summaryrefslogtreecommitdiff
path: root/gcc/ada/s-secsta.adb
blob: f8142fbe52355848134b7baced8c2b00b016ec8f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
------------------------------------------------------------------------------
--                                                                          --
--                         GNAT COMPILER COMPONENTS                         --
--                                                                          --
--               S Y S T E M . S E C O N D A R Y _ S T A C K                --
--                                                                          --
--                                 B o d y                                  --
--                                                                          --
--          Copyright (C) 1992-2013, Free Software Foundation, Inc.         --
--                                                                          --
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
-- terms of the  GNU General Public License as published  by the Free Soft- --
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
--                                                                          --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception,   --
-- version 3.1, as published by the Free Software Foundation.               --
--                                                                          --
-- You should have received a copy of the GNU General Public License and    --
-- a copy of the GCC Runtime Library Exception along with this program;     --
-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
-- <http://www.gnu.org/licenses/>.                                          --
--                                                                          --
-- GNAT was originally developed  by the GNAT team at  New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc.      --
--                                                                          --
------------------------------------------------------------------------------

pragma Compiler_Unit_Warning;

with System.Soft_Links;
with System.Parameters;

with Ada.Unchecked_Conversion;
with Ada.Unchecked_Deallocation;

package body System.Secondary_Stack is

   package SSL renames System.Soft_Links;

   use type SSE.Storage_Offset;
   use type System.Parameters.Size_Type;

   SS_Ratio_Dynamic : constant Boolean :=
                        Parameters.Sec_Stack_Percentage = Parameters.Dynamic;
   --  There are two entirely different implementations of the secondary
   --  stack mechanism in this unit, and this Boolean is used to select
   --  between them (at compile time, so the generated code will contain
   --  only the code for the desired variant). If SS_Ratio_Dynamic is
   --  True, then the secondary stack is dynamically allocated from the
   --  heap in a linked list of chunks. If SS_Ration_Dynamic is False,
   --  then the secondary stack is allocated statically by grabbing a
   --  section of the primary stack and using it for this purpose.

   type Memory is array (SS_Ptr range <>) of SSE.Storage_Element;
   for Memory'Alignment use Standard'Maximum_Alignment;
   --  This is the type used for actual allocation of secondary stack
   --  areas. We require maximum alignment for all such allocations.

   ---------------------------------------------------------------
   -- Data Structures for Dynamically Allocated Secondary Stack --
   ---------------------------------------------------------------

   --  The following is a diagram of the data structures used for the
   --  case of a dynamically allocated secondary stack, where the stack
   --  is allocated as a linked list of chunks allocated from the heap.

   --                                      +------------------+
   --                                      |       Next       |
   --                                      +------------------+
   --                                      |                  | Last (200)
   --                                      |                  |
   --                                      |                  |
   --                                      |                  |
   --                                      |                  |
   --                                      |                  |
   --                                      |                  | First (101)
   --                                      +------------------+
   --                         +----------> |          |       |
   --                         |            +----------+-------+
   --                         |                    |  |
   --                         |                    ^  V
   --                         |                    |  |
   --                         |            +-------+----------+
   --                         |            |       |          |
   --                         |            +------------------+
   --                         |            |                  | Last (100)
   --                         |            |         C        |
   --                         |            |         H        |
   --    +-----------------+  |  +-------->|         U        |
   --    |  Current_Chunk -|--+  |         |         N        |
   --    +-----------------+     |         |         K        |
   --    |       Top      -|-----+         |                  | First (1)
   --    +-----------------+               +------------------+
   --    | Default_Size    |               |       Prev       |
   --    +-----------------+               +------------------+
   --

   type Chunk_Id (First, Last : SS_Ptr);
   type Chunk_Ptr is access all Chunk_Id;

   type Chunk_Id (First, Last : SS_Ptr) is record
      Prev, Next : Chunk_Ptr;
      Mem        : Memory (First .. Last);
   end record;

   type Stack_Id is record
      Top           : SS_Ptr;
      Default_Size  : SSE.Storage_Count;
      Current_Chunk : Chunk_Ptr;
   end record;

   type Stack_Ptr is access Stack_Id;
   --  Pointer to record used to represent a dynamically allocated secondary
   --  stack descriptor for a secondary stack chunk.

