1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
|
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- S E M _ C H 5 --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2002 Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 2, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING. If not, write --
-- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
-- MA 02111-1307, USA. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Atree; use Atree;
with Checks; use Checks;
with Einfo; use Einfo;
with Errout; use Errout;
with Expander; use Expander;
with Exp_Util; use Exp_Util;
with Freeze; use Freeze;
with Lib.Xref; use Lib.Xref;
with Nlists; use Nlists;
with Opt; use Opt;
with Sem; use Sem;
with Sem_Case; use Sem_Case;
with Sem_Ch3; use Sem_Ch3;
with Sem_Ch8; use Sem_Ch8;
with Sem_Disp; use Sem_Disp;
with Sem_Eval; use Sem_Eval;
with Sem_Res; use Sem_Res;
with Sem_Type; use Sem_Type;
with Sem_Util; use Sem_Util;
with Sem_Warn; use Sem_Warn;
with Stand; use Stand;
with Sinfo; use Sinfo;
with Tbuild; use Tbuild;
with Uintp; use Uintp;
package body Sem_Ch5 is
Unblocked_Exit_Count : Nat := 0;
-- This variable is used when processing if statements or case
-- statements, it counts the number of branches of the conditional
-- that are not blocked by unconditional transfer instructions. At
-- the end of processing, if the count is zero, it means that control
-- cannot fall through the conditional statement. This is used for
-- the generation of warning messages. This variable is recursively
-- saved on entry to processing an if or case, and restored on exit.
-----------------------
-- Local Subprograms --
-----------------------
procedure Analyze_Iteration_Scheme (N : Node_Id);
------------------------
-- Analyze_Assignment --
------------------------
procedure Analyze_Assignment (N : Node_Id) is
Lhs : constant Node_Id := Name (N);
Rhs : constant Node_Id := Expression (N);
T1, T2 : Entity_Id;
Decl : Node_Id;
procedure Diagnose_Non_Variable_Lhs (N : Node_Id);
-- N is the node for the left hand side of an assignment, and it
-- is not a variable. This routine issues an appropriate diagnostic.
procedure Set_Assignment_Type
(Opnd : Node_Id;
Opnd_Type : in out Entity_Id);
-- Opnd is either the Lhs or Rhs of the assignment, and Opnd_Type
-- is the nominal subtype. This procedure is used to deal with cases
-- where the nominal subtype must be replaced by the actual subtype.
-------------------------------
-- Diagnose_Non_Variable_Lhs --
-------------------------------
procedure Diagnose_Non_Variable_Lhs (N : Node_Id) is
begin
-- Not worth posting another error if left hand side already
-- flagged as being illegal in some respect
if Error_Posted (N) then
return;
-- Some special bad cases of entity names
elsif Is_Entity_Name (N) then
if Ekind (Entity (N)) = E_In_Parameter then
Error_Msg_N
("assignment to IN mode parameter not allowed", N);
return;
-- Private declarations in a protected object are turned into
-- constants when compiling a protected function.
elsif Present (Scope (Entity (N)))
and then Is_Protected_Type (Scope (Entity (N)))
and then
(Ekind (Current_Scope) = E_Function
or else
Ekind (Enclosing_Dynamic_Scope (Current_Scope)) = E_Function)
then
Error_Msg_N
("protected function cannot modify protected object", N);
return;
elsif Ekind (Entity (N)) = E_Loop_Parameter then
Error_Msg_N
("assignment to loop parameter not allowed", N);
return;
end if;
-- For indexed components, or selected components, test prefix
elsif Nkind (N) = N_Indexed_Component
or else Nkind (N) = N_Selected_Component
then
Diagnose_Non_Variable_Lhs (Prefix (N));
return;
end if;
-- If we fall through, we have no special message to issue!
