summaryrefslogtreecommitdiff
path: root/gcc/ada/s-gearop.adb
blob: b6d6f22d51b22ff5acd74eb51f49e3266de4b591 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
------------------------------------------------------------------------------
--                                                                          --
--                         GNAT RUN-TIME COMPONENTS                         --
--                                                                          --
--       S Y S T E M . G E N E R I C _ A R R A Y _ O P E R A T I O N S      --
--                                                                          --
--                                 B o d y                                  --
--                                                                          --
--         Copyright (C) 2006-2016, Free Software Foundation, Inc.          --
--                                                                          --
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
-- terms of the  GNU General Public License as published  by the Free Soft- --
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
--                                                                          --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception,   --
-- version 3.1, as published by the Free Software Foundation.               --
--                                                                          --
-- You should have received a copy of the GNU General Public License and    --
-- a copy of the GCC Runtime Library Exception along with this program;     --
-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
-- <http://www.gnu.org/licenses/>.                                          --
--                                                                          --
-- GNAT was originally developed  by the GNAT team at  New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc.      --
--                                                                          --
------------------------------------------------------------------------------

with Ada.Numerics; use Ada.Numerics;
package body System.Generic_Array_Operations is
   function Check_Unit_Last
     (Index : Integer;
      Order : Positive;
      First : Integer) return Integer;
   pragma Inline_Always (Check_Unit_Last);
   --  Compute index of last element returned by Unit_Vector or Unit_Matrix.
   --  A separate function is needed to allow raising Constraint_Error before
   --  declaring the function result variable. The result variable needs to be
   --  declared first, to allow front-end inlining.

   --------------
   -- Diagonal --
   --------------

   function Diagonal (A : Matrix) return Vector is
      N : constant Natural := Natural'Min (A'Length (1), A'Length (2));
   begin
      return R : Vector (A'First (1) .. A'First (1) + N - 1) do
         for J in 0 .. N - 1 loop
            R (R'First + J) := A (A'First (1) + J, A'First (2) + J);
         end loop;
      end return;
   end Diagonal;

   --------------------------
   -- Square_Matrix_Length --
   --------------------------

   function Square_Matrix_Length (A : Matrix) return Natural is
   begin
      if A'Length (1) /= A'Length (2) then
         raise Constraint_Error with "matrix is not square";
      else
         return A'Length (1);
      end if;
   end Square_Matrix_Length;

   ---------------------
   -- Check_Unit_Last --
   ---------------------

   function Check_Unit_Last
      (Index : Integer;
       Order : Positive;
       First : Integer) return Integer
   is
   begin
      --  Order the tests carefully to avoid overflow

      if Index < First
        or else First > Integer'Last - Order + 1
        or else Index > First + (Order - 1)
      then
         raise Constraint_Error;
      end if;

      return First + (Order - 1);
   end Check_Unit_Last;

   ---------------------
   -- Back_Substitute --
   ---------------------

   procedure Back_Substitute (M, N : in out Matrix) is
      pragma Assert (M'First (1) = N'First (1)
                       and then
                     M'Last  (1) = N'Last (1));

      procedure Sub_Row
        (M      : in out Matrix;
         Target : Integer;
         Source : Integer;
         Factor : Scalar);
      --  Elementary row operation that subtracts Factor * M (Source, <>) from
      --  M (Target, <>)

      -------------
      -- Sub_Row --
      -------------

      procedure Sub_Row
        (M      : in out Matrix;
         Target : Integer;
         Source : Integer;
         Factor : Scalar)
      is
      begin
         for J in M'Range (2) loop
            M (Target, J) := M (Target, J) - Factor * M (Source, J);
         end loop;
      end Sub_Row;

      --  Local declarations

      Max_Col : Integer := M'Last (2);

   --  Start of processing for Back_Substitute

   begin
      Do_Rows : for Row in reverse M'Range (1) loop
         Find_Non_Zero : for Col in reverse M'First (2) .. Max_Col loop
            if Is_Non_Zero (M (Row, Col)) then

               --  Found first non-zero element, so subtract a multiple of this
               --  element  from all higher rows, to reduce all other elements
               --  in this column to zero.

               declare
                  --  We can't use a for loop, as we'd need to iterate to
                  --  Row - 1, but that expression will overflow if M'First
                  --  equals Integer'First, which is true for aggregates
                  --  without explicit bounds..