   procedure Free is new Ada.Unchecked_Deallocation (Chunk_Id, Chunk_Ptr);
   --  Free a dynamically allocated chunk

   function To_Stack_Ptr is new
     Ada.Unchecked_Conversion (Address, Stack_Ptr);
   function To_Addr is new
     Ada.Unchecked_Conversion (Stack_Ptr, Address);
   --  Convert to and from address stored in task data structures

   --------------------------------------------------------------
   -- Data Structures for Statically Allocated Secondary Stack --
   --------------------------------------------------------------

   --  For the static case, the secondary stack is a single contiguous
   --  chunk of storage, carved out of the primary stack, and represented
   --  by the following data structure

   type Fixed_Stack_Id is record
      Top : SS_Ptr;
      --  Index of next available location in Mem. This is initialized to
      --  0, and then incremented on Allocate, and Decremented on Release.

      Last : SS_Ptr;
      --  Length of usable Mem array, which is thus the index past the
      --  last available location in Mem. Mem (Last-1) can be used. This
      --  is used to check that the stack does not overflow.

      Max : SS_Ptr;
      --  Maximum value of Top. Initialized to 0, and then may be incremented
      --  on Allocate, but is never Decremented. The last used location will
      --  be Mem (Max - 1), so Max is the maximum count of used stack space.

      Mem : Memory (0 .. 0);
      --  This is the area that is actually used for the secondary stack.
      --  Note that the upper bound is a dummy value properly defined by
      --  the value of Last. We never actually allocate objects of type
      --  Fixed_Stack_Id, so the bounds declared here do not matter.
   end record;

   Dummy_Fixed_Stack : Fixed_Stack_Id;
   pragma Warnings (Off, Dummy_Fixed_Stack);
   --  Well it is not quite true that we never allocate an object of the
   --  type. This dummy object is allocated for the purpose of getting the
   --  offset of the Mem field via the 'Position attribute (such a nuisance
   --  that we cannot apply this to a field of a type).

   type Fixed_Stack_Ptr is access Fixed_Stack_Id;
   --  Pointer to record used to describe statically allocated sec stack

   function To_Fixed_Stack_Ptr is new
     Ada.Unchecked_Conversion (Address, Fixed_Stack_Ptr);
   --  Convert from address stored in task data structures

   --------------
   -- Allocate --
   --------------

   procedure SS_Allocate
     (Addr         : out Address;
      Storage_Size : SSE.Storage_Count)
   is
      Max_Align    : constant SS_Ptr := SS_Ptr (Standard'Maximum_Alignment);
      Max_Size     : constant SS_Ptr :=
                       ((SS_Ptr (Storage_Size) + Max_Align - 1) / Max_Align)
                         * Max_Align;

   begin
      --  Case of fixed allocation secondary stack

      if not SS_Ratio_Dynamic then
         declare
            Fixed_Stack : constant Fixed_Stack_Ptr :=
                            To_Fixed_Stack_Ptr (SSL.Get_Sec_Stack_Addr.all);

         begin
            --  Check if max stack usage is increasing

            if Fixed_Stack.Top + Max_Size > Fixed_Stack.Max then

               --  If so, check if max size is exceeded

               if Fixed_Stack.Top + Max_Size > Fixed_Stack.Last then
                  raise Storage_Error;
               end if;

               --  Record new max usage

               Fixed_Stack.Max := Fixed_Stack.Top + Max_Size;
            end if;

            --  Set resulting address and update top of stack pointer

            Addr := Fixed_Stack.Mem (Fixed_Stack.Top)'Address;
            Fixed_Stack.Top := Fixed_Stack.Top + Max_Size;
         end;

      --  Case of dynamically allocated secondary stack

      else
         declare
            Stack : constant Stack_Ptr :=
                      To_Stack_Ptr (SSL.Get_Sec_Stack_Addr.all);
            Chunk : Chunk_Ptr;

            To_Be_Released_Chunk : Chunk_Ptr;

         begin
            Chunk := Stack.Current_Chunk;

            --  The Current_Chunk may not be the good one if a lot of release
            --  operations have taken place. So go down the stack if necessary

            while Chunk.First > Stack.Top loop
               Chunk := Chunk.Prev;
            end loop;

            --  Find out if the available memory in the current chunk is
            --  sufficient, if not, go to the next one and eventually create
            --  the necessary room.

            while Chunk.Last - Stack.Top + 1 < Max_Size loop
               if Chunk.Next /= null then

