Id := Corresponding_Spec (N);
end if;
end if;
-- Do not inline any subprogram that contains nested subprograms,
-- since the backend inlining circuit seems to generate uninitialized
-- references in this case. We know this happens in the case of front
-- end ZCX support, but it also appears it can happen in other cases
-- as well. The backend often rejects attempts to inline in the case
-- of nested procedures anyway, so little if anything is lost by this.
-- Do not do this test if errors have been detected, because in some
-- error cases, this code blows up, and we don't need it anyway if
-- there have been errors, since we won't get to the linker anyway.
if Serious_Errors_Detected = 0 then
P_Ent := Body_Id;
loop
P_Ent := Scope (P_Ent);
exit when No (P_Ent) or else P_Ent = Standard_Standard;
if Is_Subprogram (P_Ent) then
Set_Is_Inlined (P_Ent, False);
if Comes_From_Source (P_Ent)
and then Has_Pragma_Inline (P_Ent)
then
Cannot_Inline
("cannot inline& (nested subprogram)?",
N, P_Ent);
end if;
end if;
end loop;
end if;
-- Case of fully private operation in the body of the protected type.
-- We must create a declaration for the subprogram, in order to attach
-- the protected subprogram that will be used in internal calls.
if No (Spec_Id)
and then Comes_From_Source (N)
and then Is_Protected_Type (Current_Scope)
then
declare
Decl : Node_Id;
Plist : List_Id;
Formal : Entity_Id;
New_Spec : Node_Id;
begin
Formal := First_Formal (Body_Id);
-- The protected operation always has at least one formal,
-- namely the object itself, but it is only placed in the
-- parameter list if expansion is enabled.
if Present (Formal)
or else Expander_Active
then
Plist := New_List;
else
Plist := No_List;
end if;
while Present (Formal) loop
Append
(Make_Parameter_Specification (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Sloc (Formal),
Chars => Chars (Formal)),
In_Present => In_Present (Parent (Formal)),
Out_Present => Out_Present (Parent (Formal)),
Parameter_Type =>
New_Reference_To (Etype (Formal), Loc),
Expression =>
New_Copy_Tree (Expression (Parent (Formal)))),
Plist);
Next_Formal (Formal);
end loop;
if Nkind (Body_Spec) = N_Procedure_Specification then
New_Spec :=
Make_Procedure_Specification (Loc,
Defining_Unit_Name =>
Make_Defining_Identifier (Sloc (Body_Id),
Chars => Chars (Body_Id)),
Parameter_Specifications => Plist);
else
New_Spec :=
Make_Function_Specification (Loc,
Defining_Unit_Name =>
Make_Defining_Identifier (Sloc (Body_Id),
Chars => Chars (Body_Id)),
Parameter_Specifications => Plist,
Subtype_Mark => New_Occurrence_Of (Etype (Body_Id), Loc));
end if;
Decl :=
Make_Subprogram_Declaration (Loc,
Specification => New_Spec);
Insert_Before (N, Decl);
Spec_Id := Defining_Unit_Name (New_Spec);
-- Indicate that the entity comes from source, to ensure that
-- cross-reference information is properly generated.
-- The body itself is rewritten during expansion, and the
-- body entity will not appear in calls to the operation.
Set_Comes_From_Source (Spec_Id, True);
Analyze (Decl);
Set_Has_Completion (Spec_Id);
Set_Convention (Spec_Id, Convention_Protected);
end;
elsif Present (Spec_Id) then
Spec_Decl := Unit_Declaration_Node (Spec_Id);
end if;
-- Place subprogram on scope stack, and make formals visible. If there
-- is a spec, the visible entity remains that of the spec.
if Present (Spec_Id) then
Generate_Reference (Spec_Id, Body_Id, 'b', Set_Ref => False);
if Style_Check then
Style.Check_Identifier (Body_Id, Spec_Id);
end if;
Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
if Is_Abstract (Spec_Id) then
Error_Msg_N ("an abstract subprogram cannot have a body", N);
return;
else
Set_Convention (Body_Id, Convention (Spec_Id));
Set_Has_Completion (Spec_Id);
if Is_Protected_Type (Scope (Spec_Id)) then
Set_Privals_Chain (Spec_Id, New_Elmt_List);
end if;
-- If this is a body generated for a renaming, do not check for
-- full conformance. The check is redundant, because the spec of
-- the body is a copy of the spec in the renaming declaration,
-- and the test can lead to spurious errors on nested defaults.
if Present (Spec_Decl)
and then not Comes_From_Source (N)
and then
(Nkind (Original_Node (Spec_Decl)) =
N_Subprogram_Renaming_Declaration
or else (Present (Corresponding_Body (Spec_Decl))
and then
Nkind (Unit_Declaration_Node
(Corresponding_Body (Spec_Decl))) =
N_Subprogram_Renaming_Declaration))
then
Conformant := True;
else
Check_Conformance
(Body_Id, Spec_Id,
Fully_Conformant, True, Conformant, Body_Id);
end if;
-- If the body is not fully conformant, we have to decide if we
-- should analyze it or not. If it has a really messed up profile
-- then we probably should not analyze it, since we will get too
-- many bogus messages.
-- Our decision is to go ahead in the non-fully conformant case
-- only if it is at least mode conformant with the spec. Note
-- that the call to Check_Fully_Conformant has issued the proper
-- error messages to complain about the lack of conformance.
if not Conformant
and then not Mode_Conformant (Body_Id, Spec_Id)
then
return;
end if;
end if;
if Spec_Id /= Body_Id then
Reference_Body_Formals (Spec_Id, Body_Id);
end if;
if Nkind (N) /= N_Subprogram_Body_Stub then
Set_Corresponding_Spec (N, Spec_Id);
Install_Formals (Spec_Id);
Last_Formal := Last_Entity (Spec_Id);
New_Scope (Spec_Id);
-- Make sure that the subprogram is immediately visible. For
-- child units that have no separate spec this is indispensable.
-- Otherwise it is safe albeit redundant.
Set_Is_Immediately_Visible (Spec_Id);
end if;
Set_Corresponding_Body (Unit_Declaration_Node (Spec_Id), Body_Id);
Set_Ekind (Body_Id, E_Subprogram_Body);
Set_Scope (Body_Id, Scope (Spec_Id));
-- Case of subprogram body with no previous spec
else
if Style_Check
and then Comes_From_Source (Body_Id)
and then not Suppress_Style_Checks (Body_Id)
and then not In_Instance
then
Style.Body_With_No_Spec (N);
end if;
New_Overloaded_Entity (Body_Id);
if Nkind (N) /= N_Subprogram_Body_Stub then
Set_Acts_As_Spec (N);
Generate_Definition (Body_Id);
Generate_Reference
(Body_Id, Body_Id, 'b', Set_Ref => False, Force => True);
Generate_Reference_To_Formals (Body_Id);
Install_Formals (Body_Id);
New_Scope (Body_Id);
end if;
end if;
-- If this is the proper body of a stub, we must verify that the stub
-- conforms to the body, and to the previous spec if one was present.
-- we know already that the body conforms to that spec. This test is
-- only required for subprograms that come from source.
if Nkind (Parent (N)) = N_Subunit
and then Comes_From_Source (N)
and then not Error_Posted (Body_Id)
then
declare
Old_Id : constant Entity_Id :=
Defining_Entity
(Specification (Corresponding_Stub (Parent (N))));
Conformant : Boolean := False;
begin
if No (Spec_Id) then
Check_Fully_Conformant (Body_Id, Old_Id);
else
Check_Conformance
(Body_Id, Old_Id, Fully_Conformant, False, Conformant);
if not Conformant then
-- The stub was taken to be a new declaration. Indicate
-- that it lacks a body.
Set_Has_Completion (Old_Id, False);
end if;
end if;
end;
end if;
Set_Has_Completion (Body_Id);
Check_Eliminated (Body_Id);
if Nkind (N) = N_Subprogram_Body_Stub then
return;
elsif Present (Spec_Id)
and then Expander_Active
and then (Is_Always_Inlined (Spec_Id)
or else (Has_Pragma_Inline (Spec_Id)
and then
(Front_End_Inlining
or else Configurable_Run_Time_Mode)))
then
Build_Body_To_Inline (N, Spec_Id);
end if;
-- Ada 0Y (AI-262): In library subprogram bodies, after the analysis
-- if its specification we have to install the private withed units.
if Is_Compilation_Unit (Body_Id)
and then Scope (Body_Id) = Standard_Standard
then
Install_Private_With_Clauses (Body_Id);
end if;
-- Now we can go on to analyze the body
HSS := Handled_Statement_Sequence (N);
Set_Actual_Subtypes (N, Current_Scope);
Analyze_Declarations (Declarations (N));
Check_Completion;
Analyze (HSS);
Process_End_Label (HSS, 't', Current_Scope);
End_Scope;
Check_Subprogram_Order (N);
-- If we have a separate spec, then the analysis of the declarations
-- caused the entities in the body to be chained to the spec id, but
-- we want them chained to the body id. Only the formal parameters
-- end up chained to the spec id in this case.
if Present (Spec_Id) then
-- If a parent unit is categorized, the context of a subunit
-- must conform to the categorization. Conversely, if a child
-- unit is categorized, the parents themselves must conform.
if Nkind (Parent (N)) = N_Subunit then
Validate_Categorization_Dependency (N, Spec_Id);
elsif Is_Child_Unit (Spec_Id) then
Validate_Categorization_Dependency
(Unit_Declaration_Node (Spec_Id), Spec_Id);
end if;
if Present (Last_Formal) then
Set_Next_Entity
(Last_Entity (Body_Id), Next_Entity (Last_Formal));
Set_Next_Entity (Last_Formal, Empty);
Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
Set_Last_Entity (Spec_Id, Last_Formal);
else
Set_First_Entity (Body_Id, First_Entity (Spec_Id));
Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
Set_First_Entity (Spec_Id, Empty);
Set_Last_Entity (Spec_Id, Empty);
end if;
end if;
-- If function, check return statements
if Nkind (Body_Spec) = N_Function_Specification then
declare
Id : Entity_Id;
begin
if Present (Spec_Id) then
Id := Spec_Id;
else
Id := Body_Id;
end if;
if Return_Present (Id) then
Check_Returns (HSS, 'F', Missing_Ret);
if Missing_Ret then
Set_Has_Missing_Return (Id);
end if;
elsif not Is_Machine_Code_Subprogram (Id)
and then not Body_Deleted
then
Error_Msg_N ("missing RETURN statement in function body", N);
end if;
end;
-- If procedure with No_Return, check returns
elsif Nkind (Body_Spec) = N_Procedure_Specification
and then Present (Spec_Id)
and then No_Return (Spec_Id)
then
Check_Returns (HSS, 'P', Missing_Ret);
end if;
-- Now we are going to check for variables that are never modified
-- in the body of the procedure. We omit these checks if the first
-- statement of the procedure raises an exception. In particular
-- this deals with the common idiom of a stubbed function, which
-- might appear as something like
-- function F (A : Integer) return Some_Type;
-- X : Some_Type;
-- begin
-- raise Program_Error;
-- return X;
-- end F;
-- Here the purpose of X is simply to satisfy the (annoying)
-- requirement in Ada that there be at least one return, and
-- we certainly do not want to go posting warnings on X that
-- it is not initialized!
declare
Stm : Node_Id := First (Statements (HSS));
begin
-- Skip an initial label (for one thing this occurs when we
-- are in front end ZCX mode, but in any case it is irrelevant).
if Nkind (Stm) = N_Label then
Next (Stm);
end if;
-- Do the test on the original statement before expansion
declare
Ostm : constant Node_Id := Original_Node (Stm);
begin
-- If explicit raise statement, return with no checks
if Nkind (Ostm) = N_Raise_Statement then
return;
-- Check for explicit call cases which likely raise an exception
elsif Nkind (Ostm) = N_Procedure_Call_Statement then
if Is_Entity_Name (Name (Ostm)) then
declare
Ent : constant Entity_Id := Entity (Name (Ostm));
begin
-- If the procedure is marked No_Return, then likely it
-- raises an exception, but in any case it is not coming
-- back here, so no need to check beyond the call.
if Ekind (Ent) = E_Procedure
and then No_Return (Ent)
then
return;
-- If the procedure name is Raise_Exception, then also
-- assume that it raises an exception. The main target
-- here is Ada.Exceptions.Raise_Exception, but this name
-- is pretty evocative in any context! Note that the
-- procedure in Ada.Exceptions is not marked No_Return
-- because of the annoying case of the null exception Id.
elsif Chars (Ent) = Name_Raise_Exception then
return;
end if;
end;
end if;
end if;
end;
end;
-- Check for variables that are never modified
declare
E1, E2 : Entity_Id;
begin
-- If there is a separate spec, then transfer Never_Set_In_Source
-- flags from out parameters to the corresponding entities in the
-- body. The reason we do that is we want to post error flags on
-- the body entities, not the spec entities.
if Present (Spec_Id) then
E1 := First_Entity (Spec_Id);
while Present (E1) loop
if Ekind (E1) = E_Out_Parameter then
E2 := First_Entity (Body_Id);
while Present (E2) loop
exit when Chars (E1) = Chars (E2);
Next_Entity (E2);
end loop;
if Present (E2) then
Set_Never_Set_In_Source (E2, Never_Set_In_Source (E1));
end if;
end if;
Next_Entity (E1);
end loop;
end if;
-- Check references in body unless it was deleted. Note that the
-- check of Body_Deleted here is not just for efficiency, it is
-- necessary to avoid junk warnings on formal parameters.
if not Body_Deleted then
Check_References (Body_Id);
end if;
end;
end Analyze_Subprogram_Body;
------------------------------------
-- Analyze_Subprogram_Declaration --
------------------------------------
procedure Analyze_Subprogram_Declaration (N : Node_Id) is
Designator : constant Entity_Id :=
Analyze_Subprogram_Specification (Specification (N));
Scop : constant Entity_Id := Current_Scope;
-- Start of processing for Analyze_Subprogram_Declaration
begin
Generate_Definition (Designator);
-- Check for RCI unit subprogram declarations against in-lined
-- subprograms and subprograms having access parameter or limited
-- parameter without Read and Write (RM E.2.3(12-13)).
Validate_RCI_Subprogram_Declaration (N);
Trace_Scope
(N,
Defining_Entity (N),
" Analyze subprogram spec. ");
if Debug_Flag_C then
Write_Str ("==== Compiling subprogram spec ");
Write_Name (Chars (Designator));
Write_Str (" from ");
Write_Location (Sloc (N));
Write_Eol;
end if;
New_Overloaded_Entity (Designator);
Check_Delayed_Subprogram (Designator);
-- What is the following code for, it used to be
-- ??? Set_Suppress_Elaboration_Checks
-- ??? (Designator, Elaboration_Checks_Suppressed (Designator));
-- The following seems equivalent, but a bit dubious
if Elaboration_Checks_Suppressed (Designator) then
Set_Kill_Elaboration_Checks (Designator);
end if;
if Scop /= Standard_Standard
and then not Is_Child_Unit (Designator)
then
Set_Categorization_From_Scope (Designator, Scop);
else
-- For a compilation unit, check for library-unit pragmas.
