1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
|
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- I N L I N E --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2007, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 2, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING. If not, write --
-- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
-- Boston, MA 02110-1301, USA. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Atree; use Atree;
with Einfo; use Einfo;
with Elists; use Elists;
with Errout; use Errout;
with Exp_Ch7; use Exp_Ch7;
with Exp_Tss; use Exp_Tss;
with Fname; use Fname;
with Fname.UF; use Fname.UF;
with Lib; use Lib;
with Namet; use Namet;
with Nlists; use Nlists;
with Opt; use Opt;
with Sem_Ch8; use Sem_Ch8;
with Sem_Ch10; use Sem_Ch10;
with Sem_Ch12; use Sem_Ch12;
with Sem_Util; use Sem_Util;
with Sinfo; use Sinfo;
with Snames; use Snames;
with Stand; use Stand;
with Uname; use Uname;
package body Inline is
--------------------
-- Inlined Bodies --
--------------------
-- Inlined functions are actually placed in line by the backend if the
-- corresponding bodies are available (i.e. compiled). Whenever we find
-- a call to an inlined subprogram, we add the name of the enclosing
-- compilation unit to a worklist. After all compilation, and after
-- expansion of generic bodies, we traverse the list of pending bodies
-- and compile them as well.
package Inlined_Bodies is new Table.Table (
Table_Component_Type => Entity_Id,
Table_Index_Type => Int,
Table_Low_Bound => 0,
Table_Initial => Alloc.Inlined_Bodies_Initial,
Table_Increment => Alloc.Inlined_Bodies_Increment,
Table_Name => "Inlined_Bodies");
-----------------------
-- Inline Processing --
-----------------------
-- For each call to an inlined subprogram, we make entries in a table
-- that stores caller and callee, and indicates a prerequisite from
-- one to the other. We also record the compilation unit that contains
-- the callee. After analyzing the bodies of all such compilation units,
-- we produce a list of subprograms in topological order, for use by the
-- back-end. If P2 is a prerequisite of P1, then P1 calls P2, and for
-- proper inlining the back-end must analyze the body of P2 before that of
-- P1. The code below guarantees that the transitive closure of inlined
-- subprograms called from the main compilation unit is made available to
-- the code generator.
Last_Inlined : Entity_Id := Empty;
-- For each entry in the table we keep a list of successors in topological
-- order, i.e. callers of the current subprogram.
type Subp_Index is new Nat;
No_Subp : constant Subp_Index := 0;
-- The subprogram entities are hashed into the Inlined table
Num_Hash_Headers : constant := 512;
Hash_Headers : array (Subp_Index range 0 .. Num_Hash_Headers - 1)
of Subp_Index;
type Succ_Index is new Nat;
No_Succ : constant Succ_Index := 0;
type Succ_Info is record
Subp : Subp_Index;
Next : Succ_Index;
end record;
-- The following table stores list elements for the successor lists.
-- These lists cannot be chained directly through entries in the Inlined
-- table, because a given subprogram can appear in several such lists.
package Successors is new Table.Table (
Table_Component_Type => Succ_Info,
Table_Index_Type => Succ_Index,
Table_Low_Bound => 1,
Table_Initial => Alloc.Successors_Initial,
Table_Increment => Alloc.Successors_Increment,
Table_Name => "Successors");
type Subp_Info is record
Name : Entity_Id := Empty;
First_Succ : Succ_Index := No_Succ;
Count : Integer := 0;
Listed : Boolean := False;
Main_Call : Boolean := False;
Next : Subp_Index := No_Subp;
Next_Nopred : Subp_Index := No_Subp;
end record;
package Inlined is new Table.Table (
Table_Component_Type => Subp_Info,
Table_Index_Type => Subp_Index,
Table_Low_Bound => 1,
Table_Initial => Alloc.Inlined_Initial,
Table_Increment => Alloc.Inlined_Increment,
Table_Name => "Inlined");
-----------------------
-- Local Subprograms --
-----------------------
function Scope_In_Main_Unit (Scop : Entity_Id) return Boolean;
-- Return True if Scop is in the main unit or its spec, or in a
-- parent of the main unit if it is a child unit.
procedure Add_Call (Called : Entity_Id; Caller : Entity_Id := Empty);
-- Make two entries in Inlined table, for an inlined subprogram being
-- called, and for the inlined subprogram that contains the call. If
-- the call is in the main compilation unit, Caller is Empty.