                  J : Integer := M'First (1);

               begin
                  while J < Row loop
                     Sub_Row (N, J, Row, (M (J, Col) / M (Row, Col)));
                     Sub_Row (M, J, Row, (M (J, Col) / M (Row, Col)));
                     J := J + 1;
                  end loop;
               end;

               --  Avoid potential overflow in the subtraction below

               exit Do_Rows when Col = M'First (2);

               Max_Col := Col - 1;

               exit Find_Non_Zero;
            end if;
         end loop Find_Non_Zero;
      end loop Do_Rows;
   end Back_Substitute;

   -----------------------
   -- Forward_Eliminate --
   -----------------------

   procedure Forward_Eliminate
     (M   : in out Matrix;
      N   : in out Matrix;
      Det : out Scalar)
   is
      pragma Assert (M'First (1) = N'First (1)
                       and then
                     M'Last  (1) = N'Last (1));

      --  The following are variations of the elementary matrix row operations:
      --  row switching, row multiplication and row addition. Because in this
      --  algorithm the addition factor is always a negated value, we chose to
      --  use  row subtraction instead. Similarly, instead of multiplying by
      --  a reciprocal, we divide.

      procedure Sub_Row
        (M      : in out Matrix;
         Target : Integer;
         Source : Integer;
         Factor : Scalar);
      --  Subtrace Factor * M (Source, <>) from M (Target, <>)

      procedure Divide_Row
        (M, N  : in out Matrix;
         Row   : Integer;
         Scale : Scalar);
      --  Divide M (Row) and N (Row) by Scale, and update Det

      procedure Switch_Row
        (M, N  : in out Matrix;
         Row_1 : Integer;
         Row_2 : Integer);
      --  Exchange M (Row_1) and N (Row_1) with M (Row_2) and N (Row_2),
      --  negating Det in the process.

      -------------
      -- Sub_Row --
      -------------

      procedure Sub_Row
        (M      : in out Matrix;
         Target : Integer;
         Source : Integer;
         Factor : Scalar)
      is
      begin
         for J in M'Range (2) loop
            M (Target, J) := M (Target, J) - Factor * M (Source, J);
         end loop;
      end Sub_Row;

      ----------------
      -- Divide_Row --
      ----------------

      procedure Divide_Row
        (M, N  : in out Matrix;
         Row   : Integer;
         Scale : Scalar)
      is
      begin
         Det := Det * Scale;

         for J in M'Range (2) loop
            M (Row, J) := M (Row, J) / Scale;
         end loop;

         for J in N'Range (2) loop
            N (Row - M'First (1) + N'First (1), J) :=
              N (Row - M'First (1) + N'First (1), J) / Scale;
         end loop;
      end Divide_Row;

      ----------------
      -- Switch_Row --
      ----------------

      procedure Switch_Row
        (M, N  : in out Matrix;
         Row_1 : Integer;
         Row_2 : Integer)
      is
         procedure Swap (X, Y : in out Scalar);
         --  Exchange the values of X and Y

         ----------
         -- Swap --
         ----------

         procedure Swap (X, Y : in out Scalar) is
            T : constant Scalar := X;
         begin
            X := Y;
            Y := T;
         end Swap;

      --  Start of processing for Switch_Row

      begin
         if Row_1 /= Row_2 then
            Det := Zero - Det;

            for J in M'Range (2) loop
               Swap (M (Row_1, J), M (Row_2, J));
            end loop;

            for J in N'Range (2) loop
               Swap (N (Row_1 - M'First (1) + N'First (1), J),
                     N (Row_2 - M'First (1) + N'First (1), J));
            end loop;
         end if;
      end Switch_Row;

      --  Local declarations

      Row : Integer := M'First (1);

   --  Start of processing for Forward_Eliminate

   begin
      Det := One;

      for J in M'Range (2) loop
         declare
            Max_Row : Integer := Row;
            Max_Abs : Real'Base := 0.0;

         begin
            --  Find best pivot in column J, starting in row Row

            for K in Row .. M'Last (1) loop
               declare
                  New_Abs : constant Real'Base := abs M (K, J);
               begin
                  if Max_Abs < New_Abs then
                     Max_Abs := New_Abs;
                     Max_Row := K;
                  end if;
               end;
            end loop;

            if Max_Abs > 0.0 then
               Switch_Row (M, N, Row, Max_Row);

