1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
|
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- S E M _ C H 1 3 --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2011, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING3. If not, go to --
-- http://www.gnu.org/licenses for a complete copy of the license. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Aspects; use Aspects;
with Atree; use Atree;
with Checks; use Checks;
with Einfo; use Einfo;
with Elists; use Elists;
with Errout; use Errout;
with Exp_Disp; use Exp_Disp;
with Exp_Tss; use Exp_Tss;
with Exp_Util; use Exp_Util;
with Lib; use Lib;
with Lib.Xref; use Lib.Xref;
with Namet; use Namet;
with Nlists; use Nlists;
with Nmake; use Nmake;
with Opt; use Opt;
with Restrict; use Restrict;
with Rident; use Rident;
with Rtsfind; use Rtsfind;
with Sem; use Sem;
with Sem_Aux; use Sem_Aux;
with Sem_Ch3; use Sem_Ch3;
with Sem_Ch6; use Sem_Ch6;
with Sem_Ch8; use Sem_Ch8;
with Sem_Eval; use Sem_Eval;
with Sem_Res; use Sem_Res;
with Sem_Type; use Sem_Type;
with Sem_Util; use Sem_Util;
with Sem_Warn; use Sem_Warn;
with Sinput; use Sinput;
with Snames; use Snames;
with Stand; use Stand;
with Sinfo; use Sinfo;
with Stringt; use Stringt;
with Targparm; use Targparm;
with Ttypes; use Ttypes;
with Tbuild; use Tbuild;
with Urealp; use Urealp;
with Warnsw; use Warnsw;
with GNAT.Heap_Sort_G;
package body Sem_Ch13 is
SSU : constant Pos := System_Storage_Unit;
-- Convenient short hand for commonly used constant
-----------------------
-- Local Subprograms --
-----------------------
procedure Alignment_Check_For_Esize_Change (Typ : Entity_Id);
-- This routine is called after setting the Esize of type entity Typ.
-- The purpose is to deal with the situation where an alignment has been
-- inherited from a derived type that is no longer appropriate for the
-- new Esize value. In this case, we reset the Alignment to unknown.
procedure Build_Predicate_Function (Typ : Entity_Id; N : Node_Id);
-- If Typ has predicates (indicated by Has_Predicates being set for Typ,
-- then either there are pragma Invariant entries on the rep chain for the
-- type (note that Predicate aspects are converted to pragma Predicate), or
-- there are inherited aspects from a parent type, or ancestor subtypes.
-- This procedure builds the spec and body for the Predicate function that
-- tests these predicates. N is the freeze node for the type. The spec of
-- the function is inserted before the freeze node, and the body of the
-- function is inserted after the freeze node.
procedure Build_Static_Predicate
(Typ : Entity_Id;
Expr : Node_Id;
Nam : Name_Id);
-- Given a predicated type Typ, where Typ is a discrete static subtype,
-- whose predicate expression is Expr, tests if Expr is a static predicate,
-- and if so, builds the predicate range list. Nam is the name of the one
-- argument to the predicate function. Occurrences of the type name in the
-- predicate expression have been replaced by identifier references to this
-- name, which is unique, so any identifier with Chars matching Nam must be
-- a reference to the type. If the predicate is non-static, this procedure
-- returns doing nothing. If the predicate is static, then the predicate
-- list is stored in Static_Predicate (Typ), and the Expr is rewritten as
-- a canonicalized membership operation.
function Get_Alignment_Value (Expr : Node_Id) return Uint;
-- Given the expression for an alignment value, returns the corresponding
-- Uint value. If the value is inappropriate, then error messages are
-- posted as required, and a value of No_Uint is returned.
function Is_Operational_Item (N : Node_Id) return Boolean;
-- A specification for a stream attribute is allowed before the full type
-- is declared, as explained in AI-00137 and the corrigendum. Attributes
-- that do not specify a representation characteristic are operational
-- attributes.
procedure New_Stream_Subprogram
(N : Node_Id;
Ent : Entity_Id;
Subp : Entity_Id;
Nam : TSS_Name_Type);
-- Create a subprogram renaming of a given stream attribute to the
-- designated subprogram and then in the tagged case, provide this as a
-- primitive operation, or in the non-tagged case make an appropriate TSS
-- entry. This is more properly an expansion activity than just semantics,
-- but the presence of user-defined stream functions for limited types is a
-- legality check, which is why this takes place here rather than in
-- exp_ch13, where it was previously. Nam indicates the name of the TSS
-- function to be generated.
--
-- To avoid elaboration anomalies with freeze nodes, for untagged types
-- we generate both a subprogram declaration and a subprogram renaming
-- declaration, so that the attribute specification is handled as a
-- renaming_as_body. For tagged types, the specification is one of the
-- primitive specs.
generic
with procedure Replace_Type_Reference (N : Node_Id);
procedure Replace_Type_References_Generic (N : Node_Id; TName : Name_Id);
-- This is used to scan an expression for a predicate or invariant aspect
-- replacing occurrences of the name TName (the name of the subtype to
-- which the aspect applies) with appropriate references to the parameter
-- of the predicate function or invariant procedure. The procedure passed
-- as a generic parameter does the actual replacement of node N, which is
-- either a simple direct reference to TName, or a selected component that
-- represents an appropriately qualified occurrence of TName.
procedure Set_Biased
(E : Entity_Id;
N : Node_Id;
Msg : String;
Biased : Boolean := True);
-- If Biased is True, sets Has_Biased_Representation flag for E, and
-- outputs a warning message at node N if Warn_On_Biased_Representation is
-- is True. This warning inserts the string Msg to describe the construct
-- causing biasing.
----------------------------------------------
-- Table for Validate_Unchecked_Conversions --
----------------------------------------------
-- The following table collects unchecked conversions for validation.
-- Entries are made by Validate_Unchecked_Conversion and then the
-- call to Validate_Unchecked_Conversions does the actual error
-- checking and posting of warnings. The reason for this delayed
-- processing is to take advantage of back-annotations of size and
-- alignment values performed by the back end.
-- Note: the reason we store a Source_Ptr value instead of a Node_Id
-- is that by the time Validate_Unchecked_Conversions is called, Sprint
-- will already have modified all Sloc values if the -gnatD option is set.
type UC_Entry is record
Eloc : Source_Ptr; -- node used for posting warnings
Source : Entity_Id; -- source type for unchecked conversion
Target : Entity_Id; -- target type for unchecked conversion
end record;
package Unchecked_Conversions is new Table.Table (
Table_Component_Type => UC_Entry,
Table_Index_Type => Int,
Table_Low_Bound => 1,
Table_Initial => 50,
Table_Increment => 200,
Table_Name => "Unchecked_Conversions");
----------------------------------------
-- Table for Validate_Address_Clauses --
----------------------------------------
-- If an address clause has the form
-- for X'Address use Expr
-- where Expr is of the form Y'Address or recursively is a reference
-- to a constant of either of these forms, and X and Y are entities of
-- objects, then if Y has a smaller alignment than X, that merits a
-- warning about possible bad alignment. The following table collects
-- address clauses of this kind. We put these in a table so that they
-- can be checked after the back end has completed annotation of the
-- alignments of objects, since we can catch more cases that way.
type Address_Clause_Check_Record is record
N : Node_Id;
-- The address clause
X : Entity_Id;
-- The entity of the object overlaying Y
Y : Entity_Id;
-- The entity of the object being overlaid
Off : Boolean;
-- Whether the address is offset within Y
end record;
package Address_Clause_Checks is new Table.Table (
Table_Component_Type => Address_Clause_Check_Record,
Table_Index_Type => Int,
Table_Low_Bound => 1,
Table_Initial => 20,
Table_Increment => 200,
Table_Name => "Address_Clause_Checks");
-----------------------------------------
-- Adjust_Record_For_Reverse_Bit_Order --
-----------------------------------------
procedure Adjust_Record_For_Reverse_Bit_Order (R : Entity_Id) is
Comp : Node_Id;
CC : Node_Id;
begin
-- Processing depends on version of Ada
-- For Ada 95, we just renumber bits within a storage unit. We do the
-- same for Ada 83 mode, since we recognize pragma Bit_Order in Ada 83,
-- and are free to add this extension.
if Ada_Version < Ada_2005 then
Comp := First_Component_Or_Discriminant (R);
while Present (Comp) loop
CC := Component_Clause (Comp);
-- If component clause is present, then deal with the non-default
-- bit order case for Ada 95 mode.
-- We only do this processing for the base type, and in fact that
-- is important, since otherwise if there are record subtypes, we
-- could reverse the bits once for each subtype, which is wrong.
if Present (CC)
and then Ekind (R) = E_Record_Type
then
declare
CFB : constant Uint := Component_Bit_Offset (Comp);
CSZ : constant Uint := Esize (Comp);
CLC : constant Node_Id := Component_Clause (Comp);
Pos : constant Node_Id := Position (CLC);
FB : constant Node_Id := First_Bit (CLC);
Storage_Unit_Offset : constant Uint :=
CFB / System_Storage_Unit;
Start_Bit : constant Uint :=
CFB mod System_Storage_Unit;
begin
-- Cases where field goes over storage unit boundary
if Start_Bit + CSZ > System_Storage_Unit then
-- Allow multi-byte field but generate warning
if Start_Bit mod System_Storage_Unit = 0
and then CSZ mod System_Storage_Unit = 0
then
Error_Msg_N
("multi-byte field specified with non-standard"
& " Bit_Order?", CLC);
if Bytes_Big_Endian then
Error_Msg_N
("bytes are not reversed "
& "(component is big-endian)?", CLC);
else
Error_Msg_N
("bytes are not reversed "
& "(component is little-endian)?", CLC);
end if;
-- Do not allow non-contiguous field
else
Error_Msg_N
("attempt to specify non-contiguous field "
& "not permitted", CLC);
Error_Msg_N
("\caused by non-standard Bit_Order "
& "specified", CLC);
Error_Msg_N
("\consider possibility of using "
& "Ada 2005 mode here", CLC);
end if;
-- Case where field fits in one storage unit
else
-- Give warning if suspicious component clause
if Intval (FB) >= System_Storage_Unit
and then Warn_On_Reverse_Bit_Order
then
Error_Msg_N
("?Bit_Order clause does not affect " &
"byte ordering", Pos);
Error_Msg_Uint_1 :=
Intval (Pos) + Intval (FB) /
System_Storage_Unit;
Error_Msg_N
("?position normalized to ^ before bit " &
"order interpreted", Pos);
end if;
-- Here is where we fix up the Component_Bit_Offset value
-- to account for the reverse bit order. Some examples of
-- what needs to be done are:
-- First_Bit .. Last_Bit Component_Bit_Offset
-- old new old new
-- 0 .. 0 7 .. 7 0 7
-- 0 .. 1 6 .. 7 0 6
-- 0 .. 2 5 .. 7 0 5
-- 0 .. 7 0 .. 7 0 4
-- 1 .. 1 6 .. 6 1 6
-- 1 .. 4 3 .. 6 1 3
-- 4 .. 7 0 .. 3 4 0
-- The rule is that the first bit is is obtained by
-- subtracting the old ending bit from storage_unit - 1.
Set_Component_Bit_Offset
(Comp,
(Storage_Unit_Offset * System_Storage_Unit) +
(System_Storage_Unit - 1) -
(Start_Bit + CSZ - 1));
Set_Normalized_First_Bit
(Comp,
Component_Bit_Offset (Comp) mod
System_Storage_Unit);
end if;
end;
end if;
Next_Component_Or_Discriminant (Comp);
end loop;
-- For Ada 2005, we do machine scalar processing, as fully described In
-- AI-133. This involves gathering all components which start at the
-- same byte offset and processing them together. Same approach is still
-- valid in later versions including Ada 2012.
else
declare
Max_Machine_Scalar_Size : constant Uint :=
UI_From_Int
(Standard_Long_Long_Integer_Size);
-- We use this as the maximum machine scalar size
Num_CC : Natural;
SSU : constant Uint := UI_From_Int (System_Storage_Unit);
begin
-- This first loop through components does two things. First it
-- deals with the case of components with component clauses whose
-- length is greater than the maximum machine scalar size (either
-- accepting them or rejecting as needed). Second, it counts the
-- number of components with component clauses whose length does
-- not exceed this maximum for later processing.
Num_CC := 0;
Comp := First_Component_Or_Discriminant (R);
while Present (Comp) loop
CC := Component_Clause (Comp);
if Present (CC) then
declare
Fbit : constant Uint :=
Static_Integer (First_Bit (CC));
Lbit : constant Uint :=
Static_Integer (Last_Bit (CC));
begin
-- Case of component with last bit >= max machine scalar
if Lbit >= Max_Machine_Scalar_Size then
-- This is allowed only if first bit is zero, and
-- last bit + 1 is a multiple of storage unit size.
if Fbit = 0 and then (Lbit + 1) mod SSU = 0 then
-- This is the case to give a warning if enabled
if Warn_On_Reverse_Bit_Order then
Error_Msg_N
("multi-byte field specified with "
& " non-standard Bit_Order?", CC);
if Bytes_Big_Endian then
Error_Msg_N
("\bytes are not reversed "
& "(component is big-endian)?", CC);
else
Error_Msg_N
("\bytes are not reversed "
& "(component is little-endian)?", CC);
end if;
end if;
-- Give error message for RM 13.4.1(10) violation
else
Error_Msg_FE
("machine scalar rules not followed for&",
First_Bit (CC), Comp);
Error_Msg_Uint_1 := Lbit;
Error_Msg_Uint_2 := Max_Machine_Scalar_Size;
Error_Msg_F
("\last bit (^) exceeds maximum machine "
& "scalar size (^)",
First_Bit (CC));
if (Lbit + 1) mod SSU /= 0 then
Error_Msg_Uint_1 := SSU;
Error_Msg_F
("\and is not a multiple of Storage_Unit (^) "
& "(RM 13.4.1(10))",
First_Bit (CC));
else
Error_Msg_Uint_1 := Fbit;
Error_Msg_F
("\and first bit (^) is non-zero "
& "(RM 13.4.1(10))",
First_Bit (CC));
end if;
end if;
-- OK case of machine scalar related component clause,
-- For now, just count them.
else
Num_CC := Num_CC + 1;
end if;
end;
end if;
Next_Component_Or_Discriminant (Comp);
end loop;
-- We need to sort the component clauses on the basis of the
-- Position values in the clause, so we can group clauses with
-- the same Position. together to determine the relevant machine
-- scalar size.
Sort_CC : declare
Comps : array (0 .. Num_CC) of Entity_Id;
-- Array to collect component and discriminant entities. The
-- data starts at index 1, the 0'th entry is for the sort
-- routine.
function CP_Lt (Op1, Op2 : Natural) return Boolean;
-- Compare routine for Sort
procedure CP_Move (From : Natural; To : Natural);
-- Move routine for Sort
package Sorting is new GNAT.Heap_Sort_G (CP_Move, CP_Lt);
Start : Natural;
Stop : Natural;
-- Start and stop positions in the component list of the set of
-- components with the same starting position (that constitute
-- components in a single machine scalar).
MaxL : Uint;
-- Maximum last bit value of any component in this set
MSS : Uint;
-- Corresponding machine scalar size
-----------
-- CP_Lt --
-----------
function CP_Lt (Op1, Op2 : Natural) return Boolean is
begin
return Position (Component_Clause (Comps (Op1))) <
Position (Component_Clause (Comps (Op2)));
end CP_Lt;
-------------
-- CP_Move --
-------------
procedure CP_Move (From : Natural; To : Natural) is
begin
Comps (To) := Comps (From);
end CP_Move;
-- Start of processing for Sort_CC
begin
-- Collect the machine scalar relevant component clauses
Num_CC := 0;
Comp := First_Component_Or_Discriminant (R);
while Present (Comp) loop
declare
CC : constant Node_Id := Component_Clause (Comp);
begin
-- Collect only component clauses whose last bit is less
-- than machine scalar size. Any component clause whose
-- last bit exceeds this value does not take part in
-- machine scalar layout considerations. The test for
-- Error_Posted makes sure we exclude component clauses
-- for which we already posted an error.
if Present (CC)
and then not Error_Posted (Last_Bit (CC))
and then Static_Integer (Last_Bit (CC)) <
Max_Machine_Scalar_Size
then
Num_CC := Num_CC + 1;
Comps (Num_CC) := Comp;
end if;
end;
Next_Component_Or_Discriminant (Comp);
end loop;
-- Sort by ascending position number
Sorting.Sort (Num_CC);
-- We now have all the components whose size does not exceed
-- the max machine scalar value, sorted by starting position.
-- In this loop we gather groups of clauses starting at the
-- same position, to process them in accordance with AI-133.
Stop := 0;
while Stop < Num_CC loop
Start := Stop + 1;
Stop := Start;
MaxL :=
Static_Integer
(Last_Bit (Component_Clause (Comps (Start))));
while Stop < Num_CC loop
if Static_Integer
(Position (Component_Clause (Comps (Stop + 1)))) =
Static_Integer
(Position (Component_Clause (Comps (Stop))))
then
Stop := Stop + 1;
MaxL :=
UI_Max
(MaxL,
Static_Integer
(Last_Bit
(Component_Clause (Comps (Stop)))));
else
exit;
end if;
end loop;
-- Now we have a group of component clauses from Start to
-- Stop whose positions are identical, and MaxL is the
-- maximum last bit value of any of these components.
-- We need to determine the corresponding machine scalar
-- size. This loop assumes that machine scalar sizes are
-- even, and that each possible machine scalar has twice
-- as many bits as the next smaller one.
MSS := Max_Machine_Scalar_Size;
while MSS mod 2 = 0
and then (MSS / 2) >= SSU
and then (MSS / 2) > MaxL
loop
MSS := MSS / 2;
end loop;
-- Here is where we fix up the Component_Bit_Offset value
-- to account for the reverse bit order. Some examples of
-- what needs to be done for the case of a machine scalar
-- size of 8 are:
-- First_Bit .. Last_Bit Component_Bit_Offset
-- old new old new
-- 0 .. 0 7 .. 7 0 7
-- 0 .. 1 6 .. 7 0 6
-- 0 .. 2 5 .. 7 0 5
-- 0 .. 7 0 .. 7 0 4
-- 1 .. 1 6 .. 6 1 6
-- 1 .. 4 3 .. 6 1 3
-- 4 .. 7 0 .. 3 4 0
-- The rule is that the first bit is obtained by subtracting
-- the old ending bit from machine scalar size - 1.
for C in Start .. Stop loop
declare
Comp : constant Entity_Id := Comps (C);
CC : constant Node_Id :=
Component_Clause (Comp);
LB : constant Uint :=
Static_Integer (Last_Bit (CC));
NFB : constant Uint := MSS - Uint_1 - LB;
NLB : constant Uint := NFB + Esize (Comp) - 1;
Pos : constant Uint :=
Static_Integer (Position (CC));
begin
if Warn_On_Reverse_Bit_Order then
Error_Msg_Uint_1 := MSS;
Error_Msg_N
("info: reverse bit order in machine " &
"scalar of length^?", First_Bit (CC));
Error_Msg_Uint_1 := NFB;
Error_Msg_Uint_2 := NLB;
if Bytes_Big_Endian then
Error_Msg_NE
("?\info: big-endian range for "
& "component & is ^ .. ^",
First_Bit (CC), Comp);
else
Error_Msg_NE
("?\info: little-endian range "
& "for component & is ^ .. ^",
First_Bit (CC), Comp);
end if;
end if;
Set_Component_Bit_Offset (Comp, Pos * SSU + NFB);
Set_Normalized_First_Bit (Comp, NFB mod SSU);
end;
end loop;
end loop;
end Sort_CC;
end;
end if;
end Adjust_Record_For_Reverse_Bit_Order;
--------------------------------------
-- Alignment_Check_For_Esize_Change --
--------------------------------------
procedure Alignment_Check_For_Esize_Change (Typ : Entity_Id) is
begin
-- If the alignment is known, and not set by a rep clause, and is
-- inconsistent with the size being set, then reset it to unknown,
-- we assume in this case that the size overrides the inherited
-- alignment, and that the alignment must be recomputed.
if Known_Alignment (Typ)
and then not Has_Alignment_Clause (Typ)
and then Esize (Typ) mod (Alignment (Typ) * SSU) /= 0
then
Init_Alignment (Typ);
end if;
end Alignment_Check_For_Esize_Change;
-----------------------------------
-- Analyze_Aspect_Specifications --
-----------------------------------
procedure Analyze_Aspect_Specifications (N : Node_Id; E : Entity_Id) is
Aspect : Node_Id;
Aitem : Node_Id;
Ent : Node_Id;
L : constant List_Id := Aspect_Specifications (N);
Ins_Node : Node_Id := N;
-- Insert pragmas (except Pre/Post/Invariant/Predicate) after this node
-- The general processing involves building an attribute definition
-- clause or a pragma node that corresponds to the aspect. Then one
-- of two things happens:
-- If we are required to delay the evaluation of this aspect to the
-- freeze point, we attach the corresponding pragma/attribute definition
-- clause to the aspect specification node, which is then placed in the
-- Rep Item chain. In this case we mark the entity by setting the flag
-- Has_Delayed_Aspects and we evaluate the rep item at the freeze point.
-- If no delay is required, we just insert the pragma or attribute
-- after the declaration, and it will get processed by the normal
-- circuit. The From_Aspect_Specification flag is set on the pragma
-- or attribute definition node in either case to activate special
-- processing (e.g. not traversing the list of homonyms for inline).
Delay_Required : Boolean;
-- Set True if delay is required
begin
pragma Assert (Present (L));
-- Loop through aspects
Aspect := First (L);
Aspect_Loop : while Present (Aspect) loop
declare
Loc : constant Source_Ptr := Sloc (Aspect);
Id : constant Node_Id := Identifier (Aspect);
Expr : constant Node_Id := Expression (Aspect);
Nam : constant Name_Id := Chars (Id);
A_Id : constant Aspect_Id := Get_Aspect_Id (Nam);
Anod : Node_Id;
Eloc : Source_Ptr := Sloc (Expr);
-- Source location of expression, modified when we split PPC's
procedure Check_False_Aspect_For_Derived_Type;
-- This procedure checks for the case of a false aspect for a
-- derived type, which improperly tries to cancel an aspect
-- inherited from the parent;
-----------------------------------------
-- Check_False_Aspect_For_Derived_Type --
-----------------------------------------
procedure Check_False_Aspect_For_Derived_Type is
begin
-- We are only checking derived types
if not Is_Derived_Type (E) then
return;
end if;
case A_Id is
when Aspect_Atomic | Aspect_Shared =>
if not Is_Atomic (E) then
return;
end if;
when Aspect_Atomic_Components =>
if not Has_Atomic_Components (E) then
return;
end if;
when Aspect_Discard_Names =>
if not Discard_Names (E) then
return;
end if;
when Aspect_Pack =>
if not Is_Packed (E) then
return;
end if;
when Aspect_Unchecked_Union =>
if not Is_Unchecked_Union (E) then
return;
end if;
when Aspect_Volatile =>
if not Is_Volatile (E) then
return;
end if;
when Aspect_Volatile_Components =>
if not Has_Volatile_Components (E) then
return;
end if;
when others =>
return;
end case;
-- Fall through means we are canceling an inherited aspect
Error_Msg_Name_1 := Nam;
Error_Msg_NE
("derived type& inherits aspect%, cannot cancel", Expr, E);
end Check_False_Aspect_For_Derived_Type;
-- Start of processing for Aspect_Loop
begin
-- Skip aspect if already analyzed (not clear if this is needed)
if Analyzed (Aspect) then
goto Continue;
end if;
Set_Analyzed (Aspect);
Set_Entity (Aspect, E);
Ent := New_Occurrence_Of (E, Sloc (Id));
-- Check for duplicate aspect. Note that the Comes_From_Source
-- test allows duplicate Pre/Post's that we generate internally
-- to escape being flagged here.
if No_Duplicates_Allowed (A_Id) then
Anod := First (L);
while Anod /= Aspect loop
if Same_Aspect
(A_Id, Get_Aspect_Id (Chars (Identifier (Anod))))
and then Comes_From_Source (Aspect)
then
Error_Msg_Name_1 := Nam;
Error_Msg_Sloc := Sloc (Anod);
-- Case of same aspect specified twice
if Class_Present (Anod) = Class_Present (Aspect) then
if not Class_Present (Anod) then
Error_Msg_NE
("aspect% for & previously given#",
Id, E);
else
Error_Msg_NE
("aspect `%''Class` for & previously given#",
Id, E);
end if;
-- Case of Pre and Pre'Class both specified
elsif Nam = Name_Pre then
if Class_Present (Aspect) then
Error_Msg_NE
("aspect `Pre''Class` for & is not allowed here",
Id, E);
Error_Msg_NE
("\since aspect `Pre` previously given#",
Id, E);
else
Error_Msg_NE
("aspect `Pre` for & is not allowed here",
Id, E);
Error_Msg_NE
("\since aspect `Pre''Class` previously given#",
Id, E);
end if;
end if;
-- Allowed case of X and X'Class both specified
end if;
Next (Anod);
end loop;
end if;
-- Copy expression for later processing by the procedures
-- Check_Aspect_At_[Freeze_Point | End_Of_Declarations]
Set_Entity (Id, New_Copy_Tree (Expr));
-- Processing based on specific aspect
case A_Id is
-- No_Aspect should be impossible
when No_Aspect =>
raise Program_Error;
-- Aspects taking an optional boolean argument. For all of
-- these we just create a matching pragma and insert it, if
-- the expression is missing or set to True. If the expression
-- is False, we can ignore the aspect with the exception that
-- in the case of a derived type, we must check for an illegal
-- attempt to cancel an inherited aspect.
when Boolean_Aspects =>
Set_Is_Boolean_Aspect (Aspect);
if Present (Expr)
and then Is_False (Static_Boolean (Expr))
then
Check_False_Aspect_For_Derived_Type;
goto Continue;
end if;
-- If True, build corresponding pragma node
Aitem :=
Make_Pragma (Loc,
Pragma_Argument_Associations => New_List (Ent),
Pragma_Identifier =>
Make_Identifier (Sloc (Id), Chars (Id)));
-- Never need to delay for boolean aspects
Delay_Required := False;
-- Library unit aspects. These are boolean aspects, but we
-- have to do special things with the insertion, since the
-- pragma belongs inside the declarations of a package.
when Library_Unit_Aspects =>
if Present (Expr)
and then Is_False (Static_Boolean (Expr))
then
goto Continue;
end if;
-- Build corresponding pragma node
Aitem :=
Make_Pragma (Loc,
Pragma_Argument_Associations => New_List (Ent),
Pragma_Identifier =>
Make_Identifier (Sloc (Id), Chars (Id)));
-- This requires special handling in the case of a package
-- declaration, the pragma needs to be inserted in the list
-- of declarations for the associated package. There is no
-- issue of visibility delay for these aspects.
if Nkind (N) = N_Package_Declaration then
if Nkind (Parent (N)) /= N_Compilation_Unit then
Error_Msg_N
("incorrect context for library unit aspect&", Id);
else
Prepend
(Aitem, Visible_Declarations (Specification (N)));
end if;
goto Continue;
end if;
-- If not package declaration, no delay is required
Delay_Required := False;
-- Aspects related to container iterators. These aspects denote
-- subprograms, and thus must be delayed.
when Aspect_Constant_Indexing |
Aspect_Variable_Indexing =>
if not Is_Type (E) or else not Is_Tagged_Type (E) then
Error_Msg_N ("indexing applies to a tagged type", N);
end if;
Aitem :=
Make_Attribute_Definition_Clause (Loc,
Name => Ent,
Chars => Chars (Id),
Expression => Relocate_Node (Expr));
Delay_Required := True;
Set_Is_Delayed_Aspect (Aspect);
when Aspect_Default_Iterator |
Aspect_Iterator_Element =>
Aitem :=
Make_Attribute_Definition_Clause (Loc,
Name => Ent,
Chars => Chars (Id),
Expression => Relocate_Node (Expr));
Delay_Required := True;
Set_Is_Delayed_Aspect (Aspect);
when Aspect_Implicit_Dereference =>
if not Is_Type (E)
or else not Has_Discriminants (E)
then
Error_Msg_N
("Aspect must apply to a type with discriminants", N);
goto Continue;
else
declare
Disc : Entity_Id;
begin
Disc := First_Discriminant (E);
while Present (Disc) loop
if Chars (Expr) = Chars (Disc)
and then Ekind (Etype (Disc)) =
E_Anonymous_Access_Type
then
Set_Has_Implicit_Dereference (E);
Set_Has_Implicit_Dereference (Disc);
goto Continue;
end if;
Next_Discriminant (Disc);
end loop;
-- Error if no proper access discriminant.