New_Scope (Designator);
Set_Categorization_From_Pragmas (N);
Validate_Categorization_Dependency (N, Designator);
Pop_Scope;
end if;
-- For a compilation unit, set body required. This flag will only be
-- reset if a valid Import or Interface pragma is processed later on.
if Nkind (Parent (N)) = N_Compilation_Unit then
Set_Body_Required (Parent (N), True);
end if;
Generate_Reference_To_Formals (Designator);
Check_Eliminated (Designator);
if Comes_From_Source (N)
and then Is_List_Member (N)
then
Check_Overriding_Operation (N, Designator);
end if;
end Analyze_Subprogram_Declaration;
--------------------------------------
-- Analyze_Subprogram_Specification --
--------------------------------------
-- Reminder: N here really is a subprogram specification (not a subprogram
-- declaration). This procedure is called to analyze the specification in
-- both subprogram bodies and subprogram declarations (specs).
function Analyze_Subprogram_Specification (N : Node_Id) return Entity_Id is
Designator : constant Entity_Id := Defining_Entity (N);
Formals : constant List_Id := Parameter_Specifications (N);
Typ : Entity_Id;
begin
Generate_Definition (Designator);
if Nkind (N) = N_Function_Specification then
Set_Ekind (Designator, E_Function);
Set_Mechanism (Designator, Default_Mechanism);
if Subtype_Mark (N) /= Error then
Find_Type (Subtype_Mark (N));
Typ := Entity (Subtype_Mark (N));
Set_Etype (Designator, Typ);
if Ekind (Typ) = E_Incomplete_Type
or else (Is_Class_Wide_Type (Typ)
and then
Ekind (Root_Type (Typ)) = E_Incomplete_Type)
then
Error_Msg_N
("invalid use of incomplete type", Subtype_Mark (N));
end if;
else
Set_Etype (Designator, Any_Type);
end if;
else
Set_Ekind (Designator, E_Procedure);
Set_Etype (Designator, Standard_Void_Type);
end if;
if Present (Formals) then
Set_Scope (Designator, Current_Scope);
New_Scope (Designator);
Process_Formals (Formals, N);
End_Scope;
end if;
if Nkind (N) = N_Function_Specification then
if Nkind (Designator) = N_Defining_Operator_Symbol then
Valid_Operator_Definition (Designator);
end if;
May_Need_Actuals (Designator);
if Is_Abstract (Etype (Designator))
and then Nkind (Parent (N)) /= N_Abstract_Subprogram_Declaration
then
Error_Msg_N
("function that returns abstract type must be abstract", N);
end if;
end if;
return Designator;
end Analyze_Subprogram_Specification;
--------------------------
-- Build_Body_To_Inline --
--------------------------
procedure Build_Body_To_Inline (N : Node_Id; Subp : Entity_Id) is
Decl : constant Node_Id := Unit_Declaration_Node (Subp);
Original_Body : Node_Id;
Body_To_Analyze : Node_Id;
Max_Size : constant := 10;
Stat_Count : Integer := 0;
function Has_Excluded_Declaration (Decls : List_Id) return Boolean;
-- Check for declarations that make inlining not worthwhile.
function Has_Excluded_Statement (Stats : List_Id) return Boolean;
-- Check for statements that make inlining not worthwhile: any
-- tasking statement, nested at any level. Keep track of total
-- number of elementary statements, as a measure of acceptable size.
function Has_Pending_Instantiation return Boolean;
-- If some enclosing body contains instantiations that appear before
-- the corresponding generic body, the enclosing body has a freeze node
-- so that it can be elaborated after the generic itself. This might
-- conflict with subsequent inlinings, so that it is unsafe to try to
-- inline in such a case.
procedure Remove_Pragmas;
-- A pragma Unreferenced that mentions a formal parameter has no
-- meaning when the body is inlined and the formals are rewritten.
-- Remove it from body to inline. The analysis of the non-inlined
-- body will handle the pragma properly.
------------------------------
-- Has_Excluded_Declaration --
------------------------------
function Has_Excluded_Declaration (Decls : List_Id) return Boolean is
D : Node_Id;
function Is_Unchecked_Conversion (D : Node_Id) return Boolean;
-- Nested subprograms make a given body ineligible for inlining,
-- but we make an exception for instantiations of unchecked
-- conversion. The body has not been analyzed yet, so we check
-- the name, and verify that the visible entity with that name is
-- the predefined unit.
function Is_Unchecked_Conversion (D : Node_Id) return Boolean is
Id : constant Node_Id := Name (D);
Conv : Entity_Id;
begin
if Nkind (Id) = N_Identifier
and then Chars (Id) = Name_Unchecked_Conversion
then
Conv := Current_Entity (Id);
elsif Nkind (Id) = N_Selected_Component
and then Chars (Selector_Name (Id)) = Name_Unchecked_Conversion
then
Conv := Current_Entity (Selector_Name (Id));
else
return False;
end if;
return
Present (Conv)
and then Scope (Conv) = Standard_Standard
and then Is_Intrinsic_Subprogram (Conv);
end Is_Unchecked_Conversion;
-- Start of processing for Has_Excluded_Declaration
begin
D := First (Decls);
while Present (D) loop
if (Nkind (D) = N_Function_Instantiation
and then not Is_Unchecked_Conversion (D))
or else Nkind (D) = N_Protected_Type_Declaration
or else Nkind (D) = N_Package_Declaration
or else Nkind (D) = N_Package_Instantiation
or else Nkind (D) = N_Subprogram_Body
or else Nkind (D) = N_Procedure_Instantiation
or else Nkind (D) = N_Task_Type_Declaration
then
Cannot_Inline
("cannot inline & (non-allowed declaration)?", D, Subp);
return True;
end if;
Next (D);
end loop;
return False;
end Has_Excluded_Declaration;
----------------------------
-- Has_Excluded_Statement --
----------------------------
function Has_Excluded_Statement (Stats : List_Id) return Boolean is
S : Node_Id;
E : Node_Id;
begin
S := First (Stats);
while Present (S) loop
Stat_Count := Stat_Count + 1;
if Nkind (S) = N_Abort_Statement
or else Nkind (S) = N_Asynchronous_Select
or else Nkind (S) = N_Conditional_Entry_Call
or else Nkind (S) = N_Delay_Relative_Statement
or else Nkind (S) = N_Delay_Until_Statement
or else Nkind (S) = N_Selective_Accept
or else Nkind (S) = N_Timed_Entry_Call
then
Cannot_Inline
("cannot inline & (non-allowed statement)?", S, Subp);
return True;
elsif Nkind (S) = N_Block_Statement then
if Present (Declarations (S))
and then Has_Excluded_Declaration (Declarations (S))
then
return True;
elsif Present (Handled_Statement_Sequence (S))
and then
(Present
(Exception_Handlers (Handled_Statement_Sequence (S)))
or else
Has_Excluded_Statement
(Statements (Handled_Statement_Sequence (S))))
then
return True;
end if;
elsif Nkind (S) = N_Case_Statement then
E := First (Alternatives (S));
while Present (E) loop
if Has_Excluded_Statement (Statements (E)) then
return True;
end if;
Next (E);
end loop;
elsif Nkind (S) = N_If_Statement then
if Has_Excluded_Statement (Then_Statements (S)) then
return True;
end if;
if Present (Elsif_Parts (S)) then
E := First (Elsif_Parts (S));
while Present (E) loop
if Has_Excluded_Statement (Then_Statements (E)) then
return True;
end if;
Next (E);
end loop;
end if;
if Present (Else_Statements (S))
and then Has_Excluded_Statement (Else_Statements (S))
then
return True;
end if;
elsif Nkind (S) = N_Loop_Statement
and then Has_Excluded_Statement (Statements (S))
then
return True;
end if;
Next (S);
end loop;
return False;
end Has_Excluded_Statement;
-------------------------------
-- Has_Pending_Instantiation --
-------------------------------
function Has_Pending_Instantiation return Boolean is
S : Entity_Id := Current_Scope;
begin
while Present (S) loop
if Is_Compilation_Unit (S)
or else Is_Child_Unit (S)
then
return False;
elsif Ekind (S) = E_Package
and then Has_Forward_Instantiation (S)
then
return True;
end if;
S := Scope (S);
end loop;
return False;
end Has_Pending_Instantiation;
--------------------
-- Remove_Pragmas --
--------------------
procedure Remove_Pragmas is
Decl : Node_Id;
Nxt : Node_Id;
begin
Decl := First (Declarations (Body_To_Analyze));
while Present (Decl) loop
Nxt := Next (Decl);
if Nkind (Decl) = N_Pragma
and then Chars (Decl) = Name_Unreferenced
then
Remove (Decl);
end if;
Decl := Nxt;
end loop;
end Remove_Pragmas;
-- Start of processing for Build_Body_To_Inline
begin
if Nkind (Decl) = N_Subprogram_Declaration
and then Present (Body_To_Inline (Decl))
then
return; -- Done already.
-- Functions that return unconstrained composite types will require
-- secondary stack handling, and cannot currently be inlined.
-- Ditto for functions that return controlled types, where controlled
-- actions interfere in complex ways with inlining.
elsif Ekind (Subp) = E_Function
and then not Is_Scalar_Type (Etype (Subp))
and then not Is_Access_Type (Etype (Subp))
and then not Is_Constrained (Etype (Subp))
then
Cannot_Inline
("cannot inline & (unconstrained return type)?", N, Subp);
return;
elsif Ekind (Subp) = E_Function
and then Controlled_Type (Etype (Subp))
then
Cannot_Inline
("cannot inline & (controlled return type)?", N, Subp);
return;
end if;
if Present (Declarations (N))
and then Has_Excluded_Declaration (Declarations (N))
then
return;
end if;
if Present (Handled_Statement_Sequence (N)) then
if Present (Exception_Handlers (Handled_Statement_Sequence (N))) then
Cannot_Inline
("cannot inline& (exception handler)?",
First (Exception_Handlers (Handled_Statement_Sequence (N))),
Subp);
return;
elsif
Has_Excluded_Statement
(Statements (Handled_Statement_Sequence (N)))
then
return;
end if;
end if;
-- We do not inline a subprogram that is too large, unless it is
-- marked Inline_Always. This pragma does not suppress the other
-- checks on inlining (forbidden declarations, handlers, etc).
if Stat_Count > Max_Size
and then not Is_Always_Inlined (Subp)
then
Cannot_Inline ("cannot inline& (body too large)?", N, Subp);
return;
end if;
if Has_Pending_Instantiation then
Cannot_Inline
("cannot inline& (forward instance within enclosing body)?",
N, Subp);
return;
end if;
-- Within an instance, the body to inline must be treated as a nested
-- generic, so that the proper global references are preserved.
if In_Instance then
Save_Env (Scope (Current_Scope), Scope (Current_Scope));
Original_Body := Copy_Generic_Node (N, Empty, True);
else
Original_Body := Copy_Separate_Tree (N);
end if;
-- We need to capture references to the formals in order to substitute
-- the actuals at the point of inlining, i.e. instantiation. To treat
-- the formals as globals to the body to inline, we nest it within
-- a dummy parameterless subprogram, declared within the real one.
-- To avoid generating an internal name (which is never public, and
-- which affects serial numbers of other generated names), we use
-- an internal symbol that cannot conflict with user declarations.
Set_Parameter_Specifications (Specification (Original_Body), No_List);
Set_Defining_Unit_Name
(Specification (Original_Body),
Make_Defining_Identifier (Sloc (N), Name_uParent));
Set_Corresponding_Spec (Original_Body, Empty);
Body_To_Analyze := Copy_Generic_Node (Original_Body, Empty, False);
-- Set return type of function, which is also global and does not need
-- to be resolved.
if Ekind (Subp) = E_Function then
Set_Subtype_Mark (Specification (Body_To_Analyze),
New_Occurrence_Of (Etype (Subp), Sloc (N)));
end if;
if No (Declarations (N)) then
Set_Declarations (N, New_List (Body_To_Analyze));
else
Append (Body_To_Analyze, Declarations (N));
end if;
Expander_Mode_Save_And_Set (False);
Remove_Pragmas;
Analyze (Body_To_Analyze);
New_Scope (Defining_Entity (Body_To_Analyze));
Save_Global_References (Original_Body);
End_Scope;
Remove (Body_To_Analyze);
Expander_Mode_Restore;
Set_Body_To_Inline (Decl, Original_Body);
Set_Ekind (Defining_Entity (Original_Body), Ekind (Subp));
Set_Is_Inlined (Subp);
if In_Instance then
Restore_Env;
end if;
end Build_Body_To_Inline;
-------------------
-- Cannot_Inline --
-------------------
procedure Cannot_Inline (Msg : String; N : Node_Id; Subp : Entity_Id) is
begin
-- Do not emit warning if this is a predefined unit which is not
-- the main unit. With validity checks enabled, some predefined
-- subprograms may contain nested subprograms and become ineligible
-- for inlining.
if Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (Subp)))
and then not In_Extended_Main_Source_Unit (Subp)
then
null;
elsif Is_Always_Inlined (Subp) then
Error_Msg_NE (Msg (1 .. Msg'Length - 1), N, Subp);
elsif Ineffective_Inline_Warnings then
Error_Msg_NE (Msg, N, Subp);
end if;
end Cannot_Inline;
-----------------------
-- Check_Conformance --
-----------------------
procedure Check_Conformance
(New_Id : Entity_Id;
Old_Id : Entity_Id;
Ctype : Conformance_Type;
Errmsg : Boolean;
Conforms : out Boolean;
Err_Loc : Node_Id := Empty;
Get_Inst : Boolean := False)
is
Old_Type : constant Entity_Id := Etype (Old_Id);
New_Type : constant Entity_Id := Etype (New_Id);
Old_Formal : Entity_Id;
New_Formal : Entity_Id;
procedure Conformance_Error (Msg : String; N : Node_Id := New_Id);
-- Post error message for conformance error on given node.
-- Two messages are output. The first points to the previous
-- declaration with a general "no conformance" message.
-- The second is the detailed reason, supplied as Msg. The
-- parameter N provide information for a possible & insertion
-- in the message, and also provides the location for posting
-- the message in the absence of a specified Err_Loc location.
-----------------------
-- Conformance_Error --
-----------------------
procedure Conformance_Error (Msg : String; N : Node_Id := New_Id) is
Enode : Node_Id;
begin
Conforms := False;
if Errmsg then
if No (Err_Loc) then
Enode := N;
else
Enode := Err_Loc;
end if;
Error_Msg_Sloc := Sloc (Old_Id);
case Ctype is
when Type_Conformant =>
Error_Msg_N
("not type conformant with declaration#!", Enode);
when Mode_Conformant =>
Error_Msg_N
("not mode conformant with declaration#!", Enode);
when Subtype_Conformant =>
Error_Msg_N
("not subtype conformant with declaration#!", Enode);
when Fully_Conformant =>
Error_Msg_N
("not fully conformant with declaration#!", Enode);
end case;
Error_Msg_NE (Msg, Enode, N);
end if;
end Conformance_Error;
-- Start of processing for Check_Conformance
begin
Conforms := True;
-- We need a special case for operators, since they don't
-- appear explicitly.
if Ctype = Type_Conformant then
if Ekind (New_Id) = E_Operator
and then Operator_Matches_Spec (New_Id, Old_Id)
then
return;
end if;
end if;
-- If both are functions/operators, check return types conform
if Old_Type /= Standard_Void_Type
and then New_Type /= Standard_Void_Type
then
if not Conforming_Types (Old_Type, New_Type, Ctype, Get_Inst) then
Conformance_Error ("return type does not match!", New_Id);
return;
end if;
-- If either is a function/operator and the other isn't, error
elsif Old_Type /= Standard_Void_Type
or else New_Type /= Standard_Void_Type
then
Conformance_Error ("functions can only match functions!", New_Id);
return;
end if;
-- In subtype conformant case, conventions must match (RM 6.3.1(16))
-- If this is a renaming as body, refine error message to indicate that
-- the conflict is with the original declaration. If the entity is not
-- frozen, the conventions don't have to match, the one of the renamed
-- entity is inherited.
if Ctype >= Subtype_Conformant then
if Convention (Old_Id) /= Convention (New_Id) then
if not Is_Frozen (New_Id) then
null;
elsif Present (Err_Loc)
and then Nkind (Err_Loc) = N_Subprogram_Renaming_Declaration
and then Present (Corresponding_Spec (Err_Loc))
then
Error_Msg_Name_1 := Chars (New_Id);
Error_Msg_Name_2 :=
Name_Ada + Convention_Id'Pos (Convention (New_Id));
Conformance_Error ("prior declaration for% has convention %!");
else
Conformance_Error ("calling conventions do not match!");
end if;
return;
elsif Is_Formal_Subprogram (Old_Id)
or else Is_Formal_Subprogram (New_Id)
then
Conformance_Error ("formal subprograms not allowed!");
return;
end if;
end if;
-- Deal with parameters
-- Note: we use the entity information, rather than going directly
-- to the specification in the tree. This is not only simpler, but
-- absolutely necessary for some cases of conformance tests between
-- operators, where the declaration tree simply does not exist!
