summaryrefslogtreecommitdiff
path: root/gcc/ada/layout.adb
blob: b5b1ef97e53430f79680486a6686c24241803ea9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
------------------------------------------------------------------------------
--                                                                          --
--                         GNAT COMPILER COMPONENTS                         --
--                                                                          --
--                               L A Y O U T                                --
--                                                                          --
--                                 B o d y                                  --
--                                                                          --
--          Copyright (C) 2001-2006, Free Software Foundation, Inc.         --
--                                                                          --
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
-- terms of the  GNU General Public License as published  by the Free Soft- --
-- ware  Foundation;  either version 2,  or (at your option) any later ver- --
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
-- for  more details.  You should have  received  a copy of the GNU General --
-- Public License  distributed with GNAT;  see file COPYING.  If not, write --
-- to  the  Free Software Foundation,  51  Franklin  Street,  Fifth  Floor, --
-- Boston, MA 02110-1301, USA.                                              --
--                                                                          --
-- GNAT was originally developed  by the GNAT team at  New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc.      --
--                                                                          --
------------------------------------------------------------------------------

with Atree;    use Atree;
with Checks;   use Checks;
with Debug;    use Debug;
with Einfo;    use Einfo;
with Errout;   use Errout;
with Exp_Ch3;  use Exp_Ch3;
with Exp_Util; use Exp_Util;
with Nlists;   use Nlists;
with Nmake;    use Nmake;
with Opt;      use Opt;
with Repinfo;  use Repinfo;
with Sem;      use Sem;
with Sem_Ch13; use Sem_Ch13;
with Sem_Eval; use Sem_Eval;
with Sem_Util; use Sem_Util;
with Sinfo;    use Sinfo;
with Snames;   use Snames;
with Stand;    use Stand;
with Targparm; use Targparm;
with Tbuild;   use Tbuild;
with Ttypes;   use Ttypes;
with Uintp;    use Uintp;

package body Layout is

   ------------------------
   -- Local Declarations --
   ------------------------

   SSU : constant Int := Ttypes.System_Storage_Unit;
   --  Short hand for System_Storage_Unit

   Vname : constant Name_Id := Name_uV;
   --  Formal parameter name used for functions generated for size offset
   --  values that depend on the discriminant. All such functions have the
   --  following form:
   --
   --     function xxx (V : vtyp) return Unsigned is
   --     begin
   --        return ... expression involving V.discrim
   --     end xxx;

   -----------------------
   -- Local Subprograms --
   -----------------------

   procedure Adjust_Esize_Alignment (E : Entity_Id);
   --  E is the entity for a type or object. This procedure checks that the
   --  size and alignment are compatible, and if not either gives an error
   --  message if they cannot be adjusted or else adjusts them appropriately.

   function Assoc_Add
     (Loc        : Source_Ptr;
      Left_Opnd  : Node_Id;
      Right_Opnd : Node_Id) return Node_Id;
   --  This is like Make_Op_Add except that it optimizes some cases knowing
   --  that associative rearrangement is allowed for constant folding if one
   --  of the operands is a compile time known value.

   function Assoc_Multiply
     (Loc        : Source_Ptr;
      Left_Opnd  : Node_Id;
      Right_Opnd : Node_Id) return Node_Id;
   --  This is like Make_Op_Multiply except that it optimizes some cases
   --  knowing that associative rearrangement is allowed for constant
   --  folding if one of the operands is a compile time known value

   function Assoc_Subtract
     (Loc        : Source_Ptr;
      Left_Opnd  : Node_Id;
      Right_Opnd : Node_Id) return Node_Id;
   --  This is like Make_Op_Subtract except that it optimizes some cases
   --  knowing that associative rearrangement is allowed for constant
   --  folding if one of the operands is a compile time known value

   function Bits_To_SU (N : Node_Id) return Node_Id;
   --  This is used when we cross the boundary from static sizes in bits to
   --  dynamic sizes in storage units. If the argument N is anything other
   --  than an integer literal, it is returned unchanged, but if it is an
   --  integer literal, then it is taken as a size in bits, and is replaced
   --  by the corresponding size in storage units.

   function Compute_Length (Lo : Node_Id; Hi : Node_Id) return Node_Id;
   --  Given expressions for the low bound (Lo) and the high bound (Hi),
   --  Build an expression for the value hi-lo+1, converted to type
   --  Standard.Unsigned. Takes care of the case where the operands
   --  are of an enumeration type (so that the subtraction cannot be
   --  done directly) by applying the Pos operator to Hi/Lo first.

   function Expr_From_SO_Ref
     (Loc  : Source_Ptr;
      D    : SO_Ref;
      Comp : Entity_Id := Empty) return Node_Id;
   --  Given a value D from a size or offset field, return an expression
   --  representing the value stored. If the value is known at compile time,
   --  then an N_Integer_Literal is returned with the appropriate value. If
   --  the value references a constant entity, then an N_Identifier node
   --  referencing this entity is returned. If the value denotes a size
   --  function, then returns a call node denoting the given function, with
   --  a single actual parameter that either refers to the parameter V of
   --  an enclosing size function (if Comp is Empty or its type doesn't match
   --  the function's formal), or else is a selected component V.c when Comp
   --  denotes a component c whose type matches that of the function formal.
   --  The Loc value is used for the Sloc value of constructed notes.

   function SO_Ref_From_Expr
     (Expr      : Node_Id;
      Ins_Type  : Entity_Id;
      Vtype     : Entity_Id := Empty;
      Make_Func : Boolean   := False) return Dynamic_SO_Ref;
   --  This routine is used in the case where a size/offset value is dynamic
   --  and is represented by the expression Expr. SO_Ref_From_Expr checks if
   --  the Expr contains a reference to the identifier V, and if so builds
   --  a function depending on discriminants of the formal parameter V which
   --  is of type Vtype. Otherwise, if the parameter Make_Func is True, then
   --  Expr will be encapsulated in a parameterless function; if Make_Func is
   --  False, then a constant entity with the value Expr is built. The result
   --  is a Dynamic_SO_Ref to the created entity. Note that Vtype can be
   --  omitted if Expr does not contain any reference to V, the created entity.
   --  The declaration created is inserted in the freeze actions of Ins_Type,
   --  which also supplies the Sloc for created nodes. This function also takes
   --  care of making sure that the expression is properly analyzed and
   --  resolved (which may not be the case yet if we build the expression
   --  in this unit).

   function Get_Max_SU_Size (E : Entity_Id) return Node_Id;
   --  E is an array type or subtype that has at least one index bound that
   --  is the value of a record discriminant. For such an array, the function
   --  computes an expression that yields the maximum possible size of the
   --  array in storage units. The result is not defined for any other type,
   --  or for arrays that do not depend on discriminants, and it is a fatal
   --  error to call this unless Size_Depends_On_Discriminant (E) is True.

   procedure Layout_Array_Type (E : Entity_Id);
   --  Front-end layout of non-bit-packed array type or subtype

   procedure Layout_Record_Type (E : Entity_Id);
   --  Front-end layout of record type

   procedure Rewrite_Integer (N : Node_Id; V : Uint);
   --  Rewrite node N with an integer literal whose value is V. The Sloc
   --  for the new node is taken from N, and the type of the literal is
   --  set to a copy of the type of N on entry.

   procedure Set_And_Check_Static_Size
     (E      : Entity_Id;
      Esiz   : SO_Ref;
      RM_Siz : SO_Ref);
   --  This procedure is called to check explicit given sizes (possibly
   --  stored in the Esize and RM_Size fields of E) against computed
   --  Object_Size (Esiz) and Value_Size (RM_Siz) values. Appropriate
   --  errors and warnings are posted if specified sizes are inconsistent
   --  with specified sizes. On return, the Esize and RM_Size fields of
   --  E are set (either from previously given values, or from the newly
   --  computed values, as appropriate).

   procedure Set_Composite_Alignment (E : Entity_Id);
   --  This procedure is called for record types and subtypes, and also for
   --  atomic array types and subtypes. If no alignment is set, and the size
   --  is 2 or 4 (or 8 if the word size is 8), then the alignment is set to
   --  match the size.

   ----------------------------
   -- Adjust_Esize_Alignment --
   ----------------------------

   procedure Adjust_Esize_Alignment (E : Entity_Id) is
      Abits     : Int;
      Esize_Set : Boolean;

   begin
      --  Nothing to do if size unknown

      if Unknown_Esize (E) then
         return;
      end if;

      --  Determine if size is constrained by an attribute definition clause
      --  which must be obeyed. If so, we cannot increase the size in this
      --  routine.

      --  For a type, the issue is whether an object size clause has been
      --  set. A normal size clause constrains only the value size (RM_Size)

      if Is_Type (E) then
         Esize_Set := Has_Object_Size_Clause (E);

      --  For an object, the issue is whether a size clause is present

      else
         Esize_Set := Has_Size_Clause (E);
      end if;

      --  If size is known it must be a multiple of the storage unit size

      if Esize (E) mod SSU /= 0 then

         --  If not, and size specified, then give error

         if Esize_Set then
            Error_Msg_NE
              ("size for& not a multiple of storage unit size",
               Size_Clause (E), E);
            return;

         --  Otherwise bump up size to a storage unit boundary

         else
            Set_Esize (E, (Esize (E) + SSU - 1) / SSU * SSU);
         end if;
      end if;

      --  Now we have the size set, it must be a multiple of the alignment
      --  nothing more we can do here if the alignment is unknown here.

      if Unknown_Alignment (E) then
         return;
      end if;

      --  At this point both the Esize and Alignment are known, so we need
      --  to make sure they are consistent.

      Abits := UI_To_Int (Alignment (E)) * SSU;

      if Esize (E) mod Abits = 0 then
         return;
      end if;

      --  Here we have a situation where the Esize is not a multiple of
      --  the alignment. We must either increase Esize or reduce the
      --  alignment to correct this situation.

      --  The case in which we can decrease the alignment is where the
      --  alignment was not set by an alignment clause, and the type in
      --  question is a discrete type, where it is definitely safe to
      --  reduce the alignment. For example:

      --    t : integer range 1 .. 2;
      --    for t'size use 8;

      --  In this situation, the initial alignment of t is 4, copied from
      --  the Integer base type, but it is safe to reduce it to 1 at this
      --  stage, since we will only be loading a single storage unit.

      if Is_Discrete_Type (Etype (E))
        and then not Has_Alignment_Clause (E)
      then
         loop
            Abits := Abits / 2;
            exit when Esize (E) mod Abits = 0;
         end loop;

         Init_Alignment (E, Abits / SSU);
         return;
      end if;

      --  Now the only possible approach left is to increase the Esize
      --  but we can't do that if the size was set by a specific clause.

      if Esize_Set then
         Error_Msg_NE
           ("size for& is not a multiple of alignment",
            Size_Clause (E), E);

      --  Otherwise we can indeed increase the size to a multiple of alignment

      else
         Set_Esize (E, ((Esize (E) + (Abits - 1)) / Abits) * Abits);
      end if;
   end Adjust_Esize_Alignment;

   ---------------
   -- Assoc_Add --
   ---------------

   function Assoc_Add
     (Loc        : Source_Ptr;
      Left_Opnd  : Node_Id;
      Right_Opnd : Node_Id) return Node_Id
   is
      L : Node_Id;
      R : Uint;

   begin
      --  Case of right operand is a constant

      if Compile_Time_Known_Value (Right_Opnd) then
         L := Left_Opnd;
         R := Expr_Value (Right_Opnd);

      --  Case of left operand is a constant

      elsif Compile_Time_Known_Value (Left_Opnd) then
         L := Right_Opnd;
         R := Expr_Value (Left_Opnd);

      --  Neither operand is a constant, do the addition with no optimization

      else
         return Make_Op_Add (Loc, Left_Opnd, Right_Opnd);
      end if;

      --  Case of left operand is an addition

      if Nkind (L) = N_Op_Add then

         --  (C1 + E) + C2 = (C1 + C2) + E

         if Compile_Time_Known_Value (Sinfo.Left_Opnd (L)) then
            Rewrite_Integer
              (Sinfo.Left_Opnd (L),
               Expr_Value (Sinfo.Left_Opnd (L)) + R);
            return L;