Error_Msg_NE
("not an access discriminant of&", Expr, E);
end;
goto Continue;
end if;
-- Aspects corresponding to attribute definition clauses
when Aspect_Address |
Aspect_Alignment |
Aspect_Bit_Order |
Aspect_Component_Size |
Aspect_External_Tag |
Aspect_Input |
Aspect_Machine_Radix |
Aspect_Object_Size |
Aspect_Output |
Aspect_Read |
Aspect_Size |
Aspect_Storage_Pool |
Aspect_Storage_Size |
Aspect_Stream_Size |
Aspect_Value_Size |
Aspect_Write =>
-- Construct the attribute definition clause
Aitem :=
Make_Attribute_Definition_Clause (Loc,
Name => Ent,
Chars => Chars (Id),
Expression => Relocate_Node (Expr));
-- A delay is required except in the common case where
-- the expression is a literal, in which case it is fine
-- to take care of it right away.
if Nkind_In (Expr, N_Integer_Literal, N_String_Literal) then
Delay_Required := False;
else
Delay_Required := True;
Set_Is_Delayed_Aspect (Aspect);
end if;
-- Aspects corresponding to pragmas with two arguments, where
-- the first argument is a local name referring to the entity,
-- and the second argument is the aspect definition expression
-- which is an expression that does not get analyzed.
when Aspect_Suppress |
Aspect_Unsuppress =>
-- Construct the pragma
Aitem :=
Make_Pragma (Loc,
Pragma_Argument_Associations => New_List (
New_Occurrence_Of (E, Loc),
Relocate_Node (Expr)),
Pragma_Identifier =>
Make_Identifier (Sloc (Id), Chars (Id)));
-- We don't have to play the delay game here, since the only
-- values are check names which don't get analyzed anyway.
Delay_Required := False;
-- Aspects corresponding to pragmas with two arguments, where
-- the second argument is a local name referring to the entity,
-- and the first argument is the aspect definition expression.
when Aspect_Warnings =>
-- Construct the pragma
Aitem :=
Make_Pragma (Loc,
Pragma_Argument_Associations => New_List (
Relocate_Node (Expr),
New_Occurrence_Of (E, Loc)),
Pragma_Identifier =>
Make_Identifier (Sloc (Id), Chars (Id)),
Class_Present => Class_Present (Aspect));
-- We don't have to play the delay game here, since the only
-- values are ON/OFF which don't get analyzed anyway.
Delay_Required := False;
-- Default_Value and Default_Component_Value aspects. These
-- are specially handled because they have no corresponding
-- pragmas or attributes.
when Aspect_Default_Value | Aspect_Default_Component_Value =>
Error_Msg_Name_1 := Chars (Id);
if not Is_Type (E) then
Error_Msg_N ("aspect% can only apply to a type", Id);
goto Continue;
elsif not Is_First_Subtype (E) then
Error_Msg_N ("aspect% cannot apply to subtype", Id);
goto Continue;
elsif A_Id = Aspect_Default_Value
and then not Is_Scalar_Type (E)
then
Error_Msg_N
("aspect% can only be applied to scalar type", Id);
goto Continue;
elsif A_Id = Aspect_Default_Component_Value then
if not Is_Array_Type (E) then
Error_Msg_N
("aspect% can only be applied to array type", Id);
goto Continue;
elsif not Is_Scalar_Type (Component_Type (E)) then
Error_Msg_N
("aspect% requires scalar components", Id);
goto Continue;
end if;
end if;
Aitem := Empty;
Delay_Required := True;
Set_Is_Delayed_Aspect (Aspect);
Set_Has_Default_Aspect (Base_Type (Entity (Ent)));
-- Aspects Pre/Post generate Precondition/Postcondition pragmas
-- with a first argument that is the expression, and a second
-- argument that is an informative message if the test fails.
-- This is inserted right after the declaration, to get the
-- required pragma placement. The processing for the pragmas
-- takes care of the required delay.
when Pre_Post_Aspects => declare
Pname : Name_Id;
begin
if A_Id = Aspect_Pre or else A_Id = Aspect_Precondition then
Pname := Name_Precondition;
else
Pname := Name_Postcondition;
end if;
-- If the expressions is of the form A and then B, then
-- we generate separate Pre/Post aspects for the separate
-- clauses. Since we allow multiple pragmas, there is no
-- problem in allowing multiple Pre/Post aspects internally.
-- These should be treated in reverse order (B first and
-- A second) since they are later inserted just after N in
-- the order they are treated. This way, the pragma for A
-- ends up preceding the pragma for B, which may have an
-- importance for the error raised (either constraint error
-- or precondition error).
-- We do not do this for Pre'Class, since we have to put
-- these conditions together in a complex OR expression
if Pname = Name_Postcondition
or else not Class_Present (Aspect)
then
while Nkind (Expr) = N_And_Then loop
Insert_After (Aspect,
Make_Aspect_Specification (Sloc (Left_Opnd (Expr)),
Identifier => Identifier (Aspect),
Expression => Relocate_Node (Left_Opnd (Expr)),
Class_Present => Class_Present (Aspect),
Split_PPC => True));
Rewrite (Expr, Relocate_Node (Right_Opnd (Expr)));
Eloc := Sloc (Expr);
end loop;
end if;
-- Build the precondition/postcondition pragma
Aitem :=
Make_Pragma (Loc,
Pragma_Identifier =>
Make_Identifier (Sloc (Id), Pname),
Class_Present => Class_Present (Aspect),
Split_PPC => Split_PPC (Aspect),
Pragma_Argument_Associations => New_List (
Make_Pragma_Argument_Association (Eloc,
Chars => Name_Check,
Expression => Relocate_Node (Expr))));
-- Add message unless exception messages are suppressed
if not Opt.Exception_Locations_Suppressed then
Append_To (Pragma_Argument_Associations (Aitem),
Make_Pragma_Argument_Association (Eloc,
Chars => Name_Message,
Expression =>
Make_String_Literal (Eloc,
Strval => "failed "
& Get_Name_String (Pname)
& " from "
& Build_Location_String (Eloc))));
end if;
Set_From_Aspect_Specification (Aitem, True);
Set_Is_Delayed_Aspect (Aspect);
-- For Pre/Post cases, insert immediately after the entity
-- declaration, since that is the required pragma placement.
-- Note that for these aspects, we do not have to worry
-- about delay issues, since the pragmas themselves deal
-- with delay of visibility for the expression analysis.
-- If the entity is a library-level subprogram, the pre/
-- postconditions must be treated as late pragmas.
if Nkind (Parent (N)) = N_Compilation_Unit then
Add_Global_Declaration (Aitem);
else
Insert_After (N, Aitem);
end if;
goto Continue;
end;
-- Invariant aspects generate a corresponding pragma with a
-- first argument that is the entity, a second argument that is
-- the expression and a third argument that is an appropriate
-- message. This is inserted right after the declaration, to
-- get the required pragma placement. The pragma processing
-- takes care of the required delay.
when Aspect_Invariant |
Aspect_Type_Invariant =>
-- Check placement legality
if not Nkind_In (N, N_Private_Type_Declaration,
N_Private_Extension_Declaration)
then
Error_Msg_N
("invariant aspect must apply to a private type", N);
end if;
-- Construct the pragma
Aitem :=
Make_Pragma (Loc,
Pragma_Argument_Associations =>
New_List (Ent, Relocate_Node (Expr)),
Class_Present => Class_Present (Aspect),
Pragma_Identifier =>
Make_Identifier (Sloc (Id), Name_Invariant));
-- Add message unless exception messages are suppressed
if not Opt.Exception_Locations_Suppressed then
Append_To (Pragma_Argument_Associations (Aitem),
Make_Pragma_Argument_Association (Eloc,
Chars => Name_Message,
Expression =>
Make_String_Literal (Eloc,
Strval => "failed invariant from "
& Build_Location_String (Eloc))));
end if;
Set_From_Aspect_Specification (Aitem, True);
Set_Is_Delayed_Aspect (Aspect);
-- For Invariant case, insert immediately after the entity
-- declaration. We do not have to worry about delay issues
-- since the pragma processing takes care of this.
Insert_After (N, Aitem);
goto Continue;
-- Predicate aspects generate a corresponding pragma with a
-- first argument that is the entity, and the second argument
-- is the expression.
when Aspect_Dynamic_Predicate |
Aspect_Predicate |
Aspect_Static_Predicate =>
-- Construct the pragma (always a pragma Predicate, with
-- flags recording whether it is static/dynamic).
Aitem :=
Make_Pragma (Loc,
Pragma_Argument_Associations =>
New_List (Ent, Relocate_Node (Expr)),
Class_Present => Class_Present (Aspect),
Pragma_Identifier =>
Make_Identifier (Sloc (Id), Name_Predicate));
Set_From_Aspect_Specification (Aitem, True);
-- Set special flags for dynamic/static cases
if A_Id = Aspect_Dynamic_Predicate then
Set_From_Dynamic_Predicate (Aitem);
elsif A_Id = Aspect_Static_Predicate then
Set_From_Static_Predicate (Aitem);
end if;
-- Make sure we have a freeze node (it might otherwise be
-- missing in cases like subtype X is Y, and we would not
-- have a place to build the predicate function).
Set_Has_Predicates (E);
if Is_Private_Type (E)
and then Present (Full_View (E))
then
Set_Has_Predicates (Full_View (E));
Set_Has_Delayed_Aspects (Full_View (E));
end if;
Ensure_Freeze_Node (E);
Set_Is_Delayed_Aspect (Aspect);
Delay_Required := True;
when Aspect_Test_Case => declare
Args : List_Id;
Comp_Expr : Node_Id;
Comp_Assn : Node_Id;
begin
Args := New_List;
if Nkind (Expr) /= N_Aggregate then
Error_Msg_NE
("wrong syntax for aspect `Test_Case` for &", Id, E);
goto Continue;
end if;
Comp_Expr := First (Expressions (Expr));
while Present (Comp_Expr) loop
Append (Relocate_Node (Comp_Expr), Args);
Next (Comp_Expr);
end loop;
Comp_Assn := First (Component_Associations (Expr));
while Present (Comp_Assn) loop
if List_Length (Choices (Comp_Assn)) /= 1
or else
Nkind (First (Choices (Comp_Assn))) /= N_Identifier
then
Error_Msg_NE
("wrong syntax for aspect `Test_Case` for &", Id, E);
goto Continue;
end if;
Append (Make_Pragma_Argument_Association (
Sloc => Sloc (Comp_Assn),
Chars => Chars (First (Choices (Comp_Assn))),
Expression => Relocate_Node (Expression (Comp_Assn))),
Args);
Next (Comp_Assn);
end loop;
-- Build the test-case pragma
Aitem :=
Make_Pragma (Loc,
Pragma_Identifier =>
Make_Identifier (Sloc (Id), Name_Test_Case),
Pragma_Argument_Associations =>
Args);
Set_From_Aspect_Specification (Aitem, True);
Set_Is_Delayed_Aspect (Aspect);
-- Insert immediately after the entity declaration
Insert_After (N, Aitem);
goto Continue;
end;
end case;
-- If a delay is required, we delay the freeze (not much point in
-- delaying the aspect if we don't delay the freeze!). The pragma
-- or attribute clause if there is one is then attached to the
-- aspect specification which is placed in the rep item list.
if Delay_Required then
if Present (Aitem) then
Set_From_Aspect_Specification (Aitem, True);
Set_Is_Delayed_Aspect (Aitem);
Set_Aspect_Rep_Item (Aspect, Aitem);
end if;
Ensure_Freeze_Node (E);
Set_Has_Delayed_Aspects (E);
Record_Rep_Item (E, Aspect);
-- If no delay required, insert the pragma/clause in the tree
else
Set_From_Aspect_Specification (Aitem, True);
-- If this is a compilation unit, we will put the pragma in
-- the Pragmas_After list of the N_Compilation_Unit_Aux node.
if Nkind (Parent (Ins_Node)) = N_Compilation_Unit then
declare
Aux : constant Node_Id :=
Aux_Decls_Node (Parent (Ins_Node));
begin
pragma Assert (Nkind (Aux) = N_Compilation_Unit_Aux);
if No (Pragmas_After (Aux)) then
Set_Pragmas_After (Aux, Empty_List);
end if;
-- For Pre_Post put at start of list, otherwise at end
if A_Id in Pre_Post_Aspects then
Prepend (Aitem, Pragmas_After (Aux));
else
Append (Aitem, Pragmas_After (Aux));
end if;
end;
-- Here if not compilation unit case
else
-- For Pre/Post cases, insert immediately after the entity
-- declaration, since that is the required pragma placement.
if A_Id in Pre_Post_Aspects then
Insert_After (N, Aitem);
-- For all other cases, insert in sequence
else
Insert_After (Ins_Node, Aitem);
Ins_Node := Aitem;
end if;
end if;
end if;
end;
<<Continue>>
Next (Aspect);
end loop Aspect_Loop;
end Analyze_Aspect_Specifications;
-----------------------
-- Analyze_At_Clause --
-----------------------
-- An at clause is replaced by the corresponding Address attribute
-- definition clause that is the preferred approach in Ada 95.
procedure Analyze_At_Clause (N : Node_Id) is
CS : constant Boolean := Comes_From_Source (N);
begin
-- This is an obsolescent feature
Check_Restriction (No_Obsolescent_Features, N);
if Warn_On_Obsolescent_Feature then
Error_Msg_N
("at clause is an obsolescent feature (RM J.7(2))?", N);
Error_Msg_N
("\use address attribute definition clause instead?", N);
end if;
-- Rewrite as address clause
Rewrite (N,
Make_Attribute_Definition_Clause (Sloc (N),
Name => Identifier (N),
Chars => Name_Address,
Expression => Expression (N)));
-- We preserve Comes_From_Source, since logically the clause still
-- comes from the source program even though it is changed in form.
Set_Comes_From_Source (N, CS);
-- Analyze rewritten clause
Analyze_Attribute_Definition_Clause (N);
end Analyze_At_Clause;
-----------------------------------------
-- Analyze_Attribute_Definition_Clause --
-----------------------------------------
procedure Analyze_Attribute_Definition_Clause (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Nam : constant Node_Id := Name (N);
Attr : constant Name_Id := Chars (N);
Expr : constant Node_Id := Expression (N);
Id : constant Attribute_Id := Get_Attribute_Id (Attr);
Ent : Entity_Id;
-- The entity of Nam after it is analyzed. In the case of an incomplete
-- type, this is the underlying type.
U_Ent : Entity_Id;
-- The underlying entity to which the attribute applies. Generally this
-- is the Underlying_Type of Ent, except in the case where the clause
-- applies to full view of incomplete type or private type in which case
-- U_Ent is just a copy of Ent.
FOnly : Boolean := False;
-- Reset to True for subtype specific attribute (Alignment, Size)
-- and for stream attributes, i.e. those cases where in the call
-- to Rep_Item_Too_Late, FOnly is set True so that only the freezing
-- rules are checked. Note that the case of stream attributes is not
-- clear from the RM, but see AI95-00137. Also, the RM seems to
-- disallow Storage_Size for derived task types, but that is also
-- clearly unintentional.
procedure Analyze_Stream_TSS_Definition (TSS_Nam : TSS_Name_Type);
-- Common processing for 'Read, 'Write, 'Input and 'Output attribute
-- definition clauses.
function Duplicate_Clause return Boolean;
-- This routine checks if the aspect for U_Ent being given by attribute
-- definition clause N is for an aspect that has already been specified,
-- and if so gives an error message. If there is a duplicate, True is
-- returned, otherwise if there is no error, False is returned.
procedure Check_Indexing_Functions;
-- Check that the function in Constant_Indexing or Variable_Indexing
-- attribute has the proper type structure. If the name is overloaded,
-- check that all interpretations are legal.
-----------------------------------
-- Analyze_Stream_TSS_Definition --
-----------------------------------
procedure Analyze_Stream_TSS_Definition (TSS_Nam : TSS_Name_Type) is
Subp : Entity_Id := Empty;
I : Interp_Index;
It : Interp;
Pnam : Entity_Id;
Is_Read : constant Boolean := (TSS_Nam = TSS_Stream_Read);
-- True for Read attribute, false for other attributes
function Has_Good_Profile (Subp : Entity_Id) return Boolean;
-- Return true if the entity is a subprogram with an appropriate
-- profile for the attribute being defined.
----------------------
-- Has_Good_Profile --
----------------------
function Has_Good_Profile (Subp : Entity_Id) return Boolean is
F : Entity_Id;
Is_Function : constant Boolean := (TSS_Nam = TSS_Stream_Input);
Expected_Ekind : constant array (Boolean) of Entity_Kind :=
(False => E_Procedure, True => E_Function);
Typ : Entity_Id;
begin
if Ekind (Subp) /= Expected_Ekind (Is_Function) then
return False;
end if;
F := First_Formal (Subp);
if No (F)
or else Ekind (Etype (F)) /= E_Anonymous_Access_Type
or else Designated_Type (Etype (F)) /=
Class_Wide_Type (RTE (RE_Root_Stream_Type))
then
return False;
end if;
if not Is_Function then
Next_Formal (F);
declare
Expected_Mode : constant array (Boolean) of Entity_Kind :=
(False => E_In_Parameter,
True => E_Out_Parameter);
begin
if Parameter_Mode (F) /= Expected_Mode (Is_Read) then
return False;
end if;
end;
Typ := Etype (F);
else
Typ := Etype (Subp);
end if;
return Base_Type (Typ) = Base_Type (Ent)
and then No (Next_Formal (F));
end Has_Good_Profile;
-- Start of processing for Analyze_Stream_TSS_Definition
begin
FOnly := True;
if not Is_Type (U_Ent) then
Error_Msg_N ("local name must be a subtype", Nam);
return;
end if;
Pnam := TSS (Base_Type (U_Ent), TSS_Nam);
-- If Pnam is present, it can be either inherited from an ancestor
-- type (in which case it is legal to redefine it for this type), or
-- be a previous definition of the attribute for the same type (in
-- which case it is illegal).
-- In the first case, it will have been analyzed already, and we
-- can check that its profile does not match the expected profile
-- for a stream attribute of U_Ent. In the second case, either Pnam
-- has been analyzed (and has the expected profile), or it has not
-- been analyzed yet (case of a type that has not been frozen yet
-- and for which the stream attribute has been set using Set_TSS).
if Present (Pnam)
and then (No (First_Entity (Pnam)) or else Has_Good_Profile (Pnam))
then
Error_Msg_Sloc := Sloc (Pnam);
Error_Msg_Name_1 := Attr;
Error_Msg_N ("% attribute already defined #", Nam);
return;
end if;
Analyze (Expr);
if Is_Entity_Name (Expr) then
if not Is_Overloaded (Expr) then
if Has_Good_Profile (Entity (Expr)) then
Subp := Entity (Expr);
end if;
else
Get_First_Interp (Expr, I, It);
while Present (It.Nam) loop
if Has_Good_Profile (It.Nam) then
Subp := It.Nam;
exit;
end if;
Get_Next_Interp (I, It);
end loop;
end if;
end if;
if Present (Subp) then
if Is_Abstract_Subprogram (Subp) then
Error_Msg_N ("stream subprogram must not be abstract", Expr);
return;
end if;
Set_Entity (Expr, Subp);
Set_Etype (Expr, Etype (Subp));
New_Stream_Subprogram (N, U_Ent, Subp, TSS_Nam);
else
Error_Msg_Name_1 := Attr;
Error_Msg_N ("incorrect expression for% attribute", Expr);
end if;
end Analyze_Stream_TSS_Definition;
------------------------------
-- Check_Indexing_Functions --
------------------------------
procedure Check_Indexing_Functions is
Ctrl : Entity_Id;
procedure Check_One_Function (Subp : Entity_Id);
-- Check one possible interpretation
------------------------
-- Check_One_Function --
------------------------
procedure Check_One_Function (Subp : Entity_Id) is
begin
if Ekind (Subp) /= E_Function then
Error_Msg_N ("indexing requires a function", Subp);
end if;
if No (First_Formal (Subp)) then
Error_Msg_N
("function for indexing must have parameters", Subp);
else
Ctrl := Etype (First_Formal (Subp));
end if;
if Ctrl = Ent
or else Ctrl = Class_Wide_Type (Ent)
or else
(Ekind (Ctrl) = E_Anonymous_Access_Type
and then
(Designated_Type (Ctrl) = Ent
or else Designated_Type (Ctrl) = Class_Wide_Type (Ent)))
then
null;
else
Error_Msg_N ("indexing function must apply to type&", Subp);
end if;
if No (Next_Formal (First_Formal (Subp))) then
Error_Msg_N
("function for indexing must have two parameters", Subp);
end if;
if not Has_Implicit_Dereference (Etype (Subp)) then
Error_Msg_N
("function for indexing must return a reference type", Subp);
end if;
end Check_One_Function;
-- Start of processing for Check_Indexing_Functions
begin
Analyze (Expr);
if not Is_Overloaded (Expr) then
Check_One_Function (Entity (Expr));
else
declare
I : Interp_Index;
It : Interp;
begin
Get_First_Interp (Expr, I, It);
while Present (It.Nam) loop
-- Note that analysis will have added the interpretation
-- that corresponds to the dereference. We only check the
-- subprogram itself.
if Is_Overloadable (It.Nam) then
Check_One_Function (It.Nam);
end if;
Get_Next_Interp (I, It);
end loop;
end;
end if;
end Check_Indexing_Functions;
----------------------
-- Duplicate_Clause --
----------------------
function Duplicate_Clause return Boolean is
A : Node_Id;
begin
-- Nothing to do if this attribute definition clause comes from
-- an aspect specification, since we could not be duplicating an
-- explicit clause, and we dealt with the case of duplicated aspects
-- in Analyze_Aspect_Specifications.
if From_Aspect_Specification (N) then
return False;
end if;
-- Otherwise current clause may duplicate previous clause or a
-- previously given aspect specification for the same aspect.
A := Get_Rep_Item_For_Entity (U_Ent, Chars (N));
if Present (A) then
if Entity (A) = U_Ent then
Error_Msg_Name_1 := Chars (N);
Error_Msg_Sloc := Sloc (A);
Error_Msg_NE ("aspect% for & previously given#", N, U_Ent);
return True;
end if;
end if;
return False;
end Duplicate_Clause;
-- Start of processing for Analyze_Attribute_Definition_Clause
begin
-- The following code is a defense against recursion. Not clear that
-- this can happen legitimately, but perhaps some error situations
-- can cause it, and we did see this recursion during testing.
if Analyzed (N) then
return;
else
Set_Analyzed (N, True);
end if;
-- Process Ignore_Rep_Clauses option (we also ignore rep clauses in
-- CodePeer mode, since they are not relevant in that context).
if Ignore_Rep_Clauses or CodePeer_Mode then
case Id is
-- The following should be ignored. They do not affect legality
-- and may be target dependent. The basic idea of -gnatI is to
-- ignore any rep clauses that may be target dependent but do not
-- affect legality (except possibly to be rejected because they
-- are incompatible with the compilation target).
when Attribute_Alignment |
Attribute_Bit_Order |
Attribute_Component_Size |
Attribute_Machine_Radix |
Attribute_Object_Size |
Attribute_Size |
Attribute_Stream_Size |
Attribute_Value_Size =>
Rewrite (N, Make_Null_Statement (Sloc (N)));
return;
-- We do not want too ignore 'Small in CodePeer_Mode, since it
-- has an impact on the exact computations performed.
-- Perhaps 'Small should also not be ignored by
-- Ignore_Rep_Clauses ???
when Attribute_Small =>
if Ignore_Rep_Clauses then
Rewrite (N, Make_Null_Statement (Sloc (N)));
return;
end if;
-- The following should not be ignored, because in the first place
-- they are reasonably portable, and should not cause problems in
-- compiling code from another target, and also they do affect
-- legality, e.g. failing to provide a stream attribute for a
-- type may make a program illegal.
when Attribute_External_Tag |
Attribute_Input |
Attribute_Output |
Attribute_Read |
Attribute_Storage_Pool |
Attribute_Storage_Size |
Attribute_Write =>
null;
-- Other cases are errors ("attribute& cannot be set with
-- definition clause"), which will be caught below.
when others =>
null;
end case;
end if;
Analyze (Nam);
Ent := Entity (Nam);
if Rep_Item_Too_Early (Ent, N) then
return;
end if;
-- Rep clause applies to full view of incomplete type or private type if
-- we have one (if not, this is a premature use of the type). However,
-- certain semantic checks need to be done on the specified entity (i.e.
-- the private view), so we save it in Ent.
if Is_Private_Type (Ent)
and then Is_Derived_Type (Ent)
and then not Is_Tagged_Type (Ent)
and then No (Full_View (Ent))
then
-- If this is a private type whose completion is a derivation from
-- another private type, there is no full view, and the attribute
-- belongs to the type itself, not its underlying parent.
U_Ent := Ent;
elsif Ekind (Ent) = E_Incomplete_Type then
-- The attribute applies to the full view, set the entity of the
-- attribute definition accordingly.
Ent := Underlying_Type (Ent);
U_Ent := Ent;
Set_Entity (Nam, Ent);
else
U_Ent := Underlying_Type (Ent);
end if;
-- Complete other routine error checks
if Etype (Nam) = Any_Type then
return;
elsif Scope (Ent) /= Current_Scope then
Error_Msg_N ("entity must be declared in this scope", Nam);
return;
elsif No (U_Ent) then
U_Ent := Ent;
elsif Is_Type (U_Ent)
and then not Is_First_Subtype (U_Ent)
and then Id /= Attribute_Object_Size
and then Id /= Attribute_Value_Size
and then not From_At_Mod (N)
then
Error_Msg_N ("cannot specify attribute for subtype", Nam);
return;
end if;
Set_Entity (N, U_Ent);
-- Switch on particular attribute
case Id is
-------------
-- Address --
-------------
-- Address attribute definition clause
when Attribute_Address => Address : begin
-- A little error check, catch for X'Address use X'Address;
if Nkind (Nam) = N_Identifier
and then Nkind (Expr) = N_Attribute_Reference
and then Attribute_Name (Expr) = Name_Address
and then Nkind (Prefix (Expr)) = N_Identifier
and then Chars (Nam) = Chars (Prefix (Expr))
then
Error_Msg_NE
("address for & is self-referencing", Prefix (Expr), Ent);
return;
end if;
-- Not that special case, carry on with analysis of expression
Analyze_And_Resolve (Expr, RTE (RE_Address));
-- Even when ignoring rep clauses we need to indicate that the
-- entity has an address clause and thus it is legal to declare
-- it imported.
if Ignore_Rep_Clauses then
if Ekind_In (U_Ent, E_Variable, E_Constant) then
Record_Rep_Item (U_Ent, N);
end if;
return;
end if;
if Duplicate_Clause then
null;
-- Case of address clause for subprogram
elsif Is_Subprogram (U_Ent) then
if Has_Homonym (U_Ent) then
Error_Msg_N
("address clause cannot be given " &
"for overloaded subprogram",
Nam);
return;
end if;
-- For subprograms, all address clauses are permitted, and we
-- mark the subprogram as having a deferred freeze so that Gigi
-- will not elaborate it too soon.
-- Above needs more comments, what is too soon about???