Error_Msg_N ("left hand side of assignment must be a variable", N);
end Diagnose_Non_Variable_Lhs;
-------------------------
-- Set_Assignment_Type --
-------------------------
procedure Set_Assignment_Type
(Opnd : Node_Id;
Opnd_Type : in out Entity_Id)
is
begin
-- If the assignment operand is an in-out or out parameter, then we
-- get the actual subtype (needed for the unconstrained case).
if Is_Entity_Name (Opnd)
and then (Ekind (Entity (Opnd)) = E_Out_Parameter
or else Ekind (Entity (Opnd)) =
E_In_Out_Parameter
or else Ekind (Entity (Opnd)) =
E_Generic_In_Out_Parameter)
then
Opnd_Type := Get_Actual_Subtype (Opnd);
-- If assignment operand is a component reference, then we get the
-- actual subtype of the component for the unconstrained case.
elsif Nkind (Opnd) = N_Selected_Component
or else Nkind (Opnd) = N_Explicit_Dereference
then
Decl := Build_Actual_Subtype_Of_Component (Opnd_Type, Opnd);
if Present (Decl) then
Insert_Action (N, Decl);
Mark_Rewrite_Insertion (Decl);
Analyze (Decl);
Opnd_Type := Defining_Identifier (Decl);
Set_Etype (Opnd, Opnd_Type);
Freeze_Itype (Opnd_Type, N);
elsif Is_Constrained (Etype (Opnd)) then
Opnd_Type := Etype (Opnd);
end if;
-- For slice, use the constrained subtype created for the slice
elsif Nkind (Opnd) = N_Slice then
Opnd_Type := Etype (Opnd);
end if;
end Set_Assignment_Type;
-- Start of processing for Analyze_Assignment
begin
Analyze (Rhs);
Analyze (Lhs);
T1 := Etype (Lhs);
-- In the most general case, both Lhs and Rhs can be overloaded, and we
-- must compute the intersection of the possible types on each side.
if Is_Overloaded (Lhs) then
declare
I : Interp_Index;
It : Interp;
begin
T1 := Any_Type;
Get_First_Interp (Lhs, I, It);
while Present (It.Typ) loop
if Has_Compatible_Type (Rhs, It.Typ) then
if T1 /= Any_Type then
-- An explicit dereference is overloaded if the prefix
-- is. Try to remove the ambiguity on the prefix, the
-- error will be posted there if the ambiguity is real.
if Nkind (Lhs) = N_Explicit_Dereference then
declare
PI : Interp_Index;
PI1 : Interp_Index := 0;
PIt : Interp;
Found : Boolean;
begin
Found := False;
Get_First_Interp (Prefix (Lhs), PI, PIt);
while Present (PIt.Typ) loop
if Has_Compatible_Type (Rhs,
Designated_Type (PIt.Typ))
then
if Found then
PIt :=
Disambiguate (Prefix (Lhs),
PI1, PI, Any_Type);
if PIt = No_Interp then
return;
else
Resolve (Prefix (Lhs), PIt.Typ);
end if;
exit;
else
Found := True;
PI1 := PI;
end if;
end if;
Get_Next_Interp (PI, PIt);
end loop;
end;
else
Error_Msg_N
("ambiguous left-hand side in assignment", Lhs);
exit;
end if;
else
T1 := It.Typ;
end if;
end if;
Get_Next_Interp (I, It);
end loop;
end;
if T1 = Any_Type then
Error_Msg_N
("no valid types for left-hand side for assignment", Lhs);
return;
end if;
end if;
Resolve (Lhs, T1);
if not Is_Variable (Lhs) then
Diagnose_Non_Variable_Lhs (Lhs);
return;
elsif Is_Limited_Type (T1)
and then not Assignment_OK (Lhs)
and then not Assignment_OK (Original_Node (Lhs))
then
Error_Msg_N
("left hand of assignment must not be limited type", Lhs);
return;
end if;
-- Resolution may have updated the subtype, in case the left-hand
-- side is a private protected component. Use the correct subtype
-- to avoid scoping issues in the back-end.
T1 := Etype (Lhs);
Set_Assignment_Type (Lhs, T1);
Resolve (Rhs, T1);
-- Remaining steps are skipped if Rhs was synatactically in error
if Rhs = Error then
return;
end if;
T2 := Etype (Rhs);
Check_Unset_Reference (Rhs);
Note_Possible_Modification (Lhs);
if Covers (T1, T2) then
null;
else
Wrong_Type (Rhs, Etype (Lhs));
return;
end if;
Set_Assignment_Type (Rhs, T2);
if T1 = Any_Type or else T2 = Any_Type then
return;
end if;
if (Is_Class_Wide_Type (T2) or else Is_Dynamically_Tagged (Rhs))
and then not Is_Class_Wide_Type (T1)
then
Error_Msg_N ("dynamically tagged expression not allowed!", Rhs);
elsif Is_Class_Wide_Type (T1)
and then not Is_Class_Wide_Type (T2)
and then not Is_Tag_Indeterminate (Rhs)
and then not Is_Dynamically_Tagged (Rhs)
then
Error_Msg_N ("dynamically tagged expression required!", Rhs);
end if;
-- Tag propagation is done only in semantics mode only. If expansion
-- is on, the rhs tag indeterminate function call has been expanded
-- and tag propagation would have happened too late, so the
-- propagation take place in expand_call instead.