               --  The temporaries below are necessary to force a copy of the
               --  value and avoid improper aliasing.

               declare
                  Scale : constant Scalar := M (Row, J);
               begin
                  Divide_Row (M, N, Row, Scale);
               end;

               for U in Row + 1 .. M'Last (1) loop
                  declare
                     Factor : constant Scalar := M (U, J);
                  begin
                     Sub_Row (N, U, Row, Factor);
                     Sub_Row (M, U, Row, Factor);
                  end;
               end loop;

               exit when Row >= M'Last (1);

               Row := Row + 1;

            else
               --  Set zero (note that we do not have literals)

               Det := Zero;
            end if;
         end;
      end loop;
   end Forward_Eliminate;

   -------------------
   -- Inner_Product --
   -------------------

   function Inner_Product
     (Left  : Left_Vector;
      Right : Right_Vector) return  Result_Scalar
   is
      R : Result_Scalar := Zero;

   begin
      if Left'Length /= Right'Length then
         raise Constraint_Error with
            "vectors are of different length in inner product";
      end if;

      for J in Left'Range loop
         R := R + Left (J) * Right (J - Left'First + Right'First);
      end loop;

      return R;
   end Inner_Product;

   -------------
   -- L2_Norm --
   -------------

   function L2_Norm (X : X_Vector) return Result_Real'Base is
      Sum : Result_Real'Base := 0.0;

   begin
      for J in X'Range loop
         Sum := Sum + Result_Real'Base (abs X (J))**2;
      end loop;

      return Sqrt (Sum);
   end L2_Norm;

   ----------------------------------
   -- Matrix_Elementwise_Operation --
   ----------------------------------

   function Matrix_Elementwise_Operation (X : X_Matrix) return Result_Matrix is
   begin
      return R : Result_Matrix (X'Range (1), X'Range (2)) do
         for J in R'Range (1) loop
            for K in R'Range (2) loop
               R (J, K) := Operation (X (J, K));
            end loop;
         end loop;
      end return;
   end Matrix_Elementwise_Operation;

   ----------------------------------
   -- Vector_Elementwise_Operation --
   ----------------------------------

   function Vector_Elementwise_Operation (X : X_Vector) return Result_Vector is
   begin
      return R : Result_Vector (X'Range) do
         for J in R'Range loop
            R (J) := Operation (X (J));
         end loop;
      end return;
   end Vector_Elementwise_Operation;

   -----------------------------------------
   -- Matrix_Matrix_Elementwise_Operation --
   -----------------------------------------

   function Matrix_Matrix_Elementwise_Operation
     (Left  : Left_Matrix;
      Right : Right_Matrix) return Result_Matrix
   is
   begin
      return R : Result_Matrix (Left'Range (1), Left'Range (2)) do
         if Left'Length (1) /= Right'Length (1)
              or else
            Left'Length (2) /= Right'Length (2)
         then
            raise Constraint_Error with
              "matrices are of different dimension in elementwise operation";
         end if;

         for J in R'Range (1) loop
            for K in R'Range (2) loop
               R (J, K) :=
                 Operation
                   (Left (J, K),
                    Right
                      (J - R'First (1) + Right'First (1),
                       K - R'First (2) + Right'First (2)));
            end loop;
         end loop;
      end return;
   end Matrix_Matrix_Elementwise_Operation;

   ------------------------------------------------
   -- Matrix_Matrix_Scalar_Elementwise_Operation --
   ------------------------------------------------

   function Matrix_Matrix_Scalar_Elementwise_Operation
     (X : X_Matrix;
      Y : Y_Matrix;
      Z : Z_Scalar) return Result_Matrix
   is
   begin
      return R : Result_Matrix (X'Range (1), X'Range (2)) do
         if X'Length (1) /= Y'Length (1)
              or else
            X'Length (2) /= Y'Length (2)
         then
            raise Constraint_Error with
              "matrices are of different dimension in elementwise operation";
         end if;

         for J in R'Range (1) loop
            for K in R'Range (2) loop
               R (J, K) :=
                 Operation
                   (X (J, K),
                    Y (J - R'First (1) + Y'First (1),
                       K - R'First (2) + Y'First (2)),
                    Z);
            end loop;
         end loop;
      end return;
   end Matrix_Matrix_Scalar_Elementwise_Operation;

