1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
13548
13549
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598
13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
13609
13610
13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
13656
13657
13658
13659
13660
13661
13662
13663
13664
13665
13666
13667
13668
13669
13670
13671
13672
13673
13674
13675
13676
13677
13678
13679
13680
13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
13698
13699
13700
13701
13702
13703
13704
13705
13706
13707
13708
13709
13710
13711
13712
13713
13714
13715
13716
13717
13718
13719
13720
13721
13722
13723
13724
13725
13726
13727
13728
13729
13730
13731
13732
13733
13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772
13773
13774
13775
13776
13777
13778
13779
13780
13781
13782
13783
13784
13785
13786
13787
13788
13789
13790
13791
13792
13793
13794
13795
13796
13797
13798
13799
13800
13801
13802
13803
13804
13805
13806
13807
13808
13809
13810
13811
13812
13813
13814
13815
13816
13817
13818
13819
13820
13821
13822
13823
13824
13825
13826
13827
13828
13829
13830
13831
13832
13833
13834
13835
13836
13837
13838
13839
13840
13841
13842
13843
13844
13845
13846
13847
13848
13849
13850
13851
13852
13853
13854
13855
13856
13857
13858
13859
13860
13861
13862
13863
13864
13865
13866
13867
13868
13869
13870
13871
13872
13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885
13886
13887
13888
13889
13890
13891
13892
13893
13894
13895
13896
13897
13898
13899
13900
13901
13902
13903
13904
13905
13906
13907
13908
13909
13910
13911
13912
13913
13914
13915
13916
13917
13918
13919
13920
13921
13922
13923
13924
13925
13926
13927
13928
13929
13930
13931
13932
13933
13934
13935
13936
13937
13938
13939
13940
13941
13942
13943
13944
13945
13946
13947
13948
13949
13950
13951
13952
13953
13954
13955
13956
13957
13958
13959
13960
13961
13962
13963
13964
13965
13966
13967
13968
13969
13970
13971
13972
13973
13974
13975
13976
13977
13978
13979
13980
13981
13982
13983
13984
13985
13986
13987
13988
13989
13990
13991
13992
13993
13994
13995
13996
13997
13998
13999
14000
14001
14002
14003
14004
14005
14006
14007
14008
14009
14010
14011
14012
14013
14014
14015
14016
14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042
14043
14044
14045
14046
14047
14048
14049
14050
14051
14052
14053
14054
14055
14056
14057
14058
14059
14060
14061
14062
14063
14064
14065
14066
14067
14068
14069
14070
14071
14072
14073
14074
14075
14076
14077
14078
14079
14080
14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
14096
14097
14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
14108
14109
14110
14111
14112
14113
14114
14115
14116
14117
14118
14119
14120
14121
14122
14123
14124
14125
14126
14127
14128
14129
14130
14131
14132
14133
14134
14135
14136
14137
14138
14139
14140
14141
14142
14143
14144
14145
14146
14147
14148
14149
14150
14151
14152
14153
14154
14155
14156
14157
14158
14159
14160
14161
14162
14163
14164
14165
14166
14167
14168
14169
14170
14171
14172
14173
14174
14175
14176
14177
14178
14179
14180
14181
14182
14183
14184
14185
14186
14187
14188
14189
14190
14191
14192
14193
14194
14195
14196
14197
14198
14199
14200
14201
14202
14203
14204
14205
14206
14207
14208
14209
14210
14211
14212
14213
14214
14215
14216
14217
14218
14219
14220
14221
14222
14223
14224
14225
14226
14227
14228
14229
14230
14231
14232
14233
14234
14235
14236
14237
14238
14239
14240
14241
14242
14243
14244
14245
14246
14247
14248
14249
14250
14251
14252
14253
14254
14255
14256
14257
14258
14259
14260
14261
14262
14263
14264
14265
14266
14267
14268
14269
14270
14271
14272
14273
14274
14275
14276
14277
14278
14279
14280
14281
14282
14283
14284
14285
14286
14287
14288
14289
14290
14291
14292
14293
14294
14295
14296
14297
14298
14299
14300
14301
14302
14303
14304
14305
14306
14307
14308
14309
14310
14311
14312
14313
14314
14315
14316
14317
14318
14319
14320
14321
14322
14323
14324
14325
14326
14327
14328
14329
14330
14331
14332
14333
14334
14335
14336
14337
14338
14339
14340
14341
14342
14343
14344
14345
14346
14347
14348
14349
14350
14351
14352
14353
14354
14355
14356
14357
14358
14359
14360
14361
14362
14363
14364
14365
14366
14367
14368
14369
14370
14371
14372
14373
14374
14375
14376
14377
14378
14379
14380
14381
14382
14383
14384
14385
14386
14387
14388
14389
14390
14391
14392
14393
14394
14395
14396
14397
14398
14399
14400
14401
14402
14403
14404
14405
14406
14407
14408
14409
14410
14411
14412
14413
14414
14415
14416
14417
14418
14419
14420
14421
14422
14423
14424
14425
14426
14427
14428
14429
14430
14431
14432
14433
14434
14435
14436
14437
14438
14439
14440
14441
14442
14443
14444
14445
14446
14447
14448
14449
14450
14451
14452
14453
14454
14455
14456
14457
14458
14459
14460
14461
14462
14463
14464
14465
14466
14467
14468
14469
14470
14471
14472
14473
14474
14475
14476
14477
14478
14479
14480
14481
14482
14483
14484
14485
14486
14487
14488
14489
14490
14491
14492
14493
14494
14495
14496
14497
14498
14499
14500
14501
14502
14503
14504
14505
14506
14507
14508
14509
14510
14511
14512
14513
14514
14515
14516
14517
14518
14519
14520
14521
14522
14523
14524
14525
14526
14527
14528
14529
14530
14531
14532
14533
14534
14535
14536
14537
14538
14539
14540
14541
14542
14543
14544
14545
14546
14547
14548
14549
14550
14551
14552
14553
14554
14555
14556
14557
14558
14559
14560
14561
14562
14563
14564
14565
14566
14567
14568
14569
14570
14571
14572
14573
14574
14575
14576
14577
14578
14579
14580
14581
14582
14583
14584
14585
14586
14587
14588
14589
14590
14591
14592
14593
14594
14595
14596
14597
14598
14599
14600
14601
14602
14603
14604
14605
14606
14607
14608
14609
14610
14611
14612
14613
14614
14615
14616
14617
14618
14619
14620
14621
14622
14623
14624
14625
14626
14627
14628
14629
14630
14631
14632
14633
14634
14635
14636
14637
14638
14639
14640
14641
14642
14643
14644
14645
14646
14647
14648
14649
14650
14651
14652
14653
14654
14655
14656
14657
14658
14659
14660
14661
14662
14663
14664
14665
14666
14667
14668
14669
14670
14671
14672
14673
14674
14675
14676
14677
14678
14679
14680
14681
14682
14683
14684
14685
14686
14687
14688
14689
14690
14691
14692
14693
14694
14695
14696
14697
14698
14699
14700
14701
14702
14703
14704
14705
14706
14707
14708
14709
14710
14711
14712
14713
14714
14715
14716
14717
14718
14719
14720
14721
14722
14723
14724
14725
14726
14727
14728
14729
14730
14731
14732
14733
14734
14735
14736
14737
14738
14739
14740
14741
14742
14743
14744
14745
14746
14747
14748
14749
14750
14751
14752
14753
14754
14755
14756
14757
14758
14759
14760
14761
14762
14763
14764
14765
14766
14767
14768
14769
14770
14771
14772
14773
14774
14775
14776
14777
14778
14779
14780
14781
14782
14783
14784
14785
14786
14787
14788
14789
14790
14791
14792
14793
14794
14795
14796
14797
14798
14799
14800
14801
14802
14803
14804
14805
14806
14807
14808
14809
14810
14811
14812
14813
14814
14815
14816
14817
14818
14819
14820
14821
14822
14823
14824
14825
14826
14827
14828
14829
14830
14831
14832
14833
14834
14835
14836
14837
14838
14839
14840
14841
14842
14843
14844
14845
14846
14847
14848
14849
14850
14851
14852
14853
14854
14855
14856
14857
14858
14859
14860
14861
14862
14863
14864
14865
14866
14867
14868
14869
14870
14871
14872
14873
14874
14875
14876
14877
14878
14879
14880
14881
14882
14883
14884
14885
14886
14887
14888
14889
14890
14891
14892
14893
14894
14895
14896
14897
14898
14899
14900
14901
14902
14903
14904
14905
14906
14907
14908
14909
14910
14911
14912
14913
14914
14915
14916
14917
14918
14919
14920
14921
14922
14923
14924
14925
14926
14927
14928
14929
14930
14931
14932
14933
14934
14935
14936
14937
14938
14939
14940
14941
14942
14943
14944
14945
14946
14947
14948
14949
14950
14951
14952
14953
14954
14955
14956
14957
14958
14959
14960
14961
14962
14963
14964
14965
14966
14967
14968
14969
14970
14971
14972
14973
14974
14975
14976
14977
14978
14979
14980
14981
14982
14983
14984
14985
14986
14987
14988
14989
14990
14991
14992
14993
14994
14995
14996
14997
14998
14999
15000
15001
15002
15003
15004
15005
15006
15007
15008
15009
15010
15011
15012
15013
15014
15015
15016
15017
15018
15019
15020
15021
15022
15023
15024
15025
15026
15027
15028
15029
15030
15031
15032
15033
15034
15035
15036
15037
15038
15039
15040
15041
15042
15043
15044
15045
15046
15047
15048
15049
15050
15051
15052
15053
15054
15055
15056
15057
15058
15059
15060
15061
15062
15063
15064
15065
15066
15067
15068
15069
15070
15071
15072
15073
15074
15075
15076
15077
15078
15079
15080
15081
15082
15083
15084
15085
15086
15087
15088
15089
15090
15091
15092
15093
15094
15095
15096
15097
15098
15099
15100
15101
15102
15103
15104
15105
15106
15107
15108
15109
15110
15111
15112
15113
15114
15115
15116
15117
15118
15119
15120
15121
15122
15123
15124
15125
15126
15127
15128
15129
15130
15131
15132
15133
15134
15135
15136
15137
15138
15139
15140
15141
15142
15143
15144
15145
15146
15147
15148
15149
15150
15151
15152
15153
15154
15155
15156
15157
15158
15159
15160
15161
15162
15163
15164
15165
15166
15167
15168
15169
15170
15171
15172
15173
15174
15175
15176
15177
15178
15179
15180
15181
15182
15183
15184
15185
15186
15187
15188
15189
15190
15191
15192
15193
15194
15195
15196
15197
15198
15199
15200
15201
15202
15203
15204
15205
15206
15207
15208
15209
15210
15211
15212
15213
15214
15215
15216
15217
15218
15219
15220
15221
15222
15223
15224
15225
15226
15227
15228
15229
15230
15231
15232
15233
15234
15235
15236
15237
15238
15239
15240
15241
15242
15243
15244
15245
15246
15247
15248
15249
15250
15251
15252
15253
15254
15255
15256
15257
15258
15259
15260
15261
15262
15263
15264
15265
15266
15267
15268
15269
15270
15271
15272
15273
15274
15275
15276
15277
15278
15279
15280
15281
15282
15283
15284
15285
15286
15287
15288
15289
15290
15291
15292
15293
15294
15295
15296
15297
15298
15299
15300
15301
15302
15303
15304
15305
15306
15307
15308
15309
15310
15311
15312
15313
15314
15315
15316
15317
15318
15319
15320
15321
15322
15323
15324
15325
15326
15327
15328
15329
15330
15331
15332
15333
15334
15335
15336
15337
15338
15339
15340
15341
15342
15343
15344
15345
15346
15347
15348
15349
15350
15351
15352
15353
15354
15355
15356
15357
15358
15359
15360
15361
15362
15363
15364
15365
15366
15367
15368
15369
15370
15371
15372
15373
15374
15375
15376
15377
15378
15379
15380
15381
15382
15383
15384
15385
15386
15387
15388
15389
15390
15391
15392
15393
15394
15395
15396
15397
15398
15399
15400
15401
15402
15403
15404
15405
15406
15407
15408
15409
15410
15411
15412
15413
15414
15415
15416
15417
15418
15419
15420
15421
15422
15423
15424
15425
15426
15427
15428
15429
15430
15431
15432
15433
15434
15435
15436
15437
15438
15439
15440
15441
15442
15443
15444
15445
15446
15447
15448
15449
15450
15451
15452
15453
15454
15455
15456
15457
15458
15459
15460
15461
15462
15463
15464
15465
15466
15467
15468
15469
15470
15471
15472
15473
15474
15475
15476
15477
15478
15479
15480
15481
15482
15483
15484
15485
15486
15487
15488
15489
15490
15491
15492
15493
15494
15495
15496
15497
15498
15499
15500
15501
15502
15503
15504
15505
15506
15507
15508
15509
15510
15511
15512
15513
15514
15515
15516
15517
15518
15519
15520
15521
15522
15523
15524
15525
15526
15527
15528
15529
15530
15531
15532
15533
15534
15535
15536
15537
15538
15539
15540
15541
15542
15543
15544
15545
15546
15547
15548
15549
15550
15551
15552
15553
15554
15555
15556
15557
15558
15559
15560
15561
15562
15563
15564
15565
15566
15567
15568
15569
15570
15571
15572
15573
15574
15575
15576
15577
15578
15579
15580
15581
15582
15583
15584
15585
15586
15587
15588
15589
15590
15591
15592
15593
15594
15595
15596
15597
15598
15599
15600
15601
15602
15603
15604
15605
15606
15607
15608
15609
15610
15611
15612
15613
15614
15615
15616
15617
15618
15619
15620
15621
15622
15623
15624
15625
15626
15627
15628
15629
15630
15631
15632
15633
15634
15635
15636
15637
15638
15639
15640
15641
15642
15643
15644
15645
15646
15647
15648
15649
15650
15651
15652
15653
15654
15655
15656
15657
15658
15659
15660
15661
15662
15663
15664
15665
15666
15667
15668
15669
15670
15671
15672
15673
15674
15675
15676
15677
15678
15679
15680
15681
15682
15683
15684
15685
15686
15687
15688
15689
15690
15691
15692
15693
15694
15695
15696
15697
15698
15699
15700
15701
15702
15703
15704
15705
15706
15707
15708
15709
15710
15711
15712
15713
15714
15715
15716
15717
15718
15719
15720
15721
15722
15723
15724
15725
15726
15727
15728
15729
15730
15731
15732
15733
15734
15735
15736
15737
15738
15739
15740
15741
15742
15743
15744
15745
15746
15747
15748
15749
15750
15751
15752
15753
15754
15755
15756
15757
15758
15759
15760
15761
15762
15763
15764
15765
15766
15767
15768
15769
15770
15771
15772
15773
15774
15775
15776
15777
15778
15779
15780
15781
15782
15783
15784
15785
15786
15787
15788
15789
15790
15791
15792
15793
15794
15795
15796
15797
15798
15799
15800
15801
15802
15803
15804
15805
15806
15807
15808
15809
15810
15811
15812
15813
15814
15815
15816
15817
15818
15819
15820
15821
15822
15823
15824
15825
15826
15827
15828
15829
15830
15831
15832
15833
15834
15835
15836
15837
15838
15839
15840
15841
15842
15843
15844
15845
15846
15847
15848
15849
15850
15851
15852
15853
15854
15855
15856
15857
15858
15859
15860
15861
15862
15863
15864
15865
15866
15867
15868
15869
15870
15871
15872
15873
15874
15875
15876
15877
15878
15879
15880
15881
15882
15883
15884
15885
15886
15887
15888
15889
15890
15891
15892
15893
15894
15895
15896
15897
15898
15899
15900
15901
15902
15903
15904
15905
15906
15907
15908
15909
15910
15911
15912
15913
15914
15915
15916
15917
15918
15919
15920
15921
15922
15923
15924
15925
15926
15927
15928
15929
15930
15931
15932
15933
15934
15935
15936
15937
15938
15939
15940
15941
15942
15943
15944
15945
15946
15947
15948
15949
15950
15951
15952
15953
15954
15955
15956
15957
15958
15959
15960
15961
15962
15963
15964
15965
15966
15967
15968
15969
15970
15971
15972
15973
15974
15975
15976
15977
15978
15979
15980
15981
15982
15983
15984
15985
15986
15987
15988
15989
15990
15991
15992
15993
15994
15995
15996
15997
15998
15999
16000
16001
16002
16003
16004
16005
16006
16007
16008
16009
16010
16011
16012
16013
16014
16015
16016
16017
16018
16019
16020
16021
16022
16023
16024
16025
16026
16027
16028
16029
16030
16031
16032
16033
16034
16035
16036
16037
16038
16039
16040
16041
16042
16043
16044
16045
16046
|
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- S E M _ C H 1 2 --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2017, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING3. If not, go to --
-- http://www.gnu.org/licenses for a complete copy of the license. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Aspects; use Aspects;
with Atree; use Atree;
with Contracts; use Contracts;
with Einfo; use Einfo;
with Elists; use Elists;
with Errout; use Errout;
with Expander; use Expander;
with Exp_Disp; use Exp_Disp;
with Fname; use Fname;
with Fname.UF; use Fname.UF;
with Freeze; use Freeze;
with Ghost; use Ghost;
with Itypes; use Itypes;
with Lib; use Lib;
with Lib.Load; use Lib.Load;
with Lib.Xref; use Lib.Xref;
with Nlists; use Nlists;
with Namet; use Namet;
with Nmake; use Nmake;
with Opt; use Opt;
with Rident; use Rident;
with Restrict; use Restrict;
with Rtsfind; use Rtsfind;
with Sem; use Sem;
with Sem_Aux; use Sem_Aux;
with Sem_Cat; use Sem_Cat;
with Sem_Ch3; use Sem_Ch3;
with Sem_Ch6; use Sem_Ch6;
with Sem_Ch7; use Sem_Ch7;
with Sem_Ch8; use Sem_Ch8;
with Sem_Ch10; use Sem_Ch10;
with Sem_Ch13; use Sem_Ch13;
with Sem_Dim; use Sem_Dim;
with Sem_Disp; use Sem_Disp;
with Sem_Elab; use Sem_Elab;
with Sem_Elim; use Sem_Elim;
with Sem_Eval; use Sem_Eval;
with Sem_Prag; use Sem_Prag;
with Sem_Res; use Sem_Res;
with Sem_Type; use Sem_Type;
with Sem_Util; use Sem_Util;
with Sem_Warn; use Sem_Warn;
with Stand; use Stand;
with Sinfo; use Sinfo;
with Sinfo.CN; use Sinfo.CN;
with Sinput; use Sinput;
with Sinput.L; use Sinput.L;
with Snames; use Snames;
with Stringt; use Stringt;
with Uname; use Uname;
with Table;
with Tbuild; use Tbuild;
with Uintp; use Uintp;
with Urealp; use Urealp;
with Warnsw; use Warnsw;
with GNAT.HTable;
package body Sem_Ch12 is
----------------------------------------------------------
-- Implementation of Generic Analysis and Instantiation --
----------------------------------------------------------
-- GNAT implements generics by macro expansion. No attempt is made to share
-- generic instantiations (for now). Analysis of a generic definition does
-- not perform any expansion action, but the expander must be called on the
-- tree for each instantiation, because the expansion may of course depend
-- on the generic actuals. All of this is best achieved as follows:
--
-- a) Semantic analysis of a generic unit is performed on a copy of the
-- tree for the generic unit. All tree modifications that follow analysis
-- do not affect the original tree. Links are kept between the original
-- tree and the copy, in order to recognize non-local references within
-- the generic, and propagate them to each instance (recall that name
-- resolution is done on the generic declaration: generics are not really
-- macros). This is summarized in the following diagram:
-- .-----------. .----------.
-- | semantic |<--------------| generic |
-- | copy | | unit |
-- | |==============>| |
-- |___________| global |__________|
-- references | | |
-- | | |
-- .-----|--|.
-- | .-----|---.
-- | | .----------.
-- | | | generic |
-- |__| | |
-- |__| instance |
-- |__________|
-- b) Each instantiation copies the original tree, and inserts into it a
-- series of declarations that describe the mapping between generic formals
-- and actuals. For example, a generic In OUT parameter is an object
-- renaming of the corresponding actual, etc. Generic IN parameters are
-- constant declarations.
-- c) In order to give the right visibility for these renamings, we use
-- a different scheme for package and subprogram instantiations. For
-- packages, the list of renamings is inserted into the package
-- specification, before the visible declarations of the package. The
-- renamings are analyzed before any of the text of the instance, and are
-- thus visible at the right place. Furthermore, outside of the instance,
-- the generic parameters are visible and denote their corresponding
-- actuals.
-- For subprograms, we create a container package to hold the renamings
-- and the subprogram instance itself. Analysis of the package makes the
-- renaming declarations visible to the subprogram. After analyzing the
-- package, the defining entity for the subprogram is touched-up so that
-- it appears declared in the current scope, and not inside the container
-- package.
-- If the instantiation is a compilation unit, the container package is
-- given the same name as the subprogram instance. This ensures that
-- the elaboration procedure called by the binder, using the compilation
-- unit name, calls in fact the elaboration procedure for the package.
-- Not surprisingly, private types complicate this approach. By saving in
-- the original generic object the non-local references, we guarantee that
-- the proper entities are referenced at the point of instantiation.
-- However, for private types, this by itself does not insure that the
-- proper VIEW of the entity is used (the full type may be visible at the
-- point of generic definition, but not at instantiation, or vice-versa).
-- In order to reference the proper view, we special-case any reference
-- to private types in the generic object, by saving both views, one in
-- the generic and one in the semantic copy. At time of instantiation, we
-- check whether the two views are consistent, and exchange declarations if
-- necessary, in order to restore the correct visibility. Similarly, if
-- the instance view is private when the generic view was not, we perform
-- the exchange. After completing the instantiation, we restore the
-- current visibility. The flag Has_Private_View marks identifiers in the
-- the generic unit that require checking.
-- Visibility within nested generic units requires special handling.
-- Consider the following scheme:
-- type Global is ... -- outside of generic unit.
-- generic ...
-- package Outer is
-- ...
-- type Semi_Global is ... -- global to inner.
-- generic ... -- 1
-- procedure inner (X1 : Global; X2 : Semi_Global);
-- procedure in2 is new inner (...); -- 4
-- end Outer;
-- package New_Outer is new Outer (...); -- 2
-- procedure New_Inner is new New_Outer.Inner (...); -- 3
-- The semantic analysis of Outer captures all occurrences of Global.
-- The semantic analysis of Inner (at 1) captures both occurrences of
-- Global and Semi_Global.
-- At point 2 (instantiation of Outer), we also produce a generic copy
-- of Inner, even though Inner is, at that point, not being instantiated.
-- (This is just part of the semantic analysis of New_Outer).
-- Critically, references to Global within Inner must be preserved, while
-- references to Semi_Global should not preserved, because they must now
-- resolve to an entity within New_Outer. To distinguish between these, we
-- use a global variable, Current_Instantiated_Parent, which is set when
-- performing a generic copy during instantiation (at 2). This variable is
-- used when performing a generic copy that is not an instantiation, but
-- that is nested within one, as the occurrence of 1 within 2. The analysis
-- of a nested generic only preserves references that are global to the
-- enclosing Current_Instantiated_Parent. We use the Scope_Depth value to
-- determine whether a reference is external to the given parent.
-- The instantiation at point 3 requires no special treatment. The method
-- works as well for further nestings of generic units, but of course the
-- variable Current_Instantiated_Parent must be stacked because nested
-- instantiations can occur, e.g. the occurrence of 4 within 2.
-- The instantiation of package and subprogram bodies is handled in a
-- similar manner, except that it is delayed until after semantic
-- analysis is complete. In this fashion complex cross-dependencies
-- between several package declarations and bodies containing generics
-- can be compiled which otherwise would diagnose spurious circularities.
-- For example, it is possible to compile two packages A and B that
-- have the following structure:
-- package A is package B is
-- generic ... generic ...
-- package G_A is package G_B is
-- with B; with A;
-- package body A is package body B is
-- package N_B is new G_B (..) package N_A is new G_A (..)
-- The table Pending_Instantiations in package Inline is used to keep
-- track of body instantiations that are delayed in this manner. Inline
-- handles the actual calls to do the body instantiations. This activity
-- is part of Inline, since the processing occurs at the same point, and
-- for essentially the same reason, as the handling of inlined routines.
----------------------------------------------
-- Detection of Instantiation Circularities --
----------------------------------------------
-- If we have a chain of instantiations that is circular, this is static
-- error which must be detected at compile time. The detection of these
-- circularities is carried out at the point that we insert a generic
-- instance spec or body. If there is a circularity, then the analysis of
-- the offending spec or body will eventually result in trying to load the
-- same unit again, and we detect this problem as we analyze the package
-- instantiation for the second time.
-- At least in some cases after we have detected the circularity, we get
-- into trouble if we try to keep going. The following flag is set if a
-- circularity is detected, and used to abandon compilation after the
-- messages have been posted.
-----------------------------------------
-- Implementation of Generic Contracts --
-----------------------------------------
-- A "contract" is a collection of aspects and pragmas that either verify a
-- property of a construct at runtime or classify the data flow to and from
-- the construct in some fashion.
-- Generic packages, subprograms and their respective bodies may be subject
-- to the following contract-related aspects or pragmas collectively known
-- as annotations:
-- package subprogram [body]
-- Abstract_State Contract_Cases
-- Initial_Condition Depends
-- Initializes Extensions_Visible
-- Global
-- package body Post
-- Refined_State Post_Class
-- Postcondition
-- Pre
-- Pre_Class
-- Precondition
-- Refined_Depends
-- Refined_Global
-- Refined_Post
-- Test_Case
-- Most package contract annotations utilize forward references to classify
-- data declared within the package [body]. Subprogram annotations then use
-- the classifications to further refine them. These inter dependencies are
-- problematic with respect to the implementation of generics because their
-- analysis, capture of global references and instantiation does not mesh
-- well with the existing mechanism.
-- 1) Analysis of generic contracts is carried out the same way non-generic
-- contracts are analyzed:
-- 1.1) General rule - a contract is analyzed after all related aspects
-- and pragmas are analyzed. This is done by routines
-- Analyze_Package_Body_Contract
-- Analyze_Package_Contract
-- Analyze_Subprogram_Body_Contract
-- Analyze_Subprogram_Contract
-- 1.2) Compilation unit - the contract is analyzed after Pragmas_After
-- are processed.
-- 1.3) Compilation unit body - the contract is analyzed at the end of
-- the body declaration list.
-- 1.4) Package - the contract is analyzed at the end of the private or
-- visible declarations, prior to analyzing the contracts of any nested
-- packages or subprograms.
-- 1.5) Package body - the contract is analyzed at the end of the body
-- declaration list, prior to analyzing the contracts of any nested
-- packages or subprograms.
-- 1.6) Subprogram - if the subprogram is declared inside a block, a
-- package or a subprogram, then its contract is analyzed at the end of
-- the enclosing declarations, otherwise the subprogram is a compilation
-- unit 1.2).
-- 1.7) Subprogram body - if the subprogram body is declared inside a
-- block, a package body or a subprogram body, then its contract is
-- analyzed at the end of the enclosing declarations, otherwise the
-- subprogram is a compilation unit 1.3).
-- 2) Capture of global references within contracts is done after capturing
-- global references within the generic template. There are two reasons for
-- this delay - pragma annotations are not part of the generic template in
-- the case of a generic subprogram declaration, and analysis of contracts
-- is delayed.
-- Contract-related source pragmas within generic templates are prepared
-- for delayed capture of global references by routine
-- Create_Generic_Contract
-- The routine associates these pragmas with the contract of the template.
-- In the case of a generic subprogram declaration, the routine creates
-- generic templates for the pragmas declared after the subprogram because
-- they are not part of the template.
-- generic -- template starts
-- procedure Gen_Proc (Input : Integer); -- template ends
-- pragma Precondition (Input > 0); -- requires own template
-- 2.1) The capture of global references with aspect specifications and
-- source pragmas that apply to a generic unit must be suppressed when
-- the generic template is being processed because the contracts have not
-- been analyzed yet. Any attempts to capture global references at that
-- point will destroy the Associated_Node linkages and leave the template
-- undecorated. This delay is controlled by routine
-- Requires_Delayed_Save
-- 2.2) The real capture of global references within a contract is done
-- after the contract has been analyzed, by routine
-- Save_Global_References_In_Contract
-- 3) The instantiation of a generic contract occurs as part of the
-- instantiation of the contract owner. Generic subprogram declarations
-- require additional processing when the contract is specified by pragmas
-- because the pragmas are not part of the generic template. This is done
-- by routine
-- Instantiate_Subprogram_Contract
Circularity_Detected : Boolean := False;
-- This should really be reset on encountering a new main unit, but in
-- practice we are not using multiple main units so it is not critical.
--------------------------------------------------
-- Formal packages and partial parameterization --
--------------------------------------------------
-- When compiling a generic, a formal package is a local instantiation. If
-- declared with a box, its generic formals are visible in the enclosing
-- generic. If declared with a partial list of actuals, those actuals that
-- are defaulted (covered by an Others clause, or given an explicit box
-- initialization) are also visible in the enclosing generic, while those
-- that have a corresponding actual are not.
-- In our source model of instantiation, the same visibility must be
-- present in the spec and body of an instance: the names of the formals
-- that are defaulted must be made visible within the instance, and made
-- invisible (hidden) after the instantiation is complete, so that they
-- are not accessible outside of the instance.
-- In a generic, a formal package is treated like a special instantiation.
-- Our Ada 95 compiler handled formals with and without box in different
-- ways. With partial parameterization, we use a single model for both.
-- We create a package declaration that consists of the specification of
-- the generic package, and a set of declarations that map the actuals
-- into local renamings, just as we do for bona fide instantiations. For
-- defaulted parameters and formals with a box, we copy directly the
-- declarations of the formal into this local package. The result is a
-- a package whose visible declarations may include generic formals. This
-- package is only used for type checking and visibility analysis, and
-- never reaches the back-end, so it can freely violate the placement
-- rules for generic formal declarations.
-- The list of declarations (renamings and copies of formals) is built
-- by Analyze_Associations, just as for regular instantiations.
-- At the point of instantiation, conformance checking must be applied only
-- to those parameters that were specified in the formal. We perform this
-- checking by creating another internal instantiation, this one including
-- only the renamings and the formals (the rest of the package spec is not
-- relevant to conformance checking). We can then traverse two lists: the
-- list of actuals in the instance that corresponds to the formal package,
-- and the list of actuals produced for this bogus instantiation. We apply
-- the conformance rules to those actuals that are not defaulted (i.e.
-- which still appear as generic formals.
-- When we compile an instance body we must make the right parameters
-- visible again. The predicate Is_Generic_Formal indicates which of the
-- formals should have its Is_Hidden flag reset.
-----------------------
-- Local subprograms --
-----------------------
procedure Abandon_Instantiation (N : Node_Id);
pragma No_Return (Abandon_Instantiation);
-- Posts an error message "instantiation abandoned" at the indicated node
-- and then raises the exception Instantiation_Error to do it.
procedure Analyze_Formal_Array_Type
(T : in out Entity_Id;
Def : Node_Id);
-- A formal array type is treated like an array type declaration, and
-- invokes Array_Type_Declaration (sem_ch3) whose first parameter is
-- in-out, because in the case of an anonymous type the entity is
-- actually created in the procedure.
-- The following procedures treat other kinds of formal parameters
procedure Analyze_Formal_Derived_Interface_Type
(N : Node_Id;
T : Entity_Id;
Def : Node_Id);
procedure Analyze_Formal_Derived_Type
(N : Node_Id;
T : Entity_Id;
Def : Node_Id);
procedure Analyze_Formal_Interface_Type
(N : Node_Id;
T : Entity_Id;
Def : Node_Id);
-- The following subprograms create abbreviated declarations for formal
-- scalar types. We introduce an anonymous base of the proper class for
-- each of them, and define the formals as constrained first subtypes of
-- their bases. The bounds are expressions that are non-static in the
-- generic.
procedure Analyze_Formal_Decimal_Fixed_Point_Type
(T : Entity_Id; Def : Node_Id);
procedure Analyze_Formal_Discrete_Type (T : Entity_Id; Def : Node_Id);
procedure Analyze_Formal_Floating_Type (T : Entity_Id; Def : Node_Id);
procedure Analyze_Formal_Signed_Integer_Type (T : Entity_Id; Def : Node_Id);
procedure Analyze_Formal_Modular_Type (T : Entity_Id; Def : Node_Id);
procedure Analyze_Formal_Ordinary_Fixed_Point_Type
(T : Entity_Id; Def : Node_Id);
procedure Analyze_Formal_Private_Type
(N : Node_Id;
T : Entity_Id;
Def : Node_Id);
-- Creates a new private type, which does not require completion
procedure Analyze_Formal_Incomplete_Type (T : Entity_Id; Def : Node_Id);
-- Ada 2012: Creates a new incomplete type whose actual does not freeze
procedure Analyze_Generic_Formal_Part (N : Node_Id);
-- Analyze generic formal part
procedure Analyze_Generic_Access_Type (T : Entity_Id; Def : Node_Id);
-- Create a new access type with the given designated type
function Analyze_Associations
(I_Node : Node_Id;
Formals : List_Id;
F_Copy : List_Id) return List_Id;
-- At instantiation time, build the list of associations between formals
-- and actuals. Each association becomes a renaming declaration for the
-- formal entity. F_Copy is the analyzed list of formals in the generic
-- copy. It is used to apply legality checks to the actuals. I_Node is the
-- instantiation node itself.
procedure Analyze_Subprogram_Instantiation
(N : Node_Id;
K : Entity_Kind);
procedure Build_Instance_Compilation_Unit_Nodes
(N : Node_Id;
Act_Body : Node_Id;
Act_Decl : Node_Id);
-- This procedure is used in the case where the generic instance of a
-- subprogram body or package body is a library unit. In this case, the
-- original library unit node for the generic instantiation must be
-- replaced by the resulting generic body, and a link made to a new
-- compilation unit node for the generic declaration. The argument N is
-- the original generic instantiation. Act_Body and Act_Decl are the body
-- and declaration of the instance (either package body and declaration
-- nodes or subprogram body and declaration nodes depending on the case).
-- On return, the node N has been rewritten with the actual body.
procedure Check_Access_Definition (N : Node_Id);
-- Subsidiary routine to null exclusion processing. Perform an assertion
-- check on Ada version and the presence of an access definition in N.
procedure Check_Formal_Packages (P_Id : Entity_Id);
-- Apply the following to all formal packages in generic associations
procedure Check_Formal_Package_Instance
(Formal_Pack : Entity_Id;
Actual_Pack : Entity_Id);
-- Verify that the actuals of the actual instance match the actuals of
-- the template for a formal package that is not declared with a box.
procedure Check_Forward_Instantiation (Decl : Node_Id);
-- If the generic is a local entity and the corresponding body has not
-- been seen yet, flag enclosing packages to indicate that it will be
-- elaborated after the generic body. Subprograms declared in the same
-- package cannot be inlined by the front end because front-end inlining
-- requires a strict linear order of elaboration.
function Check_Hidden_Primitives (Assoc_List : List_Id) return Elist_Id;
-- Check if some association between formals and actuals requires to make
-- visible primitives of a tagged type, and make those primitives visible.
-- Return the list of primitives whose visibility is modified (to restore
-- their visibility later through Restore_Hidden_Primitives). If no
-- candidate is found then return No_Elist.
procedure Check_Hidden_Child_Unit
(N : Node_Id;
Gen_Unit : Entity_Id;
Act_Decl_Id : Entity_Id);
-- If the generic unit is an implicit child instance within a parent
-- instance, we need to make an explicit test that it is not hidden by
-- a child instance of the same name and parent.
procedure Check_Generic_Actuals
(Instance : Entity_Id;
Is_Formal_Box : Boolean);
-- Similar to previous one. Check the actuals in the instantiation,
-- whose views can change between the point of instantiation and the point
-- of instantiation of the body. In addition, mark the generic renamings
-- as generic actuals, so that they are not compatible with other actuals.
-- Recurse on an actual that is a formal package whose declaration has
-- a box.
function Contains_Instance_Of
(Inner : Entity_Id;
Outer : Entity_Id;
N : Node_Id) return Boolean;
-- Inner is instantiated within the generic Outer. Check whether Inner
-- directly or indirectly contains an instance of Outer or of one of its
-- parents, in the case of a subunit. Each generic unit holds a list of
-- the entities instantiated within (at any depth). This procedure
-- determines whether the set of such lists contains a cycle, i.e. an
-- illegal circular instantiation.
function Denotes_Formal_Package
(Pack : Entity_Id;
On_Exit : Boolean := False;
Instance : Entity_Id := Empty) return Boolean;
-- Returns True if E is a formal package of an enclosing generic, or
-- the actual for such a formal in an enclosing instantiation. If such
-- a package is used as a formal in an nested generic, or as an actual
-- in a nested instantiation, the visibility of ITS formals should not
-- be modified. When called from within Restore_Private_Views, the flag
-- On_Exit is true, to indicate that the search for a possible enclosing
-- instance should ignore the current one. In that case Instance denotes
-- the declaration for which this is an actual. This declaration may be
-- an instantiation in the source, or the internal instantiation that
-- corresponds to the actual for a formal package.
function Earlier (N1, N2 : Node_Id) return Boolean;
-- Yields True if N1 and N2 appear in the same compilation unit,
-- ignoring subunits, and if N1 is to the left of N2 in a left-to-right
-- traversal of the tree for the unit. Used to determine the placement
-- of freeze nodes for instance bodies that may depend on other instances.
function Find_Actual_Type
(Typ : Entity_Id;
Gen_Type : Entity_Id) return Entity_Id;
-- When validating the actual types of a child instance, check whether
-- the formal is a formal type of the parent unit, and retrieve the current
-- actual for it. Typ is the entity in the analyzed formal type declaration
-- (component or index type of an array type, or designated type of an
-- access formal) and Gen_Type is the enclosing analyzed formal array
-- or access type. The desired actual may be a formal of a parent, or may
-- be declared in a formal package of a parent. In both cases it is a
-- generic actual type because it appears within a visible instance.
-- Finally, it may be declared in a parent unit without being a formal
-- of that unit, in which case it must be retrieved by visibility.
-- Ambiguities may still arise if two homonyms are declared in two formal
-- packages, and the prefix of the formal type may be needed to resolve
-- the ambiguity in the instance ???
procedure Freeze_Subprogram_Body
(Inst_Node : Node_Id;
Gen_Body : Node_Id;
Pack_Id : Entity_Id);
-- The generic body may appear textually after the instance, including
-- in the proper body of a stub, or within a different package instance.
-- Given that the instance can only be elaborated after the generic, we
-- place freeze_nodes for the instance and/or for packages that may enclose
-- the instance and the generic, so that the back-end can establish the
-- proper order of elaboration.
function Get_Associated_Node (N : Node_Id) return Node_Id;
-- In order to propagate semantic information back from the analyzed copy
-- to the original generic, we maintain links between selected nodes in the
-- generic and their corresponding copies. At the end of generic analysis,
-- the routine Save_Global_References traverses the generic tree, examines
-- the semantic information, and preserves the links to those nodes that
-- contain global information. At instantiation, the information from the
-- associated node is placed on the new copy, so that name resolution is
-- not repeated.
--
-- Three kinds of source nodes have associated nodes:
--
-- a) those that can reference (denote) entities, that is identifiers,
-- character literals, expanded_names, operator symbols, operators,
-- and attribute reference nodes. These nodes have an Entity field
-- and are the set of nodes that are in N_Has_Entity.
--
-- b) aggregates (N_Aggregate and N_Extension_Aggregate)
--
-- c) selected components (N_Selected_Component)
--
-- For the first class, the associated node preserves the entity if it is
-- global. If the generic contains nested instantiations, the associated
-- node itself has been recopied, and a chain of them must be followed.
--
-- For aggregates, the associated node allows retrieval of the type, which
-- may otherwise not appear in the generic. The view of this type may be
-- different between generic and instantiation, and the full view can be
-- installed before the instantiation is analyzed. For aggregates of type
-- extensions, the same view exchange may have to be performed for some of
-- the ancestor types, if their view is private at the point of
-- instantiation.
--
-- Nodes that are selected components in the parse tree may be rewritten
-- as expanded names after resolution, and must be treated as potential
-- entity holders, which is why they also have an Associated_Node.
--
-- Nodes that do not come from source, such as freeze nodes, do not appear
-- in the generic tree, and need not have an associated node.
--
-- The associated node is stored in the Associated_Node field. Note that
-- this field overlaps Entity, which is fine, because the whole point is
-- that we don't need or want the normal Entity field in this situation.
function Has_Been_Exchanged (E : Entity_Id) return Boolean;
-- Traverse the Exchanged_Views list to see if a type was private
-- and has already been flipped during this phase of instantiation.
procedure Hide_Current_Scope;
-- When instantiating a generic child unit, the parent context must be
-- present, but the instance and all entities that may be generated
-- must be inserted in the current scope. We leave the current scope
-- on the stack, but make its entities invisible to avoid visibility
-- problems. This is reversed at the end of the instantiation. This is
-- not done for the instantiation of the bodies, which only require the
-- instances of the generic parents to be in scope.
function In_Same_Declarative_Part
(F_Node : Node_Id;
Inst : Node_Id) return Boolean;
-- True if the instantiation Inst and the given freeze_node F_Node appear
-- within the same declarative part, ignoring subunits, but with no inter-
-- vening subprograms or concurrent units. Used to find the proper plave
-- for the freeze node of an instance, when the generic is declared in a
-- previous instance. If predicate is true, the freeze node of the instance
-- can be placed after the freeze node of the previous instance, Otherwise
-- it has to be placed at the end of the current declarative part.
function In_Main_Context (E : Entity_Id) return Boolean;
-- Check whether an instantiation is in the context of the main unit.
-- Used to determine whether its body should be elaborated to allow
-- front-end inlining.
procedure Inherit_Context (Gen_Decl : Node_Id; Inst : Node_Id);
-- Add the context clause of the unit containing a generic unit to a
-- compilation unit that is, or contains, an instantiation.
procedure Init_Env;
-- Establish environment for subsequent instantiation. Separated from
-- Save_Env because data-structures for visibility handling must be
-- initialized before call to Check_Generic_Child_Unit.
procedure Inline_Instance_Body
(N : Node_Id;
Gen_Unit : Entity_Id;
Act_Decl : Node_Id);
-- If front-end inlining is requested, instantiate the package body,
-- and preserve the visibility of its compilation unit, to insure
-- that successive instantiations succeed.
procedure Insert_Freeze_Node_For_Instance
(N : Node_Id;
F_Node : Node_Id);
-- N denotes a package or a subprogram instantiation and F_Node is the
-- associated freeze node. Insert the freeze node before the first source
-- body which follows immediately after N. If no such body is found, the
-- freeze node is inserted at the end of the declarative region which
-- contains N.
procedure Install_Body
(Act_Body : Node_Id;
N : Node_Id;
Gen_Body : Node_Id;
Gen_Decl : Node_Id);
-- If the instantiation happens textually before the body of the generic,
-- the instantiation of the body must be analyzed after the generic body,
-- and not at the point of instantiation. Such early instantiations can
-- happen if the generic and the instance appear in a package declaration
-- because the generic body can only appear in the corresponding package
-- body. Early instantiations can also appear if generic, instance and
-- body are all in the declarative part of a subprogram or entry. Entities
-- of packages that are early instantiations are delayed, and their freeze
-- node appears after the generic body. This rather complex machinery is
-- needed when nested instantiations are present, because the source does
-- not carry any indication of where the corresponding instance bodies must
-- be installed and frozen.
procedure Install_Formal_Packages (Par : Entity_Id);
-- Install the visible part of any formal of the parent that is a formal
-- package. Note that for the case of a formal package with a box, this
-- includes the formal part of the formal package (12.7(10/2)).
procedure Install_Hidden_Primitives
(Prims_List : in out Elist_Id;
Gen_T : Entity_Id;
Act_T : Entity_Id);
-- Remove suffix 'P' from hidden primitives of Act_T to match the
-- visibility of primitives of Gen_T. The list of primitives to which
-- the suffix is removed is added to Prims_List to restore them later.
procedure Install_Parent (P : Entity_Id; In_Body : Boolean := False);
-- When compiling an instance of a child unit the parent (which is
-- itself an instance) is an enclosing scope that must be made
-- immediately visible. This procedure is also used to install the non-
-- generic parent of a generic child unit when compiling its body, so
-- that full views of types in the parent are made visible.
-- The functions Instantiate_XXX perform various legality checks and build
-- the declarations for instantiated generic parameters. In all of these
-- Formal is the entity in the generic unit, Actual is the entity of
-- expression in the generic associations, and Analyzed_Formal is the
-- formal in the generic copy, which contains the semantic information to
-- be used to validate the actual.
function Instantiate_Object
(Formal : Node_Id;
Actual : Node_Id;
Analyzed_Formal : Node_Id) return List_Id;
function Instantiate_Type
(Formal : Node_Id;
Actual : Node_Id;
Analyzed_Formal : Node_Id;
Actual_Decls : List_Id) return List_Id;
function Instantiate_Formal_Subprogram
(Formal : Node_Id;
Actual : Node_Id;
Analyzed_Formal : Node_Id) return Node_Id;
function Instantiate_Formal_Package
(Formal : Node_Id;
Actual : Node_Id;
Analyzed_Formal : Node_Id) return List_Id;
-- If the formal package is declared with a box, special visibility rules
-- apply to its formals: they are in the visible part of the package. This
-- is true in the declarative region of the formal package, that is to say
-- in the enclosing generic or instantiation. For an instantiation, the
-- parameters of the formal package are made visible in an explicit step.
-- Furthermore, if the actual has a visible USE clause, these formals must
-- be made potentially use-visible as well. On exit from the enclosing
-- instantiation, the reverse must be done.
-- For a formal package declared without a box, there are conformance rules
-- that apply to the actuals in the generic declaration and the actuals of
-- the actual package in the enclosing instantiation. The simplest way to
-- apply these rules is to repeat the instantiation of the formal package
-- in the context of the enclosing instance, and compare the generic
-- associations of this instantiation with those of the actual package.
-- This internal instantiation only needs to contain the renamings of the
-- formals: the visible and private declarations themselves need not be
-- created.
-- In Ada 2005, the formal package may be only partially parameterized.
-- In that case the visibility step must make visible those actuals whose
-- corresponding formals were given with a box. A final complication
-- involves inherited operations from formal derived types, which must
-- be visible if the type is.
function Is_In_Main_Unit (N : Node_Id) return Boolean;
-- Test if given node is in the main unit
procedure Load_Parent_Of_Generic
(N : Node_Id;
Spec : Node_Id;
Body_Optional : Boolean := False);
-- If the generic appears in a separate non-generic library unit, load the
-- corresponding body to retrieve the body of the generic. N is the node
-- for the generic instantiation, Spec is the generic package declaration.
--
-- Body_Optional is a flag that indicates that the body is being loaded to
-- ensure that temporaries are generated consistently when there are other
-- instances in the current declarative part that precede the one being
-- loaded. In that case a missing body is acceptable.
procedure Map_Formal_Package_Entities (Form : Entity_Id; Act : Entity_Id);
-- Within the generic part, entities in the formal package are
-- visible. To validate subsequent type declarations, indicate
-- the correspondence between the entities in the analyzed formal,
-- and the entities in the actual package. There are three packages
-- involved in the instantiation of a formal package: the parent
-- generic P1 which appears in the generic declaration, the fake
-- instantiation P2 which appears in the analyzed generic, and whose
-- visible entities may be used in subsequent formals, and the actual
-- P3 in the instance. To validate subsequent formals, me indicate
-- that the entities in P2 are mapped into those of P3. The mapping of
-- entities has to be done recursively for nested packages.
procedure Move_Freeze_Nodes
(Out_Of : Entity_Id;
After : Node_Id;
L : List_Id);
-- Freeze nodes can be generated in the analysis of a generic unit, but
-- will not be seen by the back-end. It is necessary to move those nodes
-- to the enclosing scope if they freeze an outer entity. We place them
-- at the end of the enclosing generic package, which is semantically
-- neutral.
procedure Preanalyze_Actuals (N : Node_Id; Inst : Entity_Id := Empty);
-- Analyze actuals to perform name resolution. Full resolution is done
-- later, when the expected types are known, but names have to be captured
-- before installing parents of generics, that are not visible for the
-- actuals themselves.
--
-- If Inst is present, it is the entity of the package instance. This
-- entity is marked as having a limited_view actual when some actual is
-- a limited view. This is used to place the instance body properly.
procedure Provide_Completing_Bodies (N : Node_Id);
-- Generate completing bodies for all subprograms found within package or
-- subprogram declaration N.
procedure Remove_Parent (In_Body : Boolean := False);
-- Reverse effect after instantiation of child is complete
procedure Restore_Hidden_Primitives (Prims_List : in out Elist_Id);
-- Restore suffix 'P' to primitives of Prims_List and leave Prims_List
-- set to No_Elist.
procedure Set_Instance_Env
(Gen_Unit : Entity_Id;
Act_Unit : Entity_Id);
-- Save current instance on saved environment, to be used to determine
-- the global status of entities in nested instances. Part of Save_Env.
-- called after verifying that the generic unit is legal for the instance,
-- The procedure also examines whether the generic unit is a predefined
-- unit, in order to set configuration switches accordingly. As a result
-- the procedure must be called after analyzing and freezing the actuals.
procedure Set_Instance_Of (A : Entity_Id; B : Entity_Id);
-- Associate analyzed generic parameter with corresponding instance. Used
-- for semantic checks at instantiation time.
function True_Parent (N : Node_Id) return Node_Id;
-- For a subunit, return parent of corresponding stub, else return
-- parent of node.
procedure Valid_Default_Attribute (Nam : Entity_Id; Def : Node_Id);
-- Verify that an attribute that appears as the default for a formal
-- subprogram is a function or procedure with the correct profile.
-------------------------------------------
-- Data Structures for Generic Renamings --
-------------------------------------------
-- The map Generic_Renamings associates generic entities with their
-- corresponding actuals. Currently used to validate type instances. It
-- will eventually be used for all generic parameters to eliminate the
-- need for overload resolution in the instance.
type Assoc_Ptr is new Int;
Assoc_Null : constant Assoc_Ptr := -1;
type Assoc is record
Gen_Id : Entity_Id;
Act_Id : Entity_Id;
Next_In_HTable : Assoc_Ptr;
end record;
package Generic_Renamings is new Table.Table
(Table_Component_Type => Assoc,
Table_Index_Type => Assoc_Ptr,
Table_Low_Bound => 0,
Table_Initial => 10,
Table_Increment => 100,
Table_Name => "Generic_Renamings");
-- Variable to hold enclosing instantiation. When the environment is
-- saved for a subprogram inlining, the corresponding Act_Id is empty.
Current_Instantiated_Parent : Assoc := (Empty, Empty, Assoc_Null);
-- Hash table for associations
HTable_Size : constant := 37;
type HTable_Range is range 0 .. HTable_Size - 1;
procedure Set_Next_Assoc (E : Assoc_Ptr; Next : Assoc_Ptr);
function Next_Assoc (E : Assoc_Ptr) return Assoc_Ptr;
function Get_Gen_Id (E : Assoc_Ptr) return Entity_Id;
function Hash (F : Entity_Id) return HTable_Range;
package Generic_Renamings_HTable is new GNAT.HTable.Static_HTable (
Header_Num => HTable_Range,
Element => Assoc,
Elmt_Ptr => Assoc_Ptr,
Null_Ptr => Assoc_Null,
Set_Next => Set_Next_Assoc,
Next => Next_Assoc,
Key => Entity_Id,
Get_Key => Get_Gen_Id,
Hash => Hash,
Equal => "=");
Exchanged_Views : Elist_Id;
-- This list holds the private views that have been exchanged during
-- instantiation to restore the visibility of the generic declaration.
-- (see comments above). After instantiation, the current visibility is
-- reestablished by means of a traversal of this list.
Hidden_Entities : Elist_Id;
-- This list holds the entities of the current scope that are removed
-- from immediate visibility when instantiating a child unit. Their
-- visibility is restored in Remove_Parent.
-- Because instantiations can be recursive, the following must be saved
-- on entry and restored on exit from an instantiation (spec or body).
-- This is done by the two procedures Save_Env and Restore_Env. For
-- package and subprogram instantiations (but not for the body instances)
-- the action of Save_Env is done in two steps: Init_Env is called before
-- Check_Generic_Child_Unit, because setting the parent instances requires
-- that the visibility data structures be properly initialized. Once the
-- generic is unit is validated, Set_Instance_Env completes Save_Env.
Parent_Unit_Visible : Boolean := False;
-- Parent_Unit_Visible is used when the generic is a child unit, and
-- indicates whether the ultimate parent of the generic is visible in the
-- instantiation environment. It is used to reset the visibility of the
-- parent at the end of the instantiation (see Remove_Parent).
Instance_Parent_Unit : Entity_Id := Empty;
-- This records the ultimate parent unit of an instance of a generic
-- child unit and is used in conjunction with Parent_Unit_Visible to
-- indicate the unit to which the Parent_Unit_Visible flag corresponds.
type Instance_Env is record
Instantiated_Parent : Assoc;
Exchanged_Views : Elist_Id;
Hidden_Entities : Elist_Id;
Current_Sem_Unit : Unit_Number_Type;
Parent_Unit_Visible : Boolean := False;
Instance_Parent_Unit : Entity_Id := Empty;
Switches : Config_Switches_Type;
end record;
package Instance_Envs is new Table.Table (
Table_Component_Type => Instance_Env,
Table_Index_Type => Int,
Table_Low_Bound => 0,
Table_Initial => 32,
Table_Increment => 100,
Table_Name => "Instance_Envs");
procedure Restore_Private_Views
(Pack_Id : Entity_Id;
Is_Package : Boolean := True);
-- Restore the private views of external types, and unmark the generic
-- renamings of actuals, so that they become compatible subtypes again.
-- For subprograms, Pack_Id is the package constructed to hold the
-- renamings.
procedure Switch_View (T : Entity_Id);
-- Switch the partial and full views of a type and its private
-- dependents (i.e. its subtypes and derived types).
------------------------------------
-- Structures for Error Reporting --
------------------------------------
Instantiation_Node : Node_Id;
-- Used by subprograms that validate instantiation of formal parameters
-- where there might be no actual on which to place the error message.
-- Also used to locate the instantiation node for generic subunits.
Instantiation_Error : exception;
-- When there is a semantic error in the generic parameter matching,
-- there is no point in continuing the instantiation, because the
-- number of cascaded errors is unpredictable. This exception aborts
-- the instantiation process altogether.
S_Adjustment : Sloc_Adjustment;
-- Offset created for each node in an instantiation, in order to keep
-- track of the source position of the instantiation in each of its nodes.
-- A subsequent semantic error or warning on a construct of the instance
-- points to both places: the original generic node, and the point of
-- instantiation. See Sinput and Sinput.L for additional details.
------------------------------------------------------------
-- Data structure for keeping track when inside a Generic --
------------------------------------------------------------
-- The following table is used to save values of the Inside_A_Generic
-- flag (see spec of Sem) when they are saved by Start_Generic.
package Generic_Flags is new Table.Table (
Table_Component_Type => Boolean,
Table_Index_Type => Int,
Table_Low_Bound => 0,
Table_Initial => 32,
Table_Increment => 200,
Table_Name => "Generic_Flags");
---------------------------
-- Abandon_Instantiation --
---------------------------
procedure Abandon_Instantiation (N : Node_Id) is
begin
Error_Msg_N ("\instantiation abandoned!", N);
raise Instantiation_Error;
end Abandon_Instantiation;
--------------------------------
-- Add_Pending_Instantiation --
--------------------------------
procedure Add_Pending_Instantiation (Inst : Node_Id; Act_Decl : Node_Id) is
begin
-- Add to the instantiation node and the corresponding unit declaration
-- the current values of global flags to be used when analyzing the
-- instance body.
Pending_Instantiations.Append
((Inst_Node => Inst,
Act_Decl => Act_Decl,
Expander_Status => Expander_Active,
Current_Sem_Unit => Current_Sem_Unit,
Scope_Suppress => Scope_Suppress,
Local_Suppress_Stack_Top => Local_Suppress_Stack_Top,
Version => Ada_Version,
Version_Pragma => Ada_Version_Pragma,
Warnings => Save_Warnings,
SPARK_Mode => SPARK_Mode,
SPARK_Mode_Pragma => SPARK_Mode_Pragma));
end Add_Pending_Instantiation;
----------------------------------
-- Adjust_Inherited_Pragma_Sloc --
----------------------------------
procedure Adjust_Inherited_Pragma_Sloc (N : Node_Id) is
begin
Adjust_Instantiation_Sloc (N, S_Adjustment);
end Adjust_Inherited_Pragma_Sloc;
--------------------------
-- Analyze_Associations --
--------------------------
function Analyze_Associations
(I_Node : Node_Id;
Formals : List_Id;
F_Copy : List_Id) return List_Id
is
Actuals_To_Freeze : constant Elist_Id := New_Elmt_List;
Assoc_List : constant List_Id := New_List;
Default_Actuals : constant List_Id := New_List;
Gen_Unit : constant Entity_Id :=
Defining_Entity (Parent (F_Copy));
Actuals : List_Id;
Actual : Node_Id;
Analyzed_Formal : Node_Id;
First_Named : Node_Id := Empty;
Formal : Node_Id;
Match : Node_Id;
Named : Node_Id;
Saved_Formal : Node_Id;
Default_Formals : constant List_Id := New_List;
-- If an Others_Choice is present, some of the formals may be defaulted.
-- To simplify the treatment of visibility in an instance, we introduce
-- individual defaults for each such formal. These defaults are
-- appended to the list of associations and replace the Others_Choice.
Found_Assoc : Node_Id;
-- Association for the current formal being match. Empty if there are
-- no remaining actuals, or if there is no named association with the
-- name of the formal.
Is_Named_Assoc : Boolean;
Num_Matched : Nat := 0;
Num_Actuals : Nat := 0;
Others_Present : Boolean := False;
Others_Choice : Node_Id := Empty;
-- In Ada 2005, indicates partial parameterization of a formal
-- package. As usual an other association must be last in the list.
procedure Check_Fixed_Point_Actual (Actual : Node_Id);
-- Warn if an actual fixed-point type has user-defined arithmetic
-- operations, but there is no corresponding formal in the generic,
-- in which case the predefined operations will be used. This merits
-- a warning because of the special semantics of fixed point ops.
procedure Check_Overloaded_Formal_Subprogram (Formal : Entity_Id);
-- Apply RM 12.3(9): if a formal subprogram is overloaded, the instance
-- cannot have a named association for it. AI05-0025 extends this rule
-- to formals of formal packages by AI05-0025, and it also applies to
-- box-initialized formals.
function Has_Fully_Defined_Profile (Subp : Entity_Id) return Boolean;
-- Determine whether the parameter types and the return type of Subp
-- are fully defined at the point of instantiation.
function Matching_Actual
(F : Entity_Id;
A_F : Entity_Id) return Node_Id;
-- Find actual that corresponds to a given a formal parameter. If the
-- actuals are positional, return the next one, if any. If the actuals
-- are named, scan the parameter associations to find the right one.
-- A_F is the corresponding entity in the analyzed generic, which is
-- placed on the selector name for ASIS use.
--
-- In Ada 2005, a named association may be given with a box, in which
-- case Matching_Actual sets Found_Assoc to the generic association,
-- but return Empty for the actual itself. In this case the code below
-- creates a corresponding declaration for the formal.
function Partial_Parameterization return Boolean;
-- Ada 2005: if no match is found for a given formal, check if the
-- association for it includes a box, or whether the associations
-- include an Others clause.
procedure Process_Default (F : Entity_Id);
-- Add a copy of the declaration of generic formal F to the list of
-- associations, and add an explicit box association for F if there
-- is none yet, and the default comes from an Others_Choice.
function Renames_Standard_Subprogram (Subp : Entity_Id) return Boolean;
-- Determine whether Subp renames one of the subprograms defined in the
-- generated package Standard.
procedure Set_Analyzed_Formal;
-- Find the node in the generic copy that corresponds to a given formal.
-- The semantic information on this node is used to perform legality
-- checks on the actuals. Because semantic analysis can introduce some
-- anonymous entities or modify the declaration node itself, the
-- correspondence between the two lists is not one-one. In addition to
-- anonymous types, the presence a formal equality will introduce an
-- implicit declaration for the corresponding inequality.
----------------------------------------
-- Check_Overloaded_Formal_Subprogram --
----------------------------------------
procedure Check_Overloaded_Formal_Subprogram (Formal : Entity_Id) is
Temp_Formal : Entity_Id;
begin
Temp_Formal := First (Formals);
while Present (Temp_Formal) loop
if Nkind (Temp_Formal) in N_Formal_Subprogram_Declaration
and then Temp_Formal /= Formal
and then
Chars (Defining_Unit_Name (Specification (Formal))) =
Chars (Defining_Unit_Name (Specification (Temp_Formal)))
then
if Present (Found_Assoc) then
Error_Msg_N
("named association not allowed for overloaded formal",
Found_Assoc);
else
Error_Msg_N
("named association not allowed for overloaded formal",
Others_Choice);
end if;
Abandon_Instantiation (Instantiation_Node);
end if;
Next (Temp_Formal);
end loop;
end Check_Overloaded_Formal_Subprogram;
-------------------------------
-- Check_Fixed_Point_Actual --
-------------------------------
procedure Check_Fixed_Point_Actual (Actual : Node_Id) is
Typ : constant Entity_Id := Entity (Actual);
Prims : constant Elist_Id := Collect_Primitive_Operations (Typ);
Elem : Elmt_Id;
Formal : Node_Id;
Op : Entity_Id;
begin
-- Locate primitive operations of the type that are arithmetic
-- operations.
Elem := First_Elmt (Prims);
while Present (Elem) loop
if Nkind (Node (Elem)) = N_Defining_Operator_Symbol then
-- Check whether the generic unit has a formal subprogram of
-- the same name. This does not check types but is good enough
-- to justify a warning.