function Add_Subp (E : Entity_Id) return Subp_Index;
-- Make entry in Inlined table for subprogram E, or return table index
-- that already holds E.
function Has_Initialized_Type (E : Entity_Id) return Boolean;
-- If a candidate for inlining contains type declarations for types with
-- non-trivial initialization procedures, they are not worth inlining.
function Is_Nested (E : Entity_Id) return Boolean;
-- If the function is nested inside some other function, it will
-- always be compiled if that function is, so don't add it to the
-- inline list. We cannot compile a nested function outside the
-- scope of the containing function anyway. This is also the case if
-- the function is defined in a task body or within an entry (for
-- example, an initialization procedure).
procedure Add_Inlined_Subprogram (Index : Subp_Index);
-- Add subprogram to Inlined List once all of its predecessors have been
-- placed on the list. Decrement the count of all its successors, and
-- add them to list (recursively) if count drops to zero.
------------------------------
-- Deferred Cleanup Actions --
------------------------------
-- The cleanup actions for scopes that contain instantiations is delayed
-- until after expansion of those instantiations, because they may
-- contain finalizable objects or tasks that affect the cleanup code.
-- A scope that contains instantiations only needs to be finalized once,
-- even if it contains more than one instance. We keep a list of scopes
-- that must still be finalized, and call cleanup_actions after all the
-- instantiations have been completed.
To_Clean : Elist_Id;
procedure Add_Scope_To_Clean (Inst : Entity_Id);
-- Build set of scopes on which cleanup actions must be performed
procedure Cleanup_Scopes;
-- Complete cleanup actions on scopes that need it
--------------
-- Add_Call --
--------------
procedure Add_Call (Called : Entity_Id; Caller : Entity_Id := Empty) is
P1 : constant Subp_Index := Add_Subp (Called);
P2 : Subp_Index;
J : Succ_Index;
begin
if Present (Caller) then
P2 := Add_Subp (Caller);
-- Add P2 to the list of successors of P1, if not already there.
-- Note that P2 may contain more than one call to P1, and only
-- one needs to be recorded.
J := Inlined.Table (P1).First_Succ;
while J /= No_Succ loop
if Successors.Table (J).Subp = P2 then
return;
end if;
J := Successors.Table (J).Next;
end loop;
-- On exit, make a successor entry for P2
Successors.Increment_Last;
Successors.Table (Successors.Last).Subp := P2;
Successors.Table (Successors.Last).Next :=
Inlined.Table (P1).First_Succ;
Inlined.Table (P1).First_Succ := Successors.Last;
Inlined.Table (P2).Count := Inlined.Table (P2).Count + 1;
else
Inlined.Table (P1).Main_Call := True;
end if;
end Add_Call;
----------------------
-- Add_Inlined_Body --
----------------------
procedure Add_Inlined_Body (E : Entity_Id) is
Pack : Entity_Id;
function Must_Inline return Boolean;
-- Inlining is only done if the call statement N is in the main unit,
-- or within the body of another inlined subprogram.
-----------------
-- Must_Inline --
-----------------
function Must_Inline return Boolean is
Scop : Entity_Id;
Comp : Node_Id;
begin
-- Check if call is in main unit
Scop := Current_Scope;
-- Do not try to inline if scope is standard. This could happen, for
-- example, for a call to Add_Global_Declaration, and it causes
-- trouble to try to inline at this level.
if Scop = Standard_Standard then
return False;
end if;
-- Otherwise lookup scope stack to outer scope
while Scope (Scop) /= Standard_Standard
and then not Is_Child_Unit (Scop)
loop
Scop := Scope (Scop);
end loop;
Comp := Parent (Scop);
while Nkind (Comp) /= N_Compilation_Unit loop
Comp := Parent (Comp);
end loop;
if Comp = Cunit (Main_Unit)
or else Comp = Library_Unit (Cunit (Main_Unit))
then
Add_Call (E);
return True;
end if;
-- Call is not in main unit. See if it's in some inlined subprogram
Scop := Current_Scope;
while Scope (Scop) /= Standard_Standard
and then not Is_Child_Unit (Scop)
loop
if Is_Overloadable (Scop)
and then Is_Inlined (Scop)
then
Add_Call (E, Scop);
return True;
end if;
Scop := Scope (Scop);
end loop;
return False;
end Must_Inline;
-- Start of processing for Add_Inlined_Body
begin
-- Find unit containing E, and add to list of inlined bodies if needed.