   -----------------------------------------
   -- Vector_Vector_Elementwise_Operation --
   -----------------------------------------

   function Vector_Vector_Elementwise_Operation
     (Left  : Left_Vector;
      Right : Right_Vector) return Result_Vector
   is
   begin
      return R : Result_Vector (Left'Range) do
         if Left'Length /= Right'Length then
            raise Constraint_Error with
              "vectors are of different length in elementwise operation";
         end if;

         for J in R'Range loop
            R (J) := Operation (Left (J), Right (J - R'First + Right'First));
         end loop;
      end return;
   end Vector_Vector_Elementwise_Operation;

   ------------------------------------------------
   -- Vector_Vector_Scalar_Elementwise_Operation --
   ------------------------------------------------

   function Vector_Vector_Scalar_Elementwise_Operation
     (X : X_Vector;
      Y : Y_Vector;
      Z : Z_Scalar) return Result_Vector is
   begin
      return R : Result_Vector (X'Range) do
         if X'Length /= Y'Length then
            raise Constraint_Error with
              "vectors are of different length in elementwise operation";
         end if;

         for J in R'Range loop
            R (J) := Operation (X (J), Y (J - X'First + Y'First), Z);
         end loop;
      end return;
   end Vector_Vector_Scalar_Elementwise_Operation;

   -----------------------------------------
   -- Matrix_Scalar_Elementwise_Operation --
   -----------------------------------------

   function Matrix_Scalar_Elementwise_Operation
     (Left  : Left_Matrix;
      Right : Right_Scalar) return Result_Matrix
   is
   begin
      return R : Result_Matrix (Left'Range (1), Left'Range (2)) do
         for J in R'Range (1) loop
            for K in R'Range (2) loop
               R (J, K) := Operation (Left (J, K), Right);
            end loop;
         end loop;
      end return;
   end Matrix_Scalar_Elementwise_Operation;

   -----------------------------------------
   -- Vector_Scalar_Elementwise_Operation --
   -----------------------------------------

   function Vector_Scalar_Elementwise_Operation
     (Left  : Left_Vector;
      Right : Right_Scalar) return Result_Vector
   is
   begin
      return R : Result_Vector (Left'Range) do
         for J in R'Range loop
            R (J) := Operation (Left (J), Right);
         end loop;
      end return;
   end Vector_Scalar_Elementwise_Operation;

   -----------------------------------------
   -- Scalar_Matrix_Elementwise_Operation --
   -----------------------------------------

   function Scalar_Matrix_Elementwise_Operation
     (Left  : Left_Scalar;
      Right : Right_Matrix) return Result_Matrix
   is
   begin
      return R : Result_Matrix (Right'Range (1), Right'Range (2)) do
         for J in R'Range (1) loop
            for K in R'Range (2) loop
               R (J, K) := Operation (Left, Right (J, K));
            end loop;
         end loop;
      end return;
   end Scalar_Matrix_Elementwise_Operation;

   -----------------------------------------
   -- Scalar_Vector_Elementwise_Operation --
   -----------------------------------------

   function Scalar_Vector_Elementwise_Operation
     (Left  : Left_Scalar;
      Right : Right_Vector) return Result_Vector
   is
   begin
      return R : Result_Vector (Right'Range) do
         for J in R'Range loop
            R (J) := Operation (Left, Right (J));
         end loop;
      end return;
   end Scalar_Vector_Elementwise_Operation;

   ----------
   -- Sqrt --
   ----------

   function Sqrt (X : Real'Base) return Real'Base is
      Root, Next : Real'Base;

   begin
      --  Be defensive: any comparisons with NaN values will yield False.

      if not (X > 0.0) then
         if X = 0.0 then
            return X;
         else
            raise Argument_Error;
         end if;

      elsif X > Real'Base'Last then

         --  X is infinity, which is its own square root

         return X;
      end if;

      --  Compute an initial estimate based on:

      --     X = M * R**E and Sqrt (X) = Sqrt (M) * R**(E / 2.0),

      --  where M is the mantissa, R is the radix and E the exponent.