         --  (E + C1) + C2 = E + (C1 + C2)

         elsif Compile_Time_Known_Value (Sinfo.Right_Opnd (L)) then
            Rewrite_Integer
              (Sinfo.Right_Opnd (L),
               Expr_Value (Sinfo.Right_Opnd (L)) + R);
            return L;
         end if;

      --  Case of left operand is a subtraction

      elsif Nkind (L) = N_Op_Subtract then

         --  (C1 - E) + C2 = (C1 + C2) + E

         if Compile_Time_Known_Value (Sinfo.Left_Opnd (L)) then
            Rewrite_Integer
              (Sinfo.Left_Opnd (L),
               Expr_Value (Sinfo.Left_Opnd (L)) + R);
            return L;

         --  (E - C1) + C2 = E - (C1 - C2)

         elsif Compile_Time_Known_Value (Sinfo.Right_Opnd (L)) then
            Rewrite_Integer
              (Sinfo.Right_Opnd (L),
               Expr_Value (Sinfo.Right_Opnd (L)) - R);
            return L;
         end if;
      end if;

      --  Not optimizable, do the addition

      return Make_Op_Add (Loc, Left_Opnd, Right_Opnd);
   end Assoc_Add;

   --------------------
   -- Assoc_Multiply --
   --------------------

   function Assoc_Multiply
     (Loc        : Source_Ptr;
      Left_Opnd  : Node_Id;
      Right_Opnd : Node_Id) return Node_Id
   is
      L : Node_Id;
      R : Uint;

   begin
      --  Case of right operand is a constant

      if Compile_Time_Known_Value (Right_Opnd) then
         L := Left_Opnd;
         R := Expr_Value (Right_Opnd);

      --  Case of left operand is a constant

      elsif Compile_Time_Known_Value (Left_Opnd) then
         L := Right_Opnd;
         R := Expr_Value (Left_Opnd);

      --  Neither operand is a constant, do the multiply with no optimization

      else
         return Make_Op_Multiply (Loc, Left_Opnd, Right_Opnd);
      end if;

      --  Case of left operand is an multiplication

      if Nkind (L) = N_Op_Multiply then

         --  (C1 * E) * C2 = (C1 * C2) + E

         if Compile_Time_Known_Value (Sinfo.Left_Opnd (L)) then
            Rewrite_Integer
              (Sinfo.Left_Opnd (L),
               Expr_Value (Sinfo.Left_Opnd (L)) * R);
            return L;

         --  (E * C1) * C2 = E * (C1 * C2)

         elsif Compile_Time_Known_Value (Sinfo.Right_Opnd (L)) then
            Rewrite_Integer
              (Sinfo.Right_Opnd (L),
               Expr_Value (Sinfo.Right_Opnd (L)) * R);
            return L;
         end if;
      end if;

      --  Not optimizable, do the multiplication

      return Make_Op_Multiply (Loc, Left_Opnd, Right_Opnd);
   end Assoc_Multiply;

   --------------------
   -- Assoc_Subtract --
   --------------------

   function Assoc_Subtract
     (Loc        : Source_Ptr;
      Left_Opnd  : Node_Id;
      Right_Opnd : Node_Id) return Node_Id
   is
      L : Node_Id;
      R : Uint;

   begin
      --  Case of right operand is a constant

      if Compile_Time_Known_Value (Right_Opnd) then
         L := Left_Opnd;
         R := Expr_Value (Right_Opnd);

      --  Right operand is a constant, do the subtract with no optimization

      else
         return Make_Op_Subtract (Loc, Left_Opnd, Right_Opnd);
      end if;

      --  Case of left operand is an addition

      if Nkind (L) = N_Op_Add then

         --  (C1 + E) - C2 = (C1 - C2) + E

         if Compile_Time_Known_Value (Sinfo.Left_Opnd (L)) then
            Rewrite_Integer
              (Sinfo.Left_Opnd (L),
               Expr_Value (Sinfo.Left_Opnd (L)) - R);
            return L;

         --  (E + C1) - C2 = E + (C1 - C2)

         elsif Compile_Time_Known_Value (Sinfo.Right_Opnd (L)) then
            Rewrite_Integer
              (Sinfo.Right_Opnd (L),
               Expr_Value (Sinfo.Right_Opnd (L)) - R);
            return L;
         end if;

      --  Case of left operand is a subtraction

      elsif Nkind (L) = N_Op_Subtract then

         --  (C1 - E) - C2 = (C1 - C2) + E

         if Compile_Time_Known_Value (Sinfo.Left_Opnd (L)) then
            Rewrite_Integer
              (Sinfo.Left_Opnd (L),
               Expr_Value (Sinfo.Left_Opnd (L)) + R);
            return L;

         --  (E - C1) - C2 = E - (C1 + C2)

         elsif Compile_Time_Known_Value (Sinfo.Right_Opnd (L)) then
            Rewrite_Integer
              (Sinfo.Right_Opnd (L),
               Expr_Value (Sinfo.Right_Opnd (L)) + R);
            return L;
         end if;
      end if;

      --  Not optimizable, do the subtraction

      return Make_Op_Subtract (Loc, Left_Opnd, Right_Opnd);
   end Assoc_Subtract;

   ----------------
   -- Bits_To_SU --
   ----------------

   function Bits_To_SU (N : Node_Id) return Node_Id is
   begin
      if Nkind (N) = N_Integer_Literal then
         Set_Intval (N, (Intval (N) + (SSU - 1)) / SSU);
      end if;

      return N;
   end Bits_To_SU;

   --------------------
   -- Compute_Length --
   --------------------

   function Compute_Length (Lo : Node_Id; Hi : Node_Id) return Node_Id is
      Loc    : constant Source_Ptr := Sloc (Lo);
      Typ    : constant Entity_Id  := Etype (Lo);
      Lo_Op  : Node_Id;
      Hi_Op  : Node_Id;
      Lo_Dim : Uint;
      Hi_Dim : Uint;

   begin
      --  If the bounds are First and Last attributes for the same dimension
      --  and both have prefixes that denotes the same entity, then we create
      --  and return a Length attribute. This may allow the back end to
      --  generate better code in cases where it already has the length.

      if Nkind (Lo) = N_Attribute_Reference
        and then Attribute_Name (Lo) = Name_First
        and then Nkind (Hi) = N_Attribute_Reference
        and then Attribute_Name (Hi) = Name_Last
        and then Is_Entity_Name (Prefix (Lo))
        and then Is_Entity_Name (Prefix (Hi))
        and then Entity (Prefix (Lo)) = Entity (Prefix (Hi))
      then
         Lo_Dim := Uint_1;
         Hi_Dim := Uint_1;

         if Present (First (Expressions (Lo))) then
            Lo_Dim := Expr_Value (First (Expressions (Lo)));
         end if;

         if Present (First (Expressions (Hi))) then
            Hi_Dim := Expr_Value (First (Expressions (Hi)));
         end if;

         if Lo_Dim = Hi_Dim then
            return
              Make_Attribute_Reference (Loc,
                Prefix         => New_Occurrence_Of
                                    (Entity (Prefix (Lo)), Loc),
                Attribute_Name => Name_Length,
                Expressions    => New_List
                                    (Make_Integer_Literal (Loc, Lo_Dim)));
         end if;
      end if;

      Lo_Op := New_Copy_Tree (Lo);
      Hi_Op := New_Copy_Tree (Hi);

      --  If type is enumeration type, then use Pos attribute to convert
      --  to integer type for which subtraction is a permitted operation.

      if Is_Enumeration_Type (Typ) then
         Lo_Op :=
           Make_Attribute_Reference (Loc,
             Prefix         => New_Occurrence_Of (Typ, Loc),
             Attribute_Name => Name_Pos,
             Expressions    => New_List (Lo_Op));

         Hi_Op :=
           Make_Attribute_Reference (Loc,
             Prefix         => New_Occurrence_Of (Typ, Loc),
             Attribute_Name => Name_Pos,
             Expressions    => New_List (Hi_Op));
      end if;

      return
        Assoc_Add (Loc,
          Left_Opnd =>
            Assoc_Subtract (Loc,
              Left_Opnd  => Hi_Op,
              Right_Opnd => Lo_Op),
          Right_Opnd => Make_Integer_Literal (Loc, 1));
   end Compute_Length;

   ----------------------
   -- Expr_From_SO_Ref --
   ----------------------

   function Expr_From_SO_Ref
     (Loc  : Source_Ptr;
      D    : SO_Ref;
      Comp : Entity_Id := Empty) return Node_Id
   is
      Ent : Entity_Id;

   begin
      if Is_Dynamic_SO_Ref (D) then
         Ent := Get_Dynamic_SO_Entity (D);

         if Is_Discrim_SO_Function (Ent) then
            --  If a component is passed in whose type matches the type
            --  of the function formal, then select that component from
            --  the "V" parameter rather than passing "V" directly.

            if Present (Comp)
               and then Base_Type (Etype (Comp))
                          = Base_Type (Etype (First_Formal (Ent)))
            then
               return
                 Make_Function_Call (Loc,
                   Name                   => New_Occurrence_Of (Ent, Loc),
                   Parameter_Associations => New_List (
                     Make_Selected_Component (Loc,
                       Prefix        => Make_Identifier (Loc, Chars => Vname),
                       Selector_Name => New_Occurrence_Of (Comp, Loc))));

            else
               return
                 Make_Function_Call (Loc,
                   Name                   => New_Occurrence_Of (Ent, Loc),
                   Parameter_Associations => New_List (
                     Make_Identifier (Loc, Chars => Vname)));
            end if;

         else
            return New_Occurrence_Of (Ent, Loc);
         end if;

      else
         return Make_Integer_Literal (Loc, D);
      end if;
   end Expr_From_SO_Ref;

   ---------------------
   -- Get_Max_SU_Size --
   ---------------------

   function Get_Max_SU_Size (E : Entity_Id) return Node_Id is
      Loc  : constant Source_Ptr := Sloc (E);
      Indx : Node_Id;
      Ityp : Entity_Id;
      Lo   : Node_Id;
      Hi   : Node_Id;
      S    : Uint;
      Len  : Node_Id;

      type Val_Status_Type is (Const, Dynamic);

      type Val_Type (Status : Val_Status_Type := Const) is
         record
            case Status is
               when Const   => Val : Uint;
               when Dynamic => Nod : Node_Id;
            end case;
         end record;
      --  Shows the status of the value so far. Const means that the value
      --  is constant, and Val is the current constant value. Dynamic means
      --  that the value is dynamic, and in this case Nod is the Node_Id of
      --  the expression to compute the value.

      Size : Val_Type;
      --  Calculated value so far if Size.Status = Const,
      --  or expression value so far if Size.Status = Dynamic.

      SU_Convert_Required : Boolean := False;
      --  This is set to True if the final result must be converted from
      --  bits to storage units (rounding up to a storage unit boundary).

      -----------------------
      -- Local Subprograms --
      -----------------------

      procedure Max_Discrim (N : in out Node_Id);
      --  If the node N represents a discriminant, replace it by the maximum
      --  value of the discriminant.

      procedure Min_Discrim (N : in out Node_Id);
      --  If the node N represents a discriminant, replace it by the minimum
      --  value of the discriminant.