if not Expander_Active
and then Is_Class_Wide_Type (T1)
and then Is_Tag_Indeterminate (Rhs)
then
Propagate_Tag (Lhs, Rhs);
end if;
if Is_Scalar_Type (T1) then
Apply_Scalar_Range_Check (Rhs, Etype (Lhs));
elsif Is_Array_Type (T1) then
-- Assignment verifies that the length of the Lsh and Rhs are equal,
-- but of course the indices do not have to match.
Apply_Length_Check (Rhs, Etype (Lhs));
else
-- Discriminant checks are applied in the course of expansion.
null;
end if;
-- ??? a real accessibility check is needed when ???
-- Post warning for useless assignment
if Warn_On_Redundant_Constructs
-- We only warn for source constructs
and then Comes_From_Source (N)
-- Where the entity is the same on both sides
and then Is_Entity_Name (Lhs)
and then Is_Entity_Name (Rhs)
and then Entity (Lhs) = Entity (Rhs)
-- But exclude the case where the right side was an operation
-- that got rewritten (e.g. JUNK + K, where K was known to be
-- zero). We don't want to warn in such a case, since it is
-- reasonable to write such expressions especially when K is
-- defined symbolically in some other package.
and then Nkind (Original_Node (Rhs)) not in N_Op
then
Error_Msg_NE
("?useless assignment of & to itself", N, Entity (Lhs));
end if;
end Analyze_Assignment;
-----------------------------
-- Analyze_Block_Statement --
-----------------------------
procedure Analyze_Block_Statement (N : Node_Id) is
Decls : constant List_Id := Declarations (N);
Id : constant Node_Id := Identifier (N);
Ent : Entity_Id;
begin
-- If a label is present analyze it and mark it as referenced
if Present (Id) then
Analyze (Id);
Ent := Entity (Id);
Set_Ekind (Ent, E_Block);
Generate_Reference (Ent, N, ' ');
Generate_Definition (Ent);
if Nkind (Parent (Ent)) = N_Implicit_Label_Declaration then
Set_Label_Construct (Parent (Ent), N);
end if;
-- Otherwise create a label entity
else
Ent := New_Internal_Entity (E_Block, Current_Scope, Sloc (N), 'B');
Set_Identifier (N, New_Occurrence_Of (Ent, Sloc (N)));
end if;
Set_Etype (Ent, Standard_Void_Type);
Set_Block_Node (Ent, Identifier (N));
New_Scope (Ent);
if Present (Decls) then
Analyze_Declarations (Decls);
Check_Completion;
end if;
Analyze (Handled_Statement_Sequence (N));
Process_End_Label (Handled_Statement_Sequence (N), 'e', Ent);
-- Analyze exception handlers if present. Note that the test for
-- HSS being present is an error defence against previous errors.
if Present (Handled_Statement_Sequence (N))
and then Present (Exception_Handlers (Handled_Statement_Sequence (N)))
then
declare
S : Entity_Id := Scope (Ent);
begin
-- Indicate that enclosing scopes contain a block with handlers.
-- Only non-generic scopes need to be marked.
loop
Set_Has_Nested_Block_With_Handler (S);
exit when Is_Overloadable (S)
or else Ekind (S) = E_Package
or else Ekind (S) = E_Generic_Function
or else Ekind (S) = E_Generic_Package
or else Ekind (S) = E_Generic_Procedure;
S := Scope (S);
end loop;
end;
end if;
Check_References (Ent);
End_Scope;
end Analyze_Block_Statement;
----------------------------
-- Analyze_Case_Statement --
----------------------------
procedure Analyze_Case_Statement (N : Node_Id) is
Statements_Analyzed : Boolean := False;
-- Set True if at least some statement sequences get analyzed.
-- If False on exit, means we had a serious error that prevented
-- full analysis of the case statement, and as a result it is not
-- a good idea to output warning messages about unreachable code.
Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
-- Recursively save value of this global, will be restored on exit
procedure Non_Static_Choice_Error (Choice : Node_Id);
-- Error routine invoked by the generic instantiation below when
-- the case statement has a non static choice.
procedure Process_Statements (Alternative : Node_Id);
-- Analyzes all the statements associated to a case alternative.
-- Needed by the generic instantiation below.
package Case_Choices_Processing is new
Generic_Choices_Processing
(Get_Alternatives => Alternatives,
Get_Choices => Discrete_Choices,
Process_Empty_Choice => No_OP,
Process_Non_Static_Choice => Non_Static_Choice_Error,
Process_Associated_Node => Process_Statements);
use Case_Choices_Processing;
-- Instantiation of the generic choice processing package.
-----------------------------
-- Non_Static_Choice_Error --
-----------------------------
procedure Non_Static_Choice_Error (Choice : Node_Id) is
begin
Error_Msg_N ("choice given in case statement is not static", Choice);
end Non_Static_Choice_Error;
------------------------
-- Process_Statements --
------------------------
procedure Process_Statements (Alternative : Node_Id) is
begin
Unblocked_Exit_Count := Unblocked_Exit_Count + 1;
Statements_Analyzed := True;
Analyze_Statements (Statements (Alternative));
end Process_Statements;
-- Variables local to Analyze_Case_Statement.
Exp : Node_Id;
Exp_Type : Entity_Id;
Exp_Btype : Entity_Id;
Case_Table : Choice_Table_Type (1 .. Number_Of_Choices (N));
Last_Choice : Nat;
Dont_Care : Boolean;
Others_Present : Boolean;
-- Start of processing for Analyze_Case_Statement
begin
Unblocked_Exit_Count := 0;
Exp := Expression (N);
Analyze_And_Resolve (Exp, Any_Discrete);
Check_Unset_Reference (Exp);
Exp_Type := Etype (Exp);
Exp_Btype := Base_Type (Exp_Type);
-- The expression must be of a discrete type which must be determinable
-- independently of the context in which the expression occurs, but
-- using the fact that the expression must be of a discrete type.
-- Moreover, the type this expression must not be a character literal
-- (which is always ambiguous) or, for Ada-83, a generic formal type.
-- If error already reported by Resolve, nothing more to do
if Exp_Btype = Any_Discrete
or else Exp_Btype = Any_Type
then
return;
elsif Exp_Btype = Any_Character then
Error_Msg_N
("character literal as case expression is ambiguous", Exp);
return;
elsif Ada_83
and then (Is_Generic_Type (Exp_Btype)
or else Is_Generic_Type (Root_Type (Exp_Btype)))
then
Error_Msg_N
("(Ada 83) case expression cannot be of a generic type", Exp);
return;
end if;
-- If the case expression is a formal object of mode in out,
-- then treat it as having a nonstatic subtype by forcing
-- use of the base type (which has to get passed to
-- Check_Case_Choices below). Also use base type when
-- the case expression is parenthesized.
if Paren_Count (Exp) > 0
or else (Is_Entity_Name (Exp)
and then Ekind (Entity (Exp)) = E_Generic_In_Out_Parameter)
then
Exp_Type := Exp_Btype;
end if;
-- Call the instantiated Analyze_Choices which does the rest of the work
Analyze_Choices
(N, Exp_Type, Case_Table, Last_Choice, Dont_Care, Others_Present);
if Exp_Type = Universal_Integer and then not Others_Present then
Error_Msg_N ("case on universal integer requires OTHERS choice", Exp);
end if;
-- If all our exits were blocked by unconditional transfers of control,
-- then the entire CASE statement acts as an unconditional transfer of
-- control, so treat it like one, and check unreachable code. Skip this
-- test if we had serious errors preventing any statement analysis.
if Unblocked_Exit_Count = 0 and then Statements_Analyzed then
Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
Check_Unreachable_Code (N);
else
Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
end if;
end Analyze_Case_Statement;
----------------------------
-- Analyze_Exit_Statement --
----------------------------
-- If the exit includes a name, it must be the name of a currently open
-- loop. Otherwise there must be an innermost open loop on the stack,
-- to which the statement implicitly refers.