Set_Has_Delayed_Freeze (U_Ent);
-- Case of address clause for entry
elsif Ekind (U_Ent) = E_Entry then
if Nkind (Parent (N)) = N_Task_Body then
Error_Msg_N
("entry address must be specified in task spec", Nam);
return;
end if;
-- For entries, we require a constant address
Check_Constant_Address_Clause (Expr, U_Ent);
-- Special checks for task types
if Is_Task_Type (Scope (U_Ent))
and then Comes_From_Source (Scope (U_Ent))
then
Error_Msg_N
("?entry address declared for entry in task type", N);
Error_Msg_N
("\?only one task can be declared of this type", N);
end if;
-- Entry address clauses are obsolescent
Check_Restriction (No_Obsolescent_Features, N);
if Warn_On_Obsolescent_Feature then
Error_Msg_N
("attaching interrupt to task entry is an " &
"obsolescent feature (RM J.7.1)?", N);
Error_Msg_N
("\use interrupt procedure instead?", N);
end if;
-- Case of an address clause for a controlled object which we
-- consider to be erroneous.
elsif Is_Controlled (Etype (U_Ent))
or else Has_Controlled_Component (Etype (U_Ent))
then
Error_Msg_NE
("?controlled object& must not be overlaid", Nam, U_Ent);
Error_Msg_N
("\?Program_Error will be raised at run time", Nam);
Insert_Action (Declaration_Node (U_Ent),
Make_Raise_Program_Error (Loc,
Reason => PE_Overlaid_Controlled_Object));
return;
-- Case of address clause for a (non-controlled) object
elsif
Ekind (U_Ent) = E_Variable
or else
Ekind (U_Ent) = E_Constant
then
declare
Expr : constant Node_Id := Expression (N);
O_Ent : Entity_Id;
Off : Boolean;
begin
-- Exported variables cannot have an address clause, because
-- this cancels the effect of the pragma Export.
if Is_Exported (U_Ent) then
Error_Msg_N
("cannot export object with address clause", Nam);
return;
end if;
Find_Overlaid_Entity (N, O_Ent, Off);
-- Overlaying controlled objects is erroneous
if Present (O_Ent)
and then (Has_Controlled_Component (Etype (O_Ent))
or else Is_Controlled (Etype (O_Ent)))
then
Error_Msg_N
("?cannot overlay with controlled object", Expr);
Error_Msg_N
("\?Program_Error will be raised at run time", Expr);
Insert_Action (Declaration_Node (U_Ent),
Make_Raise_Program_Error (Loc,
Reason => PE_Overlaid_Controlled_Object));
return;
elsif Present (O_Ent)
and then Ekind (U_Ent) = E_Constant
and then not Is_Constant_Object (O_Ent)
then
Error_Msg_N ("constant overlays a variable?", Expr);
elsif Present (Renamed_Object (U_Ent)) then
Error_Msg_N
("address clause not allowed"
& " for a renaming declaration (RM 13.1(6))", Nam);
return;
-- Imported variables can have an address clause, but then
-- the import is pretty meaningless except to suppress
-- initializations, so we do not need such variables to
-- be statically allocated (and in fact it causes trouble
-- if the address clause is a local value).
elsif Is_Imported (U_Ent) then
Set_Is_Statically_Allocated (U_Ent, False);
end if;
-- We mark a possible modification of a variable with an
-- address clause, since it is likely aliasing is occurring.
Note_Possible_Modification (Nam, Sure => False);
-- Here we are checking for explicit overlap of one variable
-- by another, and if we find this then mark the overlapped
-- variable as also being volatile to prevent unwanted
-- optimizations. This is a significant pessimization so
-- avoid it when there is an offset, i.e. when the object
-- is composite; they cannot be optimized easily anyway.
if Present (O_Ent)
and then Is_Object (O_Ent)
and then not Off
then
Set_Treat_As_Volatile (O_Ent);
end if;
-- Legality checks on the address clause for initialized
-- objects is deferred until the freeze point, because
-- a subsequent pragma might indicate that the object is
-- imported and thus not initialized.
Set_Has_Delayed_Freeze (U_Ent);
-- If an initialization call has been generated for this
-- object, it needs to be deferred to after the freeze node
-- we have just now added, otherwise GIGI will see a
-- reference to the variable (as actual to the IP call)
-- before its definition.
declare
Init_Call : constant Node_Id := Find_Init_Call (U_Ent, N);
begin
if Present (Init_Call) then
Remove (Init_Call);
Append_Freeze_Action (U_Ent, Init_Call);
end if;
end;
if Is_Exported (U_Ent) then
Error_Msg_N
("& cannot be exported if an address clause is given",
Nam);
Error_Msg_N
("\define and export a variable " &
"that holds its address instead",
Nam);
end if;
-- Entity has delayed freeze, so we will generate an
-- alignment check at the freeze point unless suppressed.
if not Range_Checks_Suppressed (U_Ent)
and then not Alignment_Checks_Suppressed (U_Ent)
then
Set_Check_Address_Alignment (N);
end if;
-- Kill the size check code, since we are not allocating
-- the variable, it is somewhere else.
Kill_Size_Check_Code (U_Ent);
-- If the address clause is of the form:
-- for Y'Address use X'Address
-- or
-- Const : constant Address := X'Address;
-- ...
-- for Y'Address use Const;
-- then we make an entry in the table for checking the size
-- and alignment of the overlaying variable. We defer this
-- check till after code generation to take full advantage
-- of the annotation done by the back end. This entry is
-- only made if the address clause comes from source.
-- If the entity has a generic type, the check will be
-- performed in the instance if the actual type justifies
-- it, and we do not insert the clause in the table to
-- prevent spurious warnings.
if Address_Clause_Overlay_Warnings
and then Comes_From_Source (N)
and then Present (O_Ent)
and then Is_Object (O_Ent)
then
if not Is_Generic_Type (Etype (U_Ent)) then
Address_Clause_Checks.Append ((N, U_Ent, O_Ent, Off));
end if;
-- If variable overlays a constant view, and we are
-- warning on overlays, then mark the variable as
-- overlaying a constant (we will give warnings later
-- if this variable is assigned).
if Is_Constant_Object (O_Ent)
and then Ekind (U_Ent) = E_Variable
then
Set_Overlays_Constant (U_Ent);
end if;
end if;
end;
-- Not a valid entity for an address clause
else
Error_Msg_N ("address cannot be given for &", Nam);
end if;
end Address;
---------------
-- Alignment --
---------------
-- Alignment attribute definition clause
when Attribute_Alignment => Alignment : declare
Align : constant Uint := Get_Alignment_Value (Expr);
begin
FOnly := True;
if not Is_Type (U_Ent)
and then Ekind (U_Ent) /= E_Variable
and then Ekind (U_Ent) /= E_Constant
then
Error_Msg_N ("alignment cannot be given for &", Nam);
elsif Duplicate_Clause then
null;
elsif Align /= No_Uint then
Set_Has_Alignment_Clause (U_Ent);
Set_Alignment (U_Ent, Align);
-- For an array type, U_Ent is the first subtype. In that case,
-- also set the alignment of the anonymous base type so that
-- other subtypes (such as the itypes for aggregates of the
-- type) also receive the expected alignment.
if Is_Array_Type (U_Ent) then
Set_Alignment (Base_Type (U_Ent), Align);
end if;
end if;
end Alignment;
---------------
-- Bit_Order --
---------------
-- Bit_Order attribute definition clause
when Attribute_Bit_Order => Bit_Order : declare
begin
if not Is_Record_Type (U_Ent) then
Error_Msg_N
("Bit_Order can only be defined for record type", Nam);
elsif Duplicate_Clause then
null;
else
Analyze_And_Resolve (Expr, RTE (RE_Bit_Order));
if Etype (Expr) = Any_Type then
return;
elsif not Is_Static_Expression (Expr) then
Flag_Non_Static_Expr
("Bit_Order requires static expression!", Expr);
else
if (Expr_Value (Expr) = 0) /= Bytes_Big_Endian then
Set_Reverse_Bit_Order (U_Ent, True);
end if;
end if;
end if;
end Bit_Order;
--------------------
-- Component_Size --
--------------------
-- Component_Size attribute definition clause
when Attribute_Component_Size => Component_Size_Case : declare
Csize : constant Uint := Static_Integer (Expr);
Ctyp : Entity_Id;
Btype : Entity_Id;
Biased : Boolean;
New_Ctyp : Entity_Id;
Decl : Node_Id;
begin
if not Is_Array_Type (U_Ent) then
Error_Msg_N ("component size requires array type", Nam);
return;
end if;
Btype := Base_Type (U_Ent);
Ctyp := Component_Type (Btype);
if Duplicate_Clause then
null;
elsif Rep_Item_Too_Early (Btype, N) then
null;
elsif Csize /= No_Uint then
Check_Size (Expr, Ctyp, Csize, Biased);
-- For the biased case, build a declaration for a subtype that
-- will be used to represent the biased subtype that reflects
-- the biased representation of components. We need the subtype
-- to get proper conversions on referencing elements of the
-- array. Note: component size clauses are ignored in VM mode.
if VM_Target = No_VM then
if Biased then
New_Ctyp :=
Make_Defining_Identifier (Loc,
Chars =>
New_External_Name (Chars (U_Ent), 'C', 0, 'T'));
Decl :=
Make_Subtype_Declaration (Loc,
Defining_Identifier => New_Ctyp,
Subtype_Indication =>
New_Occurrence_Of (Component_Type (Btype), Loc));
Set_Parent (Decl, N);
Analyze (Decl, Suppress => All_Checks);
Set_Has_Delayed_Freeze (New_Ctyp, False);
Set_Esize (New_Ctyp, Csize);
Set_RM_Size (New_Ctyp, Csize);
Init_Alignment (New_Ctyp);
Set_Is_Itype (New_Ctyp, True);
Set_Associated_Node_For_Itype (New_Ctyp, U_Ent);
Set_Component_Type (Btype, New_Ctyp);
Set_Biased (New_Ctyp, N, "component size clause");
end if;
Set_Component_Size (Btype, Csize);
-- For VM case, we ignore component size clauses
else
-- Give a warning unless we are in GNAT mode, in which case
-- the warning is suppressed since it is not useful.
if not GNAT_Mode then
Error_Msg_N
("?component size ignored in this configuration", N);
end if;
end if;
-- Deal with warning on overridden size
if Warn_On_Overridden_Size
and then Has_Size_Clause (Ctyp)
and then RM_Size (Ctyp) /= Csize
then
Error_Msg_NE
("?component size overrides size clause for&",
N, Ctyp);
end if;
Set_Has_Component_Size_Clause (Btype, True);
Set_Has_Non_Standard_Rep (Btype, True);
end if;
end Component_Size_Case;
-----------------------
-- Constant_Indexing --
-----------------------
when Attribute_Constant_Indexing =>
Check_Indexing_Functions;
------------------
-- External_Tag --
------------------
when Attribute_External_Tag => External_Tag :
begin
if not Is_Tagged_Type (U_Ent) then
Error_Msg_N ("should be a tagged type", Nam);
end if;
if Duplicate_Clause then
null;
else
Analyze_And_Resolve (Expr, Standard_String);
if not Is_Static_Expression (Expr) then
Flag_Non_Static_Expr
("static string required for tag name!", Nam);
end if;
if VM_Target = No_VM then
Set_Has_External_Tag_Rep_Clause (U_Ent);
else
Error_Msg_Name_1 := Attr;
Error_Msg_N
("% attribute unsupported in this configuration", Nam);
end if;
if not Is_Library_Level_Entity (U_Ent) then
Error_Msg_NE
("?non-unique external tag supplied for &", N, U_Ent);
Error_Msg_N
("?\same external tag applies to all subprogram calls", N);
Error_Msg_N
("?\corresponding internal tag cannot be obtained", N);
end if;
end if;
end External_Tag;
--------------------------
-- Implicit_Dereference --
--------------------------
when Attribute_Implicit_Dereference =>
-- Legality checks already performed above
null; -- TBD???
-----------
-- Input --
-----------
when Attribute_Input =>
Analyze_Stream_TSS_Definition (TSS_Stream_Input);
Set_Has_Specified_Stream_Input (Ent);
-------------------
-- Machine_Radix --
-------------------
-- Machine radix attribute definition clause
when Attribute_Machine_Radix => Machine_Radix : declare
Radix : constant Uint := Static_Integer (Expr);
begin
if not Is_Decimal_Fixed_Point_Type (U_Ent) then
Error_Msg_N ("decimal fixed-point type expected for &", Nam);
elsif Duplicate_Clause then
null;
elsif Radix /= No_Uint then
Set_Has_Machine_Radix_Clause (U_Ent);
Set_Has_Non_Standard_Rep (Base_Type (U_Ent));
if Radix = 2 then
null;
elsif Radix = 10 then
Set_Machine_Radix_10 (U_Ent);
else
Error_Msg_N ("machine radix value must be 2 or 10", Expr);
end if;
end if;
end Machine_Radix;
-----------------
-- Object_Size --
-----------------
-- Object_Size attribute definition clause
when Attribute_Object_Size => Object_Size : declare
Size : constant Uint := Static_Integer (Expr);
Biased : Boolean;
pragma Warnings (Off, Biased);
begin
if not Is_Type (U_Ent) then
Error_Msg_N ("Object_Size cannot be given for &", Nam);
elsif Duplicate_Clause then
null;
else
Check_Size (Expr, U_Ent, Size, Biased);
if Size /= 8
and then
Size /= 16
and then
Size /= 32
and then
UI_Mod (Size, 64) /= 0
then
Error_Msg_N
("Object_Size must be 8, 16, 32, or multiple of 64",
Expr);
end if;
Set_Esize (U_Ent, Size);
Set_Has_Object_Size_Clause (U_Ent);
Alignment_Check_For_Esize_Change (U_Ent);
end if;
end Object_Size;
------------
-- Output --
------------
when Attribute_Output =>
Analyze_Stream_TSS_Definition (TSS_Stream_Output);
Set_Has_Specified_Stream_Output (Ent);
----------
-- Read --
----------
when Attribute_Read =>
Analyze_Stream_TSS_Definition (TSS_Stream_Read);
Set_Has_Specified_Stream_Read (Ent);
----------
-- Size --
----------
-- Size attribute definition clause
when Attribute_Size => Size : declare
Size : constant Uint := Static_Integer (Expr);
Etyp : Entity_Id;
Biased : Boolean;
begin
FOnly := True;
if Duplicate_Clause then
null;
elsif not Is_Type (U_Ent)
and then Ekind (U_Ent) /= E_Variable
and then Ekind (U_Ent) /= E_Constant
then
Error_Msg_N ("size cannot be given for &", Nam);
elsif Is_Array_Type (U_Ent)
and then not Is_Constrained (U_Ent)
then
Error_Msg_N
("size cannot be given for unconstrained array", Nam);
elsif Size /= No_Uint then
if VM_Target /= No_VM and then not GNAT_Mode then
-- Size clause is not handled properly on VM targets.
-- Display a warning unless we are in GNAT mode, in which
-- case this is useless.
Error_Msg_N
("?size clauses are ignored in this configuration", N);
end if;
if Is_Type (U_Ent) then
Etyp := U_Ent;
else
Etyp := Etype (U_Ent);
end if;
-- Check size, note that Gigi is in charge of checking that the
-- size of an array or record type is OK. Also we do not check
-- the size in the ordinary fixed-point case, since it is too
-- early to do so (there may be subsequent small clause that
-- affects the size). We can check the size if a small clause
-- has already been given.
if not Is_Ordinary_Fixed_Point_Type (U_Ent)
or else Has_Small_Clause (U_Ent)
then
Check_Size (Expr, Etyp, Size, Biased);
Set_Biased (U_Ent, N, "size clause", Biased);
end if;
-- For types set RM_Size and Esize if possible
if Is_Type (U_Ent) then
Set_RM_Size (U_Ent, Size);
-- For elementary types, increase Object_Size to power of 2,
-- but not less than a storage unit in any case (normally
-- this means it will be byte addressable).
-- For all other types, nothing else to do, we leave Esize
-- (object size) unset, the back end will set it from the
-- size and alignment in an appropriate manner.
if Is_Elementary_Type (U_Ent) then
if Size <= System_Storage_Unit then
Init_Esize (U_Ent, System_Storage_Unit);
elsif Size <= 16 then
Init_Esize (U_Ent, 16);
elsif Size <= 32 then
Init_Esize (U_Ent, 32);
else
Set_Esize (U_Ent, (Size + 63) / 64 * 64);
end if;
Alignment_Check_For_Esize_Change (U_Ent);
end if;
-- For objects, set Esize only
else
if Is_Elementary_Type (Etyp) then
if Size /= System_Storage_Unit
and then
Size /= System_Storage_Unit * 2
and then
Size /= System_Storage_Unit * 4
and then
Size /= System_Storage_Unit * 8
then
Error_Msg_Uint_1 := UI_From_Int (System_Storage_Unit);
Error_Msg_Uint_2 := Error_Msg_Uint_1 * 8;
Error_Msg_N
("size for primitive object must be a power of 2"
& " in the range ^-^", N);
end if;
end if;
Set_Esize (U_Ent, Size);
end if;
Set_Has_Size_Clause (U_Ent);
end if;
end Size;
-----------
-- Small --
-----------
-- Small attribute definition clause
when Attribute_Small => Small : declare
Implicit_Base : constant Entity_Id := Base_Type (U_Ent);
Small : Ureal;
begin
Analyze_And_Resolve (Expr, Any_Real);
if Etype (Expr) = Any_Type then
return;
elsif not Is_Static_Expression (Expr) then
Flag_Non_Static_Expr
("small requires static expression!", Expr);
return;
else
Small := Expr_Value_R (Expr);
if Small <= Ureal_0 then
Error_Msg_N ("small value must be greater than zero", Expr);
return;
end if;
end if;
if not Is_Ordinary_Fixed_Point_Type (U_Ent) then
Error_Msg_N
("small requires an ordinary fixed point type", Nam);
elsif Has_Small_Clause (U_Ent) then
Error_Msg_N ("small already given for &", Nam);
elsif Small > Delta_Value (U_Ent) then
Error_Msg_N
("small value must not be greater then delta value", Nam);
else
Set_Small_Value (U_Ent, Small);
Set_Small_Value (Implicit_Base, Small);
Set_Has_Small_Clause (U_Ent);
Set_Has_Small_Clause (Implicit_Base);
Set_Has_Non_Standard_Rep (Implicit_Base);
end if;
end Small;
------------------
-- Storage_Pool --
------------------
-- Storage_Pool attribute definition clause
when Attribute_Storage_Pool => Storage_Pool : declare
Pool : Entity_Id;
T : Entity_Id;
begin
if Ekind (U_Ent) = E_Access_Subprogram_Type then
Error_Msg_N
("storage pool cannot be given for access-to-subprogram type",
Nam);
return;
elsif not
Ekind_In (U_Ent, E_Access_Type, E_General_Access_Type)
then
Error_Msg_N
("storage pool can only be given for access types", Nam);
return;
elsif Is_Derived_Type (U_Ent) then
Error_Msg_N
("storage pool cannot be given for a derived access type",
Nam);
elsif Duplicate_Clause then
return;
elsif Present (Associated_Storage_Pool (U_Ent)) then
Error_Msg_N ("storage pool already given for &", Nam);
return;
end if;
Analyze_And_Resolve
(Expr, Class_Wide_Type (RTE (RE_Root_Storage_Pool)));
if not Denotes_Variable (Expr) then
Error_Msg_N ("storage pool must be a variable", Expr);
return;
end if;
if Nkind (Expr) = N_Type_Conversion then
T := Etype (Expression (Expr));
else
T := Etype (Expr);
end if;
-- The Stack_Bounded_Pool is used internally for implementing
-- access types with a Storage_Size. Since it only work properly
-- when used on one specific type, we need to check that it is not
-- hijacked improperly:
-- type T is access Integer;
-- for T'Storage_Size use n;
-- type Q is access Float;
-- for Q'Storage_Size use T'Storage_Size; -- incorrect
if RTE_Available (RE_Stack_Bounded_Pool)
and then Base_Type (T) = RTE (RE_Stack_Bounded_Pool)
then
Error_Msg_N ("non-shareable internal Pool", Expr);
return;
end if;
-- If the argument is a name that is not an entity name, then
-- we construct a renaming operation to define an entity of
-- type storage pool.
if not Is_Entity_Name (Expr)
and then Is_Object_Reference (Expr)
then
Pool := Make_Temporary (Loc, 'P', Expr);
declare
Rnode : constant Node_Id :=
Make_Object_Renaming_Declaration (Loc,
Defining_Identifier => Pool,
Subtype_Mark =>
New_Occurrence_Of (Etype (Expr), Loc),
Name => Expr);
begin
Insert_Before (N, Rnode);
Analyze (Rnode);
Set_Associated_Storage_Pool (U_Ent, Pool);
end;
elsif Is_Entity_Name (Expr) then
Pool := Entity (Expr);
-- If pool is a renamed object, get original one. This can
-- happen with an explicit renaming, and within instances.
while Present (Renamed_Object (Pool))
and then Is_Entity_Name (Renamed_Object (Pool))
loop
Pool := Entity (Renamed_Object (Pool));
end loop;
if Present (Renamed_Object (Pool))
and then Nkind (Renamed_Object (Pool)) = N_Type_Conversion
and then Is_Entity_Name (Expression (Renamed_Object (Pool)))
then
Pool := Entity (Expression (Renamed_Object (Pool)));
end if;
Set_Associated_Storage_Pool (U_Ent, Pool);
elsif Nkind (Expr) = N_Type_Conversion
and then Is_Entity_Name (Expression (Expr))
and then Nkind (Original_Node (Expr)) = N_Attribute_Reference
then
Pool := Entity (Expression (Expr));
Set_Associated_Storage_Pool (U_Ent, Pool);
else
Error_Msg_N ("incorrect reference to a Storage Pool", Expr);
return;
end if;
end Storage_Pool;
------------------
-- Storage_Size --
------------------
-- Storage_Size attribute definition clause
when Attribute_Storage_Size => Storage_Size : declare
Btype : constant Entity_Id := Base_Type (U_Ent);
Sprag : Node_Id;
begin
if Is_Task_Type (U_Ent) then
Check_Restriction (No_Obsolescent_Features, N);
if Warn_On_Obsolescent_Feature then
Error_Msg_N
("storage size clause for task is an " &
"obsolescent feature (RM J.9)?", N);
Error_Msg_N ("\use Storage_Size pragma instead?", N);
end if;
FOnly := True;
end if;
if not Is_Access_Type (U_Ent)
and then Ekind (U_Ent) /= E_Task_Type
then
Error_Msg_N ("storage size cannot be given for &", Nam);
elsif Is_Access_Type (U_Ent) and Is_Derived_Type (U_Ent) then
Error_Msg_N
("storage size cannot be given for a derived access type",
Nam);
elsif Duplicate_Clause then
null;
else
Analyze_And_Resolve (Expr, Any_Integer);
if Is_Access_Type (U_Ent) then
if Present (Associated_Storage_Pool (U_Ent)) then
Error_Msg_N ("storage pool already given for &", Nam);
return;
end if;
if Is_OK_Static_Expression (Expr)
and then Expr_Value (Expr) = 0
then
Set_No_Pool_Assigned (Btype);
end if;
else -- Is_Task_Type (U_Ent)
Sprag := Get_Rep_Pragma (Btype, Name_Storage_Size);
if Present (Sprag) then
Error_Msg_Sloc := Sloc (Sprag);
Error_Msg_N
("Storage_Size already specified#", Nam);
return;
end if;
end if;
Set_Has_Storage_Size_Clause (Btype);
end if;
end Storage_Size;
-----------------
-- Stream_Size --
-----------------
when Attribute_Stream_Size => Stream_Size : declare
Size : constant Uint := Static_Integer (Expr);
begin
if Ada_Version <= Ada_95 then
Check_Restriction (No_Implementation_Attributes, N);
end if;
if Duplicate_Clause then
null;
elsif Is_Elementary_Type (U_Ent) then
if Size /= System_Storage_Unit
and then
Size /= System_Storage_Unit * 2
and then
Size /= System_Storage_Unit * 4
and then
Size /= System_Storage_Unit * 8
then
Error_Msg_Uint_1 := UI_From_Int (System_Storage_Unit);
Error_Msg_N
("stream size for elementary type must be a"
& " power of 2 and at least ^", N);
elsif RM_Size (U_Ent) > Size then
Error_Msg_Uint_1 := RM_Size (U_Ent);
Error_Msg_N
("stream size for elementary type must be a"
& " power of 2 and at least ^", N);
end if;
Set_Has_Stream_Size_Clause (U_Ent);
else
Error_Msg_N ("Stream_Size cannot be given for &", Nam);
end if;
end Stream_Size;
----------------
-- Value_Size --
----------------
-- Value_Size attribute definition clause
when Attribute_Value_Size => Value_Size : declare
Size : constant Uint := Static_Integer (Expr);
Biased : Boolean;
begin
if not Is_Type (U_Ent) then
Error_Msg_N ("Value_Size cannot be given for &", Nam);
elsif Duplicate_Clause then
null;
elsif Is_Array_Type (U_Ent)
and then not Is_Constrained (U_Ent)
then
Error_Msg_N
("Value_Size cannot be given for unconstrained array", Nam);
else
if Is_Elementary_Type (U_Ent) then
Check_Size (Expr, U_Ent, Size, Biased);
Set_Biased (U_Ent, N, "value size clause", Biased);
end if;
Set_RM_Size (U_Ent, Size);
end if;
end Value_Size;
-----------------------
-- Variable_Indexing --
-----------------------
when Attribute_Variable_Indexing =>
Check_Indexing_Functions;
-----------
-- Write --
-----------
when Attribute_Write =>
Analyze_Stream_TSS_Definition (TSS_Stream_Write);
Set_Has_Specified_Stream_Write (Ent);
-- All other attributes cannot be set
when others =>
Error_Msg_N
("attribute& cannot be set with definition clause", N);
end case;
-- The test for the type being frozen must be performed after any
-- expression the clause has been analyzed since the expression itself
-- might cause freezing that makes the clause illegal.
if Rep_Item_Too_Late (U_Ent, N, FOnly) then
return;
end if;
end Analyze_Attribute_Definition_Clause;
----------------------------
-- Analyze_Code_Statement --
----------------------------
procedure Analyze_Code_Statement (N : Node_Id) is
HSS : constant Node_Id := Parent (N);
SBody : constant Node_Id := Parent (HSS);
Subp : constant Entity_Id := Current_Scope;
Stmt : Node_Id;
Decl : Node_Id;
StmtO : Node_Id;
DeclO : Node_Id;
begin
-- Analyze and check we get right type, note that this implements the
-- requirement (RM 13.8(1)) that Machine_Code be with'ed, since that
-- is the only way that Asm_Insn could possibly be visible.
Analyze_And_Resolve (Expression (N));
if Etype (Expression (N)) = Any_Type then
return;
elsif Etype (Expression (N)) /= RTE (RE_Asm_Insn) then
Error_Msg_N ("incorrect type for code statement", N);
return;
end if;
Check_Code_Statement (N);
-- Make sure we appear in the handled statement sequence of a
-- subprogram (RM 13.8(3)).
if Nkind (HSS) /= N_Handled_Sequence_Of_Statements
or else Nkind (SBody) /= N_Subprogram_Body
then
Error_Msg_N
("code statement can only appear in body of subprogram", N);
return;
end if;
-- Do remaining checks (RM 13.8(3)) if not already done
if not Is_Machine_Code_Subprogram (Subp) then
Set_Is_Machine_Code_Subprogram (Subp);
-- No exception handlers allowed
if Present (Exception_Handlers (HSS)) then
Error_Msg_N
("exception handlers not permitted in machine code subprogram",
First (Exception_Handlers (HSS)));
end if;
-- No declarations other than use clauses and pragmas (we allow
-- certain internally generated declarations as well).
Decl := First (Declarations (SBody));
while Present (Decl) loop
DeclO := Original_Node (Decl);
if Comes_From_Source (DeclO)
and not Nkind_In (DeclO, N_Pragma,
N_Use_Package_Clause,
N_Use_Type_Clause,
N_Implicit_Label_Declaration)
then
Error_Msg_N
("this declaration not allowed in machine code subprogram",
DeclO);
end if;
Next (Decl);
end loop;
-- No statements other than code statements, pragmas, and labels.
-- Again we allow certain internally generated statements.