      -----------------
      -- Max_Discrim --
      -----------------

      procedure Max_Discrim (N : in out Node_Id) is
      begin
         if Nkind (N) = N_Identifier
           and then Ekind (Entity (N)) = E_Discriminant
         then
            N := Type_High_Bound (Etype (N));
         end if;
      end Max_Discrim;

      -----------------
      -- Min_Discrim --
      -----------------

      procedure Min_Discrim (N : in out Node_Id) is
      begin
         if Nkind (N) = N_Identifier
           and then Ekind (Entity (N)) = E_Discriminant
         then
            N := Type_Low_Bound (Etype (N));
         end if;
      end Min_Discrim;

   --  Start of processing for Get_Max_SU_Size

   begin
      pragma Assert (Size_Depends_On_Discriminant (E));

      --  Initialize status from component size

      if Known_Static_Component_Size (E) then
         Size := (Const, Component_Size (E));

      else
         Size := (Dynamic, Expr_From_SO_Ref (Loc, Component_Size (E)));
      end if;

      --  Loop through indices

      Indx := First_Index (E);
      while Present (Indx) loop
         Ityp := Etype (Indx);
         Lo := Type_Low_Bound (Ityp);
         Hi := Type_High_Bound (Ityp);

         Min_Discrim (Lo);
         Max_Discrim (Hi);

         --  Value of the current subscript range is statically known

         if Compile_Time_Known_Value (Lo)
           and then Compile_Time_Known_Value (Hi)
         then
            S := Expr_Value (Hi) - Expr_Value (Lo) + 1;

            --  If known flat bound, entire size of array is zero!

            if S <= 0 then
               return Make_Integer_Literal (Loc, 0);
            end if;

            --  Current value is constant, evolve value

            if Size.Status = Const then
               Size.Val := Size.Val * S;

            --  Current value is dynamic

            else
               --  An interesting little optimization, if we have a pending
               --  conversion from bits to storage units, and the current
               --  length is a multiple of the storage unit size, then we
               --  can take the factor out here statically, avoiding some
               --  extra dynamic computations at the end.

               if SU_Convert_Required and then S mod SSU = 0 then
                  S := S / SSU;
                  SU_Convert_Required := False;
               end if;

               Size.Nod :=
                 Assoc_Multiply (Loc,
                   Left_Opnd  => Size.Nod,
                   Right_Opnd =>
                     Make_Integer_Literal (Loc, Intval => S));
            end if;

         --  Value of the current subscript range is dynamic

         else
            --  If the current size value is constant, then here is where we
            --  make a transition to dynamic values, which are always stored
            --  in storage units, However, we do not want to convert to SU's
            --  too soon, consider the case of a packed array of single bits,
            --  we want to do the SU conversion after computing the size in
            --  this case.

            if Size.Status = Const then

               --  If the current value is a multiple of the storage unit,
               --  then most certainly we can do the conversion now, simply
               --  by dividing the current value by the storage unit value.
               --  If this works, we set SU_Convert_Required to False.

               if Size.Val mod SSU = 0 then

                  Size :=
                    (Dynamic, Make_Integer_Literal (Loc, Size.Val / SSU));
                  SU_Convert_Required := False;

               --  Otherwise, we go ahead and convert the value in bits,
               --  and set SU_Convert_Required to True to ensure that the
               --  final value is indeed properly converted.

               else
                  Size := (Dynamic, Make_Integer_Literal (Loc, Size.Val));
                  SU_Convert_Required := True;
               end if;
            end if;

            --  Length is hi-lo+1

            Len := Compute_Length (Lo, Hi);

            --  Check possible range of Len

            declare
               OK  : Boolean;
               LLo : Uint;
               LHi : Uint;

            begin
               Set_Parent (Len, E);
               Determine_Range (Len, OK, LLo, LHi);

               Len := Convert_To (Standard_Unsigned, Len);

               --  If we cannot verify that range cannot be super-flat,
               --  we need a max with zero, since length must be non-neg.

               if not OK or else LLo < 0 then
                  Len :=
                    Make_Attribute_Reference (Loc,
                      Prefix         =>
                        New_Occurrence_Of (Standard_Unsigned, Loc),
                      Attribute_Name => Name_Max,
                      Expressions    => New_List (
                        Make_Integer_Literal (Loc, 0),
                        Len));
               end if;
            end;
         end if;

         Next_Index (Indx);
      end loop;

      --  Here after processing all bounds to set sizes. If the value is
      --  a constant, then it is bits, so we convert to storage units.

      if Size.Status = Const then
         return Bits_To_SU (Make_Integer_Literal (Loc, Size.Val));

      --  Case where the value is dynamic

      else
         --  Do convert from bits to SU's if needed

         if SU_Convert_Required then

            --  The expression required is (Size.Nod + SU - 1) / SU

            Size.Nod :=
              Make_Op_Divide (Loc,
                Left_Opnd =>
                  Make_Op_Add (Loc,
                    Left_Opnd  => Size.Nod,
                    Right_Opnd => Make_Integer_Literal (Loc, SSU - 1)),
                Right_Opnd => Make_Integer_Literal (Loc, SSU));
         end if;

         return Size.Nod;
      end if;
   end Get_Max_SU_Size;

   -----------------------
   -- Layout_Array_Type --
   -----------------------

   procedure Layout_Array_Type (E : Entity_Id) is
      Loc  : constant Source_Ptr := Sloc (E);
      Ctyp : constant Entity_Id  := Component_Type (E);
      Indx : Node_Id;
      Ityp : Entity_Id;
      Lo   : Node_Id;
      Hi   : Node_Id;
      S    : Uint;
      Len  : Node_Id;

      Insert_Typ : Entity_Id;
      --  This is the type with which any generated constants or functions
      --  will be associated (i.e. inserted into the freeze actions). This
      --  is normally the type being laid out. The exception occurs when
      --  we are laying out Itype's which are local to a record type, and
      --  whose scope is this record type. Such types do not have freeze
      --  nodes (because we have no place to put them).

      ------------------------------------
      -- How An Array Type is Laid Out --
      ------------------------------------

      --  Here is what goes on. We need to multiply the component size of
      --  the array (which has already been set) by the length of each of
      --  the indexes. If all these values are known at compile time, then
      --  the resulting size of the array is the appropriate constant value.

      --  If the component size or at least one bound is dynamic (but no
      --  discriminants are present), then the size will be computed as an
      --  expression that calculates the proper size.

      --  If there is at least one discriminant bound, then the size is also
      --  computed as an expression, but this expression contains discriminant
      --  values which are obtained by selecting from a function parameter, and
      --  the size is given by a function that is passed the variant record in
      --  question, and whose body is the expression.

      type Val_Status_Type is (Const, Dynamic, Discrim);

      type Val_Type (Status : Val_Status_Type := Const) is
         record
            case Status is
               when Const =>
                  Val : Uint;
                  --  Calculated value so far if Val_Status = Const

               when Dynamic | Discrim =>
                  Nod : Node_Id;
                  --  Expression value so far if Val_Status /= Const

            end case;
         end record;
      --  Records the value or expression computed so far. Const means that
      --  the value is constant, and Val is the current constant value.
      --  Dynamic means that the value is dynamic, and in this case Nod is
      --  the Node_Id of the expression to compute the value, and Discrim
      --  means that at least one bound is a discriminant, in which case Nod
      --  is the expression so far (which will be the body of the function).

      Size : Val_Type;
      --  Value of size computed so far. See comments above

      Vtyp : Entity_Id := Empty;
      --  Variant record type for the formal parameter of the
      --  discriminant function V if Status = Discrim.

      SU_Convert_Required : Boolean := False;
      --  This is set to True if the final result must be converted from
      --  bits to storage units (rounding up to a storage unit boundary).

      Storage_Divisor : Uint := UI_From_Int (SSU);
      --  This is the amount that a nonstatic computed size will be divided
      --  by to convert it from bits to storage units. This is normally
      --  equal to SSU, but can be reduced in the case of packed components
      --  that fit evenly into a storage unit.

      Make_Size_Function : Boolean := False;
      --  Indicates whether to request that SO_Ref_From_Expr should
      --  encapsulate the array size expresion in a function.

      procedure Discrimify (N : in out Node_Id);
      --  If N represents a discriminant, then the Size.Status is set to
      --  Discrim, and Vtyp is set. The parameter N is replaced with the
      --  proper expression to extract the discriminant value from V.

      ----------------
      -- Discrimify --
      ----------------

      procedure Discrimify (N : in out Node_Id) is
         Decl : Node_Id;
         Typ  : Entity_Id;

      begin
         if Nkind (N) = N_Identifier
           and then Ekind (Entity (N)) = E_Discriminant
         then
            Set_Size_Depends_On_Discriminant (E);

            if Size.Status /= Discrim then
               Decl := Parent (Parent (Entity (N)));
               Size := (Discrim, Size.Nod);
               Vtyp := Defining_Identifier (Decl);
            end if;

            Typ := Etype (N);

            N :=
              Make_Selected_Component (Loc,
                Prefix        => Make_Identifier (Loc, Chars => Vname),
                Selector_Name => New_Occurrence_Of (Entity (N), Loc));

            --  Set the Etype attributes of the selected name and its prefix.
            --  Analyze_And_Resolve can't be called here because the Vname
            --  entity denoted by the prefix will not yet exist (it's created
            --  by SO_Ref_From_Expr, called at the end of Layout_Array_Type).

            Set_Etype (Prefix (N), Vtyp);
            Set_Etype (N, Typ);
         end if;
      end Discrimify;

   --  Start of processing for Layout_Array_Type

   begin
      --  Default alignment is component alignment

      if Unknown_Alignment (E) then
         Set_Alignment (E, Alignment (Ctyp));
      end if;

      --  Calculate proper type for insertions

      if Is_Record_Type (Underlying_Type (Scope (E))) then
         Insert_Typ := Underlying_Type (Scope (E));
      else
         Insert_Typ := E;
      end if;

      --  If the component type is a generic formal type then there's no point
      --  in determining a size for the array type.

      if Is_Generic_Type (Ctyp) then
         return;
      end if;

      --  Deal with component size if base type

      if Ekind (E) = E_Array_Type then

         --  Cannot do anything if Esize of component type unknown

         if Unknown_Esize (Ctyp) then
            return;
         end if;

         --  Set component size if not set already

         if Unknown_Component_Size (E) then
            Set_Component_Size (E, Esize (Ctyp));
         end if;
      end if;

      --  (RM 13.3 (48)) says that the size of an unconstrained array
      --  is implementation defined. We choose to leave it as Unknown
      --  here, and the actual behavior is determined by the back end.

      if not Is_Constrained (E) then
         return;
      end if;

      --  Initialize status from component size

      if Known_Static_Component_Size (E) then
         Size := (Const, Component_Size (E));

      else
         Size := (Dynamic, Expr_From_SO_Ref (Loc, Component_Size (E)));
      end if;

      --  Loop to process array indices

      Indx := First_Index (E);
      while Present (Indx) loop
         Ityp := Etype (Indx);

         --  If an index of the array is a generic formal type then there's
         --  no point in determining a size for the array type.

         if Is_Generic_Type (Ityp) then
            return;
         end if;

         Lo := Type_Low_Bound (Ityp);
         Hi := Type_High_Bound (Ityp);

         --  Value of the current subscript range is statically known

         if Compile_Time_Known_Value (Lo)
           and then Compile_Time_Known_Value (Hi)
         then
            S := Expr_Value (Hi) - Expr_Value (Lo) + 1;

            --  If known flat bound, entire size of array is zero!

            if S <= 0 then
               Set_Esize (E, Uint_0);
               Set_RM_Size (E, Uint_0);
               return;
            end if;

            --  If constant, evolve value

            if Size.Status = Const then
               Size.Val := Size.Val * S;

            --  Current value is dynamic

            else
               --  An interesting little optimization, if we have a pending
               --  conversion from bits to storage units, and the current
               --  length is a multiple of the storage unit size, then we
               --  can take the factor out here statically, avoiding some
               --  extra dynamic computations at the end.

               if SU_Convert_Required and then S mod SSU = 0 then
                  S := S / SSU;
                  SU_Convert_Required := False;
               end if;

               --  Now go ahead and evolve the expression

               Size.Nod :=
                 Assoc_Multiply (Loc,
                   Left_Opnd  => Size.Nod,
                   Right_Opnd =>
                     Make_Integer_Literal (Loc, Intval => S));
            end if;

         --  Value of the current subscript range is dynamic

         else
            --  If the current size value is constant, then here is where we
            --  make a transition to dynamic values, which are always stored
            --  in storage units, However, we do not want to convert to SU's
            --  too soon, consider the case of a packed array of single bits,
            --  we want to do the SU conversion after computing the size in
            --  this case.

            if Size.Status = Const then

               --  If the current value is a multiple of the storage unit,
               --  then most certainly we can do the conversion now, simply
               --  by dividing the current value by the storage unit value.
               --  If this works, we set SU_Convert_Required to False.

               if Size.Val mod SSU = 0 then
                  Size :=
                    (Dynamic, Make_Integer_Literal (Loc, Size.Val / SSU));
                  SU_Convert_Required := False;