Formal := First_Non_Pragma (Formals);
Op := Alias (Node (Elem));
while Present (Formal) loop
if Nkind (Formal) = N_Formal_Concrete_Subprogram_Declaration
and then Chars (Defining_Entity (Formal)) =
Chars (Node (Elem))
then
exit;
elsif Nkind (Formal) = N_Formal_Package_Declaration then
declare
Assoc : Node_Id;
Ent : Entity_Id;
begin
-- Locate corresponding actual, and check whether it
-- includes a fixed-point type.
Assoc := First (Assoc_List);
while Present (Assoc) loop
exit when
Nkind (Assoc) = N_Package_Renaming_Declaration
and then Chars (Defining_Unit_Name (Assoc)) =
Chars (Defining_Identifier (Formal));
Next (Assoc);
end loop;
if Present (Assoc) then
-- If formal package declares a fixed-point type,
-- and the user-defined operator is derived from
-- a generic instance package, the fixed-point type
-- does not use the corresponding predefined op.
Ent := First_Entity (Entity (Name (Assoc)));
while Present (Ent) loop
if Is_Fixed_Point_Type (Ent)
and then Present (Op)
and then Is_Generic_Instance (Scope (Op))
then
return;
end if;
Next_Entity (Ent);
end loop;
end if;
end;
end if;
Next (Formal);
end loop;
if No (Formal) then
Error_Msg_Sloc := Sloc (Node (Elem));
Error_Msg_NE
("?instance does not use primitive operation&#",
Actual, Node (Elem));
end if;
end if;
Next_Elmt (Elem);
end loop;
end Check_Fixed_Point_Actual;
-------------------------------
-- Has_Fully_Defined_Profile --
-------------------------------
function Has_Fully_Defined_Profile (Subp : Entity_Id) return Boolean is
function Is_Fully_Defined_Type (Typ : Entity_Id) return Boolean;
-- Determine whethet type Typ is fully defined
---------------------------
-- Is_Fully_Defined_Type --
---------------------------
function Is_Fully_Defined_Type (Typ : Entity_Id) return Boolean is
begin
-- A private type without a full view is not fully defined
if Is_Private_Type (Typ)
and then No (Full_View (Typ))
then
return False;
-- An incomplete type is never fully defined
elsif Is_Incomplete_Type (Typ) then
return False;
-- All other types are fully defined
else
return True;
end if;
end Is_Fully_Defined_Type;
-- Local declarations
Param : Entity_Id;
-- Start of processing for Has_Fully_Defined_Profile
begin
-- Check the parameters
Param := First_Formal (Subp);
while Present (Param) loop
if not Is_Fully_Defined_Type (Etype (Param)) then
return False;
end if;
Next_Formal (Param);
end loop;
-- Check the return type
return Is_Fully_Defined_Type (Etype (Subp));
end Has_Fully_Defined_Profile;
---------------------
-- Matching_Actual --
---------------------
function Matching_Actual
(F : Entity_Id;
A_F : Entity_Id) return Node_Id
is
Prev : Node_Id;
Act : Node_Id;
begin
Is_Named_Assoc := False;
-- End of list of purely positional parameters
if No (Actual) or else Nkind (Actual) = N_Others_Choice then
Found_Assoc := Empty;
Act := Empty;
-- Case of positional parameter corresponding to current formal
elsif No (Selector_Name (Actual)) then
Found_Assoc := Actual;
Act := Explicit_Generic_Actual_Parameter (Actual);
Num_Matched := Num_Matched + 1;
Next (Actual);
-- Otherwise scan list of named actuals to find the one with the
-- desired name. All remaining actuals have explicit names.
else
Is_Named_Assoc := True;
Found_Assoc := Empty;
Act := Empty;
Prev := Empty;
while Present (Actual) loop
if Nkind (Actual) = N_Others_Choice then
Found_Assoc := Empty;
Act := Empty;
elsif Chars (Selector_Name (Actual)) = Chars (F) then
Set_Entity (Selector_Name (Actual), A_F);
Set_Etype (Selector_Name (Actual), Etype (A_F));
Generate_Reference (A_F, Selector_Name (Actual));
Found_Assoc := Actual;
Act := Explicit_Generic_Actual_Parameter (Actual);
Num_Matched := Num_Matched + 1;
exit;
end if;
Prev := Actual;
Next (Actual);
end loop;
-- Reset for subsequent searches. In most cases the named
-- associations are in order. If they are not, we reorder them
-- to avoid scanning twice the same actual. This is not just a
-- question of efficiency: there may be multiple defaults with
-- boxes that have the same name. In a nested instantiation we
-- insert actuals for those defaults, and cannot rely on their
-- names to disambiguate them.
if Actual = First_Named then
Next (First_Named);
elsif Present (Actual) then
Insert_Before (First_Named, Remove_Next (Prev));
end if;
Actual := First_Named;
end if;
if Is_Entity_Name (Act) and then Present (Entity (Act)) then
Set_Used_As_Generic_Actual (Entity (Act));
end if;
return Act;
end Matching_Actual;
------------------------------
-- Partial_Parameterization --
------------------------------
function Partial_Parameterization return Boolean is
begin
return Others_Present
or else (Present (Found_Assoc) and then Box_Present (Found_Assoc));
end Partial_Parameterization;
---------------------
-- Process_Default --
---------------------
procedure Process_Default (F : Entity_Id) is
Loc : constant Source_Ptr := Sloc (I_Node);
F_Id : constant Entity_Id := Defining_Entity (F);
Decl : Node_Id;
Default : Node_Id;
Id : Entity_Id;
begin
-- Append copy of formal declaration to associations, and create new
-- defining identifier for it.
Decl := New_Copy_Tree (F);
Id := Make_Defining_Identifier (Sloc (F_Id), Chars (F_Id));
if Nkind (F) in N_Formal_Subprogram_Declaration then
Set_Defining_Unit_Name (Specification (Decl), Id);
else
Set_Defining_Identifier (Decl, Id);
end if;
Append (Decl, Assoc_List);
if No (Found_Assoc) then
Default :=
Make_Generic_Association (Loc,
Selector_Name =>
New_Occurrence_Of (Id, Loc),
Explicit_Generic_Actual_Parameter => Empty);
Set_Box_Present (Default);
Append (Default, Default_Formals);
end if;
end Process_Default;
---------------------------------
-- Renames_Standard_Subprogram --
---------------------------------
function Renames_Standard_Subprogram (Subp : Entity_Id) return Boolean is
Id : Entity_Id;
begin
Id := Alias (Subp);
while Present (Id) loop
if Scope (Id) = Standard_Standard then
return True;
end if;
Id := Alias (Id);
end loop;
return False;
end Renames_Standard_Subprogram;
-------------------------
-- Set_Analyzed_Formal --
-------------------------
procedure Set_Analyzed_Formal is
Kind : Node_Kind;
begin
while Present (Analyzed_Formal) loop
Kind := Nkind (Analyzed_Formal);
case Nkind (Formal) is
when N_Formal_Subprogram_Declaration =>
exit when Kind in N_Formal_Subprogram_Declaration
and then
Chars
(Defining_Unit_Name (Specification (Formal))) =
Chars
(Defining_Unit_Name (Specification (Analyzed_Formal)));
when N_Formal_Package_Declaration =>
exit when Nkind_In (Kind, N_Formal_Package_Declaration,
N_Generic_Package_Declaration,
N_Package_Declaration);
when N_Use_Package_Clause
| N_Use_Type_Clause
=>
exit;
when others =>
-- Skip freeze nodes, and nodes inserted to replace
-- unrecognized pragmas.
exit when
Kind not in N_Formal_Subprogram_Declaration
and then not Nkind_In (Kind, N_Subprogram_Declaration,
N_Freeze_Entity,
N_Null_Statement,
N_Itype_Reference)
and then Chars (Defining_Identifier (Formal)) =
Chars (Defining_Identifier (Analyzed_Formal));
end case;
Next (Analyzed_Formal);
end loop;
end Set_Analyzed_Formal;
-- Start of processing for Analyze_Associations
begin
Actuals := Generic_Associations (I_Node);
if Present (Actuals) then
-- Check for an Others choice, indicating a partial parameterization
-- for a formal package.
Actual := First (Actuals);
while Present (Actual) loop
if Nkind (Actual) = N_Others_Choice then
Others_Present := True;
Others_Choice := Actual;
if Present (Next (Actual)) then
Error_Msg_N ("others must be last association", Actual);
end if;
-- This subprogram is used both for formal packages and for
-- instantiations. For the latter, associations must all be
-- explicit.
if Nkind (I_Node) /= N_Formal_Package_Declaration
and then Comes_From_Source (I_Node)
then
Error_Msg_N
("others association not allowed in an instance",
Actual);
end if;
-- In any case, nothing to do after the others association
exit;
elsif Box_Present (Actual)
and then Comes_From_Source (I_Node)
and then Nkind (I_Node) /= N_Formal_Package_Declaration
then
Error_Msg_N
("box association not allowed in an instance", Actual);
end if;
Next (Actual);
end loop;
-- If named associations are present, save first named association
-- (it may of course be Empty) to facilitate subsequent name search.
First_Named := First (Actuals);
while Present (First_Named)
and then Nkind (First_Named) /= N_Others_Choice
and then No (Selector_Name (First_Named))
loop
Num_Actuals := Num_Actuals + 1;
Next (First_Named);
end loop;
end if;
Named := First_Named;
while Present (Named) loop
if Nkind (Named) /= N_Others_Choice
and then No (Selector_Name (Named))
then
Error_Msg_N ("invalid positional actual after named one", Named);
Abandon_Instantiation (Named);
end if;
-- A named association may lack an actual parameter, if it was
-- introduced for a default subprogram that turns out to be local
-- to the outer instantiation. If it has a box association it must
-- correspond to some formal in the generic.
if Nkind (Named) /= N_Others_Choice
and then (Present (Explicit_Generic_Actual_Parameter (Named))
or else Box_Present (Named))
then
Num_Actuals := Num_Actuals + 1;
end if;
Next (Named);
end loop;
if Present (Formals) then
Formal := First_Non_Pragma (Formals);
Analyzed_Formal := First_Non_Pragma (F_Copy);
if Present (Actuals) then
Actual := First (Actuals);
-- All formals should have default values
else
Actual := Empty;
end if;
while Present (Formal) loop
Set_Analyzed_Formal;
Saved_Formal := Next_Non_Pragma (Formal);
case Nkind (Formal) is
when N_Formal_Object_Declaration =>
Match :=
Matching_Actual
(Defining_Identifier (Formal),
Defining_Identifier (Analyzed_Formal));
if No (Match) and then Partial_Parameterization then
Process_Default (Formal);
else
Append_List
(Instantiate_Object (Formal, Match, Analyzed_Formal),
Assoc_List);
-- For a defaulted in_parameter, create an entry in the
-- the list of defaulted actuals, for GNATProve use. Do
-- not included these defaults for an instance nested
-- within a generic, because the defaults are also used
-- in the analysis of the enclosing generic, and only
-- defaulted subprograms are relevant there.
if No (Match) and then not Inside_A_Generic then
Append_To (Default_Actuals,
Make_Generic_Association (Sloc (I_Node),
Selector_Name =>
New_Occurrence_Of
(Defining_Identifier (Formal), Sloc (I_Node)),
Explicit_Generic_Actual_Parameter =>
New_Copy_Tree (Default_Expression (Formal))));
end if;
end if;
-- If the object is a call to an expression function, this
-- is a freezing point for it.
if Is_Entity_Name (Match)
and then Present (Entity (Match))
and then Nkind
(Original_Node (Unit_Declaration_Node (Entity (Match))))
= N_Expression_Function
then
Append_Elmt (Entity (Match), Actuals_To_Freeze);
end if;
when N_Formal_Type_Declaration =>
Match :=
Matching_Actual
(Defining_Identifier (Formal),
Defining_Identifier (Analyzed_Formal));
if No (Match) then
if Partial_Parameterization then
Process_Default (Formal);
else
Error_Msg_Sloc := Sloc (Gen_Unit);
Error_Msg_NE
("missing actual&",
Instantiation_Node, Defining_Identifier (Formal));
Error_Msg_NE
("\in instantiation of & declared#",
Instantiation_Node, Gen_Unit);
Abandon_Instantiation (Instantiation_Node);
end if;
else
Analyze (Match);
Append_List
(Instantiate_Type
(Formal, Match, Analyzed_Formal, Assoc_List),
Assoc_List);
if Is_Fixed_Point_Type (Entity (Match)) then
Check_Fixed_Point_Actual (Match);
end if;
-- An instantiation is a freeze point for the actuals,
-- unless this is a rewritten formal package, or the
-- formal is an Ada 2012 formal incomplete type.
if Nkind (I_Node) = N_Formal_Package_Declaration
or else
(Ada_Version >= Ada_2012
and then
Ekind (Defining_Identifier (Analyzed_Formal)) =
E_Incomplete_Type)
then
null;
else
Append_Elmt (Entity (Match), Actuals_To_Freeze);
end if;
end if;
-- A remote access-to-class-wide type is not a legal actual
-- for a generic formal of an access type (E.2.2(17/2)).
-- In GNAT an exception to this rule is introduced when
-- the formal is marked as remote using implementation
-- defined aspect/pragma Remote_Access_Type. In that case
-- the actual must be remote as well.
-- If the current instantiation is the construction of a
-- local copy for a formal package the actuals may be
-- defaulted, and there is no matching actual to check.
if Nkind (Analyzed_Formal) = N_Formal_Type_Declaration
and then
Nkind (Formal_Type_Definition (Analyzed_Formal)) =
N_Access_To_Object_Definition
and then Present (Match)
then
declare
Formal_Ent : constant Entity_Id :=
Defining_Identifier (Analyzed_Formal);
begin
if Is_Remote_Access_To_Class_Wide_Type (Entity (Match))
= Is_Remote_Types (Formal_Ent)
then
-- Remoteness of formal and actual match
null;
elsif Is_Remote_Types (Formal_Ent) then
-- Remote formal, non-remote actual
Error_Msg_NE
("actual for& must be remote", Match, Formal_Ent);
else
-- Non-remote formal, remote actual
Error_Msg_NE
("actual for& may not be remote",
Match, Formal_Ent);
end if;
end;
end if;
when N_Formal_Subprogram_Declaration =>
Match :=
Matching_Actual
(Defining_Unit_Name (Specification (Formal)),
Defining_Unit_Name (Specification (Analyzed_Formal)));
-- If the formal subprogram has the same name as another
-- formal subprogram of the generic, then a named
-- association is illegal (12.3(9)). Exclude named
-- associations that are generated for a nested instance.
if Present (Match)
and then Is_Named_Assoc
and then Comes_From_Source (Found_Assoc)
then
Check_Overloaded_Formal_Subprogram (Formal);
end if;
-- If there is no corresponding actual, this may be case
-- of partial parameterization, or else the formal has a
-- default or a box.
if No (Match) and then Partial_Parameterization then
Process_Default (Formal);
if Nkind (I_Node) = N_Formal_Package_Declaration then
Check_Overloaded_Formal_Subprogram (Formal);
end if;
else
Append_To (Assoc_List,
Instantiate_Formal_Subprogram
(Formal, Match, Analyzed_Formal));
-- An instantiation is a freeze point for the actuals,
-- unless this is a rewritten formal package.
if Nkind (I_Node) /= N_Formal_Package_Declaration
and then Nkind (Match) = N_Identifier
and then Is_Subprogram (Entity (Match))
-- The actual subprogram may rename a routine defined
-- in Standard. Avoid freezing such renamings because
-- subprograms coming from Standard cannot be frozen.
and then
not Renames_Standard_Subprogram (Entity (Match))
-- If the actual subprogram comes from a different
-- unit, it is already frozen, either by a body in
-- that unit or by the end of the declarative part
-- of the unit. This check avoids the freezing of
-- subprograms defined in Standard which are used
-- as generic actuals.
and then In_Same_Code_Unit (Entity (Match), I_Node)
and then Has_Fully_Defined_Profile (Entity (Match))
then
-- Mark the subprogram as having a delayed freeze
-- since this may be an out-of-order action.
Set_Has_Delayed_Freeze (Entity (Match));
Append_Elmt (Entity (Match), Actuals_To_Freeze);
end if;
end if;
-- If this is a nested generic, preserve default for later
-- instantiations. We do this as well for GNATProve use,
-- so that the list of generic associations is complete.
if No (Match) and then Box_Present (Formal) then
declare
Subp : constant Entity_Id :=
Defining_Unit_Name
(Specification (Last (Assoc_List)));
begin
Append_To (Default_Actuals,
Make_Generic_Association (Sloc (I_Node),
Selector_Name =>
New_Occurrence_Of (Subp, Sloc (I_Node)),
Explicit_Generic_Actual_Parameter =>
New_Occurrence_Of (Subp, Sloc (I_Node))));
end;
end if;
when N_Formal_Package_Declaration =>
Match :=
Matching_Actual
(Defining_Identifier (Formal),
Defining_Identifier (Original_Node (Analyzed_Formal)));
if No (Match) then
if Partial_Parameterization then
Process_Default (Formal);
else
Error_Msg_Sloc := Sloc (Gen_Unit);
Error_Msg_NE
("missing actual&",
Instantiation_Node, Defining_Identifier (Formal));
Error_Msg_NE
("\in instantiation of & declared#",
Instantiation_Node, Gen_Unit);
Abandon_Instantiation (Instantiation_Node);
end if;
else
Analyze (Match);
Append_List
(Instantiate_Formal_Package
(Formal, Match, Analyzed_Formal),
Assoc_List);
-- Determine whether the actual package needs an explicit
-- freeze node. This is only the case if the actual is
-- declared in the same unit and has a body. Normally
-- packages do not have explicit freeze nodes, and gigi
-- only uses them to elaborate entities in a package
-- body.
Explicit_Freeze_Check : declare
Actual : constant Entity_Id := Entity (Match);
Gen_Par : Entity_Id;
Needs_Freezing : Boolean;
S : Entity_Id;
procedure Check_Generic_Parent;
-- The actual may be an instantiation of a unit
-- declared in a previous instantiation. If that
-- one is also in the current compilation, it must
-- itself be frozen before the actual. The actual
-- may be an instantiation of a generic child unit,
-- in which case the same applies to the instance
-- of the parent which must be frozen before the
-- actual.
-- Should this itself be recursive ???
--------------------------
-- Check_Generic_Parent --
--------------------------
procedure Check_Generic_Parent is
Inst : constant Node_Id :=
Next (Unit_Declaration_Node (Actual));
Par : Entity_Id;
begin
Par := Empty;
if Nkind (Parent (Actual)) = N_Package_Specification
then
Par := Scope (Generic_Parent (Parent (Actual)));
if Is_Generic_Instance (Par) then
null;
-- If the actual is a child generic unit, check
-- whether the instantiation of the parent is
-- also local and must also be frozen now. We
-- must retrieve the instance node to locate the
-- parent instance if any.
elsif Ekind (Par) = E_Generic_Package
and then Is_Child_Unit (Gen_Par)
and then Ekind (Scope (Gen_Par)) =
E_Generic_Package
then
if Nkind (Inst) = N_Package_Instantiation
and then Nkind (Name (Inst)) =
N_Expanded_Name
then
-- Retrieve entity of parent instance
Par := Entity (Prefix (Name (Inst)));
end if;
else
Par := Empty;
end if;
end if;
if Present (Par)
and then Is_Generic_Instance (Par)
and then Scope (Par) = Current_Scope
and then
(No (Freeze_Node (Par))
or else
not Is_List_Member (Freeze_Node (Par)))
then
Set_Has_Delayed_Freeze (Par);
Append_Elmt (Par, Actuals_To_Freeze);
end if;
end Check_Generic_Parent;
-- Start of processing for Explicit_Freeze_Check
begin
if Present (Renamed_Entity (Actual)) then
Gen_Par :=
Generic_Parent (Specification
(Unit_Declaration_Node
(Renamed_Entity (Actual))));
else
Gen_Par :=
Generic_Parent (Specification
(Unit_Declaration_Node (Actual)));
end if;
if not Expander_Active
or else not Has_Completion (Actual)
or else not In_Same_Source_Unit (I_Node, Actual)
or else Is_Frozen (Actual)
or else
(Present (Renamed_Entity (Actual))
and then
not In_Same_Source_Unit
(I_Node, (Renamed_Entity (Actual))))
then
null;
else
-- Finally we want to exclude such freeze nodes
-- from statement sequences, which freeze
-- everything before them.
-- Is this strictly necessary ???
Needs_Freezing := True;
S := Current_Scope;
while Present (S) loop
if Ekind_In (S, E_Block,
E_Function,
E_Loop,
E_Procedure)
then
Needs_Freezing := False;
exit;
end if;
S := Scope (S);
end loop;
if Needs_Freezing then
Check_Generic_Parent;
-- If the actual is a renaming of a proper
-- instance of the formal package, indicate
-- that it is the instance that must be frozen.
if Nkind (Parent (Actual)) =
N_Package_Renaming_Declaration
then
Set_Has_Delayed_Freeze
(Renamed_Entity (Actual));
Append_Elmt
(Renamed_Entity (Actual),
Actuals_To_Freeze);
else
Set_Has_Delayed_Freeze (Actual);
Append_Elmt (Actual, Actuals_To_Freeze);
end if;
end if;
end if;
end Explicit_Freeze_Check;
end if;
-- For use type and use package appearing in the generic part,
-- we have already copied them, so we can just move them where
-- they belong (we mustn't recopy them since this would mess up
-- the Sloc values).
when N_Use_Package_Clause
| N_Use_Type_Clause
=>
if Nkind (Original_Node (I_Node)) =
N_Formal_Package_Declaration
then
Append (New_Copy_Tree (Formal), Assoc_List);
else
Remove (Formal);
Append (Formal, Assoc_List);
end if;
when others =>
raise Program_Error;
end case;
Formal := Saved_Formal;
Next_Non_Pragma (Analyzed_Formal);
end loop;
if Num_Actuals > Num_Matched then
Error_Msg_Sloc := Sloc (Gen_Unit);
if Present (Selector_Name (Actual)) then
Error_Msg_NE
("unmatched actual &", Actual, Selector_Name (Actual));
Error_Msg_NE
("\in instantiation of & declared#", Actual, Gen_Unit);
else
Error_Msg_NE
("unmatched actual in instantiation of & declared#",
Actual, Gen_Unit);
end if;
end if;
elsif Present (Actuals) then
Error_Msg_N
("too many actuals in generic instantiation", Instantiation_Node);
end if;
-- An instantiation freezes all generic actuals. The only exceptions
-- to this are incomplete types and subprograms which are not fully
-- defined at the point of instantiation.
declare
Elmt : Elmt_Id := First_Elmt (Actuals_To_Freeze);
begin
while Present (Elmt) loop
Freeze_Before (I_Node, Node (Elmt));
Next_Elmt (Elmt);
end loop;
end;
-- If there are default subprograms, normalize the tree by adding
-- explicit associations for them. This is required if the instance
-- appears within a generic.
if not Is_Empty_List (Default_Actuals) then
declare
Default : Node_Id;
begin
Default := First (Default_Actuals);
while Present (Default) loop
Mark_Rewrite_Insertion (Default);
Next (Default);
end loop;
if No (Actuals) then
Set_Generic_Associations (I_Node, Default_Actuals);
else
Append_List_To (Actuals, Default_Actuals);
end if;
end;
end if;
-- If this is a formal package, normalize the parameter list by adding
-- explicit box associations for the formals that are covered by an
-- Others_Choice.
if not Is_Empty_List (Default_Formals) then
Append_List (Default_Formals, Formals);
end if;
return Assoc_List;
end Analyze_Associations;
-------------------------------
-- Analyze_Formal_Array_Type --
-------------------------------
procedure Analyze_Formal_Array_Type
(T : in out Entity_Id;
Def : Node_Id)
is
DSS : Node_Id;
begin
-- Treated like a non-generic array declaration, with additional
-- semantic checks.
Enter_Name (T);
if Nkind (Def) = N_Constrained_Array_Definition then
DSS := First (Discrete_Subtype_Definitions (Def));
while Present (DSS) loop
if Nkind_In (DSS, N_Subtype_Indication,
N_Range,
N_Attribute_Reference)
then
Error_Msg_N ("only a subtype mark is allowed in a formal", DSS);
end if;
Next (DSS);
end loop;
end if;
Array_Type_Declaration (T, Def);
Set_Is_Generic_Type (Base_Type (T));
if Ekind (Component_Type (T)) = E_Incomplete_Type
and then No (Full_View (Component_Type (T)))
then
Error_Msg_N ("premature usage of incomplete type", Def);
-- Check that range constraint is not allowed on the component type
-- of a generic formal array type (AARM 12.5.3(3))
elsif Is_Internal (Component_Type (T))
and then Present (Subtype_Indication (Component_Definition (Def)))
and then Nkind (Original_Node
(Subtype_Indication (Component_Definition (Def)))) =
N_Subtype_Indication
then
Error_Msg_N
("in a formal, a subtype indication can only be "
& "a subtype mark (RM 12.5.3(3))",
Subtype_Indication (Component_Definition (Def)));
end if;
end Analyze_Formal_Array_Type;
---------------------------------------------
-- Analyze_Formal_Decimal_Fixed_Point_Type --
---------------------------------------------
-- As for other generic types, we create a valid type representation with
-- legal but arbitrary attributes, whose values are never considered
-- static. For all scalar types we introduce an anonymous base type, with
-- the same attributes. We choose the corresponding integer type to be
-- Standard_Integer.
-- Here and in other similar routines, the Sloc of the generated internal
-- type must be the same as the sloc of the defining identifier of the
-- formal type declaration, to provide proper source navigation.
procedure Analyze_Formal_Decimal_Fixed_Point_Type
(T : Entity_Id;
Def : Node_Id)
is
Loc : constant Source_Ptr := Sloc (Def);
Base : constant Entity_Id :=
New_Internal_Entity
(E_Decimal_Fixed_Point_Type,
Current_Scope,
Sloc (Defining_Identifier (Parent (Def))), 'G');
Int_Base : constant Entity_Id := Standard_Integer;
Delta_Val : constant Ureal := Ureal_1;
Digs_Val : constant Uint := Uint_6;
function Make_Dummy_Bound return Node_Id;
-- Return a properly typed universal real literal to use as a bound
----------------------
-- Make_Dummy_Bound --
----------------------
function Make_Dummy_Bound return Node_Id is
Bound : constant Node_Id := Make_Real_Literal (Loc, Ureal_1);
begin
Set_Etype (Bound, Universal_Real);
return Bound;
end Make_Dummy_Bound;
-- Start of processing for Analyze_Formal_Decimal_Fixed_Point_Type
begin
Enter_Name (T);
Set_Etype (Base, Base);
Set_Size_Info (Base, Int_Base);
Set_RM_Size (Base, RM_Size (Int_Base));
Set_First_Rep_Item (Base, First_Rep_Item (Int_Base));
Set_Digits_Value (Base, Digs_Val);
Set_Delta_Value (Base, Delta_Val);
Set_Small_Value (Base, Delta_Val);
Set_Scalar_Range (Base,
Make_Range (Loc,
Low_Bound => Make_Dummy_Bound,
High_Bound => Make_Dummy_Bound));
Set_Is_Generic_Type (Base);
Set_Parent (Base, Parent (Def));
Set_Ekind (T, E_Decimal_Fixed_Point_Subtype);
Set_Etype (T, Base);
Set_Size_Info (T, Int_Base);
Set_RM_Size (T, RM_Size (Int_Base));
Set_First_Rep_Item (T, First_Rep_Item (Int_Base));
Set_Digits_Value (T, Digs_Val);
Set_Delta_Value (T, Delta_Val);
Set_Small_Value (T, Delta_Val);
Set_Scalar_Range (T, Scalar_Range (Base));
Set_Is_Constrained (T);
Check_Restriction (No_Fixed_Point, Def);
end Analyze_Formal_Decimal_Fixed_Point_Type;
-------------------------------------------
-- Analyze_Formal_Derived_Interface_Type --
-------------------------------------------
procedure Analyze_Formal_Derived_Interface_Type
(N : Node_Id;
T : Entity_Id;
Def : Node_Id)
is
Loc : constant Source_Ptr := Sloc (Def);
begin
-- Rewrite as a type declaration of a derived type. This ensures that
-- the interface list and primitive operations are properly captured.
Rewrite (N,
Make_Full_Type_Declaration (Loc,
Defining_Identifier => T,
Type_Definition => Def));
Analyze (N);
Set_Is_Generic_Type (T);
end Analyze_Formal_Derived_Interface_Type;
---------------------------------
-- Analyze_Formal_Derived_Type --
---------------------------------
procedure Analyze_Formal_Derived_Type
(N : Node_Id;
T : Entity_Id;
Def : Node_Id)
is
Loc : constant Source_Ptr := Sloc (Def);
Unk_Disc : constant Boolean := Unknown_Discriminants_Present (N);
New_N : Node_Id;
begin
Set_Is_Generic_Type (T);
if Private_Present (Def) then
New_N :=
Make_Private_Extension_Declaration (Loc,
Defining_Identifier => T,
Discriminant_Specifications => Discriminant_Specifications (N),
Unknown_Discriminants_Present => Unk_Disc,
Subtype_Indication => Subtype_Mark (Def),
Interface_List => Interface_List (Def));
Set_Abstract_Present (New_N, Abstract_Present (Def));
Set_Limited_Present (New_N, Limited_Present (Def));
Set_Synchronized_Present (New_N, Synchronized_Present (Def));
else
New_N :=
Make_Full_Type_Declaration (Loc,
Defining_Identifier => T,
Discriminant_Specifications =>
Discriminant_Specifications (Parent (T)),
Type_Definition =>
Make_Derived_Type_Definition (Loc,
Subtype_Indication => Subtype_Mark (Def)));
Set_Abstract_Present
(Type_Definition (New_N), Abstract_Present (Def));
Set_Limited_Present
(Type_Definition (New_N), Limited_Present (Def));
end if;
Rewrite (N, New_N);
Analyze (N);
if Unk_Disc then
if not Is_Composite_Type (T) then
Error_Msg_N
("unknown discriminants not allowed for elementary types", N);
else
Set_Has_Unknown_Discriminants (T);
Set_Is_Constrained (T, False);
end if;
end if;
-- If the parent type has a known size, so does the formal, which makes
-- legal representation clauses that involve the formal.
Set_Size_Known_At_Compile_Time
(T, Size_Known_At_Compile_Time (Entity (Subtype_Mark (Def))));
end Analyze_Formal_Derived_Type;
----------------------------------
-- Analyze_Formal_Discrete_Type --
----------------------------------
-- The operations defined for a discrete types are those of an enumeration
-- type. The size is set to an arbitrary value, for use in analyzing the
-- generic unit.
procedure Analyze_Formal_Discrete_Type (T : Entity_Id; Def : Node_Id) is
Loc : constant Source_Ptr := Sloc (Def);
Lo : Node_Id;
Hi : Node_Id;
Base : constant Entity_Id :=
New_Internal_Entity
(E_Floating_Point_Type, Current_Scope,
Sloc (Defining_Identifier (Parent (Def))), 'G');
begin
Enter_Name (T);
Set_Ekind (T, E_Enumeration_Subtype);
Set_Etype (T, Base);
Init_Size (T, 8);
Init_Alignment (T);
Set_Is_Generic_Type (T);
Set_Is_Constrained (T);
-- For semantic analysis, the bounds of the type must be set to some
-- non-static value. The simplest is to create attribute nodes for those
-- bounds, that refer to the type itself. These bounds are never
-- analyzed but serve as place-holders.
Lo :=
Make_Attribute_Reference (Loc,
Attribute_Name => Name_First,
Prefix => New_Occurrence_Of (T, Loc));
Set_Etype (Lo, T);
Hi :=
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Last,
Prefix => New_Occurrence_Of (T, Loc));
Set_Etype (Hi, T);
Set_Scalar_Range (T,
Make_Range (Loc,
Low_Bound => Lo,
High_Bound => Hi));
Set_Ekind (Base, E_Enumeration_Type);
Set_Etype (Base, Base);
Init_Size (Base, 8);
Init_Alignment (Base);
Set_Is_Generic_Type (Base);
Set_Scalar_Range (Base, Scalar_Range (T));
Set_Parent (Base, Parent (Def));
end Analyze_Formal_Discrete_Type;
----------------------------------
-- Analyze_Formal_Floating_Type --
---------------------------------
procedure Analyze_Formal_Floating_Type (T : Entity_Id; Def : Node_Id) is
Base : constant Entity_Id :=
New_Internal_Entity
(E_Floating_Point_Type, Current_Scope,
Sloc (Defining_Identifier (Parent (Def))), 'G');
begin
-- The various semantic attributes are taken from the predefined type
-- Float, just so that all of them are initialized. Their values are
-- never used because no constant folding or expansion takes place in
-- the generic itself.
Enter_Name (T);
Set_Ekind (T, E_Floating_Point_Subtype);
Set_Etype (T, Base);
Set_Size_Info (T, (Standard_Float));
Set_RM_Size (T, RM_Size (Standard_Float));
Set_Digits_Value (T, Digits_Value (Standard_Float));
Set_Scalar_Range (T, Scalar_Range (Standard_Float));
Set_Is_Constrained (T);
Set_Is_Generic_Type (Base);
Set_Etype (Base, Base);
Set_Size_Info (Base, (Standard_Float));
Set_RM_Size (Base, RM_Size (Standard_Float));
Set_Digits_Value (Base, Digits_Value (Standard_Float));
Set_Scalar_Range (Base, Scalar_Range (Standard_Float));
Set_Parent (Base, Parent (Def));
Check_Restriction (No_Floating_Point, Def);
end Analyze_Formal_Floating_Type;
-----------------------------------
-- Analyze_Formal_Interface_Type;--
-----------------------------------
procedure Analyze_Formal_Interface_Type
(N : Node_Id;
T : Entity_Id;
Def : Node_Id)
is
Loc : constant Source_Ptr := Sloc (N);
New_N : Node_Id;
begin
New_N :=
Make_Full_Type_Declaration (Loc,
Defining_Identifier => T,
Type_Definition => Def);
Rewrite (N, New_N);
Analyze (N);
Set_Is_Generic_Type (T);
end Analyze_Formal_Interface_Type;
---------------------------------
-- Analyze_Formal_Modular_Type --
---------------------------------
procedure Analyze_Formal_Modular_Type (T : Entity_Id; Def : Node_Id) is
begin
-- Apart from their entity kind, generic modular types are treated like
-- signed integer types, and have the same attributes.
Analyze_Formal_Signed_Integer_Type (T, Def);
Set_Ekind (T, E_Modular_Integer_Subtype);
Set_Ekind (Etype (T), E_Modular_Integer_Type);
end Analyze_Formal_Modular_Type;
---------------------------------------
-- Analyze_Formal_Object_Declaration --
---------------------------------------
procedure Analyze_Formal_Object_Declaration (N : Node_Id) is
E : constant Node_Id := Default_Expression (N);
Id : constant Node_Id := Defining_Identifier (N);
K : Entity_Kind;
T : Node_Id;
begin
Enter_Name (Id);
-- Determine the mode of the formal object
if Out_Present (N) then
K := E_Generic_In_Out_Parameter;
if not In_Present (N) then
Error_Msg_N ("formal generic objects cannot have mode OUT", N);
end if;
else
K := E_Generic_In_Parameter;
end if;
if Present (Subtype_Mark (N)) then
Find_Type (Subtype_Mark (N));
T := Entity (Subtype_Mark (N));
-- Verify that there is no redundant null exclusion
if Null_Exclusion_Present (N) then
if not Is_Access_Type (T) then
Error_Msg_N
("null exclusion can only apply to an access type", N);
elsif Can_Never_Be_Null (T) then
Error_Msg_NE
("`NOT NULL` not allowed (& already excludes null)", N, T);
end if;
end if;
-- Ada 2005 (AI-423): Formal object with an access definition
else
Check_Access_Definition (N);
T := Access_Definition
(Related_Nod => N,
N => Access_Definition (N));
end if;
if Ekind (T) = E_Incomplete_Type then
declare
Error_Node : Node_Id;
begin
if Present (Subtype_Mark (N)) then
Error_Node := Subtype_Mark (N);
else
Check_Access_Definition (N);
Error_Node := Access_Definition (N);
end if;
Error_Msg_N ("premature usage of incomplete type", Error_Node);
end;
end if;
if K = E_Generic_In_Parameter then
-- Ada 2005 (AI-287): Limited aggregates allowed in generic formals
if Ada_Version < Ada_2005 and then Is_Limited_Type (T) then
Error_Msg_N
("generic formal of mode IN must not be of limited type", N);
Explain_Limited_Type (T, N);
end if;
if Is_Abstract_Type (T) then
Error_Msg_N
("generic formal of mode IN must not be of abstract type", N);
end if;
if Present (E) then
Preanalyze_Spec_Expression (E, T);
if Is_Limited_Type (T) and then not OK_For_Limited_Init (T, E) then
Error_Msg_N
("initialization not allowed for limited types", E);
Explain_Limited_Type (T, E);
end if;
end if;
Set_Ekind (Id, K);
Set_Etype (Id, T);
-- Case of generic IN OUT parameter
else
-- If the formal has an unconstrained type, construct its actual
-- subtype, as is done for subprogram formals. In this fashion, all
-- its uses can refer to specific bounds.
Set_Ekind (Id, K);
Set_Etype (Id, T);
if (Is_Array_Type (T) and then not Is_Constrained (T))
or else (Ekind (T) = E_Record_Type and then Has_Discriminants (T))
then
declare
Non_Freezing_Ref : constant Node_Id :=
New_Occurrence_Of (Id, Sloc (Id));
Decl : Node_Id;
begin
-- Make sure the actual subtype doesn't generate bogus freezing
Set_Must_Not_Freeze (Non_Freezing_Ref);
Decl := Build_Actual_Subtype (T, Non_Freezing_Ref);
Insert_Before_And_Analyze (N, Decl);
Set_Actual_Subtype (Id, Defining_Identifier (Decl));
end;
else
Set_Actual_Subtype (Id, T);
end if;
if Present (E) then
Error_Msg_N
("initialization not allowed for `IN OUT` formals", N);
end if;
end if;
if Has_Aspects (N) then
Analyze_Aspect_Specifications (N, Id);
end if;
end Analyze_Formal_Object_Declaration;
----------------------------------------------
-- Analyze_Formal_Ordinary_Fixed_Point_Type --
----------------------------------------------
procedure Analyze_Formal_Ordinary_Fixed_Point_Type
(T : Entity_Id;
Def : Node_Id)
is
Loc : constant Source_Ptr := Sloc (Def);
Base : constant Entity_Id :=
New_Internal_Entity
(E_Ordinary_Fixed_Point_Type, Current_Scope,
Sloc (Defining_Identifier (Parent (Def))), 'G');
begin
-- The semantic attributes are set for completeness only, their values
-- will never be used, since all properties of the type are non-static.
Enter_Name (T);
Set_Ekind (T, E_Ordinary_Fixed_Point_Subtype);
Set_Etype (T, Base);
Set_Size_Info (T, Standard_Integer);
Set_RM_Size (T, RM_Size (Standard_Integer));
Set_Small_Value (T, Ureal_1);
Set_Delta_Value (T, Ureal_1);
Set_Scalar_Range (T,
Make_Range (Loc,
Low_Bound => Make_Real_Literal (Loc, Ureal_1),
High_Bound => Make_Real_Literal (Loc, Ureal_1)));
Set_Is_Constrained (T);
Set_Is_Generic_Type (Base);
Set_Etype (Base, Base);
Set_Size_Info (Base, Standard_Integer);
Set_RM_Size (Base, RM_Size (Standard_Integer));
Set_Small_Value (Base, Ureal_1);
Set_Delta_Value (Base, Ureal_1);
Set_Scalar_Range (Base, Scalar_Range (T));
Set_Parent (Base, Parent (Def));
Check_Restriction (No_Fixed_Point, Def);
end Analyze_Formal_Ordinary_Fixed_Point_Type;
----------------------------------------
-- Analyze_Formal_Package_Declaration --
----------------------------------------
procedure Analyze_Formal_Package_Declaration (N : Node_Id) is
Gen_Id : constant Node_Id := Name (N);
Loc : constant Source_Ptr := Sloc (N);
Pack_Id : constant Entity_Id := Defining_Identifier (N);
Formal : Entity_Id;
Gen_Decl : Node_Id;
Gen_Unit : Entity_Id;
Renaming : Node_Id;
Vis_Prims_List : Elist_Id := No_Elist;
-- List of primitives made temporarily visible in the instantiation
-- to match the visibility of the formal type.
function Build_Local_Package return Node_Id;
-- The formal package is rewritten so that its parameters are replaced
-- with corresponding declarations. For parameters with bona fide
-- associations these declarations are created by Analyze_Associations
-- as for a regular instantiation. For boxed parameters, we preserve
-- the formal declarations and analyze them, in order to introduce
-- entities of the right kind in the environment of the formal.
-------------------------
-- Build_Local_Package --
-------------------------
function Build_Local_Package return Node_Id is
Decls : List_Id;
Pack_Decl : Node_Id;
begin
-- Within the formal, the name of the generic package is a renaming
-- of the formal (as for a regular instantiation).
Pack_Decl :=
Make_Package_Declaration (Loc,
Specification =>
Copy_Generic_Node
(Specification (Original_Node (Gen_Decl)),
Empty, Instantiating => True));
Renaming :=
Make_Package_Renaming_Declaration (Loc,
Defining_Unit_Name =>
Make_Defining_Identifier (Loc, Chars (Gen_Unit)),
Name => New_Occurrence_Of (Formal, Loc));
if Nkind (Gen_Id) = N_Identifier
and then Chars (Gen_Id) = Chars (Pack_Id)
then
Error_Msg_NE
("& is hidden within declaration of instance", Gen_Id, Gen_Unit);
end if;
-- If the formal is declared with a box, or with an others choice,
-- create corresponding declarations for all entities in the formal
-- part, so that names with the proper types are available in the
-- specification of the formal package.
-- On the other hand, if there are no associations, then all the
-- formals must have defaults, and this will be checked by the
-- call to Analyze_Associations.
if Box_Present (N)
or else Nkind (First (Generic_Associations (N))) = N_Others_Choice
then
declare
Formal_Decl : Node_Id;
begin
-- TBA : for a formal package, need to recurse ???
Decls := New_List;
Formal_Decl :=
First
(Generic_Formal_Declarations (Original_Node (Gen_Decl)));
while Present (Formal_Decl) loop
Append_To
(Decls,
Copy_Generic_Node
(Formal_Decl, Empty, Instantiating => True));
Next (Formal_Decl);
end loop;
end;
-- If generic associations are present, use Analyze_Associations to
-- create the proper renaming declarations.
else
declare
Act_Tree : constant Node_Id :=
Copy_Generic_Node
(Original_Node (Gen_Decl), Empty,
Instantiating => True);
begin
Generic_Renamings.Set_Last (0);
Generic_Renamings_HTable.Reset;
Instantiation_Node := N;
Decls :=
Analyze_Associations
(I_Node => Original_Node (N),
Formals => Generic_Formal_Declarations (Act_Tree),
F_Copy => Generic_Formal_Declarations (Gen_Decl));
Vis_Prims_List := Check_Hidden_Primitives (Decls);
end;
end if;
Append (Renaming, To => Decls);
-- Add generated declarations ahead of local declarations in
-- the package.
if No (Visible_Declarations (Specification (Pack_Decl))) then
Set_Visible_Declarations (Specification (Pack_Decl), Decls);
else
Insert_List_Before
(First (Visible_Declarations (Specification (Pack_Decl))),
Decls);
end if;
return Pack_Decl;
end Build_Local_Package;
-- Local variables
Save_ISMP : constant Boolean := Ignore_SPARK_Mode_Pragmas_In_Instance;
-- Save flag Ignore_SPARK_Mode_Pragmas_In_Instance for restore on exit
Associations : Boolean := True;
New_N : Node_Id;
Parent_Installed : Boolean := False;
Parent_Instance : Entity_Id;
Renaming_In_Par : Entity_Id;
-- Start of processing for Analyze_Formal_Package_Declaration
begin
Check_Text_IO_Special_Unit (Gen_Id);
Init_Env;
Check_Generic_Child_Unit (Gen_Id, Parent_Installed);
Gen_Unit := Entity (Gen_Id);
-- Check for a formal package that is a package renaming
if Present (Renamed_Object (Gen_Unit)) then
-- Indicate that unit is used, before replacing it with renamed
-- entity for use below.
if In_Extended_Main_Source_Unit (N) then
Set_Is_Instantiated (Gen_Unit);
Generate_Reference (Gen_Unit, N);
end if;
Gen_Unit := Renamed_Object (Gen_Unit);
end if;
if Ekind (Gen_Unit) /= E_Generic_Package then
Error_Msg_N ("expect generic package name", Gen_Id);
Restore_Env;
goto Leave;
elsif Gen_Unit = Current_Scope then
Error_Msg_N
("generic package cannot be used as a formal package of itself",
Gen_Id);
Restore_Env;
goto Leave;
elsif In_Open_Scopes (Gen_Unit) then
if Is_Compilation_Unit (Gen_Unit)
and then Is_Child_Unit (Current_Scope)
then
-- Special-case the error when the formal is a parent, and
-- continue analysis to minimize cascaded errors.
Error_Msg_N
("generic parent cannot be used as formal package of a child "
& "unit", Gen_Id);
else
Error_Msg_N
("generic package cannot be used as a formal package within "
& "itself", Gen_Id);
Restore_Env;
goto Leave;
end if;
end if;
-- Check that name of formal package does not hide name of generic,
-- or its leading prefix. This check must be done separately because
-- the name of the generic has already been analyzed.
declare
Gen_Name : Entity_Id;
begin
Gen_Name := Gen_Id;
while Nkind (Gen_Name) = N_Expanded_Name loop
Gen_Name := Prefix (Gen_Name);
end loop;
if Chars (Gen_Name) = Chars (Pack_Id) then
Error_Msg_NE
("& is hidden within declaration of formal package",
Gen_Id, Gen_Name);
end if;
end;
if Box_Present (N)
or else No (Generic_Associations (N))
or else Nkind (First (Generic_Associations (N))) = N_Others_Choice
then
Associations := False;
end if;
-- If there are no generic associations, the generic parameters appear
-- as local entities and are instantiated like them. We copy the generic
-- package declaration as if it were an instantiation, and analyze it
-- like a regular package, except that we treat the formals as
-- additional visible components.
Gen_Decl := Unit_Declaration_Node (Gen_Unit);
if In_Extended_Main_Source_Unit (N) then
Set_Is_Instantiated (Gen_Unit);
Generate_Reference (Gen_Unit, N);
end if;
Formal := New_Copy (Pack_Id);
Create_Instantiation_Source (N, Gen_Unit, S_Adjustment);
-- Make local generic without formals. The formals will be replaced with
-- internal declarations.
begin
New_N := Build_Local_Package;
-- If there are errors in the parameter list, Analyze_Associations
-- raises Instantiation_Error. Patch the declaration to prevent further
-- exception propagation.
exception
when Instantiation_Error =>
Enter_Name (Formal);
Set_Ekind (Formal, E_Variable);
Set_Etype (Formal, Any_Type);
Restore_Hidden_Primitives (Vis_Prims_List);
if Parent_Installed then
Remove_Parent;
end if;
goto Leave;
end;
Rewrite (N, New_N);
Set_Defining_Unit_Name (Specification (New_N), Formal);
Set_Generic_Parent (Specification (N), Gen_Unit);
Set_Instance_Env (Gen_Unit, Formal);
Set_Is_Generic_Instance (Formal);
Enter_Name (Formal);
Set_Ekind (Formal, E_Package);
Set_Etype (Formal, Standard_Void_Type);
Set_Inner_Instances (Formal, New_Elmt_List);
Push_Scope (Formal);
-- Manually set the SPARK_Mode from the context because the package
-- declaration is never analyzed.
Set_SPARK_Pragma (Formal, SPARK_Mode_Pragma);
Set_SPARK_Aux_Pragma (Formal, SPARK_Mode_Pragma);
Set_SPARK_Pragma_Inherited (Formal);
Set_SPARK_Aux_Pragma_Inherited (Formal);
if Is_Child_Unit (Gen_Unit) and then Parent_Installed then
-- Similarly, we have to make the name of the formal visible in the
-- parent instance, to resolve properly fully qualified names that
-- may appear in the generic unit. The parent instance has been
-- placed on the scope stack ahead of the current scope.
Parent_Instance := Scope_Stack.Table (Scope_Stack.Last - 1).Entity;
Renaming_In_Par :=
Make_Defining_Identifier (Loc, Chars (Gen_Unit));
Set_Ekind (Renaming_In_Par, E_Package);
Set_Etype (Renaming_In_Par, Standard_Void_Type);
Set_Scope (Renaming_In_Par, Parent_Instance);
Set_Parent (Renaming_In_Par, Parent (Formal));
Set_Renamed_Object (Renaming_In_Par, Formal);
Append_Entity (Renaming_In_Par, Parent_Instance);
end if;
-- A formal package declaration behaves as a package instantiation with
-- respect to SPARK_Mode "off". If the annotation is "off" or altogether
-- missing, set the global flag which signals Analyze_Pragma to ingnore
-- all SPARK_Mode pragmas within the generic_package_name.
if SPARK_Mode /= On then
Ignore_SPARK_Mode_Pragmas_In_Instance := True;
-- Mark the formal spec in case the body is instantiated at a later
-- pass. This preserves the original context in effect for the body.
Set_Ignore_SPARK_Mode_Pragmas (Formal);
end if;
Analyze (Specification (N));
-- The formals for which associations are provided are not visible
-- outside of the formal package. The others are still declared by a
-- formal parameter declaration.
-- If there are no associations, the only local entity to hide is the
-- generated package renaming itself.
declare
E : Entity_Id;
begin
E := First_Entity (Formal);
while Present (E) loop
if Associations and then not Is_Generic_Formal (E) then
Set_Is_Hidden (E);
end if;
if Ekind (E) = E_Package and then Renamed_Entity (E) = Formal then
Set_Is_Hidden (E);
exit;
end if;
Next_Entity (E);
end loop;
end;
End_Package_Scope (Formal);
Restore_Hidden_Primitives (Vis_Prims_List);
if Parent_Installed then
Remove_Parent;
end if;
Restore_Env;
-- Inside the generic unit, the formal package is a regular package, but
-- no body is needed for it. Note that after instantiation, the defining
-- unit name we need is in the new tree and not in the original (see
-- Package_Instantiation). A generic formal package is an instance, and
-- can be used as an actual for an inner instance.
Set_Has_Completion (Formal, True);
-- Add semantic information to the original defining identifier for ASIS
-- use.
Set_Ekind (Pack_Id, E_Package);
Set_Etype (Pack_Id, Standard_Void_Type);
Set_Scope (Pack_Id, Scope (Formal));
Set_Has_Completion (Pack_Id, True);
<<Leave>>
if Has_Aspects (N) then
Analyze_Aspect_Specifications (N, Pack_Id);
end if;
Ignore_SPARK_Mode_Pragmas_In_Instance := Save_ISMP;
end Analyze_Formal_Package_Declaration;
---------------------------------
-- Analyze_Formal_Private_Type --
---------------------------------
procedure Analyze_Formal_Private_Type
(N : Node_Id;
T : Entity_Id;
Def : Node_Id)
is
begin
New_Private_Type (N, T, Def);
-- Set the size to an arbitrary but legal value
Set_Size_Info (T, Standard_Integer);
Set_RM_Size (T, RM_Size (Standard_Integer));
end Analyze_Formal_Private_Type;
------------------------------------
-- Analyze_Formal_Incomplete_Type --
------------------------------------
procedure Analyze_Formal_Incomplete_Type
(T : Entity_Id;
Def : Node_Id)
is
begin
Enter_Name (T);
Set_Ekind (T, E_Incomplete_Type);
Set_Etype (T, T);
Set_Private_Dependents (T, New_Elmt_List);
if Tagged_Present (Def) then
Set_Is_Tagged_Type (T);
Make_Class_Wide_Type (T);
Set_Direct_Primitive_Operations (T, New_Elmt_List);
end if;
end Analyze_Formal_Incomplete_Type;
----------------------------------------
-- Analyze_Formal_Signed_Integer_Type --
----------------------------------------
procedure Analyze_Formal_Signed_Integer_Type
(T : Entity_Id;
Def : Node_Id)
is
Base : constant Entity_Id :=
New_Internal_Entity
(E_Signed_Integer_Type,
Current_Scope,
Sloc (Defining_Identifier (Parent (Def))), 'G');
begin
Enter_Name (T);
Set_Ekind (T, E_Signed_Integer_Subtype);
Set_Etype (T, Base);
Set_Size_Info (T, Standard_Integer);
Set_RM_Size (T, RM_Size (Standard_Integer));
Set_Scalar_Range (T, Scalar_Range (Standard_Integer));
Set_Is_Constrained (T);
Set_Is_Generic_Type (Base);
Set_Size_Info (Base, Standard_Integer);
Set_RM_Size (Base, RM_Size (Standard_Integer));
Set_Etype (Base, Base);
Set_Scalar_Range (Base, Scalar_Range (Standard_Integer));
Set_Parent (Base, Parent (Def));
end Analyze_Formal_Signed_Integer_Type;
-------------------------------------------
-- Analyze_Formal_Subprogram_Declaration --
-------------------------------------------
procedure Analyze_Formal_Subprogram_Declaration (N : Node_Id) is
Spec : constant Node_Id := Specification (N);
Def : constant Node_Id := Default_Name (N);
Nam : constant Entity_Id := Defining_Unit_Name (Spec);
Subp : Entity_Id;
begin
if Nam = Error then
return;
end if;
if Nkind (Nam) = N_Defining_Program_Unit_Name then
Error_Msg_N ("name of formal subprogram must be a direct name", Nam);
goto Leave;
end if;
Analyze_Subprogram_Declaration (N);
Set_Is_Formal_Subprogram (Nam);
Set_Has_Completion (Nam);
if Nkind (N) = N_Formal_Abstract_Subprogram_Declaration then
Set_Is_Abstract_Subprogram (Nam);
Set_Is_Dispatching_Operation (Nam);
-- A formal abstract procedure cannot have a null default
-- (RM 12.6(4.1/2)).
if Nkind (Spec) = N_Procedure_Specification
and then Null_Present (Spec)
then
Error_Msg_N
("a formal abstract subprogram cannot default to null", Spec);
end if;
declare
Ctrl_Type : constant Entity_Id := Find_Dispatching_Type (Nam);
begin
if No (Ctrl_Type) then
Error_Msg_N
("abstract formal subprogram must have a controlling type",
N);
elsif Ada_Version >= Ada_2012
and then Is_Incomplete_Type (Ctrl_Type)
then
Error_Msg_NE
("controlling type of abstract formal subprogram cannot "
& "be incomplete type", N, Ctrl_Type);
else
Check_Controlling_Formals (Ctrl_Type, Nam);
end if;
end;
end if;
-- Default name is resolved at the point of instantiation
if Box_Present (N) then
null;
-- Else default is bound at the point of generic declaration
elsif Present (Def) then
if Nkind (Def) = N_Operator_Symbol then
Find_Direct_Name (Def);
elsif Nkind (Def) /= N_Attribute_Reference then
Analyze (Def);
else
-- For an attribute reference, analyze the prefix and verify
-- that it has the proper profile for the subprogram.
Analyze (Prefix (Def));
Valid_Default_Attribute (Nam, Def);
goto Leave;
end if;
-- Default name may be overloaded, in which case the interpretation
-- with the correct profile must be selected, as for a renaming.
-- If the definition is an indexed component, it must denote a
-- member of an entry family. If it is a selected component, it
-- can be a protected operation.
if Etype (Def) = Any_Type then
goto Leave;
elsif Nkind (Def) = N_Selected_Component then
if not Is_Overloadable (Entity (Selector_Name (Def))) then
Error_Msg_N ("expect valid subprogram name as default", Def);
end if;
elsif Nkind (Def) = N_Indexed_Component then
if Is_Entity_Name (Prefix (Def)) then
if Ekind (Entity (Prefix (Def))) /= E_Entry_Family then
Error_Msg_N ("expect valid subprogram name as default", Def);
end if;
elsif Nkind (Prefix (Def)) = N_Selected_Component then
if Ekind (Entity (Selector_Name (Prefix (Def)))) /=
E_Entry_Family
then
Error_Msg_N ("expect valid subprogram name as default", Def);
end if;
else
Error_Msg_N ("expect valid subprogram name as default", Def);
goto Leave;
end if;
elsif Nkind (Def) = N_Character_Literal then
-- Needs some type checks: subprogram should be parameterless???
Resolve (Def, (Etype (Nam)));
elsif not Is_Entity_Name (Def)
or else not Is_Overloadable (Entity (Def))
then
Error_Msg_N ("expect valid subprogram name as default", Def);
goto Leave;
elsif not Is_Overloaded (Def) then
Subp := Entity (Def);
if Subp = Nam then
Error_Msg_N ("premature usage of formal subprogram", Def);
elsif not Entity_Matches_Spec (Subp, Nam) then
Error_Msg_N ("no visible entity matches specification", Def);
end if;
-- More than one interpretation, so disambiguate as for a renaming
else
declare
I : Interp_Index;
I1 : Interp_Index := 0;
It : Interp;
It1 : Interp;
begin
Subp := Any_Id;
Get_First_Interp (Def, I, It);
while Present (It.Nam) loop
if Entity_Matches_Spec (It.Nam, Nam) then
if Subp /= Any_Id then
It1 := Disambiguate (Def, I1, I, Etype (Subp));
if It1 = No_Interp then
Error_Msg_N ("ambiguous default subprogram", Def);
else
Subp := It1.Nam;
end if;
exit;
else
I1 := I;
Subp := It.Nam;
end if;
end if;
Get_Next_Interp (I, It);
end loop;
end;
if Subp /= Any_Id then
-- Subprogram found, generate reference to it
Set_Entity (Def, Subp);
Generate_Reference (Subp, Def);
if Subp = Nam then
Error_Msg_N ("premature usage of formal subprogram", Def);
elsif Ekind (Subp) /= E_Operator then
Check_Mode_Conformant (Subp, Nam);
end if;
else
Error_Msg_N ("no visible subprogram matches specification", N);
end if;
end if;
end if;
<<Leave>>
if Has_Aspects (N) then
Analyze_Aspect_Specifications (N, Nam);
end if;
end Analyze_Formal_Subprogram_Declaration;
-------------------------------------
-- Analyze_Formal_Type_Declaration --
-------------------------------------
procedure Analyze_Formal_Type_Declaration (N : Node_Id) is
Def : constant Node_Id := Formal_Type_Definition (N);
T : Entity_Id;
begin
T := Defining_Identifier (N);
if Present (Discriminant_Specifications (N))
and then Nkind (Def) /= N_Formal_Private_Type_Definition
then
Error_Msg_N
("discriminants not allowed for this formal type", T);
end if;
-- Enter the new name, and branch to specific routine
case Nkind (Def) is
when N_Formal_Private_Type_Definition =>
Analyze_Formal_Private_Type (N, T, Def);
when N_Formal_Derived_Type_Definition =>
Analyze_Formal_Derived_Type (N, T, Def);
when N_Formal_Incomplete_Type_Definition =>
Analyze_Formal_Incomplete_Type (T, Def);
when N_Formal_Discrete_Type_Definition =>
Analyze_Formal_Discrete_Type (T, Def);
when N_Formal_Signed_Integer_Type_Definition =>
Analyze_Formal_Signed_Integer_Type (T, Def);
when N_Formal_Modular_Type_Definition =>
Analyze_Formal_Modular_Type (T, Def);
when N_Formal_Floating_Point_Definition =>
Analyze_Formal_Floating_Type (T, Def);
when N_Formal_Ordinary_Fixed_Point_Definition =>
Analyze_Formal_Ordinary_Fixed_Point_Type (T, Def);
when N_Formal_Decimal_Fixed_Point_Definition =>
Analyze_Formal_Decimal_Fixed_Point_Type (T, Def);
when N_Array_Type_Definition =>
Analyze_Formal_Array_Type (T, Def);
when N_Access_Function_Definition
| N_Access_Procedure_Definition
| N_Access_To_Object_Definition
=>
Analyze_Generic_Access_Type (T, Def);
-- Ada 2005: a interface declaration is encoded as an abstract
-- record declaration or a abstract type derivation.
when N_Record_Definition =>
Analyze_Formal_Interface_Type (N, T, Def);
when N_Derived_Type_Definition =>
Analyze_Formal_Derived_Interface_Type (N, T, Def);
when N_Error =>
null;
when others =>
raise Program_Error;
end case;
Set_Is_Generic_Type (T);
if Has_Aspects (N) then
Analyze_Aspect_Specifications (N, T);
end if;
end Analyze_Formal_Type_Declaration;
------------------------------------
-- Analyze_Function_Instantiation --
------------------------------------
procedure Analyze_Function_Instantiation (N : Node_Id) is
begin
Analyze_Subprogram_Instantiation (N, E_Function);
end Analyze_Function_Instantiation;
---------------------------------
-- Analyze_Generic_Access_Type --
---------------------------------
procedure Analyze_Generic_Access_Type (T : Entity_Id; Def : Node_Id) is
begin
Enter_Name (T);
if Nkind (Def) = N_Access_To_Object_Definition then
Access_Type_Declaration (T, Def);
if Is_Incomplete_Or_Private_Type (Designated_Type (T))
and then No (Full_View (Designated_Type (T)))
and then not Is_Generic_Type (Designated_Type (T))
then
Error_Msg_N ("premature usage of incomplete type", Def);
elsif not Is_Entity_Name (Subtype_Indication (Def)) then
Error_Msg_N
("only a subtype mark is allowed in a formal", Def);
end if;
else
Access_Subprogram_Declaration (T, Def);
end if;
end Analyze_Generic_Access_Type;
---------------------------------
-- Analyze_Generic_Formal_Part --
---------------------------------
procedure Analyze_Generic_Formal_Part (N : Node_Id) is
Gen_Parm_Decl : Node_Id;
begin
-- The generic formals are processed in the scope of the generic unit,
-- where they are immediately visible. The scope is installed by the
-- caller.