                  --  Release unused non-first empty chunk

                  if Chunk.Prev /= null and then Chunk.First = Stack.Top then
                     To_Be_Released_Chunk := Chunk;
                     Chunk := Chunk.Prev;
                     Chunk.Next := To_Be_Released_Chunk.Next;
                     To_Be_Released_Chunk.Next.Prev := Chunk;
                     Free (To_Be_Released_Chunk);
                  end if;

                  --  Create new chunk of default size unless it is not
                  --  sufficient to satisfy the current request.

               elsif SSE.Storage_Count (Max_Size) <= Stack.Default_Size then
                  Chunk.Next :=
                    new Chunk_Id
                      (First => Chunk.Last + 1,
                       Last  => Chunk.Last + SS_Ptr (Stack.Default_Size));

                  Chunk.Next.Prev := Chunk;

                  --  Otherwise create new chunk of requested size

               else
                  Chunk.Next :=
                    new Chunk_Id
                      (First => Chunk.Last + 1,
                       Last  => Chunk.Last + Max_Size);

                  Chunk.Next.Prev := Chunk;
               end if;

               Chunk     := Chunk.Next;
               Stack.Top := Chunk.First;
            end loop;

            --  Resulting address is the address pointed by Stack.Top

            Addr                := Chunk.Mem (Stack.Top)'Address;
            Stack.Top           := Stack.Top + Max_Size;
            Stack.Current_Chunk := Chunk;
         end;
      end if;
   end SS_Allocate;

   -------------
   -- SS_Free --
   -------------

   procedure SS_Free (Stk : in out Address) is
   begin
      --  Case of statically allocated secondary stack, nothing to free

      if not SS_Ratio_Dynamic then
         return;

      --  Case of dynamically allocated secondary stack

      else
         declare
            Stack : Stack_Ptr := To_Stack_Ptr (Stk);
            Chunk : Chunk_Ptr;

            procedure Free is
              new Ada.Unchecked_Deallocation (Stack_Id, Stack_Ptr);

         begin
            Chunk := Stack.Current_Chunk;

            while Chunk.Prev /= null loop
               Chunk := Chunk.Prev;
            end loop;

            while Chunk.Next /= null loop
               Chunk := Chunk.Next;
               Free (Chunk.Prev);
            end loop;

            Free (Chunk);
            Free (Stack);
            Stk := Null_Address;
         end;
      end if;
   end SS_Free;

   ----------------
   -- SS_Get_Max --
   ----------------

   function SS_Get_Max return Long_Long_Integer is
   begin
      if SS_Ratio_Dynamic then
         return -1;
      else
         declare
            Fixed_Stack : constant Fixed_Stack_Ptr :=
                            To_Fixed_Stack_Ptr (SSL.Get_Sec_Stack_Addr.all);
         begin
            return Long_Long_Integer (Fixed_Stack.Max);
         end;
      end if;
   end SS_Get_Max;

   -------------
   -- SS_Info --
   -------------

   procedure SS_Info is
   begin
      Put_Line ("Secondary Stack information:");

      --  Case of fixed secondary stack

      if not SS_Ratio_Dynamic then
         declare
            Fixed_Stack : constant Fixed_Stack_Ptr :=
                            To_Fixed_Stack_Ptr (SSL.Get_Sec_Stack_Addr.all);

         begin
            Put_Line (
                      "  Total size              : "
                      & SS_Ptr'Image (Fixed_Stack.Last)
                      & " bytes");

            Put_Line (
                      "  Current allocated space : "
                      & SS_Ptr'Image (Fixed_Stack.Top - 1)
                      & " bytes");
         end;

      --  Case of dynamically allocated secondary stack

      else
         declare
            Stack     : constant Stack_Ptr :=
                          To_Stack_Ptr (SSL.Get_Sec_Stack_Addr.all);
            Nb_Chunks : Integer   := 1;
            Chunk     : Chunk_Ptr := Stack.Current_Chunk;

         begin
            while Chunk.Prev /= null loop
               Chunk := Chunk.Prev;
            end loop;

            while Chunk.Next /= null loop
               Nb_Chunks := Nb_Chunks + 1;
               Chunk := Chunk.Next;
            end loop;

            --  Current Chunk information

            Put_Line (
                      "  Total size              : "
                      & SS_Ptr'Image (Chunk.Last)
                      & " bytes");

            Put_Line (
                      "  Current allocated space : "
                      & SS_Ptr'Image (Stack.Top - 1)
                      & " bytes");