               --  If the current value is a factor of the storage unit,
               --  then we can use a value of one for the size and reduce
               --  the strength of the later division.

               elsif SSU mod Size.Val = 0 then
                  Storage_Divisor := SSU / Size.Val;
                  Size := (Dynamic, Make_Integer_Literal (Loc, Uint_1));
                  SU_Convert_Required := True;

               --  Otherwise, we go ahead and convert the value in bits,
               --  and set SU_Convert_Required to True to ensure that the
               --  final value is indeed properly converted.

               else
                  Size := (Dynamic, Make_Integer_Literal (Loc, Size.Val));
                  SU_Convert_Required := True;
               end if;
            end if;

            Discrimify (Lo);
            Discrimify (Hi);

            --  Length is hi-lo+1

            Len := Compute_Length (Lo, Hi);

            --  If Len isn't a Length attribute, then its range needs to
            --  be checked a possible Max with zero needs to be computed.

            if Nkind (Len) /= N_Attribute_Reference
              or else Attribute_Name (Len) /= Name_Length
            then
               declare
                  OK  : Boolean;
                  LLo : Uint;
                  LHi : Uint;

               begin
                  --  Check possible range of Len

                  Set_Parent (Len, E);
                  Determine_Range (Len, OK, LLo, LHi);

                  Len := Convert_To (Standard_Unsigned, Len);

                  --  If range definitely flat or superflat,
                  --  result size is zero

                  if OK and then LHi <= 0 then
                     Set_Esize (E, Uint_0);
                     Set_RM_Size (E, Uint_0);
                     return;
                  end if;

                  --  If we cannot verify that range cannot be super-flat,
                  --  we need a maximum with zero, since length cannot be
                  --  negative.

                  if not OK or else LLo < 0 then
                     Len :=
                       Make_Attribute_Reference (Loc,
                         Prefix         =>
                           New_Occurrence_Of (Standard_Unsigned, Loc),
                         Attribute_Name => Name_Max,
                         Expressions    => New_List (
                           Make_Integer_Literal (Loc, 0),
                           Len));
                  end if;
               end;
            end if;

            --  At this stage, Len has the expression for the length

            Size.Nod :=
              Assoc_Multiply (Loc,
                Left_Opnd  => Size.Nod,
                Right_Opnd => Len);
         end if;

         Next_Index (Indx);
      end loop;

      --  Here after processing all bounds to set sizes. If the value is
      --  a constant, then it is bits, and the only thing we need to do
      --  is to check against explicit given size and do alignment adjust.

      if Size.Status = Const then
         Set_And_Check_Static_Size (E, Size.Val, Size.Val);
         Adjust_Esize_Alignment (E);

      --  Case where the value is dynamic

      else
         --  Do convert from bits to SU's if needed

         if SU_Convert_Required then

            --  The expression required is:
            --    (Size.Nod + Storage_Divisor - 1) / Storage_Divisor

            Size.Nod :=
              Make_Op_Divide (Loc,
                Left_Opnd =>
                  Make_Op_Add (Loc,
                    Left_Opnd  => Size.Nod,
                    Right_Opnd => Make_Integer_Literal
                                    (Loc, Storage_Divisor - 1)),
                Right_Opnd => Make_Integer_Literal (Loc, Storage_Divisor));
         end if;

         --  If the array entity is not declared at the library level and its
         --  not nested within a subprogram that is marked for inlining, then
         --  we request that the size expression be encapsulated in a function.
         --  Since this expression is not needed in most cases, we prefer not
         --  to incur the overhead of the computation on calls to the enclosing
         --  subprogram except for subprograms that require the size.

         if not Is_Library_Level_Entity (E) then
            Make_Size_Function := True;

            declare
               Parent_Subp : Entity_Id := Enclosing_Subprogram (E);

            begin
               while Present (Parent_Subp) loop
                  if Is_Inlined (Parent_Subp) then
                     Make_Size_Function := False;
                     exit;
                  end if;

                  Parent_Subp := Enclosing_Subprogram (Parent_Subp);
               end loop;
            end;
         end if;

         --  Now set the dynamic size (the Value_Size is always the same
         --  as the Object_Size for arrays whose length is dynamic).

         --  ??? If Size.Status = Dynamic, Vtyp will not have been set.
         --  The added initialization sets it to Empty now, but is this
         --  correct?

         Set_Esize
           (E,
            SO_Ref_From_Expr
              (Size.Nod, Insert_Typ, Vtyp, Make_Func => Make_Size_Function));
         Set_RM_Size (E, Esize (E));
      end if;
   end Layout_Array_Type;

   -------------------
   -- Layout_Object --
   -------------------

   procedure Layout_Object (E : Entity_Id) is
      T : constant Entity_Id := Etype (E);

   begin
      --  Nothing to do if backend does layout

      if not Frontend_Layout_On_Target then
         return;
      end if;

      --  Set size if not set for object and known for type. Use the
      --  RM_Size if that is known for the type and Esize is not.

      if Unknown_Esize (E) then
         if Known_Esize (T) then
            Set_Esize (E, Esize (T));

         elsif Known_RM_Size (T) then
            Set_Esize (E, RM_Size (T));
         end if;
      end if;

      --  Set alignment from type if unknown and type alignment known

      if Unknown_Alignment (E) and then Known_Alignment (T) then
         Set_Alignment (E, Alignment (T));
      end if;

      --  Make sure size and alignment are consistent

      Adjust_Esize_Alignment (E);

      --  Final adjustment, if we don't know the alignment, and the Esize
      --  was not set by an explicit Object_Size attribute clause, then
      --  we reset the Esize to unknown, since we really don't know it.

      if Unknown_Alignment (E)
        and then not Has_Size_Clause (E)
      then
         Set_Esize (E, Uint_0);
      end if;
   end Layout_Object;

   ------------------------
   -- Layout_Record_Type --
   ------------------------

   procedure Layout_Record_Type (E : Entity_Id) is
      Loc  : constant Source_Ptr := Sloc (E);
      Decl : Node_Id;

      Comp : Entity_Id;
      --  Current component being laid out

      Prev_Comp : Entity_Id;
      --  Previous laid out component

      procedure Get_Next_Component_Location
        (Prev_Comp  : Entity_Id;
         Align      : Uint;
         New_Npos   : out SO_Ref;
         New_Fbit   : out SO_Ref;
         New_NPMax  : out SO_Ref;
         Force_SU   : Boolean);
      --  Given the previous component in Prev_Comp, which is already laid
      --  out, and the alignment of the following component, lays out the
      --  following component, and returns its starting position in New_Npos
      --  (Normalized_Position value), New_Fbit (Normalized_First_Bit value),
      --  and New_NPMax (Normalized_Position_Max value). If Prev_Comp is empty
      --  (no previous component is present), then New_Npos, New_Fbit and
      --  New_NPMax are all set to zero on return. This procedure is also
      --  used to compute the size of a record or variant by giving it the
      --  last component, and the record alignment. Force_SU is used to force
      --  the new component location to be aligned on a storage unit boundary,
      --  even in a packed record, False means that the new position does not
      --  need to be bumped to a storage unit boundary, True means a storage
      --  unit boundary is always required.

      procedure Layout_Component (Comp : Entity_Id; Prev_Comp : Entity_Id);
      --  Lays out component Comp, given Prev_Comp, the previously laid-out
      --  component (Prev_Comp = Empty if no components laid out yet). The
      --  alignment of the record itself is also updated if needed. Both
      --  Comp and Prev_Comp can be either components or discriminants.

      procedure Layout_Components
        (From   : Entity_Id;
         To     : Entity_Id;
         Esiz   : out SO_Ref;
         RM_Siz : out SO_Ref);
      --  This procedure lays out the components of the given component list
      --  which contains the components starting with From and ending with To.
      --  The Next_Entity chain is used to traverse the components. On entry,
      --  Prev_Comp is set to the component preceding the list, so that the
      --  list is laid out after this component. Prev_Comp is set to Empty if
      --  the component list is to be laid out starting at the start of the
      --  record. On return, the components are all laid out, and Prev_Comp is
      --  set to the last laid out component. On return, Esiz is set to the
      --  resulting Object_Size value, which is the length of the record up
      --  to and including the last laid out entity. For Esiz, the value is
      --  adjusted to match the alignment of the record. RM_Siz is similarly
      --  set to the resulting Value_Size value, which is the same length, but
      --  not adjusted to meet the alignment. Note that in the case of variant
      --  records, Esiz represents the maximum size.

      procedure Layout_Non_Variant_Record;
      --  Procedure called to lay out a non-variant record type or subtype

      procedure Layout_Variant_Record;
      --  Procedure called to lay out a variant record type. Decl is set to the
      --  full type declaration for the variant record.

      ---------------------------------
      -- Get_Next_Component_Location --
      ---------------------------------

      procedure Get_Next_Component_Location
        (Prev_Comp  : Entity_Id;
         Align      : Uint;
         New_Npos   : out SO_Ref;
         New_Fbit   : out SO_Ref;
         New_NPMax  : out SO_Ref;
         Force_SU   : Boolean)
      is
      begin
         --  No previous component, return zero position

         if No (Prev_Comp) then
            New_Npos  := Uint_0;
            New_Fbit  := Uint_0;
            New_NPMax := Uint_0;
            return;
         end if;

         --  Here we have a previous component

         declare
            Loc       : constant Source_Ptr := Sloc (Prev_Comp);

            Old_Npos  : constant SO_Ref := Normalized_Position     (Prev_Comp);
            Old_Fbit  : constant SO_Ref := Normalized_First_Bit    (Prev_Comp);
            Old_NPMax : constant SO_Ref := Normalized_Position_Max (Prev_Comp);
            Old_Esiz  : constant SO_Ref := Esize                   (Prev_Comp);

            Old_Maxsz : Node_Id;
            --  Expression representing maximum size of previous component

         begin
            --  Case where previous field had a dynamic size

            if Is_Dynamic_SO_Ref (Esize (Prev_Comp)) then

               --  If the previous field had a dynamic length, then it is
               --  required to occupy an integral number of storage units,
               --  and start on a storage unit boundary. This means that
               --  the Normalized_First_Bit value is zero in the previous
               --  component, and the new value is also set to zero.

               New_Fbit := Uint_0;

               --  In this case, the new position is given by an expression
               --  that is the sum of old normalized position and old size.

               New_Npos :=
                 SO_Ref_From_Expr
                   (Assoc_Add (Loc,
                      Left_Opnd  =>
                        Expr_From_SO_Ref (Loc, Old_Npos),
                      Right_Opnd =>
                        Expr_From_SO_Ref (Loc, Old_Esiz, Prev_Comp)),
                    Ins_Type => E,
                    Vtype    => E);

               --  Get maximum size of previous component

               if Size_Depends_On_Discriminant (Etype (Prev_Comp)) then
                  Old_Maxsz := Get_Max_SU_Size (Etype (Prev_Comp));
               else
                  Old_Maxsz := Expr_From_SO_Ref (Loc, Old_Esiz, Prev_Comp);
               end if;

               --  Now we can compute the new max position. If the max size
               --  is static and the old position is static, then we can
               --  compute the new position statically.

               if Nkind (Old_Maxsz) = N_Integer_Literal
                 and then Known_Static_Normalized_Position_Max (Prev_Comp)
               then
                  New_NPMax := Old_NPMax + Intval (Old_Maxsz);

               --  Otherwise new max position is dynamic

               else
                  New_NPMax :=
                    SO_Ref_From_Expr
                      (Assoc_Add (Loc,
                         Left_Opnd  => Expr_From_SO_Ref (Loc, Old_NPMax),
                         Right_Opnd => Old_Maxsz),
                       Ins_Type => E,
                       Vtype    => E);
               end if;

            --  Previous field has known static Esize

            else
               New_Fbit := Old_Fbit + Old_Esiz;

               --  Bump New_Fbit to storage unit boundary if required

               if New_Fbit /= 0 and then Force_SU then
                  New_Fbit := (New_Fbit + SSU - 1) / SSU * SSU;
               end if;

               --  If old normalized position is static, we can go ahead
               --  and compute the new normalized position directly.

               if Known_Static_Normalized_Position (Prev_Comp) then
                  New_Npos := Old_Npos;

                  if New_Fbit >= SSU then
                     New_Npos := New_Npos + New_Fbit / SSU;
                     New_Fbit := New_Fbit mod SSU;
                  end if;

                  --  Bump alignment if stricter than prev

                  if Align > Alignment (Etype (Prev_Comp)) then
                     New_Npos := (New_Npos + Align - 1) / Align * Align;
                  end if;

                  --  The max position is always equal to the position if
                  --  the latter is static, since arrays depending on the
                  --  values of discriminants never have static sizes.