procedure Analyze_Exit_Statement (N : Node_Id) is
Target : constant Node_Id := Name (N);
Cond : constant Node_Id := Condition (N);
Scope_Id : Entity_Id;
U_Name : Entity_Id;
Kind : Entity_Kind;
begin
if No (Cond) then
Check_Unreachable_Code (N);
end if;
if Present (Target) then
Analyze (Target);
U_Name := Entity (Target);
if not In_Open_Scopes (U_Name) or else Ekind (U_Name) /= E_Loop then
Error_Msg_N ("invalid loop name in exit statement", N);
return;
else
Set_Has_Exit (U_Name);
end if;
else
U_Name := Empty;
end if;
for J in reverse 0 .. Scope_Stack.Last loop
Scope_Id := Scope_Stack.Table (J).Entity;
Kind := Ekind (Scope_Id);
if Kind = E_Loop
and then (No (Target) or else Scope_Id = U_Name) then
Set_Has_Exit (Scope_Id);
exit;
elsif Kind = E_Block or else Kind = E_Loop then
null;
else
Error_Msg_N
("cannot exit from program unit or accept statement", N);
exit;
end if;
end loop;
-- Verify that if present the condition is a Boolean expression.
if Present (Cond) then
Analyze_And_Resolve (Cond, Any_Boolean);
Check_Unset_Reference (Cond);
end if;
end Analyze_Exit_Statement;
----------------------------
-- Analyze_Goto_Statement --
----------------------------
procedure Analyze_Goto_Statement (N : Node_Id) is
Label : constant Node_Id := Name (N);
Scope_Id : Entity_Id;
Label_Scope : Entity_Id;
begin
Check_Unreachable_Code (N);
Analyze (Label);
if Entity (Label) = Any_Id then
return;
elsif Ekind (Entity (Label)) /= E_Label then
Error_Msg_N ("target of goto statement must be a label", Label);
return;
elsif not Reachable (Entity (Label)) then
Error_Msg_N ("target of goto statement is not reachable", Label);
return;
end if;
Label_Scope := Enclosing_Scope (Entity (Label));
for J in reverse 0 .. Scope_Stack.Last loop
Scope_Id := Scope_Stack.Table (J).Entity;
if Label_Scope = Scope_Id
or else (Ekind (Scope_Id) /= E_Block
and then Ekind (Scope_Id) /= E_Loop)
then
if Scope_Id /= Label_Scope then
Error_Msg_N
("cannot exit from program unit or accept statement", N);
end if;
return;
end if;
end loop;
raise Program_Error;
end Analyze_Goto_Statement;
--------------------------
-- Analyze_If_Statement --
--------------------------
-- A special complication arises in the analysis of if statements.
-- The expander has circuitry to completely deleted code that it
-- can tell will not be executed (as a result of compile time known
-- conditions). In the analyzer, we ensure that code that will be
-- deleted in this manner is analyzed but not expanded. This is
-- obviously more efficient, but more significantly, difficulties
-- arise if code is expanded and then eliminated (e.g. exception
-- table entries disappear).
procedure Analyze_If_Statement (N : Node_Id) is
E : Node_Id;
Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
-- Recursively save value of this global, will be restored on exit
Del : Boolean := False;
-- This flag gets set True if a True condition has been found,
-- which means that remaining ELSE/ELSIF parts are deleted.
procedure Analyze_Cond_Then (Cnode : Node_Id);
-- This is applied to either the N_If_Statement node itself or
-- to an N_Elsif_Part node. It deals with analyzing the condition
-- and the THEN statements associated with it.
procedure Analyze_Cond_Then (Cnode : Node_Id) is
Cond : constant Node_Id := Condition (Cnode);
Tstm : constant List_Id := Then_Statements (Cnode);
begin
Unblocked_Exit_Count := Unblocked_Exit_Count + 1;
Analyze_And_Resolve (Cond, Any_Boolean);
Check_Unset_Reference (Cond);
-- If already deleting, then just analyze then statements
if Del then
Analyze_Statements (Tstm);
-- Compile time known value, not deleting yet
elsif Compile_Time_Known_Value (Cond) then
-- If condition is True, then analyze the THEN statements
-- and set no expansion for ELSE and ELSIF parts.
if Is_True (Expr_Value (Cond)) then
Analyze_Statements (Tstm);
Del := True;
Expander_Mode_Save_And_Set (False);
-- If condition is False, analyze THEN with expansion off
else -- Is_False (Expr_Value (Cond))
Expander_Mode_Save_And_Set (False);
Analyze_Statements (Tstm);
Expander_Mode_Restore;
end if;
-- Not known at compile time, not deleting, normal analysis
else
Analyze_Statements (Tstm);
end if;
end Analyze_Cond_Then;
-- Start of Analyze_If_Statement
begin
-- Initialize exit count for else statements. If there is no else
-- part, this count will stay non-zero reflecting the fact that the
-- uncovered else case is an unblocked exit.