Gen_Parm_Decl := First (Generic_Formal_Declarations (N));
while Present (Gen_Parm_Decl) loop
Analyze (Gen_Parm_Decl);
Next (Gen_Parm_Decl);
end loop;
Generate_Reference_To_Generic_Formals (Current_Scope);
end Analyze_Generic_Formal_Part;
------------------------------------------
-- Analyze_Generic_Package_Declaration --
------------------------------------------
procedure Analyze_Generic_Package_Declaration (N : Node_Id) is
Decls : constant List_Id := Visible_Declarations (Specification (N));
Loc : constant Source_Ptr := Sloc (N);
Decl : Node_Id;
Id : Entity_Id;
New_N : Node_Id;
Renaming : Node_Id;
Save_Parent : Node_Id;
begin
Check_SPARK_05_Restriction ("generic is not allowed", N);
-- We introduce a renaming of the enclosing package, to have a usable
-- entity as the prefix of an expanded name for a local entity of the
-- form Par.P.Q, where P is the generic package. This is because a local
-- entity named P may hide it, so that the usual visibility rules in
-- the instance will not resolve properly.
Renaming :=
Make_Package_Renaming_Declaration (Loc,
Defining_Unit_Name =>
Make_Defining_Identifier (Loc,
Chars => New_External_Name (Chars (Defining_Entity (N)), "GH")),
Name =>
Make_Identifier (Loc, Chars (Defining_Entity (N))));
-- The declaration is inserted before other declarations, but before
-- pragmas that may be library-unit pragmas and must appear before other
-- declarations. The pragma Compile_Time_Error is not in this class, and
-- may contain an expression that includes such a qualified name, so the
-- renaming declaration must appear before it.
-- Are there other pragmas that require this special handling ???
if Present (Decls) then
Decl := First (Decls);
while Present (Decl)
and then Nkind (Decl) = N_Pragma
and then Get_Pragma_Id (Decl) /= Pragma_Compile_Time_Error
loop
Next (Decl);
end loop;
if Present (Decl) then
Insert_Before (Decl, Renaming);
else
Append (Renaming, Visible_Declarations (Specification (N)));
end if;
else
Set_Visible_Declarations (Specification (N), New_List (Renaming));
end if;
-- Create copy of generic unit, and save for instantiation. If the unit
-- is a child unit, do not copy the specifications for the parent, which
-- are not part of the generic tree.
Save_Parent := Parent_Spec (N);
Set_Parent_Spec (N, Empty);
New_N := Copy_Generic_Node (N, Empty, Instantiating => False);
Set_Parent_Spec (New_N, Save_Parent);
Rewrite (N, New_N);
-- Once the contents of the generic copy and the template are swapped,
-- do the same for their respective aspect specifications.
Exchange_Aspects (N, New_N);
-- Collect all contract-related source pragmas found within the template
-- and attach them to the contract of the package spec. This contract is
-- used in the capture of global references within annotations.
Create_Generic_Contract (N);
Id := Defining_Entity (N);
Generate_Definition (Id);
-- Expansion is not applied to generic units
Start_Generic;
Enter_Name (Id);
Set_Ekind (Id, E_Generic_Package);
Set_Etype (Id, Standard_Void_Type);
-- Set SPARK_Mode from context
Set_SPARK_Pragma (Id, SPARK_Mode_Pragma);
Set_SPARK_Aux_Pragma (Id, SPARK_Mode_Pragma);
Set_SPARK_Pragma_Inherited (Id);
Set_SPARK_Aux_Pragma_Inherited (Id);
-- Preserve relevant elaboration-related attributes of the context which
-- are no longer available or very expensive to recompute once analysis,
-- resolution, and expansion are over.
Mark_Elaboration_Attributes
(N_Id => Id,
Checks => True);
-- Analyze aspects now, so that generated pragmas appear in the
-- declarations before building and analyzing the generic copy.
if Has_Aspects (N) then
Analyze_Aspect_Specifications (N, Id);
end if;
Push_Scope (Id);
Enter_Generic_Scope (Id);
Set_Inner_Instances (Id, New_Elmt_List);
Set_Categorization_From_Pragmas (N);
Set_Is_Pure (Id, Is_Pure (Current_Scope));
-- Link the declaration of the generic homonym in the generic copy to
-- the package it renames, so that it is always resolved properly.
Set_Generic_Homonym (Id, Defining_Unit_Name (Renaming));
Set_Entity (Associated_Node (Name (Renaming)), Id);
-- For a library unit, we have reconstructed the entity for the unit,
-- and must reset it in the library tables.
if Nkind (Parent (N)) = N_Compilation_Unit then
Set_Cunit_Entity (Current_Sem_Unit, Id);
end if;
Analyze_Generic_Formal_Part (N);
-- After processing the generic formals, analysis proceeds as for a
-- non-generic package.
Analyze (Specification (N));
Validate_Categorization_Dependency (N, Id);
End_Generic;
End_Package_Scope (Id);
Exit_Generic_Scope (Id);
-- If the generic appears within a package unit, the body of that unit
-- has to be present for instantiation and inlining.
if Nkind (Unit (Cunit (Current_Sem_Unit))) = N_Package_Declaration then
Set_Body_Needed_For_Inlining
(Defining_Entity (Unit (Cunit (Current_Sem_Unit))));
end if;
if Nkind (Parent (N)) /= N_Compilation_Unit then
Move_Freeze_Nodes (Id, N, Visible_Declarations (Specification (N)));
Move_Freeze_Nodes (Id, N, Private_Declarations (Specification (N)));
Move_Freeze_Nodes (Id, N, Generic_Formal_Declarations (N));
else
Set_Body_Required (Parent (N), Unit_Requires_Body (Id));
Validate_RT_RAT_Component (N);
-- If this is a spec without a body, check that generic parameters
-- are referenced.
if not Body_Required (Parent (N)) then
Check_References (Id);
end if;
end if;
-- If there is a specified storage pool in the context, create an
-- aspect on the package declaration, so that it is used in any
-- instance that does not override it.
if Present (Default_Pool) then
declare
ASN : Node_Id;
begin
ASN :=
Make_Aspect_Specification (Loc,
Identifier => Make_Identifier (Loc, Name_Default_Storage_Pool),
Expression => New_Copy (Default_Pool));
if No (Aspect_Specifications (Specification (N))) then
Set_Aspect_Specifications (Specification (N), New_List (ASN));
else
Append (ASN, Aspect_Specifications (Specification (N)));
end if;
end;
end if;
end Analyze_Generic_Package_Declaration;
--------------------------------------------
-- Analyze_Generic_Subprogram_Declaration --
--------------------------------------------
procedure Analyze_Generic_Subprogram_Declaration (N : Node_Id) is
Formals : List_Id;
Id : Entity_Id;
New_N : Node_Id;
Result_Type : Entity_Id;
Save_Parent : Node_Id;
Spec : Node_Id;
Typ : Entity_Id;
begin
Check_SPARK_05_Restriction ("generic is not allowed", N);
-- Create copy of generic unit, and save for instantiation. If the unit
-- is a child unit, do not copy the specifications for the parent, which
-- are not part of the generic tree.
Save_Parent := Parent_Spec (N);
Set_Parent_Spec (N, Empty);
New_N := Copy_Generic_Node (N, Empty, Instantiating => False);
Set_Parent_Spec (New_N, Save_Parent);
Rewrite (N, New_N);
-- Once the contents of the generic copy and the template are swapped,
-- do the same for their respective aspect specifications.
Exchange_Aspects (N, New_N);
-- Collect all contract-related source pragmas found within the template
-- and attach them to the contract of the subprogram spec. This contract
-- is used in the capture of global references within annotations.
Create_Generic_Contract (N);
Spec := Specification (N);
Id := Defining_Entity (Spec);
Generate_Definition (Id);
if Nkind (Id) = N_Defining_Operator_Symbol then
Error_Msg_N
("operator symbol not allowed for generic subprogram", Id);
end if;
Start_Generic;
Enter_Name (Id);
Set_Scope_Depth_Value (Id, Scope_Depth (Current_Scope) + 1);
-- Analyze the aspects of the generic copy to ensure that all generated
-- pragmas (if any) perform their semantic effects.
if Has_Aspects (N) then
Analyze_Aspect_Specifications (N, Id);
end if;
Push_Scope (Id);
Enter_Generic_Scope (Id);
Set_Inner_Instances (Id, New_Elmt_List);
Set_Is_Pure (Id, Is_Pure (Current_Scope));
Analyze_Generic_Formal_Part (N);
if Nkind (Spec) = N_Function_Specification then
Set_Ekind (Id, E_Generic_Function);
else
Set_Ekind (Id, E_Generic_Procedure);
end if;
-- Set SPARK_Mode from context
Set_SPARK_Pragma (Id, SPARK_Mode_Pragma);
Set_SPARK_Pragma_Inherited (Id);
-- Preserve relevant elaboration-related attributes of the context which
-- are no longer available or very expensive to recompute once analysis,
-- resolution, and expansion are over.
Mark_Elaboration_Attributes
(N_Id => Id,
Checks => True);
Formals := Parameter_Specifications (Spec);
if Present (Formals) then
Process_Formals (Formals, Spec);
end if;
if Nkind (Spec) = N_Function_Specification then
if Nkind (Result_Definition (Spec)) = N_Access_Definition then
Result_Type := Access_Definition (Spec, Result_Definition (Spec));
Set_Etype (Id, Result_Type);
-- Check restriction imposed by AI05-073: a generic function
-- cannot return an abstract type or an access to such.
-- This is a binding interpretation should it apply to earlier
-- versions of Ada as well as Ada 2012???
if Is_Abstract_Type (Designated_Type (Result_Type))
and then Ada_Version >= Ada_2012
then
Error_Msg_N
("generic function cannot have an access result "
& "that designates an abstract type", Spec);
end if;
else
Find_Type (Result_Definition (Spec));
Typ := Entity (Result_Definition (Spec));
if Is_Abstract_Type (Typ)
and then Ada_Version >= Ada_2012
then
Error_Msg_N
("generic function cannot have abstract result type", Spec);
end if;
-- If a null exclusion is imposed on the result type, then create
-- a null-excluding itype (an access subtype) and use it as the
-- function's Etype.
if Is_Access_Type (Typ)
and then Null_Exclusion_Present (Spec)
then
Set_Etype (Id,
Create_Null_Excluding_Itype
(T => Typ,
Related_Nod => Spec,
Scope_Id => Defining_Unit_Name (Spec)));
else
Set_Etype (Id, Typ);
end if;
end if;
else
Set_Etype (Id, Standard_Void_Type);
end if;
-- For a library unit, we have reconstructed the entity for the unit,
-- and must reset it in the library tables. We also make sure that
-- Body_Required is set properly in the original compilation unit node.
if Nkind (Parent (N)) = N_Compilation_Unit then
Set_Cunit_Entity (Current_Sem_Unit, Id);
Set_Body_Required (Parent (N), Unit_Requires_Body (Id));
end if;
-- If the generic appears within a package unit, the body of that unit
-- has to be present for instantiation and inlining.
if Nkind (Unit (Cunit (Current_Sem_Unit))) = N_Package_Declaration
and then Unit_Requires_Body (Id)
then
Set_Body_Needed_For_Inlining
(Defining_Entity (Unit (Cunit (Current_Sem_Unit))));
end if;
Set_Categorization_From_Pragmas (N);
Validate_Categorization_Dependency (N, Id);
-- Capture all global references that occur within the profile of the
-- generic subprogram. Aspects are not part of this processing because
-- they must be delayed. If processed now, Save_Global_References will
-- destroy the Associated_Node links and prevent the capture of global
-- references when the contract of the generic subprogram is analyzed.
Save_Global_References (Original_Node (N));
End_Generic;
End_Scope;
Exit_Generic_Scope (Id);
Generate_Reference_To_Formals (Id);
List_Inherited_Pre_Post_Aspects (Id);
end Analyze_Generic_Subprogram_Declaration;
-----------------------------------
-- Analyze_Package_Instantiation --
-----------------------------------
-- WARNING: This routine manages Ghost and SPARK regions. Return statements
-- must be replaced by gotos which jump to the end of the routine in order
-- to restore the Ghost and SPARK modes.
procedure Analyze_Package_Instantiation (N : Node_Id) is
Has_Inline_Always : Boolean := False;
procedure Delay_Descriptors (E : Entity_Id);
-- Delay generation of subprogram descriptors for given entity
function Might_Inline_Subp (Gen_Unit : Entity_Id) return Boolean;
-- If inlining is active and the generic contains inlined subprograms,
-- we instantiate the body. This may cause superfluous instantiations,
-- but it is simpler than detecting the need for the body at the point
-- of inlining, when the context of the instance is not available.
-----------------------
-- Delay_Descriptors --
-----------------------
procedure Delay_Descriptors (E : Entity_Id) is
begin
if not Delay_Subprogram_Descriptors (E) then
Set_Delay_Subprogram_Descriptors (E);
Pending_Descriptor.Append (E);
end if;
end Delay_Descriptors;
-----------------------
-- Might_Inline_Subp --
-----------------------
function Might_Inline_Subp (Gen_Unit : Entity_Id) return Boolean is
E : Entity_Id;
begin
if not Inline_Processing_Required then
return False;
else
E := First_Entity (Gen_Unit);
while Present (E) loop
if Is_Subprogram (E) and then Is_Inlined (E) then
-- Remember if there are any subprograms with Inline_Always
if Has_Pragma_Inline_Always (E) then
Has_Inline_Always := True;
end if;
return True;
end if;
Next_Entity (E);
end loop;
end if;
return False;
end Might_Inline_Subp;
-- Local declarations
Gen_Id : constant Node_Id := Name (N);
Is_Actual_Pack : constant Boolean :=
Is_Internal (Defining_Entity (N));
Loc : constant Source_Ptr := Sloc (N);
Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
Saved_ISMP : constant Boolean :=
Ignore_SPARK_Mode_Pragmas_In_Instance;
Saved_SM : constant SPARK_Mode_Type := SPARK_Mode;
Saved_SMP : constant Node_Id := SPARK_Mode_Pragma;
-- Save the Ghost and SPARK mode-related data to restore on exit
Saved_Style_Check : constant Boolean := Style_Check;
-- Save style check mode for restore on exit
Act_Decl : Node_Id;
Act_Decl_Name : Node_Id;
Act_Decl_Id : Entity_Id;
Act_Spec : Node_Id;
Act_Tree : Node_Id;
Env_Installed : Boolean := False;
Gen_Decl : Node_Id;
Gen_Spec : Node_Id;
Gen_Unit : Entity_Id;
Inline_Now : Boolean := False;
Needs_Body : Boolean;
Parent_Installed : Boolean := False;
Renaming_List : List_Id;
Unit_Renaming : Node_Id;
Vis_Prims_List : Elist_Id := No_Elist;
-- List of primitives made temporarily visible in the instantiation
-- to match the visibility of the formal type
-- Start of processing for Analyze_Package_Instantiation
begin
-- Preserve relevant elaboration-related attributes of the context which
-- are no longer available or very expensive to recompute once analysis,
-- resolution, and expansion are over.
Mark_Elaboration_Attributes
(N_Id => N,
Checks => True,
Level => True,
Modes => True,
Warnings => True);
Check_SPARK_05_Restriction ("generic is not allowed", N);
-- Very first thing: check for Text_IO special unit in case we are
-- instantiating one of the children of [[Wide_]Wide_]Text_IO.
Check_Text_IO_Special_Unit (Name (N));
-- Make node global for error reporting
Instantiation_Node := N;
-- Case of instantiation of a generic package
if Nkind (N) = N_Package_Instantiation then
Act_Decl_Id := New_Copy (Defining_Entity (N));
Set_Comes_From_Source (Act_Decl_Id, True);
if Nkind (Defining_Unit_Name (N)) = N_Defining_Program_Unit_Name then
Act_Decl_Name :=
Make_Defining_Program_Unit_Name (Loc,
Name =>
New_Copy_Tree (Name (Defining_Unit_Name (N))),
Defining_Identifier => Act_Decl_Id);
else
Act_Decl_Name := Act_Decl_Id;
end if;
-- Case of instantiation of a formal package
else
Act_Decl_Id := Defining_Identifier (N);
Act_Decl_Name := Act_Decl_Id;
end if;
Generate_Definition (Act_Decl_Id);
Set_Ekind (Act_Decl_Id, E_Package);
-- Initialize list of incomplete actuals before analysis
Set_Incomplete_Actuals (Act_Decl_Id, New_Elmt_List);
Preanalyze_Actuals (N, Act_Decl_Id);
-- Turn off style checking in instances. If the check is enabled on the
-- generic unit, a warning in an instance would just be noise. If not
-- enabled on the generic, then a warning in an instance is just wrong.
-- This must be done after analyzing the actuals, which do come from
-- source and are subject to style checking.
Style_Check := False;
Init_Env;
Env_Installed := True;
-- Reset renaming map for formal types. The mapping is established
-- when analyzing the generic associations, but some mappings are
-- inherited from formal packages of parent units, and these are
-- constructed when the parents are installed.
Generic_Renamings.Set_Last (0);
Generic_Renamings_HTable.Reset;
Check_Generic_Child_Unit (Gen_Id, Parent_Installed);
Gen_Unit := Entity (Gen_Id);
-- A package instantiation is Ghost when it is subject to pragma Ghost
-- or the generic template is Ghost. Set the mode now to ensure that
-- any nodes generated during analysis and expansion are marked as
-- Ghost.
Mark_And_Set_Ghost_Instantiation (N, Gen_Unit);
-- Verify that it is the name of a generic package
-- A visibility glitch: if the instance is a child unit and the generic
-- is the generic unit of a parent instance (i.e. both the parent and
-- the child units are instances of the same package) the name now
-- denotes the renaming within the parent, not the intended generic
-- unit. See if there is a homonym that is the desired generic. The
-- renaming declaration must be visible inside the instance of the
-- child, but not when analyzing the name in the instantiation itself.
if Ekind (Gen_Unit) = E_Package
and then Present (Renamed_Entity (Gen_Unit))
and then In_Open_Scopes (Renamed_Entity (Gen_Unit))
and then Is_Generic_Instance (Renamed_Entity (Gen_Unit))
and then Present (Homonym (Gen_Unit))
then
Gen_Unit := Homonym (Gen_Unit);
end if;
if Etype (Gen_Unit) = Any_Type then
Restore_Env;
goto Leave;
elsif Ekind (Gen_Unit) /= E_Generic_Package then
-- Ada 2005 (AI-50217): Cannot use instance in limited with_clause
if From_Limited_With (Gen_Unit) then
Error_Msg_N
("cannot instantiate a limited withed package", Gen_Id);
else
Error_Msg_NE
("& is not the name of a generic package", Gen_Id, Gen_Unit);
end if;
Restore_Env;
goto Leave;
end if;
if In_Extended_Main_Source_Unit (N) then
Set_Is_Instantiated (Gen_Unit);
Generate_Reference (Gen_Unit, N);
if Present (Renamed_Object (Gen_Unit)) then
Set_Is_Instantiated (Renamed_Object (Gen_Unit));
Generate_Reference (Renamed_Object (Gen_Unit), N);
end if;
end if;
if Nkind (Gen_Id) = N_Identifier
and then Chars (Gen_Unit) = Chars (Defining_Entity (N))
then
Error_Msg_NE
("& is hidden within declaration of instance", Gen_Id, Gen_Unit);
elsif Nkind (Gen_Id) = N_Expanded_Name
and then Is_Child_Unit (Gen_Unit)
and then Nkind (Prefix (Gen_Id)) = N_Identifier
and then Chars (Act_Decl_Id) = Chars (Prefix (Gen_Id))
then
Error_Msg_N
("& is hidden within declaration of instance ", Prefix (Gen_Id));
end if;
Set_Entity (Gen_Id, Gen_Unit);
-- If generic is a renaming, get original generic unit
if Present (Renamed_Object (Gen_Unit))
and then Ekind (Renamed_Object (Gen_Unit)) = E_Generic_Package
then
Gen_Unit := Renamed_Object (Gen_Unit);
end if;
-- Verify that there are no circular instantiations
if In_Open_Scopes (Gen_Unit) then
Error_Msg_NE ("instantiation of & within itself", N, Gen_Unit);
Restore_Env;
goto Leave;
elsif Contains_Instance_Of (Gen_Unit, Current_Scope, Gen_Id) then
Error_Msg_Node_2 := Current_Scope;
Error_Msg_NE
("circular Instantiation: & instantiated in &!", N, Gen_Unit);
Circularity_Detected := True;
Restore_Env;
goto Leave;
else
-- If the context of the instance is subject to SPARK_Mode "off" or
-- the annotation is altogether missing, set the global flag which
-- signals Analyze_Pragma to ignore all SPARK_Mode pragmas within
-- the instance.
if SPARK_Mode /= On then
Ignore_SPARK_Mode_Pragmas_In_Instance := True;
-- Mark the instance spec in case the body is instantiated at a
-- later pass. This preserves the original context in effect for
-- the body.
Set_Ignore_SPARK_Mode_Pragmas (Act_Decl_Id);
end if;
Gen_Decl := Unit_Declaration_Node (Gen_Unit);
Gen_Spec := Specification (Gen_Decl);
-- Initialize renamings map, for error checking, and the list that
-- holds private entities whose views have changed between generic
-- definition and instantiation. If this is the instance created to
-- validate an actual package, the instantiation environment is that
-- of the enclosing instance.
Create_Instantiation_Source (N, Gen_Unit, S_Adjustment);
-- Copy original generic tree, to produce text for instantiation
Act_Tree :=
Copy_Generic_Node
(Original_Node (Gen_Decl), Empty, Instantiating => True);
Act_Spec := Specification (Act_Tree);
-- If this is the instance created to validate an actual package,
-- only the formals matter, do not examine the package spec itself.
if Is_Actual_Pack then
Set_Visible_Declarations (Act_Spec, New_List);
Set_Private_Declarations (Act_Spec, New_List);
end if;
Renaming_List :=
Analyze_Associations
(I_Node => N,
Formals => Generic_Formal_Declarations (Act_Tree),
F_Copy => Generic_Formal_Declarations (Gen_Decl));
Vis_Prims_List := Check_Hidden_Primitives (Renaming_List);
Set_Instance_Env (Gen_Unit, Act_Decl_Id);
Set_Defining_Unit_Name (Act_Spec, Act_Decl_Name);
Set_Is_Generic_Instance (Act_Decl_Id);
Set_Generic_Parent (Act_Spec, Gen_Unit);
-- References to the generic in its own declaration or its body are
-- references to the instance. Add a renaming declaration for the
-- generic unit itself. This declaration, as well as the renaming
-- declarations for the generic formals, must remain private to the
-- unit: the formals, because this is the language semantics, and
-- the unit because its use is an artifact of the implementation.
Unit_Renaming :=
Make_Package_Renaming_Declaration (Loc,
Defining_Unit_Name =>
Make_Defining_Identifier (Loc, Chars (Gen_Unit)),
Name => New_Occurrence_Of (Act_Decl_Id, Loc));
Append (Unit_Renaming, Renaming_List);
-- The renaming declarations are the first local declarations of the
-- new unit.
if Is_Non_Empty_List (Visible_Declarations (Act_Spec)) then
Insert_List_Before
(First (Visible_Declarations (Act_Spec)), Renaming_List);
else
Set_Visible_Declarations (Act_Spec, Renaming_List);
end if;
Act_Decl := Make_Package_Declaration (Loc, Specification => Act_Spec);
-- Propagate the aspect specifications from the package declaration
-- template to the instantiated version of the package declaration.
if Has_Aspects (Act_Tree) then
Set_Aspect_Specifications (Act_Decl,
New_Copy_List_Tree (Aspect_Specifications (Act_Tree)));
end if;
-- The generic may have a generated Default_Storage_Pool aspect,
-- set at the point of generic declaration. If the instance has
-- that aspect, it overrides the one inherited from the generic.
if Has_Aspects (Gen_Spec) then
if No (Aspect_Specifications (N)) then
Set_Aspect_Specifications (N,
(New_Copy_List_Tree
(Aspect_Specifications (Gen_Spec))));
else
declare
ASN1, ASN2 : Node_Id;
begin
ASN1 := First (Aspect_Specifications (N));
while Present (ASN1) loop
if Chars (Identifier (ASN1)) = Name_Default_Storage_Pool
then
-- If generic carries a default storage pool, remove
-- it in favor of the instance one.
ASN2 := First (Aspect_Specifications (Gen_Spec));
while Present (ASN2) loop
if Chars (Identifier (ASN2)) =
Name_Default_Storage_Pool
then
Remove (ASN2);
exit;
end if;
Next (ASN2);
end loop;
end if;
Next (ASN1);
end loop;
Prepend_List_To (Aspect_Specifications (N),
(New_Copy_List_Tree
(Aspect_Specifications (Gen_Spec))));
end;
end if;
end if;
-- Save the instantiation node, for subsequent instantiation of the
-- body, if there is one and we are generating code for the current
-- unit. Mark unit as having a body (avoids premature error message).
-- We instantiate the body if we are generating code, if we are
-- generating cross-reference information, or if we are building
-- trees for ASIS use or GNATprove use.
declare
Enclosing_Body_Present : Boolean := False;
-- If the generic unit is not a compilation unit, then a body may
-- be present in its parent even if none is required. We create a
-- tentative pending instantiation for the body, which will be
-- discarded if none is actually present.
Scop : Entity_Id;
begin
if Scope (Gen_Unit) /= Standard_Standard
and then not Is_Child_Unit (Gen_Unit)
then
Scop := Scope (Gen_Unit);
while Present (Scop) and then Scop /= Standard_Standard loop
if Unit_Requires_Body (Scop) then
Enclosing_Body_Present := True;
exit;
elsif In_Open_Scopes (Scop)
and then In_Package_Body (Scop)
then
Enclosing_Body_Present := True;
exit;
end if;
exit when Is_Compilation_Unit (Scop);
Scop := Scope (Scop);
end loop;
end if;
-- If front-end inlining is enabled or there are any subprograms
-- marked with Inline_Always, and this is a unit for which code
-- will be generated, we instantiate the body at once.
-- This is done if the instance is not the main unit, and if the
-- generic is not a child unit of another generic, to avoid scope
-- problems and the reinstallation of parent instances.
if Expander_Active
and then (not Is_Child_Unit (Gen_Unit)
or else not Is_Generic_Unit (Scope (Gen_Unit)))
and then Might_Inline_Subp (Gen_Unit)
and then not Is_Actual_Pack
then
if not Back_End_Inlining
and then (Front_End_Inlining or else Has_Inline_Always)
and then (Is_In_Main_Unit (N)
or else In_Main_Context (Current_Scope))
and then Nkind (Parent (N)) /= N_Compilation_Unit
then
Inline_Now := True;
-- In configurable_run_time mode we force the inlining of
-- predefined subprograms marked Inline_Always, to minimize
-- the use of the run-time library.
elsif In_Predefined_Unit (Gen_Decl)
and then Configurable_Run_Time_Mode
and then Nkind (Parent (N)) /= N_Compilation_Unit
then
Inline_Now := True;
end if;
-- If the current scope is itself an instance within a child
-- unit, there will be duplications in the scope stack, and the
-- unstacking mechanism in Inline_Instance_Body will fail.
-- This loses some rare cases of optimization, and might be
-- improved some day, if we can find a proper abstraction for
-- "the complete compilation context" that can be saved and
-- restored. ???
if Is_Generic_Instance (Current_Scope) then
declare
Curr_Unit : constant Entity_Id :=
Cunit_Entity (Current_Sem_Unit);
begin
if Curr_Unit /= Current_Scope
and then Is_Child_Unit (Curr_Unit)
then
Inline_Now := False;
end if;
end;
end if;
end if;
Needs_Body :=
(Unit_Requires_Body (Gen_Unit)
or else Enclosing_Body_Present
or else Present (Corresponding_Body (Gen_Decl)))
and then (Is_In_Main_Unit (N)
or else Might_Inline_Subp (Gen_Unit))
and then not Is_Actual_Pack
and then not Inline_Now
and then (Operating_Mode = Generate_Code
-- Need comment for this check ???
or else (Operating_Mode = Check_Semantics
and then (ASIS_Mode or GNATprove_Mode)));
-- If front-end inlining is enabled or there are any subprograms
-- marked with Inline_Always, do not instantiate body when within
-- a generic context.
if ((Front_End_Inlining or else Has_Inline_Always)
and then not Expander_Active)
or else Is_Generic_Unit (Cunit_Entity (Main_Unit))
then
Needs_Body := False;
end if;
-- If the current context is generic, and the package being
-- instantiated is declared within a formal package, there is no
-- body to instantiate until the enclosing generic is instantiated
-- and there is an actual for the formal package. If the formal
-- package has parameters, we build a regular package instance for
-- it, that precedes the original formal package declaration.
if In_Open_Scopes (Scope (Scope (Gen_Unit))) then
declare
Decl : constant Node_Id :=
Original_Node
(Unit_Declaration_Node (Scope (Gen_Unit)));
begin
if Nkind (Decl) = N_Formal_Package_Declaration
or else (Nkind (Decl) = N_Package_Declaration
and then Is_List_Member (Decl)
and then Present (Next (Decl))
and then
Nkind (Next (Decl)) =
N_Formal_Package_Declaration)
then
Needs_Body := False;
end if;
end;
end if;
end;
-- For RCI unit calling stubs, we omit the instance body if the
-- instance is the RCI library unit itself.
-- However there is a special case for nested instances: in this case
-- we do generate the instance body, as it might be required, e.g.
-- because it provides stream attributes for some type used in the
-- profile of a remote subprogram. This is consistent with 12.3(12),
-- which indicates that the instance body occurs at the place of the
-- instantiation, and thus is part of the RCI declaration, which is
-- present on all client partitions (this is E.2.3(18)).
-- Note that AI12-0002 may make it illegal at some point to have
-- stream attributes defined in an RCI unit, in which case this
-- special case will become unnecessary. In the meantime, there
-- is known application code in production that depends on this
-- being possible, so we definitely cannot eliminate the body in
-- the case of nested instances for the time being.
-- When we generate a nested instance body, calling stubs for any
-- relevant subprogram will be be inserted immediately after the
-- subprogram declarations, and will take precedence over the
-- subsequent (original) body. (The stub and original body will be
-- complete homographs, but this is permitted in an instance).
-- (Could we do better and remove the original body???)
if Distribution_Stub_Mode = Generate_Caller_Stub_Body
and then Comes_From_Source (N)
and then Nkind (Parent (N)) = N_Compilation_Unit
then
Needs_Body := False;
end if;
if Needs_Body then
-- Here is a defence against a ludicrous number of instantiations
-- caused by a circular set of instantiation attempts.
if Pending_Instantiations.Last > Maximum_Instantiations then
Error_Msg_Uint_1 := UI_From_Int (Maximum_Instantiations);
Error_Msg_N ("too many instantiations, exceeds max of^", N);
Error_Msg_N ("\limit can be changed using -gnateinn switch", N);
raise Unrecoverable_Error;
end if;
-- Indicate that the enclosing scopes contain an instantiation,
-- and that cleanup actions should be delayed until after the
-- instance body is expanded.
Check_Forward_Instantiation (Gen_Decl);
if Nkind (N) = N_Package_Instantiation then
declare
Enclosing_Master : Entity_Id;
begin
-- Loop to search enclosing masters
Enclosing_Master := Current_Scope;
Scope_Loop : while Enclosing_Master /= Standard_Standard loop
if Ekind (Enclosing_Master) = E_Package then
if Is_Compilation_Unit (Enclosing_Master) then
if In_Package_Body (Enclosing_Master) then
Delay_Descriptors
(Body_Entity (Enclosing_Master));
else
Delay_Descriptors
(Enclosing_Master);
end if;
exit Scope_Loop;
else
Enclosing_Master := Scope (Enclosing_Master);
end if;
elsif Is_Generic_Unit (Enclosing_Master)
or else Ekind (Enclosing_Master) = E_Void
then
-- Cleanup actions will eventually be performed on the
-- enclosing subprogram or package instance, if any.
-- Enclosing scope is void in the formal part of a
-- generic subprogram.
exit Scope_Loop;
else
if Ekind (Enclosing_Master) = E_Entry
and then
Ekind (Scope (Enclosing_Master)) = E_Protected_Type
then
if not Expander_Active then
exit Scope_Loop;
else
Enclosing_Master :=
Protected_Body_Subprogram (Enclosing_Master);
end if;
end if;
Set_Delay_Cleanups (Enclosing_Master);
while Ekind (Enclosing_Master) = E_Block loop
Enclosing_Master := Scope (Enclosing_Master);
end loop;
if Is_Subprogram (Enclosing_Master) then
Delay_Descriptors (Enclosing_Master);
elsif Is_Task_Type (Enclosing_Master) then
declare
TBP : constant Node_Id :=
Get_Task_Body_Procedure
(Enclosing_Master);
begin
if Present (TBP) then
Delay_Descriptors (TBP);
Set_Delay_Cleanups (TBP);
end if;
end;
end if;
exit Scope_Loop;
end if;
end loop Scope_Loop;
end;
-- Make entry in table
Add_Pending_Instantiation (N, Act_Decl);
end if;
end if;
Set_Categorization_From_Pragmas (Act_Decl);
if Parent_Installed then
Hide_Current_Scope;
end if;
Set_Instance_Spec (N, Act_Decl);
-- If not a compilation unit, insert the package declaration before
-- the original instantiation node.
if Nkind (Parent (N)) /= N_Compilation_Unit then
Mark_Rewrite_Insertion (Act_Decl);
Insert_Before (N, Act_Decl);
if Has_Aspects (N) then
Analyze_Aspect_Specifications (N, Act_Decl_Id);
-- The pragma created for a Default_Storage_Pool aspect must
-- appear ahead of the declarations in the instance spec.
-- Analysis has placed it after the instance node, so remove
-- it and reinsert it properly now.
declare
ASN : constant Node_Id := First (Aspect_Specifications (N));
A_Name : constant Name_Id := Chars (Identifier (ASN));
Decl : Node_Id;
begin
if A_Name = Name_Default_Storage_Pool then
if No (Visible_Declarations (Act_Spec)) then
Set_Visible_Declarations (Act_Spec, New_List);
end if;
Decl := Next (N);
while Present (Decl) loop
if Nkind (Decl) = N_Pragma then
Remove (Decl);
Prepend (Decl, Visible_Declarations (Act_Spec));
exit;
end if;
Next (Decl);
end loop;
end if;
end;
end if;
Analyze (Act_Decl);
-- For an instantiation that is a compilation unit, place
-- declaration on current node so context is complete for analysis
-- (including nested instantiations). If this is the main unit,
-- the declaration eventually replaces the instantiation node.
-- If the instance body is created later, it replaces the
-- instance node, and the declaration is attached to it
-- (see Build_Instance_Compilation_Unit_Nodes).
else
if Cunit_Entity (Current_Sem_Unit) = Defining_Entity (N) then
-- The entity for the current unit is the newly created one,
-- and all semantic information is attached to it.
Set_Cunit_Entity (Current_Sem_Unit, Act_Decl_Id);
-- If this is the main unit, replace the main entity as well
if Current_Sem_Unit = Main_Unit then
Main_Unit_Entity := Act_Decl_Id;
end if;
end if;
Set_Unit (Parent (N), Act_Decl);
Set_Parent_Spec (Act_Decl, Parent_Spec (N));
Set_Package_Instantiation (Act_Decl_Id, N);
-- Process aspect specifications of the instance node, if any, to
-- take into account categorization pragmas before analyzing the
-- instance.
if Has_Aspects (N) then
Analyze_Aspect_Specifications (N, Act_Decl_Id);
end if;
Analyze (Act_Decl);
Set_Unit (Parent (N), N);
Set_Body_Required (Parent (N), False);
end if;
-- Save the scenario for later examination by the ABE Processing
-- phase.
Record_Elaboration_Scenario (N);
-- The instantiation results in a guaranteed ABE
if Is_Known_Guaranteed_ABE (N) and then Needs_Body then
-- Do not instantiate the corresponding body because gigi cannot
-- handle certain types of premature instantiations.
Pending_Instantiations.Decrement_Last;
-- Create completing bodies for all subprogram declarations since
-- their real bodies will not be instantiated.
Provide_Completing_Bodies (Instance_Spec (N));
end if;
Check_Hidden_Child_Unit (N, Gen_Unit, Act_Decl_Id);
Set_First_Private_Entity (Defining_Unit_Name (Unit_Renaming),
First_Private_Entity (Act_Decl_Id));
-- If the instantiation will receive a body, the unit will be
-- transformed into a package body, and receive its own elaboration
-- entity. Otherwise, the nature of the unit is now a package
-- declaration.
if Nkind (Parent (N)) = N_Compilation_Unit
and then not Needs_Body
then
Rewrite (N, Act_Decl);
end if;
if Present (Corresponding_Body (Gen_Decl))
or else Unit_Requires_Body (Gen_Unit)
then
Set_Has_Completion (Act_Decl_Id);
end if;
Check_Formal_Packages (Act_Decl_Id);
Restore_Hidden_Primitives (Vis_Prims_List);
Restore_Private_Views (Act_Decl_Id);
Inherit_Context (Gen_Decl, N);
if Parent_Installed then
Remove_Parent;
end if;
Restore_Env;
Env_Installed := False;
end if;
Validate_Categorization_Dependency (N, Act_Decl_Id);
-- There used to be a check here to prevent instantiations in local
-- contexts if the No_Local_Allocators restriction was active. This
-- check was removed by a binding interpretation in AI-95-00130/07,
-- but we retain the code for documentation purposes.
-- if Ekind (Act_Decl_Id) /= E_Void
-- and then not Is_Library_Level_Entity (Act_Decl_Id)
-- then
-- Check_Restriction (No_Local_Allocators, N);
-- end if;
if Inline_Now then
Inline_Instance_Body (N, Gen_Unit, Act_Decl);
end if;
-- The following is a tree patch for ASIS: ASIS needs separate nodes to
-- be used as defining identifiers for a formal package and for the
-- corresponding expanded package.
if Nkind (N) = N_Formal_Package_Declaration then
Act_Decl_Id := New_Copy (Defining_Entity (N));
Set_Comes_From_Source (Act_Decl_Id, True);
Set_Is_Generic_Instance (Act_Decl_Id, False);
Set_Defining_Identifier (N, Act_Decl_Id);
end if;
-- Check that if N is an instantiation of System.Dim_Float_IO or
-- System.Dim_Integer_IO, the formal type has a dimension system.
if Nkind (N) = N_Package_Instantiation
and then Is_Dim_IO_Package_Instantiation (N)
then
declare
Assoc : constant Node_Id := First (Generic_Associations (N));
begin
if not Has_Dimension_System
(Etype (Explicit_Generic_Actual_Parameter (Assoc)))
then
Error_Msg_N ("type with a dimension system expected", Assoc);
end if;
end;
end if;
<<Leave>>
if Has_Aspects (N) and then Nkind (Parent (N)) /= N_Compilation_Unit then
Analyze_Aspect_Specifications (N, Act_Decl_Id);
end if;
Ignore_SPARK_Mode_Pragmas_In_Instance := Saved_ISMP;
Restore_Ghost_Mode (Saved_GM);
Restore_SPARK_Mode (Saved_SM, Saved_SMP);
Style_Check := Saved_Style_Check;
exception
when Instantiation_Error =>
if Parent_Installed then
Remove_Parent;
end if;
if Env_Installed then
Restore_Env;
end if;
Ignore_SPARK_Mode_Pragmas_In_Instance := Saved_ISMP;
Restore_Ghost_Mode (Saved_GM);
Restore_SPARK_Mode (Saved_SM, Saved_SMP);
Style_Check := Saved_Style_Check;
end Analyze_Package_Instantiation;
--------------------------
-- Inline_Instance_Body --
--------------------------
-- WARNING: This routine manages SPARK regions. Return statements must be
-- replaced by gotos which jump to the end of the routine and restore the
-- SPARK mode.
procedure Inline_Instance_Body
(N : Node_Id;
Gen_Unit : Entity_Id;
Act_Decl : Node_Id)
is
Curr_Comp : constant Node_Id := Cunit (Current_Sem_Unit);
Curr_Unit : constant Entity_Id := Cunit_Entity (Current_Sem_Unit);
Gen_Comp : constant Entity_Id :=
Cunit_Entity (Get_Source_Unit (Gen_Unit));
Saved_SM : constant SPARK_Mode_Type := SPARK_Mode;
Saved_SMP : constant Node_Id := SPARK_Mode_Pragma;
-- Save the SPARK mode-related data to restore on exit. Removing
-- enclosing scopes to provide a clean environment for analysis of
-- the inlined body will eliminate any previously set SPARK_Mode.
Scope_Stack_Depth : constant Pos :=
Scope_Stack.Last - Scope_Stack.First + 1;
Inner_Scopes : array (1 .. Scope_Stack_Depth) of Entity_Id;
Instances : array (1 .. Scope_Stack_Depth) of Entity_Id;
Use_Clauses : array (1 .. Scope_Stack_Depth) of Node_Id;
Curr_Scope : Entity_Id := Empty;
List : Elist_Id := No_Elist; -- init to avoid warning
N_Instances : Nat := 0;
Num_Inner : Nat := 0;
Num_Scopes : Nat := 0;
Removed : Boolean := False;
S : Entity_Id;
Vis : Boolean;
begin
-- Case of generic unit defined in another unit. We must remove the
-- complete context of the current unit to install that of the generic.
if Gen_Comp /= Cunit_Entity (Current_Sem_Unit) then
-- Add some comments for the following two loops ???
S := Current_Scope;
while Present (S) and then S /= Standard_Standard loop
loop
Num_Scopes := Num_Scopes + 1;
Use_Clauses (Num_Scopes) :=
(Scope_Stack.Table
(Scope_Stack.Last - Num_Scopes + 1).
First_Use_Clause);
End_Use_Clauses (Use_Clauses (Num_Scopes));
exit when Scope_Stack.Last - Num_Scopes + 1 = Scope_Stack.First
or else Scope_Stack.Table
(Scope_Stack.Last - Num_Scopes).Entity = Scope (S);
end loop;
exit when Is_Generic_Instance (S)
and then (In_Package_Body (S)
or else Ekind (S) = E_Procedure
or else Ekind (S) = E_Function);
S := Scope (S);
end loop;
Vis := Is_Immediately_Visible (Gen_Comp);
-- Find and save all enclosing instances
S := Current_Scope;
while Present (S)
and then S /= Standard_Standard
loop
if Is_Generic_Instance (S) then
N_Instances := N_Instances + 1;
Instances (N_Instances) := S;
exit when In_Package_Body (S);
end if;
S := Scope (S);
end loop;
-- Remove context of current compilation unit, unless we are within a
-- nested package instantiation, in which case the context has been
-- removed previously.
-- If current scope is the body of a child unit, remove context of
-- spec as well. If an enclosing scope is an instance body, the
-- context has already been removed, but the entities in the body
-- must be made invisible as well.
S := Current_Scope;
while Present (S) and then S /= Standard_Standard loop
if Is_Generic_Instance (S)
and then (In_Package_Body (S)
or else Ekind_In (S, E_Procedure, E_Function))
then
-- We still have to remove the entities of the enclosing
-- instance from direct visibility.
declare
E : Entity_Id;
begin
E := First_Entity (S);
while Present (E) loop
Set_Is_Immediately_Visible (E, False);
Next_Entity (E);
end loop;
end;
exit;
end if;
if S = Curr_Unit
or else (Ekind (Curr_Unit) = E_Package_Body
and then S = Spec_Entity (Curr_Unit))
or else (Ekind (Curr_Unit) = E_Subprogram_Body
and then S = Corresponding_Spec
(Unit_Declaration_Node (Curr_Unit)))
then
Removed := True;
-- Remove entities in current scopes from visibility, so that
-- instance body is compiled in a clean environment.
List := Save_Scope_Stack (Handle_Use => False);
if Is_Child_Unit (S) then
-- Remove child unit from stack, as well as inner scopes.
-- Removing the context of a child unit removes parent units
-- as well.
while Current_Scope /= S loop
Num_Inner := Num_Inner + 1;
Inner_Scopes (Num_Inner) := Current_Scope;
Pop_Scope;
end loop;
Pop_Scope;
Remove_Context (Curr_Comp);
Curr_Scope := S;
else
Remove_Context (Curr_Comp);
end if;
if Ekind (Curr_Unit) = E_Package_Body then
Remove_Context (Library_Unit (Curr_Comp));
end if;
end if;
S := Scope (S);
end loop;
pragma Assert (Num_Inner < Num_Scopes);
-- The inlined package body must be analyzed with the SPARK_Mode of
-- the enclosing context, otherwise the body may cause bogus errors
-- if a configuration SPARK_Mode pragma in in effect.
Push_Scope (Standard_Standard);
Scope_Stack.Table (Scope_Stack.Last).Is_Active_Stack_Base := True;
Instantiate_Package_Body
(Body_Info =>
((Inst_Node => N,
Act_Decl => Act_Decl,
Expander_Status => Expander_Active,
Current_Sem_Unit => Current_Sem_Unit,
Scope_Suppress => Scope_Suppress,
Local_Suppress_Stack_Top => Local_Suppress_Stack_Top,
Version => Ada_Version,
Version_Pragma => Ada_Version_Pragma,
Warnings => Save_Warnings,
SPARK_Mode => Saved_SM,
SPARK_Mode_Pragma => Saved_SMP)),
Inlined_Body => True);
Pop_Scope;
-- Restore context
Set_Is_Immediately_Visible (Gen_Comp, Vis);
-- Reset Generic_Instance flag so that use clauses can be installed
-- in the proper order. (See Use_One_Package for effect of enclosing
-- instances on processing of use clauses).
for J in 1 .. N_Instances loop
Set_Is_Generic_Instance (Instances (J), False);
end loop;
if Removed then
Install_Context (Curr_Comp, Chain => False);
if Present (Curr_Scope)
and then Is_Child_Unit (Curr_Scope)
then
Push_Scope (Curr_Scope);
Set_Is_Immediately_Visible (Curr_Scope);
-- Finally, restore inner scopes as well
for J in reverse 1 .. Num_Inner loop
Push_Scope (Inner_Scopes (J));
end loop;
end if;
Restore_Scope_Stack (List, Handle_Use => False);
if Present (Curr_Scope)
and then
(In_Private_Part (Curr_Scope)
or else In_Package_Body (Curr_Scope))
then
-- Install private declaration of ancestor units, which are
-- currently available. Restore_Scope_Stack and Install_Context
-- only install the visible part of parents.
declare
Par : Entity_Id;
begin
Par := Scope (Curr_Scope);
while (Present (Par)) and then Par /= Standard_Standard loop
Install_Private_Declarations (Par);
Par := Scope (Par);
end loop;
end;
end if;
end if;
-- Restore use clauses. For a child unit, use clauses in the parents
-- are restored when installing the context, so only those in inner
-- scopes (and those local to the child unit itself) need to be
-- installed explicitly.
if Is_Child_Unit (Curr_Unit) and then Removed then
for J in reverse 1 .. Num_Inner + 1 loop
Scope_Stack.Table (Scope_Stack.Last - J + 1).First_Use_Clause :=
Use_Clauses (J);
Install_Use_Clauses (Use_Clauses (J));
end loop;
else
for J in reverse 1 .. Num_Scopes loop
Scope_Stack.Table (Scope_Stack.Last - J + 1).First_Use_Clause :=
Use_Clauses (J);
Install_Use_Clauses (Use_Clauses (J));
end loop;
end if;
-- Restore status of instances. If one of them is a body, make its
-- local entities visible again.
declare
E : Entity_Id;
Inst : Entity_Id;
begin
for J in 1 .. N_Instances loop
Inst := Instances (J);
Set_Is_Generic_Instance (Inst, True);
if In_Package_Body (Inst)
or else Ekind_In (S, E_Procedure, E_Function)
then
E := First_Entity (Instances (J));
while Present (E) loop
Set_Is_Immediately_Visible (E);
Next_Entity (E);
end loop;
end if;
end loop;
end;
-- If generic unit is in current unit, current context is correct. Note
-- that the context is guaranteed to carry the correct SPARK_Mode as no
-- enclosing scopes were removed.
else
Instantiate_Package_Body
(Body_Info =>
((Inst_Node => N,
Act_Decl => Act_Decl,
Expander_Status => Expander_Active,
Current_Sem_Unit => Current_Sem_Unit,
Scope_Suppress => Scope_Suppress,
Local_Suppress_Stack_Top => Local_Suppress_Stack_Top,
Version => Ada_Version,
Version_Pragma => Ada_Version_Pragma,
Warnings => Save_Warnings,
SPARK_Mode => SPARK_Mode,
SPARK_Mode_Pragma => SPARK_Mode_Pragma)),
Inlined_Body => True);
end if;
end Inline_Instance_Body;
-------------------------------------
-- Analyze_Procedure_Instantiation --
-------------------------------------
procedure Analyze_Procedure_Instantiation (N : Node_Id) is
begin
Analyze_Subprogram_Instantiation (N, E_Procedure);
end Analyze_Procedure_Instantiation;
-----------------------------------
-- Need_Subprogram_Instance_Body --
-----------------------------------
function Need_Subprogram_Instance_Body
(N : Node_Id;
Subp : Entity_Id) return Boolean
is
function Is_Inlined_Or_Child_Of_Inlined (E : Entity_Id) return Boolean;
-- Return True if E is an inlined subprogram, an inlined renaming or a
-- subprogram nested in an inlined subprogram. The inlining machinery
-- totally disregards nested subprograms since it considers that they
-- will always be compiled if the parent is (see Inline.Is_Nested).
------------------------------------
-- Is_Inlined_Or_Child_Of_Inlined --
------------------------------------
function Is_Inlined_Or_Child_Of_Inlined (E : Entity_Id) return Boolean is
Scop : Entity_Id;
begin
if Is_Inlined (E) or else Is_Inlined (Alias (E)) then
return True;
end if;
Scop := Scope (E);
while Scop /= Standard_Standard loop
if Ekind (Scop) in Subprogram_Kind and then Is_Inlined (Scop) then
return True;
end if;
Scop := Scope (Scop);
end loop;
return False;
end Is_Inlined_Or_Child_Of_Inlined;
begin
-- Must be in the main unit or inlined (or child of inlined)
if (Is_In_Main_Unit (N) or else Is_Inlined_Or_Child_Of_Inlined (Subp))
-- Must be generating code or analyzing code in ASIS/GNATprove mode
and then (Operating_Mode = Generate_Code
or else (Operating_Mode = Check_Semantics
and then (ASIS_Mode or GNATprove_Mode)))
-- The body is needed when generating code (full expansion), in ASIS
-- mode for other tools, and in GNATprove mode (special expansion) for
-- formal verification of the body itself.
and then (Expander_Active or ASIS_Mode or GNATprove_Mode)
-- No point in inlining if ABE is inevitable
and then not Is_Known_Guaranteed_ABE (N)
-- Or if subprogram is eliminated
and then not Is_Eliminated (Subp)
then
Add_Pending_Instantiation (N, Unit_Declaration_Node (Subp));
return True;
-- Here if not inlined, or we ignore the inlining
else
return False;
end if;
end Need_Subprogram_Instance_Body;
--------------------------------------
-- Analyze_Subprogram_Instantiation --
--------------------------------------
-- WARNING: This routine manages Ghost and SPARK regions. Return statements
-- must be replaced by gotos which jump to the end of the routine in order
-- to restore the Ghost and SPARK modes.
procedure Analyze_Subprogram_Instantiation
(N : Node_Id;
K : Entity_Kind)
is
Loc : constant Source_Ptr := Sloc (N);
Gen_Id : constant Node_Id := Name (N);
Errs : constant Nat := Serious_Errors_Detected;
Anon_Id : constant Entity_Id :=
Make_Defining_Identifier (Sloc (Defining_Entity (N)),
Chars => New_External_Name
(Chars (Defining_Entity (N)), 'R'));
Act_Decl_Id : Entity_Id := Empty; -- init to avoid warning
Act_Decl : Node_Id;
Act_Spec : Node_Id;
Act_Tree : Node_Id;
Env_Installed : Boolean := False;
Gen_Unit : Entity_Id;
Gen_Decl : Node_Id;
Pack_Id : Entity_Id;
Parent_Installed : Boolean := False;
Renaming_List : List_Id;
-- The list of declarations that link formals and actuals of the
-- instance. These are subtype declarations for formal types, and
-- renaming declarations for other formals. The subprogram declaration
-- for the instance is then appended to the list, and the last item on
-- the list is the renaming declaration for the instance.
procedure Analyze_Instance_And_Renamings;
-- The instance must be analyzed in a context that includes the mappings
-- of generic parameters into actuals. We create a package declaration
-- for this purpose, and a subprogram with an internal name within the
-- package. The subprogram instance is simply an alias for the internal
-- subprogram, declared in the current scope.
procedure Build_Subprogram_Renaming;
-- If the subprogram is recursive, there are occurrences of the name of
-- the generic within the body, which must resolve to the current
-- instance. We add a renaming declaration after the declaration, which
-- is available in the instance body, as well as in the analysis of
-- aspects that appear in the generic. This renaming declaration is
-- inserted after the instance declaration which it renames.
------------------------------------
-- Analyze_Instance_And_Renamings --
------------------------------------
procedure Analyze_Instance_And_Renamings is
Def_Ent : constant Entity_Id := Defining_Entity (N);
Pack_Decl : Node_Id;
begin
if Nkind (Parent (N)) = N_Compilation_Unit then
-- For the case of a compilation unit, the container package has
-- the same name as the instantiation, to insure that the binder
-- calls the elaboration procedure with the right name. Copy the
-- entity of the instance, which may have compilation level flags
-- (e.g. Is_Child_Unit) set.
Pack_Id := New_Copy (Def_Ent);
else
-- Otherwise we use the name of the instantiation concatenated
-- with its source position to ensure uniqueness if there are
-- several instantiations with the same name.
Pack_Id :=
Make_Defining_Identifier (Loc,
Chars => New_External_Name
(Related_Id => Chars (Def_Ent),
Suffix => "GP",
Suffix_Index => Source_Offset (Sloc (Def_Ent))));
end if;
Pack_Decl :=
Make_Package_Declaration (Loc,
Specification => Make_Package_Specification (Loc,
Defining_Unit_Name => Pack_Id,
Visible_Declarations => Renaming_List,
End_Label => Empty));
Set_Instance_Spec (N, Pack_Decl);
Set_Is_Generic_Instance (Pack_Id);
Set_Debug_Info_Needed (Pack_Id);
-- Case of not a compilation unit
if Nkind (Parent (N)) /= N_Compilation_Unit then
Mark_Rewrite_Insertion (Pack_Decl);
Insert_Before (N, Pack_Decl);
Set_Has_Completion (Pack_Id);
-- Case of an instantiation that is a compilation unit
-- Place declaration on current node so context is complete for
-- analysis (including nested instantiations), and for use in a
-- context_clause (see Analyze_With_Clause).
else
Set_Unit (Parent (N), Pack_Decl);
Set_Parent_Spec (Pack_Decl, Parent_Spec (N));
end if;
Analyze (Pack_Decl);
Check_Formal_Packages (Pack_Id);
Set_Is_Generic_Instance (Pack_Id, False);
-- Why do we clear Is_Generic_Instance??? We set it 20 lines
-- above???
-- Body of the enclosing package is supplied when instantiating the
-- subprogram body, after semantic analysis is completed.
if Nkind (Parent (N)) = N_Compilation_Unit then
-- Remove package itself from visibility, so it does not
-- conflict with subprogram.
Set_Name_Entity_Id (Chars (Pack_Id), Homonym (Pack_Id));
-- Set name and scope of internal subprogram so that the proper
-- external name will be generated. The proper scope is the scope
-- of the wrapper package. We need to generate debugging info for
-- the internal subprogram, so set flag accordingly.
Set_Chars (Anon_Id, Chars (Defining_Entity (N)));
Set_Scope (Anon_Id, Scope (Pack_Id));
-- Mark wrapper package as referenced, to avoid spurious warnings
-- if the instantiation appears in various with_ clauses of
-- subunits of the main unit.
Set_Referenced (Pack_Id);
end if;
Set_Is_Generic_Instance (Anon_Id);
Set_Debug_Info_Needed (Anon_Id);
Act_Decl_Id := New_Copy (Anon_Id);
Set_Parent (Act_Decl_Id, Parent (Anon_Id));
Set_Chars (Act_Decl_Id, Chars (Defining_Entity (N)));
Set_Sloc (Act_Decl_Id, Sloc (Defining_Entity (N)));
-- Subprogram instance comes from source only if generic does
Set_Comes_From_Source (Act_Decl_Id, Comes_From_Source (Gen_Unit));
-- If the instance is a child unit, mark the Id accordingly. Mark
-- the anonymous entity as well, which is the real subprogram and
-- which is used when the instance appears in a context clause.
-- Similarly, propagate the Is_Eliminated flag to handle properly
-- nested eliminated subprograms.
Set_Is_Child_Unit (Act_Decl_Id, Is_Child_Unit (Defining_Entity (N)));
Set_Is_Child_Unit (Anon_Id, Is_Child_Unit (Defining_Entity (N)));
New_Overloaded_Entity (Act_Decl_Id);
Check_Eliminated (Act_Decl_Id);
Set_Is_Eliminated (Anon_Id, Is_Eliminated (Act_Decl_Id));
if Nkind (Parent (N)) = N_Compilation_Unit then
Set_Kill_Elaboration_Checks (Act_Decl_Id);
Set_Is_Compilation_Unit (Anon_Id);
Set_Cunit_Entity (Current_Sem_Unit, Pack_Id);
end if;
-- The instance is not a freezing point for the new subprogram.
-- The anonymous subprogram may have a freeze node, created for
-- some delayed aspects. This freeze node must not be inherited
-- by the visible subprogram entity.
Set_Is_Frozen (Act_Decl_Id, False);
Set_Freeze_Node (Act_Decl_Id, Empty);
if Nkind (Defining_Entity (N)) = N_Defining_Operator_Symbol then
Valid_Operator_Definition (Act_Decl_Id);
end if;
Set_Alias (Act_Decl_Id, Anon_Id);
Set_Has_Completion (Act_Decl_Id);
Set_Related_Instance (Pack_Id, Act_Decl_Id);
if Nkind (Parent (N)) = N_Compilation_Unit then
Set_Body_Required (Parent (N), False);
end if;
end Analyze_Instance_And_Renamings;
-------------------------------
-- Build_Subprogram_Renaming --
-------------------------------
procedure Build_Subprogram_Renaming is
Renaming_Decl : Node_Id;
Unit_Renaming : Node_Id;
begin
Unit_Renaming :=
Make_Subprogram_Renaming_Declaration (Loc,
Specification =>
Copy_Generic_Node
(Specification (Original_Node (Gen_Decl)),
Empty,
Instantiating => True),
Name => New_Occurrence_Of (Anon_Id, Loc));
-- The generic may be a a child unit. The renaming needs an
-- identifier with the proper name.
Set_Defining_Unit_Name (Specification (Unit_Renaming),
Make_Defining_Identifier (Loc, Chars (Gen_Unit)));
-- If there is a formal subprogram with the same name as the unit
-- itself, do not add this renaming declaration, to prevent
-- ambiguities when there is a call with that name in the body.
-- This is a partial and ugly fix for one ACATS test. ???
Renaming_Decl := First (Renaming_List);
while Present (Renaming_Decl) loop
if Nkind (Renaming_Decl) = N_Subprogram_Renaming_Declaration
and then
Chars (Defining_Entity (Renaming_Decl)) = Chars (Gen_Unit)
then
exit;
end if;
Next (Renaming_Decl);
end loop;
if No (Renaming_Decl) then
Append (Unit_Renaming, Renaming_List);
end if;
end Build_Subprogram_Renaming;
-- Local variables
Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
Saved_ISMP : constant Boolean :=
Ignore_SPARK_Mode_Pragmas_In_Instance;
Saved_SM : constant SPARK_Mode_Type := SPARK_Mode;
Saved_SMP : constant Node_Id := SPARK_Mode_Pragma;
-- Save the Ghost and SPARK mode-related data to restore on exit
Vis_Prims_List : Elist_Id := No_Elist;
-- List of primitives made temporarily visible in the instantiation
-- to match the visibility of the formal type
-- Start of processing for Analyze_Subprogram_Instantiation
begin
-- Preserve relevant elaboration-related attributes of the context which
-- are no longer available or very expensive to recompute once analysis,
-- resolution, and expansion are over.
Mark_Elaboration_Attributes
(N_Id => N,
Checks => True,
Level => True,
Modes => True,
Warnings => True);
Check_SPARK_05_Restriction ("generic is not allowed", N);
-- Very first thing: check for special Text_IO unit in case we are
-- instantiating one of the children of [[Wide_]Wide_]Text_IO. Of course
-- such an instantiation is bogus (these are packages, not subprograms),
-- but we get a better error message if we do this.
Check_Text_IO_Special_Unit (Gen_Id);
-- Make node global for error reporting
Instantiation_Node := N;
-- For package instantiations we turn off style checks, because they
-- will have been emitted in the generic. For subprogram instantiations
-- we want to apply at least the check on overriding indicators so we
-- do not modify the style check status.
-- The renaming declarations for the actuals do not come from source and
-- will not generate spurious warnings.
Preanalyze_Actuals (N);
Init_Env;
Env_Installed := True;
Check_Generic_Child_Unit (Gen_Id, Parent_Installed);
Gen_Unit := Entity (Gen_Id);
-- A subprogram instantiation is Ghost when it is subject to pragma
-- Ghost or the generic template is Ghost. Set the mode now to ensure
-- that any nodes generated during analysis and expansion are marked as
-- Ghost.