                  New_NPMax := New_Npos;
                  return;

               --  Case of old normalized position is dynamic

               else
                  --  If new bit position is within the current storage unit,
                  --  we can just copy the old position as the result position
                  --  (we have already set the new first bit value).

                  if New_Fbit < SSU then
                     New_Npos  := Old_Npos;
                     New_NPMax := Old_NPMax;

                  --  If new bit position is past the current storage unit, we
                  --  need to generate a new dynamic value for the position
                  --  ??? need to deal with alignment

                  else
                     New_Npos :=
                       SO_Ref_From_Expr
                         (Assoc_Add (Loc,
                            Left_Opnd  => Expr_From_SO_Ref (Loc, Old_Npos),
                            Right_Opnd =>
                              Make_Integer_Literal (Loc,
                                Intval => New_Fbit / SSU)),
                          Ins_Type => E,
                          Vtype    => E);

                     New_NPMax :=
                       SO_Ref_From_Expr
                         (Assoc_Add (Loc,
                            Left_Opnd  => Expr_From_SO_Ref (Loc, Old_NPMax),
                            Right_Opnd =>
                              Make_Integer_Literal (Loc,
                                Intval => New_Fbit / SSU)),
                            Ins_Type => E,
                            Vtype    => E);
                     New_Fbit := New_Fbit mod SSU;
                  end if;
               end if;
            end if;
         end;
      end Get_Next_Component_Location;

      ----------------------
      -- Layout_Component --
      ----------------------

      procedure Layout_Component (Comp : Entity_Id; Prev_Comp : Entity_Id) is
         Ctyp  : constant Entity_Id := Etype (Comp);
         ORC   : constant Entity_Id := Original_Record_Component (Comp);
         Npos  : SO_Ref;
         Fbit  : SO_Ref;
         NPMax : SO_Ref;
         Forc  : Boolean;

      begin
         --  Increase alignment of record if necessary. Note that we do not
         --  do this for packed records, which have an alignment of one by
         --  default, or for records for which an explicit alignment was
         --  specified with an alignment clause.

         if not Is_Packed (E)
           and then not Has_Alignment_Clause (E)
           and then Alignment (Ctyp) > Alignment (E)
         then
            Set_Alignment (E, Alignment (Ctyp));
         end if;

         --  If original component set, then use same layout

         if Present (ORC) and then ORC /= Comp then
            Set_Normalized_Position     (Comp, Normalized_Position     (ORC));
            Set_Normalized_First_Bit    (Comp, Normalized_First_Bit    (ORC));
            Set_Normalized_Position_Max (Comp, Normalized_Position_Max (ORC));
            Set_Component_Bit_Offset    (Comp, Component_Bit_Offset    (ORC));
            Set_Esize                   (Comp, Esize                   (ORC));
            return;
         end if;

         --  Parent field is always at start of record, this will overlap
         --  the actual fields that are part of the parent, and that's fine

         if Chars (Comp) = Name_uParent then
            Set_Normalized_Position     (Comp, Uint_0);
            Set_Normalized_First_Bit    (Comp, Uint_0);
            Set_Normalized_Position_Max (Comp, Uint_0);
            Set_Component_Bit_Offset    (Comp, Uint_0);
            Set_Esize                   (Comp, Esize (Ctyp));
            return;
         end if;

         --  Check case of type of component has a scope of the record we
         --  are laying out. When this happens, the type in question is an
         --  Itype that has not yet been laid out (that's because such
         --  types do not get frozen in the normal manner, because there
         --  is no place for the freeze nodes).

         if Scope (Ctyp) = E then
            Layout_Type (Ctyp);
         end if;

         --  If component already laid out, then we are done

         if Known_Normalized_Position (Comp) then
            return;
         end if;

         --  Set size of component from type. We use the Esize except in a
         --  packed record, where we use the RM_Size (since that is exactly
         --  what the RM_Size value, as distinct from the Object_Size is
         --  useful for!)

         if Is_Packed (E) then
            Set_Esize (Comp, RM_Size (Ctyp));
         else
            Set_Esize (Comp, Esize (Ctyp));
         end if;

         --  Compute the component position from the previous one. See if
         --  current component requires being on a storage unit boundary.

         --  If record is not packed, we always go to a storage unit boundary

         if not Is_Packed (E) then
            Forc := True;

         --  Packed cases

         else
            --  Elementary types do not need SU boundary in packed record

            if Is_Elementary_Type (Ctyp) then
               Forc := False;

            --  Packed array types with a modular packed array type do not
            --  force a storage unit boundary (since the code generation
            --  treats these as equivalent to the underlying modular type),

            elsif Is_Array_Type (Ctyp)
              and then Is_Bit_Packed_Array (Ctyp)
              and then Is_Modular_Integer_Type (Packed_Array_Type (Ctyp))
            then
               Forc := False;

            --  Record types with known length less than or equal to the length
            --  of long long integer can also be unaligned, since they can be
            --  treated as scalars.

            elsif Is_Record_Type (Ctyp)
              and then not Is_Dynamic_SO_Ref (Esize (Ctyp))
              and then Esize (Ctyp) <= Esize (Standard_Long_Long_Integer)
            then
               Forc := False;

            --  All other cases force a storage unit boundary, even when packed

            else
               Forc := True;
            end if;
         end if;

         --  Now get the next component location

         Get_Next_Component_Location
           (Prev_Comp, Alignment (Ctyp), Npos, Fbit, NPMax, Forc);
         Set_Normalized_Position     (Comp, Npos);
         Set_Normalized_First_Bit    (Comp, Fbit);
         Set_Normalized_Position_Max (Comp, NPMax);

         --  Set Component_Bit_Offset in the static case

         if Known_Static_Normalized_Position (Comp)
           and then Known_Normalized_First_Bit (Comp)
         then
            Set_Component_Bit_Offset (Comp, SSU * Npos + Fbit);
         end if;
      end Layout_Component;

      -----------------------
      -- Layout_Components --
      -----------------------

      procedure Layout_Components
        (From   : Entity_Id;
         To     : Entity_Id;
         Esiz   : out SO_Ref;
         RM_Siz : out SO_Ref)
      is
         End_Npos  : SO_Ref;
         End_Fbit  : SO_Ref;
         End_NPMax : SO_Ref;

      begin
         --  Only lay out components if there are some to lay out!

         if Present (From) then

            --  Lay out components with no component clauses

            Comp := From;
            loop
               if Ekind (Comp) = E_Component
                 or else Ekind (Comp) = E_Discriminant
               then
                  --  The compatibility of component clauses with composite
                  --  types isn't checked in Sem_Ch13, so we check it here.

                  if Present (Component_Clause (Comp)) then
                     if Is_Composite_Type (Etype (Comp))
                       and then Esize (Comp) < RM_Size (Etype (Comp))
                     then
                        Error_Msg_Uint_1 := RM_Size (Etype (Comp));
                        Error_Msg_NE
                          ("size for & too small, minimum allowed is ^",
                           Component_Clause (Comp),
                           Comp);
                     end if;

                  else
                     Layout_Component (Comp, Prev_Comp);
                     Prev_Comp := Comp;
                  end if;
               end if;

               exit when Comp = To;
               Next_Entity (Comp);
            end loop;
         end if;

         --  Set size fields, both are zero if no components

         if No (Prev_Comp) then
            Esiz := Uint_0;
            RM_Siz := Uint_0;

            --  If record subtype with non-static discriminants, then we don't
            --  know which variant will be the one which gets chosen. We don't
            --  just want to set the maximum size from the base, because the
            --  size should depend on the particular variant.

            --  What we do is to use the RM_Size of the base type, which has
            --  the necessary conditional computation of the size, using the
            --  size information for the particular variant chosen. Records
            --  with default discriminants for example have an Esize that is
            --  set to the maximum of all variants, but that's not what we
            --  want for a constrained subtype.

         elsif Ekind (E) = E_Record_Subtype
           and then not Has_Static_Discriminants (E)
         then
            declare
               BT : constant Node_Id := Base_Type (E);
            begin
               Esiz   := RM_Size (BT);
               RM_Siz := RM_Size (BT);
               Set_Alignment (E, Alignment (BT));
            end;

         else
            --  First the object size, for which we align past the last field
            --  to the alignment of the record (the object size is required to
            --  be a multiple of the alignment).

            Get_Next_Component_Location
              (Prev_Comp,
               Alignment (E),
               End_Npos,
               End_Fbit,
               End_NPMax,
               Force_SU => True);

            --  If the resulting normalized position is a dynamic reference,
            --  then the size is dynamic, and is stored in storage units. In
            --  this case, we set the RM_Size to the same value, it is simply
            --  not worth distinguishing Esize and RM_Size values in the
            --  dynamic case, since the RM has nothing to say about them.

            --  Note that a size cannot have been given in this case, since
            --  size specifications cannot be given for variable length types.

            declare
               Align : constant Uint := Alignment (E);

            begin
               if Is_Dynamic_SO_Ref (End_Npos) then
                  RM_Siz := End_Npos;

                  --  Set the Object_Size allowing for the alignment. In the
                  --  dynamic case, we must do the actual runtime computation.
                  --  We can skip this in the non-packed record case if the
                  --  last component has a smaller alignment than the overall
                  --  record alignment.

                  if Is_Dynamic_SO_Ref (End_NPMax) then
                     Esiz := End_NPMax;

                     if Is_Packed (E)
                       or else Alignment (Etype (Prev_Comp)) < Align
                     then
                        --  The expression we build is:
                        --    (expr + align - 1) / align * align

                        Esiz :=
                          SO_Ref_From_Expr
                            (Expr =>
                               Make_Op_Multiply (Loc,
                                 Left_Opnd =>
                                   Make_Op_Divide (Loc,
                                     Left_Opnd =>
                                       Make_Op_Add (Loc,
                                         Left_Opnd =>
                                           Expr_From_SO_Ref (Loc, Esiz),
                                         Right_Opnd =>
                                           Make_Integer_Literal (Loc,
                                             Intval => Align - 1)),
                                     Right_Opnd =>
                                       Make_Integer_Literal (Loc, Align)),
                                 Right_Opnd =>
                                   Make_Integer_Literal (Loc, Align)),
                            Ins_Type => E,
                            Vtype    => E);
                     end if;

                  --  Here Esiz is static, so we can adjust the alignment
                  --  directly go give the required aligned value.

                  else
                     Esiz := (End_NPMax + Align - 1) / Align * Align * SSU;
                  end if;

               --  Case where computed size is static

               else
                  --  The ending size was computed in Npos in storage units,
                  --  but the actual size is stored in bits, so adjust
                  --  accordingly. We also adjust the size to match the
                  --  alignment here.

                  Esiz := (End_NPMax + Align - 1) / Align * Align * SSU;

                  --  Compute the resulting Value_Size (RM_Size). For this
                  --  purpose we do not force alignment of the record or
                  --  storage size alignment of the result.

                  Get_Next_Component_Location
                    (Prev_Comp,
                     Uint_0,
                     End_Npos,
                     End_Fbit,
                     End_NPMax,
                     Force_SU => False);

                  RM_Siz := End_Npos * SSU + End_Fbit;
                  Set_And_Check_Static_Size (E, Esiz, RM_Siz);
               end if;
            end;
         end if;
      end Layout_Components;

      -------------------------------
      -- Layout_Non_Variant_Record --
      -------------------------------

      procedure Layout_Non_Variant_Record is
         Esiz   : SO_Ref;
         RM_Siz : SO_Ref;
      begin
         Layout_Components (First_Entity (E), Last_Entity (E), Esiz, RM_Siz);
         Set_Esize   (E, Esiz);
         Set_RM_Size (E, RM_Siz);
      end Layout_Non_Variant_Record;

      ---------------------------
      -- Layout_Variant_Record --
      ---------------------------

      procedure Layout_Variant_Record is
         Tdef        : constant Node_Id := Type_Definition (Decl);
         First_Discr : Entity_Id;
         Last_Discr  : Entity_Id;
         Esiz        : SO_Ref;
         RM_Siz      : SO_Ref;

         RM_Siz_Expr : Node_Id := Empty;
         --  Expression for the evolving RM_Siz value. This is typically a
         --  conditional expression which involves tests of discriminant
         --  values that are formed as references to the entity V. At
         --  the end of scanning all the components, a suitable function
         --  is constructed in which V is the parameter.