-- If the body is already present, no need to load any other unit. This
-- is the case for an initialization procedure, which appears in the
-- package declaration that contains the type. It is also the case if
-- the body has already been analyzed. Finally, if the unit enclosing
-- E is an instance, the instance body will be analyzed in any case,
-- and there is no need to add the enclosing unit (whose body might not
-- be available).
-- Library-level functions must be handled specially, because there is
-- no enclosing package to retrieve. In this case, it is the body of
-- the function that will have to be loaded.
if not Is_Abstract_Subprogram (E) and then not Is_Nested (E)
and then Convention (E) /= Convention_Protected
then
Pack := Scope (E);
if Must_Inline
and then Ekind (Pack) = E_Package
then
Set_Is_Called (E);
if Pack = Standard_Standard then
-- Library-level inlined function. Add function iself to
-- list of needed units.
Inlined_Bodies.Increment_Last;
Inlined_Bodies.Table (Inlined_Bodies.Last) := E;
elsif Is_Generic_Instance (Pack) then
null;
elsif not Is_Inlined (Pack)
and then not Has_Completion (E)
and then not Scope_In_Main_Unit (Pack)
then
Set_Is_Inlined (Pack);
Inlined_Bodies.Increment_Last;
Inlined_Bodies.Table (Inlined_Bodies.Last) := Pack;
end if;
end if;
end if;
end Add_Inlined_Body;
----------------------------
-- Add_Inlined_Subprogram --
----------------------------
procedure Add_Inlined_Subprogram (Index : Subp_Index) is
E : constant Entity_Id := Inlined.Table (Index).Name;
Succ : Succ_Index;
Subp : Subp_Index;
function Back_End_Cannot_Inline (Subp : Entity_Id) return Boolean;
-- There are various conditions under which back-end inlining cannot
-- be done reliably:
--
-- a) If a body has handlers, it must not be inlined, because this
-- may violate program semantics, and because in zero-cost exception
-- mode it will lead to undefined symbols at link time.
--
-- b) If a body contains inlined function instances, it cannot be
-- inlined under ZCX because the numerix suffix generated by gigi
-- will be different in the body and the place of the inlined call.
--
-- This procedure must be carefully coordinated with the back end
----------------------------
-- Back_End_Cannot_Inline --
----------------------------
function Back_End_Cannot_Inline (Subp : Entity_Id) return Boolean is
Decl : constant Node_Id := Unit_Declaration_Node (Subp);
Body_Ent : Entity_Id;
Ent : Entity_Id;
begin
if Nkind (Decl) = N_Subprogram_Declaration
and then Present (Corresponding_Body (Decl))
then
Body_Ent := Corresponding_Body (Decl);
else
return False;
end if;
-- If subprogram is marked Inline_Always, inlining is mandatory
if Is_Always_Inlined (Subp) then
return False;
end if;
if Present
(Exception_Handlers
(Handled_Statement_Sequence
(Unit_Declaration_Node (Corresponding_Body (Decl)))))
then
return True;
end if;
Ent := First_Entity (Body_Ent);
while Present (Ent) loop
if Is_Subprogram (Ent)
and then Is_Generic_Instance (Ent)
then
return True;
end if;
Next_Entity (Ent);
end loop;
return False;
end Back_End_Cannot_Inline;
-- Start of processing for Add_Inlined_Subprogram
begin
-- Insert the current subprogram in the list of inlined subprograms,
-- if it can actually be inlined by the back-end.
if not Scope_In_Main_Unit (E)
and then Is_Inlined (E)
and then not Is_Nested (E)
and then not Has_Initialized_Type (E)
then
if Back_End_Cannot_Inline (E) then
Set_Is_Inlined (E, False);
else
if No (Last_Inlined) then
Set_First_Inlined_Subprogram (Cunit (Main_Unit), E);
else
Set_Next_Inlined_Subprogram (Last_Inlined, E);
end if;
Last_Inlined := E;
end if;
end if;
Inlined.Table (Index).Listed := True;
Succ := Inlined.Table (Index).First_Succ;
while Succ /= No_Succ loop
Subp := Successors.Table (Succ).Subp;
Inlined.Table (Subp).Count := Inlined.Table (Subp).Count - 1;
if Inlined.Table (Subp).Count = 0 then
Add_Inlined_Subprogram (Subp);
end if;
Succ := Successors.Table (Succ).Next;
end loop;
end Add_Inlined_Subprogram;
------------------------
-- Add_Scope_To_Clean --
------------------------
procedure Add_Scope_To_Clean (Inst : Entity_Id) is
Scop : constant Entity_Id := Enclosing_Dynamic_Scope (Inst);
Elmt : Elmt_Id;
begin
-- If the instance appears in a library-level package declaration,
-- all finalization is global, and nothing needs doing here.