Unblocked_Exit_Count := 1;
Analyze_Cond_Then (N);
-- Now to analyze the elsif parts if any are present
if Present (Elsif_Parts (N)) then
E := First (Elsif_Parts (N));
while Present (E) loop
Analyze_Cond_Then (E);
Next (E);
end loop;
end if;
if Present (Else_Statements (N)) then
Analyze_Statements (Else_Statements (N));
end if;
-- If all our exits were blocked by unconditional transfers of control,
-- then the entire IF statement acts as an unconditional transfer of
-- control, so treat it like one, and check unreachable code.
if Unblocked_Exit_Count = 0 then
Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
Check_Unreachable_Code (N);
else
Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
end if;
if Del then
Expander_Mode_Restore;
end if;
end Analyze_If_Statement;
----------------------------------------
-- Analyze_Implicit_Label_Declaration --
----------------------------------------
-- An implicit label declaration is generated in the innermost
-- enclosing declarative part. This is done for labels as well as
-- block and loop names.
-- Note: any changes in this routine may need to be reflected in
-- Analyze_Label_Entity.
procedure Analyze_Implicit_Label_Declaration (N : Node_Id) is
Id : Node_Id := Defining_Identifier (N);
begin
Enter_Name (Id);
Set_Ekind (Id, E_Label);
Set_Etype (Id, Standard_Void_Type);
Set_Enclosing_Scope (Id, Current_Scope);
end Analyze_Implicit_Label_Declaration;
------------------------------
-- Analyze_Iteration_Scheme --
------------------------------
procedure Analyze_Iteration_Scheme (N : Node_Id) is
begin
-- For an infinite loop, there is no iteration scheme
if No (N) then
return;
else
declare
Cond : constant Node_Id := Condition (N);
begin
-- For WHILE loop, verify that the condition is a Boolean
-- expression and resolve and check it.
if Present (Cond) then
Analyze_And_Resolve (Cond, Any_Boolean);
Check_Unset_Reference (Cond);
-- Else we have a FOR loop
else
declare
LP : constant Node_Id := Loop_Parameter_Specification (N);
Id : constant Entity_Id := Defining_Identifier (LP);
DS : constant Node_Id := Discrete_Subtype_Definition (LP);
F : List_Id;
begin
Enter_Name (Id);
-- We always consider the loop variable to be referenced,
-- since the loop may be used just for counting purposes.
Generate_Reference (Id, N, ' ');
-- Check for case of loop variable hiding a local
-- variable (used later on to give a nice warning
-- if the hidden variable is never assigned).
declare
H : constant Entity_Id := Homonym (Id);
begin
if Present (H)
and then Enclosing_Dynamic_Scope (H) =
Enclosing_Dynamic_Scope (Id)
and then Ekind (H) = E_Variable
and then Is_Discrete_Type (Etype (H))
then
Set_Hiding_Loop_Variable (H, Id);
end if;
end;
-- Now analyze the subtype definition
Analyze (DS);
if DS = Error then
return;
end if;
-- The subtype indication may denote the completion
-- of an incomplete type declaration.
if Is_Entity_Name (DS)
and then Present (Entity (DS))
and then Is_Type (Entity (DS))
and then Ekind (Entity (DS)) = E_Incomplete_Type
then
Set_Entity (DS, Get_Full_View (Entity (DS)));
Set_Etype (DS, Entity (DS));
end if;
if not Is_Discrete_Type (Etype (DS)) then
Wrong_Type (DS, Any_Discrete);
Set_Etype (DS, Any_Type);
end if;
Make_Index (DS, LP);
Set_Ekind (Id, E_Loop_Parameter);
Set_Etype (Id, Etype (DS));
Set_Is_Known_Valid (Id, True);
-- The loop is not a declarative part, so the only entity
-- declared "within" must be frozen explicitly. Since the
-- type of this entity has already been frozen, this cannot
-- generate any freezing actions.