Mark_And_Set_Ghost_Instantiation (N, Gen_Unit);
Generate_Reference (Gen_Unit, Gen_Id);
if Nkind (Gen_Id) = N_Identifier
and then Chars (Gen_Unit) = Chars (Defining_Entity (N))
then
Error_Msg_NE
("& is hidden within declaration of instance", Gen_Id, Gen_Unit);
end if;
if Etype (Gen_Unit) = Any_Type then
Restore_Env;
goto Leave;
end if;
-- Verify that it is a generic subprogram of the right kind, and that
-- it does not lead to a circular instantiation.
if K = E_Procedure and then Ekind (Gen_Unit) /= E_Generic_Procedure then
Error_Msg_NE
("& is not the name of a generic procedure", Gen_Id, Gen_Unit);
elsif K = E_Function and then Ekind (Gen_Unit) /= E_Generic_Function then
Error_Msg_NE
("& is not the name of a generic function", Gen_Id, Gen_Unit);
elsif In_Open_Scopes (Gen_Unit) then
Error_Msg_NE ("instantiation of & within itself", N, Gen_Unit);
else
Set_Entity (Gen_Id, Gen_Unit);
Set_Is_Instantiated (Gen_Unit);
if In_Extended_Main_Source_Unit (N) then
Generate_Reference (Gen_Unit, N);
end if;
-- If renaming, get original unit
if Present (Renamed_Object (Gen_Unit))
and then Ekind_In (Renamed_Object (Gen_Unit), E_Generic_Procedure,
E_Generic_Function)
then
Gen_Unit := Renamed_Object (Gen_Unit);
Set_Is_Instantiated (Gen_Unit);
Generate_Reference (Gen_Unit, N);
end if;
if Contains_Instance_Of (Gen_Unit, Current_Scope, Gen_Id) then
Error_Msg_Node_2 := Current_Scope;
Error_Msg_NE
("circular Instantiation: & instantiated in &!", N, Gen_Unit);
Circularity_Detected := True;
Restore_Hidden_Primitives (Vis_Prims_List);
goto Leave;
end if;
Gen_Decl := Unit_Declaration_Node (Gen_Unit);
-- Initialize renamings map, for error checking
Generic_Renamings.Set_Last (0);
Generic_Renamings_HTable.Reset;
Create_Instantiation_Source (N, Gen_Unit, S_Adjustment);
-- Copy original generic tree, to produce text for instantiation
Act_Tree :=
Copy_Generic_Node
(Original_Node (Gen_Decl), Empty, Instantiating => True);
-- Inherit overriding indicator from instance node
Act_Spec := Specification (Act_Tree);
Set_Must_Override (Act_Spec, Must_Override (N));
Set_Must_Not_Override (Act_Spec, Must_Not_Override (N));
Renaming_List :=
Analyze_Associations
(I_Node => N,
Formals => Generic_Formal_Declarations (Act_Tree),
F_Copy => Generic_Formal_Declarations (Gen_Decl));
Vis_Prims_List := Check_Hidden_Primitives (Renaming_List);
-- The subprogram itself cannot contain a nested instance, so the
-- current parent is left empty.
Set_Instance_Env (Gen_Unit, Empty);
-- Build the subprogram declaration, which does not appear in the
-- generic template, and give it a sloc consistent with that of the
-- template.
Set_Defining_Unit_Name (Act_Spec, Anon_Id);
Set_Generic_Parent (Act_Spec, Gen_Unit);
Act_Decl :=
Make_Subprogram_Declaration (Sloc (Act_Spec),
Specification => Act_Spec);
-- The aspects have been copied previously, but they have to be
-- linked explicitly to the new subprogram declaration. Explicit
-- pre/postconditions on the instance are analyzed below, in a
-- separate step.
Move_Aspects (Act_Tree, To => Act_Decl);
Set_Categorization_From_Pragmas (Act_Decl);
if Parent_Installed then
Hide_Current_Scope;
end if;
Append (Act_Decl, Renaming_List);
-- Contract-related source pragmas that follow a generic subprogram
-- must be instantiated explicitly because they are not part of the
-- subprogram template.
Instantiate_Subprogram_Contract
(Original_Node (Gen_Decl), Renaming_List);
Build_Subprogram_Renaming;
-- If the context of the instance is subject to SPARK_Mode "off" or
-- the annotation is altogether missing, set the global flag which
-- signals Analyze_Pragma to ignore all SPARK_Mode pragmas within
-- the instance. This should be done prior to analyzing the instance.
if SPARK_Mode /= On then
Ignore_SPARK_Mode_Pragmas_In_Instance := True;
end if;
-- If the context of an instance is not subject to SPARK_Mode "off",
-- and the generic spec is subject to an explicit SPARK_Mode pragma,
-- the latter should be the one applicable to the instance.
if not Ignore_SPARK_Mode_Pragmas_In_Instance
and then Saved_SM /= Off
and then Present (SPARK_Pragma (Gen_Unit))
then
Set_SPARK_Mode (Gen_Unit);
end if;
Analyze_Instance_And_Renamings;
-- Restore SPARK_Mode from the context after analysis of the package
-- declaration, so that the SPARK_Mode on the generic spec does not
-- apply to the pending instance for the instance body.
if not Ignore_SPARK_Mode_Pragmas_In_Instance
and then Saved_SM /= Off
and then Present (SPARK_Pragma (Gen_Unit))
then
Restore_SPARK_Mode (Saved_SM, Saved_SMP);
end if;
-- If the generic is marked Import (Intrinsic), then so is the
-- instance. This indicates that there is no body to instantiate. If
-- generic is marked inline, so it the instance, and the anonymous
-- subprogram it renames. If inlined, or else if inlining is enabled
-- for the compilation, we generate the instance body even if it is
-- not within the main unit.
if Is_Intrinsic_Subprogram (Gen_Unit) then
Set_Is_Intrinsic_Subprogram (Anon_Id);
Set_Is_Intrinsic_Subprogram (Act_Decl_Id);
if Chars (Gen_Unit) = Name_Unchecked_Conversion then
Validate_Unchecked_Conversion (N, Act_Decl_Id);
end if;
end if;
-- Inherit convention from generic unit. Intrinsic convention, as for
-- an instance of unchecked conversion, is not inherited because an
-- explicit Ada instance has been created.
if Has_Convention_Pragma (Gen_Unit)
and then Convention (Gen_Unit) /= Convention_Intrinsic
then
Set_Convention (Act_Decl_Id, Convention (Gen_Unit));
Set_Is_Exported (Act_Decl_Id, Is_Exported (Gen_Unit));
end if;
Generate_Definition (Act_Decl_Id);
-- Inherit all inlining-related flags which apply to the generic in
-- the subprogram and its declaration.
Set_Is_Inlined (Act_Decl_Id, Is_Inlined (Gen_Unit));
Set_Is_Inlined (Anon_Id, Is_Inlined (Gen_Unit));
Set_Has_Pragma_Inline (Act_Decl_Id, Has_Pragma_Inline (Gen_Unit));
Set_Has_Pragma_Inline (Anon_Id, Has_Pragma_Inline (Gen_Unit));
-- Propagate No_Return if pragma applied to generic unit. This must
-- be done explicitly because pragma does not appear in generic
-- declaration (unlike the aspect case).
if No_Return (Gen_Unit) then
Set_No_Return (Act_Decl_Id);
Set_No_Return (Anon_Id);
end if;
Set_Has_Pragma_Inline_Always
(Act_Decl_Id, Has_Pragma_Inline_Always (Gen_Unit));
Set_Has_Pragma_Inline_Always
(Anon_Id, Has_Pragma_Inline_Always (Gen_Unit));
-- Mark both the instance spec and the anonymous package in case the
-- body is instantiated at a later pass. This preserves the original
-- context in effect for the body.
if SPARK_Mode /= On then
Set_Ignore_SPARK_Mode_Pragmas (Act_Decl_Id);
Set_Ignore_SPARK_Mode_Pragmas (Anon_Id);
end if;
-- Save the scenario for later examination by the ABE Processing
-- phase.
Record_Elaboration_Scenario (N);
-- The instantiation results in a guaranteed ABE. Create a completing
-- body for the subprogram declaration because the real body will not
-- be instantiated.
if Is_Known_Guaranteed_ABE (N) then
Provide_Completing_Bodies (Instance_Spec (N));
end if;
if Is_Dispatching_Operation (Act_Decl_Id)
and then Ada_Version >= Ada_2005
then
declare
Formal : Entity_Id;
begin
Formal := First_Formal (Act_Decl_Id);
while Present (Formal) loop
if Ekind (Etype (Formal)) = E_Anonymous_Access_Type
and then Is_Controlling_Formal (Formal)
and then not Can_Never_Be_Null (Formal)
then
Error_Msg_NE
("access parameter& is controlling,", N, Formal);
Error_Msg_NE
("\corresponding parameter of & must be explicitly "
& "null-excluding", N, Gen_Id);
end if;
Next_Formal (Formal);
end loop;
end;
end if;
Check_Hidden_Child_Unit (N, Gen_Unit, Act_Decl_Id);
Validate_Categorization_Dependency (N, Act_Decl_Id);
if not Is_Intrinsic_Subprogram (Act_Decl_Id) then
Inherit_Context (Gen_Decl, N);
Restore_Private_Views (Pack_Id, False);
-- If the context requires a full instantiation, mark node for
-- subsequent construction of the body.
if Need_Subprogram_Instance_Body (N, Act_Decl_Id) then
Check_Forward_Instantiation (Gen_Decl);
-- The wrapper package is always delayed, because it does not
-- constitute a freeze point, but to insure that the freeze node
-- is placed properly, it is created directly when instantiating
-- the body (otherwise the freeze node might appear to early for
-- nested instantiations). For ASIS purposes, indicate that the
-- wrapper package has replaced the instantiation node.
elsif Nkind (Parent (N)) = N_Compilation_Unit then
Rewrite (N, Unit (Parent (N)));
Set_Unit (Parent (N), N);
end if;
-- Replace instance node for library-level instantiations of
-- intrinsic subprograms, for ASIS use.
elsif Nkind (Parent (N)) = N_Compilation_Unit then
Rewrite (N, Unit (Parent (N)));
Set_Unit (Parent (N), N);
end if;
if Parent_Installed then
Remove_Parent;
end if;
Restore_Hidden_Primitives (Vis_Prims_List);
Restore_Env;
Env_Installed := False;
Generic_Renamings.Set_Last (0);
Generic_Renamings_HTable.Reset;
end if;
<<Leave>>
-- Analyze aspects in declaration if no errors appear in the instance.
if Has_Aspects (N) and then Serious_Errors_Detected = Errs then
Analyze_Aspect_Specifications (N, Act_Decl_Id);
end if;
Ignore_SPARK_Mode_Pragmas_In_Instance := Saved_ISMP;
Restore_Ghost_Mode (Saved_GM);
Restore_SPARK_Mode (Saved_SM, Saved_SMP);
exception
when Instantiation_Error =>
if Parent_Installed then
Remove_Parent;
end if;
if Env_Installed then
Restore_Env;
end if;
Ignore_SPARK_Mode_Pragmas_In_Instance := Saved_ISMP;
Restore_Ghost_Mode (Saved_GM);
Restore_SPARK_Mode (Saved_SM, Saved_SMP);
end Analyze_Subprogram_Instantiation;
-------------------------
-- Get_Associated_Node --
-------------------------
function Get_Associated_Node (N : Node_Id) return Node_Id is
Assoc : Node_Id;
begin
Assoc := Associated_Node (N);
if Nkind (Assoc) /= Nkind (N) then
return Assoc;
elsif Nkind_In (Assoc, N_Aggregate, N_Extension_Aggregate) then
return Assoc;
else
-- If the node is part of an inner generic, it may itself have been
-- remapped into a further generic copy. Associated_Node is otherwise
-- used for the entity of the node, and will be of a different node
-- kind, or else N has been rewritten as a literal or function call.
while Present (Associated_Node (Assoc))
and then Nkind (Associated_Node (Assoc)) = Nkind (Assoc)
loop
Assoc := Associated_Node (Assoc);
end loop;
-- Follow an additional link in case the final node was rewritten.
-- This can only happen with nested generic units.
if (Nkind (Assoc) = N_Identifier or else Nkind (Assoc) in N_Op)
and then Present (Associated_Node (Assoc))
and then (Nkind_In (Associated_Node (Assoc), N_Function_Call,
N_Explicit_Dereference,
N_Integer_Literal,
N_Real_Literal,
N_String_Literal))
then
Assoc := Associated_Node (Assoc);
end if;
-- An additional special case: an unconstrained type in an object
-- declaration may have been rewritten as a local subtype constrained
-- by the expression in the declaration. We need to recover the
-- original entity, which may be global.
if Present (Original_Node (Assoc))
and then Nkind (Parent (N)) = N_Object_Declaration
then
Assoc := Original_Node (Assoc);
end if;
return Assoc;
end if;
end Get_Associated_Node;
----------------------------
-- Build_Function_Wrapper --
----------------------------
function Build_Function_Wrapper
(Formal_Subp : Entity_Id;
Actual_Subp : Entity_Id) return Node_Id
is
Loc : constant Source_Ptr := Sloc (Current_Scope);
Ret_Type : constant Entity_Id := Get_Instance_Of (Etype (Formal_Subp));
Actuals : List_Id;
Decl : Node_Id;
Func_Name : Node_Id;
Func : Entity_Id;
Parm_Type : Node_Id;
Profile : List_Id := New_List;
Spec : Node_Id;
Act_F : Entity_Id;
Form_F : Entity_Id;
New_F : Entity_Id;
begin
Func_Name := New_Occurrence_Of (Actual_Subp, Loc);
Func := Make_Defining_Identifier (Loc, Chars (Formal_Subp));
Set_Ekind (Func, E_Function);
Set_Is_Generic_Actual_Subprogram (Func);
Actuals := New_List;
Profile := New_List;
Act_F := First_Formal (Actual_Subp);
Form_F := First_Formal (Formal_Subp);
while Present (Form_F) loop
-- Create new formal for profile of wrapper, and add a reference
-- to it in the list of actuals for the enclosing call. The name
-- must be that of the formal in the formal subprogram, because
-- calls to it in the generic body may use named associations.
New_F := Make_Defining_Identifier (Loc, Chars (Form_F));
Parm_Type :=
New_Occurrence_Of (Get_Instance_Of (Etype (Form_F)), Loc);
Append_To (Profile,
Make_Parameter_Specification (Loc,
Defining_Identifier => New_F,
Parameter_Type => Parm_Type));
Append_To (Actuals, New_Occurrence_Of (New_F, Loc));
Next_Formal (Form_F);
if Present (Act_F) then
Next_Formal (Act_F);
end if;
end loop;
Spec :=
Make_Function_Specification (Loc,
Defining_Unit_Name => Func,
Parameter_Specifications => Profile,
Result_Definition => New_Occurrence_Of (Ret_Type, Loc));
Decl :=
Make_Expression_Function (Loc,
Specification => Spec,
Expression =>
Make_Function_Call (Loc,
Name => Func_Name,
Parameter_Associations => Actuals));
return Decl;
end Build_Function_Wrapper;
----------------------------
-- Build_Operator_Wrapper --
----------------------------
function Build_Operator_Wrapper
(Formal_Subp : Entity_Id;
Actual_Subp : Entity_Id) return Node_Id
is
Loc : constant Source_Ptr := Sloc (Current_Scope);
Ret_Type : constant Entity_Id :=
Get_Instance_Of (Etype (Formal_Subp));
Op_Type : constant Entity_Id :=
Get_Instance_Of (Etype (First_Formal (Formal_Subp)));
Is_Binary : constant Boolean :=
Present (Next_Formal (First_Formal (Formal_Subp)));
Decl : Node_Id;
Expr : Node_Id := Empty;
F1, F2 : Entity_Id;
Func : Entity_Id;
Op_Name : Name_Id;
Spec : Node_Id;
L, R : Node_Id;
begin
Op_Name := Chars (Actual_Subp);
-- Create entities for wrapper function and its formals
F1 := Make_Temporary (Loc, 'A');
F2 := Make_Temporary (Loc, 'B');
L := New_Occurrence_Of (F1, Loc);
R := New_Occurrence_Of (F2, Loc);
Func := Make_Defining_Identifier (Loc, Chars (Formal_Subp));
Set_Ekind (Func, E_Function);
Set_Is_Generic_Actual_Subprogram (Func);
Spec :=
Make_Function_Specification (Loc,
Defining_Unit_Name => Func,
Parameter_Specifications => New_List (
Make_Parameter_Specification (Loc,
Defining_Identifier => F1,
Parameter_Type => New_Occurrence_Of (Op_Type, Loc))),
Result_Definition => New_Occurrence_Of (Ret_Type, Loc));
if Is_Binary then
Append_To (Parameter_Specifications (Spec),
Make_Parameter_Specification (Loc,
Defining_Identifier => F2,
Parameter_Type => New_Occurrence_Of (Op_Type, Loc)));
end if;
-- Build expression as a function call, or as an operator node
-- that corresponds to the name of the actual, starting with
-- binary operators.
if Op_Name not in Any_Operator_Name then
Expr :=
Make_Function_Call (Loc,
Name =>
New_Occurrence_Of (Actual_Subp, Loc),
Parameter_Associations => New_List (L));
if Is_Binary then
Append_To (Parameter_Associations (Expr), R);
end if;
-- Binary operators
elsif Is_Binary then
if Op_Name = Name_Op_And then
Expr := Make_Op_And (Loc, Left_Opnd => L, Right_Opnd => R);
elsif Op_Name = Name_Op_Or then
Expr := Make_Op_Or (Loc, Left_Opnd => L, Right_Opnd => R);
elsif Op_Name = Name_Op_Xor then
Expr := Make_Op_Xor (Loc, Left_Opnd => L, Right_Opnd => R);
elsif Op_Name = Name_Op_Eq then
Expr := Make_Op_Eq (Loc, Left_Opnd => L, Right_Opnd => R);
elsif Op_Name = Name_Op_Ne then
Expr := Make_Op_Ne (Loc, Left_Opnd => L, Right_Opnd => R);
elsif Op_Name = Name_Op_Le then
Expr := Make_Op_Le (Loc, Left_Opnd => L, Right_Opnd => R);
elsif Op_Name = Name_Op_Gt then
Expr := Make_Op_Gt (Loc, Left_Opnd => L, Right_Opnd => R);
elsif Op_Name = Name_Op_Ge then
Expr := Make_Op_Ge (Loc, Left_Opnd => L, Right_Opnd => R);
elsif Op_Name = Name_Op_Lt then
Expr := Make_Op_Lt (Loc, Left_Opnd => L, Right_Opnd => R);
elsif Op_Name = Name_Op_Add then
Expr := Make_Op_Add (Loc, Left_Opnd => L, Right_Opnd => R);
elsif Op_Name = Name_Op_Subtract then
Expr := Make_Op_Subtract (Loc, Left_Opnd => L, Right_Opnd => R);
elsif Op_Name = Name_Op_Concat then
Expr := Make_Op_Concat (Loc, Left_Opnd => L, Right_Opnd => R);
elsif Op_Name = Name_Op_Multiply then
Expr := Make_Op_Multiply (Loc, Left_Opnd => L, Right_Opnd => R);
elsif Op_Name = Name_Op_Divide then
Expr := Make_Op_Divide (Loc, Left_Opnd => L, Right_Opnd => R);
elsif Op_Name = Name_Op_Mod then
Expr := Make_Op_Mod (Loc, Left_Opnd => L, Right_Opnd => R);
elsif Op_Name = Name_Op_Rem then
Expr := Make_Op_Rem (Loc, Left_Opnd => L, Right_Opnd => R);
elsif Op_Name = Name_Op_Expon then
Expr := Make_Op_Expon (Loc, Left_Opnd => L, Right_Opnd => R);
end if;
-- Unary operators
else
if Op_Name = Name_Op_Add then
Expr := Make_Op_Plus (Loc, Right_Opnd => L);
elsif Op_Name = Name_Op_Subtract then
Expr := Make_Op_Minus (Loc, Right_Opnd => L);
elsif Op_Name = Name_Op_Abs then
Expr := Make_Op_Abs (Loc, Right_Opnd => L);
elsif Op_Name = Name_Op_Not then
Expr := Make_Op_Not (Loc, Right_Opnd => L);
end if;
end if;
Decl :=
Make_Expression_Function (Loc,
Specification => Spec,
Expression => Expr);
return Decl;
end Build_Operator_Wrapper;
-------------------------------------------
-- Build_Instance_Compilation_Unit_Nodes --
-------------------------------------------
procedure Build_Instance_Compilation_Unit_Nodes
(N : Node_Id;
Act_Body : Node_Id;
Act_Decl : Node_Id)
is
Decl_Cunit : Node_Id;
Body_Cunit : Node_Id;
Citem : Node_Id;
New_Main : constant Entity_Id := Defining_Entity (Act_Decl);
Old_Main : constant Entity_Id := Cunit_Entity (Main_Unit);
begin
-- A new compilation unit node is built for the instance declaration
Decl_Cunit :=
Make_Compilation_Unit (Sloc (N),
Context_Items => Empty_List,
Unit => Act_Decl,
Aux_Decls_Node => Make_Compilation_Unit_Aux (Sloc (N)));
Set_Parent_Spec (Act_Decl, Parent_Spec (N));
-- The new compilation unit is linked to its body, but both share the
-- same file, so we do not set Body_Required on the new unit so as not
-- to create a spurious dependency on a non-existent body in the ali.
-- This simplifies CodePeer unit traversal.
-- We use the original instantiation compilation unit as the resulting
-- compilation unit of the instance, since this is the main unit.
Rewrite (N, Act_Body);
-- Propagate the aspect specifications from the package body template to
-- the instantiated version of the package body.
if Has_Aspects (Act_Body) then
Set_Aspect_Specifications
(N, New_Copy_List_Tree (Aspect_Specifications (Act_Body)));
end if;
Body_Cunit := Parent (N);
-- The two compilation unit nodes are linked by the Library_Unit field
Set_Library_Unit (Decl_Cunit, Body_Cunit);
Set_Library_Unit (Body_Cunit, Decl_Cunit);
-- Preserve the private nature of the package if needed
Set_Private_Present (Decl_Cunit, Private_Present (Body_Cunit));
-- If the instance is not the main unit, its context, categorization
-- and elaboration entity are not relevant to the compilation.
if Body_Cunit /= Cunit (Main_Unit) then
Make_Instance_Unit (Body_Cunit, In_Main => False);
return;
end if;
-- The context clause items on the instantiation, which are now attached
-- to the body compilation unit (since the body overwrote the original
-- instantiation node), semantically belong on the spec, so copy them
-- there. It's harmless to leave them on the body as well. In fact one
-- could argue that they belong in both places.
Citem := First (Context_Items (Body_Cunit));
while Present (Citem) loop
Append (New_Copy (Citem), Context_Items (Decl_Cunit));
Next (Citem);
end loop;
-- Propagate categorization flags on packages, so that they appear in
-- the ali file for the spec of the unit.
if Ekind (New_Main) = E_Package then
Set_Is_Pure (Old_Main, Is_Pure (New_Main));
Set_Is_Preelaborated (Old_Main, Is_Preelaborated (New_Main));
Set_Is_Remote_Types (Old_Main, Is_Remote_Types (New_Main));
Set_Is_Shared_Passive (Old_Main, Is_Shared_Passive (New_Main));
Set_Is_Remote_Call_Interface
(Old_Main, Is_Remote_Call_Interface (New_Main));
end if;
-- Make entry in Units table, so that binder can generate call to
-- elaboration procedure for body, if any.
Make_Instance_Unit (Body_Cunit, In_Main => True);
Main_Unit_Entity := New_Main;
Set_Cunit_Entity (Main_Unit, Main_Unit_Entity);
-- Build elaboration entity, since the instance may certainly generate
-- elaboration code requiring a flag for protection.
Build_Elaboration_Entity (Decl_Cunit, New_Main);
end Build_Instance_Compilation_Unit_Nodes;
-----------------------------
-- Check_Access_Definition --
-----------------------------
procedure Check_Access_Definition (N : Node_Id) is
begin
pragma Assert
(Ada_Version >= Ada_2005 and then Present (Access_Definition (N)));
null;
end Check_Access_Definition;
-----------------------------------
-- Check_Formal_Package_Instance --
-----------------------------------
-- If the formal has specific parameters, they must match those of the
-- actual. Both of them are instances, and the renaming declarations for
-- their formal parameters appear in the same order in both. The analyzed
-- formal has been analyzed in the context of the current instance.
procedure Check_Formal_Package_Instance
(Formal_Pack : Entity_Id;
Actual_Pack : Entity_Id)
is
E1 : Entity_Id := First_Entity (Actual_Pack);
E2 : Entity_Id := First_Entity (Formal_Pack);
Prev_E1 : Entity_Id;
Expr1 : Node_Id;
Expr2 : Node_Id;
procedure Check_Mismatch (B : Boolean);
-- Common error routine for mismatch between the parameters of the
-- actual instance and those of the formal package.
function Same_Instantiated_Constant (E1, E2 : Entity_Id) return Boolean;
-- The formal may come from a nested formal package, and the actual may
-- have been constant-folded. To determine whether the two denote the
-- same entity we may have to traverse several definitions to recover
-- the ultimate entity that they refer to.
function Same_Instantiated_Function (E1, E2 : Entity_Id) return Boolean;
-- The formal and the actual must be identical, but if both are
-- given by attributes they end up renaming different generated bodies,
-- and we must verify that the attributes themselves match.
function Same_Instantiated_Variable (E1, E2 : Entity_Id) return Boolean;
-- Similarly, if the formal comes from a nested formal package, the
-- actual may designate the formal through multiple renamings, which
-- have to be followed to determine the original variable in question.
--------------------
-- Check_Mismatch --
--------------------
procedure Check_Mismatch (B : Boolean) is
-- A Formal_Type_Declaration for a derived private type is rewritten
-- as a private extension decl. (see Analyze_Formal_Derived_Type),
-- which is why we examine the original node.
Kind : constant Node_Kind := Nkind (Original_Node (Parent (E2)));
begin
if Kind = N_Formal_Type_Declaration then
return;
elsif Nkind_In (Kind, N_Formal_Object_Declaration,
N_Formal_Package_Declaration)
or else Kind in N_Formal_Subprogram_Declaration
then
null;
-- Ada 2012: If both formal and actual are incomplete types they
-- are conformant.
elsif Is_Incomplete_Type (E1) and then Is_Incomplete_Type (E2) then
null;
elsif B then
Error_Msg_NE
("actual for & in actual instance does not match formal",
Parent (Actual_Pack), E1);
end if;
end Check_Mismatch;
--------------------------------
-- Same_Instantiated_Constant --
--------------------------------
function Same_Instantiated_Constant
(E1, E2 : Entity_Id) return Boolean
is
Ent : Entity_Id;
begin
Ent := E2;
while Present (Ent) loop
if E1 = Ent then
return True;
elsif Ekind (Ent) /= E_Constant then
return False;
elsif Is_Entity_Name (Constant_Value (Ent)) then
if Entity (Constant_Value (Ent)) = E1 then
return True;
else
Ent := Entity (Constant_Value (Ent));
end if;
-- The actual may be a constant that has been folded. Recover
-- original name.
elsif Is_Entity_Name (Original_Node (Constant_Value (Ent))) then
Ent := Entity (Original_Node (Constant_Value (Ent)));
else
return False;
end if;
end loop;
return False;
end Same_Instantiated_Constant;
--------------------------------
-- Same_Instantiated_Function --
--------------------------------
function Same_Instantiated_Function
(E1, E2 : Entity_Id) return Boolean
is
U1, U2 : Node_Id;
begin
if Alias (E1) = Alias (E2) then
return True;
elsif Present (Alias (E2)) then
U1 := Original_Node (Unit_Declaration_Node (E1));
U2 := Original_Node (Unit_Declaration_Node (Alias (E2)));
return Nkind (U1) = N_Subprogram_Renaming_Declaration
and then Nkind (Name (U1)) = N_Attribute_Reference
and then Nkind (U2) = N_Subprogram_Renaming_Declaration
and then Nkind (Name (U2)) = N_Attribute_Reference
and then
Attribute_Name (Name (U1)) = Attribute_Name (Name (U2));
else
return False;
end if;
end Same_Instantiated_Function;
--------------------------------
-- Same_Instantiated_Variable --
--------------------------------
function Same_Instantiated_Variable
(E1, E2 : Entity_Id) return Boolean
is
function Original_Entity (E : Entity_Id) return Entity_Id;
-- Follow chain of renamings to the ultimate ancestor
---------------------
-- Original_Entity --
---------------------
function Original_Entity (E : Entity_Id) return Entity_Id is
Orig : Entity_Id;
begin
Orig := E;
while Nkind (Parent (Orig)) = N_Object_Renaming_Declaration
and then Present (Renamed_Object (Orig))
and then Is_Entity_Name (Renamed_Object (Orig))
loop
Orig := Entity (Renamed_Object (Orig));
end loop;
return Orig;
end Original_Entity;
-- Start of processing for Same_Instantiated_Variable
begin
return Ekind (E1) = Ekind (E2)
and then Original_Entity (E1) = Original_Entity (E2);
end Same_Instantiated_Variable;
-- Start of processing for Check_Formal_Package_Instance
begin
Prev_E1 := E1;
while Present (E1) and then Present (E2) loop
exit when Ekind (E1) = E_Package
and then Renamed_Entity (E1) = Renamed_Entity (Actual_Pack);
-- If the formal is the renaming of the formal package, this
-- is the end of its formal part, which may occur before the
-- end of the formal part in the actual in the presence of
-- defaulted parameters in the formal package.
exit when Nkind (Parent (E2)) = N_Package_Renaming_Declaration
and then Renamed_Entity (E2) = Scope (E2);
-- The analysis of the actual may generate additional internal
-- entities. If the formal is defaulted, there is no corresponding
-- analysis and the internal entities must be skipped, until we
-- find corresponding entities again.
if Comes_From_Source (E2)
and then not Comes_From_Source (E1)
and then Chars (E1) /= Chars (E2)
then
while Present (E1) and then Chars (E1) /= Chars (E2) loop
Next_Entity (E1);
end loop;
end if;
if No (E1) then
return;
-- Entities may be declared without full declaration, such as
-- itypes and predefined operators (concatenation for arrays, eg).
-- Skip it and keep the formal entity to find a later match for it.
elsif No (Parent (E2)) and then Ekind (E1) /= Ekind (E2) then
E1 := Prev_E1;
goto Next_E;
-- If the formal entity comes from a formal declaration, it was
-- defaulted in the formal package, and no check is needed on it.
elsif Nkind_In (Original_Node (Parent (E2)),
N_Formal_Object_Declaration,
N_Formal_Type_Declaration)
then
-- If the formal is a tagged type the corresponding class-wide
-- type has been generated as well, and it must be skipped.
if Is_Type (E2) and then Is_Tagged_Type (E2) then
Next_Entity (E2);
end if;
goto Next_E;
-- Ditto for defaulted formal subprograms.
elsif Is_Overloadable (E1)
and then Nkind (Unit_Declaration_Node (E2)) in
N_Formal_Subprogram_Declaration
then
goto Next_E;
elsif Is_Type (E1) then
-- Subtypes must statically match. E1, E2 are the local entities
-- that are subtypes of the actuals. Itypes generated for other
-- parameters need not be checked, the check will be performed
-- on the parameters themselves.
-- If E2 is a formal type declaration, it is a defaulted parameter
-- and needs no checking.
if not Is_Itype (E1) and then not Is_Itype (E2) then
Check_Mismatch
(not Is_Type (E2)
or else Etype (E1) /= Etype (E2)
or else not Subtypes_Statically_Match (E1, E2));
end if;
elsif Ekind (E1) = E_Constant then
-- IN parameters must denote the same static value, or the same
-- constant, or the literal null.
Expr1 := Expression (Parent (E1));
if Ekind (E2) /= E_Constant then
Check_Mismatch (True);
goto Next_E;
else
Expr2 := Expression (Parent (E2));
end if;
if Is_OK_Static_Expression (Expr1) then
if not Is_OK_Static_Expression (Expr2) then
Check_Mismatch (True);
elsif Is_Discrete_Type (Etype (E1)) then
declare
V1 : constant Uint := Expr_Value (Expr1);
V2 : constant Uint := Expr_Value (Expr2);
begin
Check_Mismatch (V1 /= V2);
end;
elsif Is_Real_Type (Etype (E1)) then
declare
V1 : constant Ureal := Expr_Value_R (Expr1);
V2 : constant Ureal := Expr_Value_R (Expr2);
begin
Check_Mismatch (V1 /= V2);
end;
elsif Is_String_Type (Etype (E1))
and then Nkind (Expr1) = N_String_Literal
then
if Nkind (Expr2) /= N_String_Literal then
Check_Mismatch (True);
else
Check_Mismatch
(not String_Equal (Strval (Expr1), Strval (Expr2)));
end if;
end if;
elsif Is_Entity_Name (Expr1) then
if Is_Entity_Name (Expr2) then
if Entity (Expr1) = Entity (Expr2) then
null;
else
Check_Mismatch
(not Same_Instantiated_Constant
(Entity (Expr1), Entity (Expr2)));
end if;
else
Check_Mismatch (True);
end if;
elsif Is_Entity_Name (Original_Node (Expr1))
and then Is_Entity_Name (Expr2)
and then Same_Instantiated_Constant
(Entity (Original_Node (Expr1)), Entity (Expr2))
then
null;
elsif Nkind (Expr1) = N_Null then
Check_Mismatch (Nkind (Expr1) /= N_Null);
else
Check_Mismatch (True);
end if;
elsif Ekind (E1) = E_Variable then
Check_Mismatch (not Same_Instantiated_Variable (E1, E2));
elsif Ekind (E1) = E_Package then
Check_Mismatch
(Ekind (E1) /= Ekind (E2)
or else (Present (Renamed_Object (E2))
and then Renamed_Object (E1) /=
Renamed_Object (E2)));
elsif Is_Overloadable (E1) then
-- Verify that the actual subprograms match. Note that actuals
-- that are attributes are rewritten as subprograms. If the
-- subprogram in the formal package is defaulted, no check is
-- needed. Note that this can only happen in Ada 2005 when the
-- formal package can be partially parameterized.
if Nkind (Unit_Declaration_Node (E1)) =
N_Subprogram_Renaming_Declaration
and then From_Default (Unit_Declaration_Node (E1))
then
null;
-- If the formal package has an "others" box association that
-- covers this formal, there is no need for a check either.
elsif Nkind (Unit_Declaration_Node (E2)) in
N_Formal_Subprogram_Declaration
and then Box_Present (Unit_Declaration_Node (E2))
then
null;
-- No check needed if subprogram is a defaulted null procedure
elsif No (Alias (E2))
and then Ekind (E2) = E_Procedure
and then
Null_Present (Specification (Unit_Declaration_Node (E2)))
then
null;
-- Otherwise the actual in the formal and the actual in the
-- instantiation of the formal must match, up to renamings.
else
Check_Mismatch
(Ekind (E2) /= Ekind (E1)
or else not Same_Instantiated_Function (E1, E2));
end if;
else
raise Program_Error;
end if;
<<Next_E>>
Prev_E1 := E1;
Next_Entity (E1);
Next_Entity (E2);
end loop;
end Check_Formal_Package_Instance;
---------------------------
-- Check_Formal_Packages --
---------------------------
procedure Check_Formal_Packages (P_Id : Entity_Id) is
E : Entity_Id;
Formal_P : Entity_Id;
Formal_Decl : Node_Id;
begin
-- Iterate through the declarations in the instance, looking for package
-- renaming declarations that denote instances of formal packages. Stop
-- when we find the renaming of the current package itself. The
-- declaration for a formal package without a box is followed by an
-- internal entity that repeats the instantiation.
E := First_Entity (P_Id);
while Present (E) loop
if Ekind (E) = E_Package then
if Renamed_Object (E) = P_Id then
exit;
elsif Nkind (Parent (E)) /= N_Package_Renaming_Declaration then
null;
else
Formal_Decl := Parent (Associated_Formal_Package (E));
-- Nothing to check if the formal has a box or an others_clause
-- (necessarily with a box).
if Box_Present (Formal_Decl) then
null;
elsif Nkind (First (Generic_Associations (Formal_Decl))) =
N_Others_Choice
then
-- The internal validating package was generated but formal
-- and instance are known to be compatible.
Formal_P := Next_Entity (E);
Remove (Unit_Declaration_Node (Formal_P));
else
Formal_P := Next_Entity (E);
-- If the instance is within an enclosing instance body
-- there is no need to verify the legality of current formal
-- packages because they were legal in the generic body.
-- This optimization may be applicable elsewhere, and it
-- also removes spurious errors that may arise with
-- on-the-fly inlining and confusion between private and
-- full views.
if not In_Instance_Body then
Check_Formal_Package_Instance (Formal_P, E);
end if;
-- After checking, remove the internal validating package.
-- It is only needed for semantic checks, and as it may
-- contain generic formal declarations it should not reach
-- gigi.
Remove (Unit_Declaration_Node (Formal_P));
end if;
end if;
end if;
Next_Entity (E);
end loop;
end Check_Formal_Packages;
---------------------------------
-- Check_Forward_Instantiation --
---------------------------------
procedure Check_Forward_Instantiation (Decl : Node_Id) is
S : Entity_Id;
Gen_Comp : Entity_Id := Cunit_Entity (Get_Source_Unit (Decl));
begin
-- The instantiation appears before the generic body if we are in the
-- scope of the unit containing the generic, either in its spec or in
-- the package body, and before the generic body.
if Ekind (Gen_Comp) = E_Package_Body then
Gen_Comp := Spec_Entity (Gen_Comp);
end if;
if In_Open_Scopes (Gen_Comp)
and then No (Corresponding_Body (Decl))
then
S := Current_Scope;
while Present (S)
and then not Is_Compilation_Unit (S)
and then not Is_Child_Unit (S)
loop
if Ekind (S) = E_Package then
Set_Has_Forward_Instantiation (S);
end if;
S := Scope (S);
end loop;
end if;
end Check_Forward_Instantiation;
---------------------------
-- Check_Generic_Actuals --
---------------------------
-- The visibility of the actuals may be different between the point of
-- generic instantiation and the instantiation of the body.
procedure Check_Generic_Actuals
(Instance : Entity_Id;
Is_Formal_Box : Boolean)
is
E : Entity_Id;
Astype : Entity_Id;
function Denotes_Previous_Actual (Typ : Entity_Id) return Boolean;
-- For a formal that is an array type, the component type is often a
-- previous formal in the same unit. The privacy status of the component
-- type will have been examined earlier in the traversal of the
-- corresponding actuals, and this status should not be modified for
-- the array (sub)type itself. However, if the base type of the array
-- (sub)type is private, its full view must be restored in the body to
-- be consistent with subsequent index subtypes, etc.
--
-- To detect this case we have to rescan the list of formals, which is
-- usually short enough to ignore the resulting inefficiency.
-----------------------------
-- Denotes_Previous_Actual --
-----------------------------
function Denotes_Previous_Actual (Typ : Entity_Id) return Boolean is
Prev : Entity_Id;
begin
Prev := First_Entity (Instance);
while Present (Prev) loop
if Is_Type (Prev)
and then Nkind (Parent (Prev)) = N_Subtype_Declaration
and then Is_Entity_Name (Subtype_Indication (Parent (Prev)))
and then Entity (Subtype_Indication (Parent (Prev))) = Typ
then
return True;
elsif Prev = E then
return False;
else
Next_Entity (Prev);
end if;
end loop;
return False;
end Denotes_Previous_Actual;
-- Start of processing for Check_Generic_Actuals
begin
E := First_Entity (Instance);
while Present (E) loop
if Is_Type (E)
and then Nkind (Parent (E)) = N_Subtype_Declaration
and then Scope (Etype (E)) /= Instance
and then Is_Entity_Name (Subtype_Indication (Parent (E)))
then
if Is_Array_Type (E)
and then not Is_Private_Type (Etype (E))
and then Denotes_Previous_Actual (Component_Type (E))
then
null;
else
Check_Private_View (Subtype_Indication (Parent (E)));
end if;
Set_Is_Generic_Actual_Type (E, True);
Set_Is_Hidden (E, False);
Set_Is_Potentially_Use_Visible (E, In_Use (Instance));
-- We constructed the generic actual type as a subtype of the
-- supplied type. This means that it normally would not inherit
-- subtype specific attributes of the actual, which is wrong for
-- the generic case.
Astype := Ancestor_Subtype (E);
if No (Astype) then
-- This can happen when E is an itype that is the full view of
-- a private type completed, e.g. with a constrained array. In
-- that case, use the first subtype, which will carry size
-- information. The base type itself is unconstrained and will
-- not carry it.
Astype := First_Subtype (E);
end if;
Set_Size_Info (E, (Astype));
Set_RM_Size (E, RM_Size (Astype));
Set_First_Rep_Item (E, First_Rep_Item (Astype));
if Is_Discrete_Or_Fixed_Point_Type (E) then
Set_RM_Size (E, RM_Size (Astype));
-- In nested instances, the base type of an access actual may
-- itself be private, and need to be exchanged.
elsif Is_Access_Type (E)
and then Is_Private_Type (Etype (E))
then
Check_Private_View
(New_Occurrence_Of (Etype (E), Sloc (Instance)));
end if;
elsif Ekind (E) = E_Package then
-- If this is the renaming for the current instance, we're done.
-- Otherwise it is a formal package. If the corresponding formal
-- was declared with a box, the (instantiations of the) generic
-- formal part are also visible. Otherwise, ignore the entity
-- created to validate the actuals.
if Renamed_Object (E) = Instance then
exit;
elsif Nkind (Parent (E)) /= N_Package_Renaming_Declaration then
null;
-- The visibility of a formal of an enclosing generic is already
-- correct.
elsif Denotes_Formal_Package (E) then
null;
elsif Present (Associated_Formal_Package (E))
and then not Is_Generic_Formal (E)
then
if Box_Present (Parent (Associated_Formal_Package (E))) then
Check_Generic_Actuals (Renamed_Object (E), True);
else
Check_Generic_Actuals (Renamed_Object (E), False);
end if;
Set_Is_Hidden (E, False);
end if;
-- If this is a subprogram instance (in a wrapper package) the
-- actual is fully visible.
elsif Is_Wrapper_Package (Instance) then
Set_Is_Hidden (E, False);
-- If the formal package is declared with a box, or if the formal
-- parameter is defaulted, it is visible in the body.
elsif Is_Formal_Box or else Is_Visible_Formal (E) then
Set_Is_Hidden (E, False);
end if;
if Ekind (E) = E_Constant then
-- If the type of the actual is a private type declared in the
-- enclosing scope of the generic unit, the body of the generic
-- sees the full view of the type (because it has to appear in
-- the corresponding package body). If the type is private now,
-- exchange views to restore the proper visiblity in the instance.
declare
Typ : constant Entity_Id := Base_Type (Etype (E));
-- The type of the actual
Gen_Id : Entity_Id;
-- The generic unit
Parent_Scope : Entity_Id;
-- The enclosing scope of the generic unit
begin
if Is_Wrapper_Package (Instance) then
Gen_Id :=
Generic_Parent
(Specification
(Unit_Declaration_Node
(Related_Instance (Instance))));
else
Gen_Id :=
Generic_Parent (Package_Specification (Instance));
end if;
Parent_Scope := Scope (Gen_Id);
-- The exchange is only needed if the generic is defined
-- within a package which is not a common ancestor of the
-- scope of the instance, and is not already in scope.
if Is_Private_Type (Typ)
and then Scope (Typ) = Parent_Scope
and then Scope (Instance) /= Parent_Scope
and then Ekind (Parent_Scope) = E_Package
and then not Is_Child_Unit (Gen_Id)
then
Switch_View (Typ);
-- If the type of the entity is a subtype, it may also have
-- to be made visible, together with the base type of its
-- full view, after exchange.
if Is_Private_Type (Etype (E)) then
Switch_View (Etype (E));
Switch_View (Base_Type (Etype (E)));
end if;
end if;
end;
end if;
Next_Entity (E);
end loop;
end Check_Generic_Actuals;
------------------------------
-- Check_Generic_Child_Unit --
------------------------------
procedure Check_Generic_Child_Unit
(Gen_Id : Node_Id;
Parent_Installed : in out Boolean)
is
Loc : constant Source_Ptr := Sloc (Gen_Id);
Gen_Par : Entity_Id := Empty;
E : Entity_Id;
Inst_Par : Entity_Id;
S : Node_Id;
function Find_Generic_Child
(Scop : Entity_Id;
Id : Node_Id) return Entity_Id;
-- Search generic parent for possible child unit with the given name
function In_Enclosing_Instance return Boolean;
-- Within an instance of the parent, the child unit may be denoted by
-- a simple name, or an abbreviated expanded name. Examine enclosing
-- scopes to locate a possible parent instantiation.
------------------------
-- Find_Generic_Child --
------------------------
function Find_Generic_Child
(Scop : Entity_Id;
Id : Node_Id) return Entity_Id
is
E : Entity_Id;
begin
-- If entity of name is already set, instance has already been
-- resolved, e.g. in an enclosing instantiation.
if Present (Entity (Id)) then
if Scope (Entity (Id)) = Scop then
return Entity (Id);
else
return Empty;
end if;
else
E := First_Entity (Scop);
while Present (E) loop
if Chars (E) = Chars (Id)
and then Is_Child_Unit (E)
then
if Is_Child_Unit (E)
and then not Is_Visible_Lib_Unit (E)
then
Error_Msg_NE
("generic child unit& is not visible", Gen_Id, E);
end if;
Set_Entity (Id, E);
return E;
end if;
Next_Entity (E);
end loop;
return Empty;
end if;
end Find_Generic_Child;
---------------------------
-- In_Enclosing_Instance --
---------------------------
function In_Enclosing_Instance return Boolean is
Enclosing_Instance : Node_Id;
Instance_Decl : Node_Id;
begin
-- We do not inline any call that contains instantiations, except
-- for instantiations of Unchecked_Conversion, so if we are within
-- an inlined body the current instance does not require parents.
if In_Inlined_Body then
pragma Assert (Chars (Gen_Id) = Name_Unchecked_Conversion);
return False;
end if;
-- Loop to check enclosing scopes
Enclosing_Instance := Current_Scope;
while Present (Enclosing_Instance) loop
Instance_Decl := Unit_Declaration_Node (Enclosing_Instance);
if Ekind (Enclosing_Instance) = E_Package
and then Is_Generic_Instance (Enclosing_Instance)
and then Present
(Generic_Parent (Specification (Instance_Decl)))
then
-- Check whether the generic we are looking for is a child of
-- this instance.
E := Find_Generic_Child
(Generic_Parent (Specification (Instance_Decl)), Gen_Id);
exit when Present (E);
else
E := Empty;
end if;
Enclosing_Instance := Scope (Enclosing_Instance);
end loop;
if No (E) then
-- Not a child unit
Analyze (Gen_Id);
return False;
else
Rewrite (Gen_Id,
Make_Expanded_Name (Loc,
Chars => Chars (E),
Prefix => New_Occurrence_Of (Enclosing_Instance, Loc),
Selector_Name => New_Occurrence_Of (E, Loc)));
Set_Entity (Gen_Id, E);
Set_Etype (Gen_Id, Etype (E));
Parent_Installed := False; -- Already in scope.
return True;
end if;
end In_Enclosing_Instance;
-- Start of processing for Check_Generic_Child_Unit
begin
-- If the name of the generic is given by a selected component, it may
-- be the name of a generic child unit, and the prefix is the name of an
-- instance of the parent, in which case the child unit must be visible.
-- If this instance is not in scope, it must be placed there and removed
-- after instantiation, because what is being instantiated is not the
-- original child, but the corresponding child present in the instance
-- of the parent.
-- If the child is instantiated within the parent, it can be given by
-- a simple name. In this case the instance is already in scope, but
-- the child generic must be recovered from the generic parent as well.
if Nkind (Gen_Id) = N_Selected_Component then
S := Selector_Name (Gen_Id);
Analyze (Prefix (Gen_Id));
Inst_Par := Entity (Prefix (Gen_Id));
if Ekind (Inst_Par) = E_Package
and then Present (Renamed_Object (Inst_Par))
then
Inst_Par := Renamed_Object (Inst_Par);
end if;
if Ekind (Inst_Par) = E_Package then
if Nkind (Parent (Inst_Par)) = N_Package_Specification then
Gen_Par := Generic_Parent (Parent (Inst_Par));
elsif Nkind (Parent (Inst_Par)) = N_Defining_Program_Unit_Name
and then
Nkind (Parent (Parent (Inst_Par))) = N_Package_Specification
then
Gen_Par := Generic_Parent (Parent (Parent (Inst_Par)));
end if;
elsif Ekind (Inst_Par) = E_Generic_Package
and then Nkind (Parent (Gen_Id)) = N_Formal_Package_Declaration
then
-- A formal package may be a real child package, and not the
-- implicit instance within a parent. In this case the child is
-- not visible and has to be retrieved explicitly as well.
Gen_Par := Inst_Par;
end if;
if Present (Gen_Par) then
-- The prefix denotes an instantiation. The entity itself may be a
-- nested generic, or a child unit.
E := Find_Generic_Child (Gen_Par, S);
if Present (E) then
Change_Selected_Component_To_Expanded_Name (Gen_Id);
Set_Entity (Gen_Id, E);
Set_Etype (Gen_Id, Etype (E));
Set_Entity (S, E);
Set_Etype (S, Etype (E));
-- Indicate that this is a reference to the parent
if In_Extended_Main_Source_Unit (Gen_Id) then
Set_Is_Instantiated (Inst_Par);
end if;
-- A common mistake is to replicate the naming scheme of a
-- hierarchy by instantiating a generic child directly, rather
-- than the implicit child in a parent instance:
-- generic .. package Gpar is ..
-- generic .. package Gpar.Child is ..
-- package Par is new Gpar ();
-- with Gpar.Child;
-- package Par.Child is new Gpar.Child ();
-- rather than Par.Child
-- In this case the instantiation is within Par, which is an
-- instance, but Gpar does not denote Par because we are not IN
-- the instance of Gpar, so this is illegal. The test below
-- recognizes this particular case.
if Is_Child_Unit (E)
and then not Comes_From_Source (Entity (Prefix (Gen_Id)))
and then (not In_Instance
or else Nkind (Parent (Parent (Gen_Id))) =
N_Compilation_Unit)
then
Error_Msg_N
("prefix of generic child unit must be instance of parent",
Gen_Id);
end if;
if not In_Open_Scopes (Inst_Par)
and then Nkind (Parent (Gen_Id)) not in
N_Generic_Renaming_Declaration
then
Install_Parent (Inst_Par);
Parent_Installed := True;
elsif In_Open_Scopes (Inst_Par) then
-- If the parent is already installed, install the actuals
-- for its formal packages. This is necessary when the child
-- instance is a child of the parent instance: in this case,
-- the parent is placed on the scope stack but the formal
-- packages are not made visible.
Install_Formal_Packages (Inst_Par);
end if;
else
-- If the generic parent does not contain an entity that
-- corresponds to the selector, the instance doesn't either.
-- Analyzing the node will yield the appropriate error message.
-- If the entity is not a child unit, then it is an inner
-- generic in the parent.
Analyze (Gen_Id);
end if;
else
Analyze (Gen_Id);
if Is_Child_Unit (Entity (Gen_Id))
and then
Nkind (Parent (Gen_Id)) not in N_Generic_Renaming_Declaration
and then not In_Open_Scopes (Inst_Par)
then
Install_Parent (Inst_Par);
Parent_Installed := True;
-- The generic unit may be the renaming of the implicit child
-- present in an instance. In that case the parent instance is
-- obtained from the name of the renamed entity.
elsif Ekind (Entity (Gen_Id)) = E_Generic_Package
and then Present (Renamed_Entity (Entity (Gen_Id)))
and then Is_Child_Unit (Renamed_Entity (Entity (Gen_Id)))
then
declare
Renamed_Package : constant Node_Id :=
Name (Parent (Entity (Gen_Id)));
begin
if Nkind (Renamed_Package) = N_Expanded_Name then
Inst_Par := Entity (Prefix (Renamed_Package));
Install_Parent (Inst_Par);
Parent_Installed := True;
end if;
end;
end if;
end if;
elsif Nkind (Gen_Id) = N_Expanded_Name then
-- Entity already present, analyze prefix, whose meaning may be an
-- instance in the current context. If it is an instance of a
-- relative within another, the proper parent may still have to be
-- installed, if they are not of the same generation.
Analyze (Prefix (Gen_Id));
-- Prevent cascaded errors
if Etype (Prefix (Gen_Id)) = Any_Type then
return;
end if;
-- In the unlikely case that a local declaration hides the name of
-- the parent package, locate it on the homonym chain. If the context
-- is an instance of the parent, the renaming entity is flagged as
-- such.
Inst_Par := Entity (Prefix (Gen_Id));
while Present (Inst_Par)
and then not Is_Package_Or_Generic_Package (Inst_Par)
loop
Inst_Par := Homonym (Inst_Par);
end loop;
pragma Assert (Present (Inst_Par));
Set_Entity (Prefix (Gen_Id), Inst_Par);
if In_Enclosing_Instance then
null;
elsif Present (Entity (Gen_Id))
and then Is_Child_Unit (Entity (Gen_Id))
and then not In_Open_Scopes (Inst_Par)
then
Install_Parent (Inst_Par);
Parent_Installed := True;
end if;
elsif In_Enclosing_Instance then
-- The child unit is found in some enclosing scope
null;
else
Analyze (Gen_Id);
-- If this is the renaming of the implicit child in a parent
-- instance, recover the parent name and install it.
if Is_Entity_Name (Gen_Id) then
E := Entity (Gen_Id);
if Is_Generic_Unit (E)
and then Nkind (Parent (E)) in N_Generic_Renaming_Declaration
and then Is_Child_Unit (Renamed_Object (E))
and then Is_Generic_Unit (Scope (Renamed_Object (E)))
and then Nkind (Name (Parent (E))) = N_Expanded_Name
then
Rewrite (Gen_Id, New_Copy_Tree (Name (Parent (E))));
Inst_Par := Entity (Prefix (Gen_Id));
if not In_Open_Scopes (Inst_Par) then
Install_Parent (Inst_Par);
Parent_Installed := True;
end if;
-- If it is a child unit of a non-generic parent, it may be
-- use-visible and given by a direct name. Install parent as
-- for other cases.
elsif Is_Generic_Unit (E)
and then Is_Child_Unit (E)
and then
Nkind (Parent (Gen_Id)) not in N_Generic_Renaming_Declaration
and then not Is_Generic_Unit (Scope (E))
then
if not In_Open_Scopes (Scope (E)) then
Install_Parent (Scope (E));
Parent_Installed := True;
end if;
end if;
end if;
end if;
end Check_Generic_Child_Unit;
-----------------------------
-- Check_Hidden_Child_Unit --
-----------------------------
procedure Check_Hidden_Child_Unit
(N : Node_Id;
Gen_Unit : Entity_Id;
Act_Decl_Id : Entity_Id)
is
Gen_Id : constant Node_Id := Name (N);
begin
if Is_Child_Unit (Gen_Unit)
and then Is_Child_Unit (Act_Decl_Id)
and then Nkind (Gen_Id) = N_Expanded_Name
and then Entity (Prefix (Gen_Id)) = Scope (Act_Decl_Id)
and then Chars (Gen_Unit) = Chars (Act_Decl_Id)
then
Error_Msg_Node_2 := Scope (Act_Decl_Id);
Error_Msg_NE
("generic unit & is implicitly declared in &",
Defining_Unit_Name (N), Gen_Unit);
Error_Msg_N ("\instance must have different name",
Defining_Unit_Name (N));
end if;
end Check_Hidden_Child_Unit;
------------------------
-- Check_Private_View --
------------------------
procedure Check_Private_View (N : Node_Id) is
T : constant Entity_Id := Etype (N);
BT : Entity_Id;
begin
-- Exchange views if the type was not private in the generic but is
-- private at the point of instantiation. Do not exchange views if
-- the scope of the type is in scope. This can happen if both generic
-- and instance are sibling units, or if type is defined in a parent.
-- In this case the visibility of the type will be correct for all
-- semantic checks.
if Present (T) then
BT := Base_Type (T);
if Is_Private_Type (T)
and then not Has_Private_View (N)
and then Present (Full_View (T))
and then not In_Open_Scopes (Scope (T))
then
-- In the generic, the full type was visible. Save the private
-- entity, for subsequent exchange.
Switch_View (T);
elsif Has_Private_View (N)
and then not Is_Private_Type (T)
and then not Has_Been_Exchanged (T)
and then Etype (Get_Associated_Node (N)) /= T
then
-- Only the private declaration was visible in the generic. If
-- the type appears in a subtype declaration, the subtype in the
-- instance must have a view compatible with that of its parent,
-- which must be exchanged (see corresponding code in Restore_
-- Private_Views). Otherwise, if the type is defined in a parent
-- unit, leave full visibility within instance, which is safe.
if In_Open_Scopes (Scope (Base_Type (T)))
and then not Is_Private_Type (Base_Type (T))
and then Comes_From_Source (Base_Type (T))
then
null;
elsif Nkind (Parent (N)) = N_Subtype_Declaration
or else not In_Private_Part (Scope (Base_Type (T)))
then
Prepend_Elmt (T, Exchanged_Views);
Exchange_Declarations (Etype (Get_Associated_Node (N)));
end if;
-- For composite types with inconsistent representation exchange
-- component types accordingly.
elsif Is_Access_Type (T)
and then Is_Private_Type (Designated_Type (T))
and then not Has_Private_View (N)
and then Present (Full_View (Designated_Type (T)))
then
Switch_View (Designated_Type (T));
elsif Is_Array_Type (T) then
if Is_Private_Type (Component_Type (T))
and then not Has_Private_View (N)
and then Present (Full_View (Component_Type (T)))
then
Switch_View (Component_Type (T));
end if;
-- The normal exchange mechanism relies on the setting of a
-- flag on the reference in the generic. However, an additional
-- mechanism is needed for types that are not explicitly
-- mentioned in the generic, but may be needed in expanded code
-- in the instance. This includes component types of arrays and
-- designated types of access types. This processing must also
-- include the index types of arrays which we take care of here.
declare
Indx : Node_Id;
Typ : Entity_Id;
begin
Indx := First_Index (T);
while Present (Indx) loop
Typ := Base_Type (Etype (Indx));
if Is_Private_Type (Typ)
and then Present (Full_View (Typ))
then
Switch_View (Typ);
end if;
Next_Index (Indx);
end loop;
end;
elsif Is_Private_Type (T)
and then Present (Full_View (T))
and then Is_Array_Type (Full_View (T))
and then Is_Private_Type (Component_Type (Full_View (T)))
then
Switch_View (T);
-- Finally, a non-private subtype may have a private base type, which
-- must be exchanged for consistency. This can happen when a package
-- body is instantiated, when the scope stack is empty but in fact
-- the subtype and the base type are declared in an enclosing scope.
-- Note that in this case we introduce an inconsistency in the view
-- set, because we switch the base type BT, but there could be some
-- private dependent subtypes of BT which remain unswitched. Such
-- subtypes might need to be switched at a later point (see specific
-- provision for that case in Switch_View).
elsif not Is_Private_Type (T)
and then not Has_Private_View (N)
and then Is_Private_Type (BT)
and then Present (Full_View (BT))
and then not Is_Generic_Type (BT)
and then not In_Open_Scopes (BT)
then
Prepend_Elmt (Full_View (BT), Exchanged_Views);
Exchange_Declarations (BT);
end if;
end if;
end Check_Private_View;
-----------------------------
-- Check_Hidden_Primitives --
-----------------------------
function Check_Hidden_Primitives (Assoc_List : List_Id) return Elist_Id is
Actual : Node_Id;
Gen_T : Entity_Id;
Result : Elist_Id := No_Elist;
begin
if No (Assoc_List) then
return No_Elist;
end if;
-- Traverse the list of associations between formals and actuals
-- searching for renamings of tagged types
Actual := First (Assoc_List);
while Present (Actual) loop
if Nkind (Actual) = N_Subtype_Declaration then
Gen_T := Generic_Parent_Type (Actual);
if Present (Gen_T) and then Is_Tagged_Type (Gen_T) then
-- Traverse the list of primitives of the actual types
-- searching for hidden primitives that are visible in the
-- corresponding generic formal; leave them visible and
-- append them to Result to restore their decoration later.
Install_Hidden_Primitives
(Prims_List => Result,
Gen_T => Gen_T,
Act_T => Entity (Subtype_Indication (Actual)));
end if;
end if;
Next (Actual);
end loop;
return Result;
end Check_Hidden_Primitives;
--------------------------
-- Contains_Instance_Of --
--------------------------
function Contains_Instance_Of
(Inner : Entity_Id;
Outer : Entity_Id;
N : Node_Id) return Boolean
is
Elmt : Elmt_Id;
Scop : Entity_Id;
begin
Scop := Outer;
-- Verify that there are no circular instantiations. We check whether
-- the unit contains an instance of the current scope or some enclosing
-- scope (in case one of the instances appears in a subunit). Longer
-- circularities involving subunits might seem too pathological to
-- consider, but they were not too pathological for the authors of
-- DEC bc30vsq, so we loop over all enclosing scopes, and mark all
-- enclosing generic scopes as containing an instance.
loop
-- Within a generic subprogram body, the scope is not generic, to
-- allow for recursive subprograms. Use the declaration to determine
-- whether this is a generic unit.
if Ekind (Scop) = E_Generic_Package
or else (Is_Subprogram (Scop)
and then Nkind (Unit_Declaration_Node (Scop)) =
N_Generic_Subprogram_Declaration)
then
Elmt := First_Elmt (Inner_Instances (Inner));
while Present (Elmt) loop
if Node (Elmt) = Scop then
Error_Msg_Node_2 := Inner;
Error_Msg_NE
("circular Instantiation: & instantiated within &!",
N, Scop);
return True;
elsif Node (Elmt) = Inner then
return True;
elsif Contains_Instance_Of (Node (Elmt), Scop, N) then
Error_Msg_Node_2 := Inner;
Error_Msg_NE
("circular Instantiation: & instantiated within &!",
N, Node (Elmt));
return True;
end if;
Next_Elmt (Elmt);
end loop;
-- Indicate that Inner is being instantiated within Scop
Append_Elmt (Inner, Inner_Instances (Scop));
end if;
if Scop = Standard_Standard then
exit;
else
Scop := Scope (Scop);
end if;
end loop;
return False;
end Contains_Instance_Of;
-----------------------
-- Copy_Generic_Node --
-----------------------
function Copy_Generic_Node
(N : Node_Id;
Parent_Id : Node_Id;
Instantiating : Boolean) return Node_Id
is
Ent : Entity_Id;
New_N : Node_Id;
function Copy_Generic_Descendant (D : Union_Id) return Union_Id;
-- Check the given value of one of the Fields referenced by the current
-- node to determine whether to copy it recursively. The field may hold
-- a Node_Id, a List_Id, or an Elist_Id, or a plain value (Sloc, Uint,
-- Char) in which case it need not be copied.
procedure Copy_Descendants;
-- Common utility for various nodes
function Copy_Generic_Elist (E : Elist_Id) return Elist_Id;
-- Make copy of element list
function Copy_Generic_List
(L : List_Id;
Parent_Id : Node_Id) return List_Id;
-- Apply Copy_Node recursively to the members of a node list
function In_Defining_Unit_Name (Nam : Node_Id) return Boolean;
-- True if an identifier is part of the defining program unit name of
-- a child unit. The entity of such an identifier must be kept (for
-- ASIS use) even though as the name of an enclosing generic it would
-- otherwise not be preserved in the generic tree.