Old_Formal := First_Formal (Old_Id);
New_Formal := First_Formal (New_Id);
while Present (Old_Formal) and then Present (New_Formal) loop
if Ctype = Fully_Conformant then
-- Names must match. Error message is more accurate if we do
-- this before checking that the types of the formals match.
if Chars (Old_Formal) /= Chars (New_Formal) then
Conformance_Error ("name & does not match!", New_Formal);
-- Set error posted flag on new formal as well to stop
-- junk cascaded messages in some cases.
Set_Error_Posted (New_Formal);
return;
end if;
end if;
-- Types must always match. In the visible part of an instance,
-- usual overloading rules for dispatching operations apply, and
-- we check base types (not the actual subtypes).
if In_Instance_Visible_Part
and then Is_Dispatching_Operation (New_Id)
then
if not Conforming_Types
(Base_Type (Etype (Old_Formal)),
Base_Type (Etype (New_Formal)), Ctype, Get_Inst)
then
Conformance_Error ("type of & does not match!", New_Formal);
return;
end if;
elsif not Conforming_Types
(Etype (Old_Formal), Etype (New_Formal), Ctype, Get_Inst)
then
Conformance_Error ("type of & does not match!", New_Formal);
return;
end if;
-- For mode conformance, mode must match
if Ctype >= Mode_Conformant
and then Parameter_Mode (Old_Formal) /= Parameter_Mode (New_Formal)
then
Conformance_Error ("mode of & does not match!", New_Formal);
return;
end if;
-- Full conformance checks
if Ctype = Fully_Conformant then
-- We have checked already that names match.
-- Check default expressions for in parameters
if Parameter_Mode (Old_Formal) = E_In_Parameter then
declare
NewD : constant Boolean :=
Present (Default_Value (New_Formal));
OldD : constant Boolean :=
Present (Default_Value (Old_Formal));
begin
if NewD or OldD then
-- The old default value has been analyzed because
-- the current full declaration will have frozen
-- everything before. The new default values have not
-- been analyzed, so analyze them now before we check
-- for conformance.
if NewD then
New_Scope (New_Id);
Analyze_Per_Use_Expression
(Default_Value (New_Formal), Etype (New_Formal));
End_Scope;
end if;
if not (NewD and OldD)
or else not Fully_Conformant_Expressions
(Default_Value (Old_Formal),
Default_Value (New_Formal))
then
Conformance_Error
("default expression for & does not match!",
New_Formal);
return;
end if;
end if;
end;
end if;
end if;
-- A couple of special checks for Ada 83 mode. These checks are
-- skipped if either entity is an operator in package Standard.
-- or if either old or new instance is not from the source program.
if Ada_83
and then Sloc (Old_Id) > Standard_Location
and then Sloc (New_Id) > Standard_Location
and then Comes_From_Source (Old_Id)
and then Comes_From_Source (New_Id)
then
declare
Old_Param : constant Node_Id := Declaration_Node (Old_Formal);
New_Param : constant Node_Id := Declaration_Node (New_Formal);
begin
-- Explicit IN must be present or absent in both cases. This
-- test is required only in the full conformance case.
if In_Present (Old_Param) /= In_Present (New_Param)
and then Ctype = Fully_Conformant
then
Conformance_Error
("(Ada 83) IN must appear in both declarations",
New_Formal);
return;
end if;
-- Grouping (use of comma in param lists) must be the same
-- This is where we catch a misconformance like:
-- A,B : Integer
-- A : Integer; B : Integer
-- which are represented identically in the tree except
-- for the setting of the flags More_Ids and Prev_Ids.
if More_Ids (Old_Param) /= More_Ids (New_Param)
or else Prev_Ids (Old_Param) /= Prev_Ids (New_Param)
then
Conformance_Error
("grouping of & does not match!", New_Formal);
return;
end if;
end;
end if;
Next_Formal (Old_Formal);
Next_Formal (New_Formal);
end loop;
if Present (Old_Formal) then
Conformance_Error ("too few parameters!");
return;
elsif Present (New_Formal) then
Conformance_Error ("too many parameters!", New_Formal);
return;
end if;
end Check_Conformance;
------------------------------
-- Check_Delayed_Subprogram --
------------------------------
procedure Check_Delayed_Subprogram (Designator : Entity_Id) is
F : Entity_Id;
procedure Possible_Freeze (T : Entity_Id);
-- T is the type of either a formal parameter or of the return type.
-- If T is not yet frozen and needs a delayed freeze, then the
-- subprogram itself must be delayed.
procedure Possible_Freeze (T : Entity_Id) is
begin
if Has_Delayed_Freeze (T)
and then not Is_Frozen (T)
then
Set_Has_Delayed_Freeze (Designator);
elsif Is_Access_Type (T)
and then Has_Delayed_Freeze (Designated_Type (T))
and then not Is_Frozen (Designated_Type (T))
then
Set_Has_Delayed_Freeze (Designator);
end if;
end Possible_Freeze;
-- Start of processing for Check_Delayed_Subprogram
begin
-- Never need to freeze abstract subprogram
if Is_Abstract (Designator) then
null;
else
-- Need delayed freeze if return type itself needs a delayed
-- freeze and is not yet frozen.
Possible_Freeze (Etype (Designator));
Possible_Freeze (Base_Type (Etype (Designator))); -- needed ???
-- Need delayed freeze if any of the formal types themselves need
-- a delayed freeze and are not yet frozen.
F := First_Formal (Designator);
while Present (F) loop
Possible_Freeze (Etype (F));
Possible_Freeze (Base_Type (Etype (F))); -- needed ???
Next_Formal (F);
end loop;
end if;
-- Mark functions that return by reference. Note that it cannot be
-- done for delayed_freeze subprograms because the underlying
-- returned type may not be known yet (for private types)
if not Has_Delayed_Freeze (Designator)
and then Expander_Active
then
declare
Typ : constant Entity_Id := Etype (Designator);
Utyp : constant Entity_Id := Underlying_Type (Typ);
begin
if Is_Return_By_Reference_Type (Typ) then
Set_Returns_By_Ref (Designator);
elsif Present (Utyp) and then Controlled_Type (Utyp) then
Set_Returns_By_Ref (Designator);
end if;
end;
end if;
end Check_Delayed_Subprogram;
------------------------------------
-- Check_Discriminant_Conformance --
------------------------------------
procedure Check_Discriminant_Conformance
(N : Node_Id;
Prev : Entity_Id;
Prev_Loc : Node_Id)
is
Old_Discr : Entity_Id := First_Discriminant (Prev);
New_Discr : Node_Id := First (Discriminant_Specifications (N));
New_Discr_Id : Entity_Id;
New_Discr_Type : Entity_Id;
procedure Conformance_Error (Msg : String; N : Node_Id);
-- Post error message for conformance error on given node.
-- Two messages are output. The first points to the previous
-- declaration with a general "no conformance" message.
-- The second is the detailed reason, supplied as Msg. The
-- parameter N provide information for a possible & insertion
-- in the message.
-----------------------
-- Conformance_Error --
-----------------------
procedure Conformance_Error (Msg : String; N : Node_Id) is
begin
Error_Msg_Sloc := Sloc (Prev_Loc);
Error_Msg_N ("not fully conformant with declaration#!", N);
Error_Msg_NE (Msg, N, N);
end Conformance_Error;
-- Start of processing for Check_Discriminant_Conformance
begin
while Present (Old_Discr) and then Present (New_Discr) loop
New_Discr_Id := Defining_Identifier (New_Discr);
-- The subtype mark of the discriminant on the full type
-- has not been analyzed so we do it here. For an access
-- discriminant a new type is created.
if Nkind (Discriminant_Type (New_Discr)) = N_Access_Definition then
New_Discr_Type :=
Access_Definition (N, Discriminant_Type (New_Discr));
else
Analyze (Discriminant_Type (New_Discr));
New_Discr_Type := Etype (Discriminant_Type (New_Discr));
end if;
if not Conforming_Types
(Etype (Old_Discr), New_Discr_Type, Fully_Conformant)
then
Conformance_Error ("type of & does not match!", New_Discr_Id);
return;
else
-- Treat the new discriminant as an occurrence of the old
-- one, for navigation purposes, and fill in some semantic
-- information, for completeness.
Generate_Reference (Old_Discr, New_Discr_Id, 'r');
Set_Etype (New_Discr_Id, Etype (Old_Discr));
Set_Scope (New_Discr_Id, Scope (Old_Discr));
end if;
-- Names must match
if Chars (Old_Discr) /= Chars (Defining_Identifier (New_Discr)) then
Conformance_Error ("name & does not match!", New_Discr_Id);
return;
end if;
-- Default expressions must match
declare
NewD : constant Boolean :=
Present (Expression (New_Discr));
OldD : constant Boolean :=
Present (Expression (Parent (Old_Discr)));
begin
if NewD or OldD then
-- The old default value has been analyzed and expanded,
-- because the current full declaration will have frozen
-- everything before. The new default values have not
-- been expanded, so expand now to check conformance.
if NewD then
Analyze_Per_Use_Expression
(Expression (New_Discr), New_Discr_Type);
end if;
if not (NewD and OldD)
or else not Fully_Conformant_Expressions
(Expression (Parent (Old_Discr)),
Expression (New_Discr))
then
Conformance_Error
("default expression for & does not match!",
New_Discr_Id);
return;
end if;
end if;
end;
-- In Ada 83 case, grouping must match: (A,B : X) /= (A : X; B : X)
if Ada_83 then
declare
Old_Disc : constant Node_Id := Declaration_Node (Old_Discr);
begin
-- Grouping (use of comma in param lists) must be the same
-- This is where we catch a misconformance like:
-- A,B : Integer
-- A : Integer; B : Integer
-- which are represented identically in the tree except
-- for the setting of the flags More_Ids and Prev_Ids.
if More_Ids (Old_Disc) /= More_Ids (New_Discr)
or else Prev_Ids (Old_Disc) /= Prev_Ids (New_Discr)
then
Conformance_Error
("grouping of & does not match!", New_Discr_Id);
return;
end if;
end;
end if;
Next_Discriminant (Old_Discr);
Next (New_Discr);
end loop;
if Present (Old_Discr) then
Conformance_Error ("too few discriminants!", Defining_Identifier (N));
return;
elsif Present (New_Discr) then
Conformance_Error
("too many discriminants!", Defining_Identifier (New_Discr));
return;
end if;
end Check_Discriminant_Conformance;
----------------------------
-- Check_Fully_Conformant --
----------------------------
procedure Check_Fully_Conformant
(New_Id : Entity_Id;
Old_Id : Entity_Id;
Err_Loc : Node_Id := Empty)
is
Result : Boolean;
begin
Check_Conformance
(New_Id, Old_Id, Fully_Conformant, True, Result, Err_Loc);
end Check_Fully_Conformant;
---------------------------
-- Check_Mode_Conformant --
---------------------------
procedure Check_Mode_Conformant
(New_Id : Entity_Id;
Old_Id : Entity_Id;
Err_Loc : Node_Id := Empty;
Get_Inst : Boolean := False)
is
Result : Boolean;
begin
Check_Conformance
(New_Id, Old_Id, Mode_Conformant, True, Result, Err_Loc, Get_Inst);
end Check_Mode_Conformant;
--------------------------------
-- Check_Overriding_Operation --
--------------------------------
procedure Check_Overriding_Operation
(N : Node_Id;
Subp : Entity_Id)
is
Arg1 : Node_Id;
Decl : Node_Id;
Has_Pragma : Boolean := False;
begin
-- See whether there is an overriding pragma immediately following
-- the declaration. Intervening pragmas, such as Inline, are allowed.
Decl := Next (N);
while Present (Decl)
and then Nkind (Decl) = N_Pragma
loop
if Chars (Decl) = Name_Overriding
or else Chars (Decl) = Name_Optional_Overriding
then
-- For now disable the use of these pragmas, until the ARG
-- finalizes the design of this feature.
Error_Msg_N ("?unrecognized pragma", Decl);
if not Is_Overriding_Operation (Subp) then
-- Before emitting an error message, check whether this
-- may override an operation that is not yet visible, as
-- in the case of a derivation of a private operation in
-- a child unit. Such an operation is introduced with a
-- different name, but its alias is the parent operation.
declare
E : Entity_Id;
begin
E := First_Entity (Current_Scope);
while Present (E) loop
if Ekind (E) = Ekind (Subp)
and then not Comes_From_Source (E)
and then Present (Alias (E))
and then Chars (Alias (E)) = Chars (Subp)
and then In_Open_Scopes (Scope (Alias (E)))
then
exit;
else
Next_Entity (E);
end if;
end loop;
if No (E) then
Error_Msg_NE
("& must override an inherited operation",
Decl, Subp);
end if;
end;
end if;
-- Verify syntax of pragma
Arg1 := First (Pragma_Argument_Associations (Decl));
if Present (Arg1) then
if not Is_Entity_Name (Expression (Arg1)) then
Error_Msg_N ("pragma applies to local subprogram", Decl);
elsif Chars (Expression (Arg1)) /= Chars (Subp) then
Error_Msg_N
("pragma must apply to preceding subprogram", Decl);
elsif Present (Next (Arg1)) then
Error_Msg_N ("illegal pragma format", Decl);
end if;
end if;
Set_Analyzed (Decl);
Has_Pragma := True;
exit;
end if;
Next (Decl);
end loop;
if not Has_Pragma
and then Explicit_Overriding
and then Is_Overriding_Operation (Subp)
then
Error_Msg_NE ("Missing overriding pragma for&", Subp, Subp);
end if;
end Check_Overriding_Operation;
-------------------
-- Check_Returns --
-------------------
procedure Check_Returns
(HSS : Node_Id;
Mode : Character;
Err : out Boolean)
is
Handler : Node_Id;
procedure Check_Statement_Sequence (L : List_Id);
-- Internal recursive procedure to check a list of statements for proper
-- termination by a return statement (or a transfer of control or a
-- compound statement that is itself internally properly terminated).