Stmt := First (Statements (HSS));
while Present (Stmt) loop
StmtO := Original_Node (Stmt);
if Comes_From_Source (StmtO)
and then not Nkind_In (StmtO, N_Pragma,
N_Label,
N_Code_Statement)
then
Error_Msg_N
("this statement is not allowed in machine code subprogram",
StmtO);
end if;
Next (Stmt);
end loop;
end if;
end Analyze_Code_Statement;
-----------------------------------------------
-- Analyze_Enumeration_Representation_Clause --
-----------------------------------------------
procedure Analyze_Enumeration_Representation_Clause (N : Node_Id) is
Ident : constant Node_Id := Identifier (N);
Aggr : constant Node_Id := Array_Aggregate (N);
Enumtype : Entity_Id;
Elit : Entity_Id;
Expr : Node_Id;
Assoc : Node_Id;
Choice : Node_Id;
Val : Uint;
Err : Boolean := False;
-- Set True to avoid cascade errors and crashes on incorrect source code
Lo : constant Uint := Expr_Value (Type_Low_Bound (Universal_Integer));
Hi : constant Uint := Expr_Value (Type_High_Bound (Universal_Integer));
-- Allowed range of universal integer (= allowed range of enum lit vals)
Min : Uint;
Max : Uint;
-- Minimum and maximum values of entries
Max_Node : Node_Id;
-- Pointer to node for literal providing max value
begin
if Ignore_Rep_Clauses then
return;
end if;
-- First some basic error checks
Find_Type (Ident);
Enumtype := Entity (Ident);
if Enumtype = Any_Type
or else Rep_Item_Too_Early (Enumtype, N)
then
return;
else
Enumtype := Underlying_Type (Enumtype);
end if;
if not Is_Enumeration_Type (Enumtype) then
Error_Msg_NE
("enumeration type required, found}",
Ident, First_Subtype (Enumtype));
return;
end if;
-- Ignore rep clause on generic actual type. This will already have
-- been flagged on the template as an error, and this is the safest
-- way to ensure we don't get a junk cascaded message in the instance.
if Is_Generic_Actual_Type (Enumtype) then
return;
-- Type must be in current scope
elsif Scope (Enumtype) /= Current_Scope then
Error_Msg_N ("type must be declared in this scope", Ident);
return;
-- Type must be a first subtype
elsif not Is_First_Subtype (Enumtype) then
Error_Msg_N ("cannot give enumeration rep clause for subtype", N);
return;
-- Ignore duplicate rep clause
elsif Has_Enumeration_Rep_Clause (Enumtype) then
Error_Msg_N ("duplicate enumeration rep clause ignored", N);
return;
-- Don't allow rep clause for standard [wide_[wide_]]character
elsif Is_Standard_Character_Type (Enumtype) then
Error_Msg_N ("enumeration rep clause not allowed for this type", N);
return;
-- Check that the expression is a proper aggregate (no parentheses)
elsif Paren_Count (Aggr) /= 0 then
Error_Msg
("extra parentheses surrounding aggregate not allowed",
First_Sloc (Aggr));
return;
-- All tests passed, so set rep clause in place
else
Set_Has_Enumeration_Rep_Clause (Enumtype);
Set_Has_Enumeration_Rep_Clause (Base_Type (Enumtype));
end if;
-- Now we process the aggregate. Note that we don't use the normal
-- aggregate code for this purpose, because we don't want any of the
-- normal expansion activities, and a number of special semantic
-- rules apply (including the component type being any integer type)
Elit := First_Literal (Enumtype);
-- First the positional entries if any
if Present (Expressions (Aggr)) then
Expr := First (Expressions (Aggr));
while Present (Expr) loop
if No (Elit) then
Error_Msg_N ("too many entries in aggregate", Expr);
return;
end if;
Val := Static_Integer (Expr);
-- Err signals that we found some incorrect entries processing
-- the list. The final checks for completeness and ordering are
-- skipped in this case.
if Val = No_Uint then
Err := True;
elsif Val < Lo or else Hi < Val then
Error_Msg_N ("value outside permitted range", Expr);
Err := True;
end if;
Set_Enumeration_Rep (Elit, Val);
Set_Enumeration_Rep_Expr (Elit, Expr);
Next (Expr);
Next (Elit);
end loop;
end if;
-- Now process the named entries if present
if Present (Component_Associations (Aggr)) then
Assoc := First (Component_Associations (Aggr));
while Present (Assoc) loop
Choice := First (Choices (Assoc));
if Present (Next (Choice)) then
Error_Msg_N
("multiple choice not allowed here", Next (Choice));
Err := True;
end if;
if Nkind (Choice) = N_Others_Choice then
Error_Msg_N ("others choice not allowed here", Choice);
Err := True;
elsif Nkind (Choice) = N_Range then
-- ??? should allow zero/one element range here
Error_Msg_N ("range not allowed here", Choice);
Err := True;
else
Analyze_And_Resolve (Choice, Enumtype);
if Error_Posted (Choice) then
Err := True;
end if;
if not Err then
if Is_Entity_Name (Choice)
and then Is_Type (Entity (Choice))
then
Error_Msg_N ("subtype name not allowed here", Choice);
Err := True;
-- ??? should allow static subtype with zero/one entry
elsif Etype (Choice) = Base_Type (Enumtype) then
if not Is_Static_Expression (Choice) then
Flag_Non_Static_Expr
("non-static expression used for choice!", Choice);
Err := True;
else
Elit := Expr_Value_E (Choice);
if Present (Enumeration_Rep_Expr (Elit)) then
Error_Msg_Sloc :=
Sloc (Enumeration_Rep_Expr (Elit));
Error_Msg_NE
("representation for& previously given#",
Choice, Elit);
Err := True;
end if;
Set_Enumeration_Rep_Expr (Elit, Expression (Assoc));
Expr := Expression (Assoc);
Val := Static_Integer (Expr);
if Val = No_Uint then
Err := True;
elsif Val < Lo or else Hi < Val then
Error_Msg_N ("value outside permitted range", Expr);
Err := True;
end if;
Set_Enumeration_Rep (Elit, Val);
end if;
end if;
end if;
end if;
Next (Assoc);
end loop;
end if;
-- Aggregate is fully processed. Now we check that a full set of
-- representations was given, and that they are in range and in order.
-- These checks are only done if no other errors occurred.
if not Err then
Min := No_Uint;
Max := No_Uint;
Elit := First_Literal (Enumtype);
while Present (Elit) loop
if No (Enumeration_Rep_Expr (Elit)) then
Error_Msg_NE ("missing representation for&!", N, Elit);
else
Val := Enumeration_Rep (Elit);
if Min = No_Uint then
Min := Val;
end if;
if Val /= No_Uint then
if Max /= No_Uint and then Val <= Max then
Error_Msg_NE
("enumeration value for& not ordered!",
Enumeration_Rep_Expr (Elit), Elit);
end if;
Max_Node := Enumeration_Rep_Expr (Elit);
Max := Val;
end if;
-- If there is at least one literal whose representation is not
-- equal to the Pos value, then note that this enumeration type
-- has a non-standard representation.
if Val /= Enumeration_Pos (Elit) then
Set_Has_Non_Standard_Rep (Base_Type (Enumtype));
end if;
end if;
Next (Elit);
end loop;
-- Now set proper size information
declare
Minsize : Uint := UI_From_Int (Minimum_Size (Enumtype));
begin
if Has_Size_Clause (Enumtype) then
-- All OK, if size is OK now
if RM_Size (Enumtype) >= Minsize then
null;
else
-- Try if we can get by with biasing
Minsize :=
UI_From_Int (Minimum_Size (Enumtype, Biased => True));
-- Error message if even biasing does not work
if RM_Size (Enumtype) < Minsize then
Error_Msg_Uint_1 := RM_Size (Enumtype);
Error_Msg_Uint_2 := Max;
Error_Msg_N
("previously given size (^) is too small "
& "for this value (^)", Max_Node);
-- If biasing worked, indicate that we now have biased rep
else
Set_Biased
(Enumtype, Size_Clause (Enumtype), "size clause");
end if;
end if;
else
Set_RM_Size (Enumtype, Minsize);
Set_Enum_Esize (Enumtype);
end if;
Set_RM_Size (Base_Type (Enumtype), RM_Size (Enumtype));
Set_Esize (Base_Type (Enumtype), Esize (Enumtype));
Set_Alignment (Base_Type (Enumtype), Alignment (Enumtype));
end;
end if;
-- We repeat the too late test in case it froze itself!
if Rep_Item_Too_Late (Enumtype, N) then
null;
end if;
end Analyze_Enumeration_Representation_Clause;
----------------------------
-- Analyze_Free_Statement --
----------------------------
procedure Analyze_Free_Statement (N : Node_Id) is
begin
Analyze (Expression (N));
end Analyze_Free_Statement;
---------------------------
-- Analyze_Freeze_Entity --
---------------------------
procedure Analyze_Freeze_Entity (N : Node_Id) is
E : constant Entity_Id := Entity (N);
begin
-- Remember that we are processing a freezing entity. Required to
-- ensure correct decoration of internal entities associated with
-- interfaces (see New_Overloaded_Entity).
Inside_Freezing_Actions := Inside_Freezing_Actions + 1;
-- For tagged types covering interfaces add internal entities that link
-- the primitives of the interfaces with the primitives that cover them.
-- Note: These entities were originally generated only when generating
-- code because their main purpose was to provide support to initialize
-- the secondary dispatch tables. They are now generated also when
-- compiling with no code generation to provide ASIS the relationship
-- between interface primitives and tagged type primitives. They are
-- also used to locate primitives covering interfaces when processing
-- generics (see Derive_Subprograms).
if Ada_Version >= Ada_2005
and then Ekind (E) = E_Record_Type
and then Is_Tagged_Type (E)
and then not Is_Interface (E)
and then Has_Interfaces (E)
then
-- This would be a good common place to call the routine that checks
-- overriding of interface primitives (and thus factorize calls to
-- Check_Abstract_Overriding located at different contexts in the
-- compiler). However, this is not possible because it causes
-- spurious errors in case of late overriding.
Add_Internal_Interface_Entities (E);
end if;
-- Check CPP types
if Ekind (E) = E_Record_Type
and then Is_CPP_Class (E)
and then Is_Tagged_Type (E)
and then Tagged_Type_Expansion
and then Expander_Active
then
if CPP_Num_Prims (E) = 0 then
-- If the CPP type has user defined components then it must import
-- primitives from C++. This is required because if the C++ class
-- has no primitives then the C++ compiler does not added the _tag
-- component to the type.
pragma Assert (Chars (First_Entity (E)) = Name_uTag);
if First_Entity (E) /= Last_Entity (E) then
Error_Msg_N
("?'C'P'P type must import at least one primitive from C++",
E);
end if;
end if;
-- Check that all its primitives are abstract or imported from C++.
-- Check also availability of the C++ constructor.
declare
Has_Constructors : constant Boolean := Has_CPP_Constructors (E);
Elmt : Elmt_Id;
Error_Reported : Boolean := False;
Prim : Node_Id;
begin
Elmt := First_Elmt (Primitive_Operations (E));
while Present (Elmt) loop
Prim := Node (Elmt);
if Comes_From_Source (Prim) then
if Is_Abstract_Subprogram (Prim) then
null;
elsif not Is_Imported (Prim)
or else Convention (Prim) /= Convention_CPP
then
Error_Msg_N
("?primitives of 'C'P'P types must be imported from C++"
& " or abstract", Prim);
elsif not Has_Constructors
and then not Error_Reported
then
Error_Msg_Name_1 := Chars (E);
Error_Msg_N
("?'C'P'P constructor required for type %", Prim);
Error_Reported := True;
end if;
end if;
Next_Elmt (Elmt);
end loop;
end;
end if;
Inside_Freezing_Actions := Inside_Freezing_Actions - 1;
-- If we have a type with predicates, build predicate function
if Is_Type (E) and then Has_Predicates (E) then
Build_Predicate_Function (E, N);
end if;
-- If type has delayed aspects, this is where we do the preanalysis at
-- the freeze point, as part of the consistent visibility check. Note
-- that this must be done after calling Build_Predicate_Function or
-- Build_Invariant_Procedure since these subprograms fix occurrences of
-- the subtype name in the saved expression so that they will not cause
-- trouble in the preanalysis.
if Has_Delayed_Aspects (E) then
declare
Ritem : Node_Id;
begin
-- Look for aspect specification entries for this entity
Ritem := First_Rep_Item (E);
while Present (Ritem) loop
if Nkind (Ritem) = N_Aspect_Specification
and then Entity (Ritem) = E
and then Is_Delayed_Aspect (Ritem)
then
Check_Aspect_At_Freeze_Point (Ritem);
end if;
Next_Rep_Item (Ritem);
end loop;
end;
end if;
end Analyze_Freeze_Entity;
------------------------------------------
-- Analyze_Record_Representation_Clause --
------------------------------------------
-- Note: we check as much as we can here, but we can't do any checks
-- based on the position values (e.g. overlap checks) until freeze time
-- because especially in Ada 2005 (machine scalar mode), the processing
-- for non-standard bit order can substantially change the positions.
-- See procedure Check_Record_Representation_Clause (called from Freeze)
-- for the remainder of this processing.
procedure Analyze_Record_Representation_Clause (N : Node_Id) is
Ident : constant Node_Id := Identifier (N);
Biased : Boolean;
CC : Node_Id;
Comp : Entity_Id;
Fbit : Uint;
Hbit : Uint := Uint_0;
Lbit : Uint;
Ocomp : Entity_Id;
Posit : Uint;
Rectype : Entity_Id;
CR_Pragma : Node_Id := Empty;
-- Points to N_Pragma node if Complete_Representation pragma present
begin
if Ignore_Rep_Clauses then
return;
end if;
Find_Type (Ident);
Rectype := Entity (Ident);
if Rectype = Any_Type
or else Rep_Item_Too_Early (Rectype, N)
then
return;
else
Rectype := Underlying_Type (Rectype);
end if;
-- First some basic error checks
if not Is_Record_Type (Rectype) then
Error_Msg_NE
("record type required, found}", Ident, First_Subtype (Rectype));
return;
elsif Scope (Rectype) /= Current_Scope then
Error_Msg_N ("type must be declared in this scope", N);
return;
elsif not Is_First_Subtype (Rectype) then
Error_Msg_N ("cannot give record rep clause for subtype", N);
return;
elsif Has_Record_Rep_Clause (Rectype) then
Error_Msg_N ("duplicate record rep clause ignored", N);
return;
elsif Rep_Item_Too_Late (Rectype, N) then
return;
end if;
if Present (Mod_Clause (N)) then
declare
Loc : constant Source_Ptr := Sloc (N);
M : constant Node_Id := Mod_Clause (N);
P : constant List_Id := Pragmas_Before (M);
AtM_Nod : Node_Id;
Mod_Val : Uint;
pragma Warnings (Off, Mod_Val);
begin
Check_Restriction (No_Obsolescent_Features, Mod_Clause (N));
if Warn_On_Obsolescent_Feature then
Error_Msg_N
("mod clause is an obsolescent feature (RM J.8)?", N);
Error_Msg_N
("\use alignment attribute definition clause instead?", N);
end if;
if Present (P) then
Analyze_List (P);
end if;
-- In ASIS_Mode mode, expansion is disabled, but we must convert
-- the Mod clause into an alignment clause anyway, so that the
-- back-end can compute and back-annotate properly the size and
-- alignment of types that may include this record.
-- This seems dubious, this destroys the source tree in a manner
-- not detectable by ASIS ???
if Operating_Mode = Check_Semantics
and then ASIS_Mode
then
AtM_Nod :=
Make_Attribute_Definition_Clause (Loc,
Name => New_Reference_To (Base_Type (Rectype), Loc),
Chars => Name_Alignment,
Expression => Relocate_Node (Expression (M)));
Set_From_At_Mod (AtM_Nod);
Insert_After (N, AtM_Nod);
Mod_Val := Get_Alignment_Value (Expression (AtM_Nod));
Set_Mod_Clause (N, Empty);
else
-- Get the alignment value to perform error checking
Mod_Val := Get_Alignment_Value (Expression (M));
end if;
end;
end if;
-- For untagged types, clear any existing component clauses for the
-- type. If the type is derived, this is what allows us to override
-- a rep clause for the parent. For type extensions, the representation
-- of the inherited components is inherited, so we want to keep previous
-- component clauses for completeness.
if not Is_Tagged_Type (Rectype) then
Comp := First_Component_Or_Discriminant (Rectype);
while Present (Comp) loop
Set_Component_Clause (Comp, Empty);
Next_Component_Or_Discriminant (Comp);
end loop;
end if;
-- All done if no component clauses
CC := First (Component_Clauses (N));
if No (CC) then
return;
end if;
-- A representation like this applies to the base type
Set_Has_Record_Rep_Clause (Base_Type (Rectype));
Set_Has_Non_Standard_Rep (Base_Type (Rectype));
Set_Has_Specified_Layout (Base_Type (Rectype));
-- Process the component clauses
while Present (CC) loop
-- Pragma
if Nkind (CC) = N_Pragma then
Analyze (CC);
-- The only pragma of interest is Complete_Representation
if Pragma_Name (CC) = Name_Complete_Representation then
CR_Pragma := CC;
end if;
-- Processing for real component clause
else
Posit := Static_Integer (Position (CC));
Fbit := Static_Integer (First_Bit (CC));
Lbit := Static_Integer (Last_Bit (CC));
if Posit /= No_Uint
and then Fbit /= No_Uint
and then Lbit /= No_Uint
then
if Posit < 0 then
Error_Msg_N
("position cannot be negative", Position (CC));
elsif Fbit < 0 then
Error_Msg_N
("first bit cannot be negative", First_Bit (CC));
-- The Last_Bit specified in a component clause must not be
-- less than the First_Bit minus one (RM-13.5.1(10)).
elsif Lbit < Fbit - 1 then
Error_Msg_N
("last bit cannot be less than first bit minus one",
Last_Bit (CC));
-- Values look OK, so find the corresponding record component
-- Even though the syntax allows an attribute reference for
-- implementation-defined components, GNAT does not allow the
-- tag to get an explicit position.
elsif Nkind (Component_Name (CC)) = N_Attribute_Reference then
if Attribute_Name (Component_Name (CC)) = Name_Tag then
Error_Msg_N ("position of tag cannot be specified", CC);
else
Error_Msg_N ("illegal component name", CC);
end if;
else
Comp := First_Entity (Rectype);
while Present (Comp) loop
exit when Chars (Comp) = Chars (Component_Name (CC));
Next_Entity (Comp);
end loop;
if No (Comp) then
-- Maybe component of base type that is absent from
-- statically constrained first subtype.
Comp := First_Entity (Base_Type (Rectype));
while Present (Comp) loop
exit when Chars (Comp) = Chars (Component_Name (CC));
Next_Entity (Comp);
end loop;
end if;
if No (Comp) then
Error_Msg_N
("component clause is for non-existent field", CC);
-- Ada 2012 (AI05-0026): Any name that denotes a
-- discriminant of an object of an unchecked union type
-- shall not occur within a record_representation_clause.
-- The general restriction of using record rep clauses on
-- Unchecked_Union types has now been lifted. Since it is
-- possible to introduce a record rep clause which mentions
-- the discriminant of an Unchecked_Union in non-Ada 2012
-- code, this check is applied to all versions of the
-- language.
elsif Ekind (Comp) = E_Discriminant
and then Is_Unchecked_Union (Rectype)
then
Error_Msg_N
("cannot reference discriminant of Unchecked_Union",
Component_Name (CC));
elsif Present (Component_Clause (Comp)) then
-- Diagnose duplicate rep clause, or check consistency
-- if this is an inherited component. In a double fault,
-- there may be a duplicate inconsistent clause for an
-- inherited component.
if Scope (Original_Record_Component (Comp)) = Rectype
or else Parent (Component_Clause (Comp)) = N
then
Error_Msg_Sloc := Sloc (Component_Clause (Comp));
Error_Msg_N ("component clause previously given#", CC);
else
declare
Rep1 : constant Node_Id := Component_Clause (Comp);
begin
if Intval (Position (Rep1)) /=
Intval (Position (CC))
or else Intval (First_Bit (Rep1)) /=
Intval (First_Bit (CC))
or else Intval (Last_Bit (Rep1)) /=
Intval (Last_Bit (CC))
then
Error_Msg_N ("component clause inconsistent "
& "with representation of ancestor", CC);
elsif Warn_On_Redundant_Constructs then
Error_Msg_N ("?redundant component clause "
& "for inherited component!", CC);
end if;
end;
end if;
-- Normal case where this is the first component clause we
-- have seen for this entity, so set it up properly.
else
-- Make reference for field in record rep clause and set
-- appropriate entity field in the field identifier.
Generate_Reference
(Comp, Component_Name (CC), Set_Ref => False);
Set_Entity (Component_Name (CC), Comp);
-- Update Fbit and Lbit to the actual bit number
Fbit := Fbit + UI_From_Int (SSU) * Posit;
Lbit := Lbit + UI_From_Int (SSU) * Posit;
if Has_Size_Clause (Rectype)
and then RM_Size (Rectype) <= Lbit
then
Error_Msg_N
("bit number out of range of specified size",
Last_Bit (CC));
else
Set_Component_Clause (Comp, CC);
Set_Component_Bit_Offset (Comp, Fbit);
Set_Esize (Comp, 1 + (Lbit - Fbit));
Set_Normalized_First_Bit (Comp, Fbit mod SSU);
Set_Normalized_Position (Comp, Fbit / SSU);
if Warn_On_Overridden_Size
and then Has_Size_Clause (Etype (Comp))
and then RM_Size (Etype (Comp)) /= Esize (Comp)
then
Error_Msg_NE
("?component size overrides size clause for&",
Component_Name (CC), Etype (Comp));
end if;
-- This information is also set in the corresponding
-- component of the base type, found by accessing the
-- Original_Record_Component link if it is present.
Ocomp := Original_Record_Component (Comp);
if Hbit < Lbit then
Hbit := Lbit;
end if;
Check_Size
(Component_Name (CC),
Etype (Comp),
Esize (Comp),
Biased);
Set_Biased
(Comp, First_Node (CC), "component clause", Biased);
if Present (Ocomp) then
Set_Component_Clause (Ocomp, CC);
Set_Component_Bit_Offset (Ocomp, Fbit);
Set_Normalized_First_Bit (Ocomp, Fbit mod SSU);
Set_Normalized_Position (Ocomp, Fbit / SSU);
Set_Esize (Ocomp, 1 + (Lbit - Fbit));
Set_Normalized_Position_Max
(Ocomp, Normalized_Position (Ocomp));
-- Note: we don't use Set_Biased here, because we
-- already gave a warning above if needed, and we
-- would get a duplicate for the same name here.
Set_Has_Biased_Representation
(Ocomp, Has_Biased_Representation (Comp));
end if;
if Esize (Comp) < 0 then
Error_Msg_N ("component size is negative", CC);
end if;
end if;
end if;
end if;
end if;
end if;
Next (CC);
end loop;
-- Check missing components if Complete_Representation pragma appeared
if Present (CR_Pragma) then
Comp := First_Component_Or_Discriminant (Rectype);
while Present (Comp) loop
if No (Component_Clause (Comp)) then
Error_Msg_NE
("missing component clause for &", CR_Pragma, Comp);
end if;
Next_Component_Or_Discriminant (Comp);
end loop;
-- If no Complete_Representation pragma, warn if missing components
elsif Warn_On_Unrepped_Components then
declare
Num_Repped_Components : Nat := 0;
Num_Unrepped_Components : Nat := 0;
begin
-- First count number of repped and unrepped components
Comp := First_Component_Or_Discriminant (Rectype);
while Present (Comp) loop
if Present (Component_Clause (Comp)) then
Num_Repped_Components := Num_Repped_Components + 1;
else
Num_Unrepped_Components := Num_Unrepped_Components + 1;
end if;
Next_Component_Or_Discriminant (Comp);
end loop;
-- We are only interested in the case where there is at least one
-- unrepped component, and at least half the components have rep
-- clauses. We figure that if less than half have them, then the
-- partial rep clause is really intentional. If the component
-- type has no underlying type set at this point (as for a generic
-- formal type), we don't know enough to give a warning on the
-- component.
if Num_Unrepped_Components > 0
and then Num_Unrepped_Components < Num_Repped_Components
then
Comp := First_Component_Or_Discriminant (Rectype);
while Present (Comp) loop
if No (Component_Clause (Comp))
and then Comes_From_Source (Comp)
and then Present (Underlying_Type (Etype (Comp)))
and then (Is_Scalar_Type (Underlying_Type (Etype (Comp)))
or else Size_Known_At_Compile_Time
(Underlying_Type (Etype (Comp))))
and then not Has_Warnings_Off (Rectype)
then
Error_Msg_Sloc := Sloc (Comp);
Error_Msg_NE
("?no component clause given for & declared #",
N, Comp);
end if;
Next_Component_Or_Discriminant (Comp);
end loop;
end if;
end;
end if;
end Analyze_Record_Representation_Clause;
-------------------------------
-- Build_Invariant_Procedure --
-------------------------------
-- The procedure that is constructed here has the form
-- procedure typInvariant (Ixxx : typ) is
-- begin
-- pragma Check (Invariant, exp, "failed invariant from xxx");
-- pragma Check (Invariant, exp, "failed invariant from xxx");
-- ...
-- pragma Check (Invariant, exp, "failed inherited invariant from xxx");
-- ...
-- end typInvariant;
procedure Build_Invariant_Procedure (Typ : Entity_Id; N : Node_Id) is
Loc : constant Source_Ptr := Sloc (Typ);
Stmts : List_Id;
Spec : Node_Id;
SId : Entity_Id;
PDecl : Node_Id;
PBody : Node_Id;
Visible_Decls : constant List_Id := Visible_Declarations (N);
Private_Decls : constant List_Id := Private_Declarations (N);
procedure Add_Invariants (T : Entity_Id; Inherit : Boolean);
-- Appends statements to Stmts for any invariants in the rep item chain
-- of the given type. If Inherit is False, then we only process entries
-- on the chain for the type Typ. If Inherit is True, then we ignore any
-- Invariant aspects, but we process all Invariant'Class aspects, adding
-- "inherited" to the exception message and generating an informational
-- message about the inheritance of an invariant.
Object_Name : constant Name_Id := New_Internal_Name ('I');
-- Name for argument of invariant procedure
Object_Entity : constant Node_Id :=
Make_Defining_Identifier (Loc, Object_Name);
-- The procedure declaration entity for the argument
--------------------
-- Add_Invariants --
--------------------
procedure Add_Invariants (T : Entity_Id; Inherit : Boolean) is
Ritem : Node_Id;
Arg1 : Node_Id;
Arg2 : Node_Id;
Arg3 : Node_Id;
Exp : Node_Id;
Loc : Source_Ptr;
Assoc : List_Id;
Str : String_Id;
procedure Replace_Type_Reference (N : Node_Id);
-- Replace a single occurrence N of the subtype name with a reference
-- to the formal of the predicate function. N can be an identifier
-- referencing the subtype, or a selected component, representing an
-- appropriately qualified occurrence of the subtype name.
procedure Replace_Type_References is
new Replace_Type_References_Generic (Replace_Type_Reference);
-- Traverse an expression replacing all occurrences of the subtype
-- name with appropriate references to the object that is the formal
-- parameter of the predicate function. Note that we must ensure
-- that the type and entity information is properly set in the
-- replacement node, since we will do a Preanalyze call of this
-- expression without proper visibility of the procedure argument.
----------------------------
-- Replace_Type_Reference --
----------------------------
procedure Replace_Type_Reference (N : Node_Id) is
begin
-- Invariant'Class, replace with T'Class (obj)
if Class_Present (Ritem) then
Rewrite (N,
Make_Type_Conversion (Loc,
Subtype_Mark =>
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (T, Loc),
Attribute_Name => Name_Class),
Expression => Make_Identifier (Loc, Object_Name)));
Set_Entity (Expression (N), Object_Entity);
Set_Etype (Expression (N), Typ);
-- Invariant, replace with obj
else
Rewrite (N, Make_Identifier (Loc, Object_Name));
Set_Entity (N, Object_Entity);
Set_Etype (N, Typ);
end if;
end Replace_Type_Reference;
-- Start of processing for Add_Invariants
begin
Ritem := First_Rep_Item (T);
while Present (Ritem) loop
if Nkind (Ritem) = N_Pragma
and then Pragma_Name (Ritem) = Name_Invariant
then
Arg1 := First (Pragma_Argument_Associations (Ritem));
Arg2 := Next (Arg1);
Arg3 := Next (Arg2);
Arg1 := Get_Pragma_Arg (Arg1);
Arg2 := Get_Pragma_Arg (Arg2);
-- For Inherit case, ignore Invariant, process only Class case
if Inherit then
if not Class_Present (Ritem) then
goto Continue;
end if;
-- For Inherit false, process only item for right type
else
if Entity (Arg1) /= Typ then
goto Continue;
end if;
end if;
if No (Stmts) then
Stmts := Empty_List;
end if;
Exp := New_Copy_Tree (Arg2);
Loc := Sloc (Exp);
-- We need to replace any occurrences of the name of the type
-- with references to the object, converted to type'Class in
-- the case of Invariant'Class aspects.
Replace_Type_References (Exp, Chars (T));
-- If this invariant comes from an aspect, find the aspect
-- specification, and replace the saved expression because
-- we need the subtype references replaced for the calls to
-- Preanalyze_Spec_Expressin in Check_Aspect_At_Freeze_Point
-- and Check_Aspect_At_End_Of_Declarations.
if From_Aspect_Specification (Ritem) then
declare
Aitem : Node_Id;
begin
-- Loop to find corresponding aspect, note that this
-- must be present given the pragma is marked delayed.