----------------------
-- Copy_Descendants --
----------------------
procedure Copy_Descendants is
use Atree.Unchecked_Access;
-- This code section is part of the implementation of an untyped
-- tree traversal, so it needs direct access to node fields.
begin
Set_Field1 (New_N, Copy_Generic_Descendant (Field1 (N)));
Set_Field2 (New_N, Copy_Generic_Descendant (Field2 (N)));
Set_Field3 (New_N, Copy_Generic_Descendant (Field3 (N)));
Set_Field4 (New_N, Copy_Generic_Descendant (Field4 (N)));
Set_Field5 (New_N, Copy_Generic_Descendant (Field5 (N)));
end Copy_Descendants;
-----------------------------
-- Copy_Generic_Descendant --
-----------------------------
function Copy_Generic_Descendant (D : Union_Id) return Union_Id is
begin
if D = Union_Id (Empty) then
return D;
elsif D in Node_Range then
return Union_Id
(Copy_Generic_Node (Node_Id (D), New_N, Instantiating));
elsif D in List_Range then
return Union_Id (Copy_Generic_List (List_Id (D), New_N));
elsif D in Elist_Range then
return Union_Id (Copy_Generic_Elist (Elist_Id (D)));
-- Nothing else is copyable (e.g. Uint values), return as is
else
return D;
end if;
end Copy_Generic_Descendant;
------------------------
-- Copy_Generic_Elist --
------------------------
function Copy_Generic_Elist (E : Elist_Id) return Elist_Id is
M : Elmt_Id;
L : Elist_Id;
begin
if Present (E) then
L := New_Elmt_List;
M := First_Elmt (E);
while Present (M) loop
Append_Elmt
(Copy_Generic_Node (Node (M), Empty, Instantiating), L);
Next_Elmt (M);
end loop;
return L;
else
return No_Elist;
end if;
end Copy_Generic_Elist;
-----------------------
-- Copy_Generic_List --
-----------------------
function Copy_Generic_List
(L : List_Id;
Parent_Id : Node_Id) return List_Id
is
N : Node_Id;
New_L : List_Id;
begin
if Present (L) then
New_L := New_List;
Set_Parent (New_L, Parent_Id);
N := First (L);
while Present (N) loop
Append (Copy_Generic_Node (N, Empty, Instantiating), New_L);
Next (N);
end loop;
return New_L;
else
return No_List;
end if;
end Copy_Generic_List;
---------------------------
-- In_Defining_Unit_Name --
---------------------------
function In_Defining_Unit_Name (Nam : Node_Id) return Boolean is
begin
return
Present (Parent (Nam))
and then (Nkind (Parent (Nam)) = N_Defining_Program_Unit_Name
or else
(Nkind (Parent (Nam)) = N_Expanded_Name
and then In_Defining_Unit_Name (Parent (Nam))));
end In_Defining_Unit_Name;
-- Start of processing for Copy_Generic_Node
begin
if N = Empty then
return N;
end if;
New_N := New_Copy (N);
-- Copy aspects if present
if Has_Aspects (N) then
Set_Has_Aspects (New_N, False);
Set_Aspect_Specifications
(New_N, Copy_Generic_List (Aspect_Specifications (N), Parent_Id));
end if;
-- If we are instantiating, we want to adjust the sloc based on the
-- current S_Adjustment. However, if this is the root node of a subunit,
-- we need to defer that adjustment to below (see "elsif Instantiating
-- and Was_Stub"), so it comes after Create_Instantiation_Source has
-- computed the adjustment.
if Instantiating
and then not (Nkind (N) in N_Proper_Body
and then Was_Originally_Stub (N))
then
Adjust_Instantiation_Sloc (New_N, S_Adjustment);
end if;
if not Is_List_Member (N) then
Set_Parent (New_N, Parent_Id);
end if;
-- Special casing for identifiers and other entity names and operators
if Nkind_In (New_N, N_Character_Literal,
N_Expanded_Name,
N_Identifier,
N_Operator_Symbol)
or else Nkind (New_N) in N_Op
then
if not Instantiating then
-- Link both nodes in order to assign subsequently the entity of
-- the copy to the original node, in case this is a global
-- reference.
Set_Associated_Node (N, New_N);
-- If we are within an instantiation, this is a nested generic
-- that has already been analyzed at the point of definition.
-- We must preserve references that were global to the enclosing
-- parent at that point. Other occurrences, whether global or
-- local to the current generic, must be resolved anew, so we
-- reset the entity in the generic copy. A global reference has a
-- smaller depth than the parent, or else the same depth in case
-- both are distinct compilation units.
-- A child unit is implicitly declared within the enclosing parent
-- but is in fact global to it, and must be preserved.
-- It is also possible for Current_Instantiated_Parent to be
-- defined, and for this not to be a nested generic, namely if
-- the unit is loaded through Rtsfind. In that case, the entity of
-- New_N is only a link to the associated node, and not a defining
-- occurrence.
-- The entities for parent units in the defining_program_unit of a
-- generic child unit are established when the context of the unit
-- is first analyzed, before the generic copy is made. They are
-- preserved in the copy for use in ASIS queries.
Ent := Entity (New_N);
if No (Current_Instantiated_Parent.Gen_Id) then
if No (Ent)
or else Nkind (Ent) /= N_Defining_Identifier
or else not In_Defining_Unit_Name (N)
then
Set_Associated_Node (New_N, Empty);
end if;
elsif No (Ent)
or else
not Nkind_In (Ent, N_Defining_Identifier,
N_Defining_Character_Literal,
N_Defining_Operator_Symbol)
or else No (Scope (Ent))
or else
(Scope (Ent) = Current_Instantiated_Parent.Gen_Id
and then not Is_Child_Unit (Ent))
or else
(Scope_Depth (Scope (Ent)) >
Scope_Depth (Current_Instantiated_Parent.Gen_Id)
and then
Get_Source_Unit (Ent) =
Get_Source_Unit (Current_Instantiated_Parent.Gen_Id))
then
Set_Associated_Node (New_N, Empty);
end if;
-- Case of instantiating identifier or some other name or operator
else
-- If the associated node is still defined, the entity in it
-- is global, and must be copied to the instance. If this copy
-- is being made for a body to inline, it is applied to an
-- instantiated tree, and the entity is already present and
-- must be also preserved.
declare
Assoc : constant Node_Id := Get_Associated_Node (N);
begin
if Present (Assoc) then
if Nkind (Assoc) = Nkind (N) then
Set_Entity (New_N, Entity (Assoc));
Check_Private_View (N);
-- The node is a reference to a global type and acts as the
-- subtype mark of a qualified expression created in order
-- to aid resolution of accidental overloading in instances.
-- Since N is a reference to a type, the Associated_Node of
-- N denotes an entity rather than another identifier. See
-- Qualify_Universal_Operands for details.
elsif Nkind (N) = N_Identifier
and then Nkind (Parent (N)) = N_Qualified_Expression
and then Subtype_Mark (Parent (N)) = N
and then Is_Qualified_Universal_Literal (Parent (N))
then
Set_Entity (New_N, Assoc);
-- The name in the call may be a selected component if the
-- call has not been analyzed yet, as may be the case for
-- pre/post conditions in a generic unit.
elsif Nkind (Assoc) = N_Function_Call
and then Is_Entity_Name (Name (Assoc))
then
Set_Entity (New_N, Entity (Name (Assoc)));
elsif Nkind_In (Assoc, N_Defining_Identifier,
N_Defining_Character_Literal,
N_Defining_Operator_Symbol)
and then Expander_Active
then
-- Inlining case: we are copying a tree that contains
-- global entities, which are preserved in the copy to be
-- used for subsequent inlining.
null;
else
Set_Entity (New_N, Empty);
end if;
end if;
end;
end if;
-- For expanded name, we must copy the Prefix and Selector_Name
if Nkind (N) = N_Expanded_Name then
Set_Prefix
(New_N, Copy_Generic_Node (Prefix (N), New_N, Instantiating));
Set_Selector_Name (New_N,
Copy_Generic_Node (Selector_Name (N), New_N, Instantiating));
-- For operators, copy the operands
elsif Nkind (N) in N_Op then
if Nkind (N) in N_Binary_Op then
Set_Left_Opnd (New_N,
Copy_Generic_Node (Left_Opnd (N), New_N, Instantiating));
end if;
Set_Right_Opnd (New_N,
Copy_Generic_Node (Right_Opnd (N), New_N, Instantiating));
end if;
-- Establish a link between an entity from the generic template and the
-- corresponding entity in the generic copy to be analyzed.
elsif Nkind (N) in N_Entity then
if not Instantiating then
Set_Associated_Entity (N, New_N);
end if;
-- Clear any existing link the copy may inherit from the replicated
-- generic template entity.
Set_Associated_Entity (New_N, Empty);
-- Special casing for stubs
elsif Nkind (N) in N_Body_Stub then
-- In any case, we must copy the specification or defining
-- identifier as appropriate.
if Nkind (N) = N_Subprogram_Body_Stub then
Set_Specification (New_N,
Copy_Generic_Node (Specification (N), New_N, Instantiating));
else
Set_Defining_Identifier (New_N,
Copy_Generic_Node
(Defining_Identifier (N), New_N, Instantiating));
end if;
-- If we are not instantiating, then this is where we load and
-- analyze subunits, i.e. at the point where the stub occurs. A
-- more permissive system might defer this analysis to the point
-- of instantiation, but this seems too complicated for now.
if not Instantiating then
declare
Subunit_Name : constant Unit_Name_Type := Get_Unit_Name (N);
Subunit : Node_Id;
Unum : Unit_Number_Type;
New_Body : Node_Id;
begin
-- Make sure that, if it is a subunit of the main unit that is
-- preprocessed and if -gnateG is specified, the preprocessed
-- file will be written.
Lib.Analysing_Subunit_Of_Main :=
Lib.In_Extended_Main_Source_Unit (N);
Unum :=
Load_Unit
(Load_Name => Subunit_Name,
Required => False,
Subunit => True,
Error_Node => N);
Lib.Analysing_Subunit_Of_Main := False;
-- If the proper body is not found, a warning message will be
-- emitted when analyzing the stub, or later at the point of
-- instantiation. Here we just leave the stub as is.
if Unum = No_Unit then
Subunits_Missing := True;
goto Subunit_Not_Found;
end if;
Subunit := Cunit (Unum);
if Nkind (Unit (Subunit)) /= N_Subunit then
Error_Msg_N
("found child unit instead of expected SEPARATE subunit",
Subunit);
Error_Msg_Sloc := Sloc (N);
Error_Msg_N ("\to complete stub #", Subunit);
goto Subunit_Not_Found;
end if;
-- We must create a generic copy of the subunit, in order to
-- perform semantic analysis on it, and we must replace the
-- stub in the original generic unit with the subunit, in order
-- to preserve non-local references within.
-- Only the proper body needs to be copied. Library_Unit and
-- context clause are simply inherited by the generic copy.
-- Note that the copy (which may be recursive if there are
-- nested subunits) must be done first, before attaching it to
-- the enclosing generic.
New_Body :=
Copy_Generic_Node
(Proper_Body (Unit (Subunit)),
Empty, Instantiating => False);
-- Now place the original proper body in the original generic
-- unit. This is a body, not a compilation unit.
Rewrite (N, Proper_Body (Unit (Subunit)));
Set_Is_Compilation_Unit (Defining_Entity (N), False);
Set_Was_Originally_Stub (N);
-- Finally replace the body of the subunit with its copy, and
-- make this new subunit into the library unit of the generic
-- copy, which does not have stubs any longer.
Set_Proper_Body (Unit (Subunit), New_Body);
Set_Library_Unit (New_N, Subunit);
Inherit_Context (Unit (Subunit), N);
end;
-- If we are instantiating, this must be an error case, since
-- otherwise we would have replaced the stub node by the proper body
-- that corresponds. So just ignore it in the copy (i.e. we have
-- copied it, and that is good enough).
else
null;
end if;
<<Subunit_Not_Found>> null;
-- If the node is a compilation unit, it is the subunit of a stub, which
-- has been loaded already (see code below). In this case, the library
-- unit field of N points to the parent unit (which is a compilation
-- unit) and need not (and cannot) be copied.
-- When the proper body of the stub is analyzed, the library_unit link
-- is used to establish the proper context (see sem_ch10).
-- The other fields of a compilation unit are copied as usual
elsif Nkind (N) = N_Compilation_Unit then
-- This code can only be executed when not instantiating, because in
-- the copy made for an instantiation, the compilation unit node has
-- disappeared at the point that a stub is replaced by its proper
-- body.
pragma Assert (not Instantiating);
Set_Context_Items (New_N,
Copy_Generic_List (Context_Items (N), New_N));
Set_Unit (New_N,
Copy_Generic_Node (Unit (N), New_N, Instantiating => False));
Set_First_Inlined_Subprogram (New_N,
Copy_Generic_Node
(First_Inlined_Subprogram (N), New_N, Instantiating => False));
Set_Aux_Decls_Node
(New_N,
Copy_Generic_Node
(Aux_Decls_Node (N), New_N, Instantiating => False));
-- For an assignment node, the assignment is known to be semantically
-- legal if we are instantiating the template. This avoids incorrect
-- diagnostics in generated code.
elsif Nkind (N) = N_Assignment_Statement then
-- Copy name and expression fields in usual manner
Set_Name (New_N,
Copy_Generic_Node (Name (N), New_N, Instantiating));
Set_Expression (New_N,
Copy_Generic_Node (Expression (N), New_N, Instantiating));
if Instantiating then
Set_Assignment_OK (Name (New_N), True);
end if;
elsif Nkind_In (N, N_Aggregate, N_Extension_Aggregate) then
if not Instantiating then
Set_Associated_Node (N, New_N);
else
if Present (Get_Associated_Node (N))
and then Nkind (Get_Associated_Node (N)) = Nkind (N)
then
-- In the generic the aggregate has some composite type. If at
-- the point of instantiation the type has a private view,
-- install the full view (and that of its ancestors, if any).
declare
T : Entity_Id := (Etype (Get_Associated_Node (New_N)));
Rt : Entity_Id;
begin
if Present (T) and then Is_Private_Type (T) then
Switch_View (T);
end if;
if Present (T)
and then Is_Tagged_Type (T)
and then Is_Derived_Type (T)
then
Rt := Root_Type (T);
loop
T := Etype (T);
if Is_Private_Type (T) then
Switch_View (T);
end if;
exit when T = Rt;
end loop;
end if;
end;
end if;
end if;
-- Do not copy the associated node, which points to the generic copy
-- of the aggregate.
declare
use Atree.Unchecked_Access;
-- This code section is part of the implementation of an untyped
-- tree traversal, so it needs direct access to node fields.
begin
Set_Field1 (New_N, Copy_Generic_Descendant (Field1 (N)));
Set_Field2 (New_N, Copy_Generic_Descendant (Field2 (N)));
Set_Field3 (New_N, Copy_Generic_Descendant (Field3 (N)));
Set_Field5 (New_N, Copy_Generic_Descendant (Field5 (N)));
end;
-- Allocators do not have an identifier denoting the access type, so we
-- must locate it through the expression to check whether the views are
-- consistent.
elsif Nkind (N) = N_Allocator
and then Nkind (Expression (N)) = N_Qualified_Expression
and then Is_Entity_Name (Subtype_Mark (Expression (N)))
and then Instantiating
then
declare
T : constant Node_Id :=
Get_Associated_Node (Subtype_Mark (Expression (N)));
Acc_T : Entity_Id;
begin
if Present (T) then
-- Retrieve the allocator node in the generic copy
Acc_T := Etype (Parent (Parent (T)));
if Present (Acc_T) and then Is_Private_Type (Acc_T) then
Switch_View (Acc_T);
end if;
end if;
Copy_Descendants;
end;
-- For a proper body, we must catch the case of a proper body that
-- replaces a stub. This represents the point at which a separate
-- compilation unit, and hence template file, may be referenced, so we
-- must make a new source instantiation entry for the template of the
-- subunit, and ensure that all nodes in the subunit are adjusted using
-- this new source instantiation entry.
elsif Nkind (N) in N_Proper_Body then
declare
Save_Adjustment : constant Sloc_Adjustment := S_Adjustment;
begin
if Instantiating and then Was_Originally_Stub (N) then
Create_Instantiation_Source
(Instantiation_Node,
Defining_Entity (N),
S_Adjustment);
Adjust_Instantiation_Sloc (New_N, S_Adjustment);
end if;
-- Now copy the fields of the proper body, using the new
-- adjustment factor if one was needed as per test above.
Copy_Descendants;
-- Restore the original adjustment factor
S_Adjustment := Save_Adjustment;
end;
elsif Nkind (N) = N_Pragma and then Instantiating then
-- Do not copy Comment or Ident pragmas their content is relevant to
-- the generic unit, not to the instantiating unit.
if Nam_In (Pragma_Name_Unmapped (N), Name_Comment, Name_Ident) then
New_N := Make_Null_Statement (Sloc (N));
-- Do not copy pragmas generated from aspects because the pragmas do
-- not carry any semantic information, plus they will be regenerated
-- in the instance.
-- However, generating C we need to copy them since postconditions
-- are inlined by the front end, and the front-end inlining machinery
-- relies on this routine to perform inlining.
elsif From_Aspect_Specification (N)
and then not Modify_Tree_For_C
then
New_N := Make_Null_Statement (Sloc (N));
else
Copy_Descendants;
end if;
elsif Nkind_In (N, N_Integer_Literal, N_Real_Literal) then
-- No descendant fields need traversing
null;
elsif Nkind (N) = N_String_Literal
and then Present (Etype (N))
and then Instantiating
then
-- If the string is declared in an outer scope, the string_literal
-- subtype created for it may have the wrong scope. Force reanalysis
-- of the constant to generate a new itype in the proper context.
Set_Etype (New_N, Empty);
Set_Analyzed (New_N, False);
-- For the remaining nodes, copy their descendants recursively
else
Copy_Descendants;
if Instantiating and then Nkind (N) = N_Subprogram_Body then
Set_Generic_Parent (Specification (New_N), N);
-- Should preserve Corresponding_Spec??? (12.3(14))
end if;
end if;
-- Propagate dimensions if present, so that they are reflected in the
-- instance.
if Nkind (N) in N_Has_Etype
and then (Nkind (N) in N_Op or else Is_Entity_Name (N))
and then Present (Etype (N))
and then Is_Floating_Point_Type (Etype (N))
and then Has_Dimension_System (Etype (N))
then
Copy_Dimensions (N, New_N);
end if;
return New_N;
end Copy_Generic_Node;
----------------------------
-- Denotes_Formal_Package --
----------------------------
function Denotes_Formal_Package
(Pack : Entity_Id;
On_Exit : Boolean := False;
Instance : Entity_Id := Empty) return Boolean
is
Par : Entity_Id;
Scop : constant Entity_Id := Scope (Pack);
E : Entity_Id;
function Is_Actual_Of_Previous_Formal (P : Entity_Id) return Boolean;
-- The package in question may be an actual for a previous formal
-- package P of the current instance, so examine its actuals as well.
-- This must be recursive over other formal packages.
----------------------------------
-- Is_Actual_Of_Previous_Formal --
----------------------------------
function Is_Actual_Of_Previous_Formal (P : Entity_Id) return Boolean is
E1 : Entity_Id;
begin
E1 := First_Entity (P);
while Present (E1) and then E1 /= Instance loop
if Ekind (E1) = E_Package
and then Nkind (Parent (E1)) = N_Package_Renaming_Declaration
then
if Renamed_Object (E1) = Pack then
return True;
elsif E1 = P or else Renamed_Object (E1) = P then
return False;
elsif Is_Actual_Of_Previous_Formal (E1) then
return True;
end if;
end if;
Next_Entity (E1);
end loop;
return False;
end Is_Actual_Of_Previous_Formal;
-- Start of processing for Denotes_Formal_Package
begin
if On_Exit then
Par :=
Instance_Envs.Table
(Instance_Envs.Last).Instantiated_Parent.Act_Id;
else
Par := Current_Instantiated_Parent.Act_Id;
end if;
if Ekind (Scop) = E_Generic_Package
or else Nkind (Unit_Declaration_Node (Scop)) =
N_Generic_Subprogram_Declaration
then
return True;
elsif Nkind (Original_Node (Unit_Declaration_Node (Pack))) =
N_Formal_Package_Declaration
then
return True;
elsif No (Par) then
return False;
else
-- Check whether this package is associated with a formal package of
-- the enclosing instantiation. Iterate over the list of renamings.
E := First_Entity (Par);
while Present (E) loop
if Ekind (E) /= E_Package
or else Nkind (Parent (E)) /= N_Package_Renaming_Declaration
then
null;
elsif Renamed_Object (E) = Par then
return False;
elsif Renamed_Object (E) = Pack then
return True;
elsif Is_Actual_Of_Previous_Formal (E) then
return True;
end if;
Next_Entity (E);
end loop;
return False;
end if;
end Denotes_Formal_Package;
-----------------
-- End_Generic --
-----------------
procedure End_Generic is
begin
-- ??? More things could be factored out in this routine. Should
-- probably be done at a later stage.
Inside_A_Generic := Generic_Flags.Table (Generic_Flags.Last);
Generic_Flags.Decrement_Last;
Expander_Mode_Restore;
end End_Generic;
-------------
-- Earlier --
-------------
function Earlier (N1, N2 : Node_Id) return Boolean is
procedure Find_Depth (P : in out Node_Id; D : in out Integer);
-- Find distance from given node to enclosing compilation unit
----------------
-- Find_Depth --
----------------
procedure Find_Depth (P : in out Node_Id; D : in out Integer) is
begin
while Present (P)
and then Nkind (P) /= N_Compilation_Unit
loop
P := True_Parent (P);
D := D + 1;
end loop;
end Find_Depth;
-- Local declarations
D1 : Integer := 0;
D2 : Integer := 0;
P1 : Node_Id := N1;
P2 : Node_Id := N2;
T1 : Source_Ptr;
T2 : Source_Ptr;
-- Start of processing for Earlier
begin
Find_Depth (P1, D1);
Find_Depth (P2, D2);
if P1 /= P2 then
return False;
else
P1 := N1;
P2 := N2;
end if;
while D1 > D2 loop
P1 := True_Parent (P1);
D1 := D1 - 1;
end loop;
while D2 > D1 loop
P2 := True_Parent (P2);
D2 := D2 - 1;
end loop;
-- At this point P1 and P2 are at the same distance from the root.
-- We examine their parents until we find a common declarative list.
-- If we reach the root, N1 and N2 do not descend from the same
-- declarative list (e.g. one is nested in the declarative part and
-- the other is in a block in the statement part) and the earlier
-- one is already frozen.
while not Is_List_Member (P1)
or else not Is_List_Member (P2)
or else List_Containing (P1) /= List_Containing (P2)
loop
P1 := True_Parent (P1);
P2 := True_Parent (P2);
if Nkind (Parent (P1)) = N_Subunit then
P1 := Corresponding_Stub (Parent (P1));
end if;
if Nkind (Parent (P2)) = N_Subunit then
P2 := Corresponding_Stub (Parent (P2));
end if;
if P1 = P2 then
return False;
end if;
end loop;
-- Expanded code usually shares the source location of the original
-- construct it was generated for. This however may not necessarily
-- reflect the true location of the code within the tree.
-- Before comparing the slocs of the two nodes, make sure that we are
-- working with correct source locations. Assume that P1 is to the left
-- of P2. If either one does not come from source, traverse the common
-- list heading towards the other node and locate the first source
-- statement.
-- P1 P2
-- ----+===+===+--------------+===+===+----
-- expanded code expanded code
if not Comes_From_Source (P1) then
while Present (P1) loop
-- Neither P2 nor a source statement were located during the
-- search. If we reach the end of the list, then P1 does not
-- occur earlier than P2.
-- ---->
-- start --- P2 ----- P1 --- end
if No (Next (P1)) then
return False;
-- We encounter P2 while going to the right of the list. This
-- means that P1 does indeed appear earlier.
-- ---->
-- start --- P1 ===== P2 --- end
-- expanded code in between
elsif P1 = P2 then
return True;
-- No need to look any further since we have located a source
-- statement.
elsif Comes_From_Source (P1) then
exit;
end if;
-- Keep going right
Next (P1);
end loop;
end if;
if not Comes_From_Source (P2) then
while Present (P2) loop
-- Neither P1 nor a source statement were located during the
-- search. If we reach the start of the list, then P1 does not
-- occur earlier than P2.
-- <----
-- start --- P2 --- P1 --- end
if No (Prev (P2)) then
return False;
-- We encounter P1 while going to the left of the list. This
-- means that P1 does indeed appear earlier.
-- <----
-- start --- P1 ===== P2 --- end
-- expanded code in between
elsif P2 = P1 then
return True;
-- No need to look any further since we have located a source
-- statement.
elsif Comes_From_Source (P2) then
exit;
end if;
-- Keep going left
Prev (P2);
end loop;
end if;
-- At this point either both nodes came from source or we approximated
-- their source locations through neighboring source statements.
T1 := Top_Level_Location (Sloc (P1));
T2 := Top_Level_Location (Sloc (P2));
-- When two nodes come from the same instance, they have identical top
-- level locations. To determine proper relation within the tree, check
-- their locations within the template.
if T1 = T2 then
return Sloc (P1) < Sloc (P2);
-- The two nodes either come from unrelated instances or do not come
-- from instantiated code at all.
else
return T1 < T2;
end if;
end Earlier;
----------------------
-- Find_Actual_Type --
----------------------
function Find_Actual_Type
(Typ : Entity_Id;
Gen_Type : Entity_Id) return Entity_Id
is
Gen_Scope : constant Entity_Id := Scope (Gen_Type);
T : Entity_Id;
begin
-- Special processing only applies to child units
if not Is_Child_Unit (Gen_Scope) then
return Get_Instance_Of (Typ);
-- If designated or component type is itself a formal of the child unit,
-- its instance is available.
elsif Scope (Typ) = Gen_Scope then
return Get_Instance_Of (Typ);
-- If the array or access type is not declared in the parent unit,
-- no special processing needed.
elsif not Is_Generic_Type (Typ)
and then Scope (Gen_Scope) /= Scope (Typ)
then
return Get_Instance_Of (Typ);
-- Otherwise, retrieve designated or component type by visibility
else
T := Current_Entity (Typ);
while Present (T) loop
if In_Open_Scopes (Scope (T)) then
return T;
elsif Is_Generic_Actual_Type (T) then
return T;
end if;
T := Homonym (T);
end loop;
return Typ;
end if;
end Find_Actual_Type;
----------------------------
-- Freeze_Subprogram_Body --
----------------------------
procedure Freeze_Subprogram_Body
(Inst_Node : Node_Id;
Gen_Body : Node_Id;
Pack_Id : Entity_Id)
is
Gen_Unit : constant Entity_Id := Get_Generic_Entity (Inst_Node);
Par : constant Entity_Id := Scope (Gen_Unit);
E_G_Id : Entity_Id;
Enc_G : Entity_Id;
Enc_I : Node_Id;
F_Node : Node_Id;
function Enclosing_Package_Body (N : Node_Id) return Node_Id;
-- Find innermost package body that encloses the given node, and which
-- is not a compilation unit. Freeze nodes for the instance, or for its
-- enclosing body, may be inserted after the enclosing_body of the
-- generic unit. Used to determine proper placement of freeze node for
-- both package and subprogram instances.
function Package_Freeze_Node (B : Node_Id) return Node_Id;
-- Find entity for given package body, and locate or create a freeze
-- node for it.
----------------------------
-- Enclosing_Package_Body --
----------------------------
function Enclosing_Package_Body (N : Node_Id) return Node_Id is
P : Node_Id;
begin
P := Parent (N);
while Present (P)
and then Nkind (Parent (P)) /= N_Compilation_Unit
loop
if Nkind (P) = N_Package_Body then
if Nkind (Parent (P)) = N_Subunit then
return Corresponding_Stub (Parent (P));
else
return P;
end if;
end if;
P := True_Parent (P);
end loop;
return Empty;
end Enclosing_Package_Body;
-------------------------
-- Package_Freeze_Node --
-------------------------
function Package_Freeze_Node (B : Node_Id) return Node_Id is
Id : Entity_Id;
begin
if Nkind (B) = N_Package_Body then
Id := Corresponding_Spec (B);
else pragma Assert (Nkind (B) = N_Package_Body_Stub);
Id := Corresponding_Spec (Proper_Body (Unit (Library_Unit (B))));
end if;
Ensure_Freeze_Node (Id);
return Freeze_Node (Id);
end Package_Freeze_Node;
-- Start of processing for Freeze_Subprogram_Body
begin
-- If the instance and the generic body appear within the same unit, and
-- the instance precedes the generic, the freeze node for the instance
-- must appear after that of the generic. If the generic is nested
-- within another instance I2, then current instance must be frozen
-- after I2. In both cases, the freeze nodes are those of enclosing
-- packages. Otherwise, the freeze node is placed at the end of the
-- current declarative part.
Enc_G := Enclosing_Package_Body (Gen_Body);
Enc_I := Enclosing_Package_Body (Inst_Node);
Ensure_Freeze_Node (Pack_Id);
F_Node := Freeze_Node (Pack_Id);
if Is_Generic_Instance (Par)
and then Present (Freeze_Node (Par))
and then In_Same_Declarative_Part (Freeze_Node (Par), Inst_Node)
then
-- The parent was a premature instantiation. Insert freeze node at
-- the end the current declarative part.
if Is_Known_Guaranteed_ABE (Get_Unit_Instantiation_Node (Par)) then
Insert_Freeze_Node_For_Instance (Inst_Node, F_Node);
-- Handle the following case:
--
-- package Parent_Inst is new ...
-- Parent_Inst []
--
-- procedure P ... -- this body freezes Parent_Inst
--
-- package Inst is new ...
--
-- In this particular scenario, the freeze node for Inst must be
-- inserted in the same manner as that of Parent_Inst - before the
-- next source body or at the end of the declarative list (body not
-- available). If body P did not exist and Parent_Inst was frozen
-- after Inst, either by a body following Inst or at the end of the
-- declarative region, the freeze node for Inst must be inserted
-- after that of Parent_Inst. This relation is established by
-- comparing the Slocs of Parent_Inst freeze node and Inst.
elsif List_Containing (Get_Unit_Instantiation_Node (Par)) =
List_Containing (Inst_Node)
and then Sloc (Freeze_Node (Par)) < Sloc (Inst_Node)
then
Insert_Freeze_Node_For_Instance (Inst_Node, F_Node);
else
Insert_After (Freeze_Node (Par), F_Node);
end if;
-- The body enclosing the instance should be frozen after the body that
-- includes the generic, because the body of the instance may make
-- references to entities therein. If the two are not in the same
-- declarative part, or if the one enclosing the instance is frozen
-- already, freeze the instance at the end of the current declarative
-- part.
elsif Is_Generic_Instance (Par)
and then Present (Freeze_Node (Par))
and then Present (Enc_I)
then
if In_Same_Declarative_Part (Freeze_Node (Par), Enc_I)
or else
(Nkind (Enc_I) = N_Package_Body
and then
In_Same_Declarative_Part (Freeze_Node (Par), Parent (Enc_I)))
then
-- The enclosing package may contain several instances. Rather
-- than computing the earliest point at which to insert its freeze
-- node, we place it at the end of the declarative part of the
-- parent of the generic.
Insert_Freeze_Node_For_Instance
(Freeze_Node (Par), Package_Freeze_Node (Enc_I));
end if;
Insert_Freeze_Node_For_Instance (Inst_Node, F_Node);
elsif Present (Enc_G)
and then Present (Enc_I)
and then Enc_G /= Enc_I
and then Earlier (Inst_Node, Gen_Body)
then
if Nkind (Enc_G) = N_Package_Body then
E_G_Id :=
Corresponding_Spec (Enc_G);
else pragma Assert (Nkind (Enc_G) = N_Package_Body_Stub);
E_G_Id :=
Corresponding_Spec (Proper_Body (Unit (Library_Unit (Enc_G))));
end if;
-- Freeze package that encloses instance, and place node after the
-- package that encloses generic. If enclosing package is already
-- frozen we have to assume it is at the proper place. This may be a
-- potential ABE that requires dynamic checking. Do not add a freeze
-- node if the package that encloses the generic is inside the body
-- that encloses the instance, because the freeze node would be in
-- the wrong scope. Additional contortions needed if the bodies are
-- within a subunit.
declare
Enclosing_Body : Node_Id;
begin
if Nkind (Enc_I) = N_Package_Body_Stub then
Enclosing_Body := Proper_Body (Unit (Library_Unit (Enc_I)));
else
Enclosing_Body := Enc_I;
end if;
if Parent (List_Containing (Enc_G)) /= Enclosing_Body then
Insert_Freeze_Node_For_Instance
(Enc_G, Package_Freeze_Node (Enc_I));
end if;
end;
-- Freeze enclosing subunit before instance
Ensure_Freeze_Node (E_G_Id);
if not Is_List_Member (Freeze_Node (E_G_Id)) then
Insert_After (Enc_G, Freeze_Node (E_G_Id));
end if;
Insert_Freeze_Node_For_Instance (Inst_Node, F_Node);
else
-- If none of the above, insert freeze node at the end of the current
-- declarative part.
Insert_Freeze_Node_For_Instance (Inst_Node, F_Node);
end if;
end Freeze_Subprogram_Body;
----------------
-- Get_Gen_Id --
----------------
function Get_Gen_Id (E : Assoc_Ptr) return Entity_Id is
begin
return Generic_Renamings.Table (E).Gen_Id;
end Get_Gen_Id;
---------------------
-- Get_Instance_Of --
---------------------
function Get_Instance_Of (A : Entity_Id) return Entity_Id is
Res : constant Assoc_Ptr := Generic_Renamings_HTable.Get (A);
begin
if Res /= Assoc_Null then
return Generic_Renamings.Table (Res).Act_Id;
else
-- On exit, entity is not instantiated: not a generic parameter, or
-- else parameter of an inner generic unit.
return A;
end if;
end Get_Instance_Of;
---------------------------------
-- Get_Unit_Instantiation_Node --
---------------------------------
function Get_Unit_Instantiation_Node (A : Entity_Id) return Node_Id is
Decl : Node_Id := Unit_Declaration_Node (A);
Inst : Node_Id;
begin
-- If the Package_Instantiation attribute has been set on the package
-- entity, then use it directly when it (or its Original_Node) refers
-- to an N_Package_Instantiation node. In principle it should be
-- possible to have this field set in all cases, which should be
-- investigated, and would allow this function to be significantly
-- simplified. ???
Inst := Package_Instantiation (A);
if Present (Inst) then
if Nkind (Inst) = N_Package_Instantiation then
return Inst;
elsif Nkind (Original_Node (Inst)) = N_Package_Instantiation then
return Original_Node (Inst);
end if;
end if;
-- If the instantiation is a compilation unit that does not need body
-- then the instantiation node has been rewritten as a package
-- declaration for the instance, and we return the original node.
-- If it is a compilation unit and the instance node has not been
-- rewritten, then it is still the unit of the compilation. Finally, if
-- a body is present, this is a parent of the main unit whose body has
-- been compiled for inlining purposes, and the instantiation node has
-- been rewritten with the instance body.
-- Otherwise the instantiation node appears after the declaration. If
-- the entity is a formal package, the declaration may have been
-- rewritten as a generic declaration (in the case of a formal with box)
-- or left as a formal package declaration if it has actuals, and is
-- found with a forward search.
if Nkind (Parent (Decl)) = N_Compilation_Unit then
if Nkind (Decl) = N_Package_Declaration
and then Present (Corresponding_Body (Decl))
then
Decl := Unit_Declaration_Node (Corresponding_Body (Decl));
end if;
if Nkind_In (Original_Node (Decl), N_Function_Instantiation,
N_Package_Instantiation,
N_Procedure_Instantiation)
then
return Original_Node (Decl);
else
return Unit (Parent (Decl));
end if;
elsif Nkind (Decl) = N_Package_Declaration
and then Nkind (Original_Node (Decl)) = N_Formal_Package_Declaration
then
return Original_Node (Decl);
else
Inst := Next (Decl);
while not Nkind_In (Inst, N_Formal_Package_Declaration,
N_Function_Instantiation,
N_Package_Instantiation,
N_Procedure_Instantiation)
loop
Next (Inst);
end loop;
return Inst;
end if;
end Get_Unit_Instantiation_Node;
------------------------
-- Has_Been_Exchanged --
------------------------
function Has_Been_Exchanged (E : Entity_Id) return Boolean is
Next : Elmt_Id;
begin
Next := First_Elmt (Exchanged_Views);
while Present (Next) loop
if Full_View (Node (Next)) = E then
return True;
end if;
Next_Elmt (Next);
end loop;
return False;
end Has_Been_Exchanged;
----------
-- Hash --
----------
function Hash (F : Entity_Id) return HTable_Range is
begin
return HTable_Range (F mod HTable_Size);
end Hash;
------------------------
-- Hide_Current_Scope --
------------------------
procedure Hide_Current_Scope is
C : constant Entity_Id := Current_Scope;
E : Entity_Id;
begin
Set_Is_Hidden_Open_Scope (C);
E := First_Entity (C);
while Present (E) loop
if Is_Immediately_Visible (E) then
Set_Is_Immediately_Visible (E, False);
Append_Elmt (E, Hidden_Entities);
end if;
Next_Entity (E);
end loop;
-- Make the scope name invisible as well. This is necessary, but might
-- conflict with calls to Rtsfind later on, in case the scope is a
-- predefined one. There is no clean solution to this problem, so for
-- now we depend on the user not redefining Standard itself in one of
-- the parent units.
if Is_Immediately_Visible (C) and then C /= Standard_Standard then
Set_Is_Immediately_Visible (C, False);
Append_Elmt (C, Hidden_Entities);
end if;
end Hide_Current_Scope;
--------------
-- Init_Env --
--------------
procedure Init_Env is
Saved : Instance_Env;
begin
Saved.Instantiated_Parent := Current_Instantiated_Parent;
Saved.Exchanged_Views := Exchanged_Views;
Saved.Hidden_Entities := Hidden_Entities;
Saved.Current_Sem_Unit := Current_Sem_Unit;
Saved.Parent_Unit_Visible := Parent_Unit_Visible;
Saved.Instance_Parent_Unit := Instance_Parent_Unit;
-- Save configuration switches. These may be reset if the unit is a
-- predefined unit, and the current mode is not Ada 2005.
Save_Opt_Config_Switches (Saved.Switches);
Instance_Envs.Append (Saved);
Exchanged_Views := New_Elmt_List;
Hidden_Entities := New_Elmt_List;
-- Make dummy entry for Instantiated parent. If generic unit is legal,
-- this is set properly in Set_Instance_Env.
Current_Instantiated_Parent :=
(Current_Scope, Current_Scope, Assoc_Null);
end Init_Env;
------------------------------
-- In_Same_Declarative_Part --
------------------------------
function In_Same_Declarative_Part
(F_Node : Node_Id;
Inst : Node_Id) return Boolean
is
Decls : constant Node_Id := Parent (F_Node);
Nod : Node_Id;
begin
Nod := Parent (Inst);
while Present (Nod) loop
if Nod = Decls then
return True;
elsif Nkind_In (Nod, N_Subprogram_Body,
N_Package_Body,
N_Package_Declaration,
N_Task_Body,
N_Protected_Body,
N_Block_Statement)
then
return False;
elsif Nkind (Nod) = N_Subunit then
Nod := Corresponding_Stub (Nod);
elsif Nkind (Nod) = N_Compilation_Unit then
return False;
else
Nod := Parent (Nod);
end if;
end loop;
return False;
end In_Same_Declarative_Part;
---------------------
-- In_Main_Context --
---------------------
function In_Main_Context (E : Entity_Id) return Boolean is
Context : List_Id;
Clause : Node_Id;
Nam : Node_Id;
begin
if not Is_Compilation_Unit (E)
or else Ekind (E) /= E_Package
or else In_Private_Part (E)
then
return False;
end if;
Context := Context_Items (Cunit (Main_Unit));
Clause := First (Context);
while Present (Clause) loop
if Nkind (Clause) = N_With_Clause then
Nam := Name (Clause);
-- If the current scope is part of the context of the main unit,
-- analysis of the corresponding with_clause is not complete, and
-- the entity is not set. We use the Chars field directly, which
-- might produce false positives in rare cases, but guarantees
-- that we produce all the instance bodies we will need.
if (Is_Entity_Name (Nam) and then Chars (Nam) = Chars (E))
or else (Nkind (Nam) = N_Selected_Component
and then Chars (Selector_Name (Nam)) = Chars (E))
then
return True;
end if;
end if;
Next (Clause);
end loop;
return False;
end In_Main_Context;
---------------------
-- Inherit_Context --
---------------------
procedure Inherit_Context (Gen_Decl : Node_Id; Inst : Node_Id) is
Current_Context : List_Id;
Current_Unit : Node_Id;
Item : Node_Id;
New_I : Node_Id;
Clause : Node_Id;
OK : Boolean;
Lib_Unit : Node_Id;
begin
if Nkind (Parent (Gen_Decl)) = N_Compilation_Unit then
-- The inherited context is attached to the enclosing compilation
-- unit. This is either the main unit, or the declaration for the
-- main unit (in case the instantiation appears within the package
-- declaration and the main unit is its body).
Current_Unit := Parent (Inst);
while Present (Current_Unit)
and then Nkind (Current_Unit) /= N_Compilation_Unit
loop
Current_Unit := Parent (Current_Unit);
end loop;
Current_Context := Context_Items (Current_Unit);
Item := First (Context_Items (Parent (Gen_Decl)));
while Present (Item) loop
if Nkind (Item) = N_With_Clause then
Lib_Unit := Library_Unit (Item);
-- Take care to prevent direct cyclic with's
if Lib_Unit /= Current_Unit then
-- Do not add a unit if it is already in the context
Clause := First (Current_Context);
OK := True;
while Present (Clause) loop
if Nkind (Clause) = N_With_Clause and then
Library_Unit (Clause) = Lib_Unit
then
OK := False;
exit;
end if;
Next (Clause);
end loop;
if OK then
New_I := New_Copy (Item);
Set_Implicit_With (New_I, True);
Set_Implicit_With_From_Instantiation (New_I, True);
Append (New_I, Current_Context);
end if;
end if;
end if;
Next (Item);
end loop;
end if;
end Inherit_Context;
----------------
-- Initialize --
----------------
procedure Initialize is
begin
Generic_Renamings.Init;
Instance_Envs.Init;
Generic_Flags.Init;
Generic_Renamings_HTable.Reset;
Circularity_Detected := False;
Exchanged_Views := No_Elist;
Hidden_Entities := No_Elist;
end Initialize;
-------------------------------------
-- Insert_Freeze_Node_For_Instance --
-------------------------------------
procedure Insert_Freeze_Node_For_Instance
(N : Node_Id;
F_Node : Node_Id)
is
Decl : Node_Id;
Decls : List_Id;
Inst : Entity_Id;
Par_N : Node_Id;
function Enclosing_Body (N : Node_Id) return Node_Id;
-- Find enclosing package or subprogram body, if any. Freeze node may
-- be placed at end of current declarative list if previous instance
-- and current one have different enclosing bodies.
function Previous_Instance (Gen : Entity_Id) return Entity_Id;
-- Find the local instance, if any, that declares the generic that is
-- being instantiated. If present, the freeze node for this instance
-- must follow the freeze node for the previous instance.
--------------------
-- Enclosing_Body --
--------------------
function Enclosing_Body (N : Node_Id) return Node_Id is
P : Node_Id;
begin
P := Parent (N);
while Present (P)
and then Nkind (Parent (P)) /= N_Compilation_Unit
loop
if Nkind_In (P, N_Package_Body, N_Subprogram_Body) then
if Nkind (Parent (P)) = N_Subunit then
return Corresponding_Stub (Parent (P));
else
return P;
end if;
end if;
P := True_Parent (P);
end loop;
return Empty;
end Enclosing_Body;
-----------------------
-- Previous_Instance --
-----------------------
function Previous_Instance (Gen : Entity_Id) return Entity_Id is
S : Entity_Id;
begin
S := Scope (Gen);
while Present (S) and then S /= Standard_Standard loop
if Is_Generic_Instance (S)
and then In_Same_Source_Unit (S, N)
then
return S;
end if;
S := Scope (S);
end loop;
return Empty;
end Previous_Instance;
-- Start of processing for Insert_Freeze_Node_For_Instance
begin
if not Is_List_Member (F_Node) then
Decl := N;
Decls := List_Containing (N);
Inst := Entity (F_Node);
Par_N := Parent (Decls);
-- When processing a subprogram instantiation, utilize the actual
-- subprogram instantiation rather than its package wrapper as it
-- carries all the context information.
if Is_Wrapper_Package (Inst) then
Inst := Related_Instance (Inst);
end if;
-- If this is a package instance, check whether the generic is
-- declared in a previous instance and the current instance is
-- not within the previous one.
if Present (Generic_Parent (Parent (Inst)))
and then Is_In_Main_Unit (N)
then
declare
Enclosing_N : constant Node_Id := Enclosing_Body (N);
Par_I : constant Entity_Id :=
Previous_Instance
(Generic_Parent (Parent (Inst)));
Scop : Entity_Id;
begin
if Present (Par_I)
and then Earlier (N, Freeze_Node (Par_I))
then
Scop := Scope (Inst);
-- If the current instance is within the one that contains
-- the generic, the freeze node for the current one must
-- appear in the current declarative part. Ditto, if the
-- current instance is within another package instance or
-- within a body that does not enclose the current instance.
-- In these three cases the freeze node of the previous
-- instance is not relevant.
while Present (Scop) and then Scop /= Standard_Standard loop
exit when Scop = Par_I
or else
(Is_Generic_Instance (Scop)
and then Scope_Depth (Scop) > Scope_Depth (Par_I));
Scop := Scope (Scop);
end loop;
-- Previous instance encloses current instance
if Scop = Par_I then
null;
-- If the next node is a source body we must freeze in
-- the current scope as well.
elsif Present (Next (N))
and then Nkind_In (Next (N), N_Subprogram_Body,
N_Package_Body)
and then Comes_From_Source (Next (N))
then
null;
-- Current instance is within an unrelated instance
elsif Is_Generic_Instance (Scop) then
null;
-- Current instance is within an unrelated body
elsif Present (Enclosing_N)
and then Enclosing_N /= Enclosing_Body (Par_I)
then
null;
else
Insert_After (Freeze_Node (Par_I), F_Node);
return;
end if;
end if;
end;
end if;
-- When the instantiation occurs in a package declaration, append the
-- freeze node to the private declarations (if any).
if Nkind (Par_N) = N_Package_Specification
and then Decls = Visible_Declarations (Par_N)
and then Present (Private_Declarations (Par_N))
and then not Is_Empty_List (Private_Declarations (Par_N))
then
Decls := Private_Declarations (Par_N);
Decl := First (Decls);
end if;
-- Determine the proper freeze point of a package instantiation. We
-- adhere to the general rule of a package or subprogram body causing
-- freezing of anything before it in the same declarative region. In
-- this case, the proper freeze point of a package instantiation is
-- before the first source body which follows, or before a stub. This
-- ensures that entities coming from the instance are already frozen
-- and usable in source bodies.
if Nkind (Par_N) /= N_Package_Declaration
and then Ekind (Inst) = E_Package
and then Is_Generic_Instance (Inst)
and then
not In_Same_Source_Unit (Generic_Parent (Parent (Inst)), Inst)
then
while Present (Decl) loop
if (Nkind (Decl) in N_Unit_Body
or else
Nkind (Decl) in N_Body_Stub)
and then Comes_From_Source (Decl)
then
Insert_Before (Decl, F_Node);
return;
end if;
Next (Decl);
end loop;
end if;
-- In a package declaration, or if no previous body, insert at end
-- of list.
Set_Sloc (F_Node, Sloc (Last (Decls)));
Insert_After (Last (Decls), F_Node);
end if;
end Insert_Freeze_Node_For_Instance;
------------------
-- Install_Body --
------------------
procedure Install_Body
(Act_Body : Node_Id;
N : Node_Id;
Gen_Body : Node_Id;
Gen_Decl : Node_Id)
is
function In_Same_Scope (Gen_Id, Act_Id : Node_Id) return Boolean;
-- Check if the generic definition and the instantiation come from
-- a common scope, in which case the instance must be frozen after
-- the generic body.
function True_Sloc (N, Act_Unit : Node_Id) return Source_Ptr;
-- If the instance is nested inside a generic unit, the Sloc of the
-- instance indicates the place of the original definition, not the
-- point of the current enclosing instance. Pending a better usage of
-- Slocs to indicate instantiation places, we determine the place of
-- origin of a node by finding the maximum sloc of any ancestor node.
-- Why is this not equivalent to Top_Level_Location ???
-------------------
-- In_Same_Scope --
-------------------
function In_Same_Scope (Gen_Id, Act_Id : Node_Id) return Boolean is
Act_Scop : Entity_Id := Scope (Act_Id);
Gen_Scop : Entity_Id := Scope (Gen_Id);
begin
while Act_Scop /= Standard_Standard
and then Gen_Scop /= Standard_Standard
loop
if Act_Scop = Gen_Scop then
return True;
end if;
Act_Scop := Scope (Act_Scop);
Gen_Scop := Scope (Gen_Scop);
end loop;
return False;
end In_Same_Scope;
---------------
-- True_Sloc --
---------------
function True_Sloc (N, Act_Unit : Node_Id) return Source_Ptr is
N1 : Node_Id;
Res : Source_Ptr;
begin
Res := Sloc (N);
N1 := N;
while Present (N1) and then N1 /= Act_Unit loop
if Sloc (N1) > Res then
Res := Sloc (N1);
end if;
N1 := Parent (N1);
end loop;
return Res;
end True_Sloc;
Act_Id : constant Entity_Id := Corresponding_Spec (Act_Body);
Act_Unit : constant Node_Id := Unit (Cunit (Get_Source_Unit (N)));
Gen_Id : constant Entity_Id := Corresponding_Spec (Gen_Body);
Par : constant Entity_Id := Scope (Gen_Id);
Gen_Unit : constant Node_Id :=
Unit (Cunit (Get_Source_Unit (Gen_Decl)));
Body_Unit : Node_Id;
F_Node : Node_Id;
Must_Delay : Boolean;
Orig_Body : Node_Id := Gen_Body;
-- Start of processing for Install_Body
begin
-- Handle first the case of an instance with incomplete actual types.
-- The instance body cannot be placed after the declaration because
-- full views have not been seen yet. Any use of the non-limited views
-- in the instance body requires the presence of a regular with_clause
-- in the enclosing unit, and will fail if this with_clause is missing.
-- We place the instance body at the beginning of the enclosing body,
-- which is the unit being compiled. The freeze node for the instance
-- is then placed after the instance body.
if not Is_Empty_Elmt_List (Incomplete_Actuals (Act_Id))
and then Expander_Active
and then Ekind (Scope (Act_Id)) = E_Package
then
declare
Scop : constant Entity_Id := Scope (Act_Id);
Body_Id : constant Node_Id :=
Corresponding_Body (Unit_Declaration_Node (Scop));
begin
Ensure_Freeze_Node (Act_Id);
F_Node := Freeze_Node (Act_Id);
if Present (Body_Id) then
Set_Is_Frozen (Act_Id, False);
Prepend (Act_Body, Declarations (Parent (Body_Id)));
if Is_List_Member (F_Node) then
Remove (F_Node);
end if;
Insert_After (Act_Body, F_Node);
end if;
end;
return;
end if;
-- If the body is a subunit, the freeze point is the corresponding stub
-- in the current compilation, not the subunit itself.
if Nkind (Parent (Gen_Body)) = N_Subunit then
Orig_Body := Corresponding_Stub (Parent (Gen_Body));
else
Orig_Body := Gen_Body;
end if;
Body_Unit := Unit (Cunit (Get_Source_Unit (Orig_Body)));
-- If the instantiation and the generic definition appear in the same
-- package declaration, this is an early instantiation. If they appear
-- in the same declarative part, it is an early instantiation only if
-- the generic body appears textually later, and the generic body is
-- also in the main unit.
-- If instance is nested within a subprogram, and the generic body
-- is not, the instance is delayed because the enclosing body is. If
-- instance and body are within the same scope, or the same subprogram
-- body, indicate explicitly that the instance is delayed.
Must_Delay :=
(Gen_Unit = Act_Unit
and then (Nkind_In (Gen_Unit, N_Generic_Package_Declaration,
N_Package_Declaration)
or else (Gen_Unit = Body_Unit
and then True_Sloc (N, Act_Unit) <
Sloc (Orig_Body)))
and then Is_In_Main_Unit (Original_Node (Gen_Unit))
and then In_Same_Scope (Gen_Id, Act_Id));
-- If this is an early instantiation, the freeze node is placed after
-- the generic body. Otherwise, if the generic appears in an instance,
-- we cannot freeze the current instance until the outer one is frozen.
-- This is only relevant if the current instance is nested within some
-- inner scope not itself within the outer instance. If this scope is
-- a package body in the same declarative part as the outer instance,
-- then that body needs to be frozen after the outer instance. Finally,
-- if no delay is needed, we place the freeze node at the end of the
-- current declarative part.
if Expander_Active
and then (No (Freeze_Node (Act_Id))
or else not Is_List_Member (Freeze_Node (Act_Id)))
then
Ensure_Freeze_Node (Act_Id);
F_Node := Freeze_Node (Act_Id);
if Must_Delay then
Insert_After (Orig_Body, F_Node);
elsif Is_Generic_Instance (Par)
and then Present (Freeze_Node (Par))
and then Scope (Act_Id) /= Par
then
-- Freeze instance of inner generic after instance of enclosing
-- generic.
if In_Same_Declarative_Part (Freeze_Node (Par), N) then
-- Handle the following case:
-- package Parent_Inst is new ...
-- Parent_Inst []
-- procedure P ... -- this body freezes Parent_Inst
-- package Inst is new ...
-- In this particular scenario, the freeze node for Inst must
-- be inserted in the same manner as that of Parent_Inst,
-- before the next source body or at the end of the declarative
-- list (body not available). If body P did not exist and
-- Parent_Inst was frozen after Inst, either by a body
-- following Inst or at the end of the declarative region,
-- the freeze node for Inst must be inserted after that of
-- Parent_Inst. This relation is established by comparing
-- the Slocs of Parent_Inst freeze node and Inst.
if List_Containing (Get_Unit_Instantiation_Node (Par)) =
List_Containing (N)
and then Sloc (Freeze_Node (Par)) < Sloc (N)
then
Insert_Freeze_Node_For_Instance (N, F_Node);
else
Insert_After (Freeze_Node (Par), F_Node);
end if;
-- Freeze package enclosing instance of inner generic after
-- instance of enclosing generic.
elsif Nkind_In (Parent (N), N_Package_Body, N_Subprogram_Body)
and then In_Same_Declarative_Part (Freeze_Node (Par), Parent (N))
then
declare
Enclosing : Entity_Id;
begin
Enclosing := Corresponding_Spec (Parent (N));
if No (Enclosing) then
Enclosing := Defining_Entity (Parent (N));
end if;
Insert_Freeze_Node_For_Instance (N, F_Node);
Ensure_Freeze_Node (Enclosing);
if not Is_List_Member (Freeze_Node (Enclosing)) then
-- The enclosing context is a subunit, insert the freeze
-- node after the stub.
if Nkind (Parent (Parent (N))) = N_Subunit then
Insert_Freeze_Node_For_Instance
(Corresponding_Stub (Parent (Parent (N))),
Freeze_Node (Enclosing));
-- The enclosing context is a package with a stub body
-- which has already been replaced by the real body.
-- Insert the freeze node after the actual body.
elsif Ekind (Enclosing) = E_Package
and then Present (Body_Entity (Enclosing))
and then Was_Originally_Stub
(Parent (Body_Entity (Enclosing)))
then
Insert_Freeze_Node_For_Instance
(Parent (Body_Entity (Enclosing)),
Freeze_Node (Enclosing));
-- The parent instance has been frozen before the body of
-- the enclosing package, insert the freeze node after
-- the body.
elsif List_Containing (Freeze_Node (Par)) =
List_Containing (Parent (N))
and then Sloc (Freeze_Node (Par)) < Sloc (Parent (N))
then
Insert_Freeze_Node_For_Instance
(Parent (N), Freeze_Node (Enclosing));
else
Insert_After
(Freeze_Node (Par), Freeze_Node (Enclosing));
end if;
end if;
end;
else
Insert_Freeze_Node_For_Instance (N, F_Node);
end if;
else
Insert_Freeze_Node_For_Instance (N, F_Node);
end if;
end if;
Set_Is_Frozen (Act_Id);
Insert_Before (N, Act_Body);
Mark_Rewrite_Insertion (Act_Body);
end Install_Body;
-----------------------------
-- Install_Formal_Packages --
-----------------------------
procedure Install_Formal_Packages (Par : Entity_Id) is
E : Entity_Id;
Gen : Entity_Id;
Gen_E : Entity_Id := Empty;
begin
E := First_Entity (Par);
-- If we are installing an instance parent, locate the formal packages
-- of its generic parent.
if Is_Generic_Instance (Par) then
Gen := Generic_Parent (Package_Specification (Par));
Gen_E := First_Entity (Gen);
end if;
while Present (E) loop
if Ekind (E) = E_Package
and then Nkind (Parent (E)) = N_Package_Renaming_Declaration
then
-- If this is the renaming for the parent instance, done
if Renamed_Object (E) = Par then
exit;
-- The visibility of a formal of an enclosing generic is already
-- correct.
elsif Denotes_Formal_Package (E) then
null;
elsif Present (Associated_Formal_Package (E)) then
Check_Generic_Actuals (Renamed_Object (E), True);
Set_Is_Hidden (E, False);
-- Find formal package in generic unit that corresponds to
-- (instance of) formal package in instance.
while Present (Gen_E) and then Chars (Gen_E) /= Chars (E) loop
Next_Entity (Gen_E);
end loop;
if Present (Gen_E) then
Map_Formal_Package_Entities (Gen_E, E);
end if;
end if;
end if;
Next_Entity (E);
if Present (Gen_E) then
Next_Entity (Gen_E);
end if;
end loop;
end Install_Formal_Packages;
--------------------
-- Install_Parent --
--------------------
procedure Install_Parent (P : Entity_Id; In_Body : Boolean := False) is
Ancestors : constant Elist_Id := New_Elmt_List;
S : constant Entity_Id := Current_Scope;
Inst_Par : Entity_Id;
First_Par : Entity_Id;
Inst_Node : Node_Id;
Gen_Par : Entity_Id;
First_Gen : Entity_Id;
Elmt : Elmt_Id;
procedure Install_Noninstance_Specs (Par : Entity_Id);
-- Install the scopes of noninstance parent units ending with Par
procedure Install_Spec (Par : Entity_Id);
-- The child unit is within the declarative part of the parent, so the
-- declarations within the parent are immediately visible.
-------------------------------
-- Install_Noninstance_Specs --
-------------------------------
procedure Install_Noninstance_Specs (Par : Entity_Id) is
begin
if Present (Par)
and then Par /= Standard_Standard
and then not In_Open_Scopes (Par)
then
Install_Noninstance_Specs (Scope (Par));
Install_Spec (Par);
end if;
end Install_Noninstance_Specs;
------------------
-- Install_Spec --
------------------
procedure Install_Spec (Par : Entity_Id) is
Spec : constant Node_Id := Package_Specification (Par);
begin
-- If this parent of the child instance is a top-level unit,
-- then record the unit and its visibility for later resetting in
-- Remove_Parent. We exclude units that are generic instances, as we
-- only want to record this information for the ultimate top-level
-- noninstance parent (is that always correct???).
if Scope (Par) = Standard_Standard
and then not Is_Generic_Instance (Par)
then
Parent_Unit_Visible := Is_Immediately_Visible (Par);
Instance_Parent_Unit := Par;
end if;
-- Open the parent scope and make it and its declarations visible.
-- If this point is not within a body, then only the visible
-- declarations should be made visible, and installation of the
-- private declarations is deferred until the appropriate point
-- within analysis of the spec being instantiated (see the handling
-- of parent visibility in Analyze_Package_Specification). This is
-- relaxed in the case where the parent unit is Ada.Tags, to avoid
-- private view problems that occur when compiling instantiations of
-- a generic child of that package (Generic_Dispatching_Constructor).
-- If the instance freezes a tagged type, inlinings of operations
-- from Ada.Tags may need the full view of type Tag. If inlining took
-- proper account of establishing visibility of inlined subprograms'
-- parents then it should be possible to remove this
-- special check. ???
Push_Scope (Par);
Set_Is_Immediately_Visible (Par);
Install_Visible_Declarations (Par);
Set_Use (Visible_Declarations (Spec));
if In_Body or else Is_RTU (Par, Ada_Tags) then
Install_Private_Declarations (Par);
Set_Use (Private_Declarations (Spec));
end if;
end Install_Spec;
-- Start of processing for Install_Parent
begin
-- We need to install the parent instance to compile the instantiation
-- of the child, but the child instance must appear in the current
-- scope. Given that we cannot place the parent above the current scope
-- in the scope stack, we duplicate the current scope and unstack both
-- after the instantiation is complete.
-- If the parent is itself the instantiation of a child unit, we must
-- also stack the instantiation of its parent, and so on. Each such
-- ancestor is the prefix of the name in a prior instantiation.
-- If this is a nested instance, the parent unit itself resolves to
-- a renaming of the parent instance, whose declaration we need.
-- Finally, the parent may be a generic (not an instance) when the
-- child unit appears as a formal package.