if Scop = Standard_Standard then
return;
end if;
-- If the instance appears within a generic subprogram there is nothing
-- to finalize either.
declare
S : Entity_Id;
begin
S := Scope (Inst);
while Present (S) and then S /= Standard_Standard loop
if Is_Generic_Subprogram (S) then
return;
end if;
S := Scope (S);
end loop;
end;
Elmt := First_Elmt (To_Clean);
while Present (Elmt) loop
if Node (Elmt) = Scop then
return;
end if;
Elmt := Next_Elmt (Elmt);
end loop;
Append_Elmt (Scop, To_Clean);
end Add_Scope_To_Clean;
--------------
-- Add_Subp --
--------------
function Add_Subp (E : Entity_Id) return Subp_Index is
Index : Subp_Index := Subp_Index (E) mod Num_Hash_Headers;
J : Subp_Index;
procedure New_Entry;
-- Initialize entry in Inlined table
procedure New_Entry is
begin
Inlined.Increment_Last;
Inlined.Table (Inlined.Last).Name := E;
Inlined.Table (Inlined.Last).First_Succ := No_Succ;
Inlined.Table (Inlined.Last).Count := 0;
Inlined.Table (Inlined.Last).Listed := False;
Inlined.Table (Inlined.Last).Main_Call := False;
Inlined.Table (Inlined.Last).Next := No_Subp;
Inlined.Table (Inlined.Last).Next_Nopred := No_Subp;
end New_Entry;
-- Start of processing for Add_Subp
begin
if Hash_Headers (Index) = No_Subp then
New_Entry;
Hash_Headers (Index) := Inlined.Last;
return Inlined.Last;
else
J := Hash_Headers (Index);
while J /= No_Subp loop
if Inlined.Table (J).Name = E then
return J;
else
Index := J;
J := Inlined.Table (J).Next;
end if;
end loop;
-- On exit, subprogram was not found. Enter in table. Index is
-- the current last entry on the hash chain.
New_Entry;
Inlined.Table (Index).Next := Inlined.Last;
return Inlined.Last;
end if;
end Add_Subp;
----------------------------
-- Analyze_Inlined_Bodies --
----------------------------
procedure Analyze_Inlined_Bodies is
Comp_Unit : Node_Id;
J : Int;
Pack : Entity_Id;
S : Succ_Index;
begin
Analyzing_Inlined_Bodies := False;
if Serious_Errors_Detected = 0 then
Push_Scope (Standard_Standard);
J := 0;
while J <= Inlined_Bodies.Last
and then Serious_Errors_Detected = 0
loop
Pack := Inlined_Bodies.Table (J);
while Present (Pack)
and then Scope (Pack) /= Standard_Standard
and then not Is_Child_Unit (Pack)
loop
Pack := Scope (Pack);
end loop;
Comp_Unit := Parent (Pack);
while Present (Comp_Unit)
and then Nkind (Comp_Unit) /= N_Compilation_Unit
loop
Comp_Unit := Parent (Comp_Unit);
end loop;
-- Load the body, unless it the main unit, or is an instance
-- whose body has already been analyzed.
if Present (Comp_Unit)
and then Comp_Unit /= Cunit (Main_Unit)
and then Body_Required (Comp_Unit)
and then (Nkind (Unit (Comp_Unit)) /= N_Package_Declaration
or else No (Corresponding_Body (Unit (Comp_Unit))))
then
declare
Bname : constant Unit_Name_Type :=
Get_Body_Name (Get_Unit_Name (Unit (Comp_Unit)));
OK : Boolean;
begin
if not Is_Loaded (Bname) then
Load_Needed_Body (Comp_Unit, OK);
if not OK then
Error_Msg_Unit_1 := Bname;
Error_Msg_N
("one or more inlined subprograms accessed in $!",
Comp_Unit);
Error_Msg_File_1 :=
Get_File_Name (Bname, Subunit => False);
Error_Msg_N ("\but file{ was not found!", Comp_Unit);
raise Unrecoverable_Error;
end if;
end if;
end;
end if;
J := J + 1;
end loop;
-- The analysis of required bodies may have produced additional
-- generic instantiations. To obtain further inlining, we perform
-- another round of generic body instantiations. Establishing a
-- fully recursive loop between inlining and generic instantiations
-- is unlikely to yield more than this one additional pass.