         -----------------------
         -- Local Subprograms --
         -----------------------

         procedure Layout_Component_List
           (Clist       : Node_Id;
            Esiz        : out SO_Ref;
            RM_Siz_Expr : out Node_Id);
         --  Recursive procedure, called to lay out one component list
         --  Esiz and RM_Siz_Expr are set to the Object_Size and Value_Size
         --  values respectively representing the record size up to and
         --  including the last component in the component list (including
         --  any variants in this component list). RM_Siz_Expr is returned
         --  as an expression which may in the general case involve some
         --  references to the discriminants of the current record value,
         --  referenced by selecting from the entity V.

         ---------------------------
         -- Layout_Component_List --
         ---------------------------

         procedure Layout_Component_List
           (Clist       : Node_Id;
            Esiz        : out SO_Ref;
            RM_Siz_Expr : out Node_Id)
         is
            Citems  : constant List_Id := Component_Items (Clist);
            Vpart   : constant Node_Id := Variant_Part (Clist);
            Prv     : Node_Id;
            Var     : Node_Id;
            RM_Siz  : Uint;
            RMS_Ent : Entity_Id;

         begin
            if Is_Non_Empty_List (Citems) then
               Layout_Components
                 (From   => Defining_Identifier (First (Citems)),
                  To     => Defining_Identifier (Last  (Citems)),
                  Esiz   => Esiz,
                  RM_Siz => RM_Siz);
            else
               Layout_Components (Empty, Empty, Esiz, RM_Siz);
            end if;

            --  Case where no variants are present in the component list

            if No (Vpart) then

               --  The Esiz value has been correctly set by the call to
               --  Layout_Components, so there is nothing more to be done.

               --  For RM_Siz, we have an SO_Ref value, which we must convert
               --  to an appropriate expression.

               if Is_Static_SO_Ref (RM_Siz) then
                  RM_Siz_Expr :=
                    Make_Integer_Literal (Loc,
                                          Intval => RM_Siz);

               else
                  RMS_Ent := Get_Dynamic_SO_Entity (RM_Siz);

                  --  If the size is represented by a function, then we
                  --  create an appropriate function call using V as
                  --  the parameter to the call.

                  if Is_Discrim_SO_Function (RMS_Ent) then
                     RM_Siz_Expr :=
                       Make_Function_Call (Loc,
                         Name => New_Occurrence_Of (RMS_Ent, Loc),
                         Parameter_Associations => New_List (
                           Make_Identifier (Loc, Chars => Vname)));

                  --  If the size is represented by a constant, then the
                  --  expression we want is a reference to this constant

                  else
                     RM_Siz_Expr := New_Occurrence_Of (RMS_Ent, Loc);
                  end if;
               end if;

            --  Case where variants are present in this component list

            else
               declare
                  EsizV    : SO_Ref;
                  RM_SizV  : Node_Id;
                  Dchoice  : Node_Id;
                  Discrim  : Node_Id;
                  Dtest    : Node_Id;
                  D_List   : List_Id;
                  D_Entity : Entity_Id;

               begin
                  RM_Siz_Expr := Empty;
                  Prv := Prev_Comp;

                  Var := Last (Variants (Vpart));
                  while Present (Var) loop
                     Prev_Comp := Prv;
                     Layout_Component_List
                       (Component_List (Var), EsizV, RM_SizV);

                     --  Set the Object_Size. If this is the first variant,
                     --  we just set the size of this first variant.

                     if Var = Last (Variants (Vpart)) then
                        Esiz := EsizV;

                     --  Otherwise the Object_Size is formed as a maximum
                     --  of Esiz so far from previous variants, and the new
                     --  Esiz value from the variant we just processed.

                     --  If both values are static, we can just compute the
                     --  maximum directly to save building junk nodes.

                     elsif not Is_Dynamic_SO_Ref (Esiz)
                       and then not Is_Dynamic_SO_Ref (EsizV)
                     then
                        Esiz := UI_Max (Esiz, EsizV);

                     --  If either value is dynamic, then we have to generate
                     --  an appropriate Standard_Unsigned'Max attribute call.
                     --  If one of the values is static then it needs to be
                     --  converted from bits to storage units to be compatible
                     --  with the dynamic value.

                     else
                        if Is_Static_SO_Ref (Esiz) then
                           Esiz := (Esiz + SSU - 1) / SSU;
                        end if;

                        if Is_Static_SO_Ref (EsizV) then
                           EsizV := (EsizV + SSU - 1) / SSU;
                        end if;

                        Esiz :=
                          SO_Ref_From_Expr
                            (Make_Attribute_Reference (Loc,
                               Attribute_Name => Name_Max,
                               Prefix         =>
                                 New_Occurrence_Of (Standard_Unsigned, Loc),
                               Expressions => New_List (
                                 Expr_From_SO_Ref (Loc, Esiz),
                                 Expr_From_SO_Ref (Loc, EsizV))),
                             Ins_Type => E,
                             Vtype    => E);
                     end if;

                     --  Now deal with Value_Size (RM_Siz). We are aiming at
                     --  an expression that looks like:

                     --    if      xxDx (V.disc) then rmsiz1
                     --    else if xxDx (V.disc) then rmsiz2
                     --    else ...

                     --  Where rmsiz1, rmsiz2... are the RM_Siz values for the
                     --  individual variants, and xxDx are the discriminant
                     --  checking functions generated for the variant type.

                     --  If this is the first variant, we simply set the
                     --  result as the expression. Note that this takes
                     --  care of the others case.

                     if No (RM_Siz_Expr) then
                        RM_Siz_Expr := Bits_To_SU (RM_SizV);

                     --  Otherwise construct the appropriate test

                     else
                        --  The test to be used in general is a call to the
                        --  discriminant checking function. However, it is
                        --  definitely worth special casing the very common
                        --  case where a single value is involved.

                        Dchoice := First (Discrete_Choices (Var));

                        if No (Next (Dchoice))
                          and then Nkind (Dchoice) /= N_Range
                        then
                           --  Discriminant to be tested

                           Discrim :=
                             Make_Selected_Component (Loc,
                               Prefix        =>
                                 Make_Identifier (Loc, Chars => Vname),
                               Selector_Name =>
                                 New_Occurrence_Of
                                   (Entity (Name (Vpart)), Loc));

                           Dtest :=
                             Make_Op_Eq (Loc,
                               Left_Opnd  => Discrim,
                               Right_Opnd => New_Copy (Dchoice));

                        --  Generate a call to the discriminant-checking
                        --  function for the variant. Note that the result
                        --  has to be complemented since the function returns
                        --  False when the passed discriminant value matches.

                        else
                           --  The checking function takes all of the type's
                           --  discriminants as parameters, so a list of all
                           --  the selected discriminants must be constructed.

                           D_List := New_List;
                           D_Entity := First_Discriminant (E);
                           while Present (D_Entity) loop
                              Append (
                                Make_Selected_Component (Loc,
                                  Prefix        =>
                                    Make_Identifier (Loc, Chars => Vname),
                                  Selector_Name =>
                                    New_Occurrence_Of
                                      (D_Entity, Loc)),
                                D_List);

                              D_Entity := Next_Discriminant (D_Entity);
                           end loop;

                           Dtest :=
                             Make_Op_Not (Loc,
                               Right_Opnd =>
                                 Make_Function_Call (Loc,
                                   Name =>
                                     New_Occurrence_Of
                                       (Dcheck_Function (Var), Loc),
                                   Parameter_Associations =>
                                     D_List));
                        end if;

                        RM_Siz_Expr :=
                          Make_Conditional_Expression (Loc,
                            Expressions =>
                              New_List
                                (Dtest, Bits_To_SU (RM_SizV), RM_Siz_Expr));
                     end if;

                     Prev (Var);
                  end loop;
               end;
            end if;
         end Layout_Component_List;

      --  Start of processing for Layout_Variant_Record

      begin
         --  We need the discriminant checking functions, since we generate
         --  calls to these functions for the RM_Size expression, so make
         --  sure that these functions have been constructed in time.

         Build_Discr_Checking_Funcs (Decl);

         --  Lay out the discriminants

         First_Discr := First_Discriminant (E);
         Last_Discr  := First_Discr;
         while Present (Next_Discriminant (Last_Discr)) loop
            Next_Discriminant (Last_Discr);
         end loop;

         Layout_Components
           (From   => First_Discr,
            To     => Last_Discr,
            Esiz   => Esiz,
            RM_Siz => RM_Siz);

         --  Lay out the main component list (this will make recursive calls
         --  to lay out all component lists nested within variants).

         Layout_Component_List (Component_List (Tdef), Esiz, RM_Siz_Expr);
         Set_Esize (E, Esiz);

         --  If the RM_Size is a literal, set its value

         if Nkind (RM_Siz_Expr) = N_Integer_Literal then
            Set_RM_Size (E, Intval (RM_Siz_Expr));

         --  Otherwise we construct a dynamic SO_Ref

         else
            Set_RM_Size (E,
              SO_Ref_From_Expr
                (RM_Siz_Expr,
                 Ins_Type => E,
                 Vtype    => E));
         end if;
      end Layout_Variant_Record;

   --  Start of processing for Layout_Record_Type

   begin
      --  If this is a cloned subtype, just copy the size fields from the
      --  original, nothing else needs to be done in this case, since the
      --  components themselves are all shared.

      if (Ekind (E) = E_Record_Subtype
            or else
          Ekind (E) = E_Class_Wide_Subtype)
        and then Present (Cloned_Subtype (E))
      then
         Set_Esize     (E, Esize     (Cloned_Subtype (E)));
         Set_RM_Size   (E, RM_Size   (Cloned_Subtype (E)));
         Set_Alignment (E, Alignment (Cloned_Subtype (E)));

      --  Another special case, class-wide types. The RM says that the size
      --  of such types is implementation defined (RM 13.3(48)). What we do
      --  here is to leave the fields set as unknown values, and the backend
      --  determines the actual behavior.

      elsif Ekind (E) = E_Class_Wide_Type then
         null;

      --  All other cases

      else
         --  Initialize alignment conservatively to 1. This value will
         --  be increased as necessary during processing of the record.

         if Unknown_Alignment (E) then
            Set_Alignment (E, Uint_1);
         end if;

         --  Initialize previous component. This is Empty unless there
         --  are components which have already been laid out by component
         --  clauses. If there are such components, we start our lay out of
         --  the remaining components following the last such component.