Inst_Par := P;
if Present (Renamed_Entity (Inst_Par)) then
Inst_Par := Renamed_Entity (Inst_Par);
end if;
First_Par := Inst_Par;
Gen_Par := Generic_Parent (Package_Specification (Inst_Par));
First_Gen := Gen_Par;
while Present (Gen_Par) and then Is_Child_Unit (Gen_Par) loop
-- Load grandparent instance as well
Inst_Node := Get_Unit_Instantiation_Node (Inst_Par);
if Nkind (Name (Inst_Node)) = N_Expanded_Name then
Inst_Par := Entity (Prefix (Name (Inst_Node)));
if Present (Renamed_Entity (Inst_Par)) then
Inst_Par := Renamed_Entity (Inst_Par);
end if;
Gen_Par := Generic_Parent (Package_Specification (Inst_Par));
if Present (Gen_Par) then
Prepend_Elmt (Inst_Par, Ancestors);
else
-- Parent is not the name of an instantiation
Install_Noninstance_Specs (Inst_Par);
exit;
end if;
else
-- Previous error
exit;
end if;
end loop;
if Present (First_Gen) then
Append_Elmt (First_Par, Ancestors);
else
Install_Noninstance_Specs (First_Par);
end if;
if not Is_Empty_Elmt_List (Ancestors) then
Elmt := First_Elmt (Ancestors);
while Present (Elmt) loop
Install_Spec (Node (Elmt));
Install_Formal_Packages (Node (Elmt));
Next_Elmt (Elmt);
end loop;
end if;
if not In_Body then
Push_Scope (S);
end if;
end Install_Parent;
-------------------------------
-- Install_Hidden_Primitives --
-------------------------------
procedure Install_Hidden_Primitives
(Prims_List : in out Elist_Id;
Gen_T : Entity_Id;
Act_T : Entity_Id)
is
Elmt : Elmt_Id;
List : Elist_Id := No_Elist;
Prim_G_Elmt : Elmt_Id;
Prim_A_Elmt : Elmt_Id;
Prim_G : Node_Id;
Prim_A : Node_Id;
begin
-- No action needed in case of serious errors because we cannot trust
-- in the order of primitives
if Serious_Errors_Detected > 0 then
return;
-- No action possible if we don't have available the list of primitive
-- operations
elsif No (Gen_T)
or else not Is_Record_Type (Gen_T)
or else not Is_Tagged_Type (Gen_T)
or else not Is_Record_Type (Act_T)
or else not Is_Tagged_Type (Act_T)
then
return;
-- There is no need to handle interface types since their primitives
-- cannot be hidden
elsif Is_Interface (Gen_T) then
return;
end if;
Prim_G_Elmt := First_Elmt (Primitive_Operations (Gen_T));
if not Is_Class_Wide_Type (Act_T) then
Prim_A_Elmt := First_Elmt (Primitive_Operations (Act_T));
else
Prim_A_Elmt := First_Elmt (Primitive_Operations (Root_Type (Act_T)));
end if;
loop
-- Skip predefined primitives in the generic formal
while Present (Prim_G_Elmt)
and then Is_Predefined_Dispatching_Operation (Node (Prim_G_Elmt))
loop
Next_Elmt (Prim_G_Elmt);
end loop;
-- Skip predefined primitives in the generic actual
while Present (Prim_A_Elmt)
and then Is_Predefined_Dispatching_Operation (Node (Prim_A_Elmt))
loop
Next_Elmt (Prim_A_Elmt);
end loop;
exit when No (Prim_G_Elmt) or else No (Prim_A_Elmt);
Prim_G := Node (Prim_G_Elmt);
Prim_A := Node (Prim_A_Elmt);
-- There is no need to handle interface primitives because their
-- primitives are not hidden
exit when Present (Interface_Alias (Prim_G));
-- Here we install one hidden primitive
if Chars (Prim_G) /= Chars (Prim_A)
and then Has_Suffix (Prim_A, 'P')
and then Remove_Suffix (Prim_A, 'P') = Chars (Prim_G)
then
Set_Chars (Prim_A, Chars (Prim_G));
Append_New_Elmt (Prim_A, To => List);
end if;
Next_Elmt (Prim_A_Elmt);
Next_Elmt (Prim_G_Elmt);
end loop;
-- Append the elements to the list of temporarily visible primitives
-- avoiding duplicates.
if Present (List) then
if No (Prims_List) then
Prims_List := New_Elmt_List;
end if;
Elmt := First_Elmt (List);
while Present (Elmt) loop
Append_Unique_Elmt (Node (Elmt), Prims_List);
Next_Elmt (Elmt);
end loop;
end if;
end Install_Hidden_Primitives;
-------------------------------
-- Restore_Hidden_Primitives --
-------------------------------
procedure Restore_Hidden_Primitives (Prims_List : in out Elist_Id) is
Prim_Elmt : Elmt_Id;
Prim : Node_Id;
begin
if Prims_List /= No_Elist then
Prim_Elmt := First_Elmt (Prims_List);
while Present (Prim_Elmt) loop
Prim := Node (Prim_Elmt);
Set_Chars (Prim, Add_Suffix (Prim, 'P'));
Next_Elmt (Prim_Elmt);
end loop;
Prims_List := No_Elist;
end if;
end Restore_Hidden_Primitives;
--------------------------------
-- Instantiate_Formal_Package --
--------------------------------
function Instantiate_Formal_Package
(Formal : Node_Id;
Actual : Node_Id;
Analyzed_Formal : Node_Id) return List_Id
is
Loc : constant Source_Ptr := Sloc (Actual);
Actual_Pack : Entity_Id;
Formal_Pack : Entity_Id;
Gen_Parent : Entity_Id;
Decls : List_Id;
Nod : Node_Id;
Parent_Spec : Node_Id;
procedure Find_Matching_Actual
(F : Node_Id;
Act : in out Entity_Id);
-- We need to associate each formal entity in the formal package with
-- the corresponding entity in the actual package. The actual package
-- has been analyzed and possibly expanded, and as a result there is
-- no one-to-one correspondence between the two lists (for example,
-- the actual may include subtypes, itypes, and inherited primitive
-- operations, interspersed among the renaming declarations for the
-- actuals). We retrieve the corresponding actual by name because each
-- actual has the same name as the formal, and they do appear in the
-- same order.
function Get_Formal_Entity (N : Node_Id) return Entity_Id;
-- Retrieve entity of defining entity of generic formal parameter.
-- Only the declarations of formals need to be considered when
-- linking them to actuals, but the declarative list may include
-- internal entities generated during analysis, and those are ignored.
procedure Match_Formal_Entity
(Formal_Node : Node_Id;
Formal_Ent : Entity_Id;
Actual_Ent : Entity_Id);
-- Associates the formal entity with the actual. In the case where
-- Formal_Ent is a formal package, this procedure iterates through all
-- of its formals and enters associations between the actuals occurring
-- in the formal package's corresponding actual package (given by
-- Actual_Ent) and the formal package's formal parameters. This
-- procedure recurses if any of the parameters is itself a package.
function Is_Instance_Of
(Act_Spec : Entity_Id;
Gen_Anc : Entity_Id) return Boolean;
-- The actual can be an instantiation of a generic within another
-- instance, in which case there is no direct link from it to the
-- original generic ancestor. In that case, we recognize that the
-- ultimate ancestor is the same by examining names and scopes.
procedure Process_Nested_Formal (Formal : Entity_Id);
-- If the current formal is declared with a box, its own formals are
-- visible in the instance, as they were in the generic, and their
-- Hidden flag must be reset. If some of these formals are themselves
-- packages declared with a box, the processing must be recursive.
--------------------------
-- Find_Matching_Actual --
--------------------------
procedure Find_Matching_Actual
(F : Node_Id;
Act : in out Entity_Id)
is
Formal_Ent : Entity_Id;
begin
case Nkind (Original_Node (F)) is
when N_Formal_Object_Declaration
| N_Formal_Type_Declaration
=>
Formal_Ent := Defining_Identifier (F);
while Chars (Act) /= Chars (Formal_Ent) loop
Next_Entity (Act);
end loop;
when N_Formal_Package_Declaration
| N_Formal_Subprogram_Declaration
| N_Generic_Package_Declaration
| N_Package_Declaration
=>
Formal_Ent := Defining_Entity (F);
while Chars (Act) /= Chars (Formal_Ent) loop
Next_Entity (Act);
end loop;
when others =>
raise Program_Error;
end case;
end Find_Matching_Actual;
-------------------------
-- Match_Formal_Entity --
-------------------------
procedure Match_Formal_Entity
(Formal_Node : Node_Id;
Formal_Ent : Entity_Id;
Actual_Ent : Entity_Id)
is
Act_Pkg : Entity_Id;
begin
Set_Instance_Of (Formal_Ent, Actual_Ent);
if Ekind (Actual_Ent) = E_Package then
-- Record associations for each parameter
Act_Pkg := Actual_Ent;
declare
A_Ent : Entity_Id := First_Entity (Act_Pkg);
F_Ent : Entity_Id;
F_Node : Node_Id;
Gen_Decl : Node_Id;
Formals : List_Id;
Actual : Entity_Id;
begin
-- Retrieve the actual given in the formal package declaration
Actual := Entity (Name (Original_Node (Formal_Node)));
-- The actual in the formal package declaration may be a
-- renamed generic package, in which case we want to retrieve
-- the original generic in order to traverse its formal part.
if Present (Renamed_Entity (Actual)) then
Gen_Decl := Unit_Declaration_Node (Renamed_Entity (Actual));
else
Gen_Decl := Unit_Declaration_Node (Actual);
end if;
Formals := Generic_Formal_Declarations (Gen_Decl);
if Present (Formals) then
F_Node := First_Non_Pragma (Formals);
else
F_Node := Empty;
end if;
while Present (A_Ent)
and then Present (F_Node)
and then A_Ent /= First_Private_Entity (Act_Pkg)
loop
F_Ent := Get_Formal_Entity (F_Node);
if Present (F_Ent) then
-- This is a formal of the original package. Record
-- association and recurse.
Find_Matching_Actual (F_Node, A_Ent);
Match_Formal_Entity (F_Node, F_Ent, A_Ent);
Next_Entity (A_Ent);
end if;
Next_Non_Pragma (F_Node);
end loop;
end;
end if;
end Match_Formal_Entity;
-----------------------
-- Get_Formal_Entity --
-----------------------
function Get_Formal_Entity (N : Node_Id) return Entity_Id is
Kind : constant Node_Kind := Nkind (Original_Node (N));
begin
case Kind is
when N_Formal_Object_Declaration =>
return Defining_Identifier (N);
when N_Formal_Type_Declaration =>
return Defining_Identifier (N);
when N_Formal_Subprogram_Declaration =>
return Defining_Unit_Name (Specification (N));
when N_Formal_Package_Declaration =>
return Defining_Identifier (Original_Node (N));
when N_Generic_Package_Declaration =>
return Defining_Identifier (Original_Node (N));
-- All other declarations are introduced by semantic analysis and
-- have no match in the actual.
when others =>
return Empty;
end case;
end Get_Formal_Entity;
--------------------
-- Is_Instance_Of --
--------------------
function Is_Instance_Of
(Act_Spec : Entity_Id;
Gen_Anc : Entity_Id) return Boolean
is
Gen_Par : constant Entity_Id := Generic_Parent (Act_Spec);
begin
if No (Gen_Par) then
return False;
-- Simplest case: the generic parent of the actual is the formal
elsif Gen_Par = Gen_Anc then
return True;
elsif Chars (Gen_Par) /= Chars (Gen_Anc) then
return False;
-- The actual may be obtained through several instantiations. Its
-- scope must itself be an instance of a generic declared in the
-- same scope as the formal. Any other case is detected above.
elsif not Is_Generic_Instance (Scope (Gen_Par)) then
return False;
else
return Generic_Parent (Parent (Scope (Gen_Par))) = Scope (Gen_Anc);
end if;
end Is_Instance_Of;
---------------------------
-- Process_Nested_Formal --
---------------------------
procedure Process_Nested_Formal (Formal : Entity_Id) is
Ent : Entity_Id;
begin
if Present (Associated_Formal_Package (Formal))
and then Box_Present (Parent (Associated_Formal_Package (Formal)))
then
Ent := First_Entity (Formal);
while Present (Ent) loop
Set_Is_Hidden (Ent, False);
Set_Is_Visible_Formal (Ent);
Set_Is_Potentially_Use_Visible
(Ent, Is_Potentially_Use_Visible (Formal));
if Ekind (Ent) = E_Package then
exit when Renamed_Entity (Ent) = Renamed_Entity (Formal);
Process_Nested_Formal (Ent);
end if;
Next_Entity (Ent);
end loop;
end if;
end Process_Nested_Formal;
-- Start of processing for Instantiate_Formal_Package
begin
Analyze (Actual);
if not Is_Entity_Name (Actual)
or else Ekind (Entity (Actual)) /= E_Package
then
Error_Msg_N
("expect package instance to instantiate formal", Actual);
Abandon_Instantiation (Actual);
raise Program_Error;
else
Actual_Pack := Entity (Actual);
Set_Is_Instantiated (Actual_Pack);
-- The actual may be a renamed package, or an outer generic formal
-- package whose instantiation is converted into a renaming.
if Present (Renamed_Object (Actual_Pack)) then
Actual_Pack := Renamed_Object (Actual_Pack);
end if;
if Nkind (Analyzed_Formal) = N_Formal_Package_Declaration then
Gen_Parent := Get_Instance_Of (Entity (Name (Analyzed_Formal)));
Formal_Pack := Defining_Identifier (Analyzed_Formal);
else
Gen_Parent :=
Generic_Parent (Specification (Analyzed_Formal));
Formal_Pack :=
Defining_Unit_Name (Specification (Analyzed_Formal));
end if;
if Nkind (Parent (Actual_Pack)) = N_Defining_Program_Unit_Name then
Parent_Spec := Package_Specification (Actual_Pack);
else
Parent_Spec := Parent (Actual_Pack);
end if;
if Gen_Parent = Any_Id then
Error_Msg_N
("previous error in declaration of formal package", Actual);
Abandon_Instantiation (Actual);
elsif
Is_Instance_Of (Parent_Spec, Get_Instance_Of (Gen_Parent))
then
null;
else
Error_Msg_NE
("actual parameter must be instance of&", Actual, Gen_Parent);
Abandon_Instantiation (Actual);
end if;
Set_Instance_Of (Defining_Identifier (Formal), Actual_Pack);
Map_Formal_Package_Entities (Formal_Pack, Actual_Pack);
Nod :=
Make_Package_Renaming_Declaration (Loc,
Defining_Unit_Name => New_Copy (Defining_Identifier (Formal)),
Name => New_Occurrence_Of (Actual_Pack, Loc));
Set_Associated_Formal_Package
(Defining_Unit_Name (Nod), Defining_Identifier (Formal));
Decls := New_List (Nod);
-- If the formal F has a box, then the generic declarations are
-- visible in the generic G. In an instance of G, the corresponding
-- entities in the actual for F (which are the actuals for the
-- instantiation of the generic that F denotes) must also be made
-- visible for analysis of the current instance. On exit from the
-- current instance, those entities are made private again. If the
-- actual is currently in use, these entities are also use-visible.
-- The loop through the actual entities also steps through the formal
-- entities and enters associations from formals to actuals into the
-- renaming map. This is necessary to properly handle checking of
-- actual parameter associations for later formals that depend on
-- actuals declared in the formal package.
-- In Ada 2005, partial parameterization requires that we make
-- visible the actuals corresponding to formals that were defaulted
-- in the formal package. There formals are identified because they
-- remain formal generics within the formal package, rather than
-- being renamings of the actuals supplied.
declare
Gen_Decl : constant Node_Id :=
Unit_Declaration_Node (Gen_Parent);
Formals : constant List_Id :=
Generic_Formal_Declarations (Gen_Decl);
Actual_Ent : Entity_Id;
Actual_Of_Formal : Node_Id;
Formal_Node : Node_Id;
Formal_Ent : Entity_Id;
begin
if Present (Formals) then
Formal_Node := First_Non_Pragma (Formals);
else
Formal_Node := Empty;
end if;
Actual_Ent := First_Entity (Actual_Pack);
Actual_Of_Formal :=
First (Visible_Declarations (Specification (Analyzed_Formal)));
while Present (Actual_Ent)
and then Actual_Ent /= First_Private_Entity (Actual_Pack)
loop
if Present (Formal_Node) then
Formal_Ent := Get_Formal_Entity (Formal_Node);
if Present (Formal_Ent) then
Find_Matching_Actual (Formal_Node, Actual_Ent);
Match_Formal_Entity (Formal_Node, Formal_Ent, Actual_Ent);
-- We iterate at the same time over the actuals of the
-- local package created for the formal, to determine
-- which one of the formals of the original generic were
-- defaulted in the formal. The corresponding actual
-- entities are visible in the enclosing instance.
if Box_Present (Formal)
or else
(Present (Actual_Of_Formal)
and then
Is_Generic_Formal
(Get_Formal_Entity (Actual_Of_Formal)))
then
Set_Is_Hidden (Actual_Ent, False);
Set_Is_Visible_Formal (Actual_Ent);
Set_Is_Potentially_Use_Visible
(Actual_Ent, In_Use (Actual_Pack));
if Ekind (Actual_Ent) = E_Package then
Process_Nested_Formal (Actual_Ent);
end if;
else
Set_Is_Hidden (Actual_Ent);
Set_Is_Potentially_Use_Visible (Actual_Ent, False);
end if;
end if;
Next_Non_Pragma (Formal_Node);
Next (Actual_Of_Formal);
else
-- No further formals to match, but the generic part may
-- contain inherited operation that are not hidden in the
-- enclosing instance.
Next_Entity (Actual_Ent);
end if;
end loop;
-- Inherited subprograms generated by formal derived types are
-- also visible if the types are.
Actual_Ent := First_Entity (Actual_Pack);
while Present (Actual_Ent)
and then Actual_Ent /= First_Private_Entity (Actual_Pack)
loop
if Is_Overloadable (Actual_Ent)
and then
Nkind (Parent (Actual_Ent)) = N_Subtype_Declaration
and then
not Is_Hidden (Defining_Identifier (Parent (Actual_Ent)))
then
Set_Is_Hidden (Actual_Ent, False);
Set_Is_Potentially_Use_Visible
(Actual_Ent, In_Use (Actual_Pack));
end if;
Next_Entity (Actual_Ent);
end loop;
end;
-- If the formal is not declared with a box, reanalyze it as an
-- abbreviated instantiation, to verify the matching rules of 12.7.
-- The actual checks are performed after the generic associations
-- have been analyzed, to guarantee the same visibility for this
-- instantiation and for the actuals.
-- In Ada 2005, the generic associations for the formal can include
-- defaulted parameters. These are ignored during check. This
-- internal instantiation is removed from the tree after conformance
-- checking, because it contains formal declarations for those
-- defaulted parameters, and those should not reach the back-end.
if not Box_Present (Formal) then
declare
I_Pack : constant Entity_Id :=
Make_Temporary (Sloc (Actual), 'P');
begin
Set_Is_Internal (I_Pack);
Append_To (Decls,
Make_Package_Instantiation (Sloc (Actual),
Defining_Unit_Name => I_Pack,
Name =>
New_Occurrence_Of
(Get_Instance_Of (Gen_Parent), Sloc (Actual)),
Generic_Associations => Generic_Associations (Formal)));
end;
end if;
return Decls;
end if;
end Instantiate_Formal_Package;
-----------------------------------
-- Instantiate_Formal_Subprogram --
-----------------------------------
function Instantiate_Formal_Subprogram
(Formal : Node_Id;
Actual : Node_Id;
Analyzed_Formal : Node_Id) return Node_Id
is
Analyzed_S : constant Entity_Id :=
Defining_Unit_Name (Specification (Analyzed_Formal));
Formal_Sub : constant Entity_Id :=
Defining_Unit_Name (Specification (Formal));
function From_Parent_Scope (Subp : Entity_Id) return Boolean;
-- If the generic is a child unit, the parent has been installed on the
-- scope stack, but a default subprogram cannot resolve to something
-- on the parent because that parent is not really part of the visible
-- context (it is there to resolve explicit local entities). If the
-- default has resolved in this way, we remove the entity from immediate
-- visibility and analyze the node again to emit an error message or
-- find another visible candidate.
procedure Valid_Actual_Subprogram (Act : Node_Id);
-- Perform legality check and raise exception on failure
-----------------------
-- From_Parent_Scope --
-----------------------
function From_Parent_Scope (Subp : Entity_Id) return Boolean is
Gen_Scope : Node_Id;
begin
Gen_Scope := Scope (Analyzed_S);
while Present (Gen_Scope) and then Is_Child_Unit (Gen_Scope) loop
if Scope (Subp) = Scope (Gen_Scope) then
return True;
end if;
Gen_Scope := Scope (Gen_Scope);
end loop;
return False;
end From_Parent_Scope;
-----------------------------
-- Valid_Actual_Subprogram --
-----------------------------
procedure Valid_Actual_Subprogram (Act : Node_Id) is
Act_E : Entity_Id;
begin
if Is_Entity_Name (Act) then
Act_E := Entity (Act);
elsif Nkind (Act) = N_Selected_Component
and then Is_Entity_Name (Selector_Name (Act))
then
Act_E := Entity (Selector_Name (Act));
else
Act_E := Empty;
end if;
if (Present (Act_E) and then Is_Overloadable (Act_E))
or else Nkind_In (Act, N_Attribute_Reference,
N_Indexed_Component,
N_Character_Literal,
N_Explicit_Dereference)
then
return;
end if;
Error_Msg_NE
("expect subprogram or entry name in instantiation of &",
Instantiation_Node, Formal_Sub);
Abandon_Instantiation (Instantiation_Node);
end Valid_Actual_Subprogram;
-- Local variables
Decl_Node : Node_Id;
Loc : Source_Ptr;
Nam : Node_Id;
New_Spec : Node_Id;
New_Subp : Entity_Id;
-- Start of processing for Instantiate_Formal_Subprogram
begin
New_Spec := New_Copy_Tree (Specification (Formal));
-- The tree copy has created the proper instantiation sloc for the
-- new specification. Use this location for all other constructed
-- declarations.
Loc := Sloc (Defining_Unit_Name (New_Spec));
-- Create new entity for the actual (New_Copy_Tree does not), and
-- indicate that it is an actual.
New_Subp := Make_Defining_Identifier (Loc, Chars (Formal_Sub));
Set_Ekind (New_Subp, Ekind (Analyzed_S));
Set_Is_Generic_Actual_Subprogram (New_Subp);
Set_Defining_Unit_Name (New_Spec, New_Subp);
-- Create new entities for the each of the formals in the specification
-- of the renaming declaration built for the actual.
if Present (Parameter_Specifications (New_Spec)) then
declare
F : Node_Id;
F_Id : Entity_Id;
begin
F := First (Parameter_Specifications (New_Spec));
while Present (F) loop
F_Id := Defining_Identifier (F);
Set_Defining_Identifier (F,
Make_Defining_Identifier (Sloc (F_Id), Chars (F_Id)));
Next (F);
end loop;
end;
end if;
-- Find entity of actual. If the actual is an attribute reference, it
-- cannot be resolved here (its formal is missing) but is handled
-- instead in Attribute_Renaming. If the actual is overloaded, it is
-- fully resolved subsequently, when the renaming declaration for the
-- formal is analyzed. If it is an explicit dereference, resolve the
-- prefix but not the actual itself, to prevent interpretation as call.
if Present (Actual) then
Loc := Sloc (Actual);
Set_Sloc (New_Spec, Loc);
if Nkind (Actual) = N_Operator_Symbol then
Find_Direct_Name (Actual);
elsif Nkind (Actual) = N_Explicit_Dereference then
Analyze (Prefix (Actual));
elsif Nkind (Actual) /= N_Attribute_Reference then
Analyze (Actual);
end if;
Valid_Actual_Subprogram (Actual);
Nam := Actual;
elsif Present (Default_Name (Formal)) then
if not Nkind_In (Default_Name (Formal), N_Attribute_Reference,
N_Selected_Component,
N_Indexed_Component,
N_Character_Literal)
and then Present (Entity (Default_Name (Formal)))
then
Nam := New_Occurrence_Of (Entity (Default_Name (Formal)), Loc);
else
Nam := New_Copy (Default_Name (Formal));
Set_Sloc (Nam, Loc);
end if;
elsif Box_Present (Formal) then
-- Actual is resolved at the point of instantiation. Create an
-- identifier or operator with the same name as the formal.
if Nkind (Formal_Sub) = N_Defining_Operator_Symbol then
Nam :=
Make_Operator_Symbol (Loc,
Chars => Chars (Formal_Sub),
Strval => No_String);
else
Nam := Make_Identifier (Loc, Chars (Formal_Sub));
end if;
elsif Nkind (Specification (Formal)) = N_Procedure_Specification
and then Null_Present (Specification (Formal))
then
-- Generate null body for procedure, for use in the instance
Decl_Node :=
Make_Subprogram_Body (Loc,
Specification => New_Spec,
Declarations => New_List,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => New_List (Make_Null_Statement (Loc))));
Set_Is_Intrinsic_Subprogram (Defining_Unit_Name (New_Spec));
return Decl_Node;
else
Error_Msg_Sloc := Sloc (Scope (Analyzed_S));
Error_Msg_NE
("missing actual&", Instantiation_Node, Formal_Sub);
Error_Msg_NE
("\in instantiation of & declared#",
Instantiation_Node, Scope (Analyzed_S));
Abandon_Instantiation (Instantiation_Node);
end if;
Decl_Node :=
Make_Subprogram_Renaming_Declaration (Loc,
Specification => New_Spec,
Name => Nam);
-- If we do not have an actual and the formal specified <> then set to
-- get proper default.
if No (Actual) and then Box_Present (Formal) then
Set_From_Default (Decl_Node);
end if;
-- Gather possible interpretations for the actual before analyzing the
-- instance. If overloaded, it will be resolved when analyzing the
-- renaming declaration.
if Box_Present (Formal) and then No (Actual) then
Analyze (Nam);
if Is_Child_Unit (Scope (Analyzed_S))
and then Present (Entity (Nam))
then
if not Is_Overloaded (Nam) then
if From_Parent_Scope (Entity (Nam)) then
Set_Is_Immediately_Visible (Entity (Nam), False);
Set_Entity (Nam, Empty);
Set_Etype (Nam, Empty);
Analyze (Nam);
Set_Is_Immediately_Visible (Entity (Nam));
end if;
else
declare
I : Interp_Index;
It : Interp;
begin
Get_First_Interp (Nam, I, It);
while Present (It.Nam) loop
if From_Parent_Scope (It.Nam) then
Remove_Interp (I);
end if;
Get_Next_Interp (I, It);
end loop;
end;
end if;
end if;
end if;
-- The generic instantiation freezes the actual. This can only be done
-- once the actual is resolved, in the analysis of the renaming
-- declaration. To make the formal subprogram entity available, we set
-- Corresponding_Formal_Spec to point to the formal subprogram entity.
-- This is also needed in Analyze_Subprogram_Renaming for the processing
-- of formal abstract subprograms.
Set_Corresponding_Formal_Spec (Decl_Node, Analyzed_S);
-- We cannot analyze the renaming declaration, and thus find the actual,
-- until all the actuals are assembled in the instance. For subsequent
-- checks of other actuals, indicate the node that will hold the
-- instance of this formal.
Set_Instance_Of (Analyzed_S, Nam);
if Nkind (Actual) = N_Selected_Component
and then Is_Task_Type (Etype (Prefix (Actual)))
and then not Is_Frozen (Etype (Prefix (Actual)))
then
-- The renaming declaration will create a body, which must appear
-- outside of the instantiation, We move the renaming declaration
-- out of the instance, and create an additional renaming inside,
-- to prevent freezing anomalies.
declare
Anon_Id : constant Entity_Id := Make_Temporary (Loc, 'E');
begin
Set_Defining_Unit_Name (New_Spec, Anon_Id);
Insert_Before (Instantiation_Node, Decl_Node);
Analyze (Decl_Node);
-- Now create renaming within the instance
Decl_Node :=
Make_Subprogram_Renaming_Declaration (Loc,
Specification => New_Copy_Tree (New_Spec),
Name => New_Occurrence_Of (Anon_Id, Loc));
Set_Defining_Unit_Name (Specification (Decl_Node),
Make_Defining_Identifier (Loc, Chars (Formal_Sub)));
end;
end if;
return Decl_Node;
end Instantiate_Formal_Subprogram;
------------------------
-- Instantiate_Object --
------------------------
function Instantiate_Object
(Formal : Node_Id;
Actual : Node_Id;
Analyzed_Formal : Node_Id) return List_Id
is
Gen_Obj : constant Entity_Id := Defining_Identifier (Formal);
A_Gen_Obj : constant Entity_Id :=
Defining_Identifier (Analyzed_Formal);
Acc_Def : Node_Id := Empty;
Act_Assoc : constant Node_Id := Parent (Actual);
Actual_Decl : Node_Id := Empty;
Decl_Node : Node_Id;
Def : Node_Id;
Ftyp : Entity_Id;
List : constant List_Id := New_List;
Loc : constant Source_Ptr := Sloc (Actual);
Orig_Ftyp : constant Entity_Id := Etype (A_Gen_Obj);
Subt_Decl : Node_Id := Empty;
Subt_Mark : Node_Id := Empty;
function Copy_Access_Def return Node_Id;
-- If formal is an anonymous access, copy access definition of formal
-- for generated object declaration.
---------------------
-- Copy_Access_Def --
---------------------
function Copy_Access_Def return Node_Id is
begin
Def := New_Copy_Tree (Acc_Def);
-- In addition, if formal is an access to subprogram we need to
-- generate new formals for the signature of the default, so that
-- the tree is properly formatted for ASIS use.
if Present (Access_To_Subprogram_Definition (Acc_Def)) then
declare
Par_Spec : Node_Id;
begin
Par_Spec :=
First (Parameter_Specifications
(Access_To_Subprogram_Definition (Def)));
while Present (Par_Spec) loop
Set_Defining_Identifier (Par_Spec,
Make_Defining_Identifier (Sloc (Acc_Def),
Chars => Chars (Defining_Identifier (Par_Spec))));
Next (Par_Spec);
end loop;
end;
end if;
return Def;
end Copy_Access_Def;
-- Start of processing for Instantiate_Object
begin
-- Formal may be an anonymous access
if Present (Subtype_Mark (Formal)) then
Subt_Mark := Subtype_Mark (Formal);
else
Check_Access_Definition (Formal);
Acc_Def := Access_Definition (Formal);
end if;
-- Sloc for error message on missing actual
Error_Msg_Sloc := Sloc (Scope (A_Gen_Obj));
if Get_Instance_Of (Gen_Obj) /= Gen_Obj then
Error_Msg_N ("duplicate instantiation of generic parameter", Actual);
end if;
Set_Parent (List, Parent (Actual));
-- OUT present
if Out_Present (Formal) then
-- An IN OUT generic actual must be a name. The instantiation is a
-- renaming declaration. The actual is the name being renamed. We
-- use the actual directly, rather than a copy, because it is not
-- used further in the list of actuals, and because a copy or a use
-- of relocate_node is incorrect if the instance is nested within a
-- generic. In order to simplify ASIS searches, the Generic_Parent
-- field links the declaration to the generic association.
if No (Actual) then
Error_Msg_NE
("missing actual &",
Instantiation_Node, Gen_Obj);
Error_Msg_NE
("\in instantiation of & declared#",
Instantiation_Node, Scope (A_Gen_Obj));
Abandon_Instantiation (Instantiation_Node);
end if;
if Present (Subt_Mark) then
Decl_Node :=
Make_Object_Renaming_Declaration (Loc,
Defining_Identifier => New_Copy (Gen_Obj),
Subtype_Mark => New_Copy_Tree (Subt_Mark),
Name => Actual);
else pragma Assert (Present (Acc_Def));
Decl_Node :=
Make_Object_Renaming_Declaration (Loc,
Defining_Identifier => New_Copy (Gen_Obj),
Access_Definition => New_Copy_Tree (Acc_Def),
Name => Actual);
end if;
Set_Corresponding_Generic_Association (Decl_Node, Act_Assoc);
-- The analysis of the actual may produce Insert_Action nodes, so
-- the declaration must have a context in which to attach them.
Append (Decl_Node, List);
Analyze (Actual);
-- Return if the analysis of the actual reported some error
if Etype (Actual) = Any_Type then
return List;
end if;
-- This check is performed here because Analyze_Object_Renaming will
-- not check it when Comes_From_Source is False. Note though that the
-- check for the actual being the name of an object will be performed
-- in Analyze_Object_Renaming.
if Is_Object_Reference (Actual)
and then Is_Dependent_Component_Of_Mutable_Object (Actual)
then
Error_Msg_N
("illegal discriminant-dependent component for in out parameter",
Actual);
end if;
-- The actual has to be resolved in order to check that it is a
-- variable (due to cases such as F (1), where F returns access to
-- an array, and for overloaded prefixes).
Ftyp := Get_Instance_Of (Etype (A_Gen_Obj));
-- If the type of the formal is not itself a formal, and the current
-- unit is a child unit, the formal type must be declared in a
-- parent, and must be retrieved by visibility.
if Ftyp = Orig_Ftyp
and then Is_Generic_Unit (Scope (Ftyp))
and then Is_Child_Unit (Scope (A_Gen_Obj))
then
declare
Temp : constant Node_Id :=
New_Copy_Tree (Subtype_Mark (Analyzed_Formal));
begin
Set_Entity (Temp, Empty);
Find_Type (Temp);
Ftyp := Entity (Temp);
end;
end if;
if Is_Private_Type (Ftyp)
and then not Is_Private_Type (Etype (Actual))
and then (Base_Type (Full_View (Ftyp)) = Base_Type (Etype (Actual))
or else Base_Type (Etype (Actual)) = Ftyp)
then
-- If the actual has the type of the full view of the formal, or
-- else a non-private subtype of the formal, then the visibility
-- of the formal type has changed. Add to the actuals a subtype
-- declaration that will force the exchange of views in the body
-- of the instance as well.
Subt_Decl :=
Make_Subtype_Declaration (Loc,
Defining_Identifier => Make_Temporary (Loc, 'P'),
Subtype_Indication => New_Occurrence_Of (Ftyp, Loc));
Prepend (Subt_Decl, List);
Prepend_Elmt (Full_View (Ftyp), Exchanged_Views);
Exchange_Declarations (Ftyp);
end if;
Resolve (Actual, Ftyp);
if not Denotes_Variable (Actual) then
Error_Msg_NE ("actual for& must be a variable", Actual, Gen_Obj);
elsif Base_Type (Ftyp) /= Base_Type (Etype (Actual)) then
-- Ada 2005 (AI-423): For a generic formal object of mode in out,
-- the type of the actual shall resolve to a specific anonymous
-- access type.
if Ada_Version < Ada_2005
or else Ekind (Base_Type (Ftyp)) /=
E_Anonymous_Access_Type
or else Ekind (Base_Type (Etype (Actual))) /=
E_Anonymous_Access_Type
then
Error_Msg_NE
("type of actual does not match type of&", Actual, Gen_Obj);
end if;
end if;
Note_Possible_Modification (Actual, Sure => True);
-- Check for instantiation of atomic/volatile actual for
-- non-atomic/volatile formal (RM C.6 (12)).
if Is_Atomic_Object (Actual) and then not Is_Atomic (Orig_Ftyp) then
Error_Msg_N
("cannot instantiate non-atomic formal object "
& "with atomic actual", Actual);
elsif Is_Volatile_Object (Actual) and then not Is_Volatile (Orig_Ftyp)
then
Error_Msg_N
("cannot instantiate non-volatile formal object "
& "with volatile actual", Actual);
end if;
-- Formal in-parameter
else
-- The instantiation of a generic formal in-parameter is constant
-- declaration. The actual is the expression for that declaration.
-- Its type is a full copy of the type of the formal. This may be
-- an access to subprogram, for which we need to generate entities
-- for the formals in the new signature.
if Present (Actual) then
if Present (Subt_Mark) then
Def := New_Copy_Tree (Subt_Mark);
else pragma Assert (Present (Acc_Def));
Def := Copy_Access_Def;
end if;
Decl_Node :=
Make_Object_Declaration (Loc,
Defining_Identifier => New_Copy (Gen_Obj),
Constant_Present => True,
Null_Exclusion_Present => Null_Exclusion_Present (Formal),
Object_Definition => Def,
Expression => Actual);
Set_Corresponding_Generic_Association (Decl_Node, Act_Assoc);
-- A generic formal object of a tagged type is defined to be
-- aliased so the new constant must also be treated as aliased.
if Is_Tagged_Type (Etype (A_Gen_Obj)) then
Set_Aliased_Present (Decl_Node);
end if;
Append (Decl_Node, List);
-- No need to repeat (pre-)analysis of some expression nodes
-- already handled in Preanalyze_Actuals.
if Nkind (Actual) /= N_Allocator then
Analyze (Actual);
-- Return if the analysis of the actual reported some error
if Etype (Actual) = Any_Type then
return List;
end if;
end if;
declare
Formal_Type : constant Entity_Id := Etype (A_Gen_Obj);
Typ : Entity_Id;
begin
Typ := Get_Instance_Of (Formal_Type);
-- If the actual appears in the current or an enclosing scope,
-- use its type directly. This is relevant if it has an actual
-- subtype that is distinct from its nominal one. This cannot
-- be done in general because the type of the actual may
-- depend on other actuals, and only be fully determined when
-- the enclosing instance is analyzed.
if Present (Etype (Actual))
and then Is_Constr_Subt_For_U_Nominal (Etype (Actual))
then
Freeze_Before (Instantiation_Node, Etype (Actual));
else
Freeze_Before (Instantiation_Node, Typ);
end if;
-- If the actual is an aggregate, perform name resolution on
-- its components (the analysis of an aggregate does not do it)
-- to capture local names that may be hidden if the generic is
-- a child unit.
if Nkind (Actual) = N_Aggregate then
Preanalyze_And_Resolve (Actual, Typ);
end if;
if Is_Limited_Type (Typ)
and then not OK_For_Limited_Init (Typ, Actual)
then
Error_Msg_N
("initialization not allowed for limited types", Actual);
Explain_Limited_Type (Typ, Actual);
end if;
end;
elsif Present (Default_Expression (Formal)) then
-- Use default to construct declaration
if Present (Subt_Mark) then
Def := New_Copy (Subt_Mark);
else pragma Assert (Present (Acc_Def));
Def := Copy_Access_Def;
end if;
Decl_Node :=
Make_Object_Declaration (Sloc (Formal),
Defining_Identifier => New_Copy (Gen_Obj),
Constant_Present => True,
Null_Exclusion_Present => Null_Exclusion_Present (Formal),
Object_Definition => Def,
Expression => New_Copy_Tree
(Default_Expression (Formal)));
Append (Decl_Node, List);
Set_Analyzed (Expression (Decl_Node), False);
else
Error_Msg_NE ("missing actual&", Instantiation_Node, Gen_Obj);
Error_Msg_NE ("\in instantiation of & declared#",
Instantiation_Node, Scope (A_Gen_Obj));
if Is_Scalar_Type (Etype (A_Gen_Obj)) then
-- Create dummy constant declaration so that instance can be
-- analyzed, to minimize cascaded visibility errors.
if Present (Subt_Mark) then
Def := Subt_Mark;
else pragma Assert (Present (Acc_Def));
Def := Acc_Def;
end if;
Decl_Node :=
Make_Object_Declaration (Loc,
Defining_Identifier => New_Copy (Gen_Obj),
Constant_Present => True,
Null_Exclusion_Present => Null_Exclusion_Present (Formal),
Object_Definition => New_Copy (Def),
Expression =>
Make_Attribute_Reference (Sloc (Gen_Obj),
Attribute_Name => Name_First,
Prefix => New_Copy (Def)));
Append (Decl_Node, List);
else
Abandon_Instantiation (Instantiation_Node);
end if;
end if;
end if;
if Nkind (Actual) in N_Has_Entity then
Actual_Decl := Parent (Entity (Actual));
end if;
-- Ada 2005 (AI-423): For a formal object declaration with a null
-- exclusion or an access definition that has a null exclusion: If the
-- actual matching the formal object declaration denotes a generic
-- formal object of another generic unit G, and the instantiation
-- containing the actual occurs within the body of G or within the body
-- of a generic unit declared within the declarative region of G, then
-- the declaration of the formal object of G must have a null exclusion.
-- Otherwise, the subtype of the actual matching the formal object
-- declaration shall exclude null.
if Ada_Version >= Ada_2005
and then Present (Actual_Decl)
and then Nkind_In (Actual_Decl, N_Formal_Object_Declaration,
N_Object_Declaration)
and then Nkind (Analyzed_Formal) = N_Formal_Object_Declaration
and then not Has_Null_Exclusion (Actual_Decl)
and then Has_Null_Exclusion (Analyzed_Formal)
then
Error_Msg_Sloc := Sloc (Analyzed_Formal);
Error_Msg_N
("actual must exclude null to match generic formal#", Actual);
end if;
-- An effectively volatile object cannot be used as an actual in a
-- generic instantiation (SPARK RM 7.1.3(7)). The following check is
-- relevant only when SPARK_Mode is on as it is not a standard Ada
-- legality rule, and also verifies that the actual is an object.
if SPARK_Mode = On
and then Present (Actual)
and then Is_Object_Reference (Actual)
and then Is_Effectively_Volatile_Object (Actual)
then
Error_Msg_N
("volatile object cannot act as actual in generic instantiation",
Actual);
end if;
return List;
end Instantiate_Object;
------------------------------
-- Instantiate_Package_Body --
------------------------------
-- WARNING: This routine manages Ghost and SPARK regions. Return statements
-- must be replaced by gotos which jump to the end of the routine in order
-- to restore the Ghost and SPARK modes.
procedure Instantiate_Package_Body
(Body_Info : Pending_Body_Info;
Inlined_Body : Boolean := False;
Body_Optional : Boolean := False)
is
Act_Decl : constant Node_Id := Body_Info.Act_Decl;
Act_Decl_Id : constant Entity_Id := Defining_Entity (Act_Decl);
Act_Spec : constant Node_Id := Specification (Act_Decl);
Inst_Node : constant Node_Id := Body_Info.Inst_Node;
Gen_Id : constant Node_Id := Name (Inst_Node);
Gen_Unit : constant Entity_Id := Get_Generic_Entity (Inst_Node);
Gen_Decl : constant Node_Id := Unit_Declaration_Node (Gen_Unit);
Loc : constant Source_Ptr := Sloc (Inst_Node);
Saved_ISMP : constant Boolean :=
Ignore_SPARK_Mode_Pragmas_In_Instance;
Saved_Style_Check : constant Boolean := Style_Check;
procedure Check_Initialized_Types;
-- In a generic package body, an entity of a generic private type may
-- appear uninitialized. This is suspicious, unless the actual is a
-- fully initialized type.
-----------------------------
-- Check_Initialized_Types --
-----------------------------
procedure Check_Initialized_Types is
Decl : Node_Id;
Formal : Entity_Id;
Actual : Entity_Id;
Uninit_Var : Entity_Id;
begin
Decl := First (Generic_Formal_Declarations (Gen_Decl));
while Present (Decl) loop
Uninit_Var := Empty;
if Nkind (Decl) = N_Private_Extension_Declaration then
Uninit_Var := Uninitialized_Variable (Decl);
elsif Nkind (Decl) = N_Formal_Type_Declaration
and then Nkind (Formal_Type_Definition (Decl)) =
N_Formal_Private_Type_Definition
then
Uninit_Var :=
Uninitialized_Variable (Formal_Type_Definition (Decl));
end if;
if Present (Uninit_Var) then
Formal := Defining_Identifier (Decl);
Actual := First_Entity (Act_Decl_Id);
-- For each formal there is a subtype declaration that renames
-- the actual and has the same name as the formal. Locate the
-- formal for warning message about uninitialized variables
-- in the generic, for which the actual type should be a fully
-- initialized type.
while Present (Actual) loop
exit when Ekind (Actual) = E_Package
and then Present (Renamed_Object (Actual));
if Chars (Actual) = Chars (Formal)
and then not Is_Scalar_Type (Actual)
and then not Is_Fully_Initialized_Type (Actual)
and then Warn_On_No_Value_Assigned
then
Error_Msg_Node_2 := Formal;
Error_Msg_NE
("generic unit has uninitialized variable& of "
& "formal private type &?v?", Actual, Uninit_Var);
Error_Msg_NE
("actual type for& should be fully initialized type?v?",
Actual, Formal);
exit;
end if;
Next_Entity (Actual);
end loop;
end if;
Next (Decl);
end loop;
end Check_Initialized_Types;
-- Local variables
Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
Saved_SM : constant SPARK_Mode_Type := SPARK_Mode;
Saved_SMP : constant Node_Id := SPARK_Mode_Pragma;
-- Save the Ghost and SPARK mode-related data to restore on exit
Act_Body : Node_Id;
Act_Body_Id : Entity_Id;
Act_Body_Name : Node_Id;
Gen_Body : Node_Id;
Gen_Body_Id : Node_Id;
Par_Ent : Entity_Id := Empty;
Par_Vis : Boolean := False;
Parent_Installed : Boolean := False;
Vis_Prims_List : Elist_Id := No_Elist;
-- List of primitives made temporarily visible in the instantiation
-- to match the visibility of the formal type.
-- Start of processing for Instantiate_Package_Body
begin
Gen_Body_Id := Corresponding_Body (Gen_Decl);
-- The instance body may already have been processed, as the parent of
-- another instance that is inlined (Load_Parent_Of_Generic).
if Present (Corresponding_Body (Instance_Spec (Inst_Node))) then
return;
end if;
-- The package being instantiated may be subject to pragma Ghost. Set
-- the mode now to ensure that any nodes generated during instantiation
-- are properly marked as Ghost.
Set_Ghost_Mode (Act_Decl_Id);
Expander_Mode_Save_And_Set (Body_Info.Expander_Status);
-- Re-establish the state of information on which checks are suppressed.
-- This information was set in Body_Info at the point of instantiation,
-- and now we restore it so that the instance is compiled using the
-- check status at the instantiation (RM 11.5(7.2/2), AI95-00224-01).
Local_Suppress_Stack_Top := Body_Info.Local_Suppress_Stack_Top;
Scope_Suppress := Body_Info.Scope_Suppress;
Opt.Ada_Version := Body_Info.Version;
Opt.Ada_Version_Pragma := Body_Info.Version_Pragma;
Restore_Warnings (Body_Info.Warnings);
-- Install the SPARK mode which applies to the package body
Install_SPARK_Mode (Body_Info.SPARK_Mode, Body_Info.SPARK_Mode_Pragma);
if No (Gen_Body_Id) then
-- Do not look for parent of generic body if none is required.
-- This may happen when the routine is called as part of the
-- Pending_Instantiations processing, when nested instances
-- may precede the one generated from the main unit.
if not Unit_Requires_Body (Defining_Entity (Gen_Decl))
and then Body_Optional
then
goto Leave;
else
Load_Parent_Of_Generic
(Inst_Node, Specification (Gen_Decl), Body_Optional);
Gen_Body_Id := Corresponding_Body (Gen_Decl);
end if;
end if;
-- Establish global variable for sloc adjustment and for error recovery
-- In the case of an instance body for an instantiation with actuals
-- from a limited view, the instance body is placed at the beginning
-- of the enclosing package body: use the body entity as the source
-- location for nodes of the instance body.
if not Is_Empty_Elmt_List (Incomplete_Actuals (Act_Decl_Id)) then
declare
Scop : constant Entity_Id := Scope (Act_Decl_Id);
Body_Id : constant Node_Id :=
Corresponding_Body (Unit_Declaration_Node (Scop));
begin
Instantiation_Node := Body_Id;
end;
else
Instantiation_Node := Inst_Node;
end if;
if Present (Gen_Body_Id) then
Save_Env (Gen_Unit, Act_Decl_Id);
Style_Check := False;
-- If the context of the instance is subject to SPARK_Mode "off", the
-- annotation is missing, or the body is instantiated at a later pass
-- and its spec ignored SPARK_Mode pragma, set the global flag which
-- signals Analyze_Pragma to ignore all SPARK_Mode pragmas within the
-- instance.
if SPARK_Mode /= On
or else Ignore_SPARK_Mode_Pragmas (Act_Decl_Id)
then
Ignore_SPARK_Mode_Pragmas_In_Instance := True;
end if;
Current_Sem_Unit := Body_Info.Current_Sem_Unit;
Gen_Body := Unit_Declaration_Node (Gen_Body_Id);
Create_Instantiation_Source
(Inst_Node, Gen_Body_Id, S_Adjustment);
Act_Body :=
Copy_Generic_Node
(Original_Node (Gen_Body), Empty, Instantiating => True);
-- Create proper (possibly qualified) defining name for the body, to
-- correspond to the one in the spec.
Act_Body_Id :=
Make_Defining_Identifier (Sloc (Act_Decl_Id), Chars (Act_Decl_Id));
Set_Comes_From_Source (Act_Body_Id, Comes_From_Source (Act_Decl_Id));
-- Some attributes of spec entity are not inherited by body entity
Set_Handler_Records (Act_Body_Id, No_List);
if Nkind (Defining_Unit_Name (Act_Spec)) =
N_Defining_Program_Unit_Name
then
Act_Body_Name :=
Make_Defining_Program_Unit_Name (Loc,
Name =>
New_Copy_Tree (Name (Defining_Unit_Name (Act_Spec))),
Defining_Identifier => Act_Body_Id);
else
Act_Body_Name := Act_Body_Id;
end if;
Set_Defining_Unit_Name (Act_Body, Act_Body_Name);
Set_Corresponding_Spec (Act_Body, Act_Decl_Id);
Check_Generic_Actuals (Act_Decl_Id, False);
Check_Initialized_Types;
-- Install primitives hidden at the point of the instantiation but
-- visible when processing the generic formals
declare
E : Entity_Id;
begin
E := First_Entity (Act_Decl_Id);
while Present (E) loop
if Is_Type (E)
and then not Is_Itype (E)
and then Is_Generic_Actual_Type (E)
and then Is_Tagged_Type (E)
then
Install_Hidden_Primitives
(Prims_List => Vis_Prims_List,
Gen_T => Generic_Parent_Type (Parent (E)),
Act_T => E);
end if;
Next_Entity (E);
end loop;
end;
-- If it is a child unit, make the parent instance (which is an
-- instance of the parent of the generic) visible. The parent
-- instance is the prefix of the name of the generic unit.
if Ekind (Scope (Gen_Unit)) = E_Generic_Package
and then Nkind (Gen_Id) = N_Expanded_Name
then
Par_Ent := Entity (Prefix (Gen_Id));
Par_Vis := Is_Immediately_Visible (Par_Ent);
Install_Parent (Par_Ent, In_Body => True);
Parent_Installed := True;
elsif Is_Child_Unit (Gen_Unit) then
Par_Ent := Scope (Gen_Unit);
Par_Vis := Is_Immediately_Visible (Par_Ent);
Install_Parent (Par_Ent, In_Body => True);
Parent_Installed := True;
end if;
-- If the instantiation is a library unit, and this is the main unit,
-- then build the resulting compilation unit nodes for the instance.
-- If this is a compilation unit but it is not the main unit, then it
-- is the body of a unit in the context, that is being compiled
-- because it is encloses some inlined unit or another generic unit
-- being instantiated. In that case, this body is not part of the
-- current compilation, and is not attached to the tree, but its
-- parent must be set for analysis.
if Nkind (Parent (Inst_Node)) = N_Compilation_Unit then
-- Replace instance node with body of instance, and create new
-- node for corresponding instance declaration.
Build_Instance_Compilation_Unit_Nodes
(Inst_Node, Act_Body, Act_Decl);
Analyze (Inst_Node);
if Parent (Inst_Node) = Cunit (Main_Unit) then
-- If the instance is a child unit itself, then set the scope
-- of the expanded body to be the parent of the instantiation
-- (ensuring that the fully qualified name will be generated
-- for the elaboration subprogram).
if Nkind (Defining_Unit_Name (Act_Spec)) =
N_Defining_Program_Unit_Name
then
Set_Scope (Defining_Entity (Inst_Node), Scope (Act_Decl_Id));
end if;
end if;
-- Case where instantiation is not a library unit
else
-- If this is an early instantiation, i.e. appears textually
-- before the corresponding body and must be elaborated first,
-- indicate that the body instance is to be delayed.
Install_Body (Act_Body, Inst_Node, Gen_Body, Gen_Decl);
-- Now analyze the body. We turn off all checks if this is an
-- internal unit, since there is no reason to have checks on for
-- any predefined run-time library code. All such code is designed
-- to be compiled with checks off.
-- Note that we do NOT apply this criterion to children of GNAT
-- The latter units must suppress checks explicitly if needed.
-- We also do not suppress checks in CodePeer mode where we are
-- interested in finding possible runtime errors.
if not CodePeer_Mode
and then In_Predefined_Unit (Gen_Decl)
then
Analyze (Act_Body, Suppress => All_Checks);
else
Analyze (Act_Body);
end if;
end if;
Inherit_Context (Gen_Body, Inst_Node);
-- Remove the parent instances if they have been placed on the scope
-- stack to compile the body.
if Parent_Installed then
Remove_Parent (In_Body => True);
-- Restore the previous visibility of the parent
Set_Is_Immediately_Visible (Par_Ent, Par_Vis);
end if;
Restore_Hidden_Primitives (Vis_Prims_List);
Restore_Private_Views (Act_Decl_Id);
-- Remove the current unit from visibility if this is an instance
-- that is not elaborated on the fly for inlining purposes.
if not Inlined_Body then
Set_Is_Immediately_Visible (Act_Decl_Id, False);
end if;
Restore_Env;
-- If we have no body, and the unit requires a body, then complain. This
-- complaint is suppressed if we have detected other errors (since a
-- common reason for missing the body is that it had errors).
-- In CodePeer mode, a warning has been emitted already, no need for
-- further messages.
elsif Unit_Requires_Body (Gen_Unit)
and then not Body_Optional
then
if CodePeer_Mode then
null;
elsif Serious_Errors_Detected = 0 then
Error_Msg_NE
("cannot find body of generic package &", Inst_Node, Gen_Unit);
-- Don't attempt to perform any cleanup actions if some other error
-- was already detected, since this can cause blowups.
else
goto Leave;
end if;
-- Case of package that does not need a body
else
-- If the instantiation of the declaration is a library unit, rewrite
-- the original package instantiation as a package declaration in the
-- compilation unit node.
if Nkind (Parent (Inst_Node)) = N_Compilation_Unit then
Set_Parent_Spec (Act_Decl, Parent_Spec (Inst_Node));
Rewrite (Inst_Node, Act_Decl);
-- Generate elaboration entity, in case spec has elaboration code.
-- This cannot be done when the instance is analyzed, because it
-- is not known yet whether the body exists.
Set_Elaboration_Entity_Required (Act_Decl_Id, False);
Build_Elaboration_Entity (Parent (Inst_Node), Act_Decl_Id);
-- If the instantiation is not a library unit, then append the
-- declaration to the list of implicitly generated entities, unless
-- it is already a list member which means that it was already
-- processed
elsif not Is_List_Member (Act_Decl) then
Mark_Rewrite_Insertion (Act_Decl);
Insert_Before (Inst_Node, Act_Decl);
end if;
end if;
Expander_Mode_Restore;
<<Leave>>
Ignore_SPARK_Mode_Pragmas_In_Instance := Saved_ISMP;
Restore_Ghost_Mode (Saved_GM);
Restore_SPARK_Mode (Saved_SM, Saved_SMP);
Style_Check := Saved_Style_Check;
end Instantiate_Package_Body;
---------------------------------
-- Instantiate_Subprogram_Body --
---------------------------------
-- WARNING: This routine manages Ghost and SPARK regions. Return statements
-- must be replaced by gotos which jump to the end of the routine in order
-- to restore the Ghost and SPARK modes.
procedure Instantiate_Subprogram_Body
(Body_Info : Pending_Body_Info;
Body_Optional : Boolean := False)
is
Act_Decl : constant Node_Id := Body_Info.Act_Decl;
Act_Decl_Id : constant Entity_Id := Defining_Entity (Act_Decl);
Inst_Node : constant Node_Id := Body_Info.Inst_Node;
Gen_Id : constant Node_Id := Name (Inst_Node);
Gen_Unit : constant Entity_Id := Get_Generic_Entity (Inst_Node);
Gen_Decl : constant Node_Id := Unit_Declaration_Node (Gen_Unit);
Loc : constant Source_Ptr := Sloc (Inst_Node);
Pack_Id : constant Entity_Id :=
Defining_Unit_Name (Parent (Act_Decl));
Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
Saved_ISMP : constant Boolean :=
Ignore_SPARK_Mode_Pragmas_In_Instance;
Saved_SM : constant SPARK_Mode_Type := SPARK_Mode;
Saved_SMP : constant Node_Id := SPARK_Mode_Pragma;
-- Save the Ghost and SPARK mode-related data to restore on exit
Saved_Style_Check : constant Boolean := Style_Check;
Saved_Warnings : constant Warning_Record := Save_Warnings;
Act_Body : Node_Id;
Act_Body_Id : Entity_Id;
Gen_Body : Node_Id;
Gen_Body_Id : Node_Id;
Pack_Body : Node_Id;
Par_Ent : Entity_Id := Empty;
Par_Vis : Boolean := False;
Ret_Expr : Node_Id;
Parent_Installed : Boolean := False;
begin
Gen_Body_Id := Corresponding_Body (Gen_Decl);
-- Subprogram body may have been created already because of an inline
-- pragma, or because of multiple elaborations of the enclosing package
-- when several instances of the subprogram appear in the main unit.
if Present (Corresponding_Body (Act_Decl)) then
return;
end if;
-- The subprogram being instantiated may be subject to pragma Ghost. Set
-- the mode now to ensure that any nodes generated during instantiation
-- are properly marked as Ghost.
Set_Ghost_Mode (Act_Decl_Id);
Expander_Mode_Save_And_Set (Body_Info.Expander_Status);
-- Re-establish the state of information on which checks are suppressed.
-- This information was set in Body_Info at the point of instantiation,
-- and now we restore it so that the instance is compiled using the
-- check status at the instantiation (RM 11.5(7.2/2), AI95-00224-01).
Local_Suppress_Stack_Top := Body_Info.Local_Suppress_Stack_Top;
Scope_Suppress := Body_Info.Scope_Suppress;
Opt.Ada_Version := Body_Info.Version;
Opt.Ada_Version_Pragma := Body_Info.Version_Pragma;
Restore_Warnings (Body_Info.Warnings);
-- Install the SPARK mode which applies to the subprogram body from the
-- instantiation context. This may be refined further if an explicit
-- SPARK_Mode pragma applies to the generic body.
Install_SPARK_Mode (Body_Info.SPARK_Mode, Body_Info.SPARK_Mode_Pragma);
if No (Gen_Body_Id) then
-- For imported generic subprogram, no body to compile, complete
-- the spec entity appropriately.
if Is_Imported (Gen_Unit) then
Set_Is_Imported (Act_Decl_Id);
Set_First_Rep_Item (Act_Decl_Id, First_Rep_Item (Gen_Unit));
Set_Interface_Name (Act_Decl_Id, Interface_Name (Gen_Unit));
Set_Convention (Act_Decl_Id, Convention (Gen_Unit));
Set_Has_Completion (Act_Decl_Id);
goto Leave;
-- For other cases, compile the body
else
Load_Parent_Of_Generic
(Inst_Node, Specification (Gen_Decl), Body_Optional);
Gen_Body_Id := Corresponding_Body (Gen_Decl);
end if;
end if;
Instantiation_Node := Inst_Node;
if Present (Gen_Body_Id) then
Gen_Body := Unit_Declaration_Node (Gen_Body_Id);
if Nkind (Gen_Body) = N_Subprogram_Body_Stub then
-- Either body is not present, or context is non-expanding, as
-- when compiling a subunit. Mark the instance as completed, and
-- diagnose a missing body when needed.
if Expander_Active
and then Operating_Mode = Generate_Code
then
Error_Msg_N ("missing proper body for instantiation", Gen_Body);
end if;
Set_Has_Completion (Act_Decl_Id);
goto Leave;
end if;
Save_Env (Gen_Unit, Act_Decl_Id);
Style_Check := False;
-- If the context of the instance is subject to SPARK_Mode "off", the
-- annotation is missing, or the body is instantiated at a later pass
-- and its spec ignored SPARK_Mode pragma, set the global flag which
-- signals Analyze_Pragma to ignore all SPARK_Mode pragmas within the
-- instance.
if SPARK_Mode /= On
or else Ignore_SPARK_Mode_Pragmas (Act_Decl_Id)
then
Ignore_SPARK_Mode_Pragmas_In_Instance := True;
end if;
-- If the context of an instance is not subject to SPARK_Mode "off",
-- and the generic body is subject to an explicit SPARK_Mode pragma,
-- the latter should be the one applicable to the instance.
if not Ignore_SPARK_Mode_Pragmas_In_Instance
and then SPARK_Mode /= Off
and then Present (SPARK_Pragma (Gen_Body_Id))
then
Set_SPARK_Mode (Gen_Body_Id);
end if;
Current_Sem_Unit := Body_Info.Current_Sem_Unit;
Create_Instantiation_Source
(Inst_Node,
Gen_Body_Id,
S_Adjustment);
Act_Body :=
Copy_Generic_Node
(Original_Node (Gen_Body), Empty, Instantiating => True);
-- Create proper defining name for the body, to correspond to the one
-- in the spec.
Act_Body_Id :=
Make_Defining_Identifier (Sloc (Act_Decl_Id), Chars (Act_Decl_Id));
Set_Comes_From_Source (Act_Body_Id, Comes_From_Source (Act_Decl_Id));
Set_Defining_Unit_Name (Specification (Act_Body), Act_Body_Id);
Set_Corresponding_Spec (Act_Body, Act_Decl_Id);
Set_Has_Completion (Act_Decl_Id);
Check_Generic_Actuals (Pack_Id, False);
-- Generate a reference to link the visible subprogram instance to
-- the generic body, which for navigation purposes is the only
-- available source for the instance.