Instantiate_Bodies;
-- The list of inlined subprograms is an overestimate, because
-- it includes inlined functions called from functions that are
-- compiled as part of an inlined package, but are not themselves
-- called. An accurate computation of just those subprograms that
-- are needed requires that we perform a transitive closure over
-- the call graph, starting from calls in the main program. Here
-- we do one step of the inverse transitive closure, and reset
-- the Is_Called flag on subprograms all of whose callers are not.
for Index in Inlined.First .. Inlined.Last loop
S := Inlined.Table (Index).First_Succ;
if S /= No_Succ
and then not Inlined.Table (Index).Main_Call
then
Set_Is_Called (Inlined.Table (Index).Name, False);
while S /= No_Succ loop
if Is_Called
(Inlined.Table (Successors.Table (S).Subp).Name)
or else Inlined.Table (Successors.Table (S).Subp).Main_Call
then
Set_Is_Called (Inlined.Table (Index).Name);
exit;
end if;
S := Successors.Table (S).Next;
end loop;
end if;
end loop;
-- Now that the units are compiled, chain the subprograms within
-- that are called and inlined. Produce list of inlined subprograms
-- sorted in topological order. Start with all subprograms that
-- have no prerequisites, i.e. inlined subprograms that do not call
-- other inlined subprograms.
for Index in Inlined.First .. Inlined.Last loop
if Is_Called (Inlined.Table (Index).Name)
and then Inlined.Table (Index).Count = 0
and then not Inlined.Table (Index).Listed
then
Add_Inlined_Subprogram (Index);
end if;
end loop;
-- Because Add_Inlined_Subprogram treats recursively nodes that have
-- no prerequisites left, at the end of the loop all subprograms
-- must have been listed. If there are any unlisted subprograms
-- left, there must be some recursive chains that cannot be inlined.
for Index in Inlined.First .. Inlined.Last loop
if Is_Called (Inlined.Table (Index).Name)
and then Inlined.Table (Index).Count /= 0
and then not Is_Predefined_File_Name
(Unit_File_Name
(Get_Source_Unit (Inlined.Table (Index).Name)))
then
Error_Msg_N
("& cannot be inlined?", Inlined.Table (Index).Name);
-- A warning on the first one might be sufficient ???
end if;
end loop;
Pop_Scope;
end if;
end Analyze_Inlined_Bodies;
-----------------------------
-- Check_Body_For_Inlining --
-----------------------------
procedure Check_Body_For_Inlining (N : Node_Id; P : Entity_Id) is
Bname : Unit_Name_Type;
E : Entity_Id;
OK : Boolean;
begin
if Is_Compilation_Unit (P)
and then not Is_Generic_Instance (P)
then
Bname := Get_Body_Name (Get_Unit_Name (Unit (N)));
E := First_Entity (P);
while Present (E) loop
if Is_Always_Inlined (E)
or else (Front_End_Inlining and then Has_Pragma_Inline (E))
then
if not Is_Loaded (Bname) then
Load_Needed_Body (N, OK);
if OK then
-- Check that we are not trying to inline a parent
-- whose body depends on a child, when we are compiling
-- the body of the child. Otherwise we have a potential
-- elaboration circularity with inlined subprograms and
-- with Taft-Amendment types.
declare
Comp : Node_Id; -- Body just compiled
Child_Spec : Entity_Id; -- Spec of main unit
Ent : Entity_Id; -- For iteration
With_Clause : Node_Id; -- Context of body.
begin
if Nkind (Unit (Cunit (Main_Unit))) = N_Package_Body
and then Present (Body_Entity (P))
then
Child_Spec :=
Defining_Entity (
(Unit (Library_Unit (Cunit (Main_Unit)))));
Comp :=
Parent (Unit_Declaration_Node (Body_Entity (P)));
With_Clause := First (Context_Items (Comp));
-- Check whether the context of the body just
-- compiled includes a child of itself, and that
-- child is the spec of the main compilation.