Aitem := Next_Rep_Item (Ritem);
while Present (Aitem) loop
if Nkind (Aitem) = N_Aspect_Specification
and then Aspect_Rep_Item (Aitem) = Ritem
then
Set_Entity
(Identifier (Aitem), New_Copy_Tree (Exp));
exit;
end if;
Aitem := Next_Rep_Item (Aitem);
end loop;
end;
end if;
-- Now we need to preanalyze the expression to properly capture
-- the visibility in the visible part. The expression will not
-- be analyzed for real until the body is analyzed, but that is
-- at the end of the private part and has the wrong visibility.
Set_Parent (Exp, N);
Preanalyze_Spec_Expression (Exp, Standard_Boolean);
-- Build first two arguments for Check pragma
Assoc := New_List (
Make_Pragma_Argument_Association (Loc,
Expression => Make_Identifier (Loc, Name_Invariant)),
Make_Pragma_Argument_Association (Loc, Expression => Exp));
-- Add message if present in Invariant pragma
if Present (Arg3) then
Str := Strval (Get_Pragma_Arg (Arg3));
-- If inherited case, and message starts "failed invariant",
-- change it to be "failed inherited invariant".
if Inherit then
String_To_Name_Buffer (Str);
if Name_Buffer (1 .. 16) = "failed invariant" then
Insert_Str_In_Name_Buffer ("inherited ", 8);
Str := String_From_Name_Buffer;
end if;
end if;
Append_To (Assoc,
Make_Pragma_Argument_Association (Loc,
Expression => Make_String_Literal (Loc, Str)));
end if;
-- Add Check pragma to list of statements
Append_To (Stmts,
Make_Pragma (Loc,
Pragma_Identifier =>
Make_Identifier (Loc, Name_Check),
Pragma_Argument_Associations => Assoc));
-- If Inherited case and option enabled, output info msg. Note
-- that we know this is a case of Invariant'Class.
if Inherit and Opt.List_Inherited_Aspects then
Error_Msg_Sloc := Sloc (Ritem);
Error_Msg_N
("?info: & inherits `Invariant''Class` aspect from #",
Typ);
end if;
end if;
<<Continue>>
Next_Rep_Item (Ritem);
end loop;
end Add_Invariants;
-- Start of processing for Build_Invariant_Procedure
begin
Stmts := No_List;
PDecl := Empty;
PBody := Empty;
Set_Etype (Object_Entity, Typ);
-- Add invariants for the current type
Add_Invariants (Typ, Inherit => False);
-- Add invariants for parent types
declare
Current_Typ : Entity_Id;
Parent_Typ : Entity_Id;
begin
Current_Typ := Typ;
loop
Parent_Typ := Etype (Current_Typ);
if Is_Private_Type (Parent_Typ)
and then Present (Full_View (Base_Type (Parent_Typ)))
then
Parent_Typ := Full_View (Base_Type (Parent_Typ));
end if;
exit when Parent_Typ = Current_Typ;
Current_Typ := Parent_Typ;
Add_Invariants (Current_Typ, Inherit => True);
end loop;
end;
-- Build the procedure if we generated at least one Check pragma
if Stmts /= No_List then
-- Build procedure declaration
SId :=
Make_Defining_Identifier (Loc,
Chars => New_External_Name (Chars (Typ), "Invariant"));
Set_Has_Invariants (SId);
Set_Invariant_Procedure (Typ, SId);
Spec :=
Make_Procedure_Specification (Loc,
Defining_Unit_Name => SId,
Parameter_Specifications => New_List (
Make_Parameter_Specification (Loc,
Defining_Identifier => Object_Entity,
Parameter_Type => New_Occurrence_Of (Typ, Loc))));
PDecl := Make_Subprogram_Declaration (Loc, Specification => Spec);
-- Build procedure body
SId :=
Make_Defining_Identifier (Loc,
Chars => New_External_Name (Chars (Typ), "Invariant"));
Spec :=
Make_Procedure_Specification (Loc,
Defining_Unit_Name => SId,
Parameter_Specifications => New_List (
Make_Parameter_Specification (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc, Object_Name),
Parameter_Type => New_Occurrence_Of (Typ, Loc))));
PBody :=
Make_Subprogram_Body (Loc,
Specification => Spec,
Declarations => Empty_List,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => Stmts));
-- Insert procedure declaration and spec at the appropriate points.
-- Skip this if there are no private declarations (that's an error
-- that will be diagnosed elsewhere, and there is no point in having
-- an invariant procedure set if the full declaration is missing).
if Present (Private_Decls) then
-- The spec goes at the end of visible declarations, but they have
-- already been analyzed, so we need to explicitly do the analyze.
Append_To (Visible_Decls, PDecl);
Analyze (PDecl);
-- The body goes at the end of the private declarations, which we
-- have not analyzed yet, so we do not need to perform an explicit
-- analyze call. We skip this if there are no private declarations
-- (this is an error that will be caught elsewhere);
Append_To (Private_Decls, PBody);
end if;
end if;
end Build_Invariant_Procedure;
------------------------------
-- Build_Predicate_Function --
------------------------------
-- The procedure that is constructed here has the form
-- function typPredicate (Ixxx : typ) return Boolean is
-- begin
-- return
-- exp1 and then exp2 and then ...
-- and then typ1Predicate (typ1 (Ixxx))
-- and then typ2Predicate (typ2 (Ixxx))
-- and then ...;
-- end typPredicate;
-- Here exp1, and exp2 are expressions from Predicate pragmas. Note that
-- this is the point at which these expressions get analyzed, providing the
-- required delay, and typ1, typ2, are entities from which predicates are
-- inherited. Note that we do NOT generate Check pragmas, that's because we
-- use this function even if checks are off, e.g. for membership tests.
procedure Build_Predicate_Function (Typ : Entity_Id; N : Node_Id) is
Loc : constant Source_Ptr := Sloc (Typ);
Spec : Node_Id;
SId : Entity_Id;
FDecl : Node_Id;
FBody : Node_Id;
Expr : Node_Id;
-- This is the expression for the return statement in the function. It
-- is build by connecting the component predicates with AND THEN.
procedure Add_Call (T : Entity_Id);
-- Includes a call to the predicate function for type T in Expr if T
-- has predicates and Predicate_Function (T) is non-empty.
procedure Add_Predicates;
-- Appends expressions for any Predicate pragmas in the rep item chain
-- Typ to Expr. Note that we look only at items for this exact entity.
-- Inheritance of predicates for the parent type is done by calling the
-- Predicate_Function of the parent type, using Add_Call above.
Object_Name : constant Name_Id := New_Internal_Name ('I');
-- Name for argument of Predicate procedure
Object_Entity : constant Entity_Id :=
Make_Defining_Identifier (Loc, Object_Name);
-- The entity for the spec entity for the argument
Dynamic_Predicate_Present : Boolean := False;
-- Set True if a dynamic predicate is present, results in the entire
-- predicate being considered dynamic even if it looks static
Static_Predicate_Present : Node_Id := Empty;
-- Set to N_Pragma node for a static predicate if one is encountered.
--------------
-- Add_Call --
--------------
procedure Add_Call (T : Entity_Id) is
Exp : Node_Id;
begin
if Present (T) and then Present (Predicate_Function (T)) then
Set_Has_Predicates (Typ);
-- Build the call to the predicate function of T
Exp :=
Make_Predicate_Call
(T, Convert_To (T, Make_Identifier (Loc, Object_Name)));
-- Add call to evolving expression, using AND THEN if needed
if No (Expr) then
Expr := Exp;
else
Expr :=
Make_And_Then (Loc,
Left_Opnd => Relocate_Node (Expr),
Right_Opnd => Exp);
end if;
-- Output info message on inheritance if required. Note we do not
-- give this information for generic actual types, since it is
-- unwelcome noise in that case in instantiations. We also
-- generally suppress the message in instantiations, and also
-- if it involves internal names.
if Opt.List_Inherited_Aspects
and then not Is_Generic_Actual_Type (Typ)
and then Instantiation_Depth (Sloc (Typ)) = 0
and then not Is_Internal_Name (Chars (T))
and then not Is_Internal_Name (Chars (Typ))
then
Error_Msg_Sloc := Sloc (Predicate_Function (T));
Error_Msg_Node_2 := T;
Error_Msg_N ("?info: & inherits predicate from & #", Typ);
end if;
end if;
end Add_Call;
--------------------
-- Add_Predicates --
--------------------
procedure Add_Predicates is
Ritem : Node_Id;
Arg1 : Node_Id;
Arg2 : Node_Id;
procedure Replace_Type_Reference (N : Node_Id);
-- Replace a single occurrence N of the subtype name with a reference
-- to the formal of the predicate function. N can be an identifier
-- referencing the subtype, or a selected component, representing an
-- appropriately qualified occurrence of the subtype name.
procedure Replace_Type_References is
new Replace_Type_References_Generic (Replace_Type_Reference);
-- Traverse an expression changing every occurrence of an identifier
-- whose name matches the name of the subtype with a reference to
-- the formal parameter of the predicate function.
----------------------------
-- Replace_Type_Reference --
----------------------------
procedure Replace_Type_Reference (N : Node_Id) is
begin
Rewrite (N, Make_Identifier (Loc, Object_Name));
Set_Entity (N, Object_Entity);
Set_Etype (N, Typ);
end Replace_Type_Reference;
-- Start of processing for Add_Predicates
begin
Ritem := First_Rep_Item (Typ);
while Present (Ritem) loop
if Nkind (Ritem) = N_Pragma
and then Pragma_Name (Ritem) = Name_Predicate
then
if From_Dynamic_Predicate (Ritem) then
Dynamic_Predicate_Present := True;
elsif From_Static_Predicate (Ritem) then
Static_Predicate_Present := Ritem;
end if;
-- Acquire arguments
Arg1 := First (Pragma_Argument_Associations (Ritem));
Arg2 := Next (Arg1);
Arg1 := Get_Pragma_Arg (Arg1);
Arg2 := Get_Pragma_Arg (Arg2);
-- See if this predicate pragma is for the current type or for
-- its full view. A predicate on a private completion is placed
-- on the partial view beause this is the visible entity that
-- is frozen.
if Entity (Arg1) = Typ
or else Full_View (Entity (Arg1)) = Typ
then
-- We have a match, this entry is for our subtype
-- We need to replace any occurrences of the name of the
-- type with references to the object.
Replace_Type_References (Arg2, Chars (Typ));
-- If this predicate comes from an aspect, find the aspect
-- specification, and replace the saved expression because
-- we need the subtype references replaced for the calls to
-- Preanalyze_Spec_Expressin in Check_Aspect_At_Freeze_Point
-- and Check_Aspect_At_End_Of_Declarations.
if From_Aspect_Specification (Ritem) then
declare
Aitem : Node_Id;
begin
-- Loop to find corresponding aspect, note that this
-- must be present given the pragma is marked delayed.
Aitem := Next_Rep_Item (Ritem);
loop
if Nkind (Aitem) = N_Aspect_Specification
and then Aspect_Rep_Item (Aitem) = Ritem
then
Set_Entity
(Identifier (Aitem), New_Copy_Tree (Arg2));
exit;
end if;
Aitem := Next_Rep_Item (Aitem);
end loop;
end;
end if;
-- Now we can add the expression
if No (Expr) then
Expr := Relocate_Node (Arg2);
-- There already was a predicate, so add to it
else
Expr :=
Make_And_Then (Loc,
Left_Opnd => Relocate_Node (Expr),
Right_Opnd => Relocate_Node (Arg2));
end if;
end if;
end if;
Next_Rep_Item (Ritem);
end loop;
end Add_Predicates;
-- Start of processing for Build_Predicate_Function
begin
-- Initialize for construction of statement list
Expr := Empty;
-- Return if already built or if type does not have predicates
if not Has_Predicates (Typ)
or else Present (Predicate_Function (Typ))
then
return;
end if;
-- Add Predicates for the current type
Add_Predicates;
-- Add predicates for ancestor if present
declare
Atyp : constant Entity_Id := Nearest_Ancestor (Typ);
begin
if Present (Atyp) then
Add_Call (Atyp);
end if;
end;
-- If we have predicates, build the function
if Present (Expr) then
-- Build function declaration
pragma Assert (Has_Predicates (Typ));
SId :=
Make_Defining_Identifier (Loc,
Chars => New_External_Name (Chars (Typ), "Predicate"));
Set_Has_Predicates (SId);
Set_Predicate_Function (Typ, SId);
Spec :=
Make_Function_Specification (Loc,
Defining_Unit_Name => SId,
Parameter_Specifications => New_List (
Make_Parameter_Specification (Loc,
Defining_Identifier => Object_Entity,
Parameter_Type => New_Occurrence_Of (Typ, Loc))),
Result_Definition =>
New_Occurrence_Of (Standard_Boolean, Loc));
FDecl := Make_Subprogram_Declaration (Loc, Specification => Spec);
-- Build function body
SId :=
Make_Defining_Identifier (Loc,
Chars => New_External_Name (Chars (Typ), "Predicate"));
Spec :=
Make_Function_Specification (Loc,
Defining_Unit_Name => SId,
Parameter_Specifications => New_List (
Make_Parameter_Specification (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc, Object_Name),
Parameter_Type =>
New_Occurrence_Of (Typ, Loc))),
Result_Definition =>
New_Occurrence_Of (Standard_Boolean, Loc));
FBody :=
Make_Subprogram_Body (Loc,
Specification => Spec,
Declarations => Empty_List,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => New_List (
Make_Simple_Return_Statement (Loc,
Expression => Expr))));
-- Insert declaration before freeze node and body after
Insert_Before_And_Analyze (N, FDecl);
Insert_After_And_Analyze (N, FBody);
-- Deal with static predicate case
if Ekind_In (Typ, E_Enumeration_Subtype,
E_Modular_Integer_Subtype,
E_Signed_Integer_Subtype)
and then Is_Static_Subtype (Typ)
and then not Dynamic_Predicate_Present
then
Build_Static_Predicate (Typ, Expr, Object_Name);
if Present (Static_Predicate_Present)
and No (Static_Predicate (Typ))
then
Error_Msg_F
("expression does not have required form for "
& "static predicate",
Next (First (Pragma_Argument_Associations
(Static_Predicate_Present))));
end if;
end if;
end if;
end Build_Predicate_Function;
----------------------------
-- Build_Static_Predicate --
----------------------------
procedure Build_Static_Predicate
(Typ : Entity_Id;
Expr : Node_Id;
Nam : Name_Id)
is
Loc : constant Source_Ptr := Sloc (Expr);
Non_Static : exception;
-- Raised if something non-static is found
Btyp : constant Entity_Id := Base_Type (Typ);
BLo : constant Uint := Expr_Value (Type_Low_Bound (Btyp));
BHi : constant Uint := Expr_Value (Type_High_Bound (Btyp));
-- Low bound and high bound value of base type of Typ
TLo : constant Uint := Expr_Value (Type_Low_Bound (Typ));
THi : constant Uint := Expr_Value (Type_High_Bound (Typ));
-- Low bound and high bound values of static subtype Typ
type REnt is record
Lo, Hi : Uint;
end record;
-- One entry in a Rlist value, a single REnt (range entry) value
-- denotes one range from Lo to Hi. To represent a single value
-- range Lo = Hi = value.
type RList is array (Nat range <>) of REnt;
-- A list of ranges. The ranges are sorted in increasing order,
-- and are disjoint (there is a gap of at least one value between
-- each range in the table). A value is in the set of ranges in
-- Rlist if it lies within one of these ranges
False_Range : constant RList :=
RList'(1 .. 0 => REnt'(No_Uint, No_Uint));
-- An empty set of ranges represents a range list that can never be
-- satisfied, since there are no ranges in which the value could lie,
-- so it does not lie in any of them. False_Range is a canonical value
-- for this empty set, but general processing should test for an Rlist
-- with length zero (see Is_False predicate), since other null ranges
-- may appear which must be treated as False.
True_Range : constant RList := RList'(1 => REnt'(BLo, BHi));
-- Range representing True, value must be in the base range
function "and" (Left, Right : RList) return RList;
-- And's together two range lists, returning a range list. This is
-- a set intersection operation.
function "or" (Left, Right : RList) return RList;
-- Or's together two range lists, returning a range list. This is a
-- set union operation.
function "not" (Right : RList) return RList;
-- Returns complement of a given range list, i.e. a range list
-- representing all the values in TLo .. THi that are not in the
-- input operand Right.
function Build_Val (V : Uint) return Node_Id;
-- Return an analyzed N_Identifier node referencing this value, suitable
-- for use as an entry in the Static_Predicate list. This node is typed
-- with the base type.
function Build_Range (Lo, Hi : Uint) return Node_Id;
-- Return an analyzed N_Range node referencing this range, suitable
-- for use as an entry in the Static_Predicate list. This node is typed
-- with the base type.
function Get_RList (Exp : Node_Id) return RList;
-- This is a recursive routine that converts the given expression into
-- a list of ranges, suitable for use in building the static predicate.
function Is_False (R : RList) return Boolean;
pragma Inline (Is_False);
-- Returns True if the given range list is empty, and thus represents
-- a False list of ranges that can never be satisfied.
function Is_True (R : RList) return Boolean;
-- Returns True if R trivially represents the True predicate by having
-- a single range from BLo to BHi.
function Is_Type_Ref (N : Node_Id) return Boolean;
pragma Inline (Is_Type_Ref);
-- Returns if True if N is a reference to the type for the predicate in
-- the expression (i.e. if it is an identifier whose Chars field matches
-- the Nam given in the call).
function Lo_Val (N : Node_Id) return Uint;
-- Given static expression or static range from a Static_Predicate list,
-- gets expression value or low bound of range.
function Hi_Val (N : Node_Id) return Uint;
-- Given static expression or static range from a Static_Predicate list,
-- gets expression value of high bound of range.
function Membership_Entry (N : Node_Id) return RList;
-- Given a single membership entry (range, value, or subtype), returns
-- the corresponding range list. Raises Static_Error if not static.
function Membership_Entries (N : Node_Id) return RList;
-- Given an element on an alternatives list of a membership operation,
-- returns the range list corresponding to this entry and all following
-- entries (i.e. returns the "or" of this list of values).
function Stat_Pred (Typ : Entity_Id) return RList;
-- Given a type, if it has a static predicate, then return the predicate
-- as a range list, otherwise raise Non_Static.
-----------
-- "and" --
-----------
function "and" (Left, Right : RList) return RList is
FEnt : REnt;
-- First range of result
SLeft : Nat := Left'First;
-- Start of rest of left entries
SRight : Nat := Right'First;
-- Start of rest of right entries
begin
-- If either range is True, return the other
if Is_True (Left) then
return Right;
elsif Is_True (Right) then
return Left;
end if;
-- If either range is False, return False
if Is_False (Left) or else Is_False (Right) then
return False_Range;
end if;
-- Loop to remove entries at start that are disjoint, and thus
-- just get discarded from the result entirely.
loop
-- If no operands left in either operand, result is false
if SLeft > Left'Last or else SRight > Right'Last then
return False_Range;
-- Discard first left operand entry if disjoint with right
elsif Left (SLeft).Hi < Right (SRight).Lo then
SLeft := SLeft + 1;
-- Discard first right operand entry if disjoint with left
elsif Right (SRight).Hi < Left (SLeft).Lo then
SRight := SRight + 1;
-- Otherwise we have an overlapping entry
else
exit;
end if;
end loop;
-- Now we have two non-null operands, and first entries overlap.
-- The first entry in the result will be the overlapping part of
-- these two entries.
FEnt := REnt'(Lo => UI_Max (Left (SLeft).Lo, Right (SRight).Lo),
Hi => UI_Min (Left (SLeft).Hi, Right (SRight).Hi));
-- Now we can remove the entry that ended at a lower value, since
-- its contribution is entirely contained in Fent.
if Left (SLeft).Hi <= Right (SRight).Hi then
SLeft := SLeft + 1;
else
SRight := SRight + 1;
end if;
-- Compute result by concatenating this first entry with the "and"
-- of the remaining parts of the left and right operands. Note that
-- if either of these is empty, "and" will yield empty, so that we
-- will end up with just Fent, which is what we want in that case.
return
FEnt & (Left (SLeft .. Left'Last) and Right (SRight .. Right'Last));
end "and";
-----------
-- "not" --
-----------
function "not" (Right : RList) return RList is
begin
-- Return True if False range
if Is_False (Right) then
return True_Range;
end if;
-- Return False if True range
if Is_True (Right) then
return False_Range;
end if;
-- Here if not trivial case
declare
Result : RList (1 .. Right'Length + 1);
-- May need one more entry for gap at beginning and end
Count : Nat := 0;
-- Number of entries stored in Result
begin
-- Gap at start
if Right (Right'First).Lo > TLo then
Count := Count + 1;
Result (Count) := REnt'(TLo, Right (Right'First).Lo - 1);
end if;
-- Gaps between ranges
for J in Right'First .. Right'Last - 1 loop
Count := Count + 1;
Result (Count) :=
REnt'(Right (J).Hi + 1, Right (J + 1).Lo - 1);
end loop;
-- Gap at end
if Right (Right'Last).Hi < THi then
Count := Count + 1;
Result (Count) := REnt'(Right (Right'Last).Hi + 1, THi);
end if;
return Result (1 .. Count);
end;
end "not";
----------
-- "or" --
----------
function "or" (Left, Right : RList) return RList is
FEnt : REnt;
-- First range of result
SLeft : Nat := Left'First;
-- Start of rest of left entries
SRight : Nat := Right'First;
-- Start of rest of right entries
begin
-- If either range is True, return True
if Is_True (Left) or else Is_True (Right) then
return True_Range;
end if;
-- If either range is False (empty), return the other
if Is_False (Left) then
return Right;
elsif Is_False (Right) then
return Left;
end if;
-- Initialize result first entry from left or right operand
-- depending on which starts with the lower range.
if Left (SLeft).Lo < Right (SRight).Lo then
FEnt := Left (SLeft);
SLeft := SLeft + 1;
else
FEnt := Right (SRight);
SRight := SRight + 1;
end if;
-- This loop eats ranges from left and right operands that
-- are contiguous with the first range we are gathering.
loop
-- Eat first entry in left operand if contiguous or
-- overlapped by gathered first operand of result.
if SLeft <= Left'Last
and then Left (SLeft).Lo <= FEnt.Hi + 1
then
FEnt.Hi := UI_Max (FEnt.Hi, Left (SLeft).Hi);
SLeft := SLeft + 1;
-- Eat first entry in right operand if contiguous or
-- overlapped by gathered right operand of result.
elsif SRight <= Right'Last
and then Right (SRight).Lo <= FEnt.Hi + 1
then
FEnt.Hi := UI_Max (FEnt.Hi, Right (SRight).Hi);
SRight := SRight + 1;
-- All done if no more entries to eat!
else
exit;
end if;
end loop;
-- Obtain result as the first entry we just computed, concatenated
-- to the "or" of the remaining results (if one operand is empty,
-- this will just concatenate with the other
return
FEnt & (Left (SLeft .. Left'Last) or Right (SRight .. Right'Last));
end "or";
-----------------
-- Build_Range --
-----------------
function Build_Range (Lo, Hi : Uint) return Node_Id is
Result : Node_Id;
begin
if Lo = Hi then
return Build_Val (Hi);
else
Result :=
Make_Range (Loc,
Low_Bound => Build_Val (Lo),
High_Bound => Build_Val (Hi));
Set_Etype (Result, Btyp);
Set_Analyzed (Result);
return Result;
end if;
end Build_Range;
---------------
-- Build_Val --
---------------
function Build_Val (V : Uint) return Node_Id is
Result : Node_Id;
begin
if Is_Enumeration_Type (Typ) then
Result := Get_Enum_Lit_From_Pos (Typ, V, Loc);
else
Result := Make_Integer_Literal (Loc, V);
end if;
Set_Etype (Result, Btyp);
Set_Is_Static_Expression (Result);
Set_Analyzed (Result);
return Result;
end Build_Val;
---------------
-- Get_RList --
---------------
function Get_RList (Exp : Node_Id) return RList is
Op : Node_Kind;
Val : Uint;
begin
-- Static expression can only be true or false
if Is_OK_Static_Expression (Exp) then
-- For False
if Expr_Value (Exp) = 0 then
return False_Range;
else
return True_Range;
end if;
end if;
-- Otherwise test node type
Op := Nkind (Exp);
case Op is
-- And
when N_Op_And | N_And_Then =>
return Get_RList (Left_Opnd (Exp))
and
Get_RList (Right_Opnd (Exp));
-- Or
when N_Op_Or | N_Or_Else =>
return Get_RList (Left_Opnd (Exp))
or
Get_RList (Right_Opnd (Exp));
-- Not
when N_Op_Not =>
return not Get_RList (Right_Opnd (Exp));
-- Comparisons of type with static value
when N_Op_Compare =>
-- Type is left operand
if Is_Type_Ref (Left_Opnd (Exp))
and then Is_OK_Static_Expression (Right_Opnd (Exp))
then
Val := Expr_Value (Right_Opnd (Exp));
-- Typ is right operand
elsif Is_Type_Ref (Right_Opnd (Exp))
and then Is_OK_Static_Expression (Left_Opnd (Exp))
then
Val := Expr_Value (Left_Opnd (Exp));
-- Invert sense of comparison
case Op is
when N_Op_Gt => Op := N_Op_Lt;
when N_Op_Lt => Op := N_Op_Gt;
when N_Op_Ge => Op := N_Op_Le;
when N_Op_Le => Op := N_Op_Ge;
when others => null;
end case;
-- Other cases are non-static
else
raise Non_Static;
end if;
-- Construct range according to comparison operation
case Op is
when N_Op_Eq =>
return RList'(1 => REnt'(Val, Val));
when N_Op_Ge =>
return RList'(1 => REnt'(Val, BHi));
when N_Op_Gt =>
return RList'(1 => REnt'(Val + 1, BHi));
when N_Op_Le =>
return RList'(1 => REnt'(BLo, Val));
when N_Op_Lt =>
return RList'(1 => REnt'(BLo, Val - 1));
when N_Op_Ne =>
return RList'(REnt'(BLo, Val - 1),
REnt'(Val + 1, BHi));
when others =>
raise Program_Error;
end case;
-- Membership (IN)
when N_In =>
if not Is_Type_Ref (Left_Opnd (Exp)) then
raise Non_Static;
end if;
if Present (Right_Opnd (Exp)) then
return Membership_Entry (Right_Opnd (Exp));
else
return Membership_Entries (First (Alternatives (Exp)));
end if;
-- Negative membership (NOT IN)
when N_Not_In =>
if not Is_Type_Ref (Left_Opnd (Exp)) then
raise Non_Static;
end if;
if Present (Right_Opnd (Exp)) then
return not Membership_Entry (Right_Opnd (Exp));
else
return not Membership_Entries (First (Alternatives (Exp)));
end if;
-- Function call, may be call to static predicate
when N_Function_Call =>
if Is_Entity_Name (Name (Exp)) then
declare
Ent : constant Entity_Id := Entity (Name (Exp));
begin
if Has_Predicates (Ent) then
return Stat_Pred (Etype (First_Formal (Ent)));
end if;
end;
end if;
-- Other function call cases are non-static
raise Non_Static;
-- Qualified expression, dig out the expression
when N_Qualified_Expression =>
return Get_RList (Expression (Exp));
-- Xor operator
when N_Op_Xor =>
return (Get_RList (Left_Opnd (Exp))
and not Get_RList (Right_Opnd (Exp)))
or (Get_RList (Right_Opnd (Exp))
and not Get_RList (Left_Opnd (Exp)));
-- Any other node type is non-static
when others =>
raise Non_Static;
end case;
end Get_RList;
------------
-- Hi_Val --
------------
function Hi_Val (N : Node_Id) return Uint is
begin
if Is_Static_Expression (N) then
return Expr_Value (N);
else
pragma Assert (Nkind (N) = N_Range);
return Expr_Value (High_Bound (N));
end if;
end Hi_Val;
--------------
-- Is_False --
--------------
function Is_False (R : RList) return Boolean is
begin
return R'Length = 0;
end Is_False;
-------------
-- Is_True --
-------------
function Is_True (R : RList) return Boolean is
begin
return R'Length = 1
and then R (R'First).Lo = BLo
and then R (R'First).Hi = BHi;
end Is_True;
-----------------
-- Is_Type_Ref --
-----------------
function Is_Type_Ref (N : Node_Id) return Boolean is
begin
return Nkind (N) = N_Identifier and then Chars (N) = Nam;
end Is_Type_Ref;
------------
-- Lo_Val --
------------
function Lo_Val (N : Node_Id) return Uint is
begin
if Is_Static_Expression (N) then
return Expr_Value (N);
else
pragma Assert (Nkind (N) = N_Range);
return Expr_Value (Low_Bound (N));
end if;
end Lo_Val;
------------------------
-- Membership_Entries --
------------------------
function Membership_Entries (N : Node_Id) return RList is
begin
if No (Next (N)) then
return Membership_Entry (N);
else
return Membership_Entry (N) or Membership_Entries (Next (N));
end if;
end Membership_Entries;
----------------------
-- Membership_Entry --
----------------------
function Membership_Entry (N : Node_Id) return RList is
Val : Uint;
SLo : Uint;
SHi : Uint;
begin
-- Range case
if Nkind (N) = N_Range then
if not Is_Static_Expression (Low_Bound (N))
or else
not Is_Static_Expression (High_Bound (N))
then
raise Non_Static;
else
SLo := Expr_Value (Low_Bound (N));
SHi := Expr_Value (High_Bound (N));
return RList'(1 => REnt'(SLo, SHi));
end if;
-- Static expression case
elsif Is_Static_Expression (N) then
Val := Expr_Value (N);
return RList'(1 => REnt'(Val, Val));
-- Identifier (other than static expression) case
else pragma Assert (Nkind (N) = N_Identifier);
-- Type case
if Is_Type (Entity (N)) then
-- If type has predicates, process them
if Has_Predicates (Entity (N)) then
return Stat_Pred (Entity (N));
-- For static subtype without predicates, get range
elsif Is_Static_Subtype (Entity (N)) then
SLo := Expr_Value (Type_Low_Bound (Entity (N)));
SHi := Expr_Value (Type_High_Bound (Entity (N)));
return RList'(1 => REnt'(SLo, SHi));
-- Any other type makes us non-static
else
raise Non_Static;
end if;
-- Any other kind of identifier in predicate (e.g. a non-static
-- expression value) means this is not a static predicate.
else
raise Non_Static;
end if;
end if;
end Membership_Entry;
---------------
-- Stat_Pred --
---------------
function Stat_Pred (Typ : Entity_Id) return RList is
begin
-- Not static if type does not have static predicates
if not Has_Predicates (Typ)
or else No (Static_Predicate (Typ))
then
raise Non_Static;
end if;
-- Otherwise we convert the predicate list to a range list
declare
Result : RList (1 .. List_Length (Static_Predicate (Typ)));
P : Node_Id;
begin
P := First (Static_Predicate (Typ));
for J in Result'Range loop
Result (J) := REnt'(Lo_Val (P), Hi_Val (P));
Next (P);
end loop;
return Result;
end;
end Stat_Pred;
-- Start of processing for Build_Static_Predicate
begin
-- Now analyze the expression to see if it is a static predicate
declare
Ranges : constant RList := Get_RList (Expr);
-- Range list from expression if it is static
Plist : List_Id;
begin
-- Convert range list into a form for the static predicate. In the
-- Ranges array, we just have raw ranges, these must be converted
-- to properly typed and analyzed static expressions or range nodes.