F := Freeze_Entity (Id, Sloc (LP));
pragma Assert (F = No_List);
-- Check for null or possibly null range and issue warning.
-- We suppress such messages in generic templates and
-- instances, because in practice they tend to be dubious
-- in these cases.
if Nkind (DS) = N_Range
and then Comes_From_Source (N)
and then not Inside_A_Generic
and then not In_Instance
then
declare
L : constant Node_Id := Low_Bound (DS);
H : constant Node_Id := High_Bound (DS);
Llo : Uint;
Lhi : Uint;
LOK : Boolean;
Hlo : Uint;
Hhi : Uint;
HOK : Boolean;
begin
Determine_Range (L, LOK, Llo, Lhi);
Determine_Range (H, HOK, Hlo, Hhi);
-- If range of loop is null, issue warning
if (LOK and HOK) and then Llo > Hhi then
Error_Msg_N
("?loop range is null, loop will not execute",
DS);
-- The other case for a warning is a reverse loop
-- where the upper bound is the integer literal
-- zero or one, and the lower bound can be positive.
elsif Reverse_Present (LP)
and then Nkind (H) = N_Integer_Literal
and then (Intval (H) = Uint_0
or else
Intval (H) = Uint_1)
and then Lhi > Hhi
then
Warn_On_Instance := True;
Error_Msg_N ("?loop range may be null", DS);
Warn_On_Instance := False;
end if;
end;
end if;
end;
end if;
end;
end if;
end Analyze_Iteration_Scheme;
-------------------
-- Analyze_Label --
-------------------
-- Important note: normally this routine is called from Analyze_Statements
-- which does a prescan, to make sure that the Reachable flags are set on
-- all labels before encountering a possible goto to one of these labels.
-- If expanded code analyzes labels via the normal Sem path, then it must
-- ensure that Reachable is set early enough to avoid problems in the case
-- of a forward goto.
procedure Analyze_Label (N : Node_Id) is
Lab : Entity_Id;
begin
Analyze (Identifier (N));
Lab := Entity (Identifier (N));
-- If we found a label mark it as reachable.
if Ekind (Lab) = E_Label then
Generate_Definition (Lab);
Set_Reachable (Lab);
if Nkind (Parent (Lab)) = N_Implicit_Label_Declaration then
Set_Label_Construct (Parent (Lab), N);
end if;
-- If we failed to find a label, it means the implicit declaration
-- of the label was hidden. A for-loop parameter can do this to a
-- label with the same name inside the loop, since the implicit label
-- declaration is in the innermost enclosing body or block statement.
else
Error_Msg_Sloc := Sloc (Lab);
Error_Msg_N
("implicit label declaration for & is hidden#",
Identifier (N));
end if;
end Analyze_Label;
--------------------------
-- Analyze_Label_Entity --
--------------------------
procedure Analyze_Label_Entity (E : Entity_Id) is
begin
Set_Ekind (E, E_Label);
Set_Etype (E, Standard_Void_Type);
Set_Enclosing_Scope (E, Current_Scope);
Set_Reachable (E, True);
end Analyze_Label_Entity;
----------------------------
-- Analyze_Loop_Statement --
----------------------------
procedure Analyze_Loop_Statement (N : Node_Id) is
Id : constant Node_Id := Identifier (N);
Ent : Entity_Id;
begin
if Present (Id) then
-- Make name visible, e.g. for use in exit statements. Loop
-- labels are always considered to be referenced.
Analyze (Id);
Ent := Entity (Id);
Generate_Reference (Ent, N, ' ');
Generate_Definition (Ent);
-- If we found a label, mark its type. If not, ignore it, since it
-- means we have a conflicting declaration, which would already have
-- been diagnosed at declaration time. Set Label_Construct of the
-- implicit label declaration, which is not created by the parser
-- for generic units.