         Prev_Comp := Empty;

         Comp := First_Entity (E);
         while Present (Comp) loop
            if (Ekind (Comp) = E_Component
                 or else Ekind (Comp) = E_Discriminant)
              and then Present (Component_Clause (Comp))
            then
               if No (Prev_Comp)
                 or else
                   Component_Bit_Offset (Comp) >
                   Component_Bit_Offset (Prev_Comp)
               then
                  Prev_Comp := Comp;
               end if;
            end if;

            Next_Entity (Comp);
         end loop;

         --  We have two separate circuits, one for non-variant records and
         --  one for variant records. For non-variant records, we simply go
         --  through the list of components. This handles all the non-variant
         --  cases including those cases of subtypes where there is no full
         --  type declaration, so the tree cannot be used to drive the layout.
         --  For variant records, we have to drive the layout from the tree
         --  since we need to understand the variant structure in this case.

         if Present (Full_View (E)) then
            Decl := Declaration_Node (Full_View (E));
         else
            Decl := Declaration_Node (E);
         end if;

         --  Scan all the components

         if Nkind (Decl) = N_Full_Type_Declaration
           and then Has_Discriminants (E)
           and then Nkind (Type_Definition (Decl)) = N_Record_Definition
           and then Present (Component_List (Type_Definition (Decl)))
           and then
             Present (Variant_Part (Component_List (Type_Definition (Decl))))
         then
            Layout_Variant_Record;
         else
            Layout_Non_Variant_Record;
         end if;
      end if;
   end Layout_Record_Type;

   -----------------
   -- Layout_Type --
   -----------------

   procedure Layout_Type (E : Entity_Id) is
   begin
      --  For string literal types, for now, kill the size always, this
      --  is because gigi does not like or need the size to be set ???

      if Ekind (E) = E_String_Literal_Subtype then
         Set_Esize (E, Uint_0);
         Set_RM_Size (E, Uint_0);
         return;
      end if;

      --  For access types, set size/alignment. This is system address
      --  size, except for fat pointers (unconstrained array access types),
      --  where the size is two times the address size, to accommodate the
      --  two pointers that are required for a fat pointer (data and
      --  template). Note that E_Access_Protected_Subprogram_Type is not
      --  an access type for this purpose since it is not a pointer but is
      --  equivalent to a record. For access subtypes, copy the size from
      --  the base type since Gigi represents them the same way.

      if Is_Access_Type (E) then

         --  If Esize already set (e.g. by a size clause), then nothing
         --  further to be done here.

         if Known_Esize (E) then
            null;

         --  Access to subprogram is a strange beast, and we let the
         --  backend figure out what is needed (it may be some kind
         --  of fat pointer, including the static link for example.

         elsif Ekind (E) = E_Access_Protected_Subprogram_Type then
            null;

         --  For access subtypes, copy the size information from base type

         elsif Ekind (E) = E_Access_Subtype then
            Set_Size_Info (E, Base_Type (E));
            Set_RM_Size   (E, RM_Size (Base_Type (E)));

         --  For other access types, we use either address size, or, if
         --  a fat pointer is used (pointer-to-unconstrained array case),
         --  twice the address size to accommodate a fat pointer.

         else
            declare
               Desig : Entity_Id := Designated_Type (E);

            begin
               if Is_Private_Type (Desig)
                 and then Present (Full_View (Desig))
               then
                  Desig := Full_View (Desig);
               end if;

               if Is_Array_Type (Desig)
                 and then not Is_Constrained (Desig)
                 and then not Has_Completion_In_Body (Desig)
                 and then not Debug_Flag_6
               then
                  Init_Size (E, 2 * System_Address_Size);

                  --  Check for bad convention set

                  if Warn_On_Export_Import
                    and then
                      (Convention (E) = Convention_C
                         or else
                       Convention (E) = Convention_CPP)
                  then
                     Error_Msg_N
                       ("?this access type does not " &
                        "correspond to C pointer", E);
                  end if;

               else
                  Init_Size (E, System_Address_Size);
               end if;
            end;
         end if;

         --  On VMS, reset size to 32 for convention C access type if no
         --  explicit size clause is given and the default size is 64. Really
         --  we do not know the size, since depending on options for the VMS
         --  compiler, the size of a pointer type can be 32 or 64, but choosing
         --  32 as the default improves compatibility with legacy VMS code.

         --  Note: we do not use Has_Size_Clause in the test below, because we
         --  want to catch the case of a derived type inheriting a size clause.
         --  We want to consider this to be an explicit size clause for this
         --  purpose, since it would be weird not to inherit the size in this
         --  case.

         if OpenVMS_On_Target
           and then (Convention (E) = Convention_C
                      or else
                     Convention (E) = Convention_CPP)
           and then No (Get_Attribute_Definition_Clause (E, Attribute_Size))
           and then Esize (E) = 64
         then
            Init_Size (E, 32);
         end if;

         Set_Elem_Alignment (E);

      --  Scalar types: set size and alignment

      elsif Is_Scalar_Type (E) then

         --  For discrete types, the RM_Size and Esize must be set
         --  already, since this is part of the earlier processing
         --  and the front end is always required to lay out the
         --  sizes of such types (since they are available as static
         --  attributes). All we do is to check that this rule is
         --  indeed obeyed!

         if Is_Discrete_Type (E) then

            --  If the RM_Size is not set, then here is where we set it

            --  Note: an RM_Size of zero looks like not set here, but this
            --  is a rare case, and we can simply reset it without any harm.

            if not Known_RM_Size (E) then
               Set_Discrete_RM_Size (E);
            end if;

            --  If Esize for a discrete type is not set then set it

            if not Known_Esize (E) then
               declare
                  S : Int := 8;

               begin
                  loop
                     --  If size is big enough, set it and exit

                     if S >= RM_Size (E) then
                        Init_Esize (E, S);
                        exit;

                     --  If the RM_Size is greater than 64 (happens only
                     --  when strange values are specified by the user,
                     --  then Esize is simply a copy of RM_Size, it will
                     --  be further refined later on)

                     elsif S = 64 then
                        Set_Esize (E, RM_Size (E));
                        exit;

                     --  Otherwise double possible size and keep trying

                     else
                        S := S * 2;
                     end if;
                  end loop;
               end;
            end if;

         --  For non-discrete sclar types, if the RM_Size is not set,
         --  then set it now to a copy of the Esize if the Esize is set.

         else
            if Known_Esize (E) and then Unknown_RM_Size (E) then
               Set_RM_Size (E, Esize (E));
            end if;
         end if;

         Set_Elem_Alignment (E);

      --  Non-elementary (composite) types

      else
         --  If RM_Size is known, set Esize if not known

         if Known_RM_Size (E) and then Unknown_Esize (E) then

            --  If the alignment is known, we bump the Esize up to the
            --  next alignment boundary if it is not already on one.

            if Known_Alignment (E) then
               declare
                  A : constant Uint   := Alignment_In_Bits (E);
                  S : constant SO_Ref := RM_Size (E);

               begin
                  Set_Esize (E, (S * A + A - 1) / A);
               end;
            end if;

         --  If Esize is set, and RM_Size is not, RM_Size is copied from
         --  Esize at least for now this seems reasonable, and is in any
         --  case needed for compatibility with old versions of gigi.
         --  look to be unknown.

         elsif Known_Esize (E) and then Unknown_RM_Size (E) then
            Set_RM_Size (E, Esize (E));
         end if;

         --  For array base types, set component size if object size of
         --  the component type is known and is a small power of 2 (8,
         --  16, 32, 64), since this is what will always be used.

         if Ekind (E) = E_Array_Type
           and then Unknown_Component_Size (E)
         then
            declare
               CT : constant Entity_Id := Component_Type (E);

            begin
               --  For some reasons, access types can cause trouble,
               --  So let's just do this for discrete types ???

               if Present (CT)
                 and then Is_Discrete_Type (CT)
                 and then Known_Static_Esize (CT)
               then
                  declare
                     S : constant Uint := Esize (CT);

                  begin
                     if S = 8  or else
                        S = 16 or else
                        S = 32 or else
                        S = 64
                     then
                        Set_Component_Size (E, Esize (CT));
                     end if;
                  end;
               end if;
            end;
         end if;
      end if;

      --  Lay out array and record types if front end layout set

      if Frontend_Layout_On_Target then
         if Is_Array_Type (E) and then not Is_Bit_Packed_Array (E) then
            Layout_Array_Type (E);
         elsif Is_Record_Type (E) then
            Layout_Record_Type (E);
         end if;

      --  Case of backend layout, we still do a little in the front end

      else
         --  Processing for record types

         if Is_Record_Type (E) then

            --  Special remaining processing for record types with a known
            --  size of 16, 32, or 64 bits whose alignment is not yet set.
            --  For these types, we set a corresponding alignment matching
            --  the size if possible, or as large as possible if not.

            if Convention (E) = Convention_Ada
               and then not Debug_Flag_Q
            then
               Set_Composite_Alignment (E);
            end if;

         --  Procressing for array types

         elsif Is_Array_Type (E) then

            --  For arrays that are required to be atomic, we do the same
            --  processing as described above for short records, since we
            --  really need to have the alignment set for the whole array.

            if Is_Atomic (E) and then not Debug_Flag_Q then
               Set_Composite_Alignment (E);
            end if;

            --  For unpacked array types, set an alignment of 1 if we know
            --  that the component alignment is not greater than 1. The reason
            --  we do this is to avoid unnecessary copying of slices of such
            --  arrays when passed to subprogram parameters (see special test
            --  in Exp_Ch6.Expand_Actuals).

            if not Is_Packed (E)
              and then Unknown_Alignment (E)
            then
               if Known_Static_Component_Size (E)
                 and then Component_Size (E) = 1
               then
                  Set_Alignment (E, Uint_1);
               end if;
            end if;
         end if;
      end if;

      --  Final step is to check that Esize and RM_Size are compatible

      if Known_Static_Esize (E) and then Known_Static_RM_Size (E) then
         if Esize (E) < RM_Size (E) then

            --  Esize is less than RM_Size. That's not good. First we test
            --  whether this was set deliberately with an Object_Size clause
            --  and if so, object to the clause.

            if Has_Object_Size_Clause (E) then
               Error_Msg_Uint_1 := RM_Size (E);
               Error_Msg_F
                 ("object size is too small, minimum is ^",
                  Expression (Get_Attribute_Definition_Clause
                                             (E, Attribute_Object_Size)));
            end if;

            --  Adjust Esize up to RM_Size value

            declare
               Size : constant Uint := RM_Size (E);

            begin
               Set_Esize (E, RM_Size (E));

               --  For scalar types, increase Object_Size to power of 2,
               --  but not less than a storage unit in any case (i.e.,
               --  normally this means it will be storage-unit addressable).

               if Is_Scalar_Type (E) then
                  if Size <= System_Storage_Unit then
                     Init_Esize (E, System_Storage_Unit);
                  elsif Size <= 16 then
                     Init_Esize (E, 16);
                  elsif Size <= 32 then
                     Init_Esize (E, 32);
                  else
                     Set_Esize  (E, (Size + 63) / 64 * 64);
                  end if;

                  --  Finally, make sure that alignment is consistent with
                  --  the newly assigned size.

                  while Alignment (E) * System_Storage_Unit < Esize (E)
                    and then Alignment (E) < Maximum_Alignment
                  loop
                     Set_Alignment (E, 2 * Alignment (E));
                  end loop;
               end if;
            end;
         end if;
      end if;
   end Layout_Type;

   ---------------------
   -- Rewrite_Integer --
   ---------------------

   procedure Rewrite_Integer (N : Node_Id; V : Uint) is
      Loc : constant Source_Ptr := Sloc (N);
      Typ : constant Entity_Id  := Etype (N);

   begin
      Rewrite (N, Make_Integer_Literal (Loc, Intval => V));
      Set_Etype (N, Typ);
   end Rewrite_Integer;

   -------------------------------
   -- Set_And_Check_Static_Size --
   -------------------------------

   procedure Set_And_Check_Static_Size
     (E      : Entity_Id;
      Esiz   : SO_Ref;
      RM_Siz : SO_Ref)
   is
      SC : Node_Id;

      procedure Check_Size_Too_Small (Spec : Uint; Min : Uint);
      --  Spec is the number of bit specified in the size clause, and
      --  Min is the minimum computed size. An error is given that the
      --  specified size is too small if Spec < Min, and in this case
      --  both Esize and RM_Size are set to unknown in E. The error
      --  message is posted on node SC.

      procedure Check_Unused_Bits (Spec : Uint; Max : Uint);
      --  Spec is the number of bits specified in the size clause, and
      --  Max is the maximum computed size. A warning is given about
      --  unused bits if Spec > Max. This warning is posted on node SC.