      --  By ignoring the mantissa and ignoring the case of an odd
      --  exponent, we get a final error that is at most R. In other words,
      --  the result has about a single bit precision.

      Root := Real'Base (Real'Machine_Radix) ** (Real'Exponent (X) / 2);

      --  Because of the poor initial estimate, use the Babylonian method of
      --  computing the square root, as it is stable for all inputs. Every step
      --  will roughly double the precision of the result. Just a few steps
      --  suffice in most cases. Eight iterations should give about 2**8 bits
      --  of precision.

      for J in 1 .. 8 loop
         Next := (Root + X / Root) / 2.0;
         exit when Root = Next;
         Root := Next;
      end loop;

      return Root;
   end Sqrt;

   ---------------------------
   -- Matrix_Matrix_Product --
   ---------------------------

   function Matrix_Matrix_Product
     (Left  : Left_Matrix;
      Right : Right_Matrix) return Result_Matrix
   is
   begin
      return R : Result_Matrix (Left'Range (1), Right'Range (2)) do
         if Left'Length (2) /= Right'Length (1) then
            raise Constraint_Error with
              "incompatible dimensions in matrix multiplication";
         end if;

         for J in R'Range (1) loop
            for K in R'Range (2) loop
               declare
                  S : Result_Scalar := Zero;

               begin
                  for M in Left'Range (2) loop
                     S := S + Left (J, M) *
                                Right
                                  (M - Left'First (2) + Right'First (1), K);
                  end loop;

                  R (J, K) := S;
               end;
            end loop;
         end loop;
      end return;
   end  Matrix_Matrix_Product;

   ----------------------------
   -- Matrix_Vector_Solution --
   ----------------------------

   function Matrix_Vector_Solution (A : Matrix; X : Vector) return Vector is
      N   : constant Natural := A'Length (1);
      MA  : Matrix := A;
      MX  : Matrix (A'Range (1), 1 .. 1);
      R   : Vector (A'Range (2));
      Det : Scalar;

   begin
      if A'Length (2) /= N then
         raise Constraint_Error with "matrix is not square";
      end if;

      if X'Length /= N then
         raise Constraint_Error with "incompatible vector length";
      end if;

      for J in 0 .. MX'Length (1) - 1 loop
         MX (MX'First (1) + J, 1) := X (X'First + J);
      end loop;

      Forward_Eliminate (MA, MX, Det);

      if Det = Zero then
         raise Constraint_Error with "matrix is singular";
      end if;

      Back_Substitute (MA, MX);

      for J in 0 .. R'Length - 1 loop
         R (R'First + J) := MX (MX'First (1) + J, 1);
      end loop;

      return R;
   end Matrix_Vector_Solution;

   ----------------------------
   -- Matrix_Matrix_Solution --
   ----------------------------

   function Matrix_Matrix_Solution (A, X : Matrix) return Matrix is
      N   : constant Natural := A'Length (1);
      MA  : Matrix (A'Range (2), A'Range (2));
      MB  : Matrix (A'Range (2), X'Range (2));
      Det : Scalar;

   begin
      if A'Length (2) /= N then
         raise Constraint_Error with "matrix is not square";
      end if;

      if X'Length (1) /= N then
         raise Constraint_Error with "matrices have unequal number of rows";
      end if;

      for J in 0 .. A'Length (1) - 1 loop
         for K in MA'Range (2) loop
            MA (MA'First (1) + J, K) := A (A'First (1) + J, K);
         end loop;

         for K in MB'Range (2) loop
            MB (MB'First (1) + J, K) := X (X'First (1) + J, K);
         end loop;
      end loop;

      Forward_Eliminate (MA, MB, Det);

      if Det = Zero then
         raise Constraint_Error with "matrix is singular";
      end if;

      Back_Substitute (MA, MB);

      return MB;
   end Matrix_Matrix_Solution;

   ---------------------------
   -- Matrix_Vector_Product --
   ---------------------------

   function Matrix_Vector_Product
     (Left  : Matrix;
      Right : Right_Vector) return Result_Vector
   is
   begin
      return R : Result_Vector (Left'Range (1)) do
         if Left'Length (2) /= Right'Length then
            raise Constraint_Error with
              "incompatible dimensions in matrix-vector multiplication";
         end if;

         for J in Left'Range (1) loop
            declare
               S : Result_Scalar := Zero;

            begin
               for K in Left'Range (2) loop
                  S := S + Left (J, K)
                         * Right (K - Left'First (2) + Right'First);
               end loop;