-- Note: here we limit ranges to the ranges of the subtype, so that
-- a predicate is always false for values outside the subtype. That
-- seems fine, such values are invalid anyway, and considering them
-- to fail the predicate seems allowed and friendly, and furthermore
-- simplifies processing for case statements and loops.
Plist := New_List;
for J in Ranges'Range loop
declare
Lo : Uint := Ranges (J).Lo;
Hi : Uint := Ranges (J).Hi;
begin
-- Ignore completely out of range entry
if Hi < TLo or else Lo > THi then
null;
-- Otherwise process entry
else
-- Adjust out of range value to subtype range
if Lo < TLo then
Lo := TLo;
end if;
if Hi > THi then
Hi := THi;
end if;
-- Convert range into required form
if Lo = Hi then
Append_To (Plist, Build_Val (Lo));
else
Append_To (Plist, Build_Range (Lo, Hi));
end if;
end if;
end;
end loop;
-- Processing was successful and all entries were static, so now we
-- can store the result as the predicate list.
Set_Static_Predicate (Typ, Plist);
-- The processing for static predicates put the expression into
-- canonical form as a series of ranges. It also eliminated
-- duplicates and collapsed and combined ranges. We might as well
-- replace the alternatives list of the right operand of the
-- membership test with the static predicate list, which will
-- usually be more efficient.
declare
New_Alts : constant List_Id := New_List;
Old_Node : Node_Id;
New_Node : Node_Id;
begin
Old_Node := First (Plist);
while Present (Old_Node) loop
New_Node := New_Copy (Old_Node);
if Nkind (New_Node) = N_Range then
Set_Low_Bound (New_Node, New_Copy (Low_Bound (Old_Node)));
Set_High_Bound (New_Node, New_Copy (High_Bound (Old_Node)));
end if;
Append_To (New_Alts, New_Node);
Next (Old_Node);
end loop;
-- If empty list, replace by False
if Is_Empty_List (New_Alts) then
Rewrite (Expr, New_Occurrence_Of (Standard_False, Loc));
-- Else replace by set membership test
else
Rewrite (Expr,
Make_In (Loc,
Left_Opnd => Make_Identifier (Loc, Nam),
Right_Opnd => Empty,
Alternatives => New_Alts));
-- Resolve new expression in function context
Install_Formals (Predicate_Function (Typ));
Push_Scope (Predicate_Function (Typ));
Analyze_And_Resolve (Expr, Standard_Boolean);
Pop_Scope;
end if;
end;
end;
-- If non-static, return doing nothing
exception
when Non_Static =>
return;
end Build_Static_Predicate;
-----------------------------------------
-- Check_Aspect_At_End_Of_Declarations --
-----------------------------------------
procedure Check_Aspect_At_End_Of_Declarations (ASN : Node_Id) is
Ent : constant Entity_Id := Entity (ASN);
Ident : constant Node_Id := Identifier (ASN);
Freeze_Expr : constant Node_Id := Expression (ASN);
-- Preanalyzed expression from call to Check_Aspect_At_Freeze_Point
End_Decl_Expr : constant Node_Id := Entity (Ident);
-- Expression to be analyzed at end of declarations
T : constant Entity_Id := Etype (Freeze_Expr);
-- Type required for preanalyze call
A_Id : constant Aspect_Id := Get_Aspect_Id (Chars (Ident));
Err : Boolean;
-- Set False if error
-- On entry to this procedure, Entity (Ident) contains a copy of the
-- original expression from the aspect, saved for this purpose, and
-- but Expression (Ident) is a preanalyzed copy of the expression,
-- preanalyzed just after the freeze point.
begin
-- Case of stream attributes, just have to compare entities
if A_Id = Aspect_Input or else
A_Id = Aspect_Output or else
A_Id = Aspect_Read or else
A_Id = Aspect_Write
then
Analyze (End_Decl_Expr);
Err := Entity (End_Decl_Expr) /= Entity (Freeze_Expr);
elsif A_Id = Aspect_Variable_Indexing or else
A_Id = Aspect_Constant_Indexing
then
Analyze (End_Decl_Expr);
Analyze (Aspect_Rep_Item (ASN));
Err := Entity (End_Decl_Expr) /= Entity (Freeze_Expr);
-- All other cases
else
Preanalyze_Spec_Expression (End_Decl_Expr, T);
Err := not Fully_Conformant_Expressions (End_Decl_Expr, Freeze_Expr);
end if;
-- Output error message if error
if Err then
Error_Msg_NE
("visibility of aspect for& changes after freeze point",
ASN, Ent);
Error_Msg_NE
("?info: & is frozen here, aspects evaluated at this point",
Freeze_Node (Ent), Ent);
end if;
end Check_Aspect_At_End_Of_Declarations;
----------------------------------
-- Check_Aspect_At_Freeze_Point --
----------------------------------
procedure Check_Aspect_At_Freeze_Point (ASN : Node_Id) is
Ident : constant Node_Id := Identifier (ASN);
-- Identifier (use Entity field to save expression)
T : Entity_Id;
-- Type required for preanalyze call
A_Id : constant Aspect_Id := Get_Aspect_Id (Chars (Ident));
begin
-- On entry to this procedure, Entity (Ident) contains a copy of the
-- original expression from the aspect, saved for this purpose.
-- On exit from this procedure Entity (Ident) is unchanged, still
-- containing that copy, but Expression (Ident) is a preanalyzed copy
-- of the expression, preanalyzed just after the freeze point.
-- Make a copy of the expression to be preanalyed
Set_Expression (ASN, New_Copy_Tree (Entity (Ident)));
-- Find type for preanalyze call
case A_Id is
-- No_Aspect should be impossible
when No_Aspect =>
raise Program_Error;
-- Library unit aspects should be impossible (never delayed)
when Library_Unit_Aspects =>
raise Program_Error;
-- Aspects taking an optional boolean argument. Should be impossible
-- since these are never delayed.
when Boolean_Aspects =>
raise Program_Error;
-- Test_Case aspect applies to entries and subprograms, hence should
-- never be delayed.
when Aspect_Test_Case =>
raise Program_Error;
-- Default_Value is resolved with the type entity in question
when Aspect_Default_Value =>
T := Entity (ASN);
-- Default_Component_Value is resolved with the component type
when Aspect_Default_Component_Value =>
T := Component_Type (Entity (ASN));
-- Aspects corresponding to attribute definition clauses
when Aspect_Address =>
T := RTE (RE_Address);
when Aspect_Bit_Order =>
T := RTE (RE_Bit_Order);
when Aspect_External_Tag =>
T := Standard_String;
when Aspect_Storage_Pool =>
T := Class_Wide_Type (RTE (RE_Root_Storage_Pool));
when Aspect_Alignment |
Aspect_Component_Size |
Aspect_Machine_Radix |
Aspect_Object_Size |
Aspect_Size |
Aspect_Storage_Size |
Aspect_Stream_Size |
Aspect_Value_Size =>
T := Any_Integer;
-- Stream attribute. Special case, the expression is just an entity
-- that does not need any resolution, so just analyze.
when Aspect_Input |
Aspect_Output |
Aspect_Read |
Aspect_Write =>
Analyze (Expression (ASN));
return;
-- Same for Iterator aspects, where the expression is a function
-- name. Legality rules are checked separately.
when Aspect_Constant_Indexing |
Aspect_Default_Iterator |
Aspect_Iterator_Element |
Aspect_Implicit_Dereference |
Aspect_Variable_Indexing =>
Analyze (Expression (ASN));
return;
-- Suppress/Unsuppress/Warnings should never be delayed
when Aspect_Suppress |
Aspect_Unsuppress |
Aspect_Warnings =>
raise Program_Error;
-- Pre/Post/Invariant/Predicate take boolean expressions
when Aspect_Dynamic_Predicate |
Aspect_Invariant |
Aspect_Pre |
Aspect_Precondition |
Aspect_Post |
Aspect_Postcondition |
Aspect_Predicate |
Aspect_Static_Predicate |
Aspect_Type_Invariant =>
T := Standard_Boolean;
end case;
-- Do the preanalyze call
Preanalyze_Spec_Expression (Expression (ASN), T);
end Check_Aspect_At_Freeze_Point;
-----------------------------------
-- Check_Constant_Address_Clause --
-----------------------------------
procedure Check_Constant_Address_Clause
(Expr : Node_Id;
U_Ent : Entity_Id)
is
procedure Check_At_Constant_Address (Nod : Node_Id);
-- Checks that the given node N represents a name whose 'Address is
-- constant (in the same sense as OK_Constant_Address_Clause, i.e. the
-- address value is the same at the point of declaration of U_Ent and at
-- the time of elaboration of the address clause.
procedure Check_Expr_Constants (Nod : Node_Id);
-- Checks that Nod meets the requirements for a constant address clause
-- in the sense of the enclosing procedure.
procedure Check_List_Constants (Lst : List_Id);
-- Check that all elements of list Lst meet the requirements for a
-- constant address clause in the sense of the enclosing procedure.
-------------------------------
-- Check_At_Constant_Address --
-------------------------------
procedure Check_At_Constant_Address (Nod : Node_Id) is
begin
if Is_Entity_Name (Nod) then
if Present (Address_Clause (Entity ((Nod)))) then
Error_Msg_NE
("invalid address clause for initialized object &!",
Nod, U_Ent);
Error_Msg_NE
("address for& cannot" &
" depend on another address clause! (RM 13.1(22))!",
Nod, U_Ent);
elsif In_Same_Source_Unit (Entity (Nod), U_Ent)
and then Sloc (U_Ent) < Sloc (Entity (Nod))
then
Error_Msg_NE
("invalid address clause for initialized object &!",
Nod, U_Ent);
Error_Msg_Node_2 := U_Ent;
Error_Msg_NE
("\& must be defined before & (RM 13.1(22))!",
Nod, Entity (Nod));
end if;
elsif Nkind (Nod) = N_Selected_Component then
declare
T : constant Entity_Id := Etype (Prefix (Nod));
begin
if (Is_Record_Type (T)
and then Has_Discriminants (T))
or else
(Is_Access_Type (T)
and then Is_Record_Type (Designated_Type (T))
and then Has_Discriminants (Designated_Type (T)))
then
Error_Msg_NE
("invalid address clause for initialized object &!",
Nod, U_Ent);
Error_Msg_N
("\address cannot depend on component" &
" of discriminated record (RM 13.1(22))!",
Nod);
else
Check_At_Constant_Address (Prefix (Nod));
end if;
end;
elsif Nkind (Nod) = N_Indexed_Component then
Check_At_Constant_Address (Prefix (Nod));
Check_List_Constants (Expressions (Nod));
else
Check_Expr_Constants (Nod);
end if;
end Check_At_Constant_Address;
--------------------------
-- Check_Expr_Constants --
--------------------------
procedure Check_Expr_Constants (Nod : Node_Id) is
Loc_U_Ent : constant Source_Ptr := Sloc (U_Ent);
Ent : Entity_Id := Empty;
begin
if Nkind (Nod) in N_Has_Etype
and then Etype (Nod) = Any_Type
then
return;
end if;
case Nkind (Nod) is
when N_Empty | N_Error =>
return;
when N_Identifier | N_Expanded_Name =>
Ent := Entity (Nod);
-- We need to look at the original node if it is different
-- from the node, since we may have rewritten things and
-- substituted an identifier representing the rewrite.
if Original_Node (Nod) /= Nod then
Check_Expr_Constants (Original_Node (Nod));
-- If the node is an object declaration without initial
-- value, some code has been expanded, and the expression
-- is not constant, even if the constituents might be
-- acceptable, as in A'Address + offset.
if Ekind (Ent) = E_Variable
and then
Nkind (Declaration_Node (Ent)) = N_Object_Declaration
and then
No (Expression (Declaration_Node (Ent)))
then
Error_Msg_NE
("invalid address clause for initialized object &!",
Nod, U_Ent);
-- If entity is constant, it may be the result of expanding
-- a check. We must verify that its declaration appears
-- before the object in question, else we also reject the
-- address clause.
elsif Ekind (Ent) = E_Constant
and then In_Same_Source_Unit (Ent, U_Ent)
and then Sloc (Ent) > Loc_U_Ent
then
Error_Msg_NE
("invalid address clause for initialized object &!",
Nod, U_Ent);
end if;
return;
end if;
-- Otherwise look at the identifier and see if it is OK
if Ekind_In (Ent, E_Named_Integer, E_Named_Real)
or else Is_Type (Ent)
then
return;
elsif
Ekind (Ent) = E_Constant
or else
Ekind (Ent) = E_In_Parameter
then
-- This is the case where we must have Ent defined before
-- U_Ent. Clearly if they are in different units this
-- requirement is met since the unit containing Ent is
-- already processed.
if not In_Same_Source_Unit (Ent, U_Ent) then
return;
-- Otherwise location of Ent must be before the location
-- of U_Ent, that's what prior defined means.
elsif Sloc (Ent) < Loc_U_Ent then
return;
else
Error_Msg_NE
("invalid address clause for initialized object &!",
Nod, U_Ent);
Error_Msg_Node_2 := U_Ent;
Error_Msg_NE
("\& must be defined before & (RM 13.1(22))!",
Nod, Ent);
end if;
elsif Nkind (Original_Node (Nod)) = N_Function_Call then
Check_Expr_Constants (Original_Node (Nod));
else
Error_Msg_NE
("invalid address clause for initialized object &!",
Nod, U_Ent);
if Comes_From_Source (Ent) then
Error_Msg_NE
("\reference to variable& not allowed"
& " (RM 13.1(22))!", Nod, Ent);
else
Error_Msg_N
("non-static expression not allowed"
& " (RM 13.1(22))!", Nod);
end if;
end if;
when N_Integer_Literal =>
-- If this is a rewritten unchecked conversion, in a system
-- where Address is an integer type, always use the base type
-- for a literal value. This is user-friendly and prevents
-- order-of-elaboration issues with instances of unchecked
-- conversion.
if Nkind (Original_Node (Nod)) = N_Function_Call then
Set_Etype (Nod, Base_Type (Etype (Nod)));
end if;
when N_Real_Literal |
N_String_Literal |
N_Character_Literal =>
return;
when N_Range =>
Check_Expr_Constants (Low_Bound (Nod));
Check_Expr_Constants (High_Bound (Nod));
when N_Explicit_Dereference =>
Check_Expr_Constants (Prefix (Nod));
when N_Indexed_Component =>
Check_Expr_Constants (Prefix (Nod));
Check_List_Constants (Expressions (Nod));
when N_Slice =>
Check_Expr_Constants (Prefix (Nod));
Check_Expr_Constants (Discrete_Range (Nod));
when N_Selected_Component =>
Check_Expr_Constants (Prefix (Nod));
when N_Attribute_Reference =>
if Attribute_Name (Nod) = Name_Address
or else
Attribute_Name (Nod) = Name_Access
or else
Attribute_Name (Nod) = Name_Unchecked_Access
or else
Attribute_Name (Nod) = Name_Unrestricted_Access
then
Check_At_Constant_Address (Prefix (Nod));
else
Check_Expr_Constants (Prefix (Nod));
Check_List_Constants (Expressions (Nod));
end if;
when N_Aggregate =>
Check_List_Constants (Component_Associations (Nod));
Check_List_Constants (Expressions (Nod));
when N_Component_Association =>
Check_Expr_Constants (Expression (Nod));
when N_Extension_Aggregate =>
Check_Expr_Constants (Ancestor_Part (Nod));
Check_List_Constants (Component_Associations (Nod));
Check_List_Constants (Expressions (Nod));
when N_Null =>
return;
when N_Binary_Op | N_Short_Circuit | N_Membership_Test =>
Check_Expr_Constants (Left_Opnd (Nod));
Check_Expr_Constants (Right_Opnd (Nod));
when N_Unary_Op =>
Check_Expr_Constants (Right_Opnd (Nod));
when N_Type_Conversion |
N_Qualified_Expression |
N_Allocator =>
Check_Expr_Constants (Expression (Nod));
when N_Unchecked_Type_Conversion =>
Check_Expr_Constants (Expression (Nod));
-- If this is a rewritten unchecked conversion, subtypes in
-- this node are those created within the instance. To avoid
-- order of elaboration issues, replace them with their base
-- types. Note that address clauses can cause order of
-- elaboration problems because they are elaborated by the
-- back-end at the point of definition, and may mention
-- entities declared in between (as long as everything is
-- static). It is user-friendly to allow unchecked conversions
-- in this context.
if Nkind (Original_Node (Nod)) = N_Function_Call then
Set_Etype (Expression (Nod),
Base_Type (Etype (Expression (Nod))));
Set_Etype (Nod, Base_Type (Etype (Nod)));
end if;
when N_Function_Call =>
if not Is_Pure (Entity (Name (Nod))) then
Error_Msg_NE
("invalid address clause for initialized object &!",
Nod, U_Ent);
Error_Msg_NE
("\function & is not pure (RM 13.1(22))!",
Nod, Entity (Name (Nod)));
else
Check_List_Constants (Parameter_Associations (Nod));
end if;
when N_Parameter_Association =>
Check_Expr_Constants (Explicit_Actual_Parameter (Nod));
when others =>
Error_Msg_NE
("invalid address clause for initialized object &!",
Nod, U_Ent);
Error_Msg_NE
("\must be constant defined before& (RM 13.1(22))!",
Nod, U_Ent);
end case;
end Check_Expr_Constants;
--------------------------
-- Check_List_Constants --
--------------------------
procedure Check_List_Constants (Lst : List_Id) is
Nod1 : Node_Id;
begin
if Present (Lst) then
Nod1 := First (Lst);
while Present (Nod1) loop
Check_Expr_Constants (Nod1);
Next (Nod1);
end loop;
end if;
end Check_List_Constants;
-- Start of processing for Check_Constant_Address_Clause
begin
-- If rep_clauses are to be ignored, no need for legality checks. In
-- particular, no need to pester user about rep clauses that violate
-- the rule on constant addresses, given that these clauses will be
-- removed by Freeze before they reach the back end.
if not Ignore_Rep_Clauses then
Check_Expr_Constants (Expr);
end if;
end Check_Constant_Address_Clause;
----------------------------------------
-- Check_Record_Representation_Clause --
----------------------------------------
procedure Check_Record_Representation_Clause (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Ident : constant Node_Id := Identifier (N);
Rectype : Entity_Id;
Fent : Entity_Id;
CC : Node_Id;
Fbit : Uint;
Lbit : Uint;
Hbit : Uint := Uint_0;
Comp : Entity_Id;
Pcomp : Entity_Id;
Max_Bit_So_Far : Uint;
-- Records the maximum bit position so far. If all field positions
-- are monotonically increasing, then we can skip the circuit for
-- checking for overlap, since no overlap is possible.
Tagged_Parent : Entity_Id := Empty;
-- This is set in the case of a derived tagged type for which we have
-- Is_Fully_Repped_Tagged_Type True (indicating that all components are
-- positioned by record representation clauses). In this case we must
-- check for overlap between components of this tagged type, and the
-- components of its parent. Tagged_Parent will point to this parent
-- type. For all other cases Tagged_Parent is left set to Empty.
Parent_Last_Bit : Uint;
-- Relevant only if Tagged_Parent is set, Parent_Last_Bit indicates the
-- last bit position for any field in the parent type. We only need to
-- check overlap for fields starting below this point.
Overlap_Check_Required : Boolean;
-- Used to keep track of whether or not an overlap check is required
Overlap_Detected : Boolean := False;
-- Set True if an overlap is detected
Ccount : Natural := 0;
-- Number of component clauses in record rep clause
procedure Check_Component_Overlap (C1_Ent, C2_Ent : Entity_Id);
-- Given two entities for record components or discriminants, checks
-- if they have overlapping component clauses and issues errors if so.
procedure Find_Component;
-- Finds component entity corresponding to current component clause (in
-- CC), and sets Comp to the entity, and Fbit/Lbit to the zero origin
-- start/stop bits for the field. If there is no matching component or
-- if the matching component does not have a component clause, then
-- that's an error and Comp is set to Empty, but no error message is
-- issued, since the message was already given. Comp is also set to
-- Empty if the current "component clause" is in fact a pragma.
-----------------------------
-- Check_Component_Overlap --
-----------------------------
procedure Check_Component_Overlap (C1_Ent, C2_Ent : Entity_Id) is
CC1 : constant Node_Id := Component_Clause (C1_Ent);
CC2 : constant Node_Id := Component_Clause (C2_Ent);
begin
if Present (CC1) and then Present (CC2) then
-- Exclude odd case where we have two tag fields in the same
-- record, both at location zero. This seems a bit strange, but
-- it seems to happen in some circumstances, perhaps on an error.
if Chars (C1_Ent) = Name_uTag
and then
Chars (C2_Ent) = Name_uTag
then
return;
end if;
-- Here we check if the two fields overlap
declare
S1 : constant Uint := Component_Bit_Offset (C1_Ent);
S2 : constant Uint := Component_Bit_Offset (C2_Ent);
E1 : constant Uint := S1 + Esize (C1_Ent);
E2 : constant Uint := S2 + Esize (C2_Ent);
begin
if E2 <= S1 or else E1 <= S2 then
null;
else
Error_Msg_Node_2 := Component_Name (CC2);
Error_Msg_Sloc := Sloc (Error_Msg_Node_2);
Error_Msg_Node_1 := Component_Name (CC1);
Error_Msg_N
("component& overlaps & #", Component_Name (CC1));
Overlap_Detected := True;
end if;
end;
end if;
end Check_Component_Overlap;
--------------------
-- Find_Component --
--------------------
procedure Find_Component is
procedure Search_Component (R : Entity_Id);
-- Search components of R for a match. If found, Comp is set.
----------------------
-- Search_Component --
----------------------
procedure Search_Component (R : Entity_Id) is
begin
Comp := First_Component_Or_Discriminant (R);
while Present (Comp) loop
-- Ignore error of attribute name for component name (we
-- already gave an error message for this, so no need to
-- complain here)
if Nkind (Component_Name (CC)) = N_Attribute_Reference then
null;
else
exit when Chars (Comp) = Chars (Component_Name (CC));
end if;
Next_Component_Or_Discriminant (Comp);
end loop;
end Search_Component;
-- Start of processing for Find_Component
begin
-- Return with Comp set to Empty if we have a pragma
if Nkind (CC) = N_Pragma then
Comp := Empty;
return;
end if;
-- Search current record for matching component
Search_Component (Rectype);
-- If not found, maybe component of base type that is absent from
-- statically constrained first subtype.
if No (Comp) then
Search_Component (Base_Type (Rectype));
end if;
-- If no component, or the component does not reference the component
-- clause in question, then there was some previous error for which
-- we already gave a message, so just return with Comp Empty.
if No (Comp)
or else Component_Clause (Comp) /= CC
then
Comp := Empty;
-- Normal case where we have a component clause
else
Fbit := Component_Bit_Offset (Comp);
Lbit := Fbit + Esize (Comp) - 1;
end if;
end Find_Component;
-- Start of processing for Check_Record_Representation_Clause
begin
Find_Type (Ident);
Rectype := Entity (Ident);
if Rectype = Any_Type then
return;
else
Rectype := Underlying_Type (Rectype);
end if;
-- See if we have a fully repped derived tagged type
declare
PS : constant Entity_Id := Parent_Subtype (Rectype);
begin
if Present (PS) and then Is_Fully_Repped_Tagged_Type (PS) then
Tagged_Parent := PS;
-- Find maximum bit of any component of the parent type
Parent_Last_Bit := UI_From_Int (System_Address_Size - 1);
Pcomp := First_Entity (Tagged_Parent);
while Present (Pcomp) loop
if Ekind_In (Pcomp, E_Discriminant, E_Component) then
if Component_Bit_Offset (Pcomp) /= No_Uint
and then Known_Static_Esize (Pcomp)
then
Parent_Last_Bit :=
UI_Max
(Parent_Last_Bit,
Component_Bit_Offset (Pcomp) + Esize (Pcomp) - 1);
end if;
Next_Entity (Pcomp);
end if;
end loop;
end if;
end;
-- All done if no component clauses
CC := First (Component_Clauses (N));
if No (CC) then
return;
end if;
-- If a tag is present, then create a component clause that places it
-- at the start of the record (otherwise gigi may place it after other
-- fields that have rep clauses).
Fent := First_Entity (Rectype);
if Nkind (Fent) = N_Defining_Identifier
and then Chars (Fent) = Name_uTag
then
Set_Component_Bit_Offset (Fent, Uint_0);
Set_Normalized_Position (Fent, Uint_0);
Set_Normalized_First_Bit (Fent, Uint_0);
Set_Normalized_Position_Max (Fent, Uint_0);
Init_Esize (Fent, System_Address_Size);
Set_Component_Clause (Fent,
Make_Component_Clause (Loc,
Component_Name => Make_Identifier (Loc, Name_uTag),
Position => Make_Integer_Literal (Loc, Uint_0),
First_Bit => Make_Integer_Literal (Loc, Uint_0),
Last_Bit =>
Make_Integer_Literal (Loc,
UI_From_Int (System_Address_Size))));
Ccount := Ccount + 1;
end if;
Max_Bit_So_Far := Uint_Minus_1;
Overlap_Check_Required := False;
-- Process the component clauses
while Present (CC) loop
Find_Component;
if Present (Comp) then
Ccount := Ccount + 1;
-- We need a full overlap check if record positions non-monotonic
if Fbit <= Max_Bit_So_Far then
Overlap_Check_Required := True;
end if;
Max_Bit_So_Far := Lbit;
-- Check bit position out of range of specified size
if Has_Size_Clause (Rectype)
and then RM_Size (Rectype) <= Lbit
then
Error_Msg_N
("bit number out of range of specified size",
Last_Bit (CC));
-- Check for overlap with tag field
else
if Is_Tagged_Type (Rectype)
and then Fbit < System_Address_Size
then
Error_Msg_NE
("component overlaps tag field of&",
Component_Name (CC), Rectype);
Overlap_Detected := True;
end if;
if Hbit < Lbit then
Hbit := Lbit;
end if;
end if;
-- Check parent overlap if component might overlap parent field
if Present (Tagged_Parent)
and then Fbit <= Parent_Last_Bit
then
Pcomp := First_Component_Or_Discriminant (Tagged_Parent);
while Present (Pcomp) loop
if not Is_Tag (Pcomp)
and then Chars (Pcomp) /= Name_uParent
then
Check_Component_Overlap (Comp, Pcomp);
end if;
Next_Component_Or_Discriminant (Pcomp);
end loop;
end if;
end if;
Next (CC);
end loop;
-- Now that we have processed all the component clauses, check for
-- overlap. We have to leave this till last, since the components can
-- appear in any arbitrary order in the representation clause.