Generate_Reference
(Related_Instance (Pack_Id),
Gen_Body_Id, 'b', Set_Ref => False, Force => True);
-- If it is a child unit, make the parent instance (which is an
-- instance of the parent of the generic) visible. The parent
-- instance is the prefix of the name of the generic unit.
if Ekind (Scope (Gen_Unit)) = E_Generic_Package
and then Nkind (Gen_Id) = N_Expanded_Name
then
Par_Ent := Entity (Prefix (Gen_Id));
Par_Vis := Is_Immediately_Visible (Par_Ent);
Install_Parent (Par_Ent, In_Body => True);
Parent_Installed := True;
elsif Is_Child_Unit (Gen_Unit) then
Par_Ent := Scope (Gen_Unit);
Par_Vis := Is_Immediately_Visible (Par_Ent);
Install_Parent (Par_Ent, In_Body => True);
Parent_Installed := True;
end if;
-- Subprogram body is placed in the body of wrapper package,
-- whose spec contains the subprogram declaration as well as
-- the renaming declarations for the generic parameters.
Pack_Body :=
Make_Package_Body (Loc,
Defining_Unit_Name => New_Copy (Pack_Id),
Declarations => New_List (Act_Body));
Set_Corresponding_Spec (Pack_Body, Pack_Id);
-- If the instantiation is a library unit, then build resulting
-- compilation unit nodes for the instance. The declaration of
-- the enclosing package is the grandparent of the subprogram
-- declaration. First replace the instantiation node as the unit
-- of the corresponding compilation.
if Nkind (Parent (Inst_Node)) = N_Compilation_Unit then
if Parent (Inst_Node) = Cunit (Main_Unit) then
Set_Unit (Parent (Inst_Node), Inst_Node);
Build_Instance_Compilation_Unit_Nodes
(Inst_Node, Pack_Body, Parent (Parent (Act_Decl)));
Analyze (Inst_Node);
else
Set_Parent (Pack_Body, Parent (Inst_Node));
Analyze (Pack_Body);
end if;
else
Insert_Before (Inst_Node, Pack_Body);
Mark_Rewrite_Insertion (Pack_Body);
Analyze (Pack_Body);
if Expander_Active then
Freeze_Subprogram_Body (Inst_Node, Gen_Body, Pack_Id);
end if;
end if;
Inherit_Context (Gen_Body, Inst_Node);
Restore_Private_Views (Pack_Id, False);
if Parent_Installed then
Remove_Parent (In_Body => True);
-- Restore the previous visibility of the parent
Set_Is_Immediately_Visible (Par_Ent, Par_Vis);
end if;
Restore_Env;
Restore_Warnings (Saved_Warnings);
-- Body not found. Error was emitted already. If there were no previous
-- errors, this may be an instance whose scope is a premature instance.
-- In that case we must insure that the (legal) program does raise
-- program error if executed. We generate a subprogram body for this
-- purpose. See DEC ac30vso.
-- Should not reference proprietary DEC tests in comments ???
elsif Serious_Errors_Detected = 0
and then Nkind (Parent (Inst_Node)) /= N_Compilation_Unit
then
if Body_Optional then
goto Leave;
elsif Ekind (Act_Decl_Id) = E_Procedure then
Act_Body :=
Make_Subprogram_Body (Loc,
Specification =>
Make_Procedure_Specification (Loc,
Defining_Unit_Name =>
Make_Defining_Identifier (Loc, Chars (Act_Decl_Id)),
Parameter_Specifications =>
New_Copy_List
(Parameter_Specifications (Parent (Act_Decl_Id)))),
Declarations => Empty_List,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => New_List (
Make_Raise_Program_Error (Loc,
Reason => PE_Access_Before_Elaboration))));
else
Ret_Expr :=
Make_Raise_Program_Error (Loc,
Reason => PE_Access_Before_Elaboration);
Set_Etype (Ret_Expr, (Etype (Act_Decl_Id)));
Set_Analyzed (Ret_Expr);
Act_Body :=
Make_Subprogram_Body (Loc,
Specification =>
Make_Function_Specification (Loc,
Defining_Unit_Name =>
Make_Defining_Identifier (Loc, Chars (Act_Decl_Id)),
Parameter_Specifications =>
New_Copy_List
(Parameter_Specifications (Parent (Act_Decl_Id))),
Result_Definition =>
New_Occurrence_Of (Etype (Act_Decl_Id), Loc)),
Declarations => Empty_List,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => New_List (
Make_Simple_Return_Statement (Loc, Ret_Expr))));
end if;
Pack_Body :=
Make_Package_Body (Loc,
Defining_Unit_Name => New_Copy (Pack_Id),
Declarations => New_List (Act_Body));
Insert_After (Inst_Node, Pack_Body);
Set_Corresponding_Spec (Pack_Body, Pack_Id);
Analyze (Pack_Body);
end if;
Expander_Mode_Restore;
<<Leave>>
Ignore_SPARK_Mode_Pragmas_In_Instance := Saved_ISMP;
Restore_Ghost_Mode (Saved_GM);
Restore_SPARK_Mode (Saved_SM, Saved_SMP);
Style_Check := Saved_Style_Check;
end Instantiate_Subprogram_Body;
----------------------
-- Instantiate_Type --
----------------------
function Instantiate_Type
(Formal : Node_Id;
Actual : Node_Id;
Analyzed_Formal : Node_Id;
Actual_Decls : List_Id) return List_Id
is
A_Gen_T : constant Entity_Id :=
Defining_Identifier (Analyzed_Formal);
Def : constant Node_Id := Formal_Type_Definition (Formal);
Gen_T : constant Entity_Id := Defining_Identifier (Formal);
Act_T : Entity_Id;
Ancestor : Entity_Id := Empty;
Decl_Node : Node_Id;
Decl_Nodes : List_Id;
Loc : Source_Ptr;
Subt : Entity_Id;
procedure Diagnose_Predicated_Actual;
-- There are a number of constructs in which a discrete type with
-- predicates is illegal, e.g. as an index in an array type declaration.
-- If a generic type is used is such a construct in a generic package
-- declaration, it carries the flag No_Predicate_On_Actual. it is part
-- of the generic contract that the actual cannot have predicates.
procedure Validate_Array_Type_Instance;
procedure Validate_Access_Subprogram_Instance;
procedure Validate_Access_Type_Instance;
procedure Validate_Derived_Type_Instance;
procedure Validate_Derived_Interface_Type_Instance;
procedure Validate_Discriminated_Formal_Type;
procedure Validate_Interface_Type_Instance;
procedure Validate_Private_Type_Instance;
procedure Validate_Incomplete_Type_Instance;
-- These procedures perform validation tests for the named case.
-- Validate_Discriminated_Formal_Type is shared by formal private
-- types and Ada 2012 formal incomplete types.
function Subtypes_Match (Gen_T, Act_T : Entity_Id) return Boolean;
-- Check that base types are the same and that the subtypes match
-- statically. Used in several of the above.
---------------------------------
-- Diagnose_Predicated_Actual --
---------------------------------
procedure Diagnose_Predicated_Actual is
begin
if No_Predicate_On_Actual (A_Gen_T)
and then Has_Predicates (Act_T)
then
Error_Msg_NE
("actual for& cannot be a type with predicate",
Instantiation_Node, A_Gen_T);
elsif No_Dynamic_Predicate_On_Actual (A_Gen_T)
and then Has_Predicates (Act_T)
and then not Has_Static_Predicate_Aspect (Act_T)
then
Error_Msg_NE
("actual for& cannot be a type with a dynamic predicate",
Instantiation_Node, A_Gen_T);
end if;
end Diagnose_Predicated_Actual;
--------------------
-- Subtypes_Match --
--------------------
function Subtypes_Match (Gen_T, Act_T : Entity_Id) return Boolean is
T : constant Entity_Id := Get_Instance_Of (Gen_T);
begin
-- Some detailed comments would be useful here ???
return ((Base_Type (T) = Act_T
or else Base_Type (T) = Base_Type (Act_T))
and then Subtypes_Statically_Match (T, Act_T))
or else (Is_Class_Wide_Type (Gen_T)
and then Is_Class_Wide_Type (Act_T)
and then Subtypes_Match
(Get_Instance_Of (Root_Type (Gen_T)),
Root_Type (Act_T)))
or else
(Ekind_In (Gen_T, E_Anonymous_Access_Subprogram_Type,
E_Anonymous_Access_Type)
and then Ekind (Act_T) = Ekind (Gen_T)
and then Subtypes_Statically_Match
(Designated_Type (Gen_T), Designated_Type (Act_T)));
end Subtypes_Match;
-----------------------------------------
-- Validate_Access_Subprogram_Instance --
-----------------------------------------
procedure Validate_Access_Subprogram_Instance is
begin
if not Is_Access_Type (Act_T)
or else Ekind (Designated_Type (Act_T)) /= E_Subprogram_Type
then
Error_Msg_NE
("expect access type in instantiation of &", Actual, Gen_T);
Abandon_Instantiation (Actual);
end if;
-- According to AI05-288, actuals for access_to_subprograms must be
-- subtype conformant with the generic formal. Previous to AI05-288
-- only mode conformance was required.
-- This is a binding interpretation that applies to previous versions
-- of the language, no need to maintain previous weaker checks.
Check_Subtype_Conformant
(Designated_Type (Act_T),
Designated_Type (A_Gen_T),
Actual,
Get_Inst => True);
if Ekind (Base_Type (Act_T)) = E_Access_Protected_Subprogram_Type then
if Ekind (A_Gen_T) = E_Access_Subprogram_Type then
Error_Msg_NE
("protected access type not allowed for formal &",
Actual, Gen_T);
end if;
elsif Ekind (A_Gen_T) = E_Access_Protected_Subprogram_Type then
Error_Msg_NE
("expect protected access type for formal &",
Actual, Gen_T);
end if;
-- If the formal has a specified convention (which in most cases
-- will be StdCall) verify that the actual has the same convention.
if Has_Convention_Pragma (A_Gen_T)
and then Convention (A_Gen_T) /= Convention (Act_T)
then
Error_Msg_Name_1 := Get_Convention_Name (Convention (A_Gen_T));
Error_Msg_NE
("actual for formal & must have convention %", Actual, Gen_T);
end if;
end Validate_Access_Subprogram_Instance;
-----------------------------------
-- Validate_Access_Type_Instance --
-----------------------------------
procedure Validate_Access_Type_Instance is
Desig_Type : constant Entity_Id :=
Find_Actual_Type (Designated_Type (A_Gen_T), A_Gen_T);
Desig_Act : Entity_Id;
begin
if not Is_Access_Type (Act_T) then
Error_Msg_NE
("expect access type in instantiation of &", Actual, Gen_T);
Abandon_Instantiation (Actual);
end if;
if Is_Access_Constant (A_Gen_T) then
if not Is_Access_Constant (Act_T) then
Error_Msg_N
("actual type must be access-to-constant type", Actual);
Abandon_Instantiation (Actual);
end if;
else
if Is_Access_Constant (Act_T) then
Error_Msg_N
("actual type must be access-to-variable type", Actual);
Abandon_Instantiation (Actual);
elsif Ekind (A_Gen_T) = E_General_Access_Type
and then Ekind (Base_Type (Act_T)) /= E_General_Access_Type
then
Error_Msg_N -- CODEFIX
("actual must be general access type!", Actual);
Error_Msg_NE -- CODEFIX
("add ALL to }!", Actual, Act_T);
Abandon_Instantiation (Actual);
end if;
end if;
-- The designated subtypes, that is to say the subtypes introduced
-- by an access type declaration (and not by a subtype declaration)
-- must match.
Desig_Act := Designated_Type (Base_Type (Act_T));
-- The designated type may have been introduced through a limited_
-- with clause, in which case retrieve the non-limited view. This
-- applies to incomplete types as well as to class-wide types.
if From_Limited_With (Desig_Act) then
Desig_Act := Available_View (Desig_Act);
end if;
if not Subtypes_Match (Desig_Type, Desig_Act) then
Error_Msg_NE
("designated type of actual does not match that of formal &",
Actual, Gen_T);
if not Predicates_Match (Desig_Type, Desig_Act) then
Error_Msg_N ("\predicates do not match", Actual);
end if;
Abandon_Instantiation (Actual);
elsif Is_Access_Type (Designated_Type (Act_T))
and then Is_Constrained (Designated_Type (Designated_Type (Act_T)))
/=
Is_Constrained (Designated_Type (Desig_Type))
then
Error_Msg_NE
("designated type of actual does not match that of formal &",
Actual, Gen_T);
if not Predicates_Match (Desig_Type, Desig_Act) then
Error_Msg_N ("\predicates do not match", Actual);
end if;
Abandon_Instantiation (Actual);
end if;
-- Ada 2005: null-exclusion indicators of the two types must agree
if Can_Never_Be_Null (A_Gen_T) /= Can_Never_Be_Null (Act_T) then
Error_Msg_NE
("non null exclusion of actual and formal & do not match",
Actual, Gen_T);
end if;
end Validate_Access_Type_Instance;
----------------------------------
-- Validate_Array_Type_Instance --
----------------------------------
procedure Validate_Array_Type_Instance is
I1 : Node_Id;
I2 : Node_Id;
T2 : Entity_Id;
function Formal_Dimensions return Nat;
-- Count number of dimensions in array type formal
-----------------------
-- Formal_Dimensions --
-----------------------
function Formal_Dimensions return Nat is
Num : Nat := 0;
Index : Node_Id;
begin
if Nkind (Def) = N_Constrained_Array_Definition then
Index := First (Discrete_Subtype_Definitions (Def));
else
Index := First (Subtype_Marks (Def));
end if;
while Present (Index) loop
Num := Num + 1;
Next_Index (Index);
end loop;
return Num;
end Formal_Dimensions;
-- Start of processing for Validate_Array_Type_Instance
begin
if not Is_Array_Type (Act_T) then
Error_Msg_NE
("expect array type in instantiation of &", Actual, Gen_T);
Abandon_Instantiation (Actual);
elsif Nkind (Def) = N_Constrained_Array_Definition then
if not (Is_Constrained (Act_T)) then
Error_Msg_NE
("expect constrained array in instantiation of &",
Actual, Gen_T);
Abandon_Instantiation (Actual);
end if;
else
if Is_Constrained (Act_T) then
Error_Msg_NE
("expect unconstrained array in instantiation of &",
Actual, Gen_T);
Abandon_Instantiation (Actual);
end if;
end if;
if Formal_Dimensions /= Number_Dimensions (Act_T) then
Error_Msg_NE
("dimensions of actual do not match formal &", Actual, Gen_T);
Abandon_Instantiation (Actual);
end if;
I1 := First_Index (A_Gen_T);
I2 := First_Index (Act_T);
for J in 1 .. Formal_Dimensions loop
-- If the indexes of the actual were given by a subtype_mark,
-- the index was transformed into a range attribute. Retrieve
-- the original type mark for checking.
if Is_Entity_Name (Original_Node (I2)) then
T2 := Entity (Original_Node (I2));
else
T2 := Etype (I2);
end if;
if not Subtypes_Match
(Find_Actual_Type (Etype (I1), A_Gen_T), T2)
then
Error_Msg_NE
("index types of actual do not match those of formal &",
Actual, Gen_T);
Abandon_Instantiation (Actual);
end if;
Next_Index (I1);
Next_Index (I2);
end loop;
-- Check matching subtypes. Note that there are complex visibility
-- issues when the generic is a child unit and some aspect of the
-- generic type is declared in a parent unit of the generic. We do
-- the test to handle this special case only after a direct check
-- for static matching has failed. The case where both the component
-- type and the array type are separate formals, and the component
-- type is a private view may also require special checking in
-- Subtypes_Match. Finally, we assume that a child instance where
-- the component type comes from a formal of a parent instance is
-- correct because the generic was correct. A more precise check
-- seems too complex to install???
if Subtypes_Match
(Component_Type (A_Gen_T), Component_Type (Act_T))
or else
Subtypes_Match
(Find_Actual_Type (Component_Type (A_Gen_T), A_Gen_T),
Component_Type (Act_T))
or else
(not Inside_A_Generic
and then Is_Child_Unit (Scope (Component_Type (A_Gen_T))))
then
null;
else
Error_Msg_NE
("component subtype of actual does not match that of formal &",
Actual, Gen_T);
Abandon_Instantiation (Actual);
end if;
if Has_Aliased_Components (A_Gen_T)
and then not Has_Aliased_Components (Act_T)
then
Error_Msg_NE
("actual must have aliased components to match formal type &",
Actual, Gen_T);
end if;
end Validate_Array_Type_Instance;
-----------------------------------------------
-- Validate_Derived_Interface_Type_Instance --
-----------------------------------------------
procedure Validate_Derived_Interface_Type_Instance is
Par : constant Entity_Id := Entity (Subtype_Indication (Def));
Elmt : Elmt_Id;
begin
-- First apply interface instance checks
Validate_Interface_Type_Instance;
-- Verify that immediate parent interface is an ancestor of
-- the actual.
if Present (Par)
and then not Interface_Present_In_Ancestor (Act_T, Par)
then
Error_Msg_NE
("interface actual must include progenitor&", Actual, Par);
end if;
-- Now verify that the actual includes all other ancestors of
-- the formal.
Elmt := First_Elmt (Interfaces (A_Gen_T));
while Present (Elmt) loop
if not Interface_Present_In_Ancestor
(Act_T, Get_Instance_Of (Node (Elmt)))
then
Error_Msg_NE
("interface actual must include progenitor&",
Actual, Node (Elmt));
end if;
Next_Elmt (Elmt);
end loop;
end Validate_Derived_Interface_Type_Instance;
------------------------------------
-- Validate_Derived_Type_Instance --
------------------------------------
procedure Validate_Derived_Type_Instance is
Actual_Discr : Entity_Id;
Ancestor_Discr : Entity_Id;
begin
-- If the parent type in the generic declaration is itself a previous
-- formal type, then it is local to the generic and absent from the
-- analyzed generic definition. In that case the ancestor is the
-- instance of the formal (which must have been instantiated
-- previously), unless the ancestor is itself a formal derived type.
-- In this latter case (which is the subject of Corrigendum 8652/0038
-- (AI-202) the ancestor of the formals is the ancestor of its
-- parent. Otherwise, the analyzed generic carries the parent type.
-- If the parent type is defined in a previous formal package, then
-- the scope of that formal package is that of the generic type
-- itself, and it has already been mapped into the corresponding type
-- in the actual package.
-- Common case: parent type defined outside of the generic
if Is_Entity_Name (Subtype_Mark (Def))
and then Present (Entity (Subtype_Mark (Def)))
then
Ancestor := Get_Instance_Of (Entity (Subtype_Mark (Def)));
-- Check whether parent is defined in a previous formal package
elsif
Scope (Scope (Base_Type (Etype (A_Gen_T)))) = Scope (A_Gen_T)
then
Ancestor :=
Get_Instance_Of (Base_Type (Etype (A_Gen_T)));
-- The type may be a local derivation, or a type extension of a
-- previous formal, or of a formal of a parent package.
elsif Is_Derived_Type (Get_Instance_Of (A_Gen_T))
or else
Ekind (Get_Instance_Of (A_Gen_T)) = E_Record_Type_With_Private
then
-- Check whether the parent is another derived formal type in the
-- same generic unit.
if Etype (A_Gen_T) /= A_Gen_T
and then Is_Generic_Type (Etype (A_Gen_T))
and then Scope (Etype (A_Gen_T)) = Scope (A_Gen_T)
and then Etype (Etype (A_Gen_T)) /= Etype (A_Gen_T)
then
-- Locate ancestor of parent from the subtype declaration
-- created for the actual.
declare
Decl : Node_Id;
begin
Decl := First (Actual_Decls);
while Present (Decl) loop
if Nkind (Decl) = N_Subtype_Declaration
and then Chars (Defining_Identifier (Decl)) =
Chars (Etype (A_Gen_T))
then
Ancestor := Generic_Parent_Type (Decl);
exit;
else
Next (Decl);
end if;
end loop;
end;
pragma Assert (Present (Ancestor));
-- The ancestor itself may be a previous formal that has been
-- instantiated.
Ancestor := Get_Instance_Of (Ancestor);
else
Ancestor :=
Get_Instance_Of (Base_Type (Get_Instance_Of (A_Gen_T)));
end if;
-- Check whether parent is a previous formal of the current generic
elsif Is_Derived_Type (A_Gen_T)
and then Is_Generic_Type (Etype (A_Gen_T))
and then Scope (A_Gen_T) = Scope (Etype (A_Gen_T))
then
Ancestor := Get_Instance_Of (First_Subtype (Etype (A_Gen_T)));
-- An unusual case: the actual is a type declared in a parent unit,
-- but is not a formal type so there is no instance_of for it.
-- Retrieve it by analyzing the record extension.
elsif Is_Child_Unit (Scope (A_Gen_T))
and then In_Open_Scopes (Scope (Act_T))
and then Is_Generic_Instance (Scope (Act_T))
then
Analyze (Subtype_Mark (Def));
Ancestor := Entity (Subtype_Mark (Def));
else
Ancestor := Get_Instance_Of (Etype (Base_Type (A_Gen_T)));
end if;
-- If the formal derived type has pragma Preelaborable_Initialization
-- then the actual type must have preelaborable initialization.
if Known_To_Have_Preelab_Init (A_Gen_T)
and then not Has_Preelaborable_Initialization (Act_T)
then
Error_Msg_NE
("actual for & must have preelaborable initialization",
Actual, Gen_T);
end if;
-- Ada 2005 (AI-251)
if Ada_Version >= Ada_2005 and then Is_Interface (Ancestor) then
if not Interface_Present_In_Ancestor (Act_T, Ancestor) then
Error_Msg_NE
("(Ada 2005) expected type implementing & in instantiation",
Actual, Ancestor);
end if;
-- Finally verify that the (instance of) the ancestor is an ancestor
-- of the actual.
elsif not Is_Ancestor (Base_Type (Ancestor), Act_T) then
Error_Msg_NE
("expect type derived from & in instantiation",
Actual, First_Subtype (Ancestor));
Abandon_Instantiation (Actual);
end if;
-- Ada 2005 (AI-443): Synchronized formal derived type checks. Note
-- that the formal type declaration has been rewritten as a private
-- extension.
if Ada_Version >= Ada_2005
and then Nkind (Parent (A_Gen_T)) = N_Private_Extension_Declaration
and then Synchronized_Present (Parent (A_Gen_T))
then
-- The actual must be a synchronized tagged type
if not Is_Tagged_Type (Act_T) then
Error_Msg_N
("actual of synchronized type must be tagged", Actual);
Abandon_Instantiation (Actual);
elsif Nkind (Parent (Act_T)) = N_Full_Type_Declaration
and then Nkind (Type_Definition (Parent (Act_T))) =
N_Derived_Type_Definition
and then not Synchronized_Present
(Type_Definition (Parent (Act_T)))
then
Error_Msg_N
("actual of synchronized type must be synchronized", Actual);
Abandon_Instantiation (Actual);
end if;
end if;
-- Perform atomic/volatile checks (RM C.6(12)). Note that AI05-0218-1
-- removes the second instance of the phrase "or allow pass by copy".
if Is_Atomic (Act_T) and then not Is_Atomic (Ancestor) then
Error_Msg_N
("cannot have atomic actual type for non-atomic formal type",
Actual);
elsif Is_Volatile (Act_T) and then not Is_Volatile (Ancestor) then
Error_Msg_N
("cannot have volatile actual type for non-volatile formal type",
Actual);
end if;
-- It should not be necessary to check for unknown discriminants on
-- Formal, but for some reason Has_Unknown_Discriminants is false for
-- A_Gen_T, so Is_Definite_Subtype incorrectly returns True. This
-- needs fixing. ???
if Is_Definite_Subtype (A_Gen_T)
and then not Unknown_Discriminants_Present (Formal)
and then not Is_Definite_Subtype (Act_T)
then
Error_Msg_N ("actual subtype must be constrained", Actual);
Abandon_Instantiation (Actual);
end if;
if not Unknown_Discriminants_Present (Formal) then
if Is_Constrained (Ancestor) then
if not Is_Constrained (Act_T) then
Error_Msg_N ("actual subtype must be constrained", Actual);
Abandon_Instantiation (Actual);
end if;
-- Ancestor is unconstrained, Check if generic formal and actual
-- agree on constrainedness. The check only applies to array types
-- and discriminated types.
elsif Is_Constrained (Act_T) then
if Ekind (Ancestor) = E_Access_Type
or else (not Is_Constrained (A_Gen_T)
and then Is_Composite_Type (A_Gen_T))
then
Error_Msg_N ("actual subtype must be unconstrained", Actual);
Abandon_Instantiation (Actual);
end if;
-- A class-wide type is only allowed if the formal has unknown
-- discriminants.
elsif Is_Class_Wide_Type (Act_T)
and then not Has_Unknown_Discriminants (Ancestor)
then
Error_Msg_NE
("actual for & cannot be a class-wide type", Actual, Gen_T);
Abandon_Instantiation (Actual);
-- Otherwise, the formal and actual must have the same number
-- of discriminants and each discriminant of the actual must
-- correspond to a discriminant of the formal.
elsif Has_Discriminants (Act_T)
and then not Has_Unknown_Discriminants (Act_T)
and then Has_Discriminants (Ancestor)
then
Actual_Discr := First_Discriminant (Act_T);
Ancestor_Discr := First_Discriminant (Ancestor);
while Present (Actual_Discr)
and then Present (Ancestor_Discr)
loop
if Base_Type (Act_T) /= Base_Type (Ancestor) and then
No (Corresponding_Discriminant (Actual_Discr))
then
Error_Msg_NE
("discriminant & does not correspond "
& "to ancestor discriminant", Actual, Actual_Discr);
Abandon_Instantiation (Actual);
end if;
Next_Discriminant (Actual_Discr);
Next_Discriminant (Ancestor_Discr);
end loop;
if Present (Actual_Discr) or else Present (Ancestor_Discr) then
Error_Msg_NE
("actual for & must have same number of discriminants",
Actual, Gen_T);
Abandon_Instantiation (Actual);
end if;
-- This case should be caught by the earlier check for
-- constrainedness, but the check here is added for completeness.
elsif Has_Discriminants (Act_T)
and then not Has_Unknown_Discriminants (Act_T)
then
Error_Msg_NE
("actual for & must not have discriminants", Actual, Gen_T);
Abandon_Instantiation (Actual);
elsif Has_Discriminants (Ancestor) then
Error_Msg_NE
("actual for & must have known discriminants", Actual, Gen_T);
Abandon_Instantiation (Actual);
end if;
if not Subtypes_Statically_Compatible
(Act_T, Ancestor, Formal_Derived_Matching => True)
then
Error_Msg_N
("constraint on actual is incompatible with formal", Actual);
Abandon_Instantiation (Actual);
end if;
end if;
-- If the formal and actual types are abstract, check that there
-- are no abstract primitives of the actual type that correspond to
-- nonabstract primitives of the formal type (second sentence of
-- RM95 3.9.3(9)).
if Is_Abstract_Type (A_Gen_T) and then Is_Abstract_Type (Act_T) then
Check_Abstract_Primitives : declare
Gen_Prims : constant Elist_Id :=
Primitive_Operations (A_Gen_T);
Gen_Elmt : Elmt_Id;
Gen_Subp : Entity_Id;
Anc_Subp : Entity_Id;
Anc_Formal : Entity_Id;
Anc_F_Type : Entity_Id;
Act_Prims : constant Elist_Id := Primitive_Operations (Act_T);
Act_Elmt : Elmt_Id;
Act_Subp : Entity_Id;
Act_Formal : Entity_Id;
Act_F_Type : Entity_Id;
Subprograms_Correspond : Boolean;
function Is_Tagged_Ancestor (T1, T2 : Entity_Id) return Boolean;
-- Returns true if T2 is derived directly or indirectly from
-- T1, including derivations from interfaces. T1 and T2 are
-- required to be specific tagged base types.
------------------------
-- Is_Tagged_Ancestor --
------------------------
function Is_Tagged_Ancestor (T1, T2 : Entity_Id) return Boolean
is
Intfc_Elmt : Elmt_Id;
begin
-- The predicate is satisfied if the types are the same
if T1 = T2 then
return True;
-- If we've reached the top of the derivation chain then
-- we know that T1 is not an ancestor of T2.
elsif Etype (T2) = T2 then
return False;
-- Proceed to check T2's immediate parent
elsif Is_Ancestor (T1, Base_Type (Etype (T2))) then
return True;
-- Finally, check to see if T1 is an ancestor of any of T2's
-- progenitors.
else
Intfc_Elmt := First_Elmt (Interfaces (T2));
while Present (Intfc_Elmt) loop
if Is_Ancestor (T1, Node (Intfc_Elmt)) then
return True;
end if;
Next_Elmt (Intfc_Elmt);
end loop;
end if;
return False;
end Is_Tagged_Ancestor;
-- Start of processing for Check_Abstract_Primitives
begin
-- Loop over all of the formal derived type's primitives
Gen_Elmt := First_Elmt (Gen_Prims);
while Present (Gen_Elmt) loop
Gen_Subp := Node (Gen_Elmt);
-- If the primitive of the formal is not abstract, then
-- determine whether there is a corresponding primitive of
-- the actual type that's abstract.
if not Is_Abstract_Subprogram (Gen_Subp) then
Act_Elmt := First_Elmt (Act_Prims);
while Present (Act_Elmt) loop
Act_Subp := Node (Act_Elmt);
-- If we find an abstract primitive of the actual,
-- then we need to test whether it corresponds to the
-- subprogram from which the generic formal primitive
-- is inherited.
if Is_Abstract_Subprogram (Act_Subp) then
Anc_Subp := Alias (Gen_Subp);
-- Test whether we have a corresponding primitive
-- by comparing names, kinds, formal types, and
-- result types.
if Chars (Anc_Subp) = Chars (Act_Subp)
and then Ekind (Anc_Subp) = Ekind (Act_Subp)
then
Anc_Formal := First_Formal (Anc_Subp);
Act_Formal := First_Formal (Act_Subp);
while Present (Anc_Formal)
and then Present (Act_Formal)
loop
Anc_F_Type := Etype (Anc_Formal);
Act_F_Type := Etype (Act_Formal);
if Ekind (Anc_F_Type) =
E_Anonymous_Access_Type
then
Anc_F_Type := Designated_Type (Anc_F_Type);
if Ekind (Act_F_Type) =
E_Anonymous_Access_Type
then
Act_F_Type :=
Designated_Type (Act_F_Type);
else
exit;
end if;
elsif
Ekind (Act_F_Type) = E_Anonymous_Access_Type
then
exit;
end if;
Anc_F_Type := Base_Type (Anc_F_Type);
Act_F_Type := Base_Type (Act_F_Type);
-- If the formal is controlling, then the
-- the type of the actual primitive's formal
-- must be derived directly or indirectly
-- from the type of the ancestor primitive's
-- formal.
if Is_Controlling_Formal (Anc_Formal) then
if not Is_Tagged_Ancestor
(Anc_F_Type, Act_F_Type)
then
exit;
end if;
-- Otherwise the types of the formals must
-- be the same.
elsif Anc_F_Type /= Act_F_Type then
exit;
end if;
Next_Entity (Anc_Formal);
Next_Entity (Act_Formal);
end loop;
-- If we traversed through all of the formals
-- then so far the subprograms correspond, so
-- now check that any result types correspond.
if No (Anc_Formal) and then No (Act_Formal) then
Subprograms_Correspond := True;
if Ekind (Act_Subp) = E_Function then
Anc_F_Type := Etype (Anc_Subp);
Act_F_Type := Etype (Act_Subp);
if Ekind (Anc_F_Type) =
E_Anonymous_Access_Type
then
Anc_F_Type :=
Designated_Type (Anc_F_Type);
if Ekind (Act_F_Type) =
E_Anonymous_Access_Type
then
Act_F_Type :=
Designated_Type (Act_F_Type);
else
Subprograms_Correspond := False;
end if;
elsif
Ekind (Act_F_Type)
= E_Anonymous_Access_Type
then
Subprograms_Correspond := False;
end if;
Anc_F_Type := Base_Type (Anc_F_Type);
Act_F_Type := Base_Type (Act_F_Type);
-- Now either the result types must be
-- the same or, if the result type is
-- controlling, the result type of the
-- actual primitive must descend from the
-- result type of the ancestor primitive.
if Subprograms_Correspond
and then Anc_F_Type /= Act_F_Type
and then
Has_Controlling_Result (Anc_Subp)
and then not Is_Tagged_Ancestor
(Anc_F_Type, Act_F_Type)
then
Subprograms_Correspond := False;
end if;
end if;
-- Found a matching subprogram belonging to
-- formal ancestor type, so actual subprogram
-- corresponds and this violates 3.9.3(9).
if Subprograms_Correspond then
Error_Msg_NE
("abstract subprogram & overrides "
& "nonabstract subprogram of ancestor",
Actual, Act_Subp);
end if;
end if;
end if;
end if;
Next_Elmt (Act_Elmt);
end loop;
end if;
Next_Elmt (Gen_Elmt);
end loop;
end Check_Abstract_Primitives;
end if;
-- Verify that limitedness matches. If parent is a limited
-- interface then the generic formal is not unless declared
-- explicitly so. If not declared limited, the actual cannot be
-- limited (see AI05-0087).
-- Even though this AI is a binding interpretation, we enable the
-- check only in Ada 2012 mode, because this improper construct
-- shows up in user code and in existing B-tests.
if Is_Limited_Type (Act_T)
and then not Is_Limited_Type (A_Gen_T)
and then Ada_Version >= Ada_2012
then
if In_Instance then
null;
else
Error_Msg_NE
("actual for non-limited & cannot be a limited type",
Actual, Gen_T);
Explain_Limited_Type (Act_T, Actual);
Abandon_Instantiation (Actual);
end if;
end if;
end Validate_Derived_Type_Instance;
----------------------------------------
-- Validate_Discriminated_Formal_Type --
----------------------------------------
procedure Validate_Discriminated_Formal_Type is
Formal_Discr : Entity_Id;
Actual_Discr : Entity_Id;
Formal_Subt : Entity_Id;
begin
if Has_Discriminants (A_Gen_T) then
if not Has_Discriminants (Act_T) then
Error_Msg_NE
("actual for & must have discriminants", Actual, Gen_T);
Abandon_Instantiation (Actual);
elsif Is_Constrained (Act_T) then
Error_Msg_NE
("actual for & must be unconstrained", Actual, Gen_T);
Abandon_Instantiation (Actual);
else
Formal_Discr := First_Discriminant (A_Gen_T);
Actual_Discr := First_Discriminant (Act_T);
while Formal_Discr /= Empty loop
if Actual_Discr = Empty then
Error_Msg_NE
("discriminants on actual do not match formal",
Actual, Gen_T);
Abandon_Instantiation (Actual);
end if;
Formal_Subt := Get_Instance_Of (Etype (Formal_Discr));
-- Access discriminants match if designated types do
if Ekind (Base_Type (Formal_Subt)) = E_Anonymous_Access_Type
and then (Ekind (Base_Type (Etype (Actual_Discr)))) =
E_Anonymous_Access_Type
and then
Get_Instance_Of
(Designated_Type (Base_Type (Formal_Subt))) =
Designated_Type (Base_Type (Etype (Actual_Discr)))
then
null;
elsif Base_Type (Formal_Subt) /=
Base_Type (Etype (Actual_Discr))
then
Error_Msg_NE
("types of actual discriminants must match formal",
Actual, Gen_T);
Abandon_Instantiation (Actual);
elsif not Subtypes_Statically_Match
(Formal_Subt, Etype (Actual_Discr))
and then Ada_Version >= Ada_95
then
Error_Msg_NE
("subtypes of actual discriminants must match formal",
Actual, Gen_T);
Abandon_Instantiation (Actual);
end if;
Next_Discriminant (Formal_Discr);
Next_Discriminant (Actual_Discr);
end loop;
if Actual_Discr /= Empty then
Error_Msg_NE
("discriminants on actual do not match formal",
Actual, Gen_T);
Abandon_Instantiation (Actual);
end if;
end if;
end if;
end Validate_Discriminated_Formal_Type;
---------------------------------------
-- Validate_Incomplete_Type_Instance --
---------------------------------------
procedure Validate_Incomplete_Type_Instance is
begin
if not Is_Tagged_Type (Act_T)
and then Is_Tagged_Type (A_Gen_T)
then
Error_Msg_NE
("actual for & must be a tagged type", Actual, Gen_T);
end if;
Validate_Discriminated_Formal_Type;
end Validate_Incomplete_Type_Instance;
--------------------------------------
-- Validate_Interface_Type_Instance --
--------------------------------------
procedure Validate_Interface_Type_Instance is
begin
if not Is_Interface (Act_T) then
Error_Msg_NE
("actual for formal interface type must be an interface",
Actual, Gen_T);
elsif Is_Limited_Type (Act_T) /= Is_Limited_Type (A_Gen_T)
or else Is_Task_Interface (A_Gen_T) /= Is_Task_Interface (Act_T)
or else Is_Protected_Interface (A_Gen_T) /=
Is_Protected_Interface (Act_T)
or else Is_Synchronized_Interface (A_Gen_T) /=
Is_Synchronized_Interface (Act_T)
then
Error_Msg_NE
("actual for interface& does not match (RM 12.5.5(4))",
Actual, Gen_T);
end if;
end Validate_Interface_Type_Instance;
------------------------------------
-- Validate_Private_Type_Instance --
------------------------------------
procedure Validate_Private_Type_Instance is
begin
if Is_Limited_Type (Act_T)
and then not Is_Limited_Type (A_Gen_T)
then
if In_Instance then
null;
else
Error_Msg_NE
("actual for non-limited & cannot be a limited type", Actual,
Gen_T);
Explain_Limited_Type (Act_T, Actual);
Abandon_Instantiation (Actual);
end if;
elsif Known_To_Have_Preelab_Init (A_Gen_T)
and then not Has_Preelaborable_Initialization (Act_T)
then
Error_Msg_NE
("actual for & must have preelaborable initialization", Actual,
Gen_T);
elsif not Is_Definite_Subtype (Act_T)
and then Is_Definite_Subtype (A_Gen_T)
and then Ada_Version >= Ada_95
then
Error_Msg_NE
("actual for & must be a definite subtype", Actual, Gen_T);
elsif not Is_Tagged_Type (Act_T)
and then Is_Tagged_Type (A_Gen_T)
then
Error_Msg_NE
("actual for & must be a tagged type", Actual, Gen_T);
end if;
Validate_Discriminated_Formal_Type;
Ancestor := Gen_T;
end Validate_Private_Type_Instance;
-- Start of processing for Instantiate_Type
begin
if Get_Instance_Of (A_Gen_T) /= A_Gen_T then
Error_Msg_N ("duplicate instantiation of generic type", Actual);
return New_List (Error);
elsif not Is_Entity_Name (Actual)
or else not Is_Type (Entity (Actual))
then
Error_Msg_NE
("expect valid subtype mark to instantiate &", Actual, Gen_T);
Abandon_Instantiation (Actual);
else
Act_T := Entity (Actual);
-- Ada 2005 (AI-216): An Unchecked_Union subtype shall only be passed
-- as a generic actual parameter if the corresponding formal type
-- does not have a known_discriminant_part, or is a formal derived
-- type that is an Unchecked_Union type.
if Is_Unchecked_Union (Base_Type (Act_T)) then
if not Has_Discriminants (A_Gen_T)
or else (Is_Derived_Type (A_Gen_T)
and then Is_Unchecked_Union (A_Gen_T))
then
null;
else
Error_Msg_N ("unchecked union cannot be the actual for a "
& "discriminated formal type", Act_T);
end if;
end if;
-- Deal with fixed/floating restrictions
if Is_Floating_Point_Type (Act_T) then
Check_Restriction (No_Floating_Point, Actual);
elsif Is_Fixed_Point_Type (Act_T) then
Check_Restriction (No_Fixed_Point, Actual);
end if;
-- Deal with error of using incomplete type as generic actual.
-- This includes limited views of a type, even if the non-limited
-- view may be available.
if Ekind (Act_T) = E_Incomplete_Type
or else (Is_Class_Wide_Type (Act_T)
and then Ekind (Root_Type (Act_T)) = E_Incomplete_Type)
then
-- If the formal is an incomplete type, the actual can be
-- incomplete as well.
if Ekind (A_Gen_T) = E_Incomplete_Type then
null;
elsif Is_Class_Wide_Type (Act_T)
or else No (Full_View (Act_T))
then
Error_Msg_N ("premature use of incomplete type", Actual);
Abandon_Instantiation (Actual);
else
Act_T := Full_View (Act_T);
Set_Entity (Actual, Act_T);
if Has_Private_Component (Act_T) then
Error_Msg_N
("premature use of type with private component", Actual);
end if;
end if;
-- Deal with error of premature use of private type as generic actual
elsif Is_Private_Type (Act_T)
and then Is_Private_Type (Base_Type (Act_T))
and then not Is_Generic_Type (Act_T)
and then not Is_Derived_Type (Act_T)
and then No (Full_View (Root_Type (Act_T)))
then
-- If the formal is an incomplete type, the actual can be
-- private or incomplete as well.
if Ekind (A_Gen_T) = E_Incomplete_Type then
null;
else
Error_Msg_N ("premature use of private type", Actual);
end if;
elsif Has_Private_Component (Act_T) then
Error_Msg_N
("premature use of type with private component", Actual);
end if;
Set_Instance_Of (A_Gen_T, Act_T);
-- If the type is generic, the class-wide type may also be used
if Is_Tagged_Type (A_Gen_T)
and then Is_Tagged_Type (Act_T)
and then not Is_Class_Wide_Type (A_Gen_T)
then
Set_Instance_Of (Class_Wide_Type (A_Gen_T),
Class_Wide_Type (Act_T));
end if;
if not Is_Abstract_Type (A_Gen_T)
and then Is_Abstract_Type (Act_T)
then
Error_Msg_N
("actual of non-abstract formal cannot be abstract", Actual);
end if;
-- A generic scalar type is a first subtype for which we generate
-- an anonymous base type. Indicate that the instance of this base
-- is the base type of the actual.
if Is_Scalar_Type (A_Gen_T) then
Set_Instance_Of (Etype (A_Gen_T), Etype (Act_T));
end if;
end if;
if Error_Posted (Act_T) then
null;
else
case Nkind (Def) is
when N_Formal_Private_Type_Definition =>
Validate_Private_Type_Instance;
when N_Formal_Incomplete_Type_Definition =>
Validate_Incomplete_Type_Instance;
when N_Formal_Derived_Type_Definition =>
Validate_Derived_Type_Instance;
when N_Formal_Discrete_Type_Definition =>
if not Is_Discrete_Type (Act_T) then
Error_Msg_NE
("expect discrete type in instantiation of&",
Actual, Gen_T);
Abandon_Instantiation (Actual);
end if;
Diagnose_Predicated_Actual;
when N_Formal_Signed_Integer_Type_Definition =>
if not Is_Signed_Integer_Type (Act_T) then
Error_Msg_NE
("expect signed integer type in instantiation of&",
Actual, Gen_T);
Abandon_Instantiation (Actual);
end if;
Diagnose_Predicated_Actual;
when N_Formal_Modular_Type_Definition =>
if not Is_Modular_Integer_Type (Act_T) then
Error_Msg_NE
("expect modular type in instantiation of &",
Actual, Gen_T);
Abandon_Instantiation (Actual);
end if;
Diagnose_Predicated_Actual;
when N_Formal_Floating_Point_Definition =>
if not Is_Floating_Point_Type (Act_T) then
Error_Msg_NE
("expect float type in instantiation of &", Actual, Gen_T);
Abandon_Instantiation (Actual);
end if;
when N_Formal_Ordinary_Fixed_Point_Definition =>
if not Is_Ordinary_Fixed_Point_Type (Act_T) then
Error_Msg_NE
("expect ordinary fixed point type in instantiation of &",
Actual, Gen_T);
Abandon_Instantiation (Actual);
end if;
when N_Formal_Decimal_Fixed_Point_Definition =>
if not Is_Decimal_Fixed_Point_Type (Act_T) then
Error_Msg_NE
("expect decimal type in instantiation of &",
Actual, Gen_T);
Abandon_Instantiation (Actual);
end if;
when N_Array_Type_Definition =>
Validate_Array_Type_Instance;
when N_Access_To_Object_Definition =>
Validate_Access_Type_Instance;
when N_Access_Function_Definition
| N_Access_Procedure_Definition
=>
Validate_Access_Subprogram_Instance;
when N_Record_Definition =>
Validate_Interface_Type_Instance;
when N_Derived_Type_Definition =>
Validate_Derived_Interface_Type_Instance;
when others =>
raise Program_Error;
end case;
end if;
Subt := New_Copy (Gen_T);
-- Use adjusted sloc of subtype name as the location for other nodes in
-- the subtype declaration.
Loc := Sloc (Subt);
Decl_Node :=
Make_Subtype_Declaration (Loc,
Defining_Identifier => Subt,
Subtype_Indication => New_Occurrence_Of (Act_T, Loc));
if Is_Private_Type (Act_T) then
Set_Has_Private_View (Subtype_Indication (Decl_Node));
elsif Is_Access_Type (Act_T)
and then Is_Private_Type (Designated_Type (Act_T))
then
Set_Has_Private_View (Subtype_Indication (Decl_Node));
end if;
-- In Ada 2012 the actual may be a limited view. Indicate that
-- the local subtype must be treated as such.
if From_Limited_With (Act_T) then
Set_Ekind (Subt, E_Incomplete_Subtype);
Set_From_Limited_With (Subt);
end if;
Decl_Nodes := New_List (Decl_Node);
-- Flag actual derived types so their elaboration produces the
-- appropriate renamings for the primitive operations of the ancestor.
-- Flag actual for formal private types as well, to determine whether
-- operations in the private part may override inherited operations.
-- If the formal has an interface list, the ancestor is not the
-- parent, but the analyzed formal that includes the interface
-- operations of all its progenitors.
-- Same treatment for formal private types, so we can check whether the
-- type is tagged limited when validating derivations in the private
-- part. (See AI05-096).
if Nkind (Def) = N_Formal_Derived_Type_Definition then
if Present (Interface_List (Def)) then
Set_Generic_Parent_Type (Decl_Node, A_Gen_T);
else
Set_Generic_Parent_Type (Decl_Node, Ancestor);
end if;
elsif Nkind_In (Def, N_Formal_Private_Type_Definition,
N_Formal_Incomplete_Type_Definition)
then
Set_Generic_Parent_Type (Decl_Node, A_Gen_T);
end if;
-- If the actual is a synchronized type that implements an interface,
-- the primitive operations are attached to the corresponding record,
-- and we have to treat it as an additional generic actual, so that its
-- primitive operations become visible in the instance. The task or
-- protected type itself does not carry primitive operations.
if Is_Concurrent_Type (Act_T)
and then Is_Tagged_Type (Act_T)
and then Present (Corresponding_Record_Type (Act_T))
and then Present (Ancestor)
and then Is_Interface (Ancestor)
then
declare
Corr_Rec : constant Entity_Id :=
Corresponding_Record_Type (Act_T);
New_Corr : Entity_Id;
Corr_Decl : Node_Id;
begin
New_Corr := Make_Temporary (Loc, 'S');
Corr_Decl :=
Make_Subtype_Declaration (Loc,
Defining_Identifier => New_Corr,
Subtype_Indication =>
New_Occurrence_Of (Corr_Rec, Loc));
Append_To (Decl_Nodes, Corr_Decl);
if Ekind (Act_T) = E_Task_Type then
Set_Ekind (Subt, E_Task_Subtype);
else
Set_Ekind (Subt, E_Protected_Subtype);
end if;
Set_Corresponding_Record_Type (Subt, Corr_Rec);
Set_Generic_Parent_Type (Corr_Decl, Ancestor);
Set_Generic_Parent_Type (Decl_Node, Empty);
end;
end if;
-- For a floating-point type, capture dimension info if any, because
-- the generated subtype declaration does not come from source and
-- will not process dimensions.
if Is_Floating_Point_Type (Act_T) then
Copy_Dimensions (Act_T, Subt);
end if;
return Decl_Nodes;
end Instantiate_Type;
---------------------
-- Is_In_Main_Unit --
---------------------
function Is_In_Main_Unit (N : Node_Id) return Boolean is
Unum : constant Unit_Number_Type := Get_Source_Unit (N);
Current_Unit : Node_Id;
begin
if Unum = Main_Unit then
return True;
-- If the current unit is a subunit then it is either the main unit or
-- is being compiled as part of the main unit.
elsif Nkind (N) = N_Compilation_Unit then
return Nkind (Unit (N)) = N_Subunit;
end if;
Current_Unit := Parent (N);
while Present (Current_Unit)
and then Nkind (Current_Unit) /= N_Compilation_Unit
loop
Current_Unit := Parent (Current_Unit);
end loop;
-- The instantiation node is in the main unit, or else the current node
-- (perhaps as the result of nested instantiations) is in the main unit,
-- or in the declaration of the main unit, which in this last case must
-- be a body.
return
Current_Unit = Cunit (Main_Unit)
or else Current_Unit = Library_Unit (Cunit (Main_Unit))
or else (Present (Current_Unit)
and then Present (Library_Unit (Current_Unit))
and then Is_In_Main_Unit (Library_Unit (Current_Unit)));
end Is_In_Main_Unit;
----------------------------
-- Load_Parent_Of_Generic --
----------------------------
procedure Load_Parent_Of_Generic
(N : Node_Id;
Spec : Node_Id;
Body_Optional : Boolean := False)
is
Comp_Unit : constant Node_Id := Cunit (Get_Source_Unit (Spec));
Saved_Style_Check : constant Boolean := Style_Check;
Saved_Warnings : constant Warning_Record := Save_Warnings;
True_Parent : Node_Id;
Inst_Node : Node_Id;
OK : Boolean;
Previous_Instances : constant Elist_Id := New_Elmt_List;
procedure Collect_Previous_Instances (Decls : List_Id);
-- Collect all instantiations in the given list of declarations, that
-- precede the generic that we need to load. If the bodies of these
-- instantiations are available, we must analyze them, to ensure that
-- the public symbols generated are the same when the unit is compiled
-- to generate code, and when it is compiled in the context of a unit
-- that needs a particular nested instance. This process is applied to
-- both package and subprogram instances.
--------------------------------
-- Collect_Previous_Instances --
--------------------------------
procedure Collect_Previous_Instances (Decls : List_Id) is
Decl : Node_Id;
begin
Decl := First (Decls);
while Present (Decl) loop
if Sloc (Decl) >= Sloc (Inst_Node) then
return;
-- If Decl is an instantiation, then record it as requiring
-- instantiation of the corresponding body, except if it is an
-- abbreviated instantiation generated internally for conformance
-- checking purposes only for the case of a formal package
-- declared without a box (see Instantiate_Formal_Package). Such
-- an instantiation does not generate any code (the actual code
-- comes from actual) and thus does not need to be analyzed here.
-- If the instantiation appears with a generic package body it is
-- not analyzed here either.
elsif Nkind (Decl) = N_Package_Instantiation
and then not Is_Internal (Defining_Entity (Decl))
then
Append_Elmt (Decl, Previous_Instances);
-- For a subprogram instantiation, omit instantiations intrinsic
-- operations (Unchecked_Conversions, etc.) that have no bodies.
elsif Nkind_In (Decl, N_Function_Instantiation,
N_Procedure_Instantiation)
and then not Is_Intrinsic_Subprogram (Entity (Name (Decl)))
then
Append_Elmt (Decl, Previous_Instances);
elsif Nkind (Decl) = N_Package_Declaration then
Collect_Previous_Instances
(Visible_Declarations (Specification (Decl)));
Collect_Previous_Instances
(Private_Declarations (Specification (Decl)));
-- Previous non-generic bodies may contain instances as well
elsif Nkind (Decl) = N_Package_Body
and then Ekind (Corresponding_Spec (Decl)) /= E_Generic_Package
then
Collect_Previous_Instances (Declarations (Decl));
elsif Nkind (Decl) = N_Subprogram_Body
and then not Acts_As_Spec (Decl)
and then not Is_Generic_Subprogram (Corresponding_Spec (Decl))
then
Collect_Previous_Instances (Declarations (Decl));
end if;
Next (Decl);
end loop;
end Collect_Previous_Instances;
-- Start of processing for Load_Parent_Of_Generic
begin
if not In_Same_Source_Unit (N, Spec)
or else Nkind (Unit (Comp_Unit)) = N_Package_Declaration
or else (Nkind (Unit (Comp_Unit)) = N_Package_Body
and then not Is_In_Main_Unit (Spec))
then
-- Find body of parent of spec, and analyze it. A special case arises
-- when the parent is an instantiation, that is to say when we are
-- currently instantiating a nested generic. In that case, there is
-- no separate file for the body of the enclosing instance. Instead,
-- the enclosing body must be instantiated as if it were a pending
-- instantiation, in order to produce the body for the nested generic
-- we require now. Note that in that case the generic may be defined
-- in a package body, the instance defined in the same package body,
-- and the original enclosing body may not be in the main unit.
Inst_Node := Empty;
True_Parent := Parent (Spec);
while Present (True_Parent)
and then Nkind (True_Parent) /= N_Compilation_Unit
loop
if Nkind (True_Parent) = N_Package_Declaration
and then
Nkind (Original_Node (True_Parent)) = N_Package_Instantiation
then
-- Parent is a compilation unit that is an instantiation.
-- Instantiation node has been replaced with package decl.
Inst_Node := Original_Node (True_Parent);
exit;
elsif Nkind (True_Parent) = N_Package_Declaration
and then Present (Generic_Parent (Specification (True_Parent)))
and then Nkind (Parent (True_Parent)) /= N_Compilation_Unit
then
-- Parent is an instantiation within another specification.
-- Declaration for instance has been inserted before original
-- instantiation node. A direct link would be preferable?
Inst_Node := Next (True_Parent);
while Present (Inst_Node)
and then Nkind (Inst_Node) /= N_Package_Instantiation
loop
Next (Inst_Node);
end loop;
-- If the instance appears within a generic, and the generic
-- unit is defined within a formal package of the enclosing
-- generic, there is no generic body available, and none
-- needed. A more precise test should be used ???
if No (Inst_Node) then
return;
end if;
exit;
else
True_Parent := Parent (True_Parent);
end if;
end loop;
-- Case where we are currently instantiating a nested generic
if Present (Inst_Node) then
if Nkind (Parent (True_Parent)) = N_Compilation_Unit then
-- Instantiation node and declaration of instantiated package
-- were exchanged when only the declaration was needed.
-- Restore instantiation node before proceeding with body.
Set_Unit (Parent (True_Parent), Inst_Node);
end if;
-- Now complete instantiation of enclosing body, if it appears in
-- some other unit. If it appears in the current unit, the body
-- will have been instantiated already.
if No (Corresponding_Body (Instance_Spec (Inst_Node))) then
-- We need to determine the expander mode to instantiate the
-- enclosing body. Because the generic body we need may use
-- global entities declared in the enclosing package (including
-- aggregates) it is in general necessary to compile this body
-- with expansion enabled, except if we are within a generic
-- package, in which case the usual generic rule applies.
declare
Exp_Status : Boolean := True;
Scop : Entity_Id;
begin
-- Loop through scopes looking for generic package
Scop := Scope (Defining_Entity (Instance_Spec (Inst_Node)));
while Present (Scop)
and then Scop /= Standard_Standard
loop
if Ekind (Scop) = E_Generic_Package then
Exp_Status := False;
exit;
end if;
Scop := Scope (Scop);
end loop;
-- Collect previous instantiations in the unit that contains
-- the desired generic.
if Nkind (Parent (True_Parent)) /= N_Compilation_Unit
and then not Body_Optional
then
declare
Decl : Elmt_Id;
Info : Pending_Body_Info;
Par : Node_Id;
begin
Par := Parent (Inst_Node);
while Present (Par) loop
exit when Nkind (Parent (Par)) = N_Compilation_Unit;
Par := Parent (Par);
end loop;
pragma Assert (Present (Par));
if Nkind (Par) = N_Package_Body then
Collect_Previous_Instances (Declarations (Par));
elsif Nkind (Par) = N_Package_Declaration then
Collect_Previous_Instances
(Visible_Declarations (Specification (Par)));
Collect_Previous_Instances
(Private_Declarations (Specification (Par)));
else
-- Enclosing unit is a subprogram body. In this
-- case all instance bodies are processed in order
-- and there is no need to collect them separately.
null;
end if;
Decl := First_Elmt (Previous_Instances);
while Present (Decl) loop
Info :=
(Inst_Node => Node (Decl),
Act_Decl =>
Instance_Spec (Node (Decl)),
Expander_Status => Exp_Status,
Current_Sem_Unit =>
Get_Code_Unit (Sloc (Node (Decl))),
Scope_Suppress => Scope_Suppress,
Local_Suppress_Stack_Top =>
Local_Suppress_Stack_Top,
Version => Ada_Version,
Version_Pragma => Ada_Version_Pragma,
Warnings => Save_Warnings,
SPARK_Mode => SPARK_Mode,
SPARK_Mode_Pragma => SPARK_Mode_Pragma);
-- Package instance
if Nkind (Node (Decl)) = N_Package_Instantiation
then
Instantiate_Package_Body
(Info, Body_Optional => True);
-- Subprogram instance
else
-- The instance_spec is in the wrapper package,
-- usually followed by its local renaming
-- declaration. See Build_Subprogram_Renaming
-- for details. If the instance carries aspects,
-- these result in the corresponding pragmas,
-- inserted after the subprogram declaration.
-- They must be skipped as well when retrieving
-- the desired spec. Some of them may have been
-- rewritten as null statements.
-- A direct link would be more robust ???
declare
Decl : Node_Id :=
(Last (Visible_Declarations
(Specification (Info.Act_Decl))));
begin
while Nkind_In (Decl,
N_Null_Statement,
N_Pragma,
N_Subprogram_Renaming_Declaration)
loop
Decl := Prev (Decl);
end loop;
Info.Act_Decl := Decl;
end;
Instantiate_Subprogram_Body
(Info, Body_Optional => True);
end if;
Next_Elmt (Decl);
end loop;
end;
end if;
Instantiate_Package_Body
(Body_Info =>
((Inst_Node => Inst_Node,
Act_Decl => True_Parent,
Expander_Status => Exp_Status,
Current_Sem_Unit => Get_Code_Unit
(Sloc (Inst_Node)),
Scope_Suppress => Scope_Suppress,
Local_Suppress_Stack_Top => Local_Suppress_Stack_Top,
Version => Ada_Version,
Version_Pragma => Ada_Version_Pragma,
Warnings => Save_Warnings,
SPARK_Mode => SPARK_Mode,
SPARK_Mode_Pragma => SPARK_Mode_Pragma)),
Body_Optional => Body_Optional);
end;
end if;
-- Case where we are not instantiating a nested generic
else
Opt.Style_Check := False;
Expander_Mode_Save_And_Set (True);
Load_Needed_Body (Comp_Unit, OK);
Opt.Style_Check := Saved_Style_Check;
Restore_Warnings (Saved_Warnings);
Expander_Mode_Restore;
if not OK
and then Unit_Requires_Body (Defining_Entity (Spec))
and then not Body_Optional
then
declare
Bname : constant Unit_Name_Type :=
Get_Body_Name (Get_Unit_Name (Unit (Comp_Unit)));
begin
-- In CodePeer mode, the missing body may make the analysis
-- incomplete, but we do not treat it as fatal.
if CodePeer_Mode then
return;
else
Error_Msg_Unit_1 := Bname;
Error_Msg_N ("this instantiation requires$!", N);
Error_Msg_File_1 :=
Get_File_Name (Bname, Subunit => False);
Error_Msg_N ("\but file{ was not found!", N);
raise Unrecoverable_Error;
end if;
end;
end if;
end if;
end if;
-- If loading parent of the generic caused an instantiation circularity,
-- we abandon compilation at this point, because otherwise in some cases
-- we get into trouble with infinite recursions after this point.
if Circularity_Detected then
raise Unrecoverable_Error;
end if;
end Load_Parent_Of_Generic;
---------------------------------
-- Map_Formal_Package_Entities --
---------------------------------
procedure Map_Formal_Package_Entities (Form : Entity_Id; Act : Entity_Id) is
E1 : Entity_Id;
E2 : Entity_Id;
begin
Set_Instance_Of (Form, Act);
-- Traverse formal and actual package to map the corresponding entities.
-- We skip over internal entities that may be generated during semantic
-- analysis, and find the matching entities by name, given that they
-- must appear in the same order.
E1 := First_Entity (Form);
E2 := First_Entity (Act);
while Present (E1) and then E1 /= First_Private_Entity (Form) loop
-- Could this test be a single condition??? Seems like it could, and
-- isn't FPE (Form) a constant anyway???
if not Is_Internal (E1)
and then Present (Parent (E1))
and then not Is_Class_Wide_Type (E1)
and then not Is_Internal_Name (Chars (E1))
then
while Present (E2) and then Chars (E2) /= Chars (E1) loop
Next_Entity (E2);
end loop;
if No (E2) then
exit;
else
Set_Instance_Of (E1, E2);
if Is_Type (E1) and then Is_Tagged_Type (E2) then
Set_Instance_Of (Class_Wide_Type (E1), Class_Wide_Type (E2));
end if;
if Is_Constrained (E1) then
Set_Instance_Of (Base_Type (E1), Base_Type (E2));
end if;
if Ekind (E1) = E_Package and then No (Renamed_Object (E1)) then
Map_Formal_Package_Entities (E1, E2);
end if;
end if;
end if;
Next_Entity (E1);
end loop;
end Map_Formal_Package_Entities;
-----------------------
-- Move_Freeze_Nodes --
-----------------------
procedure Move_Freeze_Nodes
(Out_Of : Entity_Id;
After : Node_Id;
L : List_Id)
is
Decl : Node_Id;
Next_Decl : Node_Id;
Next_Node : Node_Id := After;
Spec : Node_Id;
function Is_Outer_Type (T : Entity_Id) return Boolean;
-- Check whether entity is declared in a scope external to that of the
-- generic unit.