------------------------------
-- Check_Statement_Sequence --
------------------------------
procedure Check_Statement_Sequence (L : List_Id) is
Last_Stm : Node_Id;
Kind : Node_Kind;
Raise_Exception_Call : Boolean;
-- Set True if statement sequence terminated by Raise_Exception call
-- or a Reraise_Occurrence call.
begin
Raise_Exception_Call := False;
-- Get last real statement
Last_Stm := Last (L);
-- Don't count pragmas
while Nkind (Last_Stm) = N_Pragma
-- Don't count call to SS_Release (can happen after Raise_Exception)
or else
(Nkind (Last_Stm) = N_Procedure_Call_Statement
and then
Nkind (Name (Last_Stm)) = N_Identifier
and then
Is_RTE (Entity (Name (Last_Stm)), RE_SS_Release))
-- Don't count exception junk
or else
((Nkind (Last_Stm) = N_Goto_Statement
or else Nkind (Last_Stm) = N_Label
or else Nkind (Last_Stm) = N_Object_Declaration)
and then Exception_Junk (Last_Stm))
loop
Prev (Last_Stm);
end loop;
-- Here we have the "real" last statement
Kind := Nkind (Last_Stm);
-- Transfer of control, OK. Note that in the No_Return procedure
-- case, we already diagnosed any explicit return statements, so
-- we can treat them as OK in this context.
if Is_Transfer (Last_Stm) then
return;
-- Check cases of explicit non-indirect procedure calls
elsif Kind = N_Procedure_Call_Statement
and then Is_Entity_Name (Name (Last_Stm))
then
-- Check call to Raise_Exception procedure which is treated
-- specially, as is a call to Reraise_Occurrence.
-- We suppress the warning in these cases since it is likely that
-- the programmer really does not expect to deal with the case
-- of Null_Occurrence, and thus would find a warning about a
-- missing return curious, and raising Program_Error does not
-- seem such a bad behavior if this does occur.
if Is_RTE (Entity (Name (Last_Stm)), RE_Raise_Exception)
or else
Is_RTE (Entity (Name (Last_Stm)), RE_Reraise_Occurrence)
then
Raise_Exception_Call := True;
-- For Raise_Exception call, test first argument, if it is
-- an attribute reference for a 'Identity call, then we know
-- that the call cannot possibly return.
declare
Arg : constant Node_Id :=
Original_Node (First_Actual (Last_Stm));
begin
if Nkind (Arg) = N_Attribute_Reference
and then Attribute_Name (Arg) = Name_Identity
then
return;
end if;
end;
end if;
-- If statement, need to look inside if there is an else and check
-- each constituent statement sequence for proper termination.
elsif Kind = N_If_Statement
and then Present (Else_Statements (Last_Stm))
then
Check_Statement_Sequence (Then_Statements (Last_Stm));
Check_Statement_Sequence (Else_Statements (Last_Stm));
if Present (Elsif_Parts (Last_Stm)) then
declare
Elsif_Part : Node_Id := First (Elsif_Parts (Last_Stm));
begin
while Present (Elsif_Part) loop
Check_Statement_Sequence (Then_Statements (Elsif_Part));
Next (Elsif_Part);
end loop;
end;
end if;
return;
-- Case statement, check each case for proper termination
elsif Kind = N_Case_Statement then
declare
Case_Alt : Node_Id;
begin
Case_Alt := First_Non_Pragma (Alternatives (Last_Stm));
while Present (Case_Alt) loop
Check_Statement_Sequence (Statements (Case_Alt));
Next_Non_Pragma (Case_Alt);
end loop;
end;
return;
-- Block statement, check its handled sequence of statements
elsif Kind = N_Block_Statement then
declare
Err1 : Boolean;
begin
Check_Returns
(Handled_Statement_Sequence (Last_Stm), Mode, Err1);
if Err1 then
Err := True;
end if;
return;
end;
-- Loop statement. If there is an iteration scheme, we can definitely
-- fall out of the loop. Similarly if there is an exit statement, we
-- can fall out. In either case we need a following return.
elsif Kind = N_Loop_Statement then
if Present (Iteration_Scheme (Last_Stm))
or else Has_Exit (Entity (Identifier (Last_Stm)))
then
null;
-- A loop with no exit statement or iteration scheme if either
-- an inifite loop, or it has some other exit (raise/return).
-- In either case, no warning is required.
else
return;
end if;
-- Timed entry call, check entry call and delay alternatives
-- Note: in expanded code, the timed entry call has been converted
-- to a set of expanded statements on which the check will work
-- correctly in any case.
elsif Kind = N_Timed_Entry_Call then
declare
ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
DCA : constant Node_Id := Delay_Alternative (Last_Stm);
begin
-- If statement sequence of entry call alternative is missing,
-- then we can definitely fall through, and we post the error
-- message on the entry call alternative itself.
if No (Statements (ECA)) then
Last_Stm := ECA;
-- If statement sequence of delay alternative is missing, then
-- we can definitely fall through, and we post the error
-- message on the delay alternative itself.
-- Note: if both ECA and DCA are missing the return, then we
-- post only one message, should be enough to fix the bugs.
-- If not we will get a message next time on the DCA when the
-- ECA is fixed!
elsif No (Statements (DCA)) then
Last_Stm := DCA;
-- Else check both statement sequences
else
Check_Statement_Sequence (Statements (ECA));
Check_Statement_Sequence (Statements (DCA));
return;
end if;
end;
-- Conditional entry call, check entry call and else part
-- Note: in expanded code, the conditional entry call has been
-- converted to a set of expanded statements on which the check
-- will work correctly in any case.
elsif Kind = N_Conditional_Entry_Call then
declare
ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
begin
-- If statement sequence of entry call alternative is missing,
-- then we can definitely fall through, and we post the error
-- message on the entry call alternative itself.
if No (Statements (ECA)) then
Last_Stm := ECA;
-- Else check statement sequence and else part
else
Check_Statement_Sequence (Statements (ECA));
Check_Statement_Sequence (Else_Statements (Last_Stm));
return;
end if;
end;
end if;
-- If we fall through, issue appropriate message
if Mode = 'F' then
if not Raise_Exception_Call then
Error_Msg_N
("?RETURN statement missing following this statement!",
Last_Stm);
Error_Msg_N
("\?Program_Error may be raised at run time",
Last_Stm);
end if;
-- Note: we set Err even though we have not issued a warning
-- because we still have a case of a missing return. This is
-- an extremely marginal case, probably will never be noticed
-- but we might as well get it right.
Err := True;
else
Error_Msg_N
("implied return after this statement not allowed (No_Return)",
Last_Stm);
end if;
end Check_Statement_Sequence;
-- Start of processing for Check_Returns
begin
Err := False;
Check_Statement_Sequence (Statements (HSS));
if Present (Exception_Handlers (HSS)) then
Handler := First_Non_Pragma (Exception_Handlers (HSS));
while Present (Handler) loop
Check_Statement_Sequence (Statements (Handler));
Next_Non_Pragma (Handler);
end loop;
end if;
end Check_Returns;
----------------------------
-- Check_Subprogram_Order --
----------------------------
procedure Check_Subprogram_Order (N : Node_Id) is
function Subprogram_Name_Greater (S1, S2 : String) return Boolean;
-- This is used to check if S1 > S2 in the sense required by this
-- test, for example nameab < namec, but name2 < name10.
function Subprogram_Name_Greater (S1, S2 : String) return Boolean is
L1, L2 : Positive;
N1, N2 : Natural;
begin
-- Remove trailing numeric parts
L1 := S1'Last;
while S1 (L1) in '0' .. '9' loop
L1 := L1 - 1;
end loop;
L2 := S2'Last;
while S2 (L2) in '0' .. '9' loop
L2 := L2 - 1;
end loop;
-- If non-numeric parts non-equal, that's decisive
if S1 (S1'First .. L1) < S2 (S2'First .. L2) then
return False;
elsif S1 (S1'First .. L1) > S2 (S2'First .. L2) then
return True;
-- If non-numeric parts equal, compare suffixed numeric parts. Note
-- that a missing suffix is treated as numeric zero in this test.
else
N1 := 0;
while L1 < S1'Last loop
L1 := L1 + 1;
N1 := N1 * 10 + Character'Pos (S1 (L1)) - Character'Pos ('0');
end loop;
N2 := 0;
while L2 < S2'Last loop
L2 := L2 + 1;
N2 := N2 * 10 + Character'Pos (S2 (L2)) - Character'Pos ('0');
end loop;
return N1 > N2;
end if;
end Subprogram_Name_Greater;
-- Start of processing for Check_Subprogram_Order
begin
-- Check body in alpha order if this is option
if Style_Check
and then Style_Check_Subprogram_Order
and then Nkind (N) = N_Subprogram_Body
and then Comes_From_Source (N)
and then In_Extended_Main_Source_Unit (N)
then
declare
LSN : String_Ptr
renames Scope_Stack.Table
(Scope_Stack.Last).Last_Subprogram_Name;
Body_Id : constant Entity_Id :=
Defining_Entity (Specification (N));
begin
Get_Decoded_Name_String (Chars (Body_Id));
if LSN /= null then
if Subprogram_Name_Greater
(LSN.all, Name_Buffer (1 .. Name_Len))
then
Style.Subprogram_Not_In_Alpha_Order (Body_Id);
end if;
Free (LSN);
end if;
LSN := new String'(Name_Buffer (1 .. Name_Len));
end;
end if;
end Check_Subprogram_Order;
------------------------------
-- Check_Subtype_Conformant --
------------------------------
procedure Check_Subtype_Conformant
(New_Id : Entity_Id;
Old_Id : Entity_Id;
Err_Loc : Node_Id := Empty)
is
Result : Boolean;
begin
Check_Conformance
(New_Id, Old_Id, Subtype_Conformant, True, Result, Err_Loc);
end Check_Subtype_Conformant;
---------------------------
-- Check_Type_Conformant --
---------------------------
procedure Check_Type_Conformant
(New_Id : Entity_Id;
Old_Id : Entity_Id;
Err_Loc : Node_Id := Empty)
is
Result : Boolean;
begin
Check_Conformance
(New_Id, Old_Id, Type_Conformant, True, Result, Err_Loc);
end Check_Type_Conformant;
----------------------
-- Conforming_Types --
----------------------
function Conforming_Types
(T1 : Entity_Id;
T2 : Entity_Id;
Ctype : Conformance_Type;
Get_Inst : Boolean := False) return Boolean
is
Type_1 : Entity_Id := T1;
Type_2 : Entity_Id := T2;
Are_Anonymous_Access_To_Subprogram_Types : Boolean := False;
function Base_Types_Match (T1, T2 : Entity_Id) return Boolean;
-- If neither T1 nor T2 are generic actual types, or if they are
-- in different scopes (e.g. parent and child instances), then verify
-- that the base types are equal. Otherwise T1 and T2 must be
-- on the same subtype chain. The whole purpose of this procedure
-- is to prevent spurious ambiguities in an instantiation that may
-- arise if two distinct generic types are instantiated with the
-- same actual.
----------------------
-- Base_Types_Match --
----------------------
function Base_Types_Match (T1, T2 : Entity_Id) return Boolean is
begin
if T1 = T2 then
return True;
elsif Base_Type (T1) = Base_Type (T2) then
-- The following is too permissive. A more precise test must
-- check that the generic actual is an ancestor subtype of the
-- other ???.
return not Is_Generic_Actual_Type (T1)
or else not Is_Generic_Actual_Type (T2)
or else Scope (T1) /= Scope (T2);
-- In some cases a type imported through a limited_with clause,
-- and its non-limited view are both visible, for example in an
-- anonymous access_to_classwide type in a formal. Both entities
-- designate the same type.
elsif From_With_Type (T1)
and then Ekind (T1) = E_Incomplete_Type
and then T2 = Non_Limited_View (T1)
then
return True;
else
return False;
end if;
end Base_Types_Match;
begin
-- The context is an instance association for a formal
-- access-to-subprogram type; the formal parameter types
-- require mapping because they may denote other formal
-- parameters of the generic unit.
if Get_Inst then
Type_1 := Get_Instance_Of (T1);
Type_2 := Get_Instance_Of (T2);
end if;
-- First see if base types match
if Base_Types_Match (Type_1, Type_2) then
return Ctype <= Mode_Conformant
or else Subtypes_Statically_Match (Type_1, Type_2);
elsif Is_Incomplete_Or_Private_Type (Type_1)
and then Present (Full_View (Type_1))
and then Base_Types_Match (Full_View (Type_1), Type_2)
then
return Ctype <= Mode_Conformant
or else Subtypes_Statically_Match (Full_View (Type_1), Type_2);
elsif Ekind (Type_2) = E_Incomplete_Type
and then Present (Full_View (Type_2))
and then Base_Types_Match (Type_1, Full_View (Type_2))
then
return Ctype <= Mode_Conformant
or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
elsif Is_Private_Type (Type_2)
and then In_Instance
and then Present (Full_View (Type_2))
and then Base_Types_Match (Type_1, Full_View (Type_2))
then
return Ctype <= Mode_Conformant
or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
end if;
-- Ada 0Y (AI-254): Detect anonymous access to subprogram types.
Are_Anonymous_Access_To_Subprogram_Types :=
-- Case 1: Anonymous access to subprogram types
(Ekind (Type_1) = E_Anonymous_Access_Subprogram_Type
and then Ekind (Type_2) = E_Anonymous_Access_Subprogram_Type)
-- Case 2: Anonymous access to PROTECTED subprogram types. In this
-- case the anonymous type_declaration has been replaced by an
-- occurrence of an internal access to subprogram type declaration
-- available through the Original_Access_Type attribute
or else
(Ekind (Type_1) = E_Access_Protected_Subprogram_Type
and then Ekind (Type_2) = E_Access_Protected_Subprogram_Type
and then not Comes_From_Source (Type_1)
and then not Comes_From_Source (Type_2)
and then Present (Original_Access_Type (Type_1))
and then Present (Original_Access_Type (Type_2))
and then Ekind (Original_Access_Type (Type_1)) =
E_Anonymous_Access_Protected_Subprogram_Type
and then Ekind (Original_Access_Type (Type_2)) =
E_Anonymous_Access_Protected_Subprogram_Type);
-- Test anonymous access type case. For this case, static subtype
-- matching is required for mode conformance (RM 6.3.1(15))
if (Ekind (Type_1) = E_Anonymous_Access_Type
and then Ekind (Type_2) = E_Anonymous_Access_Type)
or else Are_Anonymous_Access_To_Subprogram_Types -- Ada 0Y (AI-254)
then
declare
Desig_1 : Entity_Id;
Desig_2 : Entity_Id;
begin
Desig_1 := Directly_Designated_Type (Type_1);
-- An access parameter can designate an incomplete type
if Ekind (Desig_1) = E_Incomplete_Type
and then Present (Full_View (Desig_1))
then
Desig_1 := Full_View (Desig_1);
end if;
Desig_2 := Directly_Designated_Type (Type_2);
if Ekind (Desig_2) = E_Incomplete_Type
and then Present (Full_View (Desig_2))
then
Desig_2 := Full_View (Desig_2);
end if;
-- The context is an instance association for a formal
-- access-to-subprogram type; formal access parameter
-- designated types require mapping because they may
-- denote other formal parameters of the generic unit.
if Get_Inst then
Desig_1 := Get_Instance_Of (Desig_1);
Desig_2 := Get_Instance_Of (Desig_2);
end if;
-- It is possible for a Class_Wide_Type to be introduced for
-- an incomplete type, in which case there is a separate class_
-- wide type for the full view. The types conform if their
-- Etypes conform, i.e. one may be the full view of the other.