-- We do not need this check if all specified ranges were monotonic,
-- as recorded by Overlap_Check_Required being False at this stage.
-- This first section checks if there are any overlapping entries at
-- all. It does this by sorting all entries and then seeing if there are
-- any overlaps. If there are none, then that is decisive, but if there
-- are overlaps, they may still be OK (they may result from fields in
-- different variants).
if Overlap_Check_Required then
Overlap_Check1 : declare
OC_Fbit : array (0 .. Ccount) of Uint;
-- First-bit values for component clauses, the value is the offset
-- of the first bit of the field from start of record. The zero
-- entry is for use in sorting.
OC_Lbit : array (0 .. Ccount) of Uint;
-- Last-bit values for component clauses, the value is the offset
-- of the last bit of the field from start of record. The zero
-- entry is for use in sorting.
OC_Count : Natural := 0;
-- Count of entries in OC_Fbit and OC_Lbit
function OC_Lt (Op1, Op2 : Natural) return Boolean;
-- Compare routine for Sort
procedure OC_Move (From : Natural; To : Natural);
-- Move routine for Sort
package Sorting is new GNAT.Heap_Sort_G (OC_Move, OC_Lt);
-----------
-- OC_Lt --
-----------
function OC_Lt (Op1, Op2 : Natural) return Boolean is
begin
return OC_Fbit (Op1) < OC_Fbit (Op2);
end OC_Lt;
-------------
-- OC_Move --
-------------
procedure OC_Move (From : Natural; To : Natural) is
begin
OC_Fbit (To) := OC_Fbit (From);
OC_Lbit (To) := OC_Lbit (From);
end OC_Move;
-- Start of processing for Overlap_Check
begin
CC := First (Component_Clauses (N));
while Present (CC) loop
-- Exclude component clause already marked in error
if not Error_Posted (CC) then
Find_Component;
if Present (Comp) then
OC_Count := OC_Count + 1;
OC_Fbit (OC_Count) := Fbit;
OC_Lbit (OC_Count) := Lbit;
end if;
end if;
Next (CC);
end loop;
Sorting.Sort (OC_Count);
Overlap_Check_Required := False;
for J in 1 .. OC_Count - 1 loop
if OC_Lbit (J) >= OC_Fbit (J + 1) then
Overlap_Check_Required := True;
exit;
end if;
end loop;
end Overlap_Check1;
end if;
-- If Overlap_Check_Required is still True, then we have to do the full
-- scale overlap check, since we have at least two fields that do
-- overlap, and we need to know if that is OK since they are in
-- different variant, or whether we have a definite problem.
if Overlap_Check_Required then
Overlap_Check2 : declare
C1_Ent, C2_Ent : Entity_Id;
-- Entities of components being checked for overlap
Clist : Node_Id;
-- Component_List node whose Component_Items are being checked
Citem : Node_Id;
-- Component declaration for component being checked
begin
C1_Ent := First_Entity (Base_Type (Rectype));
-- Loop through all components in record. For each component check
-- for overlap with any of the preceding elements on the component
-- list containing the component and also, if the component is in
-- a variant, check against components outside the case structure.
-- This latter test is repeated recursively up the variant tree.
Main_Component_Loop : while Present (C1_Ent) loop
if not Ekind_In (C1_Ent, E_Component, E_Discriminant) then
goto Continue_Main_Component_Loop;
end if;
-- Skip overlap check if entity has no declaration node. This
-- happens with discriminants in constrained derived types.
-- Possibly we are missing some checks as a result, but that
-- does not seem terribly serious.
if No (Declaration_Node (C1_Ent)) then
goto Continue_Main_Component_Loop;
end if;
Clist := Parent (List_Containing (Declaration_Node (C1_Ent)));
-- Loop through component lists that need checking. Check the
-- current component list and all lists in variants above us.
Component_List_Loop : loop
-- If derived type definition, go to full declaration
-- If at outer level, check discriminants if there are any.
if Nkind (Clist) = N_Derived_Type_Definition then
Clist := Parent (Clist);
end if;
-- Outer level of record definition, check discriminants
if Nkind_In (Clist, N_Full_Type_Declaration,
N_Private_Type_Declaration)
then
if Has_Discriminants (Defining_Identifier (Clist)) then
C2_Ent :=
First_Discriminant (Defining_Identifier (Clist));
while Present (C2_Ent) loop
exit when C1_Ent = C2_Ent;
Check_Component_Overlap (C1_Ent, C2_Ent);
Next_Discriminant (C2_Ent);
end loop;
end if;
-- Record extension case
elsif Nkind (Clist) = N_Derived_Type_Definition then
Clist := Empty;
-- Otherwise check one component list
else
Citem := First (Component_Items (Clist));
while Present (Citem) loop
if Nkind (Citem) = N_Component_Declaration then
C2_Ent := Defining_Identifier (Citem);
exit when C1_Ent = C2_Ent;
Check_Component_Overlap (C1_Ent, C2_Ent);
end if;
Next (Citem);
end loop;
end if;
-- Check for variants above us (the parent of the Clist can
-- be a variant, in which case its parent is a variant part,
-- and the parent of the variant part is a component list
-- whose components must all be checked against the current
-- component for overlap).
if Nkind (Parent (Clist)) = N_Variant then
Clist := Parent (Parent (Parent (Clist)));
-- Check for possible discriminant part in record, this
-- is treated essentially as another level in the
-- recursion. For this case the parent of the component
-- list is the record definition, and its parent is the
-- full type declaration containing the discriminant
-- specifications.
elsif Nkind (Parent (Clist)) = N_Record_Definition then
Clist := Parent (Parent ((Clist)));
-- If neither of these two cases, we are at the top of
-- the tree.
else
exit Component_List_Loop;
end if;
end loop Component_List_Loop;
<<Continue_Main_Component_Loop>>
Next_Entity (C1_Ent);
end loop Main_Component_Loop;
end Overlap_Check2;
end if;
-- The following circuit deals with warning on record holes (gaps). We
-- skip this check if overlap was detected, since it makes sense for the
-- programmer to fix this illegality before worrying about warnings.
if not Overlap_Detected and Warn_On_Record_Holes then
Record_Hole_Check : declare
Decl : constant Node_Id := Declaration_Node (Base_Type (Rectype));
-- Full declaration of record type
procedure Check_Component_List
(CL : Node_Id;
Sbit : Uint;
DS : List_Id);
-- Check component list CL for holes. The starting bit should be
-- Sbit. which is zero for the main record component list and set
-- appropriately for recursive calls for variants. DS is set to
-- a list of discriminant specifications to be included in the
-- consideration of components. It is No_List if none to consider.
--------------------------
-- Check_Component_List --
--------------------------
procedure Check_Component_List
(CL : Node_Id;
Sbit : Uint;
DS : List_Id)
is
Compl : Integer;
begin
Compl := Integer (List_Length (Component_Items (CL)));
if DS /= No_List then
Compl := Compl + Integer (List_Length (DS));
end if;
declare
Comps : array (Natural range 0 .. Compl) of Entity_Id;
-- Gather components (zero entry is for sort routine)
Ncomps : Natural := 0;
-- Number of entries stored in Comps (starting at Comps (1))
Citem : Node_Id;
-- One component item or discriminant specification
Nbit : Uint;
-- Starting bit for next component
CEnt : Entity_Id;
-- Component entity
Variant : Node_Id;
-- One variant
function Lt (Op1, Op2 : Natural) return Boolean;
-- Compare routine for Sort
procedure Move (From : Natural; To : Natural);
-- Move routine for Sort
package Sorting is new GNAT.Heap_Sort_G (Move, Lt);
--------
-- Lt --
--------
function Lt (Op1, Op2 : Natural) return Boolean is
begin
return Component_Bit_Offset (Comps (Op1))
<
Component_Bit_Offset (Comps (Op2));
end Lt;
----------
-- Move --
----------
procedure Move (From : Natural; To : Natural) is
begin
Comps (To) := Comps (From);
end Move;
begin
-- Gather discriminants into Comp
if DS /= No_List then
Citem := First (DS);
while Present (Citem) loop
if Nkind (Citem) = N_Discriminant_Specification then
declare
Ent : constant Entity_Id :=
Defining_Identifier (Citem);
begin
if Ekind (Ent) = E_Discriminant then
Ncomps := Ncomps + 1;
Comps (Ncomps) := Ent;
end if;
end;
end if;
Next (Citem);
end loop;
end if;
-- Gather component entities into Comp
Citem := First (Component_Items (CL));
while Present (Citem) loop
if Nkind (Citem) = N_Component_Declaration then
Ncomps := Ncomps + 1;
Comps (Ncomps) := Defining_Identifier (Citem);
end if;
Next (Citem);
end loop;
-- Now sort the component entities based on the first bit.
-- Note we already know there are no overlapping components.
Sorting.Sort (Ncomps);
-- Loop through entries checking for holes
Nbit := Sbit;
for J in 1 .. Ncomps loop
CEnt := Comps (J);
Error_Msg_Uint_1 := Component_Bit_Offset (CEnt) - Nbit;
if Error_Msg_Uint_1 > 0 then
Error_Msg_NE
("?^-bit gap before component&",
Component_Name (Component_Clause (CEnt)), CEnt);
end if;
Nbit := Component_Bit_Offset (CEnt) + Esize (CEnt);
end loop;
-- Process variant parts recursively if present
if Present (Variant_Part (CL)) then
Variant := First (Variants (Variant_Part (CL)));
while Present (Variant) loop
Check_Component_List
(Component_List (Variant), Nbit, No_List);
Next (Variant);
end loop;
end if;
end;
end Check_Component_List;
-- Start of processing for Record_Hole_Check
begin
declare
Sbit : Uint;
begin
if Is_Tagged_Type (Rectype) then
Sbit := UI_From_Int (System_Address_Size);
else
Sbit := Uint_0;
end if;
if Nkind (Decl) = N_Full_Type_Declaration
and then Nkind (Type_Definition (Decl)) = N_Record_Definition
then
Check_Component_List
(Component_List (Type_Definition (Decl)),
Sbit,
Discriminant_Specifications (Decl));
end if;
end;
end Record_Hole_Check;
end if;
-- For records that have component clauses for all components, and whose
-- size is less than or equal to 32, we need to know the size in the
-- front end to activate possible packed array processing where the
-- component type is a record.
-- At this stage Hbit + 1 represents the first unused bit from all the
-- component clauses processed, so if the component clauses are
-- complete, then this is the length of the record.
-- For records longer than System.Storage_Unit, and for those where not
-- all components have component clauses, the back end determines the
-- length (it may for example be appropriate to round up the size
-- to some convenient boundary, based on alignment considerations, etc).
if Unknown_RM_Size (Rectype) and then Hbit + 1 <= 32 then
-- Nothing to do if at least one component has no component clause
Comp := First_Component_Or_Discriminant (Rectype);
while Present (Comp) loop
exit when No (Component_Clause (Comp));
Next_Component_Or_Discriminant (Comp);
end loop;
-- If we fall out of loop, all components have component clauses
-- and so we can set the size to the maximum value.
if No (Comp) then
Set_RM_Size (Rectype, Hbit + 1);
end if;
end if;
end Check_Record_Representation_Clause;
----------------
-- Check_Size --
----------------
procedure Check_Size
(N : Node_Id;
T : Entity_Id;
Siz : Uint;
Biased : out Boolean)
is
UT : constant Entity_Id := Underlying_Type (T);
M : Uint;
begin
Biased := False;
-- Dismiss cases for generic types or types with previous errors
if No (UT)
or else UT = Any_Type
or else Is_Generic_Type (UT)
or else Is_Generic_Type (Root_Type (UT))
then
return;
-- Check case of bit packed array
elsif Is_Array_Type (UT)
and then Known_Static_Component_Size (UT)
and then Is_Bit_Packed_Array (UT)
then
declare
Asiz : Uint;
Indx : Node_Id;
Ityp : Entity_Id;
begin
Asiz := Component_Size (UT);
Indx := First_Index (UT);
loop
Ityp := Etype (Indx);
-- If non-static bound, then we are not in the business of
-- trying to check the length, and indeed an error will be
-- issued elsewhere, since sizes of non-static array types
-- cannot be set implicitly or explicitly.
if not Is_Static_Subtype (Ityp) then
return;
end if;
-- Otherwise accumulate next dimension
Asiz := Asiz * (Expr_Value (Type_High_Bound (Ityp)) -
Expr_Value (Type_Low_Bound (Ityp)) +
Uint_1);
Next_Index (Indx);
exit when No (Indx);
end loop;
if Asiz <= Siz then
return;
else
Error_Msg_Uint_1 := Asiz;
Error_Msg_NE
("size for& too small, minimum allowed is ^", N, T);
Set_Esize (T, Asiz);
Set_RM_Size (T, Asiz);
end if;
end;
-- All other composite types are ignored
elsif Is_Composite_Type (UT) then
return;
-- For fixed-point types, don't check minimum if type is not frozen,
-- since we don't know all the characteristics of the type that can
-- affect the size (e.g. a specified small) till freeze time.
elsif Is_Fixed_Point_Type (UT)
and then not Is_Frozen (UT)
then
null;
-- Cases for which a minimum check is required
else
-- Ignore if specified size is correct for the type
if Known_Esize (UT) and then Siz = Esize (UT) then
return;
end if;
-- Otherwise get minimum size
M := UI_From_Int (Minimum_Size (UT));
if Siz < M then
-- Size is less than minimum size, but one possibility remains
-- that we can manage with the new size if we bias the type.
M := UI_From_Int (Minimum_Size (UT, Biased => True));
if Siz < M then
Error_Msg_Uint_1 := M;
Error_Msg_NE
("size for& too small, minimum allowed is ^", N, T);
Set_Esize (T, M);
Set_RM_Size (T, M);
else
Biased := True;
end if;
end if;
end if;
end Check_Size;
-------------------------
-- Get_Alignment_Value --
-------------------------
function Get_Alignment_Value (Expr : Node_Id) return Uint is
Align : constant Uint := Static_Integer (Expr);
begin
if Align = No_Uint then
return No_Uint;
elsif Align <= 0 then
Error_Msg_N ("alignment value must be positive", Expr);
return No_Uint;
else
for J in Int range 0 .. 64 loop
declare
M : constant Uint := Uint_2 ** J;
begin
exit when M = Align;
if M > Align then
Error_Msg_N
("alignment value must be power of 2", Expr);
return No_Uint;
end if;
end;
end loop;
return Align;
end if;
end Get_Alignment_Value;
----------------
-- Initialize --
----------------
procedure Initialize is
begin
Address_Clause_Checks.Init;
Independence_Checks.Init;
Unchecked_Conversions.Init;
end Initialize;
-------------------------
-- Is_Operational_Item --
-------------------------
function Is_Operational_Item (N : Node_Id) return Boolean is
begin
if Nkind (N) /= N_Attribute_Definition_Clause then
return False;
else
declare
Id : constant Attribute_Id := Get_Attribute_Id (Chars (N));
begin
return Id = Attribute_Input
or else Id = Attribute_Output
or else Id = Attribute_Read
or else Id = Attribute_Write
or else Id = Attribute_External_Tag;
end;
end if;
end Is_Operational_Item;
------------------
-- Minimum_Size --
------------------
function Minimum_Size
(T : Entity_Id;
Biased : Boolean := False) return Nat
is
Lo : Uint := No_Uint;
Hi : Uint := No_Uint;
LoR : Ureal := No_Ureal;
HiR : Ureal := No_Ureal;
LoSet : Boolean := False;
HiSet : Boolean := False;
B : Uint;
S : Nat;
Ancest : Entity_Id;
R_Typ : constant Entity_Id := Root_Type (T);
begin
-- If bad type, return 0
if T = Any_Type then
return 0;
-- For generic types, just return zero. There cannot be any legitimate
-- need to know such a size, but this routine may be called with a
-- generic type as part of normal processing.
elsif Is_Generic_Type (R_Typ)
or else R_Typ = Any_Type
then
return 0;
-- Access types. Normally an access type cannot have a size smaller
-- than the size of System.Address. The exception is on VMS, where
-- we have short and long addresses, and it is possible for an access
-- type to have a short address size (and thus be less than the size
-- of System.Address itself). We simply skip the check for VMS, and
-- leave it to the back end to do the check.
elsif Is_Access_Type (T) then
if OpenVMS_On_Target then
return 0;
else
return System_Address_Size;
end if;
-- Floating-point types
elsif Is_Floating_Point_Type (T) then
return UI_To_Int (Esize (R_Typ));
-- Discrete types
elsif Is_Discrete_Type (T) then
-- The following loop is looking for the nearest compile time known
-- bounds following the ancestor subtype chain. The idea is to find
-- the most restrictive known bounds information.
Ancest := T;
loop
if Ancest = Any_Type or else Etype (Ancest) = Any_Type then
return 0;
end if;
if not LoSet then
if Compile_Time_Known_Value (Type_Low_Bound (Ancest)) then
Lo := Expr_Rep_Value (Type_Low_Bound (Ancest));
LoSet := True;
exit when HiSet;
end if;
end if;
if not HiSet then
if Compile_Time_Known_Value (Type_High_Bound (Ancest)) then
Hi := Expr_Rep_Value (Type_High_Bound (Ancest));
HiSet := True;
exit when LoSet;
end if;
end if;
Ancest := Ancestor_Subtype (Ancest);
if No (Ancest) then
Ancest := Base_Type (T);
if Is_Generic_Type (Ancest) then
return 0;
end if;
end if;
end loop;
-- Fixed-point types. We can't simply use Expr_Value to get the
-- Corresponding_Integer_Value values of the bounds, since these do not
-- get set till the type is frozen, and this routine can be called
-- before the type is frozen. Similarly the test for bounds being static
-- needs to include the case where we have unanalyzed real literals for
-- the same reason.
elsif Is_Fixed_Point_Type (T) then
-- The following loop is looking for the nearest compile time known
-- bounds following the ancestor subtype chain. The idea is to find
-- the most restrictive known bounds information.
Ancest := T;
loop
if Ancest = Any_Type or else Etype (Ancest) = Any_Type then
return 0;
end if;
-- Note: In the following two tests for LoSet and HiSet, it may
-- seem redundant to test for N_Real_Literal here since normally
-- one would assume that the test for the value being known at
-- compile time includes this case. However, there is a glitch.
-- If the real literal comes from folding a non-static expression,
-- then we don't consider any non- static expression to be known
-- at compile time if we are in configurable run time mode (needed
-- in some cases to give a clearer definition of what is and what
-- is not accepted). So the test is indeed needed. Without it, we
-- would set neither Lo_Set nor Hi_Set and get an infinite loop.
if not LoSet then
if Nkind (Type_Low_Bound (Ancest)) = N_Real_Literal
or else Compile_Time_Known_Value (Type_Low_Bound (Ancest))
then
LoR := Expr_Value_R (Type_Low_Bound (Ancest));
LoSet := True;
exit when HiSet;
end if;
end if;
if not HiSet then
if Nkind (Type_High_Bound (Ancest)) = N_Real_Literal
or else Compile_Time_Known_Value (Type_High_Bound (Ancest))
then
HiR := Expr_Value_R (Type_High_Bound (Ancest));
HiSet := True;
exit when LoSet;
end if;
end if;
Ancest := Ancestor_Subtype (Ancest);
if No (Ancest) then
Ancest := Base_Type (T);
if Is_Generic_Type (Ancest) then
return 0;
end if;
end if;
end loop;
Lo := UR_To_Uint (LoR / Small_Value (T));
Hi := UR_To_Uint (HiR / Small_Value (T));
-- No other types allowed
else
raise Program_Error;
end if;
-- Fall through with Hi and Lo set. Deal with biased case
if (Biased
and then not Is_Fixed_Point_Type (T)
and then not (Is_Enumeration_Type (T)
and then Has_Non_Standard_Rep (T)))
or else Has_Biased_Representation (T)
then
Hi := Hi - Lo;
Lo := Uint_0;
end if;
-- Signed case. Note that we consider types like range 1 .. -1 to be
-- signed for the purpose of computing the size, since the bounds have
-- to be accommodated in the base type.
if Lo < 0 or else Hi < 0 then
S := 1;
B := Uint_1;
-- S = size, B = 2 ** (size - 1) (can accommodate -B .. +(B - 1))
-- Note that we accommodate the case where the bounds cross. This
-- can happen either because of the way the bounds are declared
-- or because of the algorithm in Freeze_Fixed_Point_Type.
while Lo < -B
or else Hi < -B
or else Lo >= B
or else Hi >= B
loop
B := Uint_2 ** S;
S := S + 1;
end loop;
-- Unsigned case
else
-- If both bounds are positive, make sure that both are represen-
-- table in the case where the bounds are crossed. This can happen
-- either because of the way the bounds are declared, or because of
-- the algorithm in Freeze_Fixed_Point_Type.
if Lo > Hi then
Hi := Lo;
end if;
-- S = size, (can accommodate 0 .. (2**size - 1))
S := 0;
while Hi >= Uint_2 ** S loop
S := S + 1;
end loop;
end if;
return S;
end Minimum_Size;
---------------------------
-- New_Stream_Subprogram --
---------------------------
procedure New_Stream_Subprogram
(N : Node_Id;
Ent : Entity_Id;
Subp : Entity_Id;
Nam : TSS_Name_Type)
is
Loc : constant Source_Ptr := Sloc (N);
Sname : constant Name_Id := Make_TSS_Name (Base_Type (Ent), Nam);
Subp_Id : Entity_Id;
Subp_Decl : Node_Id;
F : Entity_Id;
Etyp : Entity_Id;
Defer_Declaration : constant Boolean :=
Is_Tagged_Type (Ent) or else Is_Private_Type (Ent);
-- For a tagged type, there is a declaration for each stream attribute
-- at the freeze point, and we must generate only a completion of this
-- declaration. We do the same for private types, because the full view
-- might be tagged. Otherwise we generate a declaration at the point of
-- the attribute definition clause.
function Build_Spec return Node_Id;
-- Used for declaration and renaming declaration, so that this is
-- treated as a renaming_as_body.
----------------
-- Build_Spec --
----------------
function Build_Spec return Node_Id is
Out_P : constant Boolean := (Nam = TSS_Stream_Read);
Formals : List_Id;
Spec : Node_Id;
T_Ref : constant Node_Id := New_Reference_To (Etyp, Loc);
begin
Subp_Id := Make_Defining_Identifier (Loc, Sname);
-- S : access Root_Stream_Type'Class
Formals := New_List (
Make_Parameter_Specification (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc, Name_S),
Parameter_Type =>
Make_Access_Definition (Loc,
Subtype_Mark =>
New_Reference_To (
Designated_Type (Etype (F)), Loc))));
if Nam = TSS_Stream_Input then
Spec := Make_Function_Specification (Loc,
Defining_Unit_Name => Subp_Id,
Parameter_Specifications => Formals,
Result_Definition => T_Ref);
else
-- V : [out] T
Append_To (Formals,
Make_Parameter_Specification (Loc,
Defining_Identifier => Make_Defining_Identifier (Loc, Name_V),
Out_Present => Out_P,
Parameter_Type => T_Ref));
Spec :=
Make_Procedure_Specification (Loc,
Defining_Unit_Name => Subp_Id,
Parameter_Specifications => Formals);
end if;
return Spec;
end Build_Spec;
-- Start of processing for New_Stream_Subprogram
begin
F := First_Formal (Subp);
if Ekind (Subp) = E_Procedure then
Etyp := Etype (Next_Formal (F));
else
Etyp := Etype (Subp);
end if;
-- Prepare subprogram declaration and insert it as an action on the
-- clause node. The visibility for this entity is used to test for
-- visibility of the attribute definition clause (in the sense of
-- 8.3(23) as amended by AI-195).
if not Defer_Declaration then
Subp_Decl :=
Make_Subprogram_Declaration (Loc,
Specification => Build_Spec);
-- For a tagged type, there is always a visible declaration for each
-- stream TSS (it is a predefined primitive operation), and the
-- completion of this declaration occurs at the freeze point, which is
-- not always visible at places where the attribute definition clause is
-- visible. So, we create a dummy entity here for the purpose of
-- tracking the visibility of the attribute definition clause itself.
else
Subp_Id :=
Make_Defining_Identifier (Loc, New_External_Name (Sname, 'V'));
Subp_Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Subp_Id,
Object_Definition => New_Occurrence_Of (Standard_Boolean, Loc));
end if;
Insert_Action (N, Subp_Decl);
Set_Entity (N, Subp_Id);
Subp_Decl :=
Make_Subprogram_Renaming_Declaration (Loc,
Specification => Build_Spec,
Name => New_Reference_To (Subp, Loc));
if Defer_Declaration then
Set_TSS (Base_Type (Ent), Subp_Id);
else
Insert_Action (N, Subp_Decl);
Copy_TSS (Subp_Id, Base_Type (Ent));
end if;
end New_Stream_Subprogram;
------------------------
-- Rep_Item_Too_Early --
------------------------
function Rep_Item_Too_Early (T : Entity_Id; N : Node_Id) return Boolean is
begin
-- Cannot apply non-operational rep items to generic types
if Is_Operational_Item (N) then
return False;
elsif Is_Type (T)
and then Is_Generic_Type (Root_Type (T))
then
Error_Msg_N ("representation item not allowed for generic type", N);
return True;
end if;
-- Otherwise check for incomplete type
if Is_Incomplete_Or_Private_Type (T)
and then No (Underlying_Type (T))
and then
(Nkind (N) /= N_Pragma
or else Get_Pragma_Id (N) /= Pragma_Import)
then
Error_Msg_N
("representation item must be after full type declaration", N);
return True;
-- If the type has incomplete components, a representation clause is
-- illegal but stream attributes and Convention pragmas are correct.
elsif Has_Private_Component (T) then
if Nkind (N) = N_Pragma then
return False;
else
Error_Msg_N
("representation item must appear after type is fully defined",
N);
return True;
end if;
else
return False;
end if;
end Rep_Item_Too_Early;
-----------------------
-- Rep_Item_Too_Late --
-----------------------
function Rep_Item_Too_Late
(T : Entity_Id;
N : Node_Id;
FOnly : Boolean := False) return Boolean
is
S : Entity_Id;
Parent_Type : Entity_Id;
procedure Too_Late;
-- Output the too late message. Note that this is not considered a
-- serious error, since the effect is simply that we ignore the
-- representation clause in this case.