               R (J) := S;
            end;
         end loop;
      end return;
   end Matrix_Vector_Product;

   -------------------
   -- Outer_Product --
   -------------------

   function Outer_Product
     (Left  : Left_Vector;
      Right : Right_Vector) return Matrix
   is
   begin
      return R : Matrix (Left'Range, Right'Range) do
         for J in R'Range (1) loop
            for K in R'Range (2) loop
               R (J, K) := Left (J) * Right (K);
            end loop;
         end loop;
      end return;
   end Outer_Product;

   -----------------
   -- Swap_Column --
   -----------------

   procedure Swap_Column (A : in out Matrix; Left, Right : Integer) is
      Temp : Scalar;
   begin
      for J in A'Range (1) loop
         Temp := A (J, Left);
         A (J, Left) := A (J, Right);
         A (J, Right) := Temp;
      end loop;
   end Swap_Column;

   ---------------
   -- Transpose --
   ---------------

   procedure Transpose (A : Matrix; R : out Matrix) is
   begin
      for J in R'Range (1) loop
         for K in R'Range (2) loop
            R (J, K) := A (K - R'First (2) + A'First (1),
                           J - R'First (1) + A'First (2));
         end loop;
      end loop;
   end Transpose;

   -------------------------------
   -- Update_Matrix_With_Matrix --
   -------------------------------

   procedure Update_Matrix_With_Matrix (X : in out X_Matrix; Y : Y_Matrix) is
   begin
      if X'Length (1) /= Y'Length (1)
           or else
         X'Length (2) /= Y'Length (2)
      then
         raise Constraint_Error with
           "matrices are of different dimension in update operation";
      end if;

      for J in X'Range (1) loop
         for K in X'Range (2) loop
            Update (X (J, K), Y (J - X'First (1) + Y'First (1),
                                 K - X'First (2) + Y'First (2)));
         end loop;
      end loop;
   end Update_Matrix_With_Matrix;

   -------------------------------
   -- Update_Vector_With_Vector --
   -------------------------------

   procedure Update_Vector_With_Vector (X : in out X_Vector; Y : Y_Vector) is
   begin
      if X'Length /= Y'Length then
         raise Constraint_Error with
           "vectors are of different length in update operation";
      end if;

      for J in X'Range loop
         Update (X (J), Y (J - X'First + Y'First));
      end loop;
   end Update_Vector_With_Vector;

   -----------------
   -- Unit_Matrix --
   -----------------

   function Unit_Matrix
     (Order   : Positive;
      First_1 : Integer := 1;
      First_2 : Integer := 1) return Matrix
   is
   begin
      return R : Matrix (First_1 .. Check_Unit_Last (First_1, Order, First_1),
                         First_2 .. Check_Unit_Last (First_2, Order, First_2))
      do
         R := (others => (others => Zero));

         for J in 0 .. Order - 1 loop
            R (First_1 + J, First_2 + J) := One;
         end loop;
      end return;
   end Unit_Matrix;

   -----------------
   -- Unit_Vector --
   -----------------

   function Unit_Vector
     (Index : Integer;
      Order : Positive;
      First : Integer := 1) return Vector
   is
   begin
      return R : Vector (First .. Check_Unit_Last (Index, Order, First)) do
         R := (others => Zero);
         R (Index) := One;
      end return;
   end Unit_Vector;

   ---------------------------
   -- Vector_Matrix_Product --
   ---------------------------

   function Vector_Matrix_Product
     (Left  : Left_Vector;
      Right : Matrix) return Result_Vector
   is
   begin
      return R : Result_Vector (Right'Range (2)) do
         if Left'Length /= Right'Length (1) then
            raise Constraint_Error with
              "incompatible dimensions in vector-matrix multiplication";
         end if;

         for J in Right'Range (2) loop
            declare
               S : Result_Scalar := Zero;

            begin
               for K in Right'Range (1) loop
                  S := S + Left (K - Right'First (1)
                                   + Left'First) * Right (K, J);
               end loop;

               R (J) := S;
            end;
         end loop;
      end return;
   end Vector_Matrix_Product;

end System.Generic_Array_Operations;