while Present (With_Clause) loop
if Nkind (With_Clause) = N_With_Clause
and then
Scope (Entity (Name (With_Clause))) = P
and then
Entity (Name (With_Clause)) = Child_Spec
then
Error_Msg_Node_2 := Child_Spec;
Error_Msg_NE
("body of & depends on child unit&?",
With_Clause, P);
Error_Msg_N
("\subprograms in body cannot be inlined?",
With_Clause);
-- Disable further inlining from this unit,
-- and keep Taft-amendment types incomplete.
Ent := First_Entity (P);
while Present (Ent) loop
if Is_Type (Ent)
and then Has_Completion_In_Body (Ent)
then
Set_Full_View (Ent, Empty);
elsif Is_Subprogram (Ent) then
Set_Is_Inlined (Ent, False);
end if;
Next_Entity (Ent);
end loop;
return;
end if;
Next (With_Clause);
end loop;
end if;
end;
elsif Ineffective_Inline_Warnings then
Error_Msg_Unit_1 := Bname;
Error_Msg_N
("unable to inline subprograms defined in $?", P);
Error_Msg_N ("\body not found?", P);
return;
end if;
end if;
return;
end if;
Next_Entity (E);
end loop;
end if;
end Check_Body_For_Inlining;
--------------------
-- Cleanup_Scopes --
--------------------
procedure Cleanup_Scopes is
Elmt : Elmt_Id;
Decl : Node_Id;
Scop : Entity_Id;
begin
Elmt := First_Elmt (To_Clean);
while Present (Elmt) loop
Scop := Node (Elmt);
if Ekind (Scop) = E_Entry then
Scop := Protected_Body_Subprogram (Scop);
elsif Is_Subprogram (Scop)
and then Is_Protected_Type (Scope (Scop))
and then Present (Protected_Body_Subprogram (Scop))
then
-- If a protected operation contains an instance, its
-- cleanup operations have been delayed, and the subprogram
-- has been rewritten in the expansion of the enclosing
-- protected body. It is the corresponding subprogram that
-- may require the cleanup operations.
Set_Uses_Sec_Stack
(Protected_Body_Subprogram (Scop),
Uses_Sec_Stack (Scop));
Scop := Protected_Body_Subprogram (Scop);
end if;
if Ekind (Scop) = E_Block then
Decl := Parent (Block_Node (Scop));
else
Decl := Unit_Declaration_Node (Scop);
if Nkind (Decl) = N_Subprogram_Declaration
or else Nkind (Decl) = N_Task_Type_Declaration
or else Nkind (Decl) = N_Subprogram_Body_Stub
then
Decl := Unit_Declaration_Node (Corresponding_Body (Decl));
end if;
end if;
Push_Scope (Scop);
Expand_Cleanup_Actions (Decl);
End_Scope;
Elmt := Next_Elmt (Elmt);
end loop;
end Cleanup_Scopes;
--------------------------
-- Has_Initialized_Type --
--------------------------
function Has_Initialized_Type (E : Entity_Id) return Boolean is
E_Body : constant Node_Id := Get_Subprogram_Body (E);
Decl : Node_Id;
begin
if No (E_Body) then -- imported subprogram
return False;
else
Decl := First (Declarations (E_Body));
while Present (Decl) loop
if Nkind (Decl) = N_Full_Type_Declaration
and then Present (Init_Proc (Defining_Identifier (Decl)))
then
return True;
end if;
Next (Decl);
end loop;
end if;
return False;
end Has_Initialized_Type;
----------------
-- Initialize --
----------------
procedure Initialize is
begin
Analyzing_Inlined_Bodies := False;
Pending_Descriptor.Init;
Pending_Instantiations.Init;
Inlined_Bodies.Init;
Successors.Init;
Inlined.Init;
for J in Hash_Headers'Range loop
Hash_Headers (J) := No_Subp;
end loop;
end Initialize;
------------------------
-- Instantiate_Bodies --
------------------------
-- Generic bodies contain all the non-local references, so an
-- instantiation does not need any more context than Standard
-- itself, even if the instantiation appears in an inner scope.