-- This can only happen in the context of an access parameter,
-- other uses of an incomplete Class_Wide_Type are illegal.
if Is_Class_Wide_Type (Desig_1)
and then Is_Class_Wide_Type (Desig_2)
then
return
Conforming_Types
(Etype (Base_Type (Desig_1)),
Etype (Base_Type (Desig_2)), Ctype);
elsif Are_Anonymous_Access_To_Subprogram_Types then
return Ctype = Type_Conformant
or else
Subtypes_Statically_Match (Desig_1, Desig_2);
else
return Base_Type (Desig_1) = Base_Type (Desig_2)
and then (Ctype = Type_Conformant
or else
Subtypes_Statically_Match (Desig_1, Desig_2));
end if;
end;
-- Otherwise definitely no match
else
return False;
end if;
end Conforming_Types;
--------------------------
-- Create_Extra_Formals --
--------------------------
procedure Create_Extra_Formals (E : Entity_Id) is
Formal : Entity_Id;
Last_Extra : Entity_Id;
Formal_Type : Entity_Id;
P_Formal : Entity_Id := Empty;
function Add_Extra_Formal (Typ : Entity_Id) return Entity_Id;
-- Add an extra formal, associated with the current Formal. The
-- extra formal is added to the list of extra formals, and also
-- returned as the result. These formals are always of mode IN.
----------------------
-- Add_Extra_Formal --
----------------------
function Add_Extra_Formal (Typ : Entity_Id) return Entity_Id is
EF : constant Entity_Id :=
Make_Defining_Identifier (Sloc (Formal),
Chars => New_External_Name (Chars (Formal), 'F'));
begin
-- We never generate extra formals if expansion is not active
-- because we don't need them unless we are generating code.
if not Expander_Active then
return Empty;
end if;
-- A little optimization. Never generate an extra formal for
-- the _init operand of an initialization procedure, since it
-- could never be used.
if Chars (Formal) = Name_uInit then
return Empty;
end if;
Set_Ekind (EF, E_In_Parameter);
Set_Actual_Subtype (EF, Typ);
Set_Etype (EF, Typ);
Set_Scope (EF, Scope (Formal));
Set_Mechanism (EF, Default_Mechanism);
Set_Formal_Validity (EF);
Set_Extra_Formal (Last_Extra, EF);
Last_Extra := EF;
return EF;
end Add_Extra_Formal;
-- Start of processing for Create_Extra_Formals
begin
-- If this is a derived subprogram then the subtypes of the
-- parent subprogram's formal parameters will be used to
-- to determine the need for extra formals.
if Is_Overloadable (E) and then Present (Alias (E)) then
P_Formal := First_Formal (Alias (E));
end if;
Last_Extra := Empty;
Formal := First_Formal (E);
while Present (Formal) loop
Last_Extra := Formal;
Next_Formal (Formal);
end loop;
-- If Extra_formals where already created, don't do it again
-- This situation may arise for subprogram types created as part
-- of dispatching calls (see Expand_Dispatch_Call)
if Present (Last_Extra) and then
Present (Extra_Formal (Last_Extra))
then
return;
end if;
Formal := First_Formal (E);
while Present (Formal) loop
-- Create extra formal for supporting the attribute 'Constrained.
-- The case of a private type view without discriminants also
-- requires the extra formal if the underlying type has defaulted
-- discriminants.
if Ekind (Formal) /= E_In_Parameter then
if Present (P_Formal) then
Formal_Type := Etype (P_Formal);
else
Formal_Type := Etype (Formal);
end if;
if not Has_Discriminants (Formal_Type)
and then Ekind (Formal_Type) in Private_Kind
and then Present (Underlying_Type (Formal_Type))
then
Formal_Type := Underlying_Type (Formal_Type);
end if;
if Has_Discriminants (Formal_Type)
and then
((not Is_Constrained (Formal_Type)
and then not Is_Indefinite_Subtype (Formal_Type))
or else Present (Extra_Formal (Formal)))
then
Set_Extra_Constrained
(Formal, Add_Extra_Formal (Standard_Boolean));
end if;
end if;
-- Create extra formal for supporting accessibility checking
-- This is suppressed if we specifically suppress accessibility
-- checks at the pacage level for either the subprogram, or the
-- package in which it resides. However, we do not suppress it
-- simply if the scope has accessibility checks suppressed, since
-- this could cause trouble when clients are compiled with a
-- different suppression setting. The explicit checks at the
-- package level are safe from this point of view.
if Ekind (Etype (Formal)) = E_Anonymous_Access_Type
and then not
(Explicit_Suppress (E, Accessibility_Check)
or else
Explicit_Suppress (Scope (E), Accessibility_Check))
and then
(not Present (P_Formal)
or else Present (Extra_Accessibility (P_Formal)))
then
-- Temporary kludge: for now we avoid creating the extra
-- formal for access parameters of protected operations
-- because of problem with the case of internal protected
-- calls. ???
if Nkind (Parent (Parent (Parent (E)))) /= N_Protected_Definition
and then Nkind (Parent (Parent (Parent (E)))) /= N_Protected_Body
then
Set_Extra_Accessibility
(Formal, Add_Extra_Formal (Standard_Natural));
end if;
end if;
if Present (P_Formal) then
Next_Formal (P_Formal);
end if;
Next_Formal (Formal);
end loop;
end Create_Extra_Formals;
-----------------------------
-- Enter_Overloaded_Entity --
-----------------------------
procedure Enter_Overloaded_Entity (S : Entity_Id) is
E : Entity_Id := Current_Entity_In_Scope (S);
C_E : Entity_Id := Current_Entity (S);
begin
if Present (E) then
Set_Has_Homonym (E);
Set_Has_Homonym (S);
end if;
Set_Is_Immediately_Visible (S);
Set_Scope (S, Current_Scope);
-- Chain new entity if front of homonym in current scope, so that
-- homonyms are contiguous.
if Present (E)
and then E /= C_E
then
while Homonym (C_E) /= E loop
C_E := Homonym (C_E);
end loop;
Set_Homonym (C_E, S);
else
E := C_E;
Set_Current_Entity (S);
end if;
Set_Homonym (S, E);
Append_Entity (S, Current_Scope);
Set_Public_Status (S);
if Debug_Flag_E then
Write_Str ("New overloaded entity chain: ");
Write_Name (Chars (S));
E := S;
while Present (E) loop
Write_Str (" "); Write_Int (Int (E));
E := Homonym (E);
end loop;
Write_Eol;
end if;
-- Generate warning for hiding
if Warn_On_Hiding
and then Comes_From_Source (S)
and then In_Extended_Main_Source_Unit (S)
then
E := S;
loop
E := Homonym (E);
exit when No (E);
-- Warn unless genuine overloading
if (not Is_Overloadable (E))
or else Subtype_Conformant (E, S)
then
Error_Msg_Sloc := Sloc (E);
Error_Msg_N ("declaration of & hides one#?", S);
end if;
end loop;
end if;
end Enter_Overloaded_Entity;
-----------------------------
-- Find_Corresponding_Spec --
-----------------------------
function Find_Corresponding_Spec (N : Node_Id) return Entity_Id is
Spec : constant Node_Id := Specification (N);
Designator : constant Entity_Id := Defining_Entity (Spec);
E : Entity_Id;
begin
E := Current_Entity (Designator);
while Present (E) loop
-- We are looking for a matching spec. It must have the same scope,
-- and the same name, and either be type conformant, or be the case
-- of a library procedure spec and its body (which belong to one
-- another regardless of whether they are type conformant or not).
if Scope (E) = Current_Scope then
if Current_Scope = Standard_Standard
or else (Ekind (E) = Ekind (Designator)
and then Type_Conformant (E, Designator))
then
-- Within an instantiation, we know that spec and body are
-- subtype conformant, because they were subtype conformant
-- in the generic. We choose the subtype-conformant entity
-- here as well, to resolve spurious ambiguities in the
-- instance that were not present in the generic (i.e. when
-- two different types are given the same actual). If we are
-- looking for a spec to match a body, full conformance is
-- expected.
if In_Instance then
Set_Convention (Designator, Convention (E));
if Nkind (N) = N_Subprogram_Body
and then Present (Homonym (E))
and then not Fully_Conformant (E, Designator)
then
goto Next_Entity;
elsif not Subtype_Conformant (E, Designator) then
goto Next_Entity;
end if;
end if;
if not Has_Completion (E) then
if Nkind (N) /= N_Subprogram_Body_Stub then
Set_Corresponding_Spec (N, E);
end if;
Set_Has_Completion (E);
return E;
elsif Nkind (Parent (N)) = N_Subunit then
-- If this is the proper body of a subunit, the completion
-- flag is set when analyzing the stub.
return E;
-- If body already exists, this is an error unless the
-- previous declaration is the implicit declaration of
-- a derived subprogram, or this is a spurious overloading
-- in an instance.
elsif No (Alias (E))
and then not Is_Intrinsic_Subprogram (E)
and then not In_Instance
then
Error_Msg_Sloc := Sloc (E);
if Is_Imported (E) then
Error_Msg_NE
("body not allowed for imported subprogram & declared#",
N, E);
else
Error_Msg_NE ("duplicate body for & declared#", N, E);
end if;
end if;
elsif Is_Child_Unit (E)
and then
Nkind (Unit_Declaration_Node (Designator)) = N_Subprogram_Body
and then
Nkind (Parent (Unit_Declaration_Node (Designator)))
= N_Compilation_Unit
then
-- Child units cannot be overloaded, so a conformance mismatch
-- between body and a previous spec is an error.
Error_Msg_N
("body of child unit does not match previous declaration", N);
end if;
end if;
<<Next_Entity>>
E := Homonym (E);
end loop;
-- On exit, we know that no previous declaration of subprogram exists
return Empty;
end Find_Corresponding_Spec;
----------------------
-- Fully_Conformant --
----------------------
function Fully_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
Result : Boolean;
begin
Check_Conformance (New_Id, Old_Id, Fully_Conformant, False, Result);
return Result;
end Fully_Conformant;
----------------------------------
-- Fully_Conformant_Expressions --
----------------------------------
function Fully_Conformant_Expressions
(Given_E1 : Node_Id;
Given_E2 : Node_Id) return Boolean
is
E1 : constant Node_Id := Original_Node (Given_E1);
E2 : constant Node_Id := Original_Node (Given_E2);
-- We always test conformance on original nodes, since it is possible
-- for analysis and/or expansion to make things look as though they
-- conform when they do not, e.g. by converting 1+2 into 3.
function FCE (Given_E1, Given_E2 : Node_Id) return Boolean
renames Fully_Conformant_Expressions;
function FCL (L1, L2 : List_Id) return Boolean;
-- Compare elements of two lists for conformance. Elements have to
-- be conformant, and actuals inserted as default parameters do not
-- match explicit actuals with the same value.
function FCO (Op_Node, Call_Node : Node_Id) return Boolean;
-- Compare an operator node with a function call.
---------
-- FCL --
---------
function FCL (L1, L2 : List_Id) return Boolean is
N1, N2 : Node_Id;
begin
if L1 = No_List then
N1 := Empty;
else
N1 := First (L1);
end if;
if L2 = No_List then
N2 := Empty;
else
N2 := First (L2);
end if;
-- Compare two lists, skipping rewrite insertions (we want to
-- compare the original trees, not the expanded versions!)
loop
if Is_Rewrite_Insertion (N1) then
Next (N1);
elsif Is_Rewrite_Insertion (N2) then
Next (N2);
elsif No (N1) then
return No (N2);
elsif No (N2) then
return False;
elsif not FCE (N1, N2) then
return False;
else
Next (N1);
Next (N2);
end if;
end loop;
end FCL;
---------
-- FCO --
---------
function FCO (Op_Node, Call_Node : Node_Id) return Boolean is
Actuals : constant List_Id := Parameter_Associations (Call_Node);
Act : Node_Id;
begin
if No (Actuals)
or else Entity (Op_Node) /= Entity (Name (Call_Node))
then
return False;
else
Act := First (Actuals);
if Nkind (Op_Node) in N_Binary_Op then
if not FCE (Left_Opnd (Op_Node), Act) then
return False;
end if;
Next (Act);
end if;
return Present (Act)
and then FCE (Right_Opnd (Op_Node), Act)
and then No (Next (Act));
end if;
end FCO;
-- Start of processing for Fully_Conformant_Expressions
begin
-- Non-conformant if paren count does not match. Note: if some idiot
-- complains that we don't do this right for more than 3 levels of
-- parentheses, they will be treated with the respect they deserve :-)
if Paren_Count (E1) /= Paren_Count (E2) then
return False;
-- If same entities are referenced, then they are conformant
-- even if they have different forms (RM 8.3.1(19-20)).
elsif Is_Entity_Name (E1) and then Is_Entity_Name (E2) then
if Present (Entity (E1)) then
return Entity (E1) = Entity (E2)
or else (Chars (Entity (E1)) = Chars (Entity (E2))
and then Ekind (Entity (E1)) = E_Discriminant
and then Ekind (Entity (E2)) = E_In_Parameter);
elsif Nkind (E1) = N_Expanded_Name
and then Nkind (E2) = N_Expanded_Name
and then Nkind (Selector_Name (E1)) = N_Character_Literal
and then Nkind (Selector_Name (E2)) = N_Character_Literal
then
return Chars (Selector_Name (E1)) = Chars (Selector_Name (E2));
else
-- Identifiers in component associations don't always have
-- entities, but their names must conform.