--------------
-- Too_Late --
--------------
procedure Too_Late is
begin
Error_Msg_N ("|representation item appears too late!", N);
end Too_Late;
-- Start of processing for Rep_Item_Too_Late
begin
-- First make sure entity is not frozen (RM 13.1(9)). Exclude imported
-- types, which may be frozen if they appear in a representation clause
-- for a local type.
if Is_Frozen (T)
and then not From_With_Type (T)
then
Too_Late;
S := First_Subtype (T);
if Present (Freeze_Node (S)) then
Error_Msg_NE
("?no more representation items for }", Freeze_Node (S), S);
end if;
return True;
-- Check for case of non-tagged derived type whose parent either has
-- primitive operations, or is a by reference type (RM 13.1(10)).
elsif Is_Type (T)
and then not FOnly
and then Is_Derived_Type (T)
and then not Is_Tagged_Type (T)
then
Parent_Type := Etype (Base_Type (T));
if Has_Primitive_Operations (Parent_Type) then
Too_Late;
Error_Msg_NE
("primitive operations already defined for&!", N, Parent_Type);
return True;
elsif Is_By_Reference_Type (Parent_Type) then
Too_Late;
Error_Msg_NE
("parent type & is a by reference type!", N, Parent_Type);
return True;
end if;
end if;
-- No error, link item into head of chain of rep items for the entity,
-- but avoid chaining if we have an overloadable entity, and the pragma
-- is one that can apply to multiple overloaded entities.
if Is_Overloadable (T)
and then Nkind (N) = N_Pragma
then
declare
Pname : constant Name_Id := Pragma_Name (N);
begin
if Pname = Name_Convention or else
Pname = Name_Import or else
Pname = Name_Export or else
Pname = Name_External or else
Pname = Name_Interface
then
return False;
end if;
end;
end if;
Record_Rep_Item (T, N);
return False;
end Rep_Item_Too_Late;
-------------------------------------
-- Replace_Type_References_Generic --
-------------------------------------
procedure Replace_Type_References_Generic (N : Node_Id; TName : Name_Id) is
function Replace_Node (N : Node_Id) return Traverse_Result;
-- Processes a single node in the traversal procedure below, checking
-- if node N should be replaced, and if so, doing the replacement.
procedure Replace_Type_Refs is new Traverse_Proc (Replace_Node);
-- This instantiation provides the body of Replace_Type_References
------------------
-- Replace_Node --
------------------
function Replace_Node (N : Node_Id) return Traverse_Result is
S : Entity_Id;
P : Node_Id;
begin
-- Case of identifier
if Nkind (N) = N_Identifier then
-- If not the type name, all done with this node
if Chars (N) /= TName then
return Skip;
-- Otherwise do the replacement and we are done with this node
else
Replace_Type_Reference (N);
return Skip;
end if;
-- Case of selected component (which is what a qualification
-- looks like in the unanalyzed tree, which is what we have.
elsif Nkind (N) = N_Selected_Component then
-- If selector name is not our type, keeping going (we might
-- still have an occurrence of the type in the prefix).
if Nkind (Selector_Name (N)) /= N_Identifier
or else Chars (Selector_Name (N)) /= TName
then
return OK;
-- Selector name is our type, check qualification
else
-- Loop through scopes and prefixes, doing comparison
S := Current_Scope;
P := Prefix (N);
loop
-- Continue if no more scopes or scope with no name
if No (S) or else Nkind (S) not in N_Has_Chars then
return OK;
end if;
-- Do replace if prefix is an identifier matching the
-- scope that we are currently looking at.
if Nkind (P) = N_Identifier
and then Chars (P) = Chars (S)
then
Replace_Type_Reference (N);
return Skip;
end if;
-- Go check scope above us if prefix is itself of the
-- form of a selected component, whose selector matches
-- the scope we are currently looking at.
if Nkind (P) = N_Selected_Component
and then Nkind (Selector_Name (P)) = N_Identifier
and then Chars (Selector_Name (P)) = Chars (S)
then
S := Scope (S);
P := Prefix (P);
-- For anything else, we don't have a match, so keep on
-- going, there are still some weird cases where we may
-- still have a replacement within the prefix.
else
return OK;
end if;
end loop;
end if;
-- Continue for any other node kind
else
return OK;
end if;
end Replace_Node;
begin
Replace_Type_Refs (N);
end Replace_Type_References_Generic;
-------------------------
-- Same_Representation --
-------------------------
function Same_Representation (Typ1, Typ2 : Entity_Id) return Boolean is
T1 : constant Entity_Id := Underlying_Type (Typ1);
T2 : constant Entity_Id := Underlying_Type (Typ2);
begin
-- A quick check, if base types are the same, then we definitely have
-- the same representation, because the subtype specific representation
-- attributes (Size and Alignment) do not affect representation from
-- the point of view of this test.
if Base_Type (T1) = Base_Type (T2) then
return True;
elsif Is_Private_Type (Base_Type (T2))
and then Base_Type (T1) = Full_View (Base_Type (T2))
then
return True;
end if;
-- Tagged types never have differing representations
if Is_Tagged_Type (T1) then
return True;
end if;
-- Representations are definitely different if conventions differ
if Convention (T1) /= Convention (T2) then
return False;
end if;
-- Representations are different if component alignments differ
if (Is_Record_Type (T1) or else Is_Array_Type (T1))
and then
(Is_Record_Type (T2) or else Is_Array_Type (T2))
and then Component_Alignment (T1) /= Component_Alignment (T2)
then
return False;
end if;
-- For arrays, the only real issue is component size. If we know the
-- component size for both arrays, and it is the same, then that's
-- good enough to know we don't have a change of representation.
if Is_Array_Type (T1) then
if Known_Component_Size (T1)
and then Known_Component_Size (T2)
and then Component_Size (T1) = Component_Size (T2)
then
if VM_Target = No_VM then
return True;
-- In VM targets the representation of arrays with aliased
-- components differs from arrays with non-aliased components
else
return Has_Aliased_Components (Base_Type (T1))
=
Has_Aliased_Components (Base_Type (T2));
end if;
end if;
end if;
-- Types definitely have same representation if neither has non-standard
-- representation since default representations are always consistent.
-- If only one has non-standard representation, and the other does not,
-- then we consider that they do not have the same representation. They
-- might, but there is no way of telling early enough.
if Has_Non_Standard_Rep (T1) then
if not Has_Non_Standard_Rep (T2) then
return False;
end if;
else
return not Has_Non_Standard_Rep (T2);
end if;
-- Here the two types both have non-standard representation, and we need
-- to determine if they have the same non-standard representation.
-- For arrays, we simply need to test if the component sizes are the
-- same. Pragma Pack is reflected in modified component sizes, so this
-- check also deals with pragma Pack.
if Is_Array_Type (T1) then
return Component_Size (T1) = Component_Size (T2);
-- Tagged types always have the same representation, because it is not
-- possible to specify different representations for common fields.
elsif Is_Tagged_Type (T1) then
return True;
-- Case of record types
elsif Is_Record_Type (T1) then
-- Packed status must conform
if Is_Packed (T1) /= Is_Packed (T2) then
return False;
-- Otherwise we must check components. Typ2 maybe a constrained
-- subtype with fewer components, so we compare the components
-- of the base types.
else
Record_Case : declare
CD1, CD2 : Entity_Id;
function Same_Rep return Boolean;
-- CD1 and CD2 are either components or discriminants. This
-- function tests whether the two have the same representation
--------------
-- Same_Rep --
--------------
function Same_Rep return Boolean is
begin
if No (Component_Clause (CD1)) then
return No (Component_Clause (CD2));
else
return
Present (Component_Clause (CD2))
and then
Component_Bit_Offset (CD1) = Component_Bit_Offset (CD2)
and then
Esize (CD1) = Esize (CD2);
end if;
end Same_Rep;
-- Start of processing for Record_Case
begin
if Has_Discriminants (T1) then
CD1 := First_Discriminant (T1);
CD2 := First_Discriminant (T2);
-- The number of discriminants may be different if the
-- derived type has fewer (constrained by values). The
-- invisible discriminants retain the representation of
-- the original, so the discrepancy does not per se
-- indicate a different representation.
while Present (CD1)
and then Present (CD2)
loop
if not Same_Rep then
return False;
else
Next_Discriminant (CD1);
Next_Discriminant (CD2);
end if;
end loop;
end if;
CD1 := First_Component (Underlying_Type (Base_Type (T1)));
CD2 := First_Component (Underlying_Type (Base_Type (T2)));
while Present (CD1) loop
if not Same_Rep then
return False;
else
Next_Component (CD1);
Next_Component (CD2);
end if;
end loop;
return True;
end Record_Case;
end if;
-- For enumeration types, we must check each literal to see if the
-- representation is the same. Note that we do not permit enumeration
-- representation clauses for Character and Wide_Character, so these
-- cases were already dealt with.
elsif Is_Enumeration_Type (T1) then
Enumeration_Case : declare
L1, L2 : Entity_Id;
begin
L1 := First_Literal (T1);
L2 := First_Literal (T2);
while Present (L1) loop
if Enumeration_Rep (L1) /= Enumeration_Rep (L2) then
return False;
else
Next_Literal (L1);
Next_Literal (L2);
end if;
end loop;
return True;
end Enumeration_Case;
-- Any other types have the same representation for these purposes
else
return True;
end if;
end Same_Representation;
----------------
-- Set_Biased --
----------------
procedure Set_Biased
(E : Entity_Id;
N : Node_Id;
Msg : String;
Biased : Boolean := True)
is
begin
if Biased then
Set_Has_Biased_Representation (E);
if Warn_On_Biased_Representation then
Error_Msg_NE
("?" & Msg & " forces biased representation for&", N, E);
end if;
end if;
end Set_Biased;
--------------------
-- Set_Enum_Esize --
--------------------
procedure Set_Enum_Esize (T : Entity_Id) is
Lo : Uint;
Hi : Uint;
Sz : Nat;
begin
Init_Alignment (T);
-- Find the minimum standard size (8,16,32,64) that fits
Lo := Enumeration_Rep (Entity (Type_Low_Bound (T)));
Hi := Enumeration_Rep (Entity (Type_High_Bound (T)));
if Lo < 0 then
if Lo >= -Uint_2**07 and then Hi < Uint_2**07 then
Sz := Standard_Character_Size; -- May be > 8 on some targets
elsif Lo >= -Uint_2**15 and then Hi < Uint_2**15 then
Sz := 16;
elsif Lo >= -Uint_2**31 and then Hi < Uint_2**31 then
Sz := 32;
else pragma Assert (Lo >= -Uint_2**63 and then Hi < Uint_2**63);
Sz := 64;
end if;
else
if Hi < Uint_2**08 then
Sz := Standard_Character_Size; -- May be > 8 on some targets
elsif Hi < Uint_2**16 then
Sz := 16;
elsif Hi < Uint_2**32 then
Sz := 32;
else pragma Assert (Hi < Uint_2**63);
Sz := 64;
end if;
end if;
-- That minimum is the proper size unless we have a foreign convention
-- and the size required is 32 or less, in which case we bump the size
-- up to 32. This is required for C and C++ and seems reasonable for
-- all other foreign conventions.
if Has_Foreign_Convention (T)
and then Esize (T) < Standard_Integer_Size
then
Init_Esize (T, Standard_Integer_Size);
else
Init_Esize (T, Sz);
end if;
end Set_Enum_Esize;
------------------------------
-- Validate_Address_Clauses --
------------------------------
procedure Validate_Address_Clauses is
begin
for J in Address_Clause_Checks.First .. Address_Clause_Checks.Last loop
declare
ACCR : Address_Clause_Check_Record
renames Address_Clause_Checks.Table (J);
Expr : Node_Id;
X_Alignment : Uint;
Y_Alignment : Uint;
X_Size : Uint;
Y_Size : Uint;
begin
-- Skip processing of this entry if warning already posted
if not Address_Warning_Posted (ACCR.N) then
Expr := Original_Node (Expression (ACCR.N));
-- Get alignments
X_Alignment := Alignment (ACCR.X);
Y_Alignment := Alignment (ACCR.Y);
-- Similarly obtain sizes
X_Size := Esize (ACCR.X);
Y_Size := Esize (ACCR.Y);
-- Check for large object overlaying smaller one
if Y_Size > Uint_0
and then X_Size > Uint_0
and then X_Size > Y_Size
then
Error_Msg_NE
("?& overlays smaller object", ACCR.N, ACCR.X);
Error_Msg_N
("\?program execution may be erroneous", ACCR.N);
Error_Msg_Uint_1 := X_Size;
Error_Msg_NE
("\?size of & is ^", ACCR.N, ACCR.X);
Error_Msg_Uint_1 := Y_Size;
Error_Msg_NE
("\?size of & is ^", ACCR.N, ACCR.Y);
-- Check for inadequate alignment, both of the base object
-- and of the offset, if any.
-- Note: we do not check the alignment if we gave a size
-- warning, since it would likely be redundant.
elsif Y_Alignment /= Uint_0
and then (Y_Alignment < X_Alignment
or else (ACCR.Off
and then
Nkind (Expr) = N_Attribute_Reference
and then
Attribute_Name (Expr) = Name_Address
and then
Has_Compatible_Alignment
(ACCR.X, Prefix (Expr))
/= Known_Compatible))
then
Error_Msg_NE
("?specified address for& may be inconsistent "
& "with alignment",
ACCR.N, ACCR.X);
Error_Msg_N
("\?program execution may be erroneous (RM 13.3(27))",
ACCR.N);
Error_Msg_Uint_1 := X_Alignment;
Error_Msg_NE
("\?alignment of & is ^",
ACCR.N, ACCR.X);
Error_Msg_Uint_1 := Y_Alignment;
Error_Msg_NE
("\?alignment of & is ^",
ACCR.N, ACCR.Y);
if Y_Alignment >= X_Alignment then
Error_Msg_N
("\?but offset is not multiple of alignment",
ACCR.N);
end if;
end if;
end if;
end;
end loop;
end Validate_Address_Clauses;
---------------------------
-- Validate_Independence --
---------------------------
procedure Validate_Independence is
SU : constant Uint := UI_From_Int (System_Storage_Unit);
N : Node_Id;
E : Entity_Id;
IC : Boolean;
Comp : Entity_Id;
Addr : Node_Id;
P : Node_Id;
procedure Check_Array_Type (Atyp : Entity_Id);
-- Checks if the array type Atyp has independent components, and
-- if not, outputs an appropriate set of error messages.
procedure No_Independence;
-- Output message that independence cannot be guaranteed
function OK_Component (C : Entity_Id) return Boolean;
-- Checks one component to see if it is independently accessible, and
-- if so yields True, otherwise yields False if independent access
-- cannot be guaranteed. This is a conservative routine, it only
-- returns True if it knows for sure, it returns False if it knows
-- there is a problem, or it cannot be sure there is no problem.
procedure Reason_Bad_Component (C : Entity_Id);
-- Outputs continuation message if a reason can be determined for
-- the component C being bad.
----------------------
-- Check_Array_Type --
----------------------
procedure Check_Array_Type (Atyp : Entity_Id) is
Ctyp : constant Entity_Id := Component_Type (Atyp);
begin
-- OK if no alignment clause, no pack, and no component size
if not Has_Component_Size_Clause (Atyp)
and then not Has_Alignment_Clause (Atyp)
and then not Is_Packed (Atyp)
then
return;
end if;
-- Check actual component size
if not Known_Component_Size (Atyp)
or else not (Addressable (Component_Size (Atyp))
and then Component_Size (Atyp) < 64)
or else Component_Size (Atyp) mod Esize (Ctyp) /= 0
then
No_Independence;
-- Bad component size, check reason
if Has_Component_Size_Clause (Atyp) then
P :=
Get_Attribute_Definition_Clause
(Atyp, Attribute_Component_Size);
if Present (P) then
Error_Msg_Sloc := Sloc (P);
Error_Msg_N ("\because of Component_Size clause#", N);
return;
end if;
end if;
if Is_Packed (Atyp) then
P := Get_Rep_Pragma (Atyp, Name_Pack);
if Present (P) then
Error_Msg_Sloc := Sloc (P);
Error_Msg_N ("\because of pragma Pack#", N);
return;
end if;
end if;
-- No reason found, just return
return;
end if;
-- Array type is OK independence-wise
return;
end Check_Array_Type;
---------------------
-- No_Independence --
---------------------
procedure No_Independence is
begin
if Pragma_Name (N) = Name_Independent then
Error_Msg_NE
("independence cannot be guaranteed for&", N, E);
else
Error_Msg_NE
("independent components cannot be guaranteed for&", N, E);
end if;
end No_Independence;
------------------
-- OK_Component --
------------------
function OK_Component (C : Entity_Id) return Boolean is
Rec : constant Entity_Id := Scope (C);
Ctyp : constant Entity_Id := Etype (C);
begin
-- OK if no component clause, no Pack, and no alignment clause
if No (Component_Clause (C))
and then not Is_Packed (Rec)
and then not Has_Alignment_Clause (Rec)
then
return True;
end if;
-- Here we look at the actual component layout. A component is
-- addressable if its size is a multiple of the Esize of the
-- component type, and its starting position in the record has
-- appropriate alignment, and the record itself has appropriate
-- alignment to guarantee the component alignment.
-- Make sure sizes are static, always assume the worst for any
-- cases where we cannot check static values.
if not (Known_Static_Esize (C)
and then Known_Static_Esize (Ctyp))
then
return False;
end if;
-- Size of component must be addressable or greater than 64 bits
-- and a multiple of bytes.
if not Addressable (Esize (C))
and then Esize (C) < Uint_64
then
return False;
end if;
-- Check size is proper multiple
if Esize (C) mod Esize (Ctyp) /= 0 then
return False;
end if;
-- Check alignment of component is OK
if not Known_Component_Bit_Offset (C)
or else Component_Bit_Offset (C) < Uint_0
or else Component_Bit_Offset (C) mod Esize (Ctyp) /= 0
then
return False;
end if;
-- Check alignment of record type is OK
if not Known_Alignment (Rec)
or else (Alignment (Rec) * SU) mod Esize (Ctyp) /= 0
then
return False;
end if;
-- All tests passed, component is addressable
return True;
end OK_Component;
--------------------------
-- Reason_Bad_Component --
--------------------------
procedure Reason_Bad_Component (C : Entity_Id) is
Rec : constant Entity_Id := Scope (C);
Ctyp : constant Entity_Id := Etype (C);
begin
-- If component clause present assume that's the problem
if Present (Component_Clause (C)) then
Error_Msg_Sloc := Sloc (Component_Clause (C));
Error_Msg_N ("\because of Component_Clause#", N);
return;
end if;
-- If pragma Pack clause present, assume that's the problem
if Is_Packed (Rec) then
P := Get_Rep_Pragma (Rec, Name_Pack);
if Present (P) then
Error_Msg_Sloc := Sloc (P);
Error_Msg_N ("\because of pragma Pack#", N);
return;
end if;
end if;
-- See if record has bad alignment clause
if Has_Alignment_Clause (Rec)
and then Known_Alignment (Rec)
and then (Alignment (Rec) * SU) mod Esize (Ctyp) /= 0
then
P := Get_Attribute_Definition_Clause (Rec, Attribute_Alignment);
if Present (P) then
Error_Msg_Sloc := Sloc (P);
Error_Msg_N ("\because of Alignment clause#", N);
end if;
end if;
-- Couldn't find a reason, so return without a message
return;
end Reason_Bad_Component;
-- Start of processing for Validate_Independence
begin
for J in Independence_Checks.First .. Independence_Checks.Last loop
N := Independence_Checks.Table (J).N;
E := Independence_Checks.Table (J).E;
IC := Pragma_Name (N) = Name_Independent_Components;
-- Deal with component case
if Ekind (E) = E_Discriminant or else Ekind (E) = E_Component then
if not OK_Component (E) then
No_Independence;
Reason_Bad_Component (E);
goto Continue;
end if;
end if;
-- Deal with record with Independent_Components
if IC and then Is_Record_Type (E) then
Comp := First_Component_Or_Discriminant (E);
while Present (Comp) loop
if not OK_Component (Comp) then
No_Independence;
Reason_Bad_Component (Comp);
goto Continue;
end if;
Next_Component_Or_Discriminant (Comp);
end loop;
end if;
-- Deal with address clause case
if Is_Object (E) then
Addr := Address_Clause (E);
if Present (Addr) then
No_Independence;
Error_Msg_Sloc := Sloc (Addr);
Error_Msg_N ("\because of Address clause#", N);
goto Continue;
end if;
end if;
-- Deal with independent components for array type
if IC and then Is_Array_Type (E) then
Check_Array_Type (E);
end if;
-- Deal with independent components for array object
if IC and then Is_Object (E) and then Is_Array_Type (Etype (E)) then
Check_Array_Type (Etype (E));
end if;
<<Continue>> null;
end loop;
end Validate_Independence;
-----------------------------------
-- Validate_Unchecked_Conversion --
-----------------------------------
procedure Validate_Unchecked_Conversion
(N : Node_Id;
Act_Unit : Entity_Id)
is
Source : Entity_Id;
Target : Entity_Id;
Vnode : Node_Id;
begin
-- Obtain source and target types. Note that we call Ancestor_Subtype
-- here because the processing for generic instantiation always makes
-- subtypes, and we want the original frozen actual types.
-- If we are dealing with private types, then do the check on their
-- fully declared counterparts if the full declarations have been
-- encountered (they don't have to be visible, but they must exist!)
Source := Ancestor_Subtype (Etype (First_Formal (Act_Unit)));
if Is_Private_Type (Source)
and then Present (Underlying_Type (Source))
then
Source := Underlying_Type (Source);
end if;
Target := Ancestor_Subtype (Etype (Act_Unit));
-- If either type is generic, the instantiation happens within a generic
-- unit, and there is nothing to check. The proper check
-- will happen when the enclosing generic is instantiated.
if Is_Generic_Type (Source) or else Is_Generic_Type (Target) then
return;
end if;
if Is_Private_Type (Target)
and then Present (Underlying_Type (Target))
then
Target := Underlying_Type (Target);
end if;
-- Source may be unconstrained array, but not target
if Is_Array_Type (Target)
and then not Is_Constrained (Target)
then
Error_Msg_N
("unchecked conversion to unconstrained array not allowed", N);
return;
end if;
-- Warn if conversion between two different convention pointers
if Is_Access_Type (Target)
and then Is_Access_Type (Source)
and then Convention (Target) /= Convention (Source)
and then Warn_On_Unchecked_Conversion
then
-- Give warnings for subprogram pointers only on most targets. The
-- exception is VMS, where data pointers can have different lengths
-- depending on the pointer convention.
if Is_Access_Subprogram_Type (Target)
or else Is_Access_Subprogram_Type (Source)
or else OpenVMS_On_Target
then
Error_Msg_N
("?conversion between pointers with different conventions!", N);
end if;
end if;
-- Warn if one of the operands is Ada.Calendar.Time. Do not emit a
-- warning when compiling GNAT-related sources.
if Warn_On_Unchecked_Conversion
and then not In_Predefined_Unit (N)
and then RTU_Loaded (Ada_Calendar)
and then
(Chars (Source) = Name_Time
or else
Chars (Target) = Name_Time)
then
-- If Ada.Calendar is loaded and the name of one of the operands is
-- Time, there is a good chance that this is Ada.Calendar.Time.
declare
Calendar_Time : constant Entity_Id :=
Full_View (RTE (RO_CA_Time));
begin
pragma Assert (Present (Calendar_Time));
if Source = Calendar_Time
or else Target = Calendar_Time
then
Error_Msg_N
("?representation of 'Time values may change between " &
"'G'N'A'T versions", N);
end if;
end;
end if;
-- Make entry in unchecked conversion table for later processing by
-- Validate_Unchecked_Conversions, which will check sizes and alignments
-- (using values set by the back-end where possible). This is only done
-- if the appropriate warning is active.
if Warn_On_Unchecked_Conversion then
Unchecked_Conversions.Append
(New_Val => UC_Entry'
(Eloc => Sloc (N),
Source => Source,
Target => Target));
-- If both sizes are known statically now, then back end annotation
-- is not required to do a proper check but if either size is not
-- known statically, then we need the annotation.
if Known_Static_RM_Size (Source)
and then Known_Static_RM_Size (Target)
then
null;
else
Back_Annotate_Rep_Info := True;
end if;
end if;
-- If unchecked conversion to access type, and access type is declared
-- in the same unit as the unchecked conversion, then set the
-- No_Strict_Aliasing flag (no strict aliasing is implicit in this
-- situation).
if Is_Access_Type (Target) and then
In_Same_Source_Unit (Target, N)
then
Set_No_Strict_Aliasing (Implementation_Base_Type (Target));
end if;
-- Generate N_Validate_Unchecked_Conversion node for back end in
-- case the back end needs to perform special validation checks.
-- Shouldn't this be in Exp_Ch13, since the check only gets done
-- if we have full expansion and the back end is called ???
Vnode :=
Make_Validate_Unchecked_Conversion (Sloc (N));
Set_Source_Type (Vnode, Source);
Set_Target_Type (Vnode, Target);
-- If the unchecked conversion node is in a list, just insert before it.
-- If not we have some strange case, not worth bothering about.
if Is_List_Member (N) then
Insert_After (N, Vnode);
end if;
end Validate_Unchecked_Conversion;
------------------------------------
-- Validate_Unchecked_Conversions --
------------------------------------
procedure Validate_Unchecked_Conversions is
begin
for N in Unchecked_Conversions.First .. Unchecked_Conversions.Last loop
declare
T : UC_Entry renames Unchecked_Conversions.Table (N);
Eloc : constant Source_Ptr := T.Eloc;
Source : constant Entity_Id := T.Source;
Target : constant Entity_Id := T.Target;
Source_Siz : Uint;
Target_Siz : Uint;
begin
-- This validation check, which warns if we have unequal sizes for
-- unchecked conversion, and thus potentially implementation
-- dependent semantics, is one of the few occasions on which we
-- use the official RM size instead of Esize. See description in
-- Einfo "Handling of Type'Size Values" for details.
if Serious_Errors_Detected = 0
and then Known_Static_RM_Size (Source)
and then Known_Static_RM_Size (Target)
-- Don't do the check if warnings off for either type, note the
-- deliberate use of OR here instead of OR ELSE to get the flag
-- Warnings_Off_Used set for both types if appropriate.
and then not (Has_Warnings_Off (Source)
or
Has_Warnings_Off (Target))
then
Source_Siz := RM_Size (Source);
Target_Siz := RM_Size (Target);
if Source_Siz /= Target_Siz then
Error_Msg
("?types for unchecked conversion have different sizes!",
Eloc);
if All_Errors_Mode then
Error_Msg_Name_1 := Chars (Source);
Error_Msg_Uint_1 := Source_Siz;
Error_Msg_Name_2 := Chars (Target);
Error_Msg_Uint_2 := Target_Siz;
Error_Msg ("\size of % is ^, size of % is ^?", Eloc);
Error_Msg_Uint_1 := UI_Abs (Source_Siz - Target_Siz);
if Is_Discrete_Type (Source)
and then Is_Discrete_Type (Target)
then
if Source_Siz > Target_Siz then
Error_Msg
("\?^ high order bits of source will be ignored!",
Eloc);
elsif Is_Unsigned_Type (Source) then
Error_Msg
("\?source will be extended with ^ high order " &
"zero bits?!", Eloc);
else
Error_Msg
("\?source will be extended with ^ high order " &
"sign bits!",
Eloc);
end if;
elsif Source_Siz < Target_Siz then
if Is_Discrete_Type (Target) then
if Bytes_Big_Endian then
Error_Msg
("\?target value will include ^ undefined " &
"low order bits!",
Eloc);
else
Error_Msg
("\?target value will include ^ undefined " &
"high order bits!",
Eloc);
end if;
else
Error_Msg
("\?^ trailing bits of target value will be " &
"undefined!", Eloc);
end if;
else pragma Assert (Source_Siz > Target_Siz);
Error_Msg
("\?^ trailing bits of source will be ignored!",
Eloc);
end if;
end if;
end if;
end if;
-- If both types are access types, we need to check the alignment.
-- If the alignment of both is specified, we can do it here.
if Serious_Errors_Detected = 0
and then Ekind (Source) in Access_Kind
and then Ekind (Target) in Access_Kind
and then Target_Strict_Alignment
and then Present (Designated_Type (Source))
and then Present (Designated_Type (Target))
then
declare
D_Source : constant Entity_Id := Designated_Type (Source);
D_Target : constant Entity_Id := Designated_Type (Target);
begin
if Known_Alignment (D_Source)
and then Known_Alignment (D_Target)
then
declare
Source_Align : constant Uint := Alignment (D_Source);
Target_Align : constant Uint := Alignment (D_Target);
begin
if Source_Align < Target_Align
and then not Is_Tagged_Type (D_Source)
-- Suppress warning if warnings suppressed on either
-- type or either designated type. Note the use of
-- OR here instead of OR ELSE. That is intentional,
-- we would like to set flag Warnings_Off_Used in
-- all types for which warnings are suppressed.
and then not (Has_Warnings_Off (D_Source)
or
Has_Warnings_Off (D_Target)
or
Has_Warnings_Off (Source)
or
Has_Warnings_Off (Target))
then
Error_Msg_Uint_1 := Target_Align;
Error_Msg_Uint_2 := Source_Align;
Error_Msg_Node_1 := D_Target;
Error_Msg_Node_2 := D_Source;
Error_Msg
("?alignment of & (^) is stricter than " &
"alignment of & (^)!", Eloc);
Error_Msg
("\?resulting access value may have invalid " &
"alignment!", Eloc);
end if;
end;
end if;
end;
end if;
end;
end loop;
end Validate_Unchecked_Conversions;
end Sem_Ch13;
|