-- Generic associations have verified that the contract model is
-- satisfied, so that any error that may occur in the analysis of
-- the body is an internal error.
procedure Instantiate_Bodies is
J : Int;
Info : Pending_Body_Info;
begin
if Serious_Errors_Detected = 0 then
Expander_Active := (Operating_Mode = Opt.Generate_Code);
Push_Scope (Standard_Standard);
To_Clean := New_Elmt_List;
if Is_Generic_Unit (Cunit_Entity (Main_Unit)) then
Start_Generic;
end if;
-- A body instantiation may generate additional instantiations, so
-- the following loop must scan to the end of a possibly expanding
-- set (that's why we can't simply use a FOR loop here).
J := 0;
while J <= Pending_Instantiations.Last
and then Serious_Errors_Detected = 0
loop
Info := Pending_Instantiations.Table (J);
-- If the instantiation node is absent, it has been removed
-- as part of unreachable code.
if No (Info.Inst_Node) then
null;
elsif Nkind (Info.Act_Decl) = N_Package_Declaration then
Instantiate_Package_Body (Info);
Add_Scope_To_Clean (Defining_Entity (Info.Act_Decl));
else
Instantiate_Subprogram_Body (Info);
end if;
J := J + 1;
end loop;
-- Reset the table of instantiations. Additional instantiations
-- may be added through inlining, when additional bodies are
-- analyzed.
Pending_Instantiations.Init;
-- We can now complete the cleanup actions of scopes that contain
-- pending instantiations (skipped for generic units, since we
-- never need any cleanups in generic units).
-- pending instantiations.
if Expander_Active
and then not Is_Generic_Unit (Main_Unit_Entity)
then
Cleanup_Scopes;
elsif Is_Generic_Unit (Cunit_Entity (Main_Unit)) then
End_Generic;
end if;
Pop_Scope;
end if;
end Instantiate_Bodies;
---------------
-- Is_Nested --
---------------
function Is_Nested (E : Entity_Id) return Boolean is
Scop : Entity_Id := Scope (E);
begin
while Scop /= Standard_Standard loop
if Ekind (Scop) in Subprogram_Kind then
return True;
elsif Ekind (Scop) = E_Task_Type
or else Ekind (Scop) = E_Entry
or else Ekind (Scop) = E_Entry_Family then
return True;
end if;
Scop := Scope (Scop);
end loop;
return False;
end Is_Nested;
----------
-- Lock --
----------
procedure Lock is
begin
Pending_Instantiations.Locked := True;
Inlined_Bodies.Locked := True;
Successors.Locked := True;
Inlined.Locked := True;
Pending_Instantiations.Release;
Inlined_Bodies.Release;
Successors.Release;
Inlined.Release;
end Lock;
--------------------------
-- Remove_Dead_Instance --
--------------------------
procedure Remove_Dead_Instance (N : Node_Id) is
J : Int;
begin
J := 0;
while J <= Pending_Instantiations.Last loop
if Pending_Instantiations.Table (J).Inst_Node = N then
Pending_Instantiations.Table (J).Inst_Node := Empty;
return;
end if;
J := J + 1;
end loop;
end Remove_Dead_Instance;
------------------------
-- Scope_In_Main_Unit --
------------------------
function Scope_In_Main_Unit (Scop : Entity_Id) return Boolean is
Comp : Node_Id;
S : Entity_Id := Scop;
Ent : Entity_Id := Cunit_Entity (Main_Unit);
begin
-- The scope may be within the main unit, or it may be an ancestor
-- of the main unit, if the main unit is a child unit. In both cases
-- it makes no sense to process the body before the main unit. In
-- the second case, this may lead to circularities if a parent body
-- depends on a child spec, and we are analyzing the child.
while Scope (S) /= Standard_Standard
and then not Is_Child_Unit (S)
loop
S := Scope (S);
end loop;
Comp := Parent (S);
while Present (Comp)
and then Nkind (Comp) /= N_Compilation_Unit
loop
Comp := Parent (Comp);
end loop;
if Is_Child_Unit (Ent) then
while Present (Ent)
and then Is_Child_Unit (Ent)
loop
if Scope (Ent) = S then
return True;
end if;
Ent := Scope (Ent);
end loop;
end if;
return
Comp = Cunit (Main_Unit)
or else Comp = Library_Unit (Cunit (Main_Unit));
end Scope_In_Main_Unit;
end Inline;
|