            Put_Line (
                      "  Number of Chunks       : "
                      & Integer'Image (Nb_Chunks));

            Put_Line (
                      "  Default size of Chunks : "
                      & SSE.Storage_Count'Image (Stack.Default_Size));
         end;
      end if;
   end SS_Info;

   -------------
   -- SS_Init --
   -------------

   procedure SS_Init
     (Stk  : in out Address;
      Size : Natural := Default_Secondary_Stack_Size)
   is
   begin
      --  Case of fixed size secondary stack

      if not SS_Ratio_Dynamic then
         declare
            Fixed_Stack : constant Fixed_Stack_Ptr :=
                            To_Fixed_Stack_Ptr (Stk);

         begin
            Fixed_Stack.Top  := 0;
            Fixed_Stack.Max  := 0;

            if Size < Dummy_Fixed_Stack.Mem'Position then
               Fixed_Stack.Last := 0;
            else
               Fixed_Stack.Last :=
                 SS_Ptr (Size) - Dummy_Fixed_Stack.Mem'Position;
            end if;
         end;

      --  Case of dynamically allocated secondary stack

      else
         declare
            Stack : Stack_Ptr;
         begin
            Stack               := new Stack_Id;
            Stack.Current_Chunk := new Chunk_Id (1, SS_Ptr (Size));
            Stack.Top           := 1;
            Stack.Default_Size  := SSE.Storage_Count (Size);
            Stk := To_Addr (Stack);
         end;
      end if;
   end SS_Init;

   -------------
   -- SS_Mark --
   -------------

   function SS_Mark return Mark_Id is
      Sstk : constant System.Address := SSL.Get_Sec_Stack_Addr.all;
   begin
      if SS_Ratio_Dynamic then
         return (Sstk => Sstk, Sptr => To_Stack_Ptr (Sstk).Top);
      else
         return (Sstk => Sstk, Sptr => To_Fixed_Stack_Ptr (Sstk).Top);
      end if;
   end SS_Mark;

   ----------------
   -- SS_Release --
   ----------------

   procedure SS_Release (M : Mark_Id) is
   begin
      if SS_Ratio_Dynamic then
         To_Stack_Ptr (M.Sstk).Top := M.Sptr;
      else
         To_Fixed_Stack_Ptr (M.Sstk).Top := M.Sptr;
      end if;
   end SS_Release;

   -------------------------
   -- Package Elaboration --
   -------------------------

   --  Allocate a secondary stack for the main program to use

   --  We make sure that the stack has maximum alignment. Some systems require
   --  this (e.g. Sparc), and in any case it is a good idea for efficiency.

   Stack : aliased Stack_Id;
   for Stack'Alignment use Standard'Maximum_Alignment;

   Static_Secondary_Stack_Size : constant := 10 * 1024;
   --  Static_Secondary_Stack_Size must be static so that Chunk is allocated
   --  statically, and not via dynamic memory allocation.

   Chunk : aliased Chunk_Id (1, Static_Secondary_Stack_Size);
   for Chunk'Alignment use Standard'Maximum_Alignment;
   --  Default chunk used, unless gnatbind -D is specified with a value
   --  greater than Static_Secondary_Stack_Size

begin
   declare
      Chunk_Address : Address;
      Chunk_Access  : Chunk_Ptr;

   begin
      if Default_Secondary_Stack_Size <= Static_Secondary_Stack_Size then

         --  Normally we allocate the secondary stack for the main program
         --  statically, using the default secondary stack size.

         Chunk_Access := Chunk'Access;

      else
         --  Default_Secondary_Stack_Size was increased via gnatbind -D, so we
         --  need to allocate a chunk dynamically.

         Chunk_Access :=
           new Chunk_Id (1, SS_Ptr (Default_Secondary_Stack_Size));
      end if;

      if SS_Ratio_Dynamic then
         Stack.Top           := 1;
         Stack.Current_Chunk := Chunk_Access;
         Stack.Default_Size  :=
           SSE.Storage_Offset (Default_Secondary_Stack_Size);
         System.Soft_Links.Set_Sec_Stack_Addr_NT (Stack'Address);

      else
         Chunk_Address := Chunk_Access.all'Address;
         SS_Init (Chunk_Address, Default_Secondary_Stack_Size);
         System.Soft_Links.Set_Sec_Stack_Addr_NT (Chunk_Address);
      end if;
   end;
end System.Secondary_Stack;