if Ekind (Ent) = E_Label then
Set_Ekind (Ent, E_Loop);
if Nkind (Parent (Ent)) = N_Implicit_Label_Declaration then
Set_Label_Construct (Parent (Ent), N);
end if;
end if;
-- Case of no identifier present
else
Ent := New_Internal_Entity (E_Loop, Current_Scope, Sloc (N), 'L');
Set_Etype (Ent, Standard_Void_Type);
Set_Parent (Ent, N);
end if;
New_Scope (Ent);
Analyze_Iteration_Scheme (Iteration_Scheme (N));
Analyze_Statements (Statements (N));
Process_End_Label (N, 'e', Ent);
End_Scope;
end Analyze_Loop_Statement;
----------------------------
-- Analyze_Null_Statement --
----------------------------
-- Note: the semantics of the null statement is implemented by a single
-- null statement, too bad everything isn't as simple as this!
procedure Analyze_Null_Statement (N : Node_Id) is
pragma Warnings (Off, N);
begin
null;
end Analyze_Null_Statement;
------------------------
-- Analyze_Statements --
------------------------
procedure Analyze_Statements (L : List_Id) is
S : Node_Id;
begin
-- The labels declared in the statement list are reachable from
-- statements in the list. We do this as a prepass so that any
-- goto statement will be properly flagged if its target is not
-- reachable. This is not required, but is nice behavior!
S := First (L);
while Present (S) loop
if Nkind (S) = N_Label then
Analyze_Label (S);
end if;
Next (S);
end loop;
-- Perform semantic analysis on all statements
S := First (L);
while Present (S) loop
if Nkind (S) /= N_Label then
Analyze (S);
end if;
Next (S);
end loop;
-- Make labels unreachable. Visibility is not sufficient, because
-- labels in one if-branch for example are not reachable from the
-- other branch, even though their declarations are in the enclosing
-- declarative part.
S := First (L);
while Present (S) loop
if Nkind (S) = N_Label then
Set_Reachable (Entity (Identifier (S)), False);
end if;
Next (S);
end loop;
end Analyze_Statements;
----------------------------
-- Check_Unreachable_Code --
----------------------------
procedure Check_Unreachable_Code (N : Node_Id) is
Error_Loc : Source_Ptr;
P : Node_Id;
begin
if Is_List_Member (N)
and then Comes_From_Source (N)
then
declare
Nxt : Node_Id;
begin
Nxt := Original_Node (Next (N));
if Present (Nxt)
and then Comes_From_Source (Nxt)
and then Is_Statement (Nxt)
then
-- Special very annoying exception. If we have a return that
-- follows a raise, then we allow it without a warning, since
-- the Ada RM annoyingly requires a useless return here!
if Nkind (Original_Node (N)) /= N_Raise_Statement
or else Nkind (Nxt) /= N_Return_Statement
then
-- The rather strange shenanigans with the warning message
-- here reflects the fact that Kill_Dead_Code is very good
-- at removing warnings in deleted code, and this is one
-- warning we would prefer NOT to have removed :-)
Error_Loc := Sloc (Nxt);
-- If we have unreachable code, analyze and remove the
-- unreachable code, since it is useless and we don't
-- want to generate junk warnings.
-- We skip this step if we are not in code generation mode.
-- This is the one case where we remove dead code in the
-- semantics as opposed to the expander, and we do not want
-- to remove code if we are not in code generation mode,
-- since this messes up the ASIS trees.
-- Note that one might react by moving the whole circuit to
-- exp_ch5, but then we lose the warning in -gnatc mode.
if Operating_Mode = Generate_Code then
loop
Nxt := Next (N);
exit when No (Nxt) or else not Is_Statement (Nxt);
Analyze (Nxt);
Remove (Nxt);
Kill_Dead_Code (Nxt);
end loop;
end if;
-- Now issue the warning
Error_Msg ("?unreachable code", Error_Loc);
end if;
-- If the unconditional transfer of control instruction is
-- the last statement of a sequence, then see if our parent
-- is an IF statement, and if so adjust the unblocked exit
-- count of the if statement to reflect the fact that this
-- branch of the if is indeed blocked by a transfer of control.
else
P := Parent (N);
if Nkind (P) = N_If_Statement then
null;
elsif Nkind (P) = N_Elsif_Part then
P := Parent (P);
pragma Assert (Nkind (P) = N_If_Statement);
elsif Nkind (P) = N_Case_Statement_Alternative then
P := Parent (P);
pragma Assert (Nkind (P) = N_Case_Statement);
else
return;
end if;
Unblocked_Exit_Count := Unblocked_Exit_Count - 1;
end if;
end;
end if;
end Check_Unreachable_Code;
end Sem_Ch5;
|