return Nkind (E1) = N_Identifier
and then Nkind (E2) = N_Identifier
and then Chars (E1) = Chars (E2);
end if;
elsif Nkind (E1) = N_Character_Literal
and then Nkind (E2) = N_Expanded_Name
then
return Nkind (Selector_Name (E2)) = N_Character_Literal
and then Chars (E1) = Chars (Selector_Name (E2));
elsif Nkind (E2) = N_Character_Literal
and then Nkind (E1) = N_Expanded_Name
then
return Nkind (Selector_Name (E1)) = N_Character_Literal
and then Chars (E2) = Chars (Selector_Name (E1));
elsif Nkind (E1) in N_Op
and then Nkind (E2) = N_Function_Call
then
return FCO (E1, E2);
elsif Nkind (E2) in N_Op
and then Nkind (E1) = N_Function_Call
then
return FCO (E2, E1);
-- Otherwise we must have the same syntactic entity
elsif Nkind (E1) /= Nkind (E2) then
return False;
-- At this point, we specialize by node type
else
case Nkind (E1) is
when N_Aggregate =>
return
FCL (Expressions (E1), Expressions (E2))
and then FCL (Component_Associations (E1),
Component_Associations (E2));
when N_Allocator =>
if Nkind (Expression (E1)) = N_Qualified_Expression
or else
Nkind (Expression (E2)) = N_Qualified_Expression
then
return FCE (Expression (E1), Expression (E2));
-- Check that the subtype marks and any constraints
-- are conformant
else
declare
Indic1 : constant Node_Id := Expression (E1);
Indic2 : constant Node_Id := Expression (E2);
Elt1 : Node_Id;
Elt2 : Node_Id;
begin
if Nkind (Indic1) /= N_Subtype_Indication then
return
Nkind (Indic2) /= N_Subtype_Indication
and then Entity (Indic1) = Entity (Indic2);
elsif Nkind (Indic2) /= N_Subtype_Indication then
return
Nkind (Indic1) /= N_Subtype_Indication
and then Entity (Indic1) = Entity (Indic2);
else
if Entity (Subtype_Mark (Indic1)) /=
Entity (Subtype_Mark (Indic2))
then
return False;
end if;
Elt1 := First (Constraints (Constraint (Indic1)));
Elt2 := First (Constraints (Constraint (Indic2)));
while Present (Elt1) and then Present (Elt2) loop
if not FCE (Elt1, Elt2) then
return False;
end if;
Next (Elt1);
Next (Elt2);
end loop;
return True;
end if;
end;
end if;
when N_Attribute_Reference =>
return
Attribute_Name (E1) = Attribute_Name (E2)
and then FCL (Expressions (E1), Expressions (E2));
when N_Binary_Op =>
return
Entity (E1) = Entity (E2)
and then FCE (Left_Opnd (E1), Left_Opnd (E2))
and then FCE (Right_Opnd (E1), Right_Opnd (E2));
when N_And_Then | N_Or_Else | N_In | N_Not_In =>
return
FCE (Left_Opnd (E1), Left_Opnd (E2))
and then
FCE (Right_Opnd (E1), Right_Opnd (E2));
when N_Character_Literal =>
return
Char_Literal_Value (E1) = Char_Literal_Value (E2);
when N_Component_Association =>
return
FCL (Choices (E1), Choices (E2))
and then FCE (Expression (E1), Expression (E2));
when N_Conditional_Expression =>
return
FCL (Expressions (E1), Expressions (E2));
when N_Explicit_Dereference =>
return
FCE (Prefix (E1), Prefix (E2));
when N_Extension_Aggregate =>
return
FCL (Expressions (E1), Expressions (E2))
and then Null_Record_Present (E1) =
Null_Record_Present (E2)
and then FCL (Component_Associations (E1),
Component_Associations (E2));
when N_Function_Call =>
return
FCE (Name (E1), Name (E2))
and then FCL (Parameter_Associations (E1),
Parameter_Associations (E2));
when N_Indexed_Component =>
return
FCE (Prefix (E1), Prefix (E2))
and then FCL (Expressions (E1), Expressions (E2));
when N_Integer_Literal =>
return (Intval (E1) = Intval (E2));
when N_Null =>
return True;
when N_Operator_Symbol =>
return
Chars (E1) = Chars (E2);
when N_Others_Choice =>
return True;
when N_Parameter_Association =>
return
Chars (Selector_Name (E1)) = Chars (Selector_Name (E2))
and then FCE (Explicit_Actual_Parameter (E1),
Explicit_Actual_Parameter (E2));
when N_Qualified_Expression =>
return
FCE (Subtype_Mark (E1), Subtype_Mark (E2))
and then FCE (Expression (E1), Expression (E2));
when N_Range =>
return
FCE (Low_Bound (E1), Low_Bound (E2))
and then FCE (High_Bound (E1), High_Bound (E2));
when N_Real_Literal =>
return (Realval (E1) = Realval (E2));
when N_Selected_Component =>
return
FCE (Prefix (E1), Prefix (E2))
and then FCE (Selector_Name (E1), Selector_Name (E2));
when N_Slice =>
return
FCE (Prefix (E1), Prefix (E2))
and then FCE (Discrete_Range (E1), Discrete_Range (E2));
when N_String_Literal =>
declare
S1 : constant String_Id := Strval (E1);
S2 : constant String_Id := Strval (E2);
L1 : constant Nat := String_Length (S1);
L2 : constant Nat := String_Length (S2);
begin
if L1 /= L2 then
return False;
else
for J in 1 .. L1 loop
if Get_String_Char (S1, J) /=
Get_String_Char (S2, J)
then
return False;
end if;
end loop;
return True;
end if;
end;
when N_Type_Conversion =>
return
FCE (Subtype_Mark (E1), Subtype_Mark (E2))
and then FCE (Expression (E1), Expression (E2));
when N_Unary_Op =>
return
Entity (E1) = Entity (E2)
and then FCE (Right_Opnd (E1), Right_Opnd (E2));
when N_Unchecked_Type_Conversion =>
return
FCE (Subtype_Mark (E1), Subtype_Mark (E2))
and then FCE (Expression (E1), Expression (E2));
-- All other node types cannot appear in this context. Strictly
-- we should raise a fatal internal error. Instead we just ignore
-- the nodes. This means that if anyone makes a mistake in the
-- expander and mucks an expression tree irretrievably, the
-- result will be a failure to detect a (probably very obscure)
-- case of non-conformance, which is better than bombing on some
-- case where two expressions do in fact conform.
when others =>
return True;
end case;
end if;
end Fully_Conformant_Expressions;
----------------------------------------
-- Fully_Conformant_Discrete_Subtypes --
----------------------------------------
function Fully_Conformant_Discrete_Subtypes
(Given_S1 : Node_Id;
Given_S2 : Node_Id) return Boolean
is
S1 : constant Node_Id := Original_Node (Given_S1);
S2 : constant Node_Id := Original_Node (Given_S2);
function Conforming_Bounds (B1, B2 : Node_Id) return Boolean;
-- Special-case for a bound given by a discriminant, which in the
-- body is replaced with the discriminal of the enclosing type.
function Conforming_Ranges (R1, R2 : Node_Id) return Boolean;
-- Check both bounds.
function Conforming_Bounds (B1, B2 : Node_Id) return Boolean is
begin
if Is_Entity_Name (B1)
and then Is_Entity_Name (B2)
and then Ekind (Entity (B1)) = E_Discriminant
then
return Chars (B1) = Chars (B2);
else
return Fully_Conformant_Expressions (B1, B2);
end if;
end Conforming_Bounds;
function Conforming_Ranges (R1, R2 : Node_Id) return Boolean is
begin
return
Conforming_Bounds (Low_Bound (R1), Low_Bound (R2))
and then
Conforming_Bounds (High_Bound (R1), High_Bound (R2));
end Conforming_Ranges;
-- Start of processing for Fully_Conformant_Discrete_Subtypes
begin
if Nkind (S1) /= Nkind (S2) then
return False;
elsif Is_Entity_Name (S1) then
return Entity (S1) = Entity (S2);
elsif Nkind (S1) = N_Range then
return Conforming_Ranges (S1, S2);
elsif Nkind (S1) = N_Subtype_Indication then
return
Entity (Subtype_Mark (S1)) = Entity (Subtype_Mark (S2))
and then
Conforming_Ranges
(Range_Expression (Constraint (S1)),
Range_Expression (Constraint (S2)));
else
return True;
end if;
end Fully_Conformant_Discrete_Subtypes;
--------------------
-- Install_Entity --
--------------------
procedure Install_Entity (E : Entity_Id) is
Prev : constant Entity_Id := Current_Entity (E);
begin
Set_Is_Immediately_Visible (E);
Set_Current_Entity (E);
Set_Homonym (E, Prev);
end Install_Entity;
---------------------
-- Install_Formals --
---------------------
procedure Install_Formals (Id : Entity_Id) is
F : Entity_Id;
begin
F := First_Formal (Id);
while Present (F) loop
Install_Entity (F);
Next_Formal (F);
end loop;
end Install_Formals;
---------------------------------
-- Is_Non_Overriding_Operation --
---------------------------------
function Is_Non_Overriding_Operation
(Prev_E : Entity_Id;
New_E : Entity_Id) return Boolean
is
Formal : Entity_Id;
F_Typ : Entity_Id;
G_Typ : Entity_Id := Empty;
function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id;
-- If F_Type is a derived type associated with a generic actual
-- subtype, then return its Generic_Parent_Type attribute, else
-- return Empty.
function Types_Correspond
(P_Type : Entity_Id;
N_Type : Entity_Id) return Boolean;
-- Returns true if and only if the types (or designated types
-- in the case of anonymous access types) are the same or N_Type
-- is derived directly or indirectly from P_Type.
-----------------------------
-- Get_Generic_Parent_Type --
-----------------------------
function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id is
G_Typ : Entity_Id;
Indic : Node_Id;
begin
if Is_Derived_Type (F_Typ)
and then Nkind (Parent (F_Typ)) = N_Full_Type_Declaration
then
-- The tree must be traversed to determine the parent
-- subtype in the generic unit, which unfortunately isn't
-- always available via semantic attributes. ???
-- (Note: The use of Original_Node is needed for cases
-- where a full derived type has been rewritten.)
Indic := Subtype_Indication
(Type_Definition (Original_Node (Parent (F_Typ))));
if Nkind (Indic) = N_Subtype_Indication then
G_Typ := Entity (Subtype_Mark (Indic));
else
G_Typ := Entity (Indic);
end if;
if Nkind (Parent (G_Typ)) = N_Subtype_Declaration
and then Present (Generic_Parent_Type (Parent (G_Typ)))
then
return Generic_Parent_Type (Parent (G_Typ));
end if;
end if;
return Empty;
end Get_Generic_Parent_Type;
----------------------
-- Types_Correspond --
----------------------
function Types_Correspond
(P_Type : Entity_Id;
N_Type : Entity_Id) return Boolean
is
Prev_Type : Entity_Id := Base_Type (P_Type);
New_Type : Entity_Id := Base_Type (N_Type);
begin
if Ekind (Prev_Type) = E_Anonymous_Access_Type then
Prev_Type := Designated_Type (Prev_Type);
end if;
if Ekind (New_Type) = E_Anonymous_Access_Type then
New_Type := Designated_Type (New_Type);
end if;
if Prev_Type = New_Type then
return True;
elsif not Is_Class_Wide_Type (New_Type) then
while Etype (New_Type) /= New_Type loop
New_Type := Etype (New_Type);
if New_Type = Prev_Type then
return True;
end if;
end loop;
end if;
return False;
end Types_Correspond;
-- Start of processing for Is_Non_Overriding_Operation
begin
-- In the case where both operations are implicit derived
-- subprograms then neither overrides the other. This can
-- only occur in certain obscure cases (e.g., derivation
-- from homographs created in a generic instantiation).
if Present (Alias (Prev_E)) and then Present (Alias (New_E)) then
return True;
elsif Ekind (Current_Scope) = E_Package
and then Is_Generic_Instance (Current_Scope)
and then In_Private_Part (Current_Scope)
and then Comes_From_Source (New_E)
then
-- We examine the formals and result subtype of the inherited
-- operation, to determine whether their type is derived from
-- (the instance of) a generic type.
Formal := First_Formal (Prev_E);
while Present (Formal) loop
F_Typ := Base_Type (Etype (Formal));
if Ekind (F_Typ) = E_Anonymous_Access_Type then
F_Typ := Designated_Type (F_Typ);
end if;
G_Typ := Get_Generic_Parent_Type (F_Typ);
Next_Formal (Formal);
end loop;
if not Present (G_Typ) and then Ekind (Prev_E) = E_Function then
G_Typ := Get_Generic_Parent_Type (Base_Type (Etype (Prev_E)));
end if;
if No (G_Typ) then
return False;
end if;
-- If the generic type is a private type, then the original
-- operation was not overriding in the generic, because there was
-- no primitive operation to override.
if Nkind (Parent (G_Typ)) = N_Formal_Type_Declaration
and then Nkind (Formal_Type_Definition (Parent (G_Typ))) =
N_Formal_Private_Type_Definition
then
return True;
-- The generic parent type is the ancestor of a formal derived
-- type declaration. We need to check whether it has a primitive
-- operation that should be overridden by New_E in the generic.
else
declare
P_Formal : Entity_Id;
N_Formal : Entity_Id;
P_Typ : Entity_Id;
N_Typ : Entity_Id;
P_Prim : Entity_Id;
Prim_Elt : Elmt_Id := First_Elmt (Primitive_Operations (G_Typ));
begin
while Present (Prim_Elt) loop
P_Prim := Node (Prim_Elt);
if Chars (P_Prim) = Chars (New_E)
and then Ekind (P_Prim) = Ekind (New_E)
then
P_Formal := First_Formal (P_Prim);
N_Formal := First_Formal (New_E);
while Present (P_Formal) and then Present (N_Formal) loop
P_Typ := Etype (P_Formal);
N_Typ := Etype (N_Formal);
if not Types_Correspond (P_Typ, N_Typ) then
exit;
end if;
Next_Entity (P_Formal);
Next_Entity (N_Formal);
end loop;
-- Found a matching primitive operation belonging to
-- the formal ancestor type, so the new subprogram
-- is overriding.
if not Present (P_Formal)
and then not Present (N_Formal)
and then (Ekind (New_E) /= E_Function
or else
Types_Correspond
(Etype (P_Prim), Etype (New_E)))
then
return False;
end if;
end if;
Next_Elmt (Prim_Elt);
end loop;
-- If no match found, then the new subprogram does
-- not override in the generic (nor in the instance).
return True;
end;
end if;
else
return False;
end if;
end Is_Non_Overriding_Operation;
------------------------------
-- Make_Inequality_Operator --
------------------------------
-- S is the defining identifier of an equality operator. We build a
-- subprogram declaration with the right signature. This operation is
-- intrinsic, because it is always expanded as the negation of the
-- call to the equality function.
procedure Make_Inequality_Operator (S : Entity_Id) is
Loc : constant Source_Ptr := Sloc (S);
Decl : Node_Id;
Formals : List_Id;
Op_Name : Entity_Id;
A : Entity_Id;
B : Entity_Id;
begin
-- Check that equality was properly defined.
if No (Next_Formal (First_Formal (S))) then
return;
end if;
A := Make_Defining_Identifier (Loc, Chars (First_Formal (S)));
B := Make_Defining_Identifier (Loc,
Chars (Next_Formal (First_Formal (S))));
Op_Name := Make_Defining_Operator_Symbol (Loc, Name_Op_Ne);
Formals := New_List (
Make_Parameter_Specification (Loc,
Defining_Identifier => A,
Parameter_Type =>
New_Reference_To (Etype (First_Formal (S)), Loc)),
Make_Parameter_Specification (Loc,
Defining_Identifier => B,
Parameter_Type =>
New_Reference_To (Etype (Next_Formal (First_Formal (S))), Loc)));
Decl :=
Make_Subprogram_Declaration (Loc,
Specification =>
Make_Function_Specification (Loc,
Defining_Unit_Name => Op_Name,
Parameter_Specifications => Formals,
Subtype_Mark => New_Reference_To (Standard_Boolean, Loc)));
-- Insert inequality right after equality if it is explicit or after
-- the derived type when implicit. These entities are created only
-- for visibility purposes, and eventually replaced in the course of
-- expansion, so they do not need to be attached to the tree and seen
-- by the back-end. Keeping them internal also avoids spurious freezing
-- problems. The parent field is set simply to make analysis safe.
if No (Alias (S)) then
Set_Parent (Decl, Parent (Unit_Declaration_Node (S)));
else
Set_Parent (Decl, Parent (Parent (Etype (First_Formal (S)))));
end if;
Mark_Rewrite_Insertion (Decl);
Set_Is_Intrinsic_Subprogram (Op_Name);
Analyze (Decl);
Set_Has_Completion (Op_Name);
Set_Corresponding_Equality (Op_Name, S);
Set_Is_Abstract (Op_Name, Is_Abstract (S));
end Make_Inequality_Operator;
----------------------
-- May_Need_Actuals --
----------------------
procedure May_Need_Actuals (Fun : Entity_Id) is
F : Entity_Id;
B : Boolean;
begin
F := First_Formal (Fun);
B := True;
while Present (F) loop
if No (Default_Value (F)) then
B := False;
exit;
end if;
Next_Formal (F);
end loop;
Set_Needs_No_Actuals (Fun, B);
end May_Need_Actuals;
---------------------
-- Mode_Conformant --
---------------------
function Mode_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
Result : Boolean;
begin
Check_Conformance (New_Id, Old_Id, Mode_Conformant, False, Result);
return Result;
end Mode_Conformant;
---------------------------
-- New_Overloaded_Entity --
---------------------------
procedure New_Overloaded_Entity
(S : Entity_Id;
Derived_Type : Entity_Id := Empty)
is
E : Entity_Id;
-- Entity that S overrides
Prev_Vis : Entity_Id := Empty;
-- Needs comment ???
function Is_Private_Declaration (E : Entity_Id) return Boolean;
-- Check that E is declared in the private part of the current package,
-- or in the package body, where it may hide a previous declaration.