-------------------
-- Is_Outer_Type --
-------------------
function Is_Outer_Type (T : Entity_Id) return Boolean is
Scop : Entity_Id := Scope (T);
begin
if Scope_Depth (Scop) < Scope_Depth (Out_Of) then
return True;
else
while Scop /= Standard_Standard loop
if Scop = Out_Of then
return False;
else
Scop := Scope (Scop);
end if;
end loop;
return True;
end if;
end Is_Outer_Type;
-- Start of processing for Move_Freeze_Nodes
begin
if No (L) then
return;
end if;
-- First remove the freeze nodes that may appear before all other
-- declarations.
Decl := First (L);
while Present (Decl)
and then Nkind (Decl) = N_Freeze_Entity
and then Is_Outer_Type (Entity (Decl))
loop
Decl := Remove_Head (L);
Insert_After (Next_Node, Decl);
Set_Analyzed (Decl, False);
Next_Node := Decl;
Decl := First (L);
end loop;
-- Next scan the list of declarations and remove each freeze node that
-- appears ahead of the current node.
while Present (Decl) loop
while Present (Next (Decl))
and then Nkind (Next (Decl)) = N_Freeze_Entity
and then Is_Outer_Type (Entity (Next (Decl)))
loop
Next_Decl := Remove_Next (Decl);
Insert_After (Next_Node, Next_Decl);
Set_Analyzed (Next_Decl, False);
Next_Node := Next_Decl;
end loop;
-- If the declaration is a nested package or concurrent type, then
-- recurse. Nested generic packages will have been processed from the
-- inside out.
case Nkind (Decl) is
when N_Package_Declaration =>
Spec := Specification (Decl);
when N_Task_Type_Declaration =>
Spec := Task_Definition (Decl);
when N_Protected_Type_Declaration =>
Spec := Protected_Definition (Decl);
when others =>
Spec := Empty;
end case;
if Present (Spec) then
Move_Freeze_Nodes (Out_Of, Next_Node, Visible_Declarations (Spec));
Move_Freeze_Nodes (Out_Of, Next_Node, Private_Declarations (Spec));
end if;
Next (Decl);
end loop;
end Move_Freeze_Nodes;
----------------
-- Next_Assoc --
----------------
function Next_Assoc (E : Assoc_Ptr) return Assoc_Ptr is
begin
return Generic_Renamings.Table (E).Next_In_HTable;
end Next_Assoc;
------------------------
-- Preanalyze_Actuals --
------------------------
procedure Preanalyze_Actuals (N : Node_Id; Inst : Entity_Id := Empty) is
Assoc : Node_Id;
Act : Node_Id;
Errs : constant Nat := Serious_Errors_Detected;
Cur : Entity_Id := Empty;
-- Current homograph of the instance name
Vis : Boolean := False;
-- Saved visibility status of the current homograph
begin
Assoc := First (Generic_Associations (N));
-- If the instance is a child unit, its name may hide an outer homonym,
-- so make it invisible to perform name resolution on the actuals.
if Nkind (Defining_Unit_Name (N)) = N_Defining_Program_Unit_Name
and then Present
(Current_Entity (Defining_Identifier (Defining_Unit_Name (N))))
then
Cur := Current_Entity (Defining_Identifier (Defining_Unit_Name (N)));
if Is_Compilation_Unit (Cur) then
Vis := Is_Immediately_Visible (Cur);
Set_Is_Immediately_Visible (Cur, False);
else
Cur := Empty;
end if;
end if;
while Present (Assoc) loop
if Nkind (Assoc) /= N_Others_Choice then
Act := Explicit_Generic_Actual_Parameter (Assoc);
-- Within a nested instantiation, a defaulted actual is an empty
-- association, so nothing to analyze. If the subprogram actual
-- is an attribute, analyze prefix only, because actual is not a
-- complete attribute reference.
-- If actual is an allocator, analyze expression only. The full
-- analysis can generate code, and if instance is a compilation
-- unit we have to wait until the package instance is installed
-- to have a proper place to insert this code.
-- String literals may be operators, but at this point we do not
-- know whether the actual is a formal subprogram or a string.
if No (Act) then
null;
elsif Nkind (Act) = N_Attribute_Reference then
Analyze (Prefix (Act));
elsif Nkind (Act) = N_Explicit_Dereference then
Analyze (Prefix (Act));
elsif Nkind (Act) = N_Allocator then
declare
Expr : constant Node_Id := Expression (Act);
begin
if Nkind (Expr) = N_Subtype_Indication then
Analyze (Subtype_Mark (Expr));
-- Analyze separately each discriminant constraint, when
-- given with a named association.
declare
Constr : Node_Id;
begin
Constr := First (Constraints (Constraint (Expr)));
while Present (Constr) loop
if Nkind (Constr) = N_Discriminant_Association then
Analyze (Expression (Constr));
else
Analyze (Constr);
end if;
Next (Constr);
end loop;
end;
else
Analyze (Expr);
end if;
end;
elsif Nkind (Act) /= N_Operator_Symbol then
Analyze (Act);
-- Within a package instance, mark actuals that are limited
-- views, so their use can be moved to the body of the
-- enclosing unit.
if Is_Entity_Name (Act)
and then Is_Type (Entity (Act))
and then From_Limited_With (Entity (Act))
and then Present (Inst)
then
Append_Elmt (Entity (Act), Incomplete_Actuals (Inst));
end if;
end if;
if Errs /= Serious_Errors_Detected then
-- Do a minimal analysis of the generic, to prevent spurious
-- warnings complaining about the generic being unreferenced,
-- before abandoning the instantiation.
Analyze (Name (N));
if Is_Entity_Name (Name (N))
and then Etype (Name (N)) /= Any_Type
then
Generate_Reference (Entity (Name (N)), Name (N));
Set_Is_Instantiated (Entity (Name (N)));
end if;
if Present (Cur) then
-- For the case of a child instance hiding an outer homonym,
-- provide additional warning which might explain the error.
Set_Is_Immediately_Visible (Cur, Vis);
Error_Msg_NE
("& hides outer unit with the same name??",
N, Defining_Unit_Name (N));
end if;
Abandon_Instantiation (Act);
end if;
end if;
Next (Assoc);
end loop;
if Present (Cur) then
Set_Is_Immediately_Visible (Cur, Vis);
end if;
end Preanalyze_Actuals;
-------------------------------
-- Provide_Completing_Bodies --
-------------------------------
procedure Provide_Completing_Bodies (N : Node_Id) is
procedure Build_Completing_Body (Subp_Decl : Node_Id);
-- Generate the completing body for subprogram declaration Subp_Decl
procedure Provide_Completing_Bodies_In (Decls : List_Id);
-- Generating completing bodies for all subprograms found in declarative
-- list Decls.
---------------------------
-- Build_Completing_Body --
---------------------------
procedure Build_Completing_Body (Subp_Decl : Node_Id) is
Loc : constant Source_Ptr := Sloc (Subp_Decl);
Subp_Id : constant Entity_Id := Defining_Entity (Subp_Decl);
Spec : Node_Id;
begin
-- Nothing to do if the subprogram already has a completing body
if Present (Corresponding_Body (Subp_Decl)) then
return;
-- Mark the function as having a valid return statement even though
-- the body contains a single raise statement.
elsif Ekind (Subp_Id) = E_Function then
Set_Return_Present (Subp_Id);
end if;
-- Clone the specification to obtain new entities and reset the only
-- semantic field.
Spec := Copy_Subprogram_Spec (Specification (Subp_Decl));
Set_Generic_Parent (Spec, Empty);
-- Generate:
-- function Func ... return ... is
-- <or>
-- procedure Proc ... is
-- begin
-- raise Program_Error with "access before elaboration";
-- edn Proc;
Insert_After_And_Analyze (Subp_Decl,
Make_Subprogram_Body (Loc,
Specification => Spec,
Declarations => New_List,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => New_List (
Make_Raise_Program_Error (Loc,
Reason => PE_Access_Before_Elaboration)))));
end Build_Completing_Body;
----------------------------------
-- Provide_Completing_Bodies_In --
----------------------------------
procedure Provide_Completing_Bodies_In (Decls : List_Id) is
Decl : Node_Id;
begin
if Present (Decls) then
Decl := First (Decls);
while Present (Decl) loop
Provide_Completing_Bodies (Decl);
Next (Decl);
end loop;
end if;
end Provide_Completing_Bodies_In;
-- Local variables
Spec : Node_Id;
-- Start of processing for Provide_Completing_Bodies
begin
if Nkind (N) = N_Package_Declaration then
Spec := Specification (N);
Push_Scope (Defining_Entity (N));
Provide_Completing_Bodies_In (Visible_Declarations (Spec));
Provide_Completing_Bodies_In (Private_Declarations (Spec));
Pop_Scope;
elsif Nkind (N) = N_Subprogram_Declaration then
Build_Completing_Body (N);
end if;
end Provide_Completing_Bodies;
-------------------
-- Remove_Parent --
-------------------
procedure Remove_Parent (In_Body : Boolean := False) is
S : Entity_Id := Current_Scope;
-- S is the scope containing the instantiation just completed. The scope
-- stack contains the parent instances of the instantiation, followed by
-- the original S.
Cur_P : Entity_Id;
E : Entity_Id;
P : Entity_Id;
Hidden : Elmt_Id;
begin
-- After child instantiation is complete, remove from scope stack the
-- extra copy of the current scope, and then remove parent instances.
if not In_Body then
Pop_Scope;
while Current_Scope /= S loop
P := Current_Scope;
End_Package_Scope (Current_Scope);
if In_Open_Scopes (P) then
E := First_Entity (P);
while Present (E) loop
Set_Is_Immediately_Visible (E, True);
Next_Entity (E);
end loop;
-- If instantiation is declared in a block, it is the enclosing
-- scope that might be a parent instance. Note that only one
-- block can be involved, because the parent instances have
-- been installed within it.
if Ekind (P) = E_Block then
Cur_P := Scope (P);
else
Cur_P := P;
end if;
if Is_Generic_Instance (Cur_P) and then P /= Current_Scope then
-- We are within an instance of some sibling. Retain
-- visibility of parent, for proper subsequent cleanup, and
-- reinstall private declarations as well.
Set_In_Private_Part (P);
Install_Private_Declarations (P);
end if;
-- If the ultimate parent is a top-level unit recorded in
-- Instance_Parent_Unit, then reset its visibility to what it was
-- before instantiation. (It's not clear what the purpose is of
-- testing whether Scope (P) is In_Open_Scopes, but that test was
-- present before the ultimate parent test was added.???)
elsif not In_Open_Scopes (Scope (P))
or else (P = Instance_Parent_Unit
and then not Parent_Unit_Visible)
then
Set_Is_Immediately_Visible (P, False);
-- If the current scope is itself an instantiation of a generic
-- nested within P, and we are in the private part of body of this
-- instantiation, restore the full views of P, that were removed
-- in End_Package_Scope above. This obscure case can occur when a
-- subunit of a generic contains an instance of a child unit of
-- its generic parent unit.
elsif S = Current_Scope and then Is_Generic_Instance (S) then
declare
Par : constant Entity_Id :=
Generic_Parent (Package_Specification (S));
begin
if Present (Par)
and then P = Scope (Par)
and then (In_Package_Body (S) or else In_Private_Part (S))
then
Set_In_Private_Part (P);
Install_Private_Declarations (P);
end if;
end;
end if;
end loop;
-- Reset visibility of entities in the enclosing scope
Set_Is_Hidden_Open_Scope (Current_Scope, False);
Hidden := First_Elmt (Hidden_Entities);
while Present (Hidden) loop
Set_Is_Immediately_Visible (Node (Hidden), True);
Next_Elmt (Hidden);
end loop;
else
-- Each body is analyzed separately, and there is no context that
-- needs preserving from one body instance to the next, so remove all
-- parent scopes that have been installed.
while Present (S) loop
End_Package_Scope (S);
Set_Is_Immediately_Visible (S, False);
S := Current_Scope;
exit when S = Standard_Standard;
end loop;
end if;
end Remove_Parent;
-----------------
-- Restore_Env --
-----------------
procedure Restore_Env is
Saved : Instance_Env renames Instance_Envs.Table (Instance_Envs.Last);
begin
if No (Current_Instantiated_Parent.Act_Id) then
-- Restore environment after subprogram inlining
Restore_Private_Views (Empty);
end if;
Current_Instantiated_Parent := Saved.Instantiated_Parent;
Exchanged_Views := Saved.Exchanged_Views;
Hidden_Entities := Saved.Hidden_Entities;
Current_Sem_Unit := Saved.Current_Sem_Unit;
Parent_Unit_Visible := Saved.Parent_Unit_Visible;
Instance_Parent_Unit := Saved.Instance_Parent_Unit;
Restore_Opt_Config_Switches (Saved.Switches);
Instance_Envs.Decrement_Last;
end Restore_Env;
---------------------------
-- Restore_Private_Views --
---------------------------
procedure Restore_Private_Views
(Pack_Id : Entity_Id;
Is_Package : Boolean := True)
is
M : Elmt_Id;
E : Entity_Id;
Typ : Entity_Id;
Dep_Elmt : Elmt_Id;
Dep_Typ : Node_Id;
procedure Restore_Nested_Formal (Formal : Entity_Id);
-- Hide the generic formals of formal packages declared with box which
-- were reachable in the current instantiation.
---------------------------
-- Restore_Nested_Formal --
---------------------------
procedure Restore_Nested_Formal (Formal : Entity_Id) is
Ent : Entity_Id;
begin
if Present (Renamed_Object (Formal))
and then Denotes_Formal_Package (Renamed_Object (Formal), True)
then
return;
elsif Present (Associated_Formal_Package (Formal)) then
Ent := First_Entity (Formal);
while Present (Ent) loop
exit when Ekind (Ent) = E_Package
and then Renamed_Entity (Ent) = Renamed_Entity (Formal);
Set_Is_Hidden (Ent);
Set_Is_Potentially_Use_Visible (Ent, False);
-- If package, then recurse
if Ekind (Ent) = E_Package then
Restore_Nested_Formal (Ent);
end if;
Next_Entity (Ent);
end loop;
end if;
end Restore_Nested_Formal;
-- Start of processing for Restore_Private_Views
begin
M := First_Elmt (Exchanged_Views);
while Present (M) loop
Typ := Node (M);
-- Subtypes of types whose views have been exchanged, and that are
-- defined within the instance, were not on the Private_Dependents
-- list on entry to the instance, so they have to be exchanged
-- explicitly now, in order to remain consistent with the view of the
-- parent type.
if Ekind_In (Typ, E_Private_Type,
E_Limited_Private_Type,
E_Record_Type_With_Private)
then
Dep_Elmt := First_Elmt (Private_Dependents (Typ));
while Present (Dep_Elmt) loop
Dep_Typ := Node (Dep_Elmt);
if Scope (Dep_Typ) = Pack_Id
and then Present (Full_View (Dep_Typ))
then
Replace_Elmt (Dep_Elmt, Full_View (Dep_Typ));
Exchange_Declarations (Dep_Typ);
end if;
Next_Elmt (Dep_Elmt);
end loop;
end if;
Exchange_Declarations (Node (M));
Next_Elmt (M);
end loop;
if No (Pack_Id) then
return;
end if;
-- Make the generic formal parameters private, and make the formal types
-- into subtypes of the actuals again.
E := First_Entity (Pack_Id);
while Present (E) loop
Set_Is_Hidden (E, True);
if Is_Type (E)
and then Nkind (Parent (E)) = N_Subtype_Declaration
then
-- If the actual for E is itself a generic actual type from
-- an enclosing instance, E is still a generic actual type
-- outside of the current instance. This matter when resolving
-- an overloaded call that may be ambiguous in the enclosing
-- instance, when two of its actuals coincide.
if Is_Entity_Name (Subtype_Indication (Parent (E)))
and then Is_Generic_Actual_Type
(Entity (Subtype_Indication (Parent (E))))
then
null;
else
Set_Is_Generic_Actual_Type (E, False);
end if;
-- An unusual case of aliasing: the actual may also be directly
-- visible in the generic, and be private there, while it is fully
-- visible in the context of the instance. The internal subtype
-- is private in the instance but has full visibility like its
-- parent in the enclosing scope. This enforces the invariant that
-- the privacy status of all private dependents of a type coincide
-- with that of the parent type. This can only happen when a
-- generic child unit is instantiated within a sibling.
if Is_Private_Type (E)
and then not Is_Private_Type (Etype (E))
then
Exchange_Declarations (E);
end if;
elsif Ekind (E) = E_Package then
-- The end of the renaming list is the renaming of the generic
-- package itself. If the instance is a subprogram, all entities
-- in the corresponding package are renamings. If this entity is
-- a formal package, make its own formals private as well. The
-- actual in this case is itself the renaming of an instantiation.
-- If the entity is not a package renaming, it is the entity
-- created to validate formal package actuals: ignore it.
-- If the actual is itself a formal package for the enclosing
-- generic, or the actual for such a formal package, it remains
-- visible on exit from the instance, and therefore nothing needs
-- to be done either, except to keep it accessible.
if Is_Package and then Renamed_Object (E) = Pack_Id then
exit;
elsif Nkind (Parent (E)) /= N_Package_Renaming_Declaration then
null;
elsif
Denotes_Formal_Package (Renamed_Object (E), True, Pack_Id)
then
Set_Is_Hidden (E, False);
else
declare
Act_P : constant Entity_Id := Renamed_Object (E);
Id : Entity_Id;
begin
Id := First_Entity (Act_P);
while Present (Id)
and then Id /= First_Private_Entity (Act_P)
loop
exit when Ekind (Id) = E_Package
and then Renamed_Object (Id) = Act_P;
Set_Is_Hidden (Id, True);
Set_Is_Potentially_Use_Visible (Id, In_Use (Act_P));
if Ekind (Id) = E_Package then
Restore_Nested_Formal (Id);
end if;
Next_Entity (Id);
end loop;
end;
end if;
end if;
Next_Entity (E);
end loop;
end Restore_Private_Views;
--------------
-- Save_Env --
--------------
procedure Save_Env
(Gen_Unit : Entity_Id;
Act_Unit : Entity_Id)
is
begin
Init_Env;
Set_Instance_Env (Gen_Unit, Act_Unit);
end Save_Env;
----------------------------
-- Save_Global_References --
----------------------------
procedure Save_Global_References (Templ : Node_Id) is
-- ??? it is horrible to use global variables in highly recursive code
E : Entity_Id;
-- The entity of the current associated node
Gen_Scope : Entity_Id;
-- The scope of the generic for which references are being saved
N2 : Node_Id;
-- The current associated node
function Is_Global (E : Entity_Id) return Boolean;
-- Check whether entity is defined outside of generic unit. Examine the
-- scope of an entity, and the scope of the scope, etc, until we find
-- either Standard, in which case the entity is global, or the generic
-- unit itself, which indicates that the entity is local. If the entity
-- is the generic unit itself, as in the case of a recursive call, or
-- the enclosing generic unit, if different from the current scope, then
-- it is local as well, because it will be replaced at the point of
-- instantiation. On the other hand, if it is a reference to a child
-- unit of a common ancestor, which appears in an instantiation, it is
-- global because it is used to denote a specific compilation unit at
-- the time the instantiations will be analyzed.
procedure Qualify_Universal_Operands
(Op : Node_Id;
Func_Call : Node_Id);
-- Op denotes a binary or unary operator in generic template Templ. Node
-- Func_Call is the function call alternative of the operator within the
-- the analyzed copy of the template. Change each operand which yields a
-- universal type by wrapping it into a qualified expression
--
-- Actual_Typ'(Operand)
--
-- where Actual_Typ is the type of corresponding actual parameter of
-- Operand in Func_Call.
procedure Reset_Entity (N : Node_Id);
-- Save semantic information on global entity so that it is not resolved
-- again at instantiation time.
procedure Save_Entity_Descendants (N : Node_Id);
-- Apply Save_Global_References to the two syntactic descendants of
-- non-terminal nodes that carry an Associated_Node and are processed
-- through Reset_Entity. Once the global entity (if any) has been
-- captured together with its type, only two syntactic descendants need
-- to be traversed to complete the processing of the tree rooted at N.
-- This applies to Selected_Components, Expanded_Names, and to Operator
-- nodes. N can also be a character literal, identifier, or operator
-- symbol node, but the call has no effect in these cases.
procedure Save_Global_Defaults (N1 : Node_Id; N2 : Node_Id);
-- Default actuals in nested instances must be handled specially
-- because there is no link to them from the original tree. When an
-- actual subprogram is given by a default, we add an explicit generic
-- association for it in the instantiation node. When we save the
-- global references on the name of the instance, we recover the list
-- of generic associations, and add an explicit one to the original
-- generic tree, through which a global actual can be preserved.
-- Similarly, if a child unit is instantiated within a sibling, in the
-- context of the parent, we must preserve the identifier of the parent
-- so that it can be properly resolved in a subsequent instantiation.
procedure Save_Global_Descendant (D : Union_Id);
-- Apply Save_References recursively to the descendants of node D
procedure Save_References (N : Node_Id);
-- This is the recursive procedure that does the work, once the
-- enclosing generic scope has been established.
---------------
-- Is_Global --
---------------
function Is_Global (E : Entity_Id) return Boolean is
Se : Entity_Id;
function Is_Instance_Node (Decl : Node_Id) return Boolean;
-- Determine whether the parent node of a reference to a child unit
-- denotes an instantiation or a formal package, in which case the
-- reference to the child unit is global, even if it appears within
-- the current scope (e.g. when the instance appears within the body
-- of an ancestor).
----------------------
-- Is_Instance_Node --
----------------------
function Is_Instance_Node (Decl : Node_Id) return Boolean is
begin
return Nkind (Decl) in N_Generic_Instantiation
or else
Nkind (Original_Node (Decl)) = N_Formal_Package_Declaration;
end Is_Instance_Node;
-- Start of processing for Is_Global
begin
if E = Gen_Scope then
return False;
elsif E = Standard_Standard then
return True;
elsif Is_Child_Unit (E)
and then (Is_Instance_Node (Parent (N2))
or else (Nkind (Parent (N2)) = N_Expanded_Name
and then N2 = Selector_Name (Parent (N2))
and then
Is_Instance_Node (Parent (Parent (N2)))))
then
return True;
else
Se := Scope (E);
while Se /= Gen_Scope loop
if Se = Standard_Standard then
return True;
else
Se := Scope (Se);
end if;
end loop;
return False;
end if;
end Is_Global;
--------------------------------
-- Qualify_Universal_Operands --
--------------------------------
procedure Qualify_Universal_Operands
(Op : Node_Id;
Func_Call : Node_Id)
is
procedure Qualify_Operand (Opnd : Node_Id; Actual : Node_Id);
-- Rewrite operand Opnd as a qualified expression of the form
--
-- Actual_Typ'(Opnd)
--
-- where Actual is the corresponding actual parameter of Opnd in
-- function call Func_Call.
function Qualify_Type
(Loc : Source_Ptr;
Typ : Entity_Id) return Node_Id;
-- Qualify type Typ by creating a selected component of the form
--
-- Scope_Of_Typ.Typ
---------------------
-- Qualify_Operand --
---------------------
procedure Qualify_Operand (Opnd : Node_Id; Actual : Node_Id) is
Loc : constant Source_Ptr := Sloc (Opnd);
Typ : constant Entity_Id := Etype (Actual);
Mark : Node_Id;
Qual : Node_Id;
begin
-- Qualify the operand when it is of a universal type. Note that
-- the template is unanalyzed and it is not possible to directly
-- query the type. This transformation is not done when the type
-- of the actual is internally generated because the type will be
-- regenerated in the instance.
if Yields_Universal_Type (Opnd)
and then Comes_From_Source (Typ)
and then not Is_Hidden (Typ)
then
-- The type of the actual may be a global reference. Save this
-- information by creating a reference to it.
if Is_Global (Typ) then
Mark := New_Occurrence_Of (Typ, Loc);
-- Otherwise rely on resolution to find the proper type within
-- the instance.
else
Mark := Qualify_Type (Loc, Typ);
end if;
Qual :=
Make_Qualified_Expression (Loc,
Subtype_Mark => Mark,
Expression => Relocate_Node (Opnd));
-- Mark the qualification to distinguish it from other source
-- constructs and signal the instantiation mechanism that this
-- node requires special processing. See Copy_Generic_Node for
-- details.
Set_Is_Qualified_Universal_Literal (Qual);
Rewrite (Opnd, Qual);
end if;
end Qualify_Operand;
------------------
-- Qualify_Type --
------------------
function Qualify_Type
(Loc : Source_Ptr;
Typ : Entity_Id) return Node_Id
is
Scop : constant Entity_Id := Scope (Typ);
Result : Node_Id;
begin
Result := Make_Identifier (Loc, Chars (Typ));
if Present (Scop) and then not Is_Generic_Unit (Scop) then
Result :=
Make_Selected_Component (Loc,
Prefix => Make_Identifier (Loc, Chars (Scop)),
Selector_Name => Result);
end if;
return Result;
end Qualify_Type;
-- Local variables
Actuals : constant List_Id := Parameter_Associations (Func_Call);
-- Start of processing for Qualify_Universal_Operands
begin
if Nkind (Op) in N_Binary_Op then
Qualify_Operand (Left_Opnd (Op), First (Actuals));
Qualify_Operand (Right_Opnd (Op), Next (First (Actuals)));
elsif Nkind (Op) in N_Unary_Op then
Qualify_Operand (Right_Opnd (Op), First (Actuals));
end if;
end Qualify_Universal_Operands;
------------------
-- Reset_Entity --
------------------
procedure Reset_Entity (N : Node_Id) is
procedure Set_Global_Type (N : Node_Id; N2 : Node_Id);
-- If the type of N2 is global to the generic unit, save the type in
-- the generic node. Just as we perform name capture for explicit
-- references within the generic, we must capture the global types
-- of local entities because they may participate in resolution in
-- the instance.
function Top_Ancestor (E : Entity_Id) return Entity_Id;
-- Find the ultimate ancestor of the current unit. If it is not a
-- generic unit, then the name of the current unit in the prefix of
-- an expanded name must be replaced with its generic homonym to
-- ensure that it will be properly resolved in an instance.
---------------------
-- Set_Global_Type --
---------------------
procedure Set_Global_Type (N : Node_Id; N2 : Node_Id) is
Typ : constant Entity_Id := Etype (N2);
begin
Set_Etype (N, Typ);
-- If the entity of N is not the associated node, this is a
-- nested generic and it has an associated node as well, whose
-- type is already the full view (see below). Indicate that the
-- original node has a private view.
if Entity (N) /= N2 and then Has_Private_View (Entity (N)) then
Set_Has_Private_View (N);
end if;
-- If not a private type, nothing else to do
if not Is_Private_Type (Typ) then
if Is_Array_Type (Typ)
and then Is_Private_Type (Component_Type (Typ))
then
Set_Has_Private_View (N);
end if;
-- If it is a derivation of a private type in a context where no
-- full view is needed, nothing to do either.
elsif No (Full_View (Typ)) and then Typ /= Etype (Typ) then
null;
-- Otherwise mark the type for flipping and use the full view when
-- available.
else
Set_Has_Private_View (N);
if Present (Full_View (Typ)) then
Set_Etype (N2, Full_View (Typ));
end if;
end if;
if Is_Floating_Point_Type (Typ)
and then Has_Dimension_System (Typ)
then
Copy_Dimensions (N2, N);
end if;
end Set_Global_Type;
------------------
-- Top_Ancestor --
------------------
function Top_Ancestor (E : Entity_Id) return Entity_Id is
Par : Entity_Id;
begin
Par := E;
while Is_Child_Unit (Par) loop
Par := Scope (Par);
end loop;
return Par;
end Top_Ancestor;
-- Start of processing for Reset_Entity
begin
N2 := Get_Associated_Node (N);
E := Entity (N2);
if Present (E) then
-- If the node is an entry call to an entry in an enclosing task,
-- it is rewritten as a selected component. No global entity to
-- preserve in this case, since the expansion will be redone in
-- the instance.
if not Nkind_In (E, N_Defining_Character_Literal,
N_Defining_Identifier,
N_Defining_Operator_Symbol)
then
Set_Associated_Node (N, Empty);
Set_Etype (N, Empty);
return;
end if;
-- If the entity is an itype created as a subtype of an access
-- type with a null exclusion restore source entity for proper
-- visibility. The itype will be created anew in the instance.
if Is_Itype (E)
and then Ekind (E) = E_Access_Subtype
and then Is_Entity_Name (N)
and then Chars (Etype (E)) = Chars (N)
then
E := Etype (E);
Set_Entity (N2, E);
Set_Etype (N2, E);
end if;
if Is_Global (E) then
-- If the entity is a package renaming that is the prefix of
-- an expanded name, it has been rewritten as the renamed
-- package, which is necessary semantically but complicates
-- ASIS tree traversal, so we recover the original entity to
-- expose the renaming. Take into account that the context may
-- be a nested generic, that the original node may itself have
-- an associated node that had better be an entity, and that
-- the current node is still a selected component.
if Ekind (E) = E_Package
and then Nkind (N) = N_Selected_Component
and then Nkind (Parent (N)) = N_Expanded_Name
and then Present (Original_Node (N2))
and then Is_Entity_Name (Original_Node (N2))
and then Present (Entity (Original_Node (N2)))
then
if Is_Global (Entity (Original_Node (N2))) then
N2 := Original_Node (N2);
Set_Associated_Node (N, N2);
Set_Global_Type (N, N2);
-- Renaming is local, and will be resolved in instance
else
Set_Associated_Node (N, Empty);
Set_Etype (N, Empty);
end if;
else
Set_Global_Type (N, N2);
end if;
elsif Nkind (N) = N_Op_Concat
and then Is_Generic_Type (Etype (N2))
and then (Base_Type (Etype (Right_Opnd (N2))) = Etype (N2)
or else
Base_Type (Etype (Left_Opnd (N2))) = Etype (N2))
and then Is_Intrinsic_Subprogram (E)
then
null;
-- Entity is local. Mark generic node as unresolved. Note that now
-- it does not have an entity.
else
Set_Associated_Node (N, Empty);
Set_Etype (N, Empty);
end if;
if Nkind (Parent (N)) in N_Generic_Instantiation
and then N = Name (Parent (N))
then
Save_Global_Defaults (Parent (N), Parent (N2));
end if;
elsif Nkind (Parent (N)) = N_Selected_Component
and then Nkind (Parent (N2)) = N_Expanded_Name
then
if Is_Global (Entity (Parent (N2))) then
Change_Selected_Component_To_Expanded_Name (Parent (N));
Set_Associated_Node (Parent (N), Parent (N2));
Set_Global_Type (Parent (N), Parent (N2));
Save_Entity_Descendants (N);
-- If this is a reference to the current generic entity, replace
-- by the name of the generic homonym of the current package. This
-- is because in an instantiation Par.P.Q will not resolve to the
-- name of the instance, whose enclosing scope is not necessarily
-- Par. We use the generic homonym rather that the name of the
-- generic itself because it may be hidden by a local declaration.
elsif In_Open_Scopes (Entity (Parent (N2)))
and then not
Is_Generic_Unit (Top_Ancestor (Entity (Prefix (Parent (N2)))))
then
if Ekind (Entity (Parent (N2))) = E_Generic_Package then
Rewrite (Parent (N),
Make_Identifier (Sloc (N),
Chars =>
Chars (Generic_Homonym (Entity (Parent (N2))))));
else
Rewrite (Parent (N),
Make_Identifier (Sloc (N),
Chars => Chars (Selector_Name (Parent (N2)))));
end if;
end if;
if Nkind (Parent (Parent (N))) in N_Generic_Instantiation
and then Parent (N) = Name (Parent (Parent (N)))
then
Save_Global_Defaults
(Parent (Parent (N)), Parent (Parent (N2)));
end if;
-- A selected component may denote a static constant that has been
-- folded. If the static constant is global to the generic, capture
-- its value. Otherwise the folding will happen in any instantiation.
elsif Nkind (Parent (N)) = N_Selected_Component
and then Nkind_In (Parent (N2), N_Integer_Literal, N_Real_Literal)
then
if Present (Entity (Original_Node (Parent (N2))))
and then Is_Global (Entity (Original_Node (Parent (N2))))
then
Rewrite (Parent (N), New_Copy (Parent (N2)));
Set_Analyzed (Parent (N), False);
end if;
-- A selected component may be transformed into a parameterless
-- function call. If the called entity is global, rewrite the node
-- appropriately, i.e. as an extended name for the global entity.
elsif Nkind (Parent (N)) = N_Selected_Component
and then Nkind (Parent (N2)) = N_Function_Call
and then N = Selector_Name (Parent (N))
then
if No (Parameter_Associations (Parent (N2))) then
if Is_Global (Entity (Name (Parent (N2)))) then
Change_Selected_Component_To_Expanded_Name (Parent (N));
Set_Associated_Node (Parent (N), Name (Parent (N2)));
Set_Global_Type (Parent (N), Name (Parent (N2)));
Save_Entity_Descendants (N);
else
Set_Is_Prefixed_Call (Parent (N));
Set_Associated_Node (N, Empty);
Set_Etype (N, Empty);
end if;
-- In Ada 2005, X.F may be a call to a primitive operation,
-- rewritten as F (X). This rewriting will be done again in an
-- instance, so keep the original node. Global entities will be
-- captured as for other constructs. Indicate that this must
-- resolve as a call, to prevent accidental overloading in the
-- instance, if both a component and a primitive operation appear
-- as candidates.
else
Set_Is_Prefixed_Call (Parent (N));
end if;
-- Entity is local. Reset in generic unit, so that node is resolved
-- anew at the point of instantiation.
else
Set_Associated_Node (N, Empty);
Set_Etype (N, Empty);
end if;
end Reset_Entity;
-----------------------------
-- Save_Entity_Descendants --
-----------------------------
procedure Save_Entity_Descendants (N : Node_Id) is
begin
case Nkind (N) is
when N_Binary_Op =>
Save_Global_Descendant (Union_Id (Left_Opnd (N)));
Save_Global_Descendant (Union_Id (Right_Opnd (N)));
when N_Unary_Op =>
Save_Global_Descendant (Union_Id (Right_Opnd (N)));
when N_Expanded_Name
| N_Selected_Component
=>
Save_Global_Descendant (Union_Id (Prefix (N)));
Save_Global_Descendant (Union_Id (Selector_Name (N)));
when N_Character_Literal
| N_Identifier
| N_Operator_Symbol
=>
null;
when others =>
raise Program_Error;
end case;
end Save_Entity_Descendants;
--------------------------
-- Save_Global_Defaults --
--------------------------
procedure Save_Global_Defaults (N1 : Node_Id; N2 : Node_Id) is
Loc : constant Source_Ptr := Sloc (N1);
Assoc2 : constant List_Id := Generic_Associations (N2);
Gen_Id : constant Entity_Id := Get_Generic_Entity (N2);
Assoc1 : List_Id;
Act1 : Node_Id;
Act2 : Node_Id;
Def : Node_Id;
Ndec : Node_Id;
Subp : Entity_Id;
Actual : Entity_Id;
begin
Assoc1 := Generic_Associations (N1);
if Present (Assoc1) then
Act1 := First (Assoc1);
else
Act1 := Empty;
Set_Generic_Associations (N1, New_List);
Assoc1 := Generic_Associations (N1);
end if;
if Present (Assoc2) then
Act2 := First (Assoc2);
else
return;
end if;
while Present (Act1) and then Present (Act2) loop
Next (Act1);
Next (Act2);
end loop;
-- Find the associations added for default subprograms
if Present (Act2) then
while Nkind (Act2) /= N_Generic_Association
or else No (Entity (Selector_Name (Act2)))
or else not Is_Overloadable (Entity (Selector_Name (Act2)))
loop
Next (Act2);
end loop;
-- Add a similar association if the default is global. The
-- renaming declaration for the actual has been analyzed, and
-- its alias is the program it renames. Link the actual in the
-- original generic tree with the node in the analyzed tree.
while Present (Act2) loop
Subp := Entity (Selector_Name (Act2));
Def := Explicit_Generic_Actual_Parameter (Act2);
-- Following test is defence against rubbish errors
if No (Alias (Subp)) then
return;
end if;
-- Retrieve the resolved actual from the renaming declaration
-- created for the instantiated formal.
Actual := Entity (Name (Parent (Parent (Subp))));
Set_Entity (Def, Actual);
Set_Etype (Def, Etype (Actual));
if Is_Global (Actual) then
Ndec :=
Make_Generic_Association (Loc,
Selector_Name =>
New_Occurrence_Of (Subp, Loc),
Explicit_Generic_Actual_Parameter =>
New_Occurrence_Of (Actual, Loc));
Set_Associated_Node
(Explicit_Generic_Actual_Parameter (Ndec), Def);
Append (Ndec, Assoc1);
-- If there are other defaults, add a dummy association in case
-- there are other defaulted formals with the same name.
elsif Present (Next (Act2)) then
Ndec :=
Make_Generic_Association (Loc,
Selector_Name =>
New_Occurrence_Of (Subp, Loc),
Explicit_Generic_Actual_Parameter => Empty);
Append (Ndec, Assoc1);
end if;
Next (Act2);
end loop;
end if;
if Nkind (Name (N1)) = N_Identifier
and then Is_Child_Unit (Gen_Id)
and then Is_Global (Gen_Id)
and then Is_Generic_Unit (Scope (Gen_Id))
and then In_Open_Scopes (Scope (Gen_Id))
then
-- This is an instantiation of a child unit within a sibling, so
-- that the generic parent is in scope. An eventual instance must
-- occur within the scope of an instance of the parent. Make name
-- in instance into an expanded name, to preserve the identifier
-- of the parent, so it can be resolved subsequently.
Rewrite (Name (N2),
Make_Expanded_Name (Loc,
Chars => Chars (Gen_Id),
Prefix => New_Occurrence_Of (Scope (Gen_Id), Loc),
Selector_Name => New_Occurrence_Of (Gen_Id, Loc)));
Set_Entity (Name (N2), Gen_Id);
Rewrite (Name (N1),
Make_Expanded_Name (Loc,
Chars => Chars (Gen_Id),
Prefix => New_Occurrence_Of (Scope (Gen_Id), Loc),
Selector_Name => New_Occurrence_Of (Gen_Id, Loc)));
Set_Associated_Node (Name (N1), Name (N2));
Set_Associated_Node (Prefix (Name (N1)), Empty);
Set_Associated_Node
(Selector_Name (Name (N1)), Selector_Name (Name (N2)));
Set_Etype (Name (N1), Etype (Gen_Id));
end if;
end Save_Global_Defaults;
----------------------------
-- Save_Global_Descendant --
----------------------------
procedure Save_Global_Descendant (D : Union_Id) is
N1 : Node_Id;
begin
if D in Node_Range then
if D = Union_Id (Empty) then
null;
elsif Nkind (Node_Id (D)) /= N_Compilation_Unit then
Save_References (Node_Id (D));
end if;
elsif D in List_Range then
pragma Assert (D /= Union_Id (No_List));
-- Because No_List = Empty, which is in Node_Range above
if Is_Empty_List (List_Id (D)) then
null;
else
N1 := First (List_Id (D));
while Present (N1) loop
Save_References (N1);
Next (N1);
end loop;
end if;
-- Element list or other non-node field, nothing to do
else
null;
end if;
end Save_Global_Descendant;
---------------------
-- Save_References --
---------------------
-- This is the recursive procedure that does the work once the enclosing
-- generic scope has been established. We have to treat specially a
-- number of node rewritings that are required by semantic processing
-- and which change the kind of nodes in the generic copy: typically
-- constant-folding, replacing an operator node by a string literal, or
-- a selected component by an expanded name. In each of those cases, the
-- transformation is propagated to the generic unit.
procedure Save_References (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
function Requires_Delayed_Save (Nod : Node_Id) return Boolean;
-- Determine whether arbitrary node Nod requires delayed capture of
-- global references within its aspect specifications.
procedure Save_References_In_Aggregate (N : Node_Id);
-- Save all global references in [extension] aggregate node N
procedure Save_References_In_Char_Lit_Or_Op_Symbol (N : Node_Id);
-- Save all global references in a character literal or operator
-- symbol denoted by N.
procedure Save_References_In_Descendants (N : Node_Id);
-- Save all global references in all descendants of node N
procedure Save_References_In_Identifier (N : Node_Id);
-- Save all global references in identifier node N
procedure Save_References_In_Operator (N : Node_Id);
-- Save all global references in operator node N
procedure Save_References_In_Pragma (Prag : Node_Id);
-- Save all global references found within the expression of pragma
-- Prag.
---------------------------
-- Requires_Delayed_Save --
---------------------------
function Requires_Delayed_Save (Nod : Node_Id) return Boolean is
begin
-- Generic packages and subprograms require delayed capture of
-- global references within their aspects due to the timing of
-- annotation analysis.
if Nkind_In (Nod, N_Generic_Package_Declaration,
N_Generic_Subprogram_Declaration,
N_Package_Body,
N_Package_Body_Stub,
N_Subprogram_Body,
N_Subprogram_Body_Stub)
then
-- Since the capture of global references is done on the
-- unanalyzed generic template, there is no information around
-- to infer the context. Use the Associated_Entity linkages to
-- peek into the analyzed generic copy and determine what the
-- template corresponds to.
if Nod = Templ then
return
Is_Generic_Declaration_Or_Body
(Unit_Declaration_Node
(Associated_Entity (Defining_Entity (Nod))));
-- Otherwise the generic unit being processed is not the top
-- level template. It is safe to capture of global references
-- within the generic unit because at this point the top level
-- copy is fully analyzed.
else
return False;
end if;
-- Otherwise capture the global references without interference
else
return False;
end if;
end Requires_Delayed_Save;
----------------------------------
-- Save_References_In_Aggregate --
----------------------------------
procedure Save_References_In_Aggregate (N : Node_Id) is
Nam : Node_Id;
Qual : Node_Id := Empty;
Typ : Entity_Id := Empty;
use Atree.Unchecked_Access;
-- This code section is part of implementing an untyped tree
-- traversal, so it needs direct access to node fields.
begin
N2 := Get_Associated_Node (N);
if Present (N2) then
Typ := Etype (N2);
-- In an instance within a generic, use the name of the actual
-- and not the original generic parameter. If the actual is
-- global in the current generic it must be preserved for its
-- instantiation.
if Nkind (Parent (Typ)) = N_Subtype_Declaration
and then Present (Generic_Parent_Type (Parent (Typ)))
then
Typ := Base_Type (Typ);
Set_Etype (N2, Typ);
end if;
end if;
if No (N2) or else No (Typ) or else not Is_Global (Typ) then
Set_Associated_Node (N, Empty);
-- If the aggregate is an actual in a call, it has been
-- resolved in the current context, to some local type. The
-- enclosing call may have been disambiguated by the aggregate,
-- and this disambiguation might fail at instantiation time
-- because the type to which the aggregate did resolve is not
-- preserved. In order to preserve some of this information,
-- wrap the aggregate in a qualified expression, using the id
-- of its type. For further disambiguation we qualify the type
-- name with its scope (if visible and not hidden by a local
-- homograph) because both id's will have corresponding
-- entities in an instance. This resolves most of the problems
-- with missing type information on aggregates in instances.
if Present (N2)
and then Nkind (N2) = Nkind (N)
and then Nkind (Parent (N2)) in N_Subprogram_Call
and then Present (Typ)
and then Comes_From_Source (Typ)
then
Nam := Make_Identifier (Loc, Chars (Typ));
if Is_Immediately_Visible (Scope (Typ))
and then
(not In_Open_Scopes (Scope (Typ))
or else Current_Entity (Scope (Typ)) = Scope (Typ))
then
Nam :=
Make_Selected_Component (Loc,
Prefix =>
Make_Identifier (Loc, Chars (Scope (Typ))),
Selector_Name => Nam);
end if;
Qual :=
Make_Qualified_Expression (Loc,
Subtype_Mark => Nam,
Expression => Relocate_Node (N));
end if;
end if;
Save_Global_Descendant (Field1 (N));
Save_Global_Descendant (Field2 (N));
Save_Global_Descendant (Field3 (N));
Save_Global_Descendant (Field5 (N));
if Present (Qual) then
Rewrite (N, Qual);
end if;
end Save_References_In_Aggregate;
----------------------------------------------
-- Save_References_In_Char_Lit_Or_Op_Symbol --
----------------------------------------------
procedure Save_References_In_Char_Lit_Or_Op_Symbol (N : Node_Id) is
begin
if Nkind (N) = Nkind (Get_Associated_Node (N)) then
Reset_Entity (N);
elsif Nkind (N) = N_Operator_Symbol
and then Nkind (Get_Associated_Node (N)) = N_String_Literal
then
Change_Operator_Symbol_To_String_Literal (N);
end if;
end Save_References_In_Char_Lit_Or_Op_Symbol;
------------------------------------
-- Save_References_In_Descendants --
------------------------------------
procedure Save_References_In_Descendants (N : Node_Id) is
use Atree.Unchecked_Access;
-- This code section is part of implementing an untyped tree
-- traversal, so it needs direct access to node fields.
begin
Save_Global_Descendant (Field1 (N));
Save_Global_Descendant (Field2 (N));
Save_Global_Descendant (Field3 (N));
Save_Global_Descendant (Field4 (N));
Save_Global_Descendant (Field5 (N));
end Save_References_In_Descendants;
-----------------------------------
-- Save_References_In_Identifier --
-----------------------------------
procedure Save_References_In_Identifier (N : Node_Id) is
begin
-- The node did not undergo a transformation
if Nkind (N) = Nkind (Get_Associated_Node (N)) then
declare
Aux_N2 : constant Node_Id := Get_Associated_Node (N);
Orig_N2_Parent : constant Node_Id :=
Original_Node (Parent (Aux_N2));
begin
-- The parent of this identifier is a selected component
-- which denotes a named number that was constant folded.
-- Preserve the original name for ASIS and link the parent
-- with its expanded name. The constant folding will be
-- repeated in the instance.
if Nkind (Parent (N)) = N_Selected_Component
and then Nkind_In (Parent (Aux_N2), N_Integer_Literal,
N_Real_Literal)
and then Is_Entity_Name (Orig_N2_Parent)
and then Ekind (Entity (Orig_N2_Parent)) in Named_Kind
and then Is_Global (Entity (Orig_N2_Parent))
then
N2 := Aux_N2;
Set_Associated_Node
(Parent (N), Original_Node (Parent (N2)));
-- Common case
else
-- If this is a discriminant reference, always save it.
-- It is used in the instance to find the corresponding
-- discriminant positionally rather than by name.
Set_Original_Discriminant
(N, Original_Discriminant (Get_Associated_Node (N)));
end if;
Reset_Entity (N);
end;
-- The analysis of the generic copy transformed the identifier
-- into another construct. Propagate the changes to the template.
else
N2 := Get_Associated_Node (N);
-- The identifier denotes a call to a parameterless function.
-- Mark the node as resolved when the function is external.
if Nkind (N2) = N_Function_Call then
E := Entity (Name (N2));
if Present (E) and then Is_Global (E) then
Set_Etype (N, Etype (N2));
else
Set_Associated_Node (N, Empty);
Set_Etype (N, Empty);
end if;
-- The identifier denotes a named number that was constant
-- folded. Preserve the original name for ASIS and undo the
-- constant folding which will be repeated in the instance.
elsif Nkind_In (N2, N_Integer_Literal, N_Real_Literal)
and then Is_Entity_Name (Original_Node (N2))
then
Set_Associated_Node (N, Original_Node (N2));
Reset_Entity (N);
-- The identifier resolved to a string literal. Propagate this
-- information to the generic template.
elsif Nkind (N2) = N_String_Literal then
Rewrite (N, New_Copy (N2));
-- The identifier is rewritten as a dereference if it is the
-- prefix of an implicit dereference. Preserve the original
-- tree as the analysis of the instance will expand the node
-- again, but preserve the resolved entity if it is global.
elsif Nkind (N2) = N_Explicit_Dereference then
if Is_Entity_Name (Prefix (N2))
and then Present (Entity (Prefix (N2)))
and then Is_Global (Entity (Prefix (N2)))
then
Set_Associated_Node (N, Prefix (N2));
elsif Nkind (Prefix (N2)) = N_Function_Call
and then Present (Entity (Name (Prefix (N2))))
and then Is_Global (Entity (Name (Prefix (N2))))
then
Rewrite (N,
Make_Explicit_Dereference (Loc,
Prefix =>
Make_Function_Call (Loc,
Name =>
New_Occurrence_Of
(Entity (Name (Prefix (N2))), Loc))));
else
Set_Associated_Node (N, Empty);
Set_Etype (N, Empty);
end if;
-- The subtype mark of a nominally unconstrained object is
-- rewritten as a subtype indication using the bounds of the
-- expression. Recover the original subtype mark.
elsif Nkind (N2) = N_Subtype_Indication
and then Is_Entity_Name (Original_Node (N2))
then
Set_Associated_Node (N, Original_Node (N2));
Reset_Entity (N);
end if;
end if;
end Save_References_In_Identifier;
---------------------------------
-- Save_References_In_Operator --
---------------------------------
procedure Save_References_In_Operator (N : Node_Id) is
begin
-- The node did not undergo a transformation
if Nkind (N) = Nkind (Get_Associated_Node (N)) then
if Nkind (N) = N_Op_Concat then
Set_Is_Component_Left_Opnd (N,
Is_Component_Left_Opnd (Get_Associated_Node (N)));
Set_Is_Component_Right_Opnd (N,
Is_Component_Right_Opnd (Get_Associated_Node (N)));
end if;
Reset_Entity (N);
-- The analysis of the generic copy transformed the operator into
-- some other construct. Propagate the changes to the template if
-- applicable.
else
N2 := Get_Associated_Node (N);
-- The operator resoved to a function call
if Nkind (N2) = N_Function_Call then
-- Add explicit qualifications in the generic template for
-- all operands of universal type. This aids resolution by
-- preserving the actual type of a literal or an attribute
-- that yields a universal result.
Qualify_Universal_Operands (N, N2);
E := Entity (Name (N2));
if Present (E) and then Is_Global (E) then
Set_Etype (N, Etype (N2));
else
Set_Associated_Node (N, Empty);
Set_Etype (N, Empty);
end if;
-- The operator was folded into a literal
elsif Nkind_In (N2, N_Integer_Literal,
N_Real_Literal,
N_String_Literal)
then
if Present (Original_Node (N2))
and then Nkind (Original_Node (N2)) = Nkind (N)
then
-- Operation was constant-folded. Whenever possible,
-- recover semantic information from unfolded node,
-- for ASIS use.
Set_Associated_Node (N, Original_Node (N2));
if Nkind (N) = N_Op_Concat then
Set_Is_Component_Left_Opnd (N,
Is_Component_Left_Opnd (Get_Associated_Node (N)));
Set_Is_Component_Right_Opnd (N,
Is_Component_Right_Opnd (Get_Associated_Node (N)));
end if;
Reset_Entity (N);
-- Propagate the constant folding back to the template
else
Rewrite (N, New_Copy (N2));
Set_Analyzed (N, False);
end if;
-- The operator was folded into an enumeration literal. Retain
-- the entity to avoid spurious ambiguities if it is overloaded
-- at the point of instantiation or inlining.
elsif Nkind (N2) = N_Identifier
and then Ekind (Entity (N2)) = E_Enumeration_Literal
then
Rewrite (N, New_Copy (N2));
Set_Analyzed (N, False);
end if;
end if;
-- Complete the operands check if node has not been constant
-- folded.
if Nkind (N) in N_Op then
Save_Entity_Descendants (N);
end if;
end Save_References_In_Operator;
-------------------------------
-- Save_References_In_Pragma --
-------------------------------
procedure Save_References_In_Pragma (Prag : Node_Id) is
Context : Node_Id;
Do_Save : Boolean := True;
use Atree.Unchecked_Access;
-- This code section is part of implementing an untyped tree
-- traversal, so it needs direct access to node fields.
begin
-- Do not save global references in pragmas generated from aspects
-- because the pragmas will be regenerated at instantiation time.
if From_Aspect_Specification (Prag) then
Do_Save := False;
-- The capture of global references within contract-related source
-- pragmas associated with generic packages, subprograms or their
-- respective bodies must be delayed due to timing of annotation
-- analysis. Global references are still captured in routine
-- Save_Global_References_In_Contract.
elsif Is_Generic_Contract_Pragma (Prag) and then Prag /= Templ then
if Is_Package_Contract_Annotation (Prag) then
Context := Find_Related_Package_Or_Body (Prag);
else
pragma Assert (Is_Subprogram_Contract_Annotation (Prag));
Context := Find_Related_Declaration_Or_Body (Prag);
end if;
-- The use of Original_Node accounts for the case when the
-- related context is generic template.
if Requires_Delayed_Save (Original_Node (Context)) then
Do_Save := False;
end if;
end if;
-- For all other cases, save all global references within the
-- descendants, but skip the following semantic fields:
-- Field1 - Next_Pragma
-- Field3 - Corresponding_Aspect
-- Field5 - Next_Rep_Item
if Do_Save then
Save_Global_Descendant (Field2 (Prag));
Save_Global_Descendant (Field4 (Prag));
end if;
end Save_References_In_Pragma;
-- Start of processing for Save_References
begin
if N = Empty then
null;
-- Aggregates
elsif Nkind_In (N, N_Aggregate, N_Extension_Aggregate) then
Save_References_In_Aggregate (N);
-- Character literals, operator symbols
elsif Nkind_In (N, N_Character_Literal, N_Operator_Symbol) then
Save_References_In_Char_Lit_Or_Op_Symbol (N);
-- Defining identifiers
elsif Nkind (N) in N_Entity then
null;
-- Identifiers
elsif Nkind (N) = N_Identifier then
Save_References_In_Identifier (N);
-- Operators
elsif Nkind (N) in N_Op then
Save_References_In_Operator (N);
-- Pragmas
elsif Nkind (N) = N_Pragma then
Save_References_In_Pragma (N);
else
Save_References_In_Descendants (N);
end if;
-- Save all global references found within the aspect specifications
-- of the related node.
if Permits_Aspect_Specifications (N) and then Has_Aspects (N) then
-- The capture of global references within aspects associated with
-- generic packages, subprograms or their bodies must be delayed
-- due to timing of annotation analysis. Global references are
-- still captured in routine Save_Global_References_In_Contract.
if Requires_Delayed_Save (N) then
null;
-- Otherwise save all global references within the aspects
else
Save_Global_References_In_Aspects (N);
end if;
end if;
end Save_References;
-- Start of processing for Save_Global_References
begin
Gen_Scope := Current_Scope;
-- If the generic unit is a child unit, references to entities in the
-- parent are treated as local, because they will be resolved anew in
-- the context of the instance of the parent.
while Is_Child_Unit (Gen_Scope)
and then Ekind (Scope (Gen_Scope)) = E_Generic_Package
loop
Gen_Scope := Scope (Gen_Scope);
end loop;
Save_References (Templ);
end Save_Global_References;
---------------------------------------
-- Save_Global_References_In_Aspects --
---------------------------------------
procedure Save_Global_References_In_Aspects (N : Node_Id) is
Asp : Node_Id;
Expr : Node_Id;
begin
Asp := First (Aspect_Specifications (N));
while Present (Asp) loop
Expr := Expression (Asp);
if Present (Expr) then
Save_Global_References (Expr);
end if;
Next (Asp);
end loop;
end Save_Global_References_In_Aspects;
------------------------------------------
-- Set_Copied_Sloc_For_Inherited_Pragma --
------------------------------------------
procedure Set_Copied_Sloc_For_Inherited_Pragma
(N : Node_Id;
E : Entity_Id)
is
begin
Create_Instantiation_Source (N, E,
Inlined_Body => False,
Inherited_Pragma => True,
Factor => S_Adjustment);
end Set_Copied_Sloc_For_Inherited_Pragma;
--------------------------------------
-- Set_Copied_Sloc_For_Inlined_Body --
--------------------------------------
procedure Set_Copied_Sloc_For_Inlined_Body (N : Node_Id; E : Entity_Id) is
begin
Create_Instantiation_Source (N, E,
Inlined_Body => True,
Inherited_Pragma => False,
Factor => S_Adjustment);
end Set_Copied_Sloc_For_Inlined_Body;
---------------------
-- Set_Instance_Of --
---------------------
procedure Set_Instance_Of (A : Entity_Id; B : Entity_Id) is
begin
Generic_Renamings.Table (Generic_Renamings.Last) := (A, B, Assoc_Null);
Generic_Renamings_HTable.Set (Generic_Renamings.Last);
Generic_Renamings.Increment_Last;
end Set_Instance_Of;
--------------------
-- Set_Next_Assoc --
--------------------
procedure Set_Next_Assoc (E : Assoc_Ptr; Next : Assoc_Ptr) is
begin
Generic_Renamings.Table (E).Next_In_HTable := Next;
end Set_Next_Assoc;
-------------------
-- Start_Generic --
-------------------
procedure Start_Generic is
begin
-- ??? More things could be factored out in this routine.
-- Should probably be done at a later stage.
Generic_Flags.Append (Inside_A_Generic);
Inside_A_Generic := True;
Expander_Mode_Save_And_Set (False);
end Start_Generic;
----------------------
-- Set_Instance_Env --
----------------------
-- WARNING: This routine manages SPARK regions
procedure Set_Instance_Env
(Gen_Unit : Entity_Id;
Act_Unit : Entity_Id)
is
Saved_AE : constant Boolean := Assertions_Enabled;
Saved_SM : constant SPARK_Mode_Type := SPARK_Mode;
Saved_SMP : constant Node_Id := SPARK_Mode_Pragma;
-- Save the SPARK mode-related data because utilizing the configuration
-- values of pragmas and switches will eliminate any previously set
-- SPARK_Mode.
begin
-- Regardless of the current mode, predefined units are analyzed in the
-- most current Ada mode, and earlier version Ada checks do not apply
-- to predefined units. Nothing needs to be done for non-internal units.
-- These are always analyzed in the current mode.
if In_Internal_Unit (Gen_Unit) then
Set_Opt_Config_Switches (True, Current_Sem_Unit = Main_Unit);
-- In Ada2012 we may want to enable assertions in an instance of a
-- predefined unit, in which case we need to preserve the current
-- setting for the Assertions_Enabled flag. This will become more
-- critical when pre/postconditions are added to predefined units,
-- as is already the case for some numeric libraries.
if Ada_Version >= Ada_2012 then
Assertions_Enabled := Saved_AE;
end if;
-- Reinstall the SPARK_Mode which was in effect at the point of
-- instantiation.
Install_SPARK_Mode (Saved_SM, Saved_SMP);
end if;
Current_Instantiated_Parent :=
(Gen_Id => Gen_Unit,
Act_Id => Act_Unit,
Next_In_HTable => Assoc_Null);
end Set_Instance_Env;
-----------------
-- Switch_View --
-----------------
procedure Switch_View (T : Entity_Id) is
BT : constant Entity_Id := Base_Type (T);
Priv_Elmt : Elmt_Id := No_Elmt;
Priv_Sub : Entity_Id;
begin
-- T may be private but its base type may have been exchanged through
-- some other occurrence, in which case there is nothing to switch
-- besides T itself. Note that a private dependent subtype of a private
-- type might not have been switched even if the base type has been,
-- because of the last branch of Check_Private_View (see comment there).
if not Is_Private_Type (BT) then
Prepend_Elmt (Full_View (T), Exchanged_Views);
Exchange_Declarations (T);
return;
end if;
Priv_Elmt := First_Elmt (Private_Dependents (BT));
if Present (Full_View (BT)) then
Prepend_Elmt (Full_View (BT), Exchanged_Views);
Exchange_Declarations (BT);
end if;
while Present (Priv_Elmt) loop
Priv_Sub := (Node (Priv_Elmt));
-- We avoid flipping the subtype if the Etype of its full view is
-- private because this would result in a malformed subtype. This
-- occurs when the Etype of the subtype full view is the full view of
-- the base type (and since the base types were just switched, the
-- subtype is pointing to the wrong view). This is currently the case
-- for tagged record types, access types (maybe more?) and needs to
-- be resolved. ???
if Present (Full_View (Priv_Sub))
and then not Is_Private_Type (Etype (Full_View (Priv_Sub)))
then
Prepend_Elmt (Full_View (Priv_Sub), Exchanged_Views);
Exchange_Declarations (Priv_Sub);
end if;
Next_Elmt (Priv_Elmt);
end loop;
end Switch_View;
-----------------
-- True_Parent --
-----------------
function True_Parent (N : Node_Id) return Node_Id is
begin
if Nkind (Parent (N)) = N_Subunit then
return Parent (Corresponding_Stub (Parent (N)));
else
return Parent (N);
end if;
end True_Parent;
-----------------------------
-- Valid_Default_Attribute --
-----------------------------
procedure Valid_Default_Attribute (Nam : Entity_Id; Def : Node_Id) is
Attr_Id : constant Attribute_Id :=
Get_Attribute_Id (Attribute_Name (Def));
T : constant Entity_Id := Entity (Prefix (Def));
Is_Fun : constant Boolean := (Ekind (Nam) = E_Function);
F : Entity_Id;
Num_F : Nat;
OK : Boolean;
begin
if No (T) or else T = Any_Id then
return;
end if;
Num_F := 0;
F := First_Formal (Nam);
while Present (F) loop
Num_F := Num_F + 1;
Next_Formal (F);
end loop;
case Attr_Id is
when Attribute_Adjacent
| Attribute_Ceiling
| Attribute_Copy_Sign
| Attribute_Floor
| Attribute_Fraction
| Attribute_Machine
| Attribute_Model
| Attribute_Remainder
| Attribute_Rounding
| Attribute_Unbiased_Rounding
=>
OK := Is_Fun
and then Num_F = 1
and then Is_Floating_Point_Type (T);
when Attribute_Image
| Attribute_Pred
| Attribute_Succ
| Attribute_Value
| Attribute_Wide_Image
| Attribute_Wide_Value
=>
OK := Is_Fun and then Num_F = 1 and then Is_Scalar_Type (T);
when Attribute_Max
| Attribute_Min
=>
OK := Is_Fun and then Num_F = 2 and then Is_Scalar_Type (T);
when Attribute_Input =>
OK := (Is_Fun and then Num_F = 1);
when Attribute_Output
| Attribute_Read
| Attribute_Write
=>
OK := not Is_Fun and then Num_F = 2;
when others =>
OK := False;
end case;
if not OK then
Error_Msg_N
("attribute reference has wrong profile for subprogram", Def);
end if;
end Valid_Default_Attribute;
end Sem_Ch12;
|