      --------------------------
      -- Check_Size_Too_Small --
      --------------------------

      procedure Check_Size_Too_Small (Spec : Uint; Min : Uint) is
      begin
         if Spec < Min then
            Error_Msg_Uint_1 := Min;
            Error_Msg_NE
              ("size for & too small, minimum allowed is ^", SC, E);
            Init_Esize   (E);
            Init_RM_Size (E);
         end if;
      end Check_Size_Too_Small;

      -----------------------
      -- Check_Unused_Bits --
      -----------------------

      procedure Check_Unused_Bits (Spec : Uint; Max : Uint) is
      begin
         if Spec > Max then
            Error_Msg_Uint_1 := Spec - Max;
            Error_Msg_NE ("?^ bits of & unused", SC, E);
         end if;
      end Check_Unused_Bits;

   --  Start of processing for Set_And_Check_Static_Size

   begin
      --  Case where Object_Size (Esize) is already set by a size clause

      if Known_Static_Esize (E) then
         SC := Size_Clause (E);

         if No (SC) then
            SC := Get_Attribute_Definition_Clause (E, Attribute_Object_Size);
         end if;

         --  Perform checks on specified size against computed sizes

         if Present (SC) then
            Check_Unused_Bits    (Esize (E), Esiz);
            Check_Size_Too_Small (Esize (E), RM_Siz);
         end if;
      end if;

      --  Case where Value_Size (RM_Size) is set by specific Value_Size
      --  clause (we do not need to worry about Value_Size being set by
      --  a Size clause, since that will have set Esize as well, and we
      --  already took care of that case).

      if Known_Static_RM_Size (E) then
         SC := Get_Attribute_Definition_Clause (E, Attribute_Value_Size);

         --  Perform checks on specified size against computed sizes

         if Present (SC) then
            Check_Unused_Bits    (RM_Size (E), Esiz);
            Check_Size_Too_Small (RM_Size (E), RM_Siz);
         end if;
      end if;

      --  Set sizes if unknown

      if Unknown_Esize (E) then
         Set_Esize (E, Esiz);
      end if;

      if Unknown_RM_Size (E) then
         Set_RM_Size (E, RM_Siz);
      end if;
   end Set_And_Check_Static_Size;

   -----------------------------
   -- Set_Composite_Alignment --
   -----------------------------

   procedure Set_Composite_Alignment (E : Entity_Id) is
      Siz   : Uint;
      Align : Nat;

   begin
      if Unknown_Alignment (E) then
         if Known_Static_Esize (E) then
            Siz := Esize (E);

         elsif Unknown_Esize (E)
           and then Known_Static_RM_Size (E)
         then
            Siz := RM_Size (E);

         else
            return;
         end if;

         --  Size is known, alignment is not set

         --  Reset alignment to match size if size is exactly 2, 4, or 8
         --  storage units.

         if Siz = 2 * System_Storage_Unit then
            Align := 2;
         elsif Siz = 4 * System_Storage_Unit then
            Align := 4;
         elsif Siz = 8 * System_Storage_Unit then
            Align := 8;

         --  On VMS, also reset for odd "in between" sizes, e.g. a 17-bit
         --  record is given an alignment of 4. This is more consistent with
         --  what DEC Ada does.

         elsif OpenVMS_On_Target and then Siz > System_Storage_Unit then

            if Siz <= 2 * System_Storage_Unit then
               Align := 2;
            elsif Siz <= 4 * System_Storage_Unit then
               Align := 4;
            elsif Siz <= 8 * System_Storage_Unit then
               Align := 8;
            else
               return;
            end if;

         --  No special alignment fiddling needed

         else
            return;
         end if;

         --  Here Align is set to the proposed improved alignment

         if Align > Maximum_Alignment then
            Align := Maximum_Alignment;
         end if;

         --  Further processing for record types only to reduce the alignment
         --  set by the above processing in some specific cases. We do not
         --  do this for atomic records, since we need max alignment there.

         if Is_Record_Type (E) then

            --  For records, there is generally no point in setting alignment
            --  higher than word size since we cannot do better than move by
            --  words in any case

            if Align > System_Word_Size / System_Storage_Unit then
               Align := System_Word_Size / System_Storage_Unit;
            end if;

            --  Check components. If any component requires a higher
            --  alignment, then we set that higher alignment in any case.

            declare
               Comp : Entity_Id;

            begin
               Comp := First_Component (E);
               while Present (Comp) loop
                  if Known_Alignment (Etype (Comp)) then
                     declare
                        Calign : constant Uint := Alignment (Etype (Comp));

                     begin
                        --  The cases to worry about are when the alignment
                        --  of the component type is larger than the alignment
                        --  we have so far, and either there is no component
                        --  clause for the alignment, or the length set by
                        --  the component clause matches the alignment set.

                        if Calign > Align
                          and then
                            (Unknown_Esize (Comp)
                               or else (Known_Static_Esize (Comp)
                                          and then
                                        Esize (Comp) =
                                           Calign * System_Storage_Unit))
                        then
                           Align := UI_To_Int (Calign);
                        end if;
                     end;
                  end if;

                  Next_Component (Comp);
               end loop;
            end;
         end if;

         --  Set chosen alignment

         Set_Alignment (E, UI_From_Int (Align));

         if Known_Static_Esize (E)
           and then Esize (E) < Align * System_Storage_Unit
         then
            Set_Esize (E, UI_From_Int (Align * System_Storage_Unit));
         end if;
      end if;
   end Set_Composite_Alignment;

   --------------------------
   -- Set_Discrete_RM_Size --
   --------------------------

   procedure Set_Discrete_RM_Size (Def_Id : Entity_Id) is
      FST : constant Entity_Id := First_Subtype (Def_Id);

   begin
      --  All discrete types except for the base types in standard
      --  are constrained, so indicate this by setting Is_Constrained.

      Set_Is_Constrained (Def_Id);

      --  We set generic types to have an unknown size, since the
      --  representation of a generic type is irrelevant, in view
      --  of the fact that they have nothing to do with code.

      if Is_Generic_Type (Root_Type (FST)) then
         Set_RM_Size (Def_Id, Uint_0);

      --  If the subtype statically matches the first subtype, then
      --  it is required to have exactly the same layout. This is
      --  required by aliasing considerations.

      elsif Def_Id /= FST and then
        Subtypes_Statically_Match (Def_Id, FST)
      then
         Set_RM_Size   (Def_Id, RM_Size (FST));
         Set_Size_Info (Def_Id, FST);

      --  In all other cases the RM_Size is set to the minimum size.
      --  Note that this routine is never called for subtypes for which
      --  the RM_Size is set explicitly by an attribute clause.

      else
         Set_RM_Size (Def_Id, UI_From_Int (Minimum_Size (Def_Id)));
      end if;
   end Set_Discrete_RM_Size;

   ------------------------
   -- Set_Elem_Alignment --
   ------------------------

   procedure Set_Elem_Alignment (E : Entity_Id) is
   begin
      --  Do not set alignment for packed array types, unless we are doing
      --  front end layout, because otherwise this is always handled in the
      --  backend.

      if Is_Packed_Array_Type (E) and then not Frontend_Layout_On_Target then
         return;

      --  If there is an alignment clause, then we respect it

      elsif Has_Alignment_Clause (E) then
         return;

      --  If the size is not set, then don't attempt to set the alignment. This
      --  happens in the backend layout case for access-to-subprogram types.

      elsif not Known_Static_Esize (E) then
         return;

      --  For access types, do not set the alignment if the size is less than
      --  the allowed minimum size. This avoids cascaded error messages.

      elsif Is_Access_Type (E)
        and then Esize (E) < System_Address_Size
      then
         return;
      end if;

      --  Here we calculate the alignment as the largest power of two
      --  multiple of System.Storage_Unit that does not exceed either
      --  the actual size of the type, or the maximum allowed alignment.

      declare
         S : constant Int :=
               UI_To_Int (Esize (E)) / SSU;
         A : Nat;

      begin
         A := 1;
         while 2 * A <= Ttypes.Maximum_Alignment
            and then 2 * A <= S
         loop
            A := 2 * A;
         end loop;

         --  Now we think we should set the alignment to A, but we
         --  skip this if an alignment is already set to a value
         --  greater than A (happens for derived types).

         --  However, if the alignment is known and too small it
         --  must be increased, this happens in a case like:

         --     type R is new Character;
         --     for R'Size use 16;

         --  Here the alignment inherited from Character is 1, but
         --  it must be increased to 2 to reflect the increased size.

         if Unknown_Alignment (E) or else Alignment (E) < A then
            Init_Alignment (E, A);
         end if;
      end;
   end Set_Elem_Alignment;

   ----------------------
   -- SO_Ref_From_Expr --
   ----------------------

   function SO_Ref_From_Expr
     (Expr      : Node_Id;
      Ins_Type  : Entity_Id;
      Vtype     : Entity_Id := Empty;
      Make_Func : Boolean   := False) return Dynamic_SO_Ref
   is
      Loc  : constant Source_Ptr := Sloc (Ins_Type);

      K : constant Entity_Id :=
            Make_Defining_Identifier (Loc,
              Chars => New_Internal_Name ('K'));

      Decl : Node_Id;

      Vtype_Primary_View : Entity_Id;

      function Check_Node_V_Ref (N : Node_Id) return Traverse_Result;
      --  Function used to check one node for reference to V

      function Has_V_Ref is new Traverse_Func (Check_Node_V_Ref);
      --  Function used to traverse tree to check for reference to V

      ----------------------
      -- Check_Node_V_Ref --
      ----------------------

      function Check_Node_V_Ref (N : Node_Id) return Traverse_Result is
      begin
         if Nkind (N) = N_Identifier then
            if Chars (N) = Vname then
               return Abandon;
            else
               return Skip;
            end if;

         else
            return OK;
         end if;
      end Check_Node_V_Ref;

   --  Start of processing for SO_Ref_From_Expr

   begin
      --  Case of expression is an integer literal, in this case we just
      --  return the value (which must always be non-negative, since size
      --  and offset values can never be negative).

      if Nkind (Expr) = N_Integer_Literal then
         pragma Assert (Intval (Expr) >= 0);
         return Intval (Expr);
      end if;

      --  Case where there is a reference to V, create function

      if Has_V_Ref (Expr) = Abandon then

         pragma Assert (Present (Vtype));

         --  Check whether Vtype is a view of a private type and ensure that
         --  we use the primary view of the type (which is denoted by its
         --  Etype, whether it's the type's partial or full view entity).
         --  This is needed to make sure that we use the same (primary) view
         --  of the type for all V formals, whether the current view of the
         --  type is the partial or full view, so that types will always
         --  match on calls from one size function to another.

         if  Has_Private_Declaration (Vtype) then
            Vtype_Primary_View := Etype (Vtype);
         else
            Vtype_Primary_View := Vtype;
         end if;

         Set_Is_Discrim_SO_Function (K);

         Decl :=
           Make_Subprogram_Body (Loc,

             Specification =>
               Make_Function_Specification (Loc,
                 Defining_Unit_Name => K,
                   Parameter_Specifications => New_List (
                     Make_Parameter_Specification (Loc,
                       Defining_Identifier =>
                         Make_Defining_Identifier (Loc, Chars => Vname),
                       Parameter_Type      =>
                         New_Occurrence_Of (Vtype_Primary_View, Loc))),
                   Result_Definition =>
                     New_Occurrence_Of (Standard_Unsigned, Loc)),

             Declarations => Empty_List,

             Handled_Statement_Sequence =>
               Make_Handled_Sequence_Of_Statements (Loc,
                 Statements => New_List (
                   Make_Return_Statement (Loc,
                     Expression => Expr))));

      --  The caller requests that the expression be encapsulated in
      --  a parameterless function.

      elsif Make_Func then
         Decl :=
           Make_Subprogram_Body (Loc,

             Specification =>
               Make_Function_Specification (Loc,
                 Defining_Unit_Name => K,
                   Parameter_Specifications => Empty_List,
                   Result_Definition =>
                     New_Occurrence_Of (Standard_Unsigned, Loc)),

             Declarations => Empty_List,

             Handled_Statement_Sequence =>
               Make_Handled_Sequence_Of_Statements (Loc,
                 Statements => New_List (
                   Make_Return_Statement (Loc, Expression => Expr))));

      --  No reference to V and function not requested, so create a constant

      else
         Decl :=
           Make_Object_Declaration (Loc,
             Defining_Identifier => K,
             Object_Definition   =>
               New_Occurrence_Of (Standard_Unsigned, Loc),
             Constant_Present    => True,
             Expression          => Expr);
      end if;

      Append_Freeze_Action (Ins_Type, Decl);
      Analyze (Decl);
      return Create_Dynamic_SO_Ref (K);
   end SO_Ref_From_Expr;

end Layout;