-- We can't use In_Private_Part by itself because this flag is also
-- set when freezing entities, so we must examine the place of the
-- declaration in the tree, and recognize wrapper packages as well.
procedure Maybe_Primitive_Operation (Overriding : Boolean := False);
-- If the subprogram being analyzed is a primitive operation of
-- the type of one of its formals, set the corresponding flag.
----------------------------
-- Is_Private_Declaration --
----------------------------
function Is_Private_Declaration (E : Entity_Id) return Boolean is
Priv_Decls : List_Id;
Decl : constant Node_Id := Unit_Declaration_Node (E);
begin
if Is_Package (Current_Scope)
and then In_Private_Part (Current_Scope)
then
Priv_Decls :=
Private_Declarations (
Specification (Unit_Declaration_Node (Current_Scope)));
return In_Package_Body (Current_Scope)
or else List_Containing (Decl) = Priv_Decls
or else (Nkind (Parent (Decl)) = N_Package_Specification
and then not Is_Compilation_Unit (
Defining_Entity (Parent (Decl)))
and then List_Containing (Parent (Parent (Decl)))
= Priv_Decls);
else
return False;
end if;
end Is_Private_Declaration;
-------------------------------
-- Maybe_Primitive_Operation --
-------------------------------
procedure Maybe_Primitive_Operation (Overriding : Boolean := False) is
Formal : Entity_Id;
F_Typ : Entity_Id;
B_Typ : Entity_Id;
function Visible_Part_Type (T : Entity_Id) return Boolean;
-- Returns true if T is declared in the visible part of
-- the current package scope; otherwise returns false.
-- Assumes that T is declared in a package.
procedure Check_Private_Overriding (T : Entity_Id);
-- Checks that if a primitive abstract subprogram of a visible
-- abstract type is declared in a private part, then it must
-- override an abstract subprogram declared in the visible part.
-- Also checks that if a primitive function with a controlling
-- result is declared in a private part, then it must override
-- a function declared in the visible part.
------------------------------
-- Check_Private_Overriding --
------------------------------
procedure Check_Private_Overriding (T : Entity_Id) is
begin
if Ekind (Current_Scope) = E_Package
and then In_Private_Part (Current_Scope)
and then Visible_Part_Type (T)
and then not In_Instance
then
if Is_Abstract (T)
and then Is_Abstract (S)
and then (not Overriding or else not Is_Abstract (E))
then
Error_Msg_N ("abstract subprograms must be visible "
& "('R'M 3.9.3(10))!", S);
elsif Ekind (S) = E_Function
and then Is_Tagged_Type (T)
and then T = Base_Type (Etype (S))
and then not Overriding
then
Error_Msg_N
("private function with tagged result must"
& " override visible-part function", S);
Error_Msg_N
("\move subprogram to the visible part"
& " ('R'M 3.9.3(10))", S);
end if;
end if;
end Check_Private_Overriding;
-----------------------
-- Visible_Part_Type --
-----------------------
function Visible_Part_Type (T : Entity_Id) return Boolean is
P : constant Node_Id := Unit_Declaration_Node (Scope (T));
N : Node_Id;
begin
-- If the entity is a private type, then it must be
-- declared in a visible part.
if Ekind (T) in Private_Kind then
return True;
end if;
-- Otherwise, we traverse the visible part looking for its
-- corresponding declaration. We cannot use the declaration
-- node directly because in the private part the entity of a
-- private type is the one in the full view, which does not
-- indicate that it is the completion of something visible.
N := First (Visible_Declarations (Specification (P)));
while Present (N) loop
if Nkind (N) = N_Full_Type_Declaration
and then Present (Defining_Identifier (N))
and then T = Defining_Identifier (N)
then
return True;
elsif (Nkind (N) = N_Private_Type_Declaration
or else
Nkind (N) = N_Private_Extension_Declaration)
and then Present (Defining_Identifier (N))
and then T = Full_View (Defining_Identifier (N))
then
return True;
end if;
Next (N);
end loop;
return False;
end Visible_Part_Type;
-- Start of processing for Maybe_Primitive_Operation
begin
if not Comes_From_Source (S) then
null;
elsif (Ekind (Current_Scope) = E_Package
and then not In_Package_Body (Current_Scope))
or else Overriding
then
-- For function, check return type
if Ekind (S) = E_Function then
B_Typ := Base_Type (Etype (S));
if Scope (B_Typ) = Current_Scope then
Set_Has_Primitive_Operations (B_Typ);
Check_Private_Overriding (B_Typ);
end if;
end if;
-- For all subprograms, check formals
Formal := First_Formal (S);
while Present (Formal) loop
if Ekind (Etype (Formal)) = E_Anonymous_Access_Type then
F_Typ := Designated_Type (Etype (Formal));
else
F_Typ := Etype (Formal);
end if;
B_Typ := Base_Type (F_Typ);
if Scope (B_Typ) = Current_Scope then
Set_Has_Primitive_Operations (B_Typ);
Check_Private_Overriding (B_Typ);
end if;
Next_Formal (Formal);
end loop;
end if;
end Maybe_Primitive_Operation;
-- Start of processing for New_Overloaded_Entity
begin
-- We need to look for an entity that S may override. This must be a
-- homonym in the current scope, so we look for the first homonym of
-- S in the current scope as the starting point for the search.
E := Current_Entity_In_Scope (S);
-- If there is no homonym then this is definitely not overriding
if No (E) then
Enter_Overloaded_Entity (S);
Check_Dispatching_Operation (S, Empty);
Maybe_Primitive_Operation;
-- If there is a homonym that is not overloadable, then we have an
-- error, except for the special cases checked explicitly below.
elsif not Is_Overloadable (E) then
-- Check for spurious conflict produced by a subprogram that has the
-- same name as that of the enclosing generic package. The conflict
-- occurs within an instance, between the subprogram and the renaming
-- declaration for the package. After the subprogram, the package
-- renaming declaration becomes hidden.
if Ekind (E) = E_Package
and then Present (Renamed_Object (E))
and then Renamed_Object (E) = Current_Scope
and then Nkind (Parent (Renamed_Object (E))) =
N_Package_Specification
and then Present (Generic_Parent (Parent (Renamed_Object (E))))
then
Set_Is_Hidden (E);
Set_Is_Immediately_Visible (E, False);
Enter_Overloaded_Entity (S);
Set_Homonym (S, Homonym (E));
Check_Dispatching_Operation (S, Empty);
-- If the subprogram is implicit it is hidden by the previous
-- declaration. However if it is dispatching, it must appear in
-- the dispatch table anyway, because it can be dispatched to
-- even if it cannot be called directly.
elsif Present (Alias (S))
and then not Comes_From_Source (S)
then
Set_Scope (S, Current_Scope);
if Is_Dispatching_Operation (Alias (S)) then
Check_Dispatching_Operation (S, Empty);
end if;
return;
else
Error_Msg_Sloc := Sloc (E);
Error_Msg_N ("& conflicts with declaration#", S);
-- Useful additional warning
if Is_Generic_Unit (E) then
Error_Msg_N ("\previous generic unit cannot be overloaded", S);
end if;
return;
end if;
-- E exists and is overloadable
else
-- Loop through E and its homonyms to determine if any of them
-- is the candidate for overriding by S.
while Present (E) loop
-- Definitely not interesting if not in the current scope
if Scope (E) /= Current_Scope then
null;
-- Check if we have type conformance
elsif Type_Conformant (E, S) then
-- If the old and new entities have the same profile and
-- one is not the body of the other, then this is an error,
-- unless one of them is implicitly declared.
-- There are some cases when both can be implicit, for example
-- when both a literal and a function that overrides it are
-- inherited in a derivation, or when an inhertited operation
-- of a tagged full type overrides the ineherited operation of
-- a private extension. Ada 83 had a special rule for the
-- the literal case. In Ada95, the later implicit operation
-- hides the former, and the literal is always the former.
-- In the odd case where both are derived operations declared
-- at the same point, both operations should be declared,
-- and in that case we bypass the following test and proceed
-- to the next part (this can only occur for certain obscure
-- cases involving homographs in instances and can't occur for
-- dispatching operations ???). Note that the following
-- condition is less than clear. For example, it's not at
-- all clear why there's a test for E_Entry here. ???
if Present (Alias (S))
and then (No (Alias (E))
or else Comes_From_Source (E)
or else Is_Dispatching_Operation (E))
and then
(Ekind (E) = E_Entry
or else Ekind (E) /= E_Enumeration_Literal)
then
-- When an derived operation is overloaded it may be due
-- to the fact that the full view of a private extension
-- re-inherits. It has to be dealt with.
if Is_Package (Current_Scope)
and then In_Private_Part (Current_Scope)
then
Check_Operation_From_Private_View (S, E);
end if;
-- In any case the implicit operation remains hidden by
-- the existing declaration, which is overriding.
Set_Is_Overriding_Operation (E);
return;
-- Within an instance, the renaming declarations for
-- actual subprograms may become ambiguous, but they do
-- not hide each other.
elsif Ekind (E) /= E_Entry
and then not Comes_From_Source (E)
and then not Is_Generic_Instance (E)
and then (Present (Alias (E))
or else Is_Intrinsic_Subprogram (E))
and then (not In_Instance
or else No (Parent (E))
or else Nkind (Unit_Declaration_Node (E)) /=
N_Subprogram_Renaming_Declaration)
then
-- A subprogram child unit is not allowed to override
-- an inherited subprogram (10.1.1(20)).
if Is_Child_Unit (S) then
Error_Msg_N
("child unit overrides inherited subprogram in parent",
S);
return;
end if;
if Is_Non_Overriding_Operation (E, S) then
Enter_Overloaded_Entity (S);
if not Present (Derived_Type)
or else Is_Tagged_Type (Derived_Type)
then
Check_Dispatching_Operation (S, Empty);
end if;
return;
end if;
-- E is a derived operation or an internal operator which
-- is being overridden. Remove E from further visibility.
-- Furthermore, if E is a dispatching operation, it must be
-- replaced in the list of primitive operations of its type
-- (see Override_Dispatching_Operation).
declare
Prev : Entity_Id;
begin
Prev := First_Entity (Current_Scope);
while Present (Prev)
and then Next_Entity (Prev) /= E
loop
Next_Entity (Prev);
end loop;
-- It is possible for E to be in the current scope and
-- yet not in the entity chain. This can only occur in a
-- generic context where E is an implicit concatenation
-- in the formal part, because in a generic body the
-- entity chain starts with the formals.
pragma Assert
(Present (Prev) or else Chars (E) = Name_Op_Concat);
-- E must be removed both from the entity_list of the
-- current scope, and from the visibility chain
if Debug_Flag_E then
Write_Str ("Override implicit operation ");
Write_Int (Int (E));
Write_Eol;
end if;
-- If E is a predefined concatenation, it stands for four
-- different operations. As a result, a single explicit
-- declaration does not hide it. In a possible ambiguous
-- situation, Disambiguate chooses the user-defined op,
-- so it is correct to retain the previous internal one.
if Chars (E) /= Name_Op_Concat
or else Ekind (E) /= E_Operator
then
-- For nondispatching derived operations that are
-- overridden by a subprogram declared in the private
-- part of a package, we retain the derived subprogram
-- but mark it as not immediately visible. If the
-- derived operation was declared in the visible part
-- then this ensures that it will still be visible
-- outside the package with the proper signature
-- (calls from outside must also be directed to this
-- version rather than the overriding one, unlike the
-- dispatching case). Calls from inside the package
-- will still resolve to the overriding subprogram
-- since the derived one is marked as not visible
-- within the package.
-- If the private operation is dispatching, we achieve
-- the overriding by keeping the implicit operation
-- but setting its alias to be the overring one. In
-- this fashion the proper body is executed in all
-- cases, but the original signature is used outside
-- of the package.
-- If the overriding is not in the private part, we
-- remove the implicit operation altogether.
if Is_Private_Declaration (S) then
if not Is_Dispatching_Operation (E) then
Set_Is_Immediately_Visible (E, False);
else
-- work done in Override_Dispatching_Operation.
null;
end if;
else
-- Find predecessor of E in Homonym chain
if E = Current_Entity (E) then
Prev_Vis := Empty;
else
Prev_Vis := Current_Entity (E);
while Homonym (Prev_Vis) /= E loop
Prev_Vis := Homonym (Prev_Vis);
end loop;
end if;
if Prev_Vis /= Empty then
-- Skip E in the visibility chain
Set_Homonym (Prev_Vis, Homonym (E));
else
Set_Name_Entity_Id (Chars (E), Homonym (E));
end if;
Set_Next_Entity (Prev, Next_Entity (E));
if No (Next_Entity (Prev)) then
Set_Last_Entity (Current_Scope, Prev);
end if;
end if;
end if;
Enter_Overloaded_Entity (S);
Set_Is_Overriding_Operation (S);
if Is_Dispatching_Operation (E) then
-- An overriding dispatching subprogram inherits
-- the convention of the overridden subprogram
-- (by AI-117).
Set_Convention (S, Convention (E));
Check_Dispatching_Operation (S, E);
else
Check_Dispatching_Operation (S, Empty);
end if;
Maybe_Primitive_Operation (Overriding => True);
goto Check_Inequality;
end;
-- Apparent redeclarations in instances can occur when two
-- formal types get the same actual type. The subprograms in
-- in the instance are legal, even if not callable from the
-- outside. Calls from within are disambiguated elsewhere.
-- For dispatching operations in the visible part, the usual
-- rules apply, and operations with the same profile are not
-- legal (B830001).
elsif (In_Instance_Visible_Part
and then not Is_Dispatching_Operation (E))
or else In_Instance_Not_Visible
then
null;
-- Here we have a real error (identical profile)
else
Error_Msg_Sloc := Sloc (E);
-- Avoid cascaded errors if the entity appears in
-- subsequent calls.
Set_Scope (S, Current_Scope);
Error_Msg_N ("& conflicts with declaration#", S);
if Is_Generic_Instance (S)
and then not Has_Completion (E)
then
Error_Msg_N
("\instantiation cannot provide body for it", S);
end if;
return;
end if;
else
null;
end if;
Prev_Vis := E;
E := Homonym (E);
end loop;
-- On exit, we know that S is a new entity
Enter_Overloaded_Entity (S);
Maybe_Primitive_Operation;
-- If S is a derived operation for an untagged type then
-- by definition it's not a dispatching operation (even
-- if the parent operation was dispatching), so we don't
-- call Check_Dispatching_Operation in that case.
if not Present (Derived_Type)
or else Is_Tagged_Type (Derived_Type)
then
Check_Dispatching_Operation (S, Empty);
end if;
end if;
-- If this is a user-defined equality operator that is not
-- a derived subprogram, create the corresponding inequality.
-- If the operation is dispatching, the expansion is done
-- elsewhere, and we do not create an explicit inequality
-- operation.
<<Check_Inequality>>
if Chars (S) = Name_Op_Eq
and then Etype (S) = Standard_Boolean
and then Present (Parent (S))
and then not Is_Dispatching_Operation (S)
then
Make_Inequality_Operator (S);
end if;
end New_Overloaded_Entity;
---------------------
-- Process_Formals --
---------------------
procedure Process_Formals
(T : List_Id;
Related_Nod : Node_Id)
is
Param_Spec : Node_Id;
Formal : Entity_Id;
Formal_Type : Entity_Id;
Default : Node_Id;
Ptype : Entity_Id;
function Is_Class_Wide_Default (D : Node_Id) return Boolean;
-- Check whether the default has a class-wide type. After analysis
-- the default has the type of the formal, so we must also check
-- explicitly for an access attribute.
---------------------------
-- Is_Class_Wide_Default --
---------------------------
function Is_Class_Wide_Default (D : Node_Id) return Boolean is
begin
return Is_Class_Wide_Type (Designated_Type (Etype (D)))
or else (Nkind (D) = N_Attribute_Reference
and then Attribute_Name (D) = Name_Access
and then Is_Class_Wide_Type (Etype (Prefix (D))));
end Is_Class_Wide_Default;
-- Start of processing for Process_Formals
begin
-- In order to prevent premature use of the formals in the same formal
-- part, the Ekind is left undefined until all default expressions are
-- analyzed. The Ekind is established in a separate loop at the end.
Param_Spec := First (T);
while Present (Param_Spec) loop
Formal := Defining_Identifier (Param_Spec);
Enter_Name (Formal);
-- Case of ordinary parameters
if Nkind (Parameter_Type (Param_Spec)) /= N_Access_Definition then
Find_Type (Parameter_Type (Param_Spec));
Ptype := Parameter_Type (Param_Spec);
if Ptype = Error then
goto Continue;
end if;
Formal_Type := Entity (Ptype);
if Ekind (Formal_Type) = E_Incomplete_Type
or else (Is_Class_Wide_Type (Formal_Type)
and then Ekind (Root_Type (Formal_Type)) =
E_Incomplete_Type)
then
-- Ada 0Y (AI-50217): Incomplete tagged types that are made
-- visible through a limited with_clause are valid formal
-- types.
if From_With_Type (Formal_Type)
and then Is_Tagged_Type (Formal_Type)
then
null;
elsif Nkind (Parent (T)) /= N_Access_Function_Definition
and then Nkind (Parent (T)) /= N_Access_Procedure_Definition
then
Error_Msg_N ("invalid use of incomplete type", Param_Spec);
end if;
elsif Ekind (Formal_Type) = E_Void then
Error_Msg_NE ("premature use of&",
Parameter_Type (Param_Spec), Formal_Type);
end if;
-- Ada 0Y (AI-231): Create and decorate an internal subtype
-- declaration corresponding to the null-excluding type of the
-- formal in the enclosing scope. In addition, replace the
-- parameter type of the formal to this internal subtype.
if Null_Exclusion_Present (Param_Spec) then
declare
Loc : constant Source_Ptr := Sloc (Param_Spec);
Anon : constant Entity_Id :=
Make_Defining_Identifier (Loc,
Chars => New_Internal_Name ('S'));
Curr_Scope : constant Scope_Stack_Entry :=
Scope_Stack.Table (Scope_Stack.Last);
Ptype : constant Node_Id := Parameter_Type (Param_Spec);
Decl : Node_Id;
P : Node_Id := Parent (Parent (Related_Nod));
begin
Set_Is_Internal (Anon);
Decl :=
Make_Subtype_Declaration (Loc,
Defining_Identifier => Anon,
Null_Exclusion_Present => True,
Subtype_Indication =>
New_Occurrence_Of (Etype (Ptype), Loc));
-- Propagate the null-excluding attribute to the new entity
if Null_Exclusion_Present (Param_Spec) then
Set_Null_Exclusion_Present (Param_Spec, False);
Set_Can_Never_Be_Null (Anon);
end if;
Mark_Rewrite_Insertion (Decl);
-- Insert the new declaration in the nearest enclosing scope
while not Has_Declarations (P) loop
P := Parent (P);
end loop;
Prepend (Decl, Declarations (P));
Rewrite (Ptype, New_Occurrence_Of (Anon, Loc));
Mark_Rewrite_Insertion (Ptype);
-- Analyze the new declaration in the context of the
-- enclosing scope
Scope_Stack.Decrement_Last;
Analyze (Decl);
Scope_Stack.Append (Curr_Scope);
Formal_Type := Anon;
end;
end if;
-- Ada 0Y (AI-231): Static checks
if Null_Exclusion_Present (Param_Spec)
or else Can_Never_Be_Null (Entity (Ptype))
then
Null_Exclusion_Static_Checks (Param_Spec);
end if;
-- An access formal type
else
Formal_Type :=
Access_Definition (Related_Nod, Parameter_Type (Param_Spec));
-- Ada 0Y (AI-254)
declare
AD : constant Node_Id :=
Access_To_Subprogram_Definition
(Parameter_Type (Param_Spec));
begin
if Present (AD) and then Protected_Present (AD) then
Formal_Type :=
Replace_Anonymous_Access_To_Protected_Subprogram
(Param_Spec, Formal_Type);
end if;
end;
end if;
Set_Etype (Formal, Formal_Type);
Default := Expression (Param_Spec);
if Present (Default) then
if Out_Present (Param_Spec) then
Error_Msg_N
("default initialization only allowed for IN parameters",
Param_Spec);
end if;
-- Do the special preanalysis of the expression (see section on
-- "Handling of Default Expressions" in the spec of package Sem).
Analyze_Per_Use_Expression (Default, Formal_Type);
-- Check that the designated type of an access parameter's
-- default is not a class-wide type unless the parameter's
-- designated type is also class-wide.
if Ekind (Formal_Type) = E_Anonymous_Access_Type
and then Is_Class_Wide_Default (Default)
and then not Is_Class_Wide_Type (Designated_Type (Formal_Type))
then
Error_Msg_N
("access to class-wide expression not allowed here", Default);
end if;
end if;
<<Continue>>
Next (Param_Spec);
end loop;
-- Now set the kind (mode) of each formal
Param_Spec := First (T);
while Present (Param_Spec) loop
Formal := Defining_Identifier (Param_Spec);
Set_Formal_Mode (Formal);
if Ekind (Formal) = E_In_Parameter then
Set_Default_Value (Formal, Expression (Param_Spec));
if Present (Expression (Param_Spec)) then
Default := Expression (Param_Spec);
if Is_Scalar_Type (Etype (Default)) then
if Nkind
(Parameter_Type (Param_Spec)) /= N_Access_Definition
then
Formal_Type := Entity (Parameter_Type (Param_Spec));
else
Formal_Type := Access_Definition
(Related_Nod, Parameter_Type (Param_Spec));
end if;
Apply_Scalar_Range_Check (Default, Formal_Type);
end if;
end if;
end if;
Next (Param_Spec);
end loop;
end Process_Formals;
----------------------------
-- Reference_Body_Formals --
----------------------------
procedure Reference_Body_Formals (Spec : Entity_Id; Bod : Entity_Id) is
Fs : Entity_Id;
Fb : Entity_Id;
begin
if Error_Posted (Spec) then
return;
end if;
Fs := First_Formal (Spec);
Fb := First_Formal (Bod);
while Present (Fs) loop
Generate_Reference (Fs, Fb, 'b');
if Style_Check then
Style.Check_Identifier (Fb, Fs);
end if;
Set_Spec_Entity (Fb, Fs);
Set_Referenced (Fs, False);
Next_Formal (Fs);
Next_Formal (Fb);
end loop;
end Reference_Body_Formals;
-------------------------
-- Set_Actual_Subtypes --
-------------------------
procedure Set_Actual_Subtypes (N : Node_Id; Subp : Entity_Id) is
Loc : constant Source_Ptr := Sloc (N);
Decl : Node_Id;
Formal : Entity_Id;
T : Entity_Id;
First_Stmt : Node_Id := Empty;
AS_Needed : Boolean;
begin
-- If this is an emtpy initialization procedure, no need to create
-- actual subtypes (small optimization).
if Ekind (Subp) = E_Procedure
and then Is_Null_Init_Proc (Subp)
then
return;
end if;
Formal := First_Formal (Subp);
while Present (Formal) loop
T := Etype (Formal);
-- We never need an actual subtype for a constrained formal.
if Is_Constrained (T) then
AS_Needed := False;
-- If we have unknown discriminants, then we do not need an
-- actual subtype, or more accurately we cannot figure it out!
-- Note that all class-wide types have unknown discriminants.
elsif Has_Unknown_Discriminants (T) then
AS_Needed := False;
-- At this stage we have an unconstrained type that may need
-- an actual subtype. For sure the actual subtype is needed
-- if we have an unconstrained array type.
elsif Is_Array_Type (T) then
AS_Needed := True;
-- The only other case which needs an actual subtype is an
-- unconstrained record type which is an IN parameter (we
-- cannot generate actual subtypes for the OUT or IN OUT case,
-- since an assignment can change the discriminant values.
-- However we exclude the case of initialization procedures,
-- since discriminants are handled very specially in this context,
-- see the section entitled "Handling of Discriminants" in Einfo.
-- We also exclude the case of Discrim_SO_Functions (functions
-- used in front end layout mode for size/offset values), since
-- in such functions only discriminants are referenced, and not
-- only are such subtypes not needed, but they cannot always
-- be generated, because of order of elaboration issues.
elsif Is_Record_Type (T)
and then Ekind (Formal) = E_In_Parameter
and then Chars (Formal) /= Name_uInit
and then not Is_Discrim_SO_Function (Subp)
then
AS_Needed := True;
-- All other cases do not need an actual subtype
else
AS_Needed := False;
end if;
-- Generate actual subtypes for unconstrained arrays and
-- unconstrained discriminated records.
if AS_Needed then
if Nkind (N) = N_Accept_Statement then
-- If expansion is active, The formal is replaced by a local
-- variable that renames the corresponding entry of the
-- parameter block, and it is this local variable that may
-- require an actual subtype.
if Expander_Active then
Decl := Build_Actual_Subtype (T, Renamed_Object (Formal));
else
Decl := Build_Actual_Subtype (T, Formal);
end if;
if Present (Handled_Statement_Sequence (N)) then
First_Stmt :=
First (Statements (Handled_Statement_Sequence (N)));
Prepend (Decl, Statements (Handled_Statement_Sequence (N)));
Mark_Rewrite_Insertion (Decl);
else
-- If the accept statement has no body, there will be
-- no reference to the actuals, so no need to compute
-- actual subtypes.
return;
end if;
else
Decl := Build_Actual_Subtype (T, Formal);
Prepend (Decl, Declarations (N));
Mark_Rewrite_Insertion (Decl);
end if;
-- The declaration uses the bounds of an existing object,
-- and therefore needs no constraint checks.
Analyze (Decl, Suppress => All_Checks);
-- We need to freeze manually the generated type when it is
-- inserted anywhere else than in a declarative part.
if Present (First_Stmt) then
Insert_List_Before_And_Analyze (First_Stmt,
Freeze_Entity (Defining_Identifier (Decl), Loc));
end if;
if Nkind (N) = N_Accept_Statement
and then Expander_Active
then
Set_Actual_Subtype (Renamed_Object (Formal),
Defining_Identifier (Decl));
else
Set_Actual_Subtype (Formal, Defining_Identifier (Decl));
end if;
end if;
Next_Formal (Formal);
end loop;
end Set_Actual_Subtypes;
---------------------
-- Set_Formal_Mode --
---------------------
procedure Set_Formal_Mode (Formal_Id : Entity_Id) is
Spec : constant Node_Id := Parent (Formal_Id);
begin
-- Note: we set Is_Known_Valid for IN parameters and IN OUT parameters
-- since we ensure that corresponding actuals are always valid at the
-- point of the call.
if Out_Present (Spec) then
if Ekind (Scope (Formal_Id)) = E_Function
or else Ekind (Scope (Formal_Id)) = E_Generic_Function
then
Error_Msg_N ("functions can only have IN parameters", Spec);
Set_Ekind (Formal_Id, E_In_Parameter);
elsif In_Present (Spec) then
Set_Ekind (Formal_Id, E_In_Out_Parameter);
else
Set_Ekind (Formal_Id, E_Out_Parameter);
Set_Never_Set_In_Source (Formal_Id, True);
Set_Is_True_Constant (Formal_Id, False);
Set_Current_Value (Formal_Id, Empty);
end if;
else
Set_Ekind (Formal_Id, E_In_Parameter);
end if;
-- Set Is_Known_Non_Null for access parameters since the language
-- guarantees that access parameters are always non-null. We also
-- set Can_Never_Be_Null, since there is no way to change the value.
if Nkind (Parameter_Type (Spec)) = N_Access_Definition then
-- Ada 0Y (AI-231): This behaviour has been modified in Ada 0Y.
-- It is only forced if the null_exclusion appears.
if not Extensions_Allowed
or else Null_Exclusion_Present (Spec)
then
Set_Is_Known_Non_Null (Formal_Id);
Set_Can_Never_Be_Null (Formal_Id);
end if;
end if;
Set_Mechanism (Formal_Id, Default_Mechanism);
Set_Formal_Validity (Formal_Id);
end Set_Formal_Mode;
-------------------------
-- Set_Formal_Validity --
-------------------------
procedure Set_Formal_Validity (Formal_Id : Entity_Id) is
begin
-- If no validity checking, then we cannot assume anything about
-- the validity of parameters, since we do not know there is any
-- checking of the validity on the call side.
if not Validity_Checks_On then
return;
-- If validity checking for parameters is enabled, this means we are
-- not supposed to make any assumptions about argument values.
elsif Validity_Check_Parameters then
return;
-- If we are checking in parameters, we will assume that the caller is
-- also checking parameters, so we can assume the parameter is valid.
elsif Ekind (Formal_Id) = E_In_Parameter
and then Validity_Check_In_Params
then
Set_Is_Known_Valid (Formal_Id, True);
-- Similar treatment for IN OUT parameters
elsif Ekind (Formal_Id) = E_In_Out_Parameter
and then Validity_Check_In_Out_Params
then
Set_Is_Known_Valid (Formal_Id, True);
end if;
end Set_Formal_Validity;
------------------------
-- Subtype_Conformant --
------------------------
function Subtype_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
Result : Boolean;
begin
Check_Conformance (New_Id, Old_Id, Subtype_Conformant, False, Result);
return Result;
end Subtype_Conformant;
---------------------
-- Type_Conformant --
---------------------
function Type_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
Result : Boolean;
begin
Check_Conformance (New_Id, Old_Id, Type_Conformant, False, Result);
return Result;
end Type_Conformant;
-------------------------------
-- Valid_Operator_Definition --
-------------------------------
procedure Valid_Operator_Definition (Designator : Entity_Id) is
N : Integer := 0;
F : Entity_Id;
Id : constant Name_Id := Chars (Designator);
N_OK : Boolean;
begin
F := First_Formal (Designator);
while Present (F) loop
N := N + 1;
if Present (Default_Value (F)) then
Error_Msg_N
("default values not allowed for operator parameters",
Parent (F));
end if;
Next_Formal (F);
end loop;
-- Verify that user-defined operators have proper number of arguments
-- First case of operators which can only be unary
if Id = Name_Op_Not
or else Id = Name_Op_Abs
then
N_OK := (N = 1);
-- Case of operators which can be unary or binary
elsif Id = Name_Op_Add
or Id = Name_Op_Subtract
then
N_OK := (N in 1 .. 2);
-- All other operators can only be binary
else
N_OK := (N = 2);
end if;
if not N_OK then
Error_Msg_N
("incorrect number of arguments for operator", Designator);
end if;
if Id = Name_Op_Ne
and then Base_Type (Etype (Designator)) = Standard_Boolean
and then not Is_Intrinsic_Subprogram (Designator)
then
Error_Msg_N
("explicit definition of inequality not allowed", Designator);
end if;
end Valid_Operator_Definition;
end Sem_